WorldWideScience

Sample records for mountain repository rev

  1. Repository Safety Strategy: Strategy for Protecting Public Health and Safety after Closure of a Yucca Mountain Repository, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    1998-01-01

    The updated Strategy to Protect Public Health and Safety explains the roles that the natural and engineered systems are expected to play in achieving the objectives of a potential repository system at Yucca Mountain. These objectives are to contain the radionuclides within the waste packages for thousands of years, and to ensure that annual doses to a person living near the site will be acceptably low. This strategy maintains the key assumption of the Site Characterization Plan (DOE 1988) strategy that the potential repository level (horizon) will remain unsaturated. Thus, the strategy continues to rely on the natural attributes of the unsaturated zone for primary protection by providing a setting where waste packages assisted by other engineered barriers are expected to contain wastes for thousands of years. As in the Site Characterization Plan (DOE 1988) strategy, the natural system from the walls of the underground openings (drifts) to the human environment is expected to provide additional defense by reducing the concentrations of any radionuclides released from the waste packages. The updated Strategy to Protect Public Health and Safety is the framework for the integration of site information, repository design and assessment of postclosure performance to develop a safety case for the viability assessment and a subsequent license application. Current site information and a reference design are used to develop a quantitative assessment of performance to be compared with a performance measure. Four key attributes of an unsaturated repository system that are critical to meeting the objectives: (1) Limited water contacting the waste packages; (2) Long waste package lifetime; (3) Slow rate of release of radionuclides from the waste form; and (4) Concentration reduction during transport through engineered and natural barriers.

  2. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  3. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  4. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  5. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Krier, D.J.; Perry, F.V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10 -8 per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone (∼80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption

  6. Repository Surface Design Engineering Files Report Rev 00 ICN 1

    International Nuclear Information System (INIS)

    2001-01-01

    The objective of the Repository Surface Design Engineering Files Report Supplement [herein known as the Engineering Files (EF)] is to provide the surface design data needed by the Environmental Impact Statement (EIS) contractor to prepare the EIS and evaluate options and alternatives. This document is based on the Repository Surface Design Engineering Files Report, Revision 03 (CRWMS M and O 1999f) (EF Rev 03). Where facility and system designs have been changed for the Site Recommendation (SR) effort they are described in this report. EIS information provided in this report includes the following: (1) Description of program phases; there are no changes that impact this report. (2) A description of the major design requirements and assumptions that drive the surface facilities reference design is provided herein (Section 2.2), including the surface design resulting from recommendations regarding Enhanced Design Alternative (EDA) II, as discussed in the License Application Design Section Report (CRWMS M and O 1999d), and changes to the waste stream. See Section 2, Table 2-2, for the SR waste stream. (3) The major design requirements and assumptions that drive the surface facilities reference design are by reference to EF Rev 03; there are no changes that impact this report. (4) Description of the reference design concept and existing site conditions is by reference to EF Rev 03 (including Table 4-1, which is not included in this supplement); there are no changes that impact this report. (5) Description of alternative design cases is by reference to EF Rev 03; there are no changes that impact this report. (6) Description of optional inventory modules is by reference to EF Rev 03; there are no changes that impact this report. (7) Tabular summary level engineering values (i.e., staffing, wastes, emissions, resources, and land use) for the reference design and the alternative design cases that address construction, emplacement operations, caretaker operations, and

  7. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  8. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  9. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  10. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  11. Post-closure radiation dose assessment for Yucca Mountain repository

    International Nuclear Information System (INIS)

    Jia Mingyan; Zhang Xiabin; Yang Chuncai

    2006-01-01

    A brief introduction of post-closure long-term radiation safety assessment results was represented for the yucca mountain high-level waste geographic disposal repository. In 1 million years after repository closure, for the higher temperature repository operating mode, the peak annual dose would be 150 millirem (120 millirem under the lower-temperature operating mode) to a reasonably maximally exposed individual approximately 18 kilometers (11 miles) from the repository. The analysis of a drilling intrusion event occurring at 30,000 years indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers (11 miles) downstream of the repository would be 0.002 millirem. The analysis of an igneous activity scenario, including a volcanic eruption event and igneous intrusion event indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers downstream of the repository would be 0.1 millirem. (authors)

  12. Continuing Science and Technology at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Finch, R.J.

    2005-01-01

    Yucca Mountain, Nevada, was designated in 2002 to be the site for the nation's first permanent geological repository for spent nuclear fuel and high-level radioactive waste. The process of selecting a site for the repository began nearly 25 years ago with passage of the Nuclear Waste Policy Act in 1982. The Department of Energy (DOE) is responsible for submitting a license application to the Nuclear Regulatory Commission for constructing and operating the repository, and DOE's Office of Civilian Radioactive Waste Management (OCRWM) is charged with carrying out this action. The use of multiple natural and engineered barriers in the current repository design are considered by OCRWM to be sufficiently robust to warrant license approval; however, potential design enhancements and increased understanding of both natural and engineered barriers, especially over the long time frames during which the waste is to remain isolated from human contact continue to be examined. The Office of Science and Technology and International (OST andI) was created within OCRWM to help explore novel technologies that might lower overall costs and to develop a greater understanding of processes relevant to the long-term performance of the repository. A brief overview of Yucca Mountain, and the role that OST andI has in identifying technological or scientific advances that could make repository operations more efficient or performance more robust, will be presented. It is important to note, however, that adopting any of OST andI's technological or scientific developments will be at the discretion of OCRWM's Office of Repository Development (ORD)

  13. Evaluating the Long-Term Safety of a Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Luik, Abe Van

    2002-01-01

    Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

  14. Development of rail access to the proposed repository site at Yucca Mountain

    International Nuclear Information System (INIS)

    Standish, P.N.; Seidler, P.E.; Andrews, W.B.; Shearin, G.

    1991-01-01

    In accordance with the Nuclear Waste Policy Amendment Act of 1987, Yucca Mountain was designated as the initial site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is considered desirable by the Office of Civilian Radioactive Waste Management (OCRWM) program because of the potential of rail transportation to reduce (1) costs and (2) number of shipments, relative to highway transportation. Therefore, it is necessary to conduct a study to determine (1) that there are alignments for a potential rail line from existing mainline railroads to Yucca Mountain and (2) that these are consistent with present rail design standards and are acceptable relative to environmental and land access considerations

  15. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1985-01-01

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  16. Important parameters in the performance of a potential repository at Yucca Mountain (TSPA-1995)

    International Nuclear Information System (INIS)

    Atkins, J.E.; Sevougian, S.D.; Lee, J.H.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    A total system performance assessment (TSPA) was conducted to determine how a potential repository at Yucca Mountain would behave. Using the results of this TSPA, regression was done to determine which parameters had the most important effect on the repository performance. These results were consistent with the current conceptual understanding of the repository

  17. Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Bjerstedt, T.W.

    1996-01-01

    This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain

  18. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  19. A radiological disadvantage for siting a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Spiegler, P.

    1996-01-01

    At Yucca mountain, the disposal of large amounts of U-238, U-234, and Pu-238 will result in a long term build-up of Rn-222. In time, because of erosion, the repository horizon will move closer to the surface and large amounts of Rn-222 gas will be able to leak into the atmosphere. The area surrounding Yucca Mountain will become a site of high radioactive background. Sullivan and Pescatore have brought the issue to the attention of the DOE

  20. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  1. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design, waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely

  2. Multiscale Thermohydrologic Model Supporting the License Application for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    T.A. Buscheck; Y. Sun; Y. Hao

    2006-01-01

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM

  3. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  4. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  5. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  6. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  7. Viability Assessment of a Repository at Yucca Mountain. Volume 1: Introduction and Site Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This first volume contains an introduction to the viability assessment, including the purpose, scope, waste forms, technical challenges, an historical perspective, regulatory framework, management of the repository, technical components, preparations for the license application, and repository milestones after the assessment. The second part of this first volume addresses characteristics of the Yucca Mountain site.

  8. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  9. Repository-relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Veleckis, E.

    1989-04-01

    A repository environment poses a challenge to developing a testing program because of the diverse nature of conditions that may exist at a given time during the life of the repository. A starting point is to identify whether any potential waste-water contact modes are particularly deleterious to the waste form performance, and whether any interactions between materials present in the waste package environment need to be accounted for during modeling the waste form reaction. The Unsaturated Test method in one approach that has been developed by the Yucca Mountain Project (YMP) to investigate the above issues, and a description of results that have been obtained during the testing of glass and unirradiated UO 2 are the subject of this report. 10 refs., 7 figs., 4 tabs

  10. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  11. Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

    2002-01-01

    If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  13. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  14. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  15. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    Yu-Shu Wu; Sumit Mukhopadhyay; Keni Zhang; G.S. Bodvarsson

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  16. An evaluation of environmental effects of the DOE HLW repository siting and characterization program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winsor, M.F.; Ulland, L.M.

    1989-01-01

    This paper presents highlights of the Nevada Nuclear Waste Project Office (NWPO) environmental investigations in progress on the environmental effects of past and proposed activities of the Department of Energy (DOE) at the Yucca Mountain repository. The environmental investigations refer to those studies specifically related to resource evaluation, impact assessment and mitigation planning for the repository program; it is defined to exclude consideration of technical suitability determinations, socioeconomics and transportation. This paper addresses the question of what are the disturbances created by past and proposed DOE activities related to repository siting and characterization at Yucca Mountain. It discusses considerations in linking disturbance to the potential for significant adverse environmental impacts

  17. A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dahl, C.A.

    2003-01-01

    To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities

  18. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  19. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  20. Multiscale Thermohydrologic Model Analyses of Heterogeneity and Thermal-Loading Factors for the Proposed Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L.G.; Buscheck, T.A.; Gansemer, J.; Sun, Y.; Lee, K.

    2002-01-01

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermohydrologic (TH) conditions in emplacement drifts and the adjoining host rock throughout the proposed nuclear-waste repository at Yucca Mountain. The MSTHM is a computationally efficient approach that accounts for TH processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and for heat flow at the multi-kilometer scale at Yucca Mountain. The modeling effort presented here is an early investigation of the repository and is simulated at a lower temperature mode and with a different panel loading than the repository currently being considered for license application. We present these recent lower temperature mode MSTHM simulations that address the influence of repository-scale thermal-conductivity heterogeneity and the influence of preclosure operational factors affecting thermal-loading conditions. We can now accommodate a complex repository layout with emplacement drifts lying in non-parallel planes using a superposition process that combines results from multiple mountain-scale submodels. This development, along with other improvements to the MSTHM, enables more rigorous analyses of preclosure operational factors. These improvements include the ability to (1) predict TH conditions on a drift-by-drift basis, (2) represent sequential emplacement of waste packages along the drifts, and (3) incorporate distance- and time-dependent heat-removal efficiency associated with drift ventilation. Alternative approaches to addressing repository-scale thermal-conductivity heterogeneity are investigated. We find that only one of the four MSTHM submodel types needs to incorporate thermal-conductivity heterogeneity. For a particular repository design, we find that the most influential parameters are (1) percolation-flux distribution, (2) thermal-conductivity heterogeneity within the host-rock units, (3) the sequencing of waste-package emplacement, and (4) the

  1. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH)processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  2. Environmental impact of Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2005-01-01

    Environmental impact of the Yucca Mountain Repository (YMR) has been quantitatively evaluated in terms of the radiotoxicity of transuranic (TRU) and fission-product radionuclides existing in the environment after released from failed packages. Inventory abstraction has been made based on the data published in Final Environmental Impact Statement published by US DOE. Mathematical model and computation code have been developed based on analytical solutions. Environmental impact from the commercial spent nuclear fuel (CSNF) packages is about 90% of the total impact including the contribution from defense waste (DW) packages. Impacts due to isotopes of Cm, Am, Pu and Np, and their decay daughters are dominant, compared with those from fission-product nuclides. Numerical results show that reduction of the TRU nuclides by a factor of 100 makes the impact from CSNF smaller than that from DW. (author)

  3. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository, B00000000-01717-2200-00099, Rev. 01

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during the site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. A parallel effort was conducted by Sandia National Laboratories and is reported in Wilson et al. (1994, in press)

  4. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  5. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  6. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  7. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  8. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structure is controlled by strict adherence to building or professional- engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the- art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design- analysis process

  9. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high-level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structures is controlled by strict adherence to building or professional-engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the-art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design-analysis process. 7 refs., 1 fig

  10. Reference Design Description for a Geologic Repository, Rev. 03, ICN 02

    International Nuclear Information System (INIS)

    Gerald Shideler

    2001-01-01

    One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay

  11. Characterizing the Evolution of the In-Drift Environment in a Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Abraham Van Luik

    2004-01-01

    This presentation provides a high-level summary of the approach taken to achieve a conceptual understanding of the chemical environments likely to exist in the proposed Yucca Mountain repository after the permanent closure of the facility. That conceptual understanding was then made quantitative through laboratory and modeling studies. This summary gives an overview of the in-drift chemical environment modeling that was needed to evaluate a Yucca Mountain repository: it describes the geological, hydrological, and geochemical aspects of the chemistry of water contacting engineered barriers and includes a summary of the technical basis that supports the integration of this information into the total system performance assessment. In addition, it presents a description of some of the most important data and processes influencing the in-drift environment, and describes how data and parameter uncertainty are propagated through the modeling. Sources of data include: (1) external studies regarding climate changes; (2) site-specific studies of the structure of the mountain and the properties of its rock layers; (3) properties of dust in the mountain and investigations of the potential for deliquescence on that dust to create solutions above the boiling point of water; (4) obtaining thermal data from a comprehensive thermal test addressing coupled processes; and (5) modeling the evolution of the in-drift environment at several scales. Model validation is also briefly addressed

  12. Total system performance predictions (TSPA-1995) for the potential high-level waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    The management and operating contractor for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, has been recently completed a new performance assessment of the ability of the repository to isolate and contain nuclear waste for long time periods (up to 1,000,000 years). Sensitivity analyses determine the most important physical parameters and processes, using the most current information and models

  13. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  14. Geochemical homogeneity of tuffs at the potential repository level, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Zell E.; Cloke, Paul

    2001-01-01

    In a potential high-level radioactive waste repository at Yucca Mountain, Nevada, radioactive waste and canisters, drip shields protecting the waste from seepage and from rock falls, the backfill and invert material of crushed rock, the host rock, and water and gases contained within pores and fractures in the host rock together would form a complex system commonly referred to as the near-field geochemical environment. Materials introduced into the rock mass with the waste that are designed to prolong containment collectively are referred to as the Engineered Barrier System, and the host rock and its contained water and gases compose the natural system. The interaction of these component parts under highly perturbed conditions including temperatures well above natural ambient temperatures will need to be understood to assess the performance of the potential repository for long-term containment of nuclear waste. The geochemistry and mineralogy of the rock mass hosting the emplacement drifts must be known in order to assess the role of the natural system in the near-field environment. Emplacement drifts in a potential repository at Yucca Mountain would be constructed in the phenocryst-poor member of the Topopah Spring Tuff which is composed of both lithophysal and nonlithophysal zones. The chemical composition of the phenocryst-poor member has been characterized by numerous chemical analyses of outcrop samples and of core samples obtained by surface-based drilling. Those analyses have shown that the phenocryst-poor member of the Topopah Spring Tuff is remarkably uniform in composition both vertically and laterally. To verify this geochemical uniformity and to provide rock analyses of samples obtained directly from the potential repository block, major and trace elements were analyzed in core samples obtained from drill holes in the cross drift, which was driven to provide direct access to the rock mass where emplacement drifts would be constructed

  15. The impact of repository heat on thermo-hydrological performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-09-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. These analyses have demonstrated that the only significant source of liquid water is nonequilibrium fracture flow from: (1) meteoric sources, (2) condensate drainage generated under boiling conditions, and (3) condensate drainage generated under sub-boiling conditions. The first source of liquid water arises from the ambient system; the second and third sources are generated by repository heat. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, may play an important role in the generation of the second and third sources of liquid water. By considering a wide range in bulk permeability, k b , the authors identify the threshold k b (called k b hyd ) at which buoyant, vapor convection begins to dominate hydrological behavior, and the threshold k b (called k b th ) at which this convection begins to dominate thermal behavior. They find that k b th is generally an order of magnitude larger than k b hyd and that the development of a large above-boiling zone suppresses the effects of buoyant vapor flow. Of particular concern are conditions that promote the focusing of vapor flow and condensate drainage, which could result in persistent two-phase conditions (often referred to as the heat-pipe effect) in the vicinity of WPs. The results of this study underscore the need for in situ heater tests to help diagnose the potential for the major repository-heat-driven sources of fracture flow

  16. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    P. Swift; A.V. Luik

    2006-08-28

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  17. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    P. Swift; A.V. Luik

    2006-01-01

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  18. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-01-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF (∼260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit (∼570,000 MTHM) could be emplaced. (authors)

  19. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    International Nuclear Information System (INIS)

    Mattson, S.R.; Broxton, D.E.; Buono, A.; Crowe, B.M.; Orkild, P.P.

    1989-01-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation's first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab

  20. Impacts of seismic activity on long-term repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Borns, D.J.; Arnold, B.W.

    1995-01-01

    Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository

  1. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  2. Environmental Impacts of Transportation to the Potential Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.; Best, R.; Bolton, P.; Adams, P.

    2002-01-01

    The Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada analyzes a Proposed Action to construct, operate, monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. As part of the Proposed Action, the EIS analyzes the potential impacts of transporting commercial and DOE spent nuclear fuel and high-level radioactive waste to Yucca Mountain from 77 sites across the United States. The analysis includes information on the comparative impacts of transporting these materials by truck and rail and discusses the impacts of building a rail line or using heavy-haul trucks to move rail casks from a mainline railroad in Nevada to the site. This paper provides an overview of the analyses and the potential impacts of these transportation activities. The potential transportation impacts were looked at from two perspectives: transportation of spent nuclear fuel and high-level radioactive waste by legal-weight truck or by rail on a national scale and impacts specific to Nevada from the transportation of these materials from the State borders to the Yucca Mountain site. In order to address the range of impacts that could result from the most likely modes, legal-weight truck and rail, the EIS employed two analytical scenarios--mostly legal-weight truck and mostly rail. Estimated national transportation impacts were based on 24 years of transportation activities. Approximately 8 fatalities could occur from all causes in the nationwide general population from incident-free transportation activities of the mostly legal-weight truck scenario and about 4 from the mostly rail scenario. The analysis examined the radiological consequences under the maximum foreseeable accident scenario and also overall accident risk. The overall accident risk over the 24 year period would be about 0.0002 latent cancer fatality for

  3. Making the post-closure safety case for the proposed yucca mountain repository

    International Nuclear Information System (INIS)

    Swift, P.; Van Luik, A.

    2008-01-01

    This presentation provided an overview of the Yucca Mountain repository post-closure safety case. The safety case concept is being integrated into the license application being prepared for Yucca Mountain, by giving particularly close attention to the treatment of uncertainties, thereby bringing available lines of evidence into the supporting information, as appropriate, to build a comprehensive argument for safety and regulatory compliance. For Yucca Mountain, it is expected that there will be open questions in the safety case to be presented to the regulator and a programme will be outlined on what information is to be gathered (and how) prior to the next iteration in the licensing process to address such open issues. A one-hundred year operational phase is foreseen and planned, and the changes in knowledge and approaches that occur over time will have to be accommodated through the formal licensing process. (authors)

  4. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Meike, A.; Stroes-Gascoyne, S.

    2000-01-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain

  5. MRS system study for the repository: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Sinagra, T.A.; Harig, R.

    1990-12-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ''MRS'') on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D

  6. MRS system study for the repository: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Sinagra, T.A.; Harig, R.

    1990-12-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ''MRS'') on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations of a geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. 6 refs., 83 figs., 57 tabs

  7. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  8. Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon C.; Hansen, Clifford W.; Sallaberry, Cédric J.

    2012-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, a detailed performance assessment (PA) for the YM repository was completed in 2008 and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository. The following aspects of the 2008 YM PA are described in this presentation: (i) conceptual structure and computational organization, (ii) uncertainty and sensitivity analysis techniques in use, (iii) uncertainty and sensitivity analysis for physical processes, and (iv) uncertainty and sensitivity analysis for expected dose to the reasonably maximally exposed individual (RMEI) specified the NRC’s regulations for the YM repository. - Highlights: ► An overview of performance assessment for the proposed Yucca Mountain radioactive waste repository is presented. ► Conceptual structure and computational organization are described. ► Uncertainty and sensitivity analysis techniques are described. ► Uncertainty and sensitivity analysis results for physical processes are presented. ► Uncertainty and sensitivity analysis results for expected dose are presented.

  9. The Yucca Mountain Repository - Too Little, Too Late

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Pentz, D.L.

    2009-01-01

    In 2008, the U.S. Department of Energy (US DOE) announced that the nation's first (and only pursued) deep geological disposal system (repository) for 70,000 metric tonnes of spent nuclear fuel (SNF) and other high-level radioactive waste (HLW) at the Yucca Mountain (YM) site in Nevada would: 1. Not be able to accommodate the projected stockpile of utility-generated SNF beyond 2010. 2. Open no earlier than in 2020, i.e., more than 22 years behind the statutory-mandated opening date. In the meantime, the US DOE is legally obligated to compensate the utilities from January 31, 1998, until it takes title to the utilities' SNF. In 2005 when the YM SNF repository was projected to open in 2010, the utilities estimated that, depending upon how close to 2010 the YM repository opened, the 'breach-of-contract' compensation could be in the range of between 100 billion and 300 billion U.S. dollars ($300 B), which would exceed the 2008 projected life-cycle cost of $96 B for the YM repository. It thus seems appropriate to look beyond the YM repository and call upon the U.S. Congress to promptly act and open new avenues allowing the US DOE to more timely and cost-effectively take title to both existing and pending SNF the current fleet of 104 reactors will generate through the next 60 years. Options for SNF arising from an additional 50 reactors should also be provided. Based on our more than 60 years of combined involvement in nuclear waste management in the USA and abroad, we submit the following industrial-scale-proven, repository-related, nuclear-waste-management and disposition solutions for prompt Congressional consideration and action: 1. An increase in the disposal capacity (and perhaps mission) of the YM repository. 2. Prompt establishment of at least one large federal monitored retrievable storage (MRS) facility for utility-generated SNF. 3. Continued research in reprocessing options of existing and pending SNF with defined milestones. 4. Resurrection of a second

  10. Repository relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Woodland, A.B.; Wronkiewicz, D.J.; Cunnane, J.C.

    1990-10-01

    The tuff beds of Yucca Mountain, Nevada, are currently being investigated as a site for the disposal of high-level nuclear waste in an underground repository. If this site is found suitable, the repository would be located in the unsaturated zone above the water table, and a description of the site and the methodology of assessing the performance of the repository are described in the Site Characterization Plan (SCP). While many factors are accounted for during performance assessment, an important input parameter is the degradation behavior of the waste forms, which may be either spent fuel or reprocessed waste contained in a borosilicate glass matrix. To develop the necessary waste form degradation input, the waste package environment needs to be identified. This environment will change as the waste decays and also is a function of the repository design which has not yet been finalized. At the present time, an exact description of the waste package environment is not available. The SCP does provide an initial description of conditions that can be used to guide waste form evaluation. However, considerable uncertainty exists concerning the conditions under which waste form degradation and radionuclide release may occur after the waste package containment barriers are finally breached. The release conditions that are considered to be plausible include (1) a open-quotes bathtubclose quotes condition in which the waste becomes fully or partially submerged in water that enters the breached container and accumulates to fill the container up to the level of the breach opening, (2) a open-quotes wet dripclose quotes or open-quotes trickle throughclose quotes condition in which the waste form is exposed to dripping water that enters through the top and exits the bottom of a container with multiple holes, and (3) a open-quotes dryclose quotes condition in which the waste form is exposed to a humid air environment

  11. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    Science.gov (United States)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock

  12. Thermal modeling for a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1994-03-01

    Repository performance models based on numerical simulation of fluid and heat flows have recently been developed by several different groups. Model conceptualizations generally focus on large-scale average behavior. This comparison finds that current performance assessment (PA) models use generally similar approximations and parameters. Certain differences exist in some performance-relevant parameters, especially absolute permeabilities, characteristic curves, and thermal conductivities. These reflect present uncertainties about the most appropriate parameters applicable to Yucca Mountain and must be resolved through future field observations and laboratory measurements. For a highly heterogeneous fractured-porous hydrogeologic system such as Yucca Mountain, water infiltration through the unsaturated zone is expected to be dominated by highly localized phenomena. These include fast channelized flow along preferential paths in fractures, and frequent local ponding. The extended dry repository concept proposed by the Livermore group is reviewed. Predictions of large-scale drying around the repository on the average for large thermal loads cannot be taken to indicate that waste packages will not be contacted by liquid water, and that aqueous-phase transport of contaminants is not possible. Specifically, the authors find that modest water infiltration, on the order of a few millimeters per year, would be sufficient to overwhelm the vaporization capacity of the repository heat and inundate the waste packages within a time frame of a few thousand years. A preliminary analysis indicates that channelized flow of water may persist over large vertical distances. The vaporization-condensation cycle has a capacity for generating huge amounts of ponded water. A small fraction of the total condensate, if ponded and then episodically released, would be sufficient to cause liquid phase to make contact with the waste packages

  13. License Application Design Selection Report, REV 01. August 1999

    International Nuclear Information System (INIS)

    Hastings, C.R.

    1999-01-01

    In December 1998, the U.S. Department of Energy (DOE) published the ''Viability Assessment of a Repository at Yucca Mountain'' (DOE 1998b). The Viability Assessment described a preliminary design of a potential repository at Yucca Mountain, Nevada, for disposal of spent nuclear fuel and high-level radioactive waste, and assessed the probable behavior of that repository design in the Yucca Mountain geologic setting. The report concluded that 'Yucca Mountain remains a promising site for a geologic repository and that work should proceed to support a decision in 2001 on whether to recommend the site to the President for development as a repository'. It also concluded that 'uncertainties remain about key natural processes, the preliminary design, and how the site and design would interact'. Recognizing that the design that was evaluated will be refined before a license application could be submitted, the Viability Aassesment notes that 'DOE is evaluating several design options and alternatives that could reduce existing uncertainty and improve the performance of the repository system'. During the preparation of the Viability Assessment, DOE asked the contractor for the Civilian Radioactive Waste Management Program to study alternative design concepts for a potential geologic repository for high-level radioactive waste at Yucca Mountain. The License Application Design Selection (LADS) project was initiated to conduct that study. The goal of the project was to develop and evaluate a diverse range of conceptual repository designs that work well in concert with the Yucca Mountain site and to recommend an initial design concept for the possible Site Recommendation and License Apllication. This report presents the results of the LADS project. The design process consisted of two phases. In Phase I, a series of basic design concepts (design alternatives) and components (design features) were analyzed for their potential value as elements of a repository design. In Phase II

  14. Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N.; Wilson, M. L.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S and ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S and ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described

  15. Preclosure safety analysis for a prospective Yucca Mountain conceptual design repository

    International Nuclear Information System (INIS)

    Ma, C.W.; Jardine, L.J.

    1989-12-01

    A preliminary probabilistic risk assessment was performed for the prospective Yucca Mountain conceptual design repository. A new methodology to quantify radioactive source terms was developed and applied in the analysis. The study identified 42 event trees comprising 278 accident scenarios. The maximum offsite dose evaluated in this study is about 1000 mrem. For the majority of the accident scenarios, either the offsite dose is less than 100 mrem or the probability of occurrence is less than 1 x 10 -9 /yr. Only 11 accident scenarios with a dose larger than 100 mrem and an associated probability greater than 1 x 10 -9 /yr were identified. A more detailed follow-on analysis for seismic events of various severity was also performed, and similar results were obtained. Therefore, based on the results of this analysis, no significant risk to the general public was identified during the preclosure period for the conceptual repository design. 13 refs., 4 figs., 2 tabs

  16. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  17. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  18. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  19. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  20. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  1. Integrity of radioactive waste packages at the Yucca mountain repository

    International Nuclear Information System (INIS)

    Sandquist, G.; Biaglow, A.; Huber, M.; Jagmin, C.

    2004-01-01

    Several of the important physical and chemical processes that impact the integrity of the radioactive waste packages planned for disposal at the proposed Repository at Yucca Mountain are examined. These processes are described by the aerodynamic, thermodynamic, and chemical interactions associated with the waste packages. The effects of chemical corrosion, mechanical erosion, temperature distributions throughout the repository environs, interactions of air, water, and solid particles, and radiological and biological influences are addressed. Materials will be exposed to at least 3 conditions threatening the integrity of the waste package: 1) accumulated dust and particles on the package surface and suspended in the air, 2) chemical reactions from deposits on the waste package infrastructure materials and tight contact areas, and crevices, and 3) environmental factors affecting chemical reactions such as moisture, pH, Eh, and radiolysis. All 3 of these conditions can combine and produce damaging impacts upon the thin protective layer on the alloy surface of the waste package. There are certain benefits from the low-temperature operating mode with ambient temperature below 85 Celsius degrees, but the materials could be subjected to a maximum temperature of 180 Celsius degrees which might introduce stress corrosion cracking and high temperature effects

  2. Regulatory compliance for a Yucca Mountain Repository: A performance assessment perspective

    International Nuclear Information System (INIS)

    Dyer, J.R.; Van Luik, A.E.; Gil, A.V.; Brocoum, S.J.

    1997-01-01

    The U.S. Department of Energy's Yucca Mountain Site Characterization Project is scheduled to submit a License Application in the year 2002. The License Application is to show compliance with the regulations promulgated by the U.S. Nuclear Regulatory Commission which implement standards promulgated by the U.S. Environmental Protection Agency. These standards are being revised, and it is not certain what their exact nature will be in term of either the performance measure(s) or the time frames that are to be addressed. This paper provides some insights pertaining to this regulatory history, an update on Yucca Mountain performance assessments, and a Yucca Mountain Site Characterization Project perspective on proper standards based on Project experience in performance assessment for its proposed Yucca Mountain Repository system. The Project's performance assessment based perspective on a proper standard applicable to Yucca Mountain may be summarized as follows: a proper standard should be straight forward and understandable; should be consistent with other standards and regulations; and should require a degree of proof that is scientifically supportable in a licensing setting. A proper standard should have several attributes: (1) propose a reasonable risk level as its basis, whatever the quantitative performance measure is chosen to be, (2) state a definite regulatory time frame for showing compliance with quantitative requirements, (3) explicitly recognize that the compliance calculations are not predictions of actual future risks, (4) define the biosphere to which risk needs to be calculated in such a way as to constrain potentially endless speculation about future societies and future human actions, and (5) have as its only quantitative requirement the risk limit (or surrogate performance measure keyed to risk) for the total system

  3. Decompression of magma into repository tunnels

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    It is nontrivial to find and design safe repository sites for nuclear waste. It appears common sense to drill tunnels as repository sites in a mountain in remote and relatively dry regions. However, erosion of the waste canisters by naturally abundant chemicals in the mountains water cycle remains a

  4. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  5. THE DECISION TO RECOMMEND YUCCA MOUNTAIN AND THE NEXT STEPS TOWARD LICENSED REPOSITORY DEVELOPMENT

    International Nuclear Information System (INIS)

    Barrett, L. H.

    2002-01-01

    After more than 20 years of carefully planned and reviewed scientific field work by the U.S. Department of Energy, the U.S. Geological Survey, and numerous other organizations, Secretary of Energy Abraham concluded in January that the Yucca Mountain site is suitable, within the meaning of the Nuclear Waste Policy Act, for development as a permanent nuclear waste and spent fuel repository. In February, the Secretary recommended to the President that the site be developed for licensed disposal of these wastes, and the President transmitted this recommendation to Congress. This paper summarizes key technical and national interest considerations that provided the basis for the recommendation. It also discusses the program's near-term plans for repository development if Congress designates the site

  6. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other

  7. Modeling fault rupture hazard for the proposed repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1992-01-01

    In this paper as part of the Electric Power Research Institute's High Level Waste program, the authors have developed a preliminary probabilistic model for assessing the hazard of fault rupture to the proposed high level waste repository at Yucca Mountain. The model is composed of two parts: the earthquake occurrence model that describes the three-dimensional geometry of earthquake sources and the earthquake recurrence characteristics for all sources in the site vicinity; and the rupture model that describes the probability of coseismic fault rupture of various lengths and amounts of displacement within the repository horizon 350 m below the surface. The latter uses empirical data from normal-faulting earthquakes to relate the rupture dimensions and fault displacement amounts to the magnitude of the earthquake. using a simulation procedure, we allow for earthquake occurrence on all of the earthquake sources in the site vicinity, model the location and displacement due to primary faults, and model the occurrence of secondary faulting in conjunction with primary faulting

  8. THE PROPOSED YUCCA MOUNTAIN REPOSITORY FROM A CORROSIVE PERSPECTIVE

    International Nuclear Information System (INIS)

    PAYER JH

    2006-01-01

    The proposed Yucca Mountain Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. Researchers at Case are part of a Department of Energy Corrosion and Materials Performance Cooperative. This team of leading scientists/engineers from major universities and national laboratories is working together to further enhance the understanding of the role of engineered barriers in waste isolation. The team is organized to address important topics: (1) Long-term behavior of protective, passive films; (2) Composition and properties of moisture in contact with metal surfaces; and (3) Rate of penetration and extent of corrosion damage over extremely long times. The work will also explore technical enhancements and seek to offer improvements in materials costs and reliability

  9. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  10. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  11. Southern Nevada residents' views about the Yucca Mountain high-level nuclear waste repository and related issues: A comparative analysis of urban and rural survey data

    International Nuclear Information System (INIS)

    Krannich, R.S.; Little, R.L.; Mushkatel, A.; Pijawka, K.D.; Jones, P.

    1991-10-01

    Two separate surveys were undertaken in 1988 to ascertain southern Nevadans' views about the Yucca Mountain repository and related issues. The first of these studies focused on the attitudes and perceptions of residents in the Las Vegas metropolitan area. The second study addressed similar issues, but focused on the views of residents in six rural communities in three counties adjacent to the Yucca Mountain site. However, parallel findings from the two data sets have not been jointly analyzed in order to identify ways in which the views and orientations of residents in the rural and urban study areas may be similar or different. The purpose of this report is to develop and present a comparative assessment of selected issues addressed in the rural and urban surveys. Because both urban and rural populations would potentially be impacted by the Yucca Mountain repository, such an analysis will provide important insights into possible repository impacts on the well-being of residents throughout southern Nevada

  12. Identification of structures, systems, and components important to safety at the potential repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Klamerus, L.J.

    1991-10-01

    This study recommends which structures, systems, and components of the potential repository at Yucca Mountain are important to safety. The assessment was completed in April 1990 and uses the reference repository configuration in the Site Characterization Plan Conceptual Design Report and follows the methodology required at that time by DOE Procedure AP6.10-Q. Failures of repository items during the preclosure period are evaluated to determine the potential offsite radiation doses and associated probabilities. Items are important to safety if, in the event they fail to perform their intended function, an accident could result which causes a dose commitment greater than 0.5 rem to the whole body or any organ of an individual in an unrestricted area. This study recommends that these repository items include the structures that house spent fuel and high-level waste, the associated filtered ventilation exhaust systems, certain waste- handling equipment, the waste containers, the waste treatment building structure, the underground waste transporters, and other items listed in this report. This work was completed April 1990. 27 refs., 7 figs., 9 tabs

  13. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  14. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D.; Langford, D.W.; Ouderkirk, S.J.

    1993-01-01

    The placement of high-level radioactive wastes in minded repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models

  15. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  16. The impact of thermal loading on repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1992-01-01

    In the unsaturated zone at Yucca Mountain, liquid flow along preferential fracture pathways is the only credible mechanism capable of bringing water to waste packages and transporting radionuclide to the water table. Three categories of features or mechanisms will mitigate the impact of flow along preferential fracture pathways: (1) discontinuity in fracture pathways, (2) liquid-phase dispersion in fracture networks, and (3) fracture-matrix interaction. For repository areal power densities (APDs) that are too low to result in significant boiling or rock dry-out effects, the primary mode of fracture-matrix interaction is matrix imbibition. For high APDs, boiling and enhanced matrix imbibition due to rock dry-out significantly add to the capacity of the unsaturated zone to retard fracture-dominated flow. With the use of V-TOUGH code, hydrothermal flow calculations are made for a range of APDs and spent fuel ages. For APD > 20 kW/acre, repository-heat-generated flow of vapor and liquid in fractures is found to dominate the ambient hydrological system. For high APDs, boiling conditions can persist for 10,000 yr or longer and rock-dry benefits for at least 100,000 yr

  17. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  18. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY: PROCEEDINGS

    International Nuclear Information System (INIS)

    K.C. Holt

    2006-01-01

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO 4 - but are not expected to be durable. On the other hand, durable materials, such as

  19. Proposed preliminary definition of the disturbed-zone boundary appropriate for a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Langkopf, B.S.

    1987-12-01

    Some of the calculations that support the licensing of a repository for high-level radioactive waste will use the regulatory concept of a disturbed zone. The Nevada Nuclear Waste Storage Investigations (NNWSI) project must determine the location of the boundary of the disturbed zone for use in these calculations. This paper summarizes results of computer analyses and laboratory experiments and suggests a preliminary definition for the boundary of the disturbed zone for the unsaturated environment at Yucca Mountain. Although the intent of this paper is to define the boundary of the disturbed zone at the edge of significant changes in intrinsic hydrologic properties, there is no evidence of changes in intrinsic hydrologic properties that could significantly change the groundwater travel time from the repository to the water table. Such a result suggests that the disturbed zone at Yucca Mountain is of minimal extent. Because the analyses and experiments reviewed here indicate that there are a variety of changes near the waste package and because the results are subject to uncertainty, the preliminary suggestion for the extent of the disturbed zone is a value larger than the results themselves would suggest: the boundary is proposed to be a plane 10 m below the lower boundary of the waste packages. 88 refs., 12 figs., 5 tabs

  20. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  1. Preliminary safety assessment study for the conceptual design of a repository in tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-12-01

    Preliminary estimates of the upper bounds on postulated worst-case radiological releases resulting from possible accidents during the operating period of a prospective repository in tuff at Yucca Mountain are presented. Possible disrupting events are screened to identify the accidents of greatest potential consequence. The radiological dose commitments for the general public and repository personnel are estimated for postulated releases caused by natural phenomena, man-made events, and operational accidents. All postulated worst-case releases result in doses to the public that are lower than the 0.5-rem, whole-body dose-per-accident limit set by the Nuclear Regulatory Commission (NRC) in 10 CFR 60. Doses to repository personnel are within the NRC's 5.0-rem/yr occupational exposure limit set in 10 CFR 20 for normal operations. Doses are within this limit for all accidents except the transportation accident and fire in a drift. A preliminary risk assessment has also been performed. Based on this preliminary safety study, the proposed site boundaries and design criteria routinely used in constructing nuclear facilities appear to be adequate to protect the safety of the general public during the operating phase of the repository

  2. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action

  3. Seismotectonic investigations for Yucca Mountain high-level waste repository: Rationale for defining scope

    International Nuclear Information System (INIS)

    Gupta, D.C.; Blackford, M.E.

    1990-01-01

    The geologic, seismic, and engineering characteristics of the Yucca Mountain site and its environs need to be investigated in sufficient scope and detail to provide reasonable assurance that they are sufficiently well understood to permit an adequate evaluation of the proposed site for the development of a high-level waste repository. The paper examines the extent of seismotectonic investigations needed for proper evaluation of the geologic setting. At the Yucca Mountain site, a thorough understanding of tectonic phenomena such as seismicity and faulting is critical to the identification of potentially disqualifying conditions. Study of the tectonic movement, stress, or co-tectonic effects that could affect the performance of the waste-handling facilities, waste package, underground openings, shaft and borehole seals, and long-term alteration of geohydrology would be necessary. In addition, the uncertainties involved in evaluating the effect of seismotectonics on the radionuclide transport mechanism need to be thoroughly investigated. 8 refs., 1 fig

  4. The impact of thermal loading on repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1992-01-01

    This paper reports that in the unsaturated zone at Yucca Mountain, liquid flow along preferential fracture pathways is the only credible mechanism capable of bringing water to waste packages and transporting radionuclides to the water table. Three categories of features or mechanisms will mitigate the impact of flow along preferential fracture pathways: discontinuity in fracture pathways, liquid-phase dispersion in fracture networks, and fracture-matrix interaction. For repository areal power densities (APDs) that are too low to result in significant boiling or rock dry-out effects, the primary mode of fracture-matrix interaction is matrix imbibition. For high APDs, boiling and enhanced matrix imbibition due to rock dry-out significantly add to the capacity of the unsaturated zone to retard fracture-dominated flow

  5. Emplacement feasibility of a multi-tier, expanded capacity repository at Yucca Mountain, Nevada USA

    International Nuclear Information System (INIS)

    Apted, Michael; Kessler, John; Fairhurst, Charles

    2008-01-01

    A geological repository at Yucca Mountain has been proposed for the disposal of spent fuel from the US commercial reactors and other radioactive waste. A legislative capacity of 70,000 MTHM has been set by the Nuclear Waste Policy Act of 1982, including 63,000 MTHM of commercial spent nuclear fuel (CSNF), the projected amount of CSNF that will be produced by about 2014. Policy issues remain as to how to handle waste that is generated beyond 2014 from a growing nuclear industry in the US. The Electric Power Research Institute (EPRI) is independently evaluating the technical, rather than legislative, limit of CSNF that could be safely disposed at Yucca Mountain. Geological, thermal management, safety and cost factors have been recently evaluated by EPRI (2006; 2007) for grouped emplacement drifts and/or a multi-tier repository. EPRI's evaluation of emplacement feasibility for a multi-tier concept is described here. Expanded capacity concepts as envisioned for Yucca Mountain (EPRI, 2006; 2007) assume excavation of one or two additional levels of drifts parallel to or above and/or below the original drift excavations. For the latter multi-tier concept each 'tier' or 'level' would essentially replicate the original layer with a 30-m separation between tiers. This arrangement essentially doubles or triples the capacity of the repository for a two- or three-tier design, respectively. The main issues that affect the feasibility of expanded capacity design are; (i) ventilation requirements; (ii) radiation hazards; (iii) thermal and thermo-mechanical constraints. (i)Ventilation: The repository design involves waste packages mounted in close proximity to each other in 600-m long drifts that remain open and actively ventilated for at least 50-100 years. Analyses,conservatively assuming that all three repository levels operate simultaneously, indicate no technological obstacles in meeting ventilation requirements for sustained simultaneous operation ba sed on current industrial

  6. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation's high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs

  7. Risk assessment for the Yucca Mountain high-level nuclear waste repository site: Estimation of volcanic disruption. Final report

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang.

    1992-01-01

    In this article, we model the volcanism near the proposed nuclear waste repository at Yucca Mountain, Nevada, U.S.A. by estimating the instantaneous recurrence rate using a nonhomogeneous Poisson process with Weibull intensity and by using a homogeneous Poisson process to predict future eruptions. We then quantify the probability that any single eruption is disruptive in terms of a (prior) probability distribution, since not every eruption would result in disruption of the repository. Bayesian analysis is performed to evaluate the volcanic risk. Based on the Quaternary data, a 90% confidence interval for the instantaneous recurrence rate near the Yucca Mountain site is (1.85 x 10 -6 /yr, 1.26 x 10 -5 /yr). Also, using these confidence bounds, the corresponding 90% confidence interval for the risk (probability of at least one disruptive eruption) for an isolation time of 10 4 years is (1.0 x 10 -3 , 6.7 x 10 -3 ), if it is assumed that the intensity remains constant during the projected time frame

  8. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  9. Supplemental Performance Analyses for Igneous Activity and Human Intrusion at the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Swift, P.; Gaither, K.; Freeze, G.; McCord, J.; Kalinich, D.; Saulnier, G.; Statham, W.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. Consequences of hypothetical disruption of the Yucca Mountain site by igneous activity or human intrusion have been evaluated in the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. Since completion of the S and ER, supplemental analyses have examined possible impacts of new information and alternative assumptions on the estimates of the consequences of these events. Specifically, analyses of the consequences of igneous disruption address uncertainty regarding: (1) the impacts of changes in the repository footprint and waste package spacing on the probability of disruption; (2) impacts of alternative assumptions about the appropriate distribution of future wind speeds to use in the analysis; (3) effects of alternative assumptions about waste particle sizes; and (4) alternative assumptions about the number of waste packages damaged by igneous intrusion; and (5) alternative assumptions about the exposure pathways and the biosphere dose conversion factors used in the analysis. Additional supplemental analyses, supporting the Final Environmental Impact Statement (FEIS), have examined the results for both igneous disruption and human intrusion, recalculated for a receptor group located 18 kilometers (km) from the repository (the location specified in 40 CFR 197), rather than at the 20 km distance used in the S and ER analyses

  10. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  12. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C.; Ballou, L.B.; Revelli, M.A.; Ducharme, A.R.; Shephard, L.E.; Dudley, W.W.; Hoxie, D.T.; Herbst, R.J.; Patera, E.A.; Judd, B.R.; Docka, J.A.; Rickertsen, L.D.

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE's Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ''current information'' or ''available evidence.''

  13. Numerical studies of rock-gas flow in Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B.; Amter, S.; Lu, Ning [Disposal Safety, Inc., Washington, DC (United States)

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ``fresh-water head,`` a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface.

  14. Repository performance confirmation

    International Nuclear Information System (INIS)

    Hansen, Francis D.

    2011-01-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the

  15. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  16. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    International Nuclear Information System (INIS)

    2002-01-01

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that the Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of

  17. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 (1) and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository (2). This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  18. Mountain-Scale Coupled Processes (TH/THC/THM)

    International Nuclear Information System (INIS)

    Dixon, P.

    2004-01-01

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  19. Providing a Scientific and Technical Basis for Repository Decisions

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982 directed the U. S. Department of Energy (DOE) to research sites and design a deep geologic repository for the disposal of our nation's spent nuclear fuel and high-level radioactive waste. In 1987, Congress amended the NWPA and directed the DOE to focus only on Yucca Mountain, Nevada, to determine whether it is a suitable site for a repository. For more than 15 years, the DOE has been studying Yucca Mountain and has accumulated an enormous amount of scientific and technical information about the mountain and the area surrounding it. The secretary of energy will decide whether to recommend Yucca Mountain to the president as a suitable site for a repository. This decision will be based on the scientific and technical information resulting from the Department of Energy's studies of Yucca Mountain and on the views and comments submitted by other governmental groups and the public. One required basis for the secretary's decision will be a scientific analysis called a total system performance assessment

  20. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  1. Science is the first step to siting nuclear waste repositories

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and - most notably - tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  2. A performance assessment review tool for the proposed radioactive waste repository at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Mohanty, Sitakanta; Codell, Richard

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC), with the assistance of the Center for Nuclear Waste Regulatory Analyses, has developed a Total-system Performance Assessment (TPA) Code to assist in evaluating the performance of the Yucca Mountain (YM) High-Level Waste Repository in Nevada, proposed by the U.S. Department of Energy (DOE). The proposed YM repository would be built in a thick sequence of partially saturated volcanic tuff above the water table. Among the unique challenges of this environment are (1) the transport of radionuclides would take place partially through highly heterogeneous unsaturated rock; (2) the waste packages (WPs) would be generally exposed to oxidizing conditions, and (3) water either infiltrating from the surface or recirculating because of decay heat may drip onto the WPs. Tools such as the TPA code and embedded techniques for evaluating YM performance are aimed at (1) determining the parameters and key parts of the repository system that have the most influence on repository performance; (2) performing alternative conceptual models studies, especially with bounding models; (3) estimating the relative importance of the physical phenomena that lead to human exposure to radionuclides; and (4) improving NRC staff capabilities in performance assessment and associated license application reviews. This paper presents an overview of the NRC conceptual framework, approach to conducting system-level sensitivity analyses for determining influential parameters, and alternative conceptual model studies to investigate the effect of model uncertainties. (author)

  3. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration

  4. Use of One-On Analysis to Evaluate Total System Performance of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Saulnier, G.J. Jr.; Lee, K.P.; Mehta, S.; Sevougian, S.D.; Kalinich, D.; McNeish, J.A.

    2002-01-01

    The Yucca Mountain Site Characterization Project is currently evaluating the future performance of the proposed U.S. high-level nuclear waste repository. Using the Total System Performance Assessment (TSPA) model, a stylized analysis was conducted to evaluate the relative importance of natural and engineered barriers to movement of radionuclides from the proposed repository. These stylized ''one-on'' analyses consist of sequentially adding features, components, and processes, associated with the natural and engineered barriers, incorporated within the TSPA model and evaluating the effect of these elements on repository performance, as measured by the total mean annual dose to a reasonably maximally exposed individual. The analyses are ''stylized'' in the sense that they are performed to gain insight only. They are not meant to represent a real physical system in most cases, and in some cases allow the TSPA model to simulate results using parameter ranges outside the normal bounds of the TSPA model. In particular, the analyses provide insight into the relative contributions of repository features and processes in a way that is not possible using the full TSPA performance-assessment model. For example, in the nominal scenario of the TSPA model, the contribution of the natural system is masked by the contribution of the engineered system

  5. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  6. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  7. Uncertain analysis of preclosure accident doses for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Ma, C.W.; Miller, D.D.; Zavoshy, S.J.; Jardine, L.J.

    1990-01-01

    This study presents a generic methodology that can be used to evaluate the uncertainty in the calculated accidental offsite doses at the Yucca Mountain repository during the preclosure period. For demonstration purposes, this methodology is applied to two specific accident scenarios: the first involves a crane dropping an open container with consolidated fuel rods, the second involves container failure during emplacement or removal operations. The uncertainties of thirteen parameters are quantified by various types of probability distributions. The Latin Hypercube Sampling method is used to evaluate the uncertainty of the offsite dose. For the crane-drop scenario with concurrent filter failure, the doses due to the release of airborne fuel particles are calculated to be 0.019, 0.32, and 2.8 rem at confidence levels of 10%, 50%, and 90%, respectively. For the container failure scenario with concurrent filter failure, the 90% confidence-level dose is 0.21 rem. 20 refs., 4 figs., 3 tabs

  8. U.S. DEPARTMENT OF ENERGY EXPERIENCE IN CREATING AND COMMUNICATING THE CASE FOR THE SAFETY OF A POTENTIAL YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    W.J. Boyle; A.E. Van Luik

    2005-01-01

    Experience gained by the U.S. Department of Energy (the Department) in making the recommendation for the development of the Yucca Mountain site as the nation's first high-level waste and spent nuclear fuel repository is useful for creating documents to support the next phase in the repository program, the licensing phase. The experience that supported the successful site-recommendation process involved a three-tiered approach. First, was making a highly technical case for regulatory compliance. Second, was making a broader case for safety in an Environmental Impact Statement. And third, producing plain language brochures, made available to the public in hard copy and on the Internet, to explain the Department's action and its legal and scientific bases. This paper reviews lessons learned from this process, and makes suggestions for the next stage of the repository program: licensing

  9. Suitability of natural soils for foundations for surface facilities at the prospective Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ho, D.M.; Sayre, R.L.; Wu, C.L.

    1986-11-01

    In this report, the natural soils at the Yucca Mountain site are evaluated for the purpose of assessing the suitability of the soils for the foundations of the surface facilities at the prospective repository. The areas being considered for locating the surface facilities are situated on an alluvial plain at the base of Yucca Mountain. Preliminary parameters for foundation design have been developed on the basis of limited field and laboratory study of soils at four test pit locations conducted during May and June 1984. Preliminary recommendations for construction are also included in this report. The gravel-sand alluvial deposits were found to be in a dense to very dense state, which is suitable for foundations of the surface facilities. The design parameters described in this report have been developed for conceptual design, but need to be verified before final design

  10. MAJOR REPOSITORY DESIGN ISSUES

    International Nuclear Information System (INIS)

    JACK N. BAILEY, DWAYNE CHESTNUT, JAMES COMPTON AND RICHARD D. SNELL

    1997-01-01

    The Yucca Mountain Project is focused on producing a four-part viability assessment in late FY98. Its four components (design, performance assessment, cost estimate, and licensing development plan) must be consistent. As a tool to compare design and performance assessment options, a series of repository pictures were developed for the sequential time phases of a repository. The boundaries of the time phases correspond to evolution in the engineered barrier system (EBS)

  11. Evaluation Of Groundwater Pathways And Travel Times From The Nevada Test Site To The Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    K.F. Pohlman; J. Zhu; M. Ye; J. Chapman; C. Russell; D.S. Shafer

    2006-01-01

    Yucca Mountain (YM), Nevada, has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH, we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring timeframe at the proposed repository. We include uncertainty in effective porosity, as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times

  12. Scenarios constructed for nominal flow in the presence of a repository at Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    Barr, G.E.; Hunter, R.L.; Dunn, E.; Flint, A.

    1995-03-01

    Scenario development for the system performance assessment of the Yucca Mountain Site Characterization Project defines a scenario as a well-posed problem connecting an initiating event with radionuclide release to the accessible environment by a logical and physically possible combination or sequence of features, events, and processes. Drawing on the advice and assistance of the Project's principal investigators (PIs), a collection of release scenarios initiated by the nominal ground-water flow occurring in the vicinity of the potential Yucca Mountain high-level-waste repository is developed and described in pictorial form. This collection of scenarios is intended to provide a framework to assist PIs in recognizing essential field and calculational analyses, to assist performance assessment in providing guidance to site characterization, and to continue the effort to exhaustively identify all features, events, and processes important to releases. It represents a step in the iterative process of identifying what details of the potential site are important for safe disposal. 67 refs

  13. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs

  14. A review of the available technologies for sealing a potential underground nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.

    1994-11-01

    The purpose of this report is to assess the availability of technologies to seal underground openings. The technologies are needed to seal the potential high-level radioactive waste repository at Yucca Mountain. Technologies are evaluated for three basic categories of seal components: backfill (general fill and graded fill), bulkheads, and grout curtains. Not only is placement of seal components assessed, but also preconditioning of the placement area and seal component durability. The approach taken was: First, review selected sealing case histories (literature searches and site visits) from the mining, civil, and defense industries; second, determine whether reasonably available technologies to seal the potential repository exist; and finally, identify deficiencies in existing technologies. It is concluded that reasonably available technologies do exist to place backfill, bulkheads, and grout curtains. Technologies also exist to precondition areas where seal components are to be placed. However, if final performance requirements are stringent for these engineered structures, some existing technologies may need to be developed. Deficiencies currently do exist in technologies that demonstrate the long-term durability and performance of seal components. Case histories do not currently exist that demonstrate the placement of seal components in greatly elevated thermal and high-radiation environments and in areas where ground support (rock bolts and concrete liners) has been removed. The as-placed, in situ material properties for sealing materials appropriate to Yucca Mountain are not available

  15. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  16. What do we mean by a cold repository?

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1994-01-01

    The topic of thermal loading of a potential repository at Yucca Mountain in Nevada has been the subject of intense discussion within the project technical community. While terms such as ''Hot Repository'' and ''Cold Repository'' are frequently used, they have not been clearly defined. In particular, the definition of a cold repository has remained the opinion of each individual. This has led to confusion and misunderstanding. In this paper, a number of observed definitions for a cold repository are discussed along with the technical implications, assumptions and inconsistencies. Finally, a common language is suggested

  17. Pre-construction geologic section along the cross drift through the potential high-level radioactive waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Juan, C.S.; Drake, R.M. II

    1998-01-01

    As part of the Site Characterization effort for the US Department of Energy's Yucca Mountain Project, tunnels excavated by tunnel boring machines provide access to the volume of rock that is under consideration for possible underground storage of high-level nuclear waste beneath Yucca Mountain, Nevada. The Exploratory Studies Facility, a 7.8-km-long, 7.6-m-diameter tunnel, has been excavated, and a 2.8-km-long, 5-m-diameter Cross Drift will be excavated in 1998 as part of the geologic, hydrologic and geotechnical evaluation of the potential repository. The southwest-trending Cross Drift branches off of the north ramp of the horseshoe-shaped Exploratory Studies Facility. This report summarizes an interpretive geologic section that was prepared for the Yucca Mountain Project as a tool for use in the design and construction of the Cross Drift

  18. Viability Assessment of a Repository at Yucca Mountain. Volume 4: License Application Plan and Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    Volume 4 provides the DOE plan and cost estimate for the remaining work necessary to proceed from completing this VA to submitting an LA to NRC. This work includes preparing an EIS and evaluating the suitability of the site. Both items are necessary components of the documentation required to support a decision in 2001 by the Secretary of Energy on whether or not to recommend that the President approve the site for development as a repository. If the President recommends the site to Congress and the site designation becomes effective, then DOE will submit the LA to NRC in 2002 for authorization to construct the repository. The work described in Volume 4 constitutes the last step in the characterization of the Yucca Mountain site and the design and evaluation of the performance of a repository system in the geologic setting of this site. The plans in this volume for the next 4 years' work are based on the results of the previous 15 years' work, as reported in Volumes 1, 2, and 3 of this VA. Volume 1 summarizes what DOE has learned to date about the Yucca Mountain site. Volume 2 describes the current, reference repository design, several design options that might enhance the performance of the reference design, and several alternative designs that represent substantial departures from the reference design. Volume 2 also summarizes the results of tests of candidate materials for waste packages and for support of the tunnels into which waste would be emplaced. Volume 3 provides the results of the latest performance assessments undertaken to evaluate the performance of the design in the geologic setting of Yucca Mountain. The results described in Volumes 1, 2, and 3 provide the basis for identifying and prioritizing the work described in this volume. DOE believes that the planned work, together with the results of previous work, will be sufficient to support a site suitability evaluation for site recommendation and, if the site is recommended and designated, a

  19. LIFE Materials: Fuel Cycle and Repository Volume 11

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste

  20. LIFE Materials: Fuel Cycle and Repository Volume 11

    International Nuclear Information System (INIS)

    Shaw, H.; Blink, J.A.

    2008-01-01

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  1. Potential Future Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cline, M.; Perry, F.; Valentine, G.; Smistad, E.

    2005-01-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10 -8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10 -8 be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  2. The status of radioactive waste repository development in the United States - December 2011

    International Nuclear Information System (INIS)

    Hill, David R.

    2012-01-01

    The current state of affairs concerning development in the United States of a permanent repository for disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) is, in a word, uncertain. The President of the United States has asserted that he believes licensing and development of the Yucca Mountain repository should be abandoned, while other important parties believe licensing and development should continue. And not surprisingly, there is a disagreement as to what the law requires and whether the licensing process for the Yucca Mountain repository can be terminated at this point, even if the President would like for that to happen. The future of Yucca Mountain, and the future of radioactive waste disposal in the United States generally, currently are pending before the US Court of Appeals for the District of Columbia Circuit, and eventually the Supreme Court of the United States may decide some of the important legal issues concerning Yucca Mountain's future. The November 2012 US elections also likely will have a significant impact on future radioactive waste repository development

  3. Fabrication and closure development of corrosion resistant containers for Nevada's Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-11-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 2 figs., 4 tabs

  4. Data Qualification Report: Precipitation and Surface Geology Data for Use on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    C. Wilson

    2000-01-01

    The unqualified data addressed in this qualification report have been cited in an Analysis Model Report (AMR) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high-level radioactive waste. The unqualified data include precipitation volumes and surface geology maps The precipitation data consist of daily precipitation volumes measured at Yucca Mountain. The surface geology data include identification of the types and surface expressions of geologic units and associated structural features such as faults. These data were directly used in AMR U0010, Simulation of Net Infiltration for Modern and Potential Future Climates, ANL-NBS-HS-000032 (Hevesi et al. 2000), to estimate net infiltration into Yucca Mountain. This report evaluates the unqualified data within the context of supporting studies of this type for the Yucca Mountain Site Characterization Project (YMP). The purpose of this report is to identify data that can be cited as qualified for use in technical products to support the YMP Site Recommendation and that may also be used to support the License Application. The qualified data may either be retained in the original Data Tracking Number (DTN) or placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this report. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 02, Managing Technical Product Inputs, it has been determined that the unqualified precipitation and surface geology data are not used in the direct calculation of Principal Factors for postclosure safety or disruptive events. References to tables, figures, and sections from Hevesi et al. (2000) are based on Rev. 00 of that document

  5. Interaction of nuclear waste panels with shafts and access ramps for a potential repository at Yucca Mountain: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-09-01

    A series of two-dimensional and three-dimensional analyses of a potential nuclear waste repository at Yucca Mountain were performed to estimate the thermal stresses that would be experienced at the possible locations of shafts or ramps providing access to the repository horizon. Two alternative assumptions were made for the initial state of stress, and calculations were performed to investigate behavior at repository scale. The computed states of stress were also used as boundary conditions for a series of analyses of the access ramps and vertical shafts. The results of the repository scale analyses indicated that there is a region above the repository horizon where the horizontal stresses are reduced as a consequence of the thermal loads imposed by waste emplacement. If the initial state of stress is relatively low then the total horizontal stresses near the ground surface above the repository may be tensile. An evaluation of the total stress state relative to the strength of the rock matrix and vertical and near vertical joints indicates that there is no potential for development of new fractures in the matrix, but joints near the surface could be activated if the initial stress state is low. 13 refs., 24 figs., 4 tabs

  6. SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS

    International Nuclear Information System (INIS)

    MICHAEL T. ITAMUA AND CLIFFORD K. HO

    1998-01-01

    The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment

  7. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  8. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  9. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  10. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    In 1982, the U.S. Congress passed the Nuclear Waste Policy Act, a Federal law that established U.S. policy for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Congress amended the Act in 1987, directing the Department of Energy to study only Yucca Mountain, Nevada as the site for a permanent geologic repository. As the law mandated, the Department evaluated Yucca Mountain to determine its suitability as the site for a permanent geologic repository. Decades of scientific studies demonstrated that Yucca Mountain would protect workers, the public, and the environment during the time that a repository would be operating and for tens of thousands of years after closure of the repository. A repository at this remote site would also: preserve the quality of the environment; allow the environmental cleanup of Cold War weapons facilities; provide the nation with additional protection from acts of terrorism; and support a sound energy policy. Throughout the scientific evaluation of Yucca Mountain, there has been no evidence to disqualify Yucca Mountain as a suitable site for the permanent disposal of spent nuclear fuel and high-level radioactive waste. Upon completion of site characterization, the Secretary of Energy considered the results and concluded that a repository at Yucca Mountain would perform in a manner that protects public health and safety. The Secretary recommended the site to the President in February 2002; the President agreed and recommended to Congress that the site be approved. The Governor of Nevada submitted a notice of disapproval, and both houses of Congress acted to override the disapproval. In July 2002, the President's approval allowed the Department to begin the process of submittal of a license application for Yucca Mountain as the site for the nation's first repository for spent nuclear fuel and high-level radioactive waste. Yucca Mountain is located on federal land in Nye County in southern Nevada, an arid region

  11. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  12. A Framework for the Analysis of Localized Corrosion at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Payer, J H; Carroll, S A; Gdowski, G E; Rebak, R B; Michels, T C; Miller, M C; Henson, V E

    2006-01-01

    The proposed Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Yucca Mountain Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. An approach is presented to the analysis of localized corrosion during a time period when it is possible for waters from drips and seepage to contact the waste package surfaces, and the analysis is demonstrated for the water chemistry of mixed salt solutions and a set of time-temperature-relative humidity profiles for a hot, mid and cool temperature waste package. Based on the analysis, there are large time periods when localized corrosion can not be supported, and no corrosion damage will occur. Further analysis can then focus on time periods when it is possible for localized corrosion to occur and the determination of the evolution of any corrosion damage

  13. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    International Nuclear Information System (INIS)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A.; Mishra, S.

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  14. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A. [Duke Engineering and Services, Town Center Drive, Las Vegas (United States); Mishra, S. [Duke Engineering and Services, Austin, TX (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  15. Effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level waste

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Bagtzoglou, A.C.; Green, R.T.; Muller, M.A.

    1999-01-01

    Numerical modeling was conducted to identify potential perched-water sites and examine the effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level nuclear waste. It is demonstrated that perched-water zones may occur at two horizons on the up-dip side of faults such as the Ghost Dance Fault (GDF): in nonwelded volcanic strata [such as the Paintbrush Tuff nonwelded (PTn) stratigraphic unit], where juxtaposition of welded strata against nonwelded may constitute a barrier to lateral flow within the nonwelded strata; and in fractured horizons of underlying welded units [such as the Topopah Spring welded (TSw) unit] because of focused infiltration fed by overlying perched zones. The potential perched zones (PPZs) may contain perched water (which would flow freely into a well or opening) if infiltration rates are high enough. At lower infiltration rates, the PPZs contain only capillary-held water at relatively high saturations. Areas of the proposed repository that lie below PPZs are likely to experience relatively high percolation flux even if the PPZ contains only capillary-held water at high saturation. As a result, PPZs that contain only capillary-held water may be as important to repository performance as those that contain perched water. Thermal loading from emplaced waste in the repository is not likely to have an effect on PPZs located on adequate distance above the repository (such as in the PTn). As a result, such PPZs may be considered as permanent features of the environment. On the other hand, PPZs close to the repository depth (such as those that may occur in the TSw rock unit) would experience an initial period of spatial growth and increased saturation following waste emplacement. Thereafter, drying would begin at the repository horizon with perched-zone growth simultaneously above and below the repository. As a result, after the initial period of expansion, PPZs close to the repository horizon

  16. Monitoring Programme of Radionuclide Migration Through Food Chains at Low and Intermediate Level Radioactive Waste Repository in Trgoska Gora Mountain

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Kucar Dragicevic, S.; Subasic, D.; Barisic, D.

    2001-01-01

    Full text: Basic objective of the paper is to prepare a comprehensive programme of monitoring at the preferred site for low and intermediate level radioactive waste repository in the region of Trgovska Gora mountain. The programme is based on available information regarding hydrogeology, lithostratigraphy, tectonics, seismotectonics, geomorphology, meteorology, bioecology, demography and other site relevant disciplines. It is supposed to ensure (1) identification of the zero state at the broader region of the Trgovska gora mountain, and (2) to underline activities needed for monitoring of concentrations of expected radionuclides throughout possible pathways (particularly through food chains) that would migrate to the biosphere in the period after start of radioactive waste repository operation. Inventory of radionuclides contained in the radioactive waste to be disposed of at the site is naturally an important element of the programme structure. There should be identified those radionuclides which concentrations require to be monitored. Concentration measuring methods are proposed in the article. In addition, relevant aquatic and terrestrial organisms, serving as bioindicators, are identified. Types, quantities, frequency and methodology of sampling present an important part of the monitoring programme. Determination of monitoring sites for undertaking particular types of sampling (e.g. stream waters, stream sediment, detritus, ichtiofauna, groundwater, terrestrial organisms, honey, etc.), presenting an important aspect of a well-organised monitoring programme, is also included into this presentation. (author)

  17. Numerical studies of rock-gas flow in Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, B.; Amter, S.; Lu, Ning

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ''fresh-water head,'' a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface

  18. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Jackson, K.J.; Carroll, S.A.

    1994-01-01

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200 degrees C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique

  19. Modeling The Inhalation Exposure Pathway In Performance Assessment Of Geologic Radioactive Waste Repository At Yucca Mountain

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2006-01-01

    Inhalation exposure pathway modeling has recently been investigated as one of the tasks of the BIOPROTA Project (BIOPROTA 2005). BIOPROTA was set up to address the key uncertainties in long term assessments of contaminant releases into the environment arising from radioactive waste disposal. Participants of this international Project include national authorities and agencies, both regulators and operators, with responsibility for achieving safe and acceptable radioactive waste management. The objective of the inhalation task was to investigate the calculation of doses arising from inhalation of particles suspended from soils within which long-lived radionuclides, particularly alpha emitters, had accumulated. It was recognized that site-specific conditions influence the choice of conceptual model and input parameter values. Therefore, one of the goals of the task was to identify the circumstances in which different processes included in specific inhalation exposure pathway models were important. This paper discusses evaluation of processes and modeling assumptions specific to the proposed repository at Yucca Mountain as compared to the typical approaches and other models developed for different assessments and project specific contexts. Inhalation of suspended particulates that originate from contaminated soil is an important exposure pathway, particularly for exposure to actinides such as uranium, neptunium and plutonium. Radionuclide accumulation in surface soil arises from irrigation of soil with contaminated water over many years. The level of radionuclide concentration in surface soil depends on the assumed duration of irrigation. Irrigation duration is one of the parameters used on biosphere models and it depends on a specific assessment context. It is one of the parameters addressed in this paper from the point of view of assessment context for the proposed repository at Yucca Mountain. The preferred model for the assessment of inhalation exposure uses

  20. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  1. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  2. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  3. Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

    International Nuclear Information System (INIS)

    E. Devibec; S.D. Sevougian; P.D. Mattie; J.A. McNeish; S. Mishra

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model [1]. Process models included in the TSPA model are unsaturated zone flow and transport, thermal hydrology, in-drift geochemistry, waste package degradation, waste form degradation, engineered barrier system transport, saturated zone flow and transport, and biosphere transport. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. The environmental impact is measured primarily by the annual dose received by an average member of a critical population group residing 20 km down-gradient of the potential repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates

  4. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.

    1993-01-01

    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  5. PROCESS FOR LICENSE APPLICATION DEVELOPMENT FOR THE GEOLOGIC REPOSITORY

    International Nuclear Information System (INIS)

    DOUGLAS M. FRANKS AND NORMAN C. HENDERSON

    1997-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the U.S. Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, (section)60.21ff and (section)60.31ff. This paper discusses the process the Yucca Mountain Site Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the ''Technical Guidance Document for Preparation of the License Application'' (TGD), currently in development

  6. Process for license application development for the geologic repository

    International Nuclear Information System (INIS)

    Franks, D.M.; Henderson, N.C.

    1998-01-01

    The Department of Energy (DOE), specifically the Office of Civilian Radioactive Waste Management (OCRWM) has been charged by the US Congress, through the Nuclear Waste Policy Act (NWPA), with the responsibility for obtaining a license to develop a geologic repository. The NRC is the licensing authority for geologic disposal, and its regulations pertinent to construction authorization and license application are specified in 10 CFR Part 60, Disposal of High-Level Radioactive Wastes in Geologic Repositories, section 60.21ff and section 60.31ff. This paper discusses the process the Yucca Mountain Site Characterization Project (YMP) will use to identify and apply regulatory and industry guidance to development of the license application (LA) for a geologic repository at Yucca Mountain, Nevada. This guidance will be implemented by the Technical Guidance Document for Preparation of the License Application (TGD), currently in development

  7. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  8. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    International Nuclear Information System (INIS)

    Hua, F.; Pasupathi, P.; Brown, N.; Mon, K.

    2005-01-01

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  9. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  10. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J.

    1994-01-01

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain

  11. A Mountain-Scale Monitoring Network for Yucca Mountain Performance Confirmation

    International Nuclear Information System (INIS)

    Freifeld, Barry; Tsang, Yvonne

    2006-01-01

    Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended

  12. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    International Nuclear Information System (INIS)

    Burgess, T.; Noakes, M.; Spampinato, P.

    2005-01-01

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R and D program for improvements to remote handling technology that support operating enhancements

  13. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    Energy Technology Data Exchange (ETDEWEB)

    T. Burgess; M. Noakes; P. Spampinato

    2005-03-17

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.

  14. Thermal analysis of Yucca Mountain commercial high-level waste packages

    International Nuclear Information System (INIS)

    Altenhofen, M.K.; Eslinger, P.W.

    1992-10-01

    The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system

  15. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  16. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  17. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  18. Effects of repository conditions on environmental impact reduction by recycling

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2010-01-01

    The environmental impacts (EI) of high-level wastes (HLW) disposed of in a water-saturated repository (WSR) and in the Yucca Mountain Repository (YMR) for various fuel cycle cases have been evaluated and compared to observe the difference in the recycling effects for differing repository conditions. With the impacts of direct spent fuel disposal in each repository as the reference level, separation of actinides by Urex+ and borosilicate vitrification clearly reduces the environmental impacts of YMR, while separation by Purex and borosilicate vitrification would not necessarily reduce the environmental impact of WSR. (authors)

  19. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  20. Yucca Mountain Milestone

    International Nuclear Information System (INIS)

    Hunt, Rod

    1997-01-01

    The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ''holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state

  1. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    International Nuclear Information System (INIS)

    Forsberg, C.; Miller, W.F.

    2013-01-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state

  2. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  3. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  4. Preclosure seismic hazards and their impact on site suitability of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gibson, J.D.

    1992-01-01

    This paper presents an overview of the preclosure seismic hazards and the influence of these hazards on determining the suitability of Yucca Mountain as a national high-level nuclear-waste repository. Geologic data, engineering analyses, and regulatory guidelines must be examined collectively to assess this suitability. An environmental assessment for Yucca Mountain, written in 1986, compiled and evaluated the existing tectonic data and presented arguments to satisfy, in part, the regulatory requirements that must be met if the Yucca Mountain site is to become a national waste repository. Analyses have been performed in the past five years that better quantify the local seismic hazards and the possibility that these hazards could lead to release of radionuclides to the environment. The results from these analyses increase the confidence in the ability of Yucca Mountain and the facilities that may be built there to function satisfactorily in their role as a waste repository. Uncertainties remain, however, primarily in the input parameters and boundary conditions for the models that were used to complete the analyses. These models must be validated and uncertainties reduced before Yucca Mountain can qualify as a viable high-level nuclear waste repository

  5. Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks

  6. Repository sealing concepts for the Nevada nuclear waste storage Investigations Project

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Freshley, M.D.

    1984-08-01

    This report describes concepts for sealing a nuclear waste repository in an unsaturated tuff environment. The repository site under consideration is Yucca Mountain, which is on and adjacent to the Nevada Test Site. The hydrogeology of Yucca Mountain, preliminary repository concepts, functional requirements and performance criteria for sealing, federal and state regulations, and hydrological calculations are considered in developing the sealing concepts. Water flow through the unsaturated zone is expected to be small and generally vertically downward with some potential to occur through discrete fault and fracture zones. These assumptions are used in developing sealing concepts for shafts, ramps, and boreholes. Sealing of discrete, water-producing faults and fracture zones encountered in horizontal emplacement holes and in access and emplacement drifts is also described. 49 references, 21 figures, 6 tables

  7. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Cowart, C.G.; Notz, K.J.

    1992-10-01

    This report presents the results of a fully documented peer review of DOE/RW-0184, Rev. 1, ''Characteristics of Potential Repository Wastes''. The peer review was chaired and administered by oak Ridge National Laboratory (ORNL) for the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) and was conducted in accordance with OCRWM QA procedure QAAP 3.3 ''Peer Review'' for the purpose of quailing the document for use in OCRWM quality-affecting work. The peer reviewers selected represent a wide range of experience and knowledge particularly suitable for evaluating the subject matter. A total of 596 formal comments were documented by the seven peer review panels, and all were successfully resolved. The peers reached the conclusion that DOE/RW-0184, Rev. 1, is quality determined and suitable for use in quality-affecting work

  8. Challenges and issues with building a potential railroad to Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R.L.

    2004-07-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based

  9. Challenges and issues with building a potential railroad to Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.

    2004-01-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public

  10. Conflict, location, and politics: Siting a nuclear waste repository

    International Nuclear Information System (INIS)

    Jacob, G.R.

    1988-01-01

    Nuclear power and the management of high-level radioactive waste is examined with the goal of explaining the forces driving the formulation of the 1982 Nuclear Waste Policy Act and a subsequent decision to site a nuclear waste repository at Yucca Mountain, Nevada. The study draws upon geographic, political, economic, and organizational factors to examine the commitment to dispose of spent fuel in a geologic repository located in Nevada or in Utah, Texas, Mississippi, Louisiana, or at Hanford Washington. Special attention is given to the impact of location, science and technology on the definition of the nuclear waste problem and political agendas, public participation, and the power of the nuclear establishment. The study finds that the choice of a Yucca Mountain Nevada as the preferred site for a repository was based more on technological precedent and political-economic expediency than on the demonstrated superiority of that site's geology. Conflict over a repository location is interpreted as a symptom of more fundamental conflicts concerning: the credibility of nuclear science, the legitimacy of federal authority and administration, and the priorities of environmental protection and a nuclear economy

  11. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project's ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab

  12. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J A

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project`s ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab.

  13. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Correspondence and request for oral presentations for US Department of Energy public hearings

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains correspondence and requests by the public citizens for oral presentation at the public hearings for the proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Written comments are also included on: the proposed nomination; the issues to be addressed in the Environmental Assessment; and the issues to be addressed by any Site Characterization Plan, if developed

  14. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  15. Yucca Mountain Project public interactions

    International Nuclear Information System (INIS)

    Reilly, B.E.

    1990-01-01

    The US Department of Energy (DOE) is committed to keeping the citizens of Nevada informed about activities that relate to the high-level nuclear waste repository program. This paper presents an overview of the Yucca Mountain Project's public interaction philosophy, objectives, activities and experiences during the two years since Congress directed the DOE to conduct site characterization activities only for the Yucca Mountain site

  16. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  17. A thermomechanical far-field model of Yucca Mountain

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1991-04-01

    Thermal and mechanical finite element far-field models have been constructed for a potential repository site in the Topopah Spring Thermal/mechanical Unit at Yucca Mountain on the Nevada Test Site. The models reflect site-specific information that was available at the time of the study on the material properties and structural character of Yucca Mountain. The thermal model simulates transient heat transfer resulting from the emplacement of heat-generating nuclear waste in the repository. Simulation of boiling of the pore water is included in the model. The mechanical model simulates the tuff at Yucca Mountain as being an elastic/plastic, isotropic, heterogeneous continuum with one ubiquitous vertical joint set. The initial conditions of the mechanical model are based on a gravitational stress field. The model uses the temperatures predicted by the thermal finite element model as input to predict thermal stresses and displacements induced by the presence of the repository. Plasticity is incorporated in shear (fracture slip) and tension (fracture opening) by using a Mohr-Coulomb failure criterion. 6 refs., 15 figs., 2 tabs

  18. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''

    International Nuclear Information System (INIS)

    Payer, Joe H.; Scully, John R.

    2003-01-01

    The report summarizes the findings of a U.S. Department of Energy workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission's initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  19. Demonstration of a repository performance assessment capability at the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Codell, R.; Eisenberg, N.; McCartin, T.; Park, J.

    1991-01-01

    In order to better review licensing submittals for a High-Level Waste Repository, the US Nuclear Regulatory Commission staff has expanded and improved its capability to conduct performance assessments. A demonstration of this capability used the limited data from Yucca Mountain, Nevada to investigate a small set of scenario classes. Models of release and transport of radionuclides from a repository via the groundwater and direct release pathways provided preliminary estimates of releases to the accessible environment for a 10,000 year simulation time. Latin hypercube sampling of input parameters was used to express results as distributions and to investigate model sensitivities. This methodology demonstration should not be interpreted as an estimate of performance of the proposed repository at Yucca Mountain, Nevada

  20. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  1. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  2. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  3. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  4. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  5. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a 'snapshot' or 'base case' look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future

  6. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T ampersand MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document

  7. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  8. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  9. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  10. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  11. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices

  12. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, B.A. [Texas Univ., El Paso, TX (United States). Dept. of Geological Sciences; Walck, M.C. [Sandia National Labs., Albuquerque, NM (United States)

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes.

  13. Near-surface velocity modeling at Yucca Mountain using borehole and surface records from underground nuclear explosions

    International Nuclear Information System (INIS)

    Durrani, B.A.

    1996-09-01

    The Department of Energy is investigating Yucca Mountain, Nevada as a potential site for commercial radioactive waste disposal in a mined geologic repository. One critical aspect of site suitability is the tectonic stability of the repository site. The levels of risk from both actual fault displacements in the repository block and ground shaking from nearby earthquakes are being examined. In particular, it is necessary to determine the expected level of ground shaking at the repository depth for large seismic sources such as nearby large earthquakes or underground nuclear explosions (UNEs). Earthquakes are expected to cause the largest ground motions at the site, however, only underground nuclear explosion data have been obtained at the repository depth level (about 350m below the ground level) to date. In this study we investigate ground motion from Nevada Test Site underground nuclear explosions recorded at Yucca Mountain to establish a compressional velocity model for the uppermost 350m of the mountain. This model is useful for prediction of repository-level ground motions for potential large nearby earthquakes

  14. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada: Volume 1

    International Nuclear Information System (INIS)

    1987-08-01

    Environmental protection during the course of siting and constructing a repository is mandated by NWPA in conjunction with various phases of repository siting and development. However, DOE has issued no comprehensive, integrated plan for environmental protection. Consequently, it is unclear how DOE will accomplish environmental assessment, monitoring, impact mitigation, and site reclamation. DOE should, therefore, defer further implementation of its current characterization program until a comprehensive environmental protection plan is available. To fulfill its oversight responsibilities the State of Nevada has proposed a comprehensive environmental program for the Yucca Mountain site that includes immediately undertaking studies to establish a 12-month baseline of environmental information at the site; adopting the DOE Site Characterization Plan (SCP) and the engineering design plans it will contain as the basis for defining the impact potential of site characterization activities; using the environmental baseline and the SCP to evaluate the efficacy of the preliminary impact analyses reported by DOE in the EA; using the SCP as the basis for discussions with federal, state, and local regulatory authorities to decide which environmental requirements apply and how they can be complied with; using the SCP, the EA impact review, and the compliance requirements to determine the scope of reclamation measures needed; and developing environmental monitoring and impact mitigation plans based on the EA impact review, compliance requirements, and anticipated reclamation needs

  15. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  16. Three dimensional visualization in support of Yucca Mountain Site characterization activities

    International Nuclear Information System (INIS)

    Brickey, D.W.

    1992-01-01

    An understanding of the geologic and hydrologic environment for the proposed high-level nuclear waste repository at Yucca Mountain, NV is a critical component of site characterization activities. Conventional methods allow visualization of geologic data in only two or two and a half dimensions. Recent advances in computer workstation hardware and software now make it possible to create interactive three dimensional visualizations. Visualization software has been used to create preliminary two-, two-and-a-half-, and three-dimensional visualizations of Yucca Mountain structure and stratigraphy. The three dimensional models can also display lithologically dependent or independent parametric data. Yucca Mountain site characterization studies that will be supported by this capability include structural, lithologic, and hydrologic modeling, and repository design

  17. Overview of the current CRWMS repository design

    International Nuclear Information System (INIS)

    Daniel, R.B.; Teraoka, G.M.

    1998-01-01

    This paper summarizes the current design for a potential geologic repository for spent fuels and high-level wastes at Yucca Mountain, Nevada. The objective of the paper is to present the key design features of the Mined Geologic Disposal System (MGDS) surface facilities and MGDS subsurface facilities. The paper describes the following: surface layout; waste handling operations design; subsurface design; and the underground transport and emplacement design. A more detailed presentation of key features is provided in the ''Reference design description for a geologic repository'' which is located on the YMP Homepage at www.ymp.gov

  18. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  19. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  20. Expected dose for the early failure scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, J.C.; Hansen, C.W.; Sallaberry, C.J.

    2014-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the determination of expected dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository for the early waste package (WP) failure scenario class and the early drip shield (DS) failure scenario class in the 2008 YM PA. The following topics are addressed: (i) properties of the early failure scenario classes and the determination of dose and expected dose the RMEI, (ii) expected dose and uncertainty in expected dose to the RMEI from the early WP failure scenario class, (iii) expected dose and uncertainty in expected dose to the RMEI from the early DS failure scenario class, (iv) expected dose and uncertainty in expected dose to the RMEI from the combined early WP and early DS failure scenario class with and without the inclusion of failures resulting from nominal processes, and (v) uncertainty in the occurrence of early failure scenario classes. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. - Highlights: • Extensive work has been carried out by the U.S. DOE in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. • Properties of the early failure scenario classes (i.e. early waste package failure and early drip shield failure) in the 2008 YM performance assessment are described. • Determination of dose, expected dose and expected (mean

  1. Nuclear Waste Disposal: Alternatives to Yucca Mountain

    National Research Council Canada - National Science Library

    Holt, Mark

    2009-01-01

    Congress designated Yucca Mountain, NV, as the nation's sole candidate site for a permanent high-level nuclear waste repository in 1987, following years of controversy over the site-selection process...

  2. As Yucca Mountain debate continues, industry calls for 'comprehensive' solution

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, Lubomir [NucNet, Brussels (Belgium)

    2014-12-15

    The proposed Nevada site Yucca Mountain is still the only game in town for a deep geologic repository in the US, but resolving the uncertainty that surrounds the project could still take years, making centralised temporary storage more important than ever. The nuclear industry in the US has renewed a call for 'a more comprehensive nuclear fuel management system' that includes the development of centralised temporary storage while the licensing process for a deep geologic repository at Yucca Mountain in Nevada continues. Scott Peterson, senior vice-president for communications of the Washington-based Nuclear Energy Institute, told that centralised temporary storage would allow the removal of spent fuel from reactor sites, especially from reactors that have already shut down, while uncertainty surrounding the Yucca Mountain deep geologic project is resolved. Resolving that uncertainty could take time. The Yucca Mountain project has been shut down by the Department of Energy (DOE) since 2010 and there is no work going on right now at the repository site or on the DOE's part to continue licensing activities. The outcome of mid-term elections on 4 November could yet see the political manoeuvrings surrounding Yucca Mountain take another twist. The Republican party takes control of the Senate. There will be an opportunity to change the funding profile for the NRC and to take measures through legislation to make sure the DOE is following the 1982 Nuclear Waste Policy Act. This Act, which made the DOE responsible for finding a site, building, and operating an underground geologic repository, is still in force.

  3. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  4. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  5. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  6. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  7. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1990-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive-waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  8. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  9. DATA QUALIFICATION REPORT: MINERALOGY DATA FOR USE ON THE YUCCA MOUNTAIN PROJECT

    International Nuclear Information System (INIS)

    T.L. Steinborn

    2002-01-01

    This DQR uses the technical assessment methods according to Attachment 2 of AP-SIII.2QY Rev. 0, ICN 3, to qualify DTN LADB831321AN98.002. The data addressed in this DQR have been cited in CRWMS M andO (2000b) to support the Site Recommendation in determining the suitability of Yucca Mountain as a repository for high level nuclear waste. CRWMS M andO (2000b) refers to mineral analyses that are unqualified. Within the context of this DQR, the term mineral analyses includes: (1) the determination of the identity of specific crystalline phases from the Yucca Mountain Site by X-ray diffraction (XRD) analysis, as well as, (2) determination of mineral abundance as a percentage of the total mineral content of samples collected from drill core, side wall core and drill cuttings. These data are used among other purposes to define the spatial distribution of minerals at the Yucca Mountain Site, for correlation with geologic properties, and may be used as input in developing both unsaturated and saturated zone flow and transport models for the YMP Total System Performance Assessment. This DQR evaluates the unqualified data within DTNs within the context of supporting such kinds of studies on the YMP. The unqualified data considered in this DQR were identified and directly used in CRWMS M andO (2000b) in which the mineral analyses are used to create three-dimensional representations of mineral distributions. The purpose of this DQR is to recommend data that can be cited as qualified for use in technical products to support the License Application. The qualified data were placed in new DTNs generated as a result of the evaluation. The appropriateness and limitations (if any) of the data with respect to intended use are addressed in this DQR. In accordance with Attachment 1 of procedure AP-3.15Q, Rev. 3, ICN 2, ''Managing Technical Product Inputs'', it has been determined that the unqualified mineral abundance data for core material are not used in the direct calculation of

  10. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  11. Evaluations of Yucca Mountain survey findings about the attitudes, opinions, and evaluations of nuclear waste disposal and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flynn, J.H.; Slovic, P.; Mertz, C.K.; Toma, J.

    1990-09-01

    This report provides findings from three surveys conducted during the Fall 1989 as part of the socioeconomic research program sponsored by the Nevada Agency for Nuclear Projects. The US Congress passed the Nuclear Waste Policy Act (NWPA) in 1982 and defined specific oversight responsibilities, including studies of socioeconomic effects and impacts, to the states in which potential high-level nuclear waste repositories might be located. The NWPA was amended in 1987 and Yucca Mountain, Nevada was designated as the only site to be characterized (studied in detail) as a location for the nation's first repository. These surveys were conducted so they could provide information to the state of Nevada in its evaluation of the Yucca Mountain project. This report presents information from these surveys on two major areas. First, respondent evaluations of environmental hazards, especially nuclear waste facilities are reported. Second, an analysis is made of the Nevada State Survey to examine the public response to the positions taken by the officials and institutions of Nevada in regard to the Yucca Mountain project. The survey data support a finding that the respondents from all three surveys are seriously concerned about the environmental effects of technological facilities and hazards. The evaluations of a nuclear waste repository especially is viewed as likely to produce adverse events and impacts in every aspect of its implementation, operation or long-term existence. When compared to other industrial or technological activities, a high-level nuclear waste repository is seen as the most feared and least acceptable. 36 tabs

  12. THE DEVELOPMENT OF THE YUCCA MOUNTAIN PROJECT FEATURE, EVENT, AND PROCESS (FEP) DATABASE

    International Nuclear Information System (INIS)

    Freeze, G.; Swift, P.; Brodsky, N.

    2000-01-01

    A Total System Performance Assessment for Site Recommendation (TSPA-SR) has recently been completed (CRWMS M andO, 2000b) for the potential high-level waste repository at the Yucca Mountain site. The TSPA-SR is an integrated model of scenarios and processes relevant to the postclosure performance of the potential repository. The TSPA-SR scenarios and model components in turn include representations of all features, events, and processes (FEPs) identified as being relevant (i.e., screened in) for analysis. The process of identifying, classifying, and screening potentially relevant FEPs thus provides a critical foundation for scenario development and TSPA analyses for the Yucca Mountain site (Swift et al., 1999). The objectives of this paper are to describe (a) the identification and classification of the comprehensive list of FEPs potentially relevant to the postclosure performance of the potential Yucca Mountain repository, and (b) the development, structure, and use of an electronic database for storing and retrieving screening information about the inclusion and/or exclusion of these Yucca Mountain FEPs in TSPA-SR. The FEPs approach to scenario development is not unique to the Yucca Mountain Project (YMP). General systematic approaches are summarized in NEA (1992). The application of the FEPs approach in several other international radioactive waste disposal programs is summarized in NEA ( 1999)

  13. Volcanism Studies: Final Report for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Crowe, Bruce M.; Perry, Frank V.; Valentine, Greg A.; Bowker, Lynn M.

    1998-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( than about 7 x 10 -8 events yr -1 . Simple probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Amargosa Valley. The sensitivity of the disruption probability to the location of northeast boundaries of volcanic zones near the Yucca Mountain sit

  14. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  15. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  16. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  17. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  18. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization

  19. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  20. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  1. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  2. Effect of variations in the geologic data base on mining at Yucca Mountain for NNWSI

    International Nuclear Information System (INIS)

    1984-12-01

    This study was conducted to assess the impact of the known geologic factors and their variations at Yucca Mountain on the mining of the underground repository. The repository horizon host rock was classified according to the Norwegian Geotechnical Institute Tunneling Quality Index, which, in turn, qualified the range of ground support for the geologic and hydrologic conditions in the proposed repository area. The CSIR Classification System was used to verify the results of the NGI System. The expected range of requirements are well within normal mining industry standards and unusual or expensive ground support requirements are not expected to be required at Yucca Mountain. The amount of subsurface geologic information on Yucca Mountain is limited to data from a few drill holes. Variations in the existing data base are probable and should be provided for in the conceptual designs

  3. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    Carter, D. 'Buzz' Savage

    2004-01-01

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  4. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    International Nuclear Information System (INIS)

    Allan, J.N.; Leonard, T.M.

    1993-01-01

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff

  5. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  6. The hydrothermal stability of cement sealing materials in the potential Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Hinkebein, T.E.; Myers, J.

    1991-01-01

    Cementitious materials, together with other materials, are being considered to seal a potential repository at Yucca Mountain. A concern with cementitious materials is the chemical and mineralogic changes that may occur as these materials age while in contact with local ground waters. A combined theoretical and experimental approach was taken to determine the ability to theoretically predict mineralogic changes. The cementitious material selected for study has a relatively low Ca:Si ratio approaching that of the mineral tobermorite. Samples were treated hydrothermally at 200 degrees C with water similar to that obtained from the J-13 well on the Nevada Test Site. Post-test solutions were analyzed for pH as well as dissolved K, Na, Ca, Al, and Si. Solid phases formed during these experiments were characterized by scanning electron microscopy and X- ray diffraction. These findings were compared with predictions made by the geochemical modeling code EQ3NR/E06. It was generally found that there was good agreement between predicted and experimental results

  7. Thermosyphon analysis of a repository: A simplified model for vapor flow and heat transfer

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Powell, M.W.

    1994-01-01

    A simplified model is developed for thermally-driven buoyant gas flow in an unsaturated repository such as that anticipated at Yucca Mountain. Based on a simplified thermosyphon model, the strength of buoyant gas flow is related to key thermal-hydraulic parameters (e.g., bulk permeability and maximum repository temperature). The effects of buoyant gas flow on vapor flow and heat transport near the repository horizon are assessed, namely: (i) the strength of buoyant flow through the repository, (ii) the effect of buoyant flow on vapor transfer, and (iii) the effect of buoyant flow on heat transfer

  8. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  9. Preliminary conceptual model for mineral evolution in Yucca Mountain

    International Nuclear Information System (INIS)

    Duffy, C.J.

    1993-12-01

    A model is presented for mineral alteration in Yucca Mountain, Nevada, that suggests that the mineral transformations observed there are primarily controlled by the activity of aqueous silica. The rate of these reactions is related to the rate of evolution of the metastable silica polymorphs opal-CT and cristobalite assuming that a SiO 2(aq) is fixed at the equilibrium solubility of the most soluble silica polymorph present. The rate equations accurately predict the present depths of disappearance of opal-CT and cristobalite. The rate equations have also been used to predict the extent of future mineral alteration that may result from emplacement of a high-level nuclear waste repository in Yucca Mountain. Relatively small changes in mineralogy are predicted, but these predictions are based on the assumption that emplacement of a repository would not increase the pH of water in Yucca Mountain nor increase its carbonate content. Such changes may significantly increase mineral alteration. Some of the reactions currently occurring in Yucca Mountain consume H + and CO 3 2- . Combining reaction rate models for these reactions with water chemistry data may make it possible to estimate water flux through the basal vitrophyre of the Topopah Spring Member and to help confirm the direction and rate of flow of groundwater in Yucca Mountain

  10. Predicted thermal and stress environments in the vicinity of repository openings

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Lin, M.

    1991-01-01

    An understanding of the thermal and stress environment in the vicinity of repository openings is important for preclosure performance considerations and worker health and safety considerations for the proposed high-level radioactive waste repository at Yucca Mountain. This paper presents the results of two and three dimensional numerical analyses which have determined the thermal and stress environments for typical repository openings. In general, it is predicted that openings close to heat sources attain high temperatures and experience a significant stress increase. Openings away from heat sources experience more uniform temperature changes and experience a stress change which results in part from a far-field thermal loading

  11. Forecasting behavioral response to a repository from stated intent data

    International Nuclear Information System (INIS)

    Easterling, D.; Kunreuther, H.; Morwitz, V.

    1991-01-01

    To forecast repository-induced behavior from surveys of behavioral intention, we develop a model of the relation between stated intent and actual propensity. This model relies heavily on the notion of a latent true intent score. We also consider a number of factors that cause true intent to be, on average, a biased indicator of propensity. The forecasting strategy is applied to a survey of convention planners to estimate the proportion of conventions that Las Vegas would lose following various repository scenarios at the Yucca Mountain site

  12. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  13. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, St George' s Redditch (United Kingdom)

    2017-08-15

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  14. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  15. Reference design description for a geologic repository. Revision 02

    International Nuclear Information System (INIS)

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety

  16. US Department of Energy public hearing for the proposed nomination of Yucca Mountain as a potential high level radioactive waste repository. Registration and transport of proceedings, Reno, Nevada - March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing was: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Departments' formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons including a chairperson, who were not employees of the Department of Energy, and who had not participated directly in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 24 participants

  17. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  18. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  19. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  20. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  1. Yucca Mountain Biological Resources Monitoring Program. Progress report, October 1992--December 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  2. Yucca Mountain Biological Resources Monitoring Program. Progress report, January 1994--December 1994

    International Nuclear Information System (INIS)

    1995-07-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geological repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG and G Energy Measurements, Inc. (EG and G/EM) from January 1994 through December 1994 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  3. Natural analogue synthesis report, TDR-NBS-GS-000027 REV00 ICN02

    International Nuclear Information System (INIS)

    Simmons, A.; Nieder-Westermann, G.; Stuckless, J.; Dobson, P.; Unger, A.J.A.; Kwicklis, E.; Lichtner, P.; Carey, B.; Wolde, G.; Murrel, M.; Kneafsey, T.J.; Meijer, A.; Faybishenko, B.

    2002-01-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide

  4. Natural analogue synthesis report, TDR-NBS-GS-000027 rev00 icn02

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.; Nieder-Westermann, G.; Stuckless, J.; Dobson, P.; Unger, A.J.A.; Kwicklis, E.; Lichtner, P.; Carey, B.; Wolde, G.; Murrel,M.; Kneafsey, T.J.; Meijer, A.; Faybishenko, B.

    2002-04-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the Yucca Mountain Site Description (CRWMS M&O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide release

  5. US Department of Energy Approach to Probabilistic Evaluation of Long-Term Safety for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. R. Dyer; Dr. R. Andrews; Dr. A. Van Luik

    2005-01-01

    at the end of the site-characterization phase to warrant moving ahead to construction, the expectation is that still more confidence may be had in the next evaluation of risk for a repository at Yucca Mountain. More confidence does not always mean lower risk, just as less uncertainty does not necessarily mean lower risk. What needs to be shown is that there is a basis for confidence in the outcome of such evaluations, meaning that the potential repository promises to provide acceptable public safety, as defined by the regulation, at every phase in its long life

  6. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  7. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  8. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  9. Estimates of ambient groundwater velocity in the alluvium south of Yucca Mountain from single-well tracer tests

    International Nuclear Information System (INIS)

    Reimus, P.W.; Umari, M.J.; Roback, R.; Earle, John; Darnell, Jon; Farnham, Irene

    2002-01-01

    The saturated alluvium located south of Yucca Mountain, Nevada is expected to serve as the final barrier to radionuclide transport from the proposed high-level nuclear waste repository at Yucca Mountain. The alluvium will act as a barrier if radionuclides breach the engineered barriers in the repository, move through the unsaturated zone beneath the repository to the water table, and then migrate through saturated volcanic tuffs to the alluvium. Three single-well injection-withdrawal tracer tests were conducted between December 2000 and April 2001 in the saturated alluviuni at NC-EWDP-19D1, a Nye County-Early Warning Drilling Program well located about 18 km south of Yucca Mountain. The tests had the objectives of (1) distinguishing between a single- and a dual-porosity conceptual radionuclide transport model for the alluvium, and (2) obtaining estimates of ambient groundwater velocity in the alluvium.

  10. Preliminary drift design analyses for nuclear waste repository in tuff

    International Nuclear Information System (INIS)

    Hardy, M.P.; Brechtel, C.E.; Goodrich, R.R.; Bauer, S.J.

    1990-01-01

    The Yucca Mountain Project (YMP) is examining the feasibility of siting a repository for high-level nuclear waste at Yucca Mountain, on and adjacent to the Nevada Test Site (NTS). The proposed repository will be excavated in the Topopah Spring Member, which is a moderately fractured, unsaturated, welded tuff. Excavation stability will be required during construction, waste emplacement, retrieval (if required), and closure to ensure worker safety. The subsurface excavations will be subject to stress changes resulting from thermal expansion of the rock mass and seismic events associated with regional tectonic activity and underground nuclear explosions (UNEs). Analyses of drift stability are required to assess the acceptable waste emplacement density, to design the drift shapes and ground support systems, and to establish schedules and cost of construction. This paper outlines the proposed methodology to assess drift stability and then focuses on an example of its application to the YMP repository drifts based on preliminary site data. Because site characterization activities have not begun, the database currently lacks the extensive site-specific field and laboratory data needed to form conclusions as to the final ground support requirements. This drift design methodology will be applied and refined as more site-specific data are generated and as analytical techniques and methodologies are verified during the site characterization process

  11. The Yucca Mountain tours

    International Nuclear Information System (INIS)

    Shepard, N.F.; Champagne, D.L.

    1992-01-01

    In 1978, Mderthaner et al. observed that opposition to nuclear facilities was lowest near the facility. This suggested that opposition decreased as familiarity with the facility increased, with distance from the facility as an inverse measure of familiarity. In this paper, the authors analyze data from the literature supporting this hypothesis and examine a poll of 1200 public visitors to the candidate repository site at Yucca Mountain, Nevada, in March through June 1991. The tour poll and independent pools show that most Nevadans support the present scientific investigation of the site while opposing the repository. Among the visitors, support for the investigation increased from 66 to 90 percent, which we attribute to increased familiarity

  12. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  13. Determination of Importance Evaluation for the ESF Enhanced Characterization of the Repository Block Cross Drift

    International Nuclear Information System (INIS)

    S. Goodin

    2002-01-01

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein

  14. Determination of Importance Evaluation for the ESF Enhanced Charcterization of the Repository Block Cross Drift

    Energy Technology Data Exchange (ETDEWEB)

    S. Goodin

    2002-01-09

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein.

  15. Rail Access to Yucca Mountain: Critical Issues

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-01-01

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area

  16. Fault stress analysis for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1991-01-01

    An understanding of the state of stress on faults is important for pre- and postclosure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. It was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  17. Fault stress analysis for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1992-01-01

    An understanding of the state of stress on faults is important for pre- and post-closure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. it was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  18. ADVANCES IN YUCCA MOUNTAIN DESIGN

    International Nuclear Information System (INIS)

    Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

    2003-01-01

    Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield

  19. Yucca Mountain biological resources monitoring program; Annual report FY92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  20. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  1. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  2. Yucca Mountain Socioeconomic Project: The 1991 Nevada State telephone survey: Key findings

    International Nuclear Information System (INIS)

    Flynn, J.H.; Mertz, C.K.; Slovic, P.

    1991-05-01

    The 1991 Nevada State Telephone Survey was implemented by Decision Research on behalf of the State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) as part of an ongoing socioeconomic impact assessment study. The scope of this survey was considerably smaller than a previous survey conducted in 1989 and focused more upon public evaluations of the Yucca Mountain repository program and the trust Nevadans currently addressing the siting issues. In order to provide place in key public officials who are Longitudinal data on the repository program, the 1991 questionnaire consisted of questions that were used in the 1989 NWPO survey which was conducted by Mountain West Research. As a result, the findings from this survey are compared with analogous items from the 1989 survey, and with the results from a survey commissioned by the Las Vegas Review-Journal and reported in their issue of October 21, 1990. The Review-Journal survey was conducted by Bruce Merri11 of the Arizona State University Media Research Center. A more complete comparison of the 1989 and 1991 surveys sponsored by NWPO is possible since the researchers at Decision Research had access to both these databases. The only source of information for the Review-Journal findings was the articles published in the Fall, 1990. The findings of the 1991 survey show that Nevadans oppose the federal government attempts to locate a high-level radioactive waste repository at Yucca Mountain. They support a policy of opposition on the part of Nevada officials. They believe that Nevadans should have the final say in whether to accept the repository or not, and they reject the proposition that benefits from the repository program will outweigh the harms. These findings are very similar to survey results from 1989 and 1990 and once again demonstrate very widespread public opposition by Nevadans to the current federal repository program

  3. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k d ) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone

  4. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k{sub d}) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone.

  5. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Registration and transcript of proceedings of US Department of Energy public hearings, Las Vegas, Nevada, March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing were: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Department's formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons, including a chairperson, who were not employees of the Department of Energy, and who had not participated in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 29 participants, beginning with those of the Governor of Nevada

  6. Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data

    International Nuclear Information System (INIS)

    J. Cizdziel

    2006-01-01

    Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ( 36 Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' 36 Cl reached the repository horizon in the ∼50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination of porous media, faults and/or other geologic features. Due to the significance of 36 Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for 36 Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ( 3 H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse 36 Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to

  7. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  8. DOE's Yucca Mountain studies

    International Nuclear Information System (INIS)

    1992-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers thinkhigh-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies

  9. Volcanism Studies: Final Report for the Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce M. Crowe; Frank V. Perry; Greg A. Valentine; Lynn M. Bowker

    1998-12-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. An assessment of the risk of future volcanic activity is one of many site characterization studies that must be completed to evaluate the Yucca Mountain site for potential long-term storage of high-level radioactive waste. The presence of several basaltic volcanic centers in the Yucca Mountain region of Pliocene and Quaternary age indicates that there is a finite risk of a future volcanic event occurring during the 10,000-year isolation period of a potential repository. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The Crater Flat volcanic zone is

  10. Assessing the state/nation distributional equity issues associated with the proposed Yucca Mountain repository: A conceptual approach

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Ratick, S.; Renn, O.

    1988-06-01

    This paper addresses one quite specific part of this broad range of issues -- the distribution of impacts to the state of Nevada and to the nation likely to be associated with the proposed Yucca Mountain repository. As such, it is one of four analyses of the overall equity problems and needs to be read in conjunction with our proposed overall framework for the equity studies and the several other specific analyses. The objective of this report is to consider how an analysis might be made of the distribution of projected outcomes between the state and nation. At the same time, it needs to be clear that no attempt will be made actually to implement the analysis that is proposed. What follows is a conceptual statement that identifies the analytical issues and problems and proposes an approach for overcoming them. Significantly, it must be remembered that this report will not address procedural equity issues between the state and nation for this is the subject of a separate analysis. 10 refs., 2 figs

  11. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  12. Reference design description for a geologic repository: Revision 01

    International Nuclear Information System (INIS)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified

  13. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  14. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  15. The effect of mountain bike wheel size on Cross-Country performance

    OpenAIRE

    Hurst, Howard Thomas; Atkins, Stephen; Metcalfe, John; Sinclair, Jonathan Kenneth; Rylands, Lee

    2016-01-01

    The purpose of this study was to determine the influence of different wheel size diameters on indicators of cross-country mountain bike time trial performance. Nine competitive male mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) performed 1 lap of a 3.48 km mountain bike (MTB) course as fast as possible on 26″, 27.5″ and 29″ wheeled MTB. Time (s), mean power (W), cadence (revs · min−1) and velocity (km · h−1) were recorded for the whole lap and during...

  16. TBM tunneling on the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Morris, J.P.; Hansmire, W.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long-term, high-level nuclear waste repository in the United States. The current status of this long-term project from the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF) Tunnel, which is being excavated with a 7.6 m (25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3.0 to 7.6 m (10 to 25 ft). Prior to construction, extensive constructability reviews were an interactive part of the final design. The intent was to establish a constructable design that met the long-term stability requirements for radiological safety of a future repository, while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  17. Regulatory perspective on future climates at Yucca Mountain

    International Nuclear Information System (INIS)

    Coleman, N.M.; Eisenberg, N.A.; Brooks, D.J.

    1996-01-01

    Current regulations of the U.S. Nuclear Regulatory Commission (NRC) require that any performance assessment supporting the license application for a high-level waste (HLW) repository must consider the potential for changes in hydrologic conditions caused by reasonably foreseeable climatic conditions. The requirement is important because the earth's climate will almost certainly change significantly during the thousands of years that disposed nuclear wastes will remain hazardous. More importantly, climate controls the range of precipitation, which in turn controls the rates of infiltration, deep percolation, and groundwater flux through a geologic repository located in an unsaturated environment. Therefore, future changes in climate could significantly influence waste isolation in a repository at Yucca Mountain

  18. Simulating the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    B.D. Marshal; J.F. Whelan

    2001-01-01

    Heat transfer within Earth's upper crust is primarily by conduction, and conductive thermal models adequately explain the cooling history of deep, batholith-scale intrusions and surrounding wall rocks, as confirmed by numerous thermochronometric studies. However, caldera magmatic systems require consideration of the small and localized component of hydrothermal convection and numerical models to simulate additional boundary conditions, irregular magma chamber shapes, and complex intrusive histories. At Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository, simulating the detailed thermal history at any location in the unsaturated zone requires knowledge of the shape of the magma chamber and its proximity to Yucca Mountain (the southern margin of the Timber Mountain caldera complex is approximately 8 km north of the potential repository site), the temporal and spatial extent of hydrothermal convection, the erosional history of the area, and past levels of the water table

  19. TBM tunneling on the Yucca Mountain Project: Proceedings

    International Nuclear Information System (INIS)

    Williamson, G.E.; Gowring, I.M.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Project (YMP) is a scientific endeavor to determine the suitability of Yucca Mountain for the first long term, high level nuclear waste repository in the United States. Status of this long-term project form the construction perspective is described. A key element is construction of the Exploratory Studies Facility (ESF), which is being excavated with a 7. 6 m(25 ft) diameter tunnel boring machine (TBM). Development of the ESF may include the excavation of over 15 km (9.3 mi) of tunnel varying in size from 3 to 7.6 m(10 to 25 ft). Prior to construction, extensive constructibility reviews were an interactive part of the final design. Intent was to establish a constructible design that met the long-term stability requirements for radiological safety of a future repository while maintaining flexibility for the scientific investigations and acceptable tunneling productivity

  20. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, F.; Youngs, B.

    2000-01-01

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M and O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M and O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M and O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M and O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M and O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M and O 2000b). The calculations for both footprints are presented in this AMR. In

  1. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both

  2. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs

  3. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  4. Geologic framework and Cenozoic evolution of the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Fox, K.F. Jr.; Spengler, R.W.; Myers, W.B.

    1990-01-01

    Yucca Mountain, Nevada, has been proposed as the site of a high-level nuclear waste repository. The purpose of this paper is to outline aspects of the geology and tectonics of the area which bear on its suitability as a waste repository. The repository is to be excavated from a non-lithophysal zone within the lower part of the Paintbrush Tuff. Revised estimates of the thickness of this zone indicate that the lower, down-dip extremity of the planned repository could be raised by as much as 130 m, thus reducing the grade within the repository and increasing the distance to the water table below. We note that because of the closely spaced fracturing and low in-situ stresses within the repository block, lateral support of fractured rock is likely to be poor. 30 refs., 5 figs

  5. The U.S. nuclear waste management program - technical progress at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, L.H. [U.S. Department of Energy (United States)

    2001-07-01

    This paper discusses the current status of a national program being developed by the U.S. Department of Energy for the management of spent nuclear fuel and high-level radioactive waste produced by civilian nuclear power generation and defense-related activities. In 1987 the U.S. Congress directed the Department to characterize the Yucca Mountain site in Nevada and determine its suitability for development of a geologic repository. This paper will focus on the technical progress that has been made after more than 15 years of scientific and engineering investigations at Yucca Mountain, and the remaining work that is being done to support a decision on whether to recommend the site for development of a geologic repository. (author)

  6. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  7. Understanding the Potential for Volcanoes at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2002-01-01

    By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste

  8. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  9. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Feng, Dan; Everett, Logan J

    2012-01-01

    of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast......-autonomous clock as well as hepatic lipid metabolism. Mouse embryonic fibroblasts were rendered arrhythmic by depletion of both Rev-erbs. In mouse livers, Rev-erbβ mRNA and protein levels oscillate with a diurnal pattern similar to that of Rev-erbα, and both Rev-erbs are recruited to a remarkably similar set...

  10. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  11. Preliminary calculations of release rates from spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.

    1991-01-01

    Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs

  12. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history

  13. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    International Nuclear Information System (INIS)

    R. JONES

    2004-01-01

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu and others (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value

  14. Use of modeling in repository licensing

    International Nuclear Information System (INIS)

    McGarry, J.M. III; Echols, F.S.

    1995-01-01

    A review of the regulatory history of the Nuclear Regulatory Commission (NRC) regulations applicable to the licensing of a geologic repository, as well as a review of NRC administrative (licensing) decisions and federal case law, support the NRC's use of simplified models, in appropriate circumstances, which provide well-documented and reasonably conservative bounding assumptions, together with the use of expert judgement, natural analogues, and other aids to supplement available information, in reaching its reasonable assurance determination whether the public health and safety will be adequately protected if the Yucca Mountain, Nevada site should be licensed for development as a geologic repository. Specific examples are provided to assist the reader to better understand how such qualitative concepts as open-quote reasonable assurance close-quote, open-quote reasonably conservative close-quote, and open-quote adequate close-quote protection are used in an administrative context to resolve technical issues

  15. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  16. Alternative approaches to assessing the performance and suitability of Yucca Mountain for spent fuel disposal. Final report

    International Nuclear Information System (INIS)

    McGuire, R.; Smith, G.; Klos, R.

    1998-11-01

    Significant resources and effort have been expended by EPRI over the past few years in modeling and understanding issues related to high-level radioactive waste disposal. Previous reports have documented the general model used in the EPRI work and specific inputs to that model for examination of the potential repository at Yucca Mountain, Nevada. Modeling of the potential Yucca Mountain site is an on-going process, and new data are being collected with which to evaluate and modify models of physical processes. This report is divided into two parts. The first part presents results from specific calculational cases of repository performance, updated for the most recent data and conceptual models. The second part discusses possible alternatives for the components of the assessment context for a repository at Yucca Mountain. Part 2 also presents additional information on time frames and a interaction matrix method of documenting TSPA model interactions. The main purposes of Part of this report is to describe the subsystem and total system performance models and present results and analysis of the results. Part 1 includes presentation of new models of waste container failure that accounts for new container material, a new model of the effect of hydrothermal activity and heterogeneous groundwater flow in the unsaturated zone on temperatures and the distribution of groundwater capable of dripping into the repository drifts. Part 1 also: identifies the key technical components of the candidate spent fuel and HLW disposal facility at Yucca Mountain using IMARC Phase 4; makes recommendations regarding the prioritization of the technical development work remaining; and provides an assessment of the overall technical suitability of the candidate HLW disposal facility at Yucca Mountain

  17. Evaporation of J13 and UZ pore waters at Yucca Mountain

    International Nuclear Information System (INIS)

    Rosenberg, N D; Gdowski, G E; Knauss, K G

    2000-01-01

    This work is motivated by a need to characterize the chemistry of aqueous films that might form at elevated temperatures on engineered components at the potential high-level, nuclear-waste repository at Yucca Mountain, Nevada. Such aqueous films might form through evaporation of water that seeps into the drifts, or by water vapor absorption by hydroscopic salts directly deposited on these components (possibly from previous evaporation events or possibly from air-blown particles drawn into the drifts through a drift ventilation system). There is no consensus at this time on the chemical composition of water that might come in contact with engineered components at Yucca Mountain. Two possibilities have received the most attention: well J13 water and pore waters from the unsaturated zone (UZ) above the repository horizon. These waters represent the two major types of natural waters at Yucca Mountain. Well J13 water is a dilute Na-HCO 3 -CO 3 water, representative of regional perched water and groundwater. The UZ pore waters are Ca-Cl-SO 4 -rich waters with a higher dissolved ion content. These waters are less well-characterized. We have studied the evaporative evolution of these two major types of waters through a series of open system laboratory experiments, with and without crushed repository-horizon tuff present, conducted at sub-boiling temperatures (75 C-85 C)

  18. Retrievability as proposed in the US repository concept

    International Nuclear Information System (INIS)

    Harrington, P.G.

    2000-01-01

    The Nuclear Waste Policy Act states that any repository shall be designed and constructed to permit retrieval. Reasons for retrieval include public health and safety, environmental concerns, and recovery of economically valuable contents of spent nuclear fuel. The Nuclear Regulatory Commission requires that waste must be retrievable at any time up to 50 years after start of emplacement. The US Department of Energy intends to maintain a retrieval capability throughout the preclosure period. Possible preclosure periods range from a minimum of 50 years to as much as 300 years. Repository closure includes sealing all accessible portions of the repository, including ventilation shafts, access ramps and boreholes. Drip shields will be installed over the waste packages. Access to the repository after closure is not intended. The proposed repository includes horizontal emplacement drifts located in the unsaturated zone. The emplacement drift centerline spacing is 81 meters to provide a subboiling region between drifts for water drainage. A drip shield covers the waste packages. All emplacement drifts remain open until closure of the repository, providing performance benefits such as removing heat and moisture during the preclosure period and lowering postclosure temperatures. This does not impede retrieval, permitting a reversal of the emplacement process to accomplish retrieval under normal conditions. The preclosure period is therefore not to enhance retrievability, but does improve performance, and the resultant extension of the retrievability capability is a secondary effect. Information must be provided from the performance confirmation program to support a regulatory decision to close. Closure would isolate the repository from the accessible environment, preclude preferential flowpaths for water into the mountain, and minimize the possibility of inadvertent intrusion. (author)

  19. Dose rates as a function of time due to postulated radionuclide releases from the U.S. Yucca Mountain high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Moeller, Dade W.; Sun, Lin-Shen C.; Cherry, Robert

    2008-01-01

    The Yucca Mountain repository, which is located in a remote area in the State of Nevada, is being constructed for the long-term care and disposal of spent nuclear fuel and vitrified high-level radioactive waste. In accordance with U.S. law, the U.S. Environmental Protection Agency (USEPA) promulgated Standards that limit the dose rates to members of the public due to the consumption of ground water, alone, and the consumption of ground water plus agricultural products irrigated with the contaminated ground water, and other exposures, such as those from external sources and the inhalation of airborne radioactive materials. As part of this exercise, the USEPA identified eight specific radionuclides to which their Standards are to apply. These are: 14 C, 99 Tc, 129 I, 226 Ra, 228 Ra, 237 Np, 239 Pu, and 241 Am. For purposes of the associated dose rate estimates, a range of conservative assumptions have been applied, all of which are designed to assure that the estimated dose rates are well above what might be expected under 'real-world' conditions. As a first step, it was assumed that: (1) at 10 4 year after repository closure, a fractional release of 10 -5 of the entire repository radionuclide inventory occurred; (2) the only prior reduction in the inventory was that due to radioactive decay; and (3) the sole path of exposure to neighboring population groups was through the consumption of 2 L d -1 of contaminated ground water. The accompanying analyses revealed that, of the eight radionuclides, only 226 Ra, 237 Np, and 239 Pu, will represent a significant source of dose at that time. To provide perspective and insights, the next step was to estimate the committed effective dose rates for all eight radionuclides based on an assumed fractional release each year of 10 -5 of the inventory from the time of repository closure up through the 10 6 year. For purposes of providing perspective, it was assumed that each dose rate estimate was independent, that is, no releases

  20. Public opposition to the siting of the high-level nuclear waste repository: The importance of trust

    International Nuclear Information System (INIS)

    Pijawka, K.D.; Mushkatel, A.H.

    1991-01-01

    This paper examines several dimensions of public opposition to the proposed siting of the high-level nuclear waste repository at Yucca Mountain. In order to provide a context for the public's views of the repository in metropolitan Clark County, both governmental studies of the repository siting process are analyzed, as well as elements of the Nuclear Waste Policy Act. This analysis suggests that one potentially key component of the public's opposition to the siting, as well as their perceptions of risk of the facility, may be the result of a lack of trust in the Department of Energy. Empirical analysis of survey data collected in Nevada in 1988 confirms the strong relationship between political trust and repository risk perceptions

  1. Can nuclear waste be stored safely at Yucca mountain?

    International Nuclear Information System (INIS)

    Whipple, C.G.

    1996-01-01

    In 1987 the federal government narrowed to one its long-term options for disposing of nuclear waste: storing it permanently in a series of caverns excavated out of the rock deep below Yucca mountain in southern Nevada. Whether it makes sense at this time to dispose permanently of spent fuel and radioactive waste in a deep geologic repository is hotly disputed. But the Nuclear Waste Policy Act amendements of 1987 decree that waste be consolidated in Yucca Mountain if the mountain is found suitable. Meanwhile the spent fuel continues to pile up across the country, and 1998 looms, adding urgency to the question: What can science tell us about the ability of the mountain to store nuclear waste safely? This paper discusses this issue and describes how studies of the mountain's history and geology can contribute useful insights but not unequivocal conclusions

  2. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    International Nuclear Information System (INIS)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-01-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository

  3. Word images as policy instruments: Lessons from the Yucca Mountain Controversey

    Energy Technology Data Exchange (ETDEWEB)

    Conary, J.S.; Soden, D.L.; Carns, D.E.

    1993-08-01

    A study is described which explores word images which have developed about nuclear issues by Nevadans. The study is based on results of a survey conducted regarding issues related to the Yucca Mountain repository.

  4. TSPA Model for the Yucca Mountain Unsaturated Zone

    International Nuclear Information System (INIS)

    M.L. Wilson; C.K. Ho

    2001-01-01

    Yucca Mountain, Nevada, is being considered as a potential site for a repository for spent nuclear fuel and high-level radioactive waste. Total-system performance-assessment (TSPA) calculations are performed to evaluate the safety of the site. Such calculations require submodels for all important engineered and natural components of the disposal system. There are five submodels related to the unsaturated zone: climate, infiltration, mountain-scale flow of water, seepage into emplacement drifts, and radionuclide transport. For each of these areas, models have been developed and implemented for use in TSPA. The climate model is very simple (a set of climate states have been deduced from paleoclimate data, and the times when climate changes occur in the future have been estimated), but the other four models make use of complex process models involving time-consuming computer runs. An important goal is to evaluate the impact of uncertainties (e.g., incomplete knowledge of the site) on the estimates of potential repository performance, so particular attention is given to the key uncertainties for each area. Uncertainties in climate, infiltration, and mountain-scale flow are represented in TSPA simulations by means of discrete high, medium, and low cases, Uncertainties in seepage and radionuclide transport are represented by means of continuous probability distributions for several key parameters

  5. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  6. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2

  7. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  8. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  9. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  10. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1994-01-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The open-quotes weeps modelclose quotes now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive

  11. An updated fracture-flow model for total-system performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.

    1994-01-01

    Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The ''weeps model'' now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive

  12. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  13. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    International Nuclear Information System (INIS)

    FV PERRY; GA CROWE; GA VALENTINE; LM BOWKER

    1997-01-01

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt ( -7 events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a priority issue for performance assessment studies

  14. A top-level strategy for postclosure performance assessment of Yucca Mountain

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1988-01-01

    In defining the studies needed for characterizing the Yucca Mountain site, the US Department of Energy (DOE) began from the following principle: The data that must be collected are the data that the DOE expects to use in demonstrating compliance with the regulations governing a repository. An early step in defining the studies was therefore the formulation of a strategy for demonstrating this compliance; from that strategy the DOE has derived lists of needed data and plans to provide those data. The complete strategy that the DOE formulated is complex enough to fill hundreds of pages in the Yucca Mountain site-characterization plan. At its highest, least detailed level, however, the strategy rests simply on a few fundamental expectations about the behavior of a repository system at Yucca Mountain. A brief explanation of this top level of the strategy is useful for two reasons: It is a simple example of how the detailed strategy was formulated, and it points out the features of the site on which those fundamental expectations are based

  15. A demonstration of dose modeling at Yucca Mountain

    International Nuclear Information System (INIS)

    Miley, T.B.; Eslinger, P.W.

    1992-11-01

    The U. S. Environmental Protection Agency is currently revising the regulatory guidance for high-level nuclear waste disposal. In its draft form, the guidelines contain dose limits. Since this is likely to be the case in the final regulations, it is essential that the US Department of Energy be prepared to calculate site-specific doses for any potential repository location. This year, Pacific Northwest Laboratory (PNL) has made a first attempt to estimate doses for the potential geologic repository at Yucca Mountain, Nevada as part of a preliminary total-systems performance assessment. A set of transport scenarios was defined to assess the cumulative release of radionuclides over 10,000 years under undisturbed and disturbed conditions at Yucca Mountain. Dose estimates were provided for several of the transport scenarios modeled. The exposure scenarios used to estimate dose in this total-systems exercise should not, however, be considered a definitive set of scenarios for determining the risk of the potential repository. Exposure scenarios were defined for waterborne and surface contamination that result from both undisturbed and disturbed performance of the potential repository. The exposure scenarios used for this analysis were designed for the Hanford Site in Washington. The undisturbed performance scenarios for which exposures were modeled are gas-phase release of 14 C to the surface and natural breakdown of the waste containers with waterborne release. The disturbed performance scenario for which doses were estimated is exploratory drilling. Both surface and waterborne contamination were considered for the drilling intrusion scenario

  16. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

    2007-04-01

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  17. Yucca Mountain socioeconomic project report on the 1987 risk perception telephone surveys

    International Nuclear Information System (INIS)

    Kunreuther, H.; Nigg, J.; Desvousges, W.H.

    1987-09-01

    The measurement of the risk-related impacts from the siting of a high-level nuclear waste (HLNW) repository represents a new and important addition to conventional socioeconomic impact studies. In particular, the driving forces behind these impacts are the risks people perceive to be associated with the repository. Measuring the risk impacts requires a complementary set of approaches, of which, risk surveys are the cornerstone.a The purpose of these surveys is to provide scientifically defensible measures of the risk-related impacts. The risk surveys follow directly from a conceptual framework of how the HLNW repository affects peoples' perceptions and, ultimately, their behaviors. These surveys describe and measure: Characteristics of individuals, Risks people perceive from the HLNW repository, Views, or mind sets, they form about the HLNW repository, Changes in behaviors--e.g., changes in retirement decisions or industrial relocations--induced by the location of the repository, and Changes in well-being of Nevada citizens, if the repository were located at Yucca Mountain

  18. Yucca Mountain socioeconomic project report on the 1987 risk perception telephone surveys

    Energy Technology Data Exchange (ETDEWEB)

    Kunreuther, H. [Pennsylvania Univ., Philadelphia, PA (United States). Wharton School of Finance and Commerce; Slovic, P. [Decision Research, Eugene, OR (United States); Nigg, J. [Arizona State Univ., Tempe, AZ (United States); Desvousges, W.H. [Research Triangle Inst., Research Triangle Park, NC (United States)

    1987-09-01

    The measurement of the risk-related impacts from the siting of a high-level nuclear waste (HLNW) repository represents a new and important addition to conventional socioeconomic impact studies. In particular, the driving forces behind these impacts are the risks people perceive to be associated with the repository. Measuring the risk impacts requires a complementary set of approaches, of which, risk surveys are the cornerstone.a The purpose of these surveys is to provide scientifically defensible measures of the risk-related impacts. The risk surveys follow directly from a conceptual framework of how the HLNW repository affects peoples` perceptions and, ultimately, their behaviors. These surveys describe and measure: Characteristics of individuals, Risks people perceive from the HLNW repository, Views, or mind sets, they form about the HLNW repository, Changes in behaviors--e.g., changes in retirement decisions or industrial relocations--induced by the location of the repository, and Changes in well-being of Nevada citizens, if the repository were located at Yucca Mountain.

  19. Annotated bibliography of the physical data of Rainier Mesa and Yucca Mountain

    International Nuclear Information System (INIS)

    Russell, C.E.

    1988-09-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site (NTS) has been designated as the only site to undergo characterization to determine if it meets the criteria to become the Nation's first high-level nuclear waste repository. During this process, care must be taken to not compromise the site's integrity through excessive testing. In order to supplement the limited data to be gathered at Yucca Mountain, analog areas are to be considered. This annotated bibliography was compiled by the Desert Research Institute to help investigate ways in which Rainier Mesa could either be used as a supplemental repository test site or where existing Rainier Mesa data can be used either to support or refute test results from Yucca Mountain. Rainier Mesa, the location of numerous underground nuclear tests on the NTS, possesses some geologic characteristics similar to those of Yucca Mountain, which makes it a likely candidate for comparison. Almost 500 references regarding geology, hydrology, meteorology, biology, and archaeology were annotated and entered alpha-numerically into the bibliography. These references were categorized into 50 topics which are defined in Section 2 and presented in Section 3. Each reference is categorized as to whether it contains Yucca Mountain data, Rainier Mesa data, or both, and a final category consists of those reports that contain Rainier Mesa data that have already been applied to Yucca Mountain research. The annotated bibliography is presented in Section 4

  20. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  1. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  2. Aeromagnetic surveys across Crater Flat and parts of Yucca Mountain, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Sikora, R.F.; Campbell, D.L.; Kucks, R.P.

    1995-01-01

    As part of a study to characterize a potential nuclear waste repository at Yucca Mountain, aeromagnetic surveys were conducted in April 1993 along the trace of a planned seismic profile across Crater Flat and parts of Yucca Mountain. This report includes a presentation and preliminary interpretation of the data. The profiles are at scales of 1:100,000. Also included are a gridded color contour map of the newly acquired data and a discussion of the likely applicability of very-low-frequency (VLF) electromagnetic surveys to Yucca Mountain investigations

  3. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  4. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  5. Effects of Faulted Stratigraphy on Saturated Zone Flow Beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cohen, Andrew J.B.; Oldenburg, Curtis M.

    1999-01-01

    The S 4 Z Model (''sub-site-scale saturated zone'') is a 3-D TOUGH2 model that was developed to study the saturated zone (SZ) at Yucca Mountain, Nevada, and to aid in the design and analysis of hydrologic tests. Yucca Mountain is the proposed site for a nuclear waste repository for the United States. The model covers an area of approximately 100 km 2 around Yucca Mountain, as shown in Figure 1. The proposed repository is located in the unsaturated zone, immediately above the area of equidimensional gridblocks east of Solitario Canyon fault, which defines the crest of Yucca Mountain. The finely discretized region near the center of the domain corresponds to the area near a cluster of boreholes used for hydraulic and tracer testing. This discretization facilitates simulation of tests conducted there. The hydrogeologic structure beneath the mountain is comprised of dipping geologic units of variable thickness which are offset by faults. One of the primary objectives of the S 4 Z modeling effort is to study the potential effects of the faulted structure on flow. Therefore, replication of the geologic structure in the model mesh is necessary. This paper summarizes (1) the mesh discretization used to capture the faulted geologic structure, and (2) a model simulation that illustrates the significance of the geologic structure on SZ flow and the resulting macrodispersion

  6. The Multi-Scale Model Approach to Thermohydrology at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L; Buscheck, T A; Gansemer, J; Sun, Y

    2002-01-01

    The Multi-Scale Thermo-Hydrologic (MSTH) process model is a modeling abstraction of them1 hydrology (TH) of the potential Yucca Mountain repository at multiple spatial scales. The MSTH model as described herein was used for the Supplemental Science and Performance Analyses (BSC, 2001) and is documented in detail in CRWMS M and O (2000) and Glascoe et al. (2002). The model has been validated to a nested grid model in Buscheck et al. (In Review). The MSTH approach is necessary for modeling thermal hydrology at Yucca Mountain for two reasons: (1) varying levels of detail are necessary at different spatial scales to capture important TH processes and (2) a fully-coupled TH model of the repository which includes the necessary spatial detail is computationally prohibitive. The MSTH model consists of six ''submodels'' which are combined in a manner to reduce the complexity of modeling where appropriate. The coupling of these models allows for appropriate consideration of mountain-scale thermal hydrology along with the thermal hydrology of drift-scale discrete waste packages of varying heat load. Two stages are involved in the MSTH approach, first, the execution of submodels, and second, the assembly of submodels using the Multi-scale Thermohydrology Abstraction Code (MSTHAC). MSTHAC assembles the submodels in a five-step process culminating in the TH model output of discrete waste packages including a mountain-scale influence

  7. Summary report on the geochemistry of Yucca Mountain and environs

    International Nuclear Information System (INIS)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling

  8. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Voegele, Michael D.

    2014-01-01

    This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding. - Highlights: • Progression of events associated with repository design to accommodate tunnel boring machine and in-drift waste package emplacement are discussed. • Change in container design from small, single-layered stainless steel vessel to large, two-layered nickel alloy vessel is discussed. • The addition of drip shield to limit the

  9. Development of the Performance Confirmation Program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G.D. LeCain; D. Barr; D. Weaver; R. Snell; S.W. Goodin; F.D. Hansen

    2006-01-01

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure

  10. Selected hydrologic data from Fortymile Wash in the Yucca Mountain area, Nevada, water years 1993--94

    Energy Technology Data Exchange (ETDEWEB)

    Savard, C.S.

    1996-09-01

    The Yucca Mountain area is being evaluated by the US Department of Energy for its suitability to store high-level nuclear waste in a mined, underground repository. Hydrologic data are being collected by the US Geological Survey throughout a 150 Km{sup 2} study area about 15- Km northwest of Las Vegas in southern Nevada for site characterization studies. Ongoing hydrologic studies are investigating atmospheric precipitation, stream-flow, movement of water through the unsaturated zone, movement of water through the saturated zone, and paleohydrology. This study at Fortymile Wash involves some components of each of these studies. Fortymile Wash is an ephemeral stream near Yucca Mountain with tributaries draining the east side of Yucca Mountain and then forming a distributary system in the Amargosa Desert. An objective of the study is to determine the amount of recharge from Fortymile Wash to the ground-water flow system that has been proposed. Understanding the ground-water flow system is important because it is a possible mechanism for radionuclide migration from the repository to the accessible environment. An adequate understanding of the ground-water flow system is necessary for an evaluation of the safety issues involved in siting the potential repository.

  11. Natural analogs for Yucca Mountain

    International Nuclear Information System (INIS)

    Murphy, W.M.

    1995-01-01

    High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece

  12. Yucca Mountain public tours: Can they impact public opinion?

    International Nuclear Information System (INIS)

    Reilly, B.; Austin, P.

    1991-01-01

    The Yucca Mountain site in Nevada was selected by Congress in 1987 as the only site for the US Department of Energy (DOE) to study for suitability as a high-level radioactive waste repository. Several years of site characterization studies are needed to determine if the site is suitable. However, DOE's study of the site is one of the most intensely opposed federal programs today. The fight against DOE's effort to study the repository leads the political agendas of Nevada's governor and Congressional delegation. The politicians and the press have been the primary sources of information for Nevada citizens on the Yucca Mountain site characterization program. However, there is a more direct source of factual information regarding the program - the site itself and the participating scientists. The DOE is offering Nevada citizens the opportunity to form their own opinions by touring the Yucca Mountain site and interacting with DOE scientists and engineers. Feedback from monthly tours conducted from March to June 1991 has indicated substantial support from Nevada citizens for DOE's study of the site. In fact, a surprising number of citizens have indicated that the opportunity to gather information and formulate their own opinions led them to change their opinions

  13. Interface management for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    The subject of this report is selection of that portion of physical and informational interfaces that need to be controlled on the Yucca Mountain Project (YMP). Physical interfaces are interactions between physical elements of the mined geologic disposal system; for example, the repository shafts will interface with the shafts in the Exploratory Shaft Facility (ESF), because the ESF shafts will eventually be absorbed into the repository as additional repository shafts. Informational interfaces are interactions involving an exchange of information between organizations working on the mined geologic disposal system; for example, the in situ testing contractor will interact with the site performance assessment contractor and will supply information regarding host rock behavior. This report describes the physical system interfaces that can be identified from analysis of a physical system structure. A discussion of informational interfaces can be found elsewhere. 30 refs., 8 figs., 3 tabs

  14. Preclosure Seismic Design Methodology for a Geologic Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    K. Coppersmith

    2004-01-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) intends to use for preclosure seismic design of structures, systems, and components (SSCs) that are important to safety (ITS) in the geologic repository operations area. 10 Code of Federal Regulations (CFR) Part 63 [DIRS 156605], states that for a license to be issued for operation of a high-level radioactive waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public (Section 63.41[c] [DIRS 156605]). Section 63.21(c)(5) [DIRS 156605] requires that a preclosure safety analysis (PCSA) be performed to ensure that the preclosure performance objectives (Section 63.111 [DIRS 156605]) have been met. The PCSA is a systematic examination of the site, the design, and the potential hazards (Section 63.102[f] [DIRS 156605]), including a comprehensive identification of potential event sequences. Potential naturally-occurring hazards include those event sequences that are initiated by earthquake ground motions or fault displacements due to earthquakes

  15. Photogeologic study of small-scale linear features near a potential nuclear-waste repository site at Yucca Mountain, southern Nye County, Nevada

    International Nuclear Information System (INIS)

    Throckmorton, C.K.

    1987-01-01

    Linear features were mapped from 1:2400-scale aerial photographs of the northern half of the potential underground nuclear-waste repository site at Yucca Mountain by means of a Kern PG 2 stereoplotter. These features were thought to be the expression of fractures at the ground surface (fracture traces), and were mapped in the caprock, upper lithophysal, undifferentiated lower lithophysal and hackly units of the Tiva Canyon Member of the Miocene Paintbrush Tuff. To determine if the linear features corresponded to fracture traces observed in the field, stations (areas) were selected on the map where the traces were both abundant and located solely within one unit. These areas were visited in the field, where fracture-trace bearings and fracture-trace lengths were recorded. Additional data on fracture-trace length and fracture abundance, obtained from ground-based studies of cleared pavements located within the study area were used to help evaluate data collected for this study. 16 refs., 4 figs., 2 tabs

  16. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data

  17. PRESERVATION OF ARCHAEOLOGICAL MATERIALS IN ARID ENVIRONMENTS RELEVANT TO YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    N. Chapman, A. Dansie, C. McCombie

    2006-01-01

    The objective of this study was to evaluate archaeological materials from underground openings or shallow burial in arid environments relevant to Yucca Mountain and to draw conclusions about how their state and their environment of preservation could be of relevance to design and operational aspects of the high-level waste repository. The study has evaluated materials from cultures in the arid regions of the ancient Middle East and compared them with the preservation of ancient materials in dry cave sites in the Great Basin desert area of Nevada. The emphasis has been on materials found in undisturbed underground openings such as caves and un-backfilled tombs. Long-term preservation of such materials in underground openings and the stability of the openings themselves provide useful analogue information that serves as a reference point for considering the operation and evolution of the Yucca Mountain repository. Being able to shed light, by close physical and environmental analogy, on what happens in underground openings over many thousands of years provides valuable underpinning to illustrations of expected system performance and offers pointers towards optimizing repository system and operational design

  18. Archaeology of Arid Environments Points to Management Options for Yucca Mountain

    International Nuclear Information System (INIS)

    N. Chapman; A. Dansie; C. McCombie

    2006-01-01

    As with all planned repositories for spent fuel, the critical period over which Yucca Mountain needs to provide isolation is the first hundreds to thousands of years after the fuel is emplaced, when it is at its most hazardous. Both the original and the proposed new EPA standards highlight the central importance of this performance period by focusing on repository behavior during the first 10,000 years. Archaeology has a lot to tell us about the behavior of materials and structures over this time period. There have been numerous studies of archaeological artifacts in conditions relevant to the groundwater saturated environments that are a feature of most international geological disposal concepts, but relatively few in arid environments like that of the Nevada desert. However, there is much information to be gleaned, not only from classic archaeological areas in the Middle East and around the Mediterranean but also, perhaps surprisingly to some, from Nevada itself. Our recent study evaluated archaeological materials from underground openings and shallow burial in arid environments relevant to Yucca Mountain, drawing conclusions about how their state and their environment of preservation could help to assess design and operational options for the high-level waste repository

  19. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  20. Rainfall and net infiltration probabilities for future climate conditions at Yucca Mountain

    International Nuclear Information System (INIS)

    Long, A.; Childs, S.W.

    1993-01-01

    Performance assessment of repository integrity is a task rendered difficult because it requires predicting the future. This challenge has occupied many scientists who realize that the best assessments are required to maximize the probability of successful repository sitting and design. As part of a performance assessment effort directed by the EPRI, the authors have used probabilistic methods to assess the magnitude and timing of net infiltration at Yucca Mountain. A mathematical model for net infiltration previously published incorporated a probabilistic treatment of climate, surface hydrologic processes and a mathematical model of the infiltration process. In this paper, we present the details of the climatological analysis. The precipitation model is event-based, simulating characteristics of modern rainfall near Yucca Mountain, then extending the model to most likely values for different degrees of pluvial climates. Next the precipitation event model is fed into a process-based infiltration model that considers spatial variability in parameters relevant to net infiltration of Yucca Mountain. The model predicts that average annual net infiltration at Yucca Mountain will range from a mean of about 1 mm under present climatic conditions to a mean of at least 2.4 mm under full glacial (pluvial) conditions. Considerable variations about these means are expected to occur from year-to-year

  1. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  2. Los Alamos National Laboratory Yucca Mountain Project publications (1979--1994)

    International Nuclear Information System (INIS)

    Bowker, L.M.; Espinosa, M.L.; Klein, S.H.

    1995-11-01

    This over-300 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1994 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/groundwater chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  3. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  4. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  5. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the

  6. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  7. Impacts of Stable Element Intake on C and I Dose Estimates - Implications for Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Moeller; M.T. Ryan; Lin-Shen C. Sun; R.N. Cherry Jr.

    2004-12-21

    The purpose of this study was to evaluate the influence of the intake of stable isotopes of carbon and iodine on the committed doses due to the ingestion of {sup 14}C and {sup 129}I. This was accomplished through the application of two different computational approaches. The first was based on the assumption that ground (drinking) water was the only source of intake of both {sup 14}C and {sup 129}I and stable carbon and stable iodine. For purposes of the second approach, the intake of {sup 14}C and {sup 129}I was still assumed to be only that in the ground (drinking) water, but the intake of stable carbon and stable iodine was assumed to be that in the drinking water plus other components of the diet. The doses were estimated using either a conversion formula or the applicable dose coefficients in Federal Guidance Reports No. 11 and No. 13. Serving as input for the analyses was the estimated maximum concentration of {sup 14}C or {sup 129}I that would be present in the ground water due to potential releases from the proposed Yucca Mountain high-level radioactive waste repository during the first 10,000 years after closure. The estimated concentrations of stable carbon and iodine were based on analyses of ground water samples collected in the Amargosa Valley, NV. Based on the accompanying analyses, three conclusions were reached. First, no dose estimate, using a conversion formula in which the ratios of the stable to radioactive isotopes of an element serve as input, should ever be made without including the stable element intake contributions from all components of the diet. Second, the study suggests that the dose coefficients for {sup 129}I in Federal Guidance Reports No. 11 and No. 12 which, in turn, are based on publications of the ICRP, may not be appropriate for application in developed nations of the world, especially those in which relatively large amounts of seafood are consumed and the use of iodized salt is common. The estimated average daily intake of

  8. Preliminary assessment of nuclear waste transportation cost and risk for operation of the first repository at candidate sites

    International Nuclear Information System (INIS)

    Peterson, R.W.; McSweeney, T.I.; Varadarajan, R.V.; Wilmot, E.L.; Cashwell, J.W.; Joy, D.S.

    1983-01-01

    To support the selection of the first commercial nuclear waste repository site in 1987, environmental analyses of five candidate site locations are currently being performed. The five locations are in the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain and the Hanford reservation. Costs and operational risks associated with the transportation of nuclear wastes to a single repository located in these regions have been calculated for a life-cycle of 26 years

  9. Draft environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The Yucca Mountain site is located in the Great Basin, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Yucca Mountain site as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the Yucca Mountain site is one of three sites preferred for site characterization

  10. DATA QUALIFICATION REPORT: DATA QUALIFICATION REPORT FOR 1991 1:1200 TOPOGRAPHIC MAPS FOR USE ON THE YUCCA MOUNTAIN PROJECT

    International Nuclear Information System (INIS)

    Knop, M.F.; Grant, T.A.; Bonisolli, R.W.

    2005-01-01

    This Data Qualification Report (DQR) is prepared in accordance with the provisions of AP-SIII.2Q, Rev. 0, ICN 3, Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data and Data Qualification Plan for 1991 Topographic Maps 1:1200 Scale for use on the Yucca Mountain Project, DQP-WHS-CI-000001, Rev. 00 (BSC 2002a). This DQR presents an evaluation of a set of 90 topographic sheets at 1:1200 scale (and an associated electronic file) that covers an approximate 18 square mile area surrounding the proposed Yucca Mountain Project repository surface facilities location in Midway Valley, Nevada. These maps, that require qualification, are now being used to determine the physical characteristics of watershed sub-areas, interconnecting channels, and drainage channel cross-sections for hydrologic engineering studies of the north portal pad and vicinity. The result of this effort is to qualify one data tracking number (DTN) containing the electronic version of the mapping data. This DTN is: M09906COV98462.000. Coverage: TOP02FTS. The underlying quality assurance (QA) issue associated with these topographic maps is that the maps were originally designated as not for use in the design of items important to safety, waste isolation, and/or of programmatic importance. The maps were therefore generated outside the U.S. Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) QA program. Based on a comparison with corroborating information, this report concludes that the topographic maps are qualified. The comparison found that the mapping was reasonably accurate when compared with other mapping and survey data within the coverage area of the maps. Relative map accuracy was found to be very good and suitable for the hydrologic engineering studies being considered. Absolute accuracy is good but could not be demonstrated to comply with national map accuracy standards. Point locations that require high absolute accuracy should be

  11. The status of Yucca Mountain site characterization activities

    International Nuclear Information System (INIS)

    Gertz, Carl P.; Larkin, Erin L.; Hamner, Melissa

    1992-01-01

    The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is continuing its studies to determine if Yucca Mountain, Nevada, can safely isolate high-level nuclear waste for the next ten thousand years. As mandated by Congress in 1987, DOE is studying the rocks, the climate, and the water table at Yucca Mountain to ensure that the site is suitable before building a repository adopt 305 meters below the surface. Yucca Mountain, located 160.9 kilometers northwest of Las Vegas, lies on the western edge of the Nevada Test Site. Nevada and DOE have been in litigation over environmental permits needed to conduct studies, but recent court decisions have allowed limited new work to begin. This paper will examine progress made on the Yucca Mountain Site Characterization Project (YMP) during 1991 and continuing into 1992, discuss the complex legal issues and describe new site drilling work. Design work on the underground exploratory studies facility (ESF) will also be discussed. (author)

  12. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    Energy Technology Data Exchange (ETDEWEB)

    K.G. Mon; F. Hua

    2005-04-12

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

  13. Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K.G.; Hua, F.

    2005-01-01

    This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure

  14. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  15. Physical processes and effects of magmatism in the Yucca Mountain region

    International Nuclear Information System (INIS)

    Valentine, G.A.; Crowe, B.M.; Perry, F.V.

    1991-01-01

    This paper describes initial studies related to the effects of volcanism on performance of the proposed Yucca Mountain radioactive waste repository, and to the general processes of magmatism in the Yucca Mountain region. Volcanism or igneous activity can affect the repository performance by ejection of waste onto the earth's surface (eruptive effects), or by subsurface effects of hydrothermal processes and altered hydrology if an intrusion occurs within the repository block. Initial, conservative calculations of the volume of waste that might be erupted during a small-volume basaltic eruption (such as those which occurred in the Yucca Mountain region) indicate that regulatory limits might be exceeded. Current efforts to refine these calculations, based upon field studies at analog sites, are described. Studies of subsurface effects are just beginning, and are currently focused on field studies of intrusion properties and contact metamorphism at deeply eroded analog sites. General processes of magmatism are important for providing a physical basis for predictions of future volcanic activity. Initial studies have focused on modeling basaltic magma chambers in conjunction with petrographic and geochemical studies. An example of the thermal-fluid dynamic evolution of a small basaltic sill is described, based on numerical simulation. Quantification of eruption conditions can provide valuable information on the overall magmatic system. We are developing quantitative methods for mapping pyroclastic facies of small basaltic centers and, in combination with two-phase hydrodynamic simulation, using this information to estimate eruption conditions. Examples of such hydrodynamic simulations are presented, along with comparison to an historical eruption in Hawaii

  16. Workshop on rock mechanics issues in repository design and performance assessment

    International Nuclear Information System (INIS)

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ''Rock Mechanics Issues in Repository Design and Performance Assessment'' on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions

  17. Los Alamos National Laboratory Yucca Mountain Project Publications (1979-1996)

    International Nuclear Information System (INIS)

    Ruhala, E.R.; Klein, S.H.

    1997-06-01

    This over-350 title publication list reflects the accomplishments of Los Alamos Yucca Mountain Site Characterization Project researchers, who, since 1979, have been conducting multidisciplinary research to help determine if Yucca Mountain, Nevada, is a suitable site for a high-level waste repository. The titles can be accessed in two ways: by year, beginning with 1996 and working back to 1979, and by subject area: mineralogy/petrology/geology, volcanism, radionuclide solubility/ground-water chemistry; radionuclide sorption and transport; modeling/validation/field studies; summary/status reports, and quality assurance

  18. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation's first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ''engineered materials'' is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site

  19. Use of natural analog and modeling studies to constrain the effects of magmatic activity on long-term geologic repositories

    International Nuclear Information System (INIS)

    Valentine, G.A.; Rosenberg, N.D.; Crowe, B.M.; Perry, F.V.

    1995-01-01

    Examples of the application of natural-analog studies to the estimation of the consequences of a volcanic eruption penetrating a radioactive waste repository are given, including the criteria for analog selection and new data from ongoing studies. Examples of early modeling results focusing on the spatial and temporal scale of subsurface processes are also provided. All of these examples are taken from studies of the potential Yucca Mountain repository, Nevada, but similar approaches could be applied in other areas. In addition, studies of subsurface processes initiated by magmatic events serve as useful analogs for repository thermal loading studies

  20. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.M.

    1992-01-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated

  1. 1989 vegetation studies at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1990-02-01

    The overall purpose of the 1989 vegetation ecology studies was to describe the existing vegetation and baseline ecological conditions of the Yucca Mountain study area, before further disturbances due to site characterization occur. Extensive disturbances have already occurred due to preliminary studies associated with the waste repository. If the site is determined to be unsuitable for a waste repository, then reclamation of disturbed sites will be required. Biotic conditions are described within both regional and local contexts because the intensity of local disturbances may result in impacts to outlying areas. The most detailed data collection was conducted in the Focused Baseline Study Area where site characterization activities will be concentrated. Less detailed information was obtained for adjacent areas in the Core Study Area and Cumulative Assessment Study Area. The major tasks of this study were as follows: describe and map the vegetation of the Yucca Mountain study area; identify important relationships between the biotic and physical elements of the ecosystem; identify unique or sensitive resources; preliminary assessment of the baseline ecological conditions of the area

  2. Rock mass modification around a nuclear waste repository in welded tuff

    International Nuclear Information System (INIS)

    Mack, M.G.; Brandshaug, T.; Brady, B.H.

    1989-08-01

    This report presents the results of numerical analyses to estimate the extent of rock mass modification resulting from the presence of a High Level Waste (HLW) repository. Changes in rock mass considered are stresses and joint deformations resulting from disposal room excavation and thermal efffects induced by the heat generated by nuclear waste. rock properties and site conditions are taken from the Site Characterization Plan Conceptual Design Report for the potential repository site at Yucca Mountain, Nevada. Analyses were conducted using boundary element and distinct element methods. Room-scale models and repository-scale models were investigated for up to 500 years after waste emplacement. Results of room-scale analyses based on the thermoelastic boundary element model indicate that a zone of modified rock develops around the disposal rooms for both vertical and horizontal waste emplacement. This zone is estimated to extend a distance of roughly two room diameters from the room surface. Results from the repository-scale model, which are based on the thermoelastic boundary element model and the distinct element model, indicate a zone with modified rock mass properties starting approximately 100 m above and below the repository, with a thickness of approximately 200 m above and 150 m below the repository. Slip-prone subhorizontal features are shown to have a substantial effect on rock mass response. The estimates of rock mass modification reflect uncertainties and simplifying assumptions in the models. 32 refs., 57 figs., 1 tab

  3. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  4. Effect of reprocessing and recycling on the geologic repository dose rate : status

    International Nuclear Information System (INIS)

    Morris, E. E.; Nutt, W. M.; Wigeland, R. A.; Nuclear Engineering Division

    2007-01-01

    Two simplified repository performance assessment models are used to assess the impact of modeling changes in on conclusions regarding the impact of various reprocessing and recycling strategies. Waste streams from a pressurized water reactor (PWR) and a preliminary design for an advanced burner test reactor (ABTR) are used for this study of the effects on the estimated dose rate resulting from the release of radionuclides from a geologic repository. Calculations for the PWR make use of radionuclide discharge vectors for an assumed burnup of 51 GWd/MTIHM[1]. The repository is assumed to be filled with 70,000 MT of the spent fuel or with a glass waste form containing the radionuclides from 70,000 MT of spent PWR fuel. For the ABTR, the radionuclide inventory discharged at the end of an equilibrium cycle[2] is processed into a glass waste form for repository disposal, assuming actinide recovery efficiencies ranging from 90% to 99.99%. The recovered actinides are returned to the reactor. To compare with the PWR results, the repository is assumed to be filled with ABTR waste from fuel that has generated the same amount of thermal energy as 70,000 MT of the PWR fuel. The two repository performance assessment models, the first a simplified model[3] (SSR) based on the site recommendation model used by the Yucca Mountain Project (YMP)[4], and the second an updated simplified model (US) based on more recent modeling developments by the YMP are implemented in the computer simulation code GoldSim[5]. The updated model is based on a simplified model used to conduct a sensitivity analysis to evaluate factors that potentially influence performance of a repository at Yucca Mountain over the period of peak dose[6]. Factors that have either a minor or no effect on the peak dose either were not included in that simplified model or were included in a bounding representation. In the US model, enhancements were made to include some factors that have an effect on the dose occurring

  5. Probabilistic risk assessment and nuclear waste transportation: A case study of the use of RADTRAN in the 1986 Environmental Assessment for Yucca Mountain

    International Nuclear Information System (INIS)

    Resnikoff, M.

    1990-12-01

    The analysis of the risks of transporting irradiated nuclear fuel to a federal repository, Appendix A of the DOE Environmental Assessment for Yucca Mountain (DOE84), is based on the RADTRAN model and input parameters. The RADTRAN computer code calculates the radiation exposures and health effects under normal or incident-free transport, and over all credible accident conditions. The RADTRAN model also calculates the economic consequences of transportation accidents, though these costs were not included in the Department's Environmental Assessment for the proposed Yucca Mountain repository

  6. Research on high level radioactive waste repository seismic design criteria

    International Nuclear Information System (INIS)

    Jing Xu

    2012-01-01

    Review seismic hazard analysis principle and method in site suitable assessment process of Yucca Mountain Project, and seismic design criteria and seismic design basis in primary design process. Demonstrated spatial character of seismic hazard by calculated regional seismic hazard map. Contrasted different level seismic design basis to show their differences and relation. Discussed seismic design criteria for preclosure phrase of high level waste repository and preference goal under beyond design basis ground motion. (author)

  7. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  8. Nye County, Nevada 1992 nuclear waste repository program: Program overview. Final report

    International Nuclear Information System (INIS)

    1998-01-01

    The purpose of this document is to provide an overview of the Nye County FY92 Nuclear Waste Repository Program (Program). Funds to pay for Program costs will come from the Federal Nuclear Waste Fund, which was established under the Nuclear Waste Policy Act of 1982 (NWPA). In early 1983, the Yucca Mountain was identified as a potentially suitable site for the nation's first geologic repository for spent reactor fuel and high-level radioactive waste. Later that year, the Nye County Board of County Commissioners (Board) established the capability to monitor the Federal effort to implement the NWPA and evaluate the potential impacts of repository-related activities on Nye County. Over the last eight years, the County's program has grown in complexity and cost in order to address DOE's evolving site characterization studies, and prepare for the potential for facility construction and operation. Changes were necessary as well, in response to Congress's redirection of the repository program specified in the amendments, to the NWPA approved in 1987. In early FY 1991, the County formally established a project office to plan and implement its program of work. The Repository Project Office's (RPO) mission and functions are provided in Section 2.0. The RPO organization structure is described in Section 3.0

  9. Natural gels in the Yucca Mountain Area, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alternation of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository

  10. Preparing the Yucca Mountain Multimedia Presentation

    International Nuclear Information System (INIS)

    Larkin, Y.; Hartley, J.; Scott, J.

    2002-01-01

    In July 2002, the U.S. Congress approved Yucca Mountain in Nevada for development as a geologic repository for spent nuclear fuel and high-level radioactive waste. This major milestone for the country's high-level radioactive waste disposal program comes after more than 20 years of scientific study and intense public interaction and outreach. The U.S. Department of Energy's (DOE) public involvement activities were driven by two federal regulations-the National Environmental Policy Act (NEPA) and the Nuclear Waste Policy Act (NWPA) of 1982, as amended. The NEPA required that DOE hold public hearings at key points in the development of an Environmental Impact Statement (EIS) and the NWPA required the agency to conduct public hearings in the vicinity of the site prior to making a recommendation regarding the site's suitability. The NWPA also provided a roadmap for how DOE would interact with affected units of government, which include the state of Nevada and the counties surrounding the site. As the Project moves into the next phase--applying for a license to construct a repository-the challenge of public interaction and outreach remains. It has become increasingly important to provide tools to communicate to the public the importance of the Yucca Mountain Project. Sharing the science and engineering research with the general public, as well as teachers, students, and industry professionals, is one of the project's most important activities. Discovering ways to translate project information and communicate this information to local governments, agencies, citizens' groups, schools, the news media, and other stakeholders is critical. With these facts in mind, the authors set out to create a presentation that would bring the ''mountain'' to the public

  11. Analysis of translesion DNA synthesis activity of the human REV1-REV7 complex, which is a key player in radiation-induced mutagenesis

    International Nuclear Information System (INIS)

    Masuda, Y.; Masuda, K.; Kamiya, K.

    2003-01-01

    Full text: Ionizing radiation frequently causes oxidative DNA damage in cells. It has been suggested that functions of the REV1 and REV7 genes are induction of mutations and prevention of cell death caused by ionizing radiation. With yeast Saccharomyces cerevisiae, results from a variety of investigations have demonstrated that the REV genes play a major role in induction of mutations through replication processes which directly copy the damaged DNA template during DNA replication. However, in higher eucaryotes, functions of homologues are poorly understood and appear somewhat different from the yeast case. It has been suggested that human REV1 interacts with human REV7, this being specific to higher eucaryotes. Here we show that purified human REV1 and REV7 proteins form a heterodimer in solution, which is stable through intensive purification steps. Results from biochemical analysis of the transferase reactions of the REV1-REV7 complex demonstrated, in contrast to the case of yeast Rev3 whose polymerase activity is stimulated by assembly with yeast Rev7, that human REV7 did not influence the stability, substrate specificity or kinetic parameters of the transferase reactions of REV1 protein. A possible molecular role of the REV7 subunit may be to help assembly of the REV1 protein to a large complex containing REV3 and/or other DNA polymerases in higher eucaryotes

  12. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging

    International Nuclear Information System (INIS)

    Wolff, Horst; Hadian, Kamyar; Ziegler, Manja; Weierich, Claudia; Kramer-Hammerle, Susanne; Kleinschmidt, Andrea; Erfle, Volker; Brack-Werner, Ruth

    2006-01-01

    The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors

  13. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  14. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation, Rev. 00

    International Nuclear Information System (INIS)

    NA

    2001-01-01

    This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U.S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with respect to the 10,000-year performance period specified in 40 CFR Part 197.30 (66 FR 32074 [DIRS 155216], p. 32134) with regard to radiation-protection standards. The EPA Final Rule 40 CFR Part 197 has three separate standards, individual-protection, human-intrusion, and groundwater-protection standards, all with a compliance timeframe of 10,000 years. These calculations evaluate the dose to receptors for each of these standards. Further, this Letter Report includes the results of simulations to the 1,000,000-year performance period described in 40 CFR Part 197.35 (66 FR 32074 [DIRS 155216], p. 32135) which calls for the calculation of the peak dose to the Reasonably Maximally Exposed Individual (RMEI) that would occur after 10,000 years and within the period of geological stability. In accordance with TSPA-SR the ''period of geologic stability'' is from zero to 1,000,000 years after repository closure. The calculations also present the 5th and 95th percentiles, and the mean and median of the set of probabilistic simulations used to evaluate various disposal scenarios

  15. Autotrophic and heterotrophic bacterial diversity from Yucca Mountain

    International Nuclear Information System (INIS)

    Khalil, M.; Haldeman, D.L.; Igbinovia, A.; Castro, P.

    1996-01-01

    A basic understanding of the types and functions of microbiota present within the deep subsurface of Yucca Mountain will be important in terms of modeling the long term stability of a nuclear waste repository. Microorganisms can degrade building materials used in tunnel construction such as concrete and steel. For example, high concentrations of nitrifying bacteria, may cause corrosion of concrete due to the release of nitric acid. Likewise, sulfur-oxidizing and iron-oxidizing bacteria have been implicated in microbially influenced corrosion (MIC), and may contribute to the degradation of waste packages. In addition, the metabolic activities of microbiota may alter the geochemistry of surrounding environments, which may in turn influence the permeability of subsurface strata and the fate of radioactive compounds. Microorganisms that play roles in these processes have diverse methods of obtaining the energy required for growth and metabolism and have been recovered from a wide range of environments, including the deep subsurface. The purpose of this research was to determine if these bacterial groups, important to the long-term success of a high-level nuclear waste repository, were indigenous to Yucca Mountain

  16. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  17. Introducing RevPASH: The Free Webtool Application

    Directory of Open Access Journals (Sweden)

    Peter Szende

    2014-10-01

    Full Text Available RevPASH (Revenue Per Available Seat Hour is an important measure that helps restaurant operators understand how efficiently each seat in a restaurant generates revenue. The RevPASH app is an easy-to-use web-tool that provides an operator with a quick way to input a few relevant numbers and calculate RevPASH.The application has the ability to compare RevPASH over different times, days, weeks, and months.

  18. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  19. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  20. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  1. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs

  2. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs

  3. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  4. The exploratory studies facility (ESF) at Yucca Mountain - Description and status

    International Nuclear Information System (INIS)

    Simecka, W.B.; Replogle, J.M.; Mckenzie, D.G.

    1994-01-01

    The Exploratory Studies Facility (ESF) at Yucca Mountain, Nevada will be a 25 kilometer underground network of inclined ramps, tunnels, and test alcoves. It will serve as an underground laboratory for the execution of a testing program conceived to assess the suitability of Yucca Mountain as a site to host a potential high level nuclear waste repository. This paper contains a description of the ESF, a summary of the major types of tests currently planned, and a report on the current status of the ongoing design and construction activities. The ESF is being designed and constructed in phases. Currently, the Detailed Design, or open-quotes Title II Designclose quotes is centered on the second of ten major design packages. Construction has begun on excavation of the open-quotes starter tunnelclose quotes for a Tunnel Boring Machine (TBM) expected to begin operation in late FY 1994. The EFS program will provide information critical to the evaluation of Yucca Mountain as a potential repository site, and will house a suite of state-of-the-art tests designed to gather this information. The ESF is a one of a kind opportunity to examine, in minute detail, all facets of a sites' geology; its thermal, mechanical, and hydrologic properties; and to study the linkages between these properties

  5. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    International Nuclear Information System (INIS)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes

  6. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991

    International Nuclear Information System (INIS)

    Fowler, C.S.

    1991-01-01

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada's Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona

  7. Suppression of atherosclerosis by synthetic REV-ERB agonist

    Energy Technology Data Exchange (ETDEWEB)

    Sitaula, Sadichha [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Billon, Cyrielle [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States); Kamenecka, Theodore M.; Solt, Laura A. [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Burris, Thomas P., E-mail: burristp@slu.edu [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States)

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  8. 36Cl measurements of the unsaturated zone flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Norris, A.E.; Wolfsberg, K.; Gifford, S.K.

    1985-01-01

    Determining the unsaturated zone percolation rate, or flux, is an extremely important site characterization issue for the proposed Yucca Mountain nuclear waste repository. A new technique that measures the 36 Cl content of tuff from the Exploratory Shaft will be used to calculate flux through the unsaturated zone over longer times than could be measured by the more conventional 14 C method. Measurements of the 36 Cl ''bomb pulse'' in soil samples from Yucca Mountain have been used to confirm that infiltration is not an important recharge mechanism. 5 refs., 3 figs

  9. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-03-14

    Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein) as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  10. Seismic monitoring of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  11. Waste form performance assessment in the YUCCA Mountain engineered barrier system, American Nuclear Society

    International Nuclear Information System (INIS)

    Morris, E. E.; Fanning, T. H.; Wigeland, R. A.

    2000-01-01

    This work demonstrates a technique for comparing the performance of waste forms in a repository environment when one or more of the waste forms constitute a small part of the total amount of waste planned for the repository. In applying the technique, it is important to identify radionuclides that are highly soluble in the transport fluid since it is only for these that the release is controlled by the dissolution rate of the waste form matrix. The techniques presented here have been applied to an evaluation of the performance of waste forms from the electrometallurgical treatment of spent fuel in the proposed Yucca Mountain Repository Engineered Barrier System (EBS)

  12. Three-dimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Ortiz, T.S.; Williams, R.L.; Nimick, F.B.; Whittet, B.C.; South, D.L.

    1985-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is currently examining the feasibility of constructing a nuclear waste repository in the tuffs beneath Yucca Mountain. A three-dimensional model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpolation. Interpolation of surfaces between drill holes by the model closely matches the existing information. The top of a zone containing prevalent zeolite is defined and superimposed on the reference stratigraphy. Interpretation of the geometric relations between the zeolitic and thermal/mechanical and hydrological surfaces indicates that the zeolitic zone was established before the major portion of local fault displacement took place; however, faulting and zeolitization may have been partly concurrent. The thickness of the proposed repository host rock, the devitrified, relatively lithophysal-poor, moderately to densely welded portion of the Topopah Spring Member of the Paintbrush Tuff, was evaluated and varies from 400 to 800 ft in the repository area. The distance from the repository to groundwater level was estimated to vary from 700 to 1400 ft. 13 figs., 1 tab

  13. Calculations supporting evaluation of potential environmental standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M.

    1994-04-01

    The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ''simple'' analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ''failure'' distribution which is defined by the initiation and rate of waste package ''failures''. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides

  14. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  15. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  16. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada

    Science.gov (United States)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2003-05-01

    Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However

  17. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Lu, Ning; Amter, S.; Ross, B.

    1990-01-01

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids

  18. Effect of a low-permeability layer on calculated gas flow at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ning; Amter, S.; Ross, B. [Disposal Safety, Inc., Washington, DC (USA)

    1990-12-31

    Yucca Mountain is being studied to determine its suitability as a location for a high-level nuclear waste repository. Amter and Ross developed a model called TGIF (Topographic Induced Flow) to simulate gas flow under Yucca Mountain. The TGIF model differs significantly from previous gas flow models. It uses a governing equation that is based on the concept of freshwater head, thus avoiding the numerical problems associated with the near-cancellation of the forces due to gravity and the pressure gradient. Unlike most other models, dipping, layered media can be simulated. This paper describes a systematic sensitivity study that was designed to test several aspects of the TGIF model when used to simulate gas flow under Yucca Mountain. Values of three important inputs to the model were systematically varied to form a matrix of 80 runs. The matrix consisted of five values of permeability contrast between a bedded tuff layer and surrounding welded units (in all cases, bulk permeabilities were used to represent the combined effect of both fractures and matrix permeability), four temperature profiles representing different stages of repository cooldown, and four finite-difference grids.

  19. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  20. Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Leslie, B.W.; Pearcy, E.C.; Prikryl, J.D.

    1993-01-01

    The Nopal I uranium deposit at Pena Blanca, Mexico is being studied as a natural analog of the proposed high-level nuclear waste repository at Yucca Mountain. Identification of secondary uranium phases at Nopal I, and the sequence of their formation after uraninite oxidation, provides insight into the source term for uranium, and suggests that uranophane may control uranium release and transport in a silici, tuffaceous, chemically oxidizing, and hydrologically unsaturated environment. Possible constraints on contaminant transport at Nopal I are derived from the spatial distribution of uranium and from measurements of 238 U decay-series isotopes. The analyses indicate that flow of U-bearing fluids was influenced strongly by fracture density, but that the flow of these fluids was not restricted to fractures. Gamma spectroscopic measurements of 238 U decay-series isotopes indicates secular equilibrium, which suggests undetectable U transport under present conditions

  1. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import

    Directory of Open Access Journals (Sweden)

    Sheehy Noreen

    2011-03-01

    Full Text Available Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  2. ENHANCED CHARACTERIZATION OF THE REPOSITORY BLOCK REQUIREMENTS DOCUMENT (ECRB-RD)

    International Nuclear Information System (INIS)

    G.M. Teraoka

    1998-01-01

    This Enhanced Characterization of the Repository Block Requirements Document (ECRB-RD) provides applicable design and construction requirements for the Enhanced Characterization of the Repository Block (ECRB) East-West Drift and its associated equipment. This document also identifies the applicable requirements from the Exploratory Studies Facilities Design Requirements (ESFDR) Document (YMPICM-00 19, Revision 2, ICN- 1) for design and construction of the ECRB East-West Drift, ground support, constructor support utilities and components. These requirements have been tailored specifically for the ECRB East-West Drift design and construction. The allocated requirements for the ECRB East-West Drift are in Sections III through VI. The requirements in sections III through VI contain requirement numbers from the ESFDR, Rev 2, ICN-1 for reference back to the ESFDR. Each requirement in the ECRB-RD also identifies a trace to the Site Design and Test Requirements Document (YMP/CM-0021, Rev. 2, ICN-1) and 10CFR60 similar to the style used in the ESFDR. These traces to 10CFR60 are consistent with the 1995 version of 10CFR60 used by the SD and TRD and the ESFDR. Those ESFDR requirements statements that were technically modified are identified as such and those that were derived as part of this allocation are also identified. An activity evaluation has been performed in accordance with QAP-2-0 and has determined that the QA program is applicable to this document. Therefore, the development of this document was performed in compliance with QAP-3-5, Revision 7, Development of Technical Documents and checked and reviewed in compliance with Section 5.3. This is consistent with the IOC from R. Stambaugh to M. Lugo on the subject of ECRB-RD, Revision 1, TDPP Applicability (LV.SEI.,RMS.03/98-0 12, Dated 3/12/98). The ECRB East-West Drift includes those excavated underground openings to support enhanced characterization testing activities for the repository block and provides potential

  3. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  4. The impact of episodic nonequilibrium fracture-matrix flow on geological repository performance

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.; Chestnut, D.A.

    1991-01-01

    Adequate representation of fracture-matrix interaction during episodic infiltration events is crucial in making valid hydrological predictions of repository performance at Yucca Mountain. Various approximations have been applied to represent fracture-matrix flow interaction, including the Equivalent Continuum Model (ECM), which assumes capillary equilibrium between fractures and matrix, and the Fracture-Matrix Model (FMM), which accounts for nonequilibrium fracture-matrix flow. We analyze the relative impact of matrix imbibition on episodic nonequilibrium fracture-matrix flow for the eight major hydrostratigraphic units in the unsaturated zone at Yucca Mountain. Comparisons are made between ECM and FMM predictions to determine the applicability of the ECM. The implications of nonequilibrium fracture-matrix flow on radionuclide transport are also discussed

  5. Probabilistic performance assessments for evaluations of the Yucca Mountain site

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Noronha, C.J.

    1992-01-01

    Site suitability evaluations are conducted to determine if a repository system at a particular site will be able to meet the performance objectives for that system. Early evaluations to determine if the Yucca Mountain site is suitable for repository development have been made in the face of large uncertainties in site features and conditions. Because of these large uncertainties, the evaluations of the site have been qualitative in nature, focusing on the presence or absence of particular features or conditions thought to be important to performance, rather than on results of quantitative performance assessments. Such a qualitative approach was used in the recently completed evaluation of the Yucca Mountain site, the Early Site-Suitability Evaluation (ESSE). In spite of the qualitative approach, the ESSE was able to conclude that no disqualifying conditions are likely to be present at the site and that all of the geologic conditions that would qualify the site are likely to be met. At the same time, because of the qualitative nature of the approach used in the ESSE, the precise importance of the identified issues relative to performance could not be determined. Likewise, the importance of the issues relative to one another could not be evaluated, and, other than broad recommendations, specific priorities for future testing could not be set. The authors have conducted quantitative performance assessments for the Yucca Mountain site to address these issues

  6. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block

  7. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs

  8. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  9. Predicting the Future at Yucca Mountain

    International Nuclear Information System (INIS)

    Wilson, J. R.

    1999-01-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years

  10. Predicting the Future at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    J. R. Wilson

    1999-07-01

    This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

  11. Uncertainty: a discriminator for above and below boiling repository design decisions

    International Nuclear Information System (INIS)

    Wilder, D G; Lin, W; Buscheck, T A; Wolery, T J; Francis, N D

    2000-01-01

    The US nuclear waste disposal program is evaluating the Yucca Mountain (YM) site for possible disposal of nuclear waste. Radioactive decay of the waste, particularly spent fuel, generates sufficient heat to significantly raise repository temperatures. Environmental conditions in the repository system evolve in response to this heat. The amount of temperature increase, and thus environmental changes, depends on repository design and operations. Because the evolving environment cannot be directly measured until after waste is emplaced, licensing decisions must be based upon model and analytical projections of the environmental conditions. These analyses have inherent uncertainties. There is concern that elevated temperatures increase uncertainty, because most chemical reaction rates increase with temperature and boiling introduces additional complexity of vapor phase reactions and transport. This concern was expressed by the NWTRB, particularly for above boiling temperatures. They state that ''the cooler the repository, the lower the uncertainty about heat-driven water migration and the better the performance of waste package materials. Above this temperature, technical uncertainties tend to be significantly higher than those associated with below-boiling conditions.'' (Cohon 1999). However, not all uncertainties are reduced by lower temperatures, indeed some may even be increased. This paper addresses impacts of temperatures on uncertainties

  12. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    1984-01-01

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  13. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  14. Workshop on rock mechanics issues in repository design and performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Center for Nuclear Waste Regulatory Analyses organized and hosted a workshop on ``Rock Mechanics Issues in Repository Design and Performance Assessment`` on behalf its sponsor the U.S. Nuclear Regulatory Commission (NRC). This workshop was held on September 19- 20, 1994 at the Holiday Inn Crowne Plaza, Rockville, Maryland. The objectives of the workshop were to stimulate exchange of technical information among parties actively investigating rock mechanics issues relevant to the proposed high-level waste repository at Yucca Mountain and identify/confirm rock mechanics issues important to repository design and performance assessment The workshop contained three technical sessions and two panel discussions. The participants included technical and research staffs representing the NRC and the Department of Energy and their contractors, as well as researchers from the academic, commercial, and international technical communities. These proceedings include most of the technical papers presented in the technical sessions and the transcripts for the two panel discussions. Selected papers have been indexed separately for inclusion the Energy Science and Technology Database.

  15. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  16. Yucca Mountain program summary of research and technical review activities, July 1988--June 1989

    International Nuclear Information System (INIS)

    1989-11-01

    The Desert Research Institute (DRI), through its Water Resources Center (WRC), since 1984 has supported the State of Nevada Nuclear Waste Project Office's activities related to the proposed high-level radioactive waste repository at Yucca Mountain on the Nevada Test Site (NTS). This effort is directed at providing the State Office with an unbiased evaluation of the Yucca Mountain Project (YMP) investigations performed by the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC). The overall objective is to determine independently whether or not the site meets the performance criteria defined by the Nuclear Waste Policy Act of 1982 and amendments for isolating and containing the wastes during emplacement and the proposed life of the repository. A particularly important area of concern with the proposed repository is the site's hydrology. The faculty of the DRI have long been involved with research throughout the State and have particular expertise in groundwater studies related to radionuclide migration and hydrologic safety of underground nuclear testing by DOE and predecessor agencies. In addition, we utilize laboratory personnel for chemical and isotopic analyses in both of the DRI-WMC water chemistry laboratories

  17. Longevity of Emplacement Drift Ground Support Materials, Rev. 01

    International Nuclear Information System (INIS)

    David H. Tang

    2000-01-01

    The purpose of this analysis is to evaluate the factors affecting the longevity of emplacement drift ground support materials and to develop a basis for the selection of materials for ground support that will function throughout the preclosure period of a potential repository at Yucca Mountain. The Development Plan (DP) for this analysis is given in Longevity of Emplacement Drift Ground Support Materials (CRWMS M and O 1999a). The objective of this analysis is to update the previous analysis (CRWMS M and O 2000a) to account for related changes in the Ground Control System Description Document (CRWMS M and O 2000b), the Monitored Geologic Repository Project Description Document (CRWMS M and O 1999b), and in environmental conditions, and to provide updated information on candidate ground support materials. Candidate materials for ground support are carbon steel and cement grout. Steel is mainly used for steel sets, lagging, channel, rock bolts, and wire mesh. Cement grout is only considered in the case of grouted rock bolts. Candidate materials for the emplacement drift invert are carbon steel and crushed rock ballast. Materials are evaluated for the repository emplacement drift environment based on the updated thermal loading condition and waste package design. The analysis consists of the following tasks: (1) Identify factors affecting the longevity of ground support materials for use in emplacement drifts; (2) Review existing documents concerning the behavior of candidate ground support materials during the preclosure period; (3) Evaluate impacts of temperature and radiation effects on mechanical and thermal properties of steel. Assess corrosion potential of steel at emplacement drift environment; (4) Evaluate factors affecting longevity of cement grouts for fully grouted rock bolt system. Provide updated information on cement grout mix design for fully grouted rock bolt system; and (5) Evaluate longevity of materials for the emplacement drift invert

  18. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  19. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  20. Use of natural tracers in identification and characterisation. Of water-conducting features at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Henning, R.; Patterson, R.

    1999-01-01

    Understanding rates and pathways of water movement at the potential repository site is crucial in assessing the probable performance in isolating waste from the accessible environment. Of major concern is the amount of water migrating through the mountain and entering the repository. Studies of water migration are being performed in the Exploratory Studies Facility at Yucca Mountain (ESF). The ESF is an eight-km long tunnel, which was constructed between 1995 and 1997. Samples collected in this facility were analyzed for natural tracers that may indicate water presence and movement. Some natural tracers have proven to be very useful in conjunction with other data, but others, such as tritium and stable isotopes, that can be found in gas, liquid and solid phases, have been difficult to understand and correlate to water movement. (author)

  1. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2009 of the performance of a repository for spent nuclear fuel and high - level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a) Regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives, (c) technical milestones of implementing institutions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safety on the performance assessment for the Yucca Mountain license

  2. Optimized Chemical Probes for REV-ERBα

    OpenAIRE

    Trump, Ryan P.; Bresciani, Stefano; Cooper, Anthony W. J.; Tellam, James P.; Wojno, Justyna; Blaikley, John; Orband-Miller, Lisa A.; Kashatus, Jennifer A.; Dawson, Helen C.; Loudon, Andrew; Ray, David; Grant, Daniel; Farrow, Stuart N.; Willson, Timothy M.; Tomkinson, Nicholas C. O.

    2013-01-01

    REV-ERBα has emerged as an important target for regulation of circadian rhythm and its associated physiology. Herein, we report on the optimization of a series of REV-ERBα agonists based on GSK4112 (1) for potency, selectivity, and bioavailability. Potent REV-ERBα agonists 4, 10, 16, and 23 are detailed for their ability to suppress BMAL and IL-6 expression from human cells while also demonstrating excellent selectivity over LXRα. Amine 4 demonstrated in vivo bioavailability after either IV o...

  3. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  4. Radionuclides in hydrothermal systems as indicators of repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1990-11-01

    Hydrothermal systems in tuffaceous and older sedimentary rocks contain evidence of the interaction of radionuclides in fluids with rock matrix minerals and with materials lining fractures, in settings somewhat analogous to the candidate repository site at Yucca Mountain, NV. Earlier studies encompassed the occurrences of U and Th in a ''fossil'' hydrothermal system in tuffaceous rock of the San Juan Mountains volcanic field, CO. More recent and ongoing studies examine active hydrothermal systems in calderas at Long Valley, CA and Valles, NM. At the Nevada Test Site, occurrences of U and Th in fractured and unfractured rhyolitic tuff that was heated to simulate the introduction of radioactive waste are also under investigation. Observations to date suggest that U is mobile in hydrothermal systems, but that localized reducing environments provided by Fe-rich minerals and/or carbonaceous material concentrate U and thus attenuate its migration. 11 refs., 6 figs., 1 tab

  5. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Pescatore, C.

    1994-02-01

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  6. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  7. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Flynn, T.; Buchanan, P.; Trexler, D.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste

  8. Native Americans and Yucca Mountain: A revised and updated summary report on research undertaken between 1987 and 1991; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, C.S. [Cultural Resources Consultants Ltd., Reno, NV (United States)

    1991-10-15

    This report consists of Yucca Mountain Project bibliographies. It is the appendix to a report that summarizes data collected between September 1986 and September 1988 relative to Native American concerns involving the potential siting of a high-level nuclear waste repository at Yucca Mountain, Nevada. The data were collected from Western Shoshone and Southern Paiute people upon whose aboriginal lands the repository potentially is to be located. Western Shoshone people involved in the study were those resident or affiliated with reservation communities at Yomba and Duckwater, Nevada, and Death Valley, California. Southern Paiute people were at reservation communities at Moapa and Las Vegas. Additional persons of Western Shoshone and Southern Paiute descent were interviewed at Beatty, Tonopah, Caliente, Pahrump, and Las Vegas, Nevada. The work was part of a larger project of socioeconomic studies for the State of Nevada`s Nuclear Waste Projects office, conducted by Mountain West of Phoenix, Arizona.

  9. Identifying significant uncertainties in thermally dependent processes for repository performance analysis

    International Nuclear Information System (INIS)

    Gansemer, J.D.; Lamont, A.

    1994-01-01

    In order to study the performance of the potential Yucca Mountain Nuclear Waste Repository, scientific investigations are being conducted to reduce the uncertainty about process models and system parameters. This paper is intended to demonstrate a method for determining a strategy for the cost effective management of these investigations. It is not meant to be a complete study of all processes and interactions, but does outline a method which can be applied to more in-depth investigations

  10. Expert decisionmaking in risk analysis: The case of the Yucca Mountain facility

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K [University of Notre Dame, IN (United States)

    1999-12-01

    Thirty-five or forty centuries ago, there were probably Egyptian experts who argued that they could safeguard the tombs of the pharaohs for 10,000 or a million years. Six centuries ago, there were probably Italian experts who believed that they could secure their Renaissance art treasures. Neither the Egyptians nor the Italians succeeded completely in their efforts. Today's experts, working on permanent nuclear waste disposal, face no easier a task. To understand some of the most difficult problems of expert judgment regarding nuclear repositories, these remarks address, 10 problematic judgments of scientists about the proposed Yucca Mountain permanent nuclear repository for spent fuel and high-level nuclear waste; argue that legal constraints imposed by the US government exacerbate these problems of expert scientific judgment; and conclude that, for any permanent repository program to succeed, nations ought to avoid problems (in expert scientific judgment and in the law) that have dogged US repository efforts.

  11. Expert decisionmaking in risk analysis: The case of the Yucca Mountain facility

    International Nuclear Information System (INIS)

    Shrader-Frechette, K.

    1999-01-01

    Thirty-five or forty centuries ago, there were probably Egyptian experts who argued that they could safeguard the tombs of the pharaohs for 10,000 or a million years. Six centuries ago, there were probably Italian experts who believed that they could secure their Renaissance art treasures. Neither the Egyptians nor the Italians succeeded completely in their efforts. Today's experts, working on permanent nuclear waste disposal, face no easier a task. To understand some of the most difficult problems of expert judgment regarding nuclear repositories, these remarks address, 10 problematic judgments of scientists about the proposed Yucca Mountain permanent nuclear repository for spent fuel and high-level nuclear waste; argue that legal constraints imposed by the US government exacerbate these problems of expert scientific judgment; and conclude that, for any permanent repository program to succeed, nations ought to avoid problems (in expert scientific judgment and in the law) that have dogged US repository efforts

  12. Expert decisionmaking in risk analysis: The case of the Yucca Mountain facility

    Energy Technology Data Exchange (ETDEWEB)

    Shrader-Frechette, K. [University of Notre Dame, IN (United States)

    1999-12-01

    Thirty-five or forty centuries ago, there were probably Egyptian experts who argued that they could safeguard the tombs of the pharaohs for 10,000 or a million years. Six centuries ago, there were probably Italian experts who believed that they could secure their Renaissance art treasures. Neither the Egyptians nor the Italians succeeded completely in their efforts. Today's experts, working on permanent nuclear waste disposal, face no easier a task. To understand some of the most difficult problems of expert judgment regarding nuclear repositories, these remarks address, 10 problematic judgments of scientists about the proposed Yucca Mountain permanent nuclear repository for spent fuel and high-level nuclear waste; argue that legal constraints imposed by the US government exacerbate these problems of expert scientific judgment; and conclude that, for any permanent repository program to succeed, nations ought to avoid problems (in expert scientific judgment and in the law) that have dogged US repository efforts.

  13. Reduction of repository heat load using advanced fuel cycles

    International Nuclear Information System (INIS)

    Preston, Jeff; Miller, L.F.

    2008-01-01

    With the geologic repository at Yucca Mountain already nearing capacity full before opening, advanced fuel cycles that introduce reprocessing, fast reactors, and temporary storage sites have the potential to allow the repository to support the current reactor fleet and future expansion. An uncertainty analysis methodology that combines Monte Carlo distribution sampling, reactor physics data simulation, and neural network interpolation methods enable investigation into the factor reduction of heat capacity by using the hybrid fuel cycle. Using a Super PRISM fast reactor with a conversion ratio of 0.75, burn ups reach up to 200 MWd/t that decrease the plutonium inventory by about 5 metric tons every 12 years. Using the long burn up allows the footprint of 1 single core loading of FR fuel to have an integral decay heat of about 2.5x10 5 MW*yr over a 1500 year period that replaces the footprint of about 6 full core loadings of LWR fuel for the number of years required to fuel the FR, which have an integral decay heat of about.3 MW*yr for the same time integral. This results in an increase of a factor of 4 in repository support capacity from implementing a single fast reactor in an equilibrium cycle. (authors)

  14. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  15. Seismic design ampersand analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid open-quotes deterministicclose quotes and open-quotes probabilisticclose quotes concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  16. Seismic design and analysis considerations for high level nuclear waste repositories

    International Nuclear Information System (INIS)

    Hossain, Q.A.

    1993-01-01

    A high level nuclear waste repository, like the one at Nevada's Yucca Mountain that is being investigated for site suitability, will have some unique seismic design and analysis considerations. These are discussed, and a design philosophy that can rationally account for the unique performance objectives of such facilities is presented. A case is made for the use of DOE's performance goal-based seismic design and evaluation methodology that is based on a hybrid ''deterministic'' and ''probabilistic'' concept. How and to what extent this methodology should be modified to adopt it for a potential site like Yucca Mountain is also outlined. Finally, the issue of designing for seismic fault rupture is discussed briefly, and the desirability of using the proposed seismic design philosophy in fault rupture evaluation is described

  17. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  18. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  19. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    International Nuclear Information System (INIS)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-01-01

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative

  20. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  1. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  2. Yucca Mountain drift scale test progress report

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

    1999-01-01

    The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

  3. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  4. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  5. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  6. Transport of gaseous C-14 from a repository in unsaturated rock

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Lee, W. L.; Pigford, T.H.; California Univ., Berkeley, CA

    1990-09-01

    The authors predict the transport of gaseous 14 CO 2 from a nuclear waste repository in unsaturated rock using a porous-medium model. This model is justified if the appropriate modified Peclet number, which indicates equilibrium between gas in fractures and liquid in rock pores, is much less than unity. Numerical illustrations are given which are applicable to the proposed repository at Yucca Mountain which is 350 m underground. Maximum predicted concentrations of 14 CO 2 near the ground surface are comparable to the USNRC limit for unrestricted areas. Maximum predicted dose rates above ground are less than 1% of background. Travel times are predicted to be hundreds to thousands of years. For some cases, it is shown that the release rate from the source has negligible effect on concentrations at the ground surface. 15 refs., 10 figs., 1 tab

  7. Siting the high level radioactive waste repository in the United States

    International Nuclear Information System (INIS)

    Tourtellotte, J.

    1992-01-01

    For more than twenty-five years after the National Academy of Science issued its 1957 report recommending a Mined Geologic Disposal System (''MGDS'') for high level radioactive waste, no substantial progress was made in selecting and siting a repository. The United States Congress attempted to give substantive and procedural direction to the program in the Nuclear Waste Policy Act of 1982. Seeing that very little had been accomplished some five years later, Congress gave further direction and tentatively selected a single site, Yucca Mountain in Nevada, in the Nuclear Waste Policy Act Amendments of 1987. Selection of the Yucca Mountain site created a political conflict between federal and state authorities. Until recently, that conflict stalled the site characterization and evaluation program. Standards development under a polycentric regulatory regime has also been slow and has created a number of technical, legal and policy controversies. The Environmental Protection Agency (EPA), charged with setting radiation protection rules, may be developing regulatory standards which are technically unachievable and, therefore, legally unprovable in a licensing proceeding. The Nuclear Regulatory Commission (NRC), having the responsibility for licensing and setting performance objectives, may be taking an overly conservative approach. This approach could seriously impact the cost and may preclude the ability to reach an affirmative finding on license issuance. The Department of Energy (DOE) has responsibility for siting, construction and operation of the repository. In so doing, DOE must apply both EPA and NRC standards. To the extent that EPA and NRC standards are untimely, poorly defined, unrealistic, inconsistent, and technically or legally unsound, DOE may be forestalled from fulfilling its responsibilities. The US must rethink its approach to siting the high level radioactive waste repository and take realistic, timely action to preserve the nuclear option. (Author)

  8. Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication

    International Nuclear Information System (INIS)

    Benson, A.B.; Nelson, P.V.; D'Ouville, M.

    2000-01-01

    Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, ''Environmental

  9. Communicating A Controversial and Complex Project to the Public: Yucca Mountain Tours - Real and Virtual Communication

    Energy Technology Data Exchange (ETDEWEB)

    A.B. Benson; P.V. Nelson; M. d' Ouville

    2000-03-01

    Since 1983, under the Nuclear Waste Policy Act of 1982, as amended (42 U.S.C. 10101 et seq.), the U.S. Department of Energy (the Department) has been investigating a site at Yucca Mountain, Nevada, to determine whether it is suitable for development as the nation's first repository for permanent geologic disposal of spent nuclear fuel and high-level radioactive waste. By far, the largest quantity of waste destined for geologic disposal is spent nuclear fuel from 118 commercial nuclear power reactors at 72 power plant sites and 1 commercial storage site across the United States. Currently, 104 of these reactors are still in operation and generate about 20 percent of the country's electricity. Under standard contracts that DOE executed with the utilities, DOE is to accept spent nuclear fuel from the utilities for disposal. Until that happens, the utilities must safely store their spent nuclear fuel in compliance with Nuclear Regulatory Commission regulations. As of December 1998, commercial spent nuclear fuel containing approximately 38,500 metric tons of heavy metal (MTHM) was stored in 33 states. The balance of the waste destined for geologic disposal in a repository is Department-owned spent nuclear fuel and high-level radioactive waste. The Department's spent nuclear fuel includes naval spent nuclear fuel and irradiated fuel from weapons production, domestic research reactors, and foreign research reactors. For disposal in a geologic repository, high-level radioactive waste would be processed into a solid glass form and placed into approximately 20,000 canisters. No liquid or hazardous wastes regulated under the Resource Conservation and Recovery Act of 1976 would be disposed of in a geologic repository. The difficulty in siting new facilities, particularly those designed as nuclear or nuclear-related facilities, is well documented. In this context, national boundaries are not significant distinguishing barriers. As one publication observed, &apos

  10. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Best, Ralph; Winnard, T.; Ross, S.; Best, R.

    2001-01-01

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  11. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs.

  12. Repository environmental parameters and models/methodologies relevant to assessing the performance of high-level waste packages in basalt, tuff, and salt

    International Nuclear Information System (INIS)

    Claiborne, H.C.; Croff, A.G.; Griess, J.C.; Smith, F.J.

    1987-09-01

    This document provides specifications for models/methodologies that could be employed in determining postclosure repository environmental parameters relevant to the performance of high-level waste packages for the Basalt Waste Isolation Project (BWIP) at Richland, Washington, the tuff at Yucca Mountain by the Nevada Test Site, and the bedded salt in Deaf Smith County, Texas. Guidance is provided on the identify of the relevant repository environmental parameters; the models/methodologies employed to determine the parameters, and the input data base for the models/methodologies. Supporting studies included are an analysis of potential waste package failure modes leading to identification of the relevant repository environmental parameters, an evaluation of the credible range of the repository environmental parameters, and a summary of the review of existing models/methodologies currently employed in determining repository environmental parameters relevant to waste package performance. 327 refs., 26 figs., 19 tabs

  13. Ecology, ethics, and professional environmental practice: The Yucca Mountain, Nevada, project as a case study

    International Nuclear Information System (INIS)

    Malone, C.R.

    1995-01-01

    The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE's Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yucca Mountain in light of the thermal effects expected to be associated with heat from radioactive decay

  14. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    Energy Technology Data Exchange (ETDEWEB)

    Knox, E.; Slothouber, L.

    2003-02-25

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context.

  15. Illuminating the Decision Path: The Yucca Mountain Site Recommendation

    International Nuclear Information System (INIS)

    Knox, E.; Slothouber, L.

    2003-01-01

    On February 14, 2002, U.S. Secretary of Energy Spencer Abraham provided to the President the ''Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982.'' This Recommendation, along with supporting materials, complied with statutory requirements for communicating a site recommendation to the President, and it did more: in 49 pages, the Recommendation also spoke directly to the Nation, illuminating the methodology and considerations that led toward the decision to recommend the site. Addressing technical suitability, national interests, and public concerns, the Recommendation helped the public understand the potential risks and benefits of repository development and placed those risks and benefits in a meaningful national context

  16. A conceptual subsurface facility design for a high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    McKenzie, D.G., III; Bhattacharyya, K.K.; Segrest, A.M.

    1996-01-01

    The US Department of Energy is responsible for the design, construction, operation and closure of a repository in which to permanently dispose of the nation's high level nuclear waste. In addition to the objective of safely isolating the waste inventory, the repository must provide a safe working environment for its workforce, and protect the public. The conceptual design for this facility is currently being developed. Tunnel Boring Machine will be used to excavate 228 kilometers of tunneling to construct the facility over a 30 year period. The excavation operations will be physically separated from the waste emplacement operations, and each operation will have its own dedicated ventilation system. The facility is being designed to remain open for 150 years

  17. Impact of Drill and Blast Excavation on Repository Performance Confirmation

    International Nuclear Information System (INIS)

    Keller, R.; Francis, N.; Houseworth, J.; Kramer, N.

    2000-01-01

    There has been considerable work accomplished internationally examining the effects of drill and blast excavation on rock masses surrounding emplacement openings of proposed nuclear waste repositories. However, there has been limited discussion tying the previous work to performance confirmation models such as those proposed for Yucca Mountain, Nevada. This paper addresses a possible approach to joining the available information on drill and blast excavation and performance confirmation. The method for coupling rock damage data from drill and blast models to performance assessment models for fracture flow requires a correlation representing the functional relationship between the peak particle velocity (PPV) vibration levels and the potential properties that govern water flow rates in the host rock. Fracture aperture and frequency are the rock properties which may be most influenced by drill and blast induced vibration. If it can be shown (using an appropriate blasting model simulation) that the effect of blasting is far removed from the waste package in an emplacement drift, then disturbance to the host rock induced in the process of drill and blast excavation may be reasonably ignored in performance assessment calculations. This paper proposes that the CANMET (Canada Center for Mineral and Energy Technology) Criterion, based on properties that determine rock strength, may be used to define a minimum PPV. This PPV can be used to delineate the extent of blast induced damage. Initial applications have demonstrated that blasting models can successfully be coupled with this criterion to predict blast damage surrounding underground openings. The Exploratory Studies Facility at Yucca Mountain has used a blasting model to generate meaningful estimates of near-field vibration levels and damage envelopes correlating to data collected from pre-existing studies conducted. Further work is underway to expand this application over a statistical distribution of geologic

  18. Technical data management at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Statler, J.; Newbury, C.M.; Heitland, G.W.

    1992-01-01

    The Department of Energy/Office of Civilian Radioactive waste Management (DOE/OCRWM) is responsible for the characterization of Yucca Mountain, Nevada, to determine its potential as a site of a high-level radioactive waste repository. The characterization of Yucca Mountain encompasses many diverse investigations, both onsite and in laboratories across the country. Investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and archeology of the area, to name a few. Effective program management requires that data from site investigations be processed, interpreted and disseminated in a timely manner to support model development and validation, repository design, and performance assessment. The Program must also meet regulatory requirements for making the technical data accessible to a variety of external users throughout the life of the Project. Finally, the DOE/OCRWM must make available the data or its description and access location available for use in support of the license application and supporting documentation. To accomplish these objectives, scientific and engineering data, generated by site characterization activities, and technical data, generated by environmental and socioeconomic impact assessment activities, must be systematically identified, cataloged, stored and disseminated in a controlled manner

  19. Today's Yucca mountain project and a new concept of multi-barrier system

    International Nuclear Information System (INIS)

    Xu Guoqing

    2008-01-01

    This paper mainly deals with the current status of Yucca Mountain project and the progress in study on engineering barrier in Belgium and introduces the future plan for Yucca Mountain project, two reports on draft supplemental environmental impact statement, and the view of New York Sen. Hillary Clinton and Illinois Sen. Barack Obama during the 2008 president elections related to the building a nuclear waste repository in Nevada. In order to enhance the security of geological disposal of high-level radioactive waste, a new concept about multi-barrier system is given by Belgium and is concisely described here. (authors)

  20. Analysis simulation of tectonic earthquake impact to the lifetime of radioactive waste container and equivalent dose rate predication in Yucca Mountain geologic repository, Nevada test site, USA

    International Nuclear Information System (INIS)

    Ko, I.S.; Imardjoko, Y.U.; Karnawati, Dwikorita

    2003-01-01

    US policy not to recycle her spent nuclear fuels brings consequence to provide a nuclear waste repository site Yucca Mountain in Nevada, USA, considered the proper one. High-level radioactive waste to be placed into containers and then will be buried in three hundred meter underground tunnels. Tectonic earthquake is the main factor causing container's damage. Goldsim version 6.04.007 simulates mechanism of container's damage due to a great devastating impact load, the collapse of the tunnels. Radionuclide inventories included are U-234, C-14, Tc-99, I-129, Se-79, Pa-231, Np-237, Pu-242, and Pu-239. Simulation carried out in 100,000 years time span. The research goals are: 1). Estimating tunnels stan-up time, and 2). Predicting the equivalent dose rate contributed by the included radionuclides to the human due to radioactive polluted drinking water intake. (author)

  1. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1999-01-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals). The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM. (author)

  2. A study of the feasibility of monitoring sealed geological repositories using seismic sensors

    International Nuclear Information System (INIS)

    Garbin, H.D.; Herrington, P.B.; Kromer, R.P.

    1997-10-01

    Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository's southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM

  3. Administrative Circulars No. 12 A (Rev. 2) - "Education fees” and No. 12 B (Rev. 2) - “Education fees and language courses”

    CERN Multimedia

    2013-01-01

    Administrative Circulars No. 12 A (Rev. 2) entitled “Education fees” and No. 12 B (Rev. 2) entitled “Education fees and language courses”, approved by the Director-General following discussion at the Standing Concertation Committee meeting of 27 June 2013 and entering into force on 1 August 2013, are available on the intranet site of the Human Resources Department (see here).   Administrative Circular No. 12 A (Rev. 2) is applicable to Staff Members (except former “Local Staff Members”) recruited before 1st January 2007. Administrative Circular No. 12 B (Rev. 2) is applicable to Staff Members recruited on or after 1st January 2007, to Fellows, to Scientific Associates, to Guest Professors and to former “Local Staff” recruited before 1st January 2007. They cancel and replace Administrative Circulars No. 12 A (Rev. 1/Corr.) entitled "Education fees” and No. 12 B (Rev. 1/Corr.) entitled “Edu...

  4. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R.; Valentine, G.; Crowe, B.

    1993-08-01

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants

  5. Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.

  6. Synthesis of tobermorite: A cement phase expected under repository conditions

    International Nuclear Information System (INIS)

    Martin, S.I.

    1994-11-01

    In this study I have synthesized tobermorite, Ca 5 Si 6 O l6 (OH) 2. 4H 2 0, a principal crystalline phase expected to form in cementitious materials subjected to elevated temperatures in a potential nuclear waste repository. Fluids interacting with these materials may have a profound effect on the integrity of the waste package and on transport of radionuclides. At ambient temperature, Portland cement reacts with water to form an amorphous calcium-silicate-hydrate (C-S-H) gel. At elevated temperatures, crystalline phases of various hydration states form. The C-S-H system has not been well characterized at elevated temperatures up to 250 degrees C, which has been considered a bounding temperature for the potential Yucca Mountain repository. Physical, chemical, and thermodynamic data for these cement minerals that are predicted to be stable at these temperatures must be obtained from synthetic or natural samples to help predict fluid chemistry. For some of these minerals natural samples are difficult to obtain in sufficient quantity and purity. Therefore, monomineralic phases must be synthesized in order to unambiguously define their behavior. The synthetic or natural phases will be characterized as part of a comprehensive study to define the behavior of cementitious materials in a repository environment

  7. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  8. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  9. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, Erich [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)]. E-mail: erich.heidenreich@meduniwien.ac.at; Eisler, Herfried [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria); Steinboeck, Ferdinand [Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna (Austria)

    2006-01-29

    Mutations arising in times of cell cycle arrest may provide a selective advantage for unicellular organisms adapting to environmental changes. For multicellular organisms, however, they may pose a serious threat, in that such mutations in somatic cells contribute to carcinogenesis and ageing. The budding yeast Saccharomyces cerevisiae presents a convenient model system for studying the incidence and the mechanisms of stationary-phase mutation in a eukaryotic organism. Having studied the emergence of frameshift mutants after several days of starvation-induced cell cycle arrest, we previously reported that all (potentially error-prone) translesion synthesis (TLS) enzymes identified in S. cerevisiae did not contribute to the basal level of spontaneous stationary-phase mutations. However, we observed that an increased frequency of stationary-phase frameshift mutations, brought about by a defective nucleotide excision repair (NER) pathway or by UV irradiation, was dependent on Rev3p, the catalytic subunit of the TLS polymerase zeta (Pol {zeta}). Employing the same two conditions, we now examined the effect of deletions of the genes coding for polymerase eta (Pol {eta}) (RAD30) and Rev1p (REV1). In a NER-deficient strain background, the increased incidence of stationary-phase mutations was only moderately influenced by a lack of Pol {eta} but completely reduced to wild type level by a knockout of the REV1 gene. UV-induced stationary-phase mutations were abundant in wild type and rad30{delta} strains, but substantially reduced in a rev1{delta} as well as a rev3{delta} strain. The similarity of the rev1{delta} and the rev3{delta} phenotype and an epistatic relationship evident from experiments with a double-deficient strain suggests a participation of Rev1p and Rev3p in the same mutagenic pathway. Based on these results, we propose that the response of cell cycle-arrested cells to an excess of exo- or endogenously induced DNA damage includes a novel replication

  10. Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.L.; Gauthier, J.H.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Guerin, D.C.; Lu, N.; Martinez, M.J. [and others

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

  11. Total-system performance assessment for Yucca Mountain - SNL second iteration (TSPA-1993); Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.L.; Barnard, R.W.; Barr, G.E.; Dockery, H.A.; Dunn, E.; Eaton, R.R.; Martinez, M.J. [Sandia National Labs., Albuquerque, NM (United States); Gauthier, J.H.; Guerin, D.C.; Lu, N. [and others

    1994-04-01

    Sandia National Laboratories has completed the second iteration of the periodic total-system performance assessments (TSPA-93) for the Yucca Mountain Site Characterization Project (YMP). These analyses estimate the future behavior of a potential repository for high-level nuclear waste at the Yucca Mountain, Nevada, site under consideration by the Department of Energy. TSPA-93 builds upon previous efforts by emphasizing YMP concerns relating to site characterization, design, and regulatory compliance. Scenarios describing expected conditions (aqueous and gaseous transport of contaminants) and low-probability events (human-intrusion drilling and volcanic intrusion) are modeled. The hydrologic processes modeled include estimates of the perturbations to ambient conditions caused by heating of the repository resulting from radioactive decay of the waste. Hydrologic parameters and parameter probability distributions have been derived from available site data. Possible future climate changes are modeled by considering two separate groundwater infiltration conditions: {open_quotes}wet{close_quotes} with a mean flux of 10 mm/yr, and {open_quotes}dry{close_quotes} with a mean flux of 0.5 mm/yr. Two alternative waste-package designs and two alternative repository areal thermal power densities are investigated. One waste package is a thin-wall container emplaced in a vertical borehole, and the second is a container designed with corrosion-resistant and corrosion-allowance walls emplaced horizontally in the drift. Thermal power loadings of 57 kW/acre (the loading specified in the original repository conceptual design) and 114 kW/acre (a loading chosen to investigate effects of a {open_quotes}hot repository{close_quotes}) are considered. TSPA-93 incorporates significant new detailed process modeling, including two- and three-dimensional modeling of thermal effects, groundwater flow in the saturated-zone aquifers, and gas flow in the unsaturated zone.

  12. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-01-01

    The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised.

  13. Evaluation of copper, aluminum bronze, and copper-nickel for YMP [Yucca Mountain Project] container material

    International Nuclear Information System (INIS)

    Kass, J.N.

    1989-05-01

    In this presentation, I will discuss our evaluation of the materials copper, 7% aluminum bronze, and 70/30 copper-nickel. These are three of the six materials currently under consideration as potential waste-packaging materials. I should mention that we are also considering alternatives to these six materials. This work is part of the Yucca Mountain Project (YMP), formerly known as the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. The expected-case environment in our proposed vault is quite different from that encountered at the WIPP site or that expected in a Canadian vault. Our proposed site is under a desert mountain, Yucca Mountain, in southern Nevada. The repository itself will be located approximately 700 feet above the water table and 300 to 1200 feet below the surface of the mountain. The variations in these numbers are due to the variations in mountain topography

  14. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R. [Nevada Univ., Las Vegas, NV (United States). Transportation Research Center

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  15. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    International Nuclear Information System (INIS)

    Jolley, D.M.; Ehrhorn, T.F.; Horn, J.

    2002-01-01

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C 160 (H 280 O 80 )N 30 P 2 S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated

  16. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 5, Part B: Chapter 8, Sections 8.3.1.5 through 8.3.1.17

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the SOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  17. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 5, Part B: Chapter 8, Sections 8.3.1.5 through 8.3.1.17

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the SOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules

  18. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  19. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  20. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.