WorldWideScience

Sample records for mountain range central

  1. Effect of Aspect on Climate Variation in Mountain Ranges of Shen-nongjia Massif, Central China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi

    2018-01-01

    The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with con-trasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months (January and July), different seasons (spring, summer, autumn, and win-ter) and each year were analyzed from a long-term dataset (1960 to 2003) to tested variations characteristics, temporal and spatial quan-titative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃ /yr to 0.0143℃ /yr,–0.0166℃ /yr to 0.0311℃ /yr, and –0.0290℃ /yr to 0.0084℃ /yr, respectively,and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation sys-tem, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting dif-ferences in climate variation among the mountain ranges with contrasting aspects.

  2. Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants

    Directory of Open Access Journals (Sweden)

    Karimjan Tayjanov

    2017-02-01

    Full Text Available The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains. Quite a large number of the mountain plants produce neurotoxic and cytotoxic alkaloids, indicating that a strong chemical defense is needed under the adverse environmental conditions of these mountains with presumably high pressure from herbivores.

  3. For Sale--Scotland's Most Famous Mountain Range: Land "Ownership" in Scotland

    Science.gov (United States)

    Slattery, Deirdre

    2005-01-01

    The nature of land ownership is infrequently discussed by practitioners of outdoor education, though it is often central to the way they work. The recent controversy over the proposed sale of the Cuillin mountain range on the Isle of Skye in Scotland provoked heated discussion over rights to and benefits of this important place. The main point at…

  4. Spatiotemporal evolution of Calophaca (fabaceae) reveals multiple dispersals in central Asian mountains.

    Science.gov (United States)

    Zhang, Ming-Li; Wen, Zhi-Bin; Fritsch, Peter W; Sanderson, Stewart C

    2015-01-01

    The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried out in order to confirm its taxonomic status and reconstruct its evolutionary history. We employed BEAST Bayesian inference for dating, and S-DIVA and BBM for ancestral area reconstruction, to study its spatiotemporal evolution. Our results show that Calophacais monophyletic and nested within Caragana. The divergence time of Calophaca is estimated at ca. 8.0 Ma, most likely driven by global cooling and aridification, influenced by rapid uplift of the Qinghai Tibet Plateau margins. According to ancestral area reconstructions, the genus most likely originated in the Pamir Mountains, a global biodiversity hotspot and hypothesized Tertiary refugium of many Central Asian plant lineages. Dispersals from this location are inferred to the western Tianshan Mountains, then northward to the Tarbagatai Range, eastward to East Asia, and westward to the Caucasus, Russia, and Europe. The spatiotemporal evolution of Calophaca provides a case contributing to an understanding of the flora and biodiversity of the Central Asian mountains and adjacent regions.

  5. Geology of the central Mineral Mountains, Beaver County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Sibbett, B.S.; Nielson, D.L.

    1980-03-01

    The Mineral Mountains are located in Beaver and Millard Counties, southwestern Utah. The range is a horst located in the transition zone between the Basin and Range and Colorado Plateau geologic provinces. A multiple-phase Tertiary pluton forms most of the range, with Paleozoic rocks exposed on the north and south and Precambrian metamorphic rocks on the west in the Roosevelt Hot Springs KGRA (Known Geothermal Resource Area). Precambrian banded gneiss and Cambrian carbonate rocks have been intruded by foliated granodioritic to monzonitic rocks of uncertain age. The Tertiary pluton consists of six major phases of quartz monzonitic to leucocratic granitic rocks, two diorite stocks, and several more mafic units that form dikes. During uplift of the mountain block, overlying rocks and the upper part of the pluton were partially removed by denudation faulting to the west. The interplay of these low-angle faults and younger northerly trending Basin and Range faults is responsible for the structural control of the Roosevelt Hot Springs geothermal system. The structural complexity of the Roosevelt Hot Springs KGRA is unique within the range, although the same tectonic style continues throughout the range. During the Quaternary, rhyolite volcanism was active in the central part of the range and basaltic volcanism occurred in the northern portion of the map area. The heat source for the geothermal system is probably related to the Quaternary rhyolite volcanic activity.

  6. New approach to resolve the amount of Quaternary uplift and associated denudation of the mountain ranges in the Japanese Islands

    Directory of Open Access Journals (Sweden)

    Shigeru Sueoka

    2016-03-01

    Full Text Available Low-temperature thermochronology is a widely used tool for revealing denudation histories of mountain ranges. Although this technique has been applied mainly to continental orogens, such as the European Alps, Himalayas, and Andes, recent technological development of low-temperature thermochronology has made it applicable to a wider variety of mountain ranges with various sizes and tectonic histories. The Japanese Islands comprise young and active island arcs, where an early stage of mountain range formation is observed. Numerous attempts have been made to constrain the uplift and denudation histories of the mountains in the Japanese Islands using geologic, geomorphologic, or geodetic methods. However, the number of thermochronometric attempts has been limited primarily due to the small amount of total denudation since the initiation of the uplift. In this review paper, we introduce the tectonic and geomorphic settings of the mountain ranges in the Japanese Islands, and discuss previous attempts to estimate uplift or denudation of the Japanese mountains using methods other than thermochronology. Furthermore, we discuss problems of the thermochronometric applications in revealing denudation histories of the Japanese mountains. Finally, we present a case study of the Kiso Range in central Japan and discuss the current effectiveness and applicability of low-temperature thermochronology to the Japanese mountainous areas.

  7. Interpretive geophysical fault map across the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.

    1996-01-01

    Geophysical data collected along 29 traverses across the central block of Yucca Mountain in southwest Nevada reveal anomalies associated with known fault sand indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. Geophysical interpretations indicate that Midway Valley is characterized by several known and previously unknown faults, that the existence of the Yucca Wash fault is equivocal, and that the central part of the eastern flank of Yucca Mountain is characterized by numerous low-amplitude anomalies that probably reflect numerous small-scale faults. Gravity and magnetic data also reveal several large-amplitude anomalies that reflect larger-scale faulting along the margins of the central block

  8. The "Geomorphologic Diagonal" of Central Europe - towards a new morphotectonic interpretation of macroforms in average mountains

    Science.gov (United States)

    Zoeller, Ludwig

    2016-04-01

    Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it

  9. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  10. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    Science.gov (United States)

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  11. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina

    Science.gov (United States)

    Hoke, Gregory D.; Giambiagi, Laura B.; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.

    2014-11-01

    The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world's second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.

  12. Makran Mountain Range, Iran and Pakistan

    Science.gov (United States)

    1983-01-01

    The long folded mountain ridges and valleys of the coastal Makran Ranges of Iran and Pakistan (26.0N, 63.0E) illustrate the classical Trellis type of drainage pattern, common in this region. The Dasht River and its tributaries is the principal drainage network for this area. To the left, the continental drift of the northward bound Indian sub-continent has caused the east/west parallel ranges to bend in a great northward arc.

  13. Growth and erosion of mountain ranges at the northeastern margin of Tibet

    Science.gov (United States)

    Hetzel, Ralf; Palumbo, Luigi; Giese, Jörg; Guo, Jianming

    2010-05-01

    fault scaling law for the growth of topography: Mountain ranges in the broken foreland of NE Tibet. Terra Nova 16, 157-162. [2] Hetzel et al. (2002). Low slip rates and long-term preservation of geomorphic features in Central Asia. Nature 417, 428-432. [3] Hetzel et al. (2004). Late Pleistocene/Holocene slip rate of the Zhangye thrust (Qilian Shan, China) and implications for the active growth of the northeastern Tibetan Plateau, Tectonics 23, TC6006, doi:10.1029/2004TC001653. [4] Goethals et al. (2009). Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced 21Ne on active normal faults in the Bishop Tuff, California. Geomorphology 103, 401-413. [5] Palumbo et al. (2009). Deciphering the rate of mountain growth during topographic presteady state: an example from the NE margin of the Tibetan Plateau. Tectonics 28, TC4017, doi:10.1029/2009TC002455. [6] Palumbo et al. (in press). Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic 10Be in two mountain ranges at the margin of NE Tibet. Geomorphology, doi:10.1016/j.geomorph.2009.11.019. [7] Meyer et al. (in press). Determining the growth rate of topographic relief using in situ-produced 10Be: A case study in the Black Forest, Germany. Earth and Planetary Science Letters. [8] Densmore et al. (2009). Spatial variations in catchment-averaged denudation rates from normal fault footwalls. Geology 37, 1139-1142.

  14. Mountain building in the central Andes

    Science.gov (United States)

    Kono, Masaru; Fukao, Yoshio; Yamamoto, Akihiko

    1989-04-01

    The Central Andes is the middle part of the Andean chain between about 13°S and 27°S, characterized by the parallel running high mountain chains (the Western and Eastern Cordilleras) at the edges of high plateaus with a height of about 4000 m and a width of 200 to 450 km (the Altiplano-Puna). From the examination of geophysical and geological data in this area, including earthquakes, deformation, gravity anomaly, volcanism, uplift history, and plate motion, we conclude that the continued plate subduction with domination of compressive stress over the entire arc system is the main cause of the tectonic style of the Central Andes. We propose that the present cycle of mountain building has continued in the Cenozoic with the most active phase since the Miocene, and that the present subduction angle (30°) is not typical in that period but that subduction with more shallowly dipping oceanic lithosphere has prevailed at least since the Miocene, because of the young and buoyant slab involved. This situation is responsible for the production of a broad zone of partial melt in the mantle above the descending slab. Addition of volcanic materials was not restricted to the western edge (where active volcanoes of the Western Cordillera exist) but extended to the western and central portion of the Altiplano-Puna. The western half of the Central Andes is essentially isostatic because the heat transferred with the volcanic activities softened the crust there. In the eastern edge, the thermal effect is small, and the crust is strongly pushed by the westward moving South American plate. This caused the shortening of crustal blocks due to reverse faulting and folding in the Eastern Cordillera and Amazonian foreland. The magmatism and crustal accretion are dominant at the western end of the mountain system and decrease eastward, while the compression and consequent crustal shortening are strongest at the eastern end and wane toward west. These two processes are superposed between

  15. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  16. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  17. Seasonal habitat use and movements of woodland caribou in the Omineca Mountains, north central British Columbia, 1991-1993

    Directory of Open Access Journals (Sweden)

    Mari D. Wood

    1996-01-01

    Full Text Available From 1991 to 1993, 30 woodland caribou were captured and fitted with radio-collars west of the Williston Reservoir in north central B.C. Monthly radio-telemetry location flights revealed that caribou in the Northern Area, characterized by a complex of mountain ranges, moved greater distances to calving areas than did those in the South, where only one major mountain range exists. In the year of record heavy snowfall for the area, all collared caribou wintered on windswept alpine slopes, while during the below average snowfall year, many caribou remained in forested habitats. In winter, caribou were found to forage on terrestrial lichens in both lowland lodgepole pine flats and on windswept alpine slopes, and on arboreal lichens in upper elevation Engelmann spruce and subalpine fir forests. There are at least 600-700 caribou in the Omineca Mountains.

  18. Winter Precipitation Efficiency of Mountain Ranges in the Colorado Rockies Under Climate Change

    Science.gov (United States)

    Eidhammer, Trude; Grubišić, Vanda; Rasmussen, Roy; Ikdea, Kyoko

    2018-03-01

    Orographic precipitation depends on the environmental conditions and the barrier shape. In this study we examine the sensitivity of the precipitation efficiency (i.e., drying ratio (DR)), defined as the ratio of precipitation to incoming water flux, to mountain shape, temperature, stability, and horizontal velocity of the incoming air mass. Furthermore, we explore how the DR of Colorado mountain ranges might change under warmer and moister conditions in the future. For given environmental conditions, we find the DR to be primarily dependent on the upwind slope for mountain ranges wider than about 70 km and on both the slope and width for narrower ranges. Temperature is found to exert an influence on the DR for all Colorado mountain ranges, with DR decreasing with increasing temperature, under both the current and future climate conditions. The decrease of DR with temperature under warmer climate was found to be stronger for wider mountains than the narrower ones. We attribute this asymmetry to the sensitivity of DR to reduced horizontal velocity under warmer conditions. Specifically, while DR for wider mountains shows no sensitivity to changes in horizontal velocity, the DR for narrow ranges increases as the horizontal velocity decreases and more time is provided for precipitation to form. Thus, for narrower ranges, the horizontal velocity appears to offset the temperature effect slightly. The percentagewise decrease of DR for all examined mountain ranges is about 4%K-1. In comparison, the increase in precipitation is about 6%K-1 while the vapor flux increase is about 9%K-1.

  19. Uranium metallogenic geological conditions in the south central section of da hinggan mountains

    International Nuclear Information System (INIS)

    Wang Qing; Liu Qing

    2014-01-01

    The south central section of Da Hinggan Mountains, where the Zha Lantun prospecting zones of volcanic type uranium ore, is a high density concentrated distribution area of uranium and polymetallic mineral. This article elaborated uranium metallogenic geological conditions in the south central section of Da Hinggan Mountain, from the tectonic conditions, the source of uranium, the heat source, the space for ore-forming, hydrothermal alteration, the mineralization, and ect. This area has a good prospecting foreground and potentiality. (authors)

  20. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    Science.gov (United States)

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  1. Luminescence characteristics of quartz from Hsuehshan Range (Central Taiwan) and implications for thermochronometry

    DEFF Research Database (Denmark)

    Wu, Tzu-Shuan; Jain, Mayank; Guralnik, Benny

    2015-01-01

    The mountain building processes in Taiwan are currently among the most rapid in the world. However, the spatial and temporal dynamics of this orogen are still poorly resolved within the .... Optically Stimulated Luminescence (OSL) from quartz is an emerging thermochronometer that could potentially provide valuable low-temperature markers on a ~0.1 Ma timescale. Here we study four meta-sandstone samples from the Hsuehshan Range in central Taiwan. We characterize the OSL from these samples...

  2. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    Science.gov (United States)

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  3. Glacial erosion, rock, and peak uplift within the central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Stern, T.A.; Baxter, A.K.

    2002-01-01

    About 1500 m of peak elevation can be ascribed to the isostatic response of valley incision within the central Transantarctic Mountains. This estimate, based on a 3D analysis of topography, and on rock uplift history, represents c. 33% of the maximum peak elevation within the Transantarctic Mountains. Input to the calculation includes a previoulsy published estimate for the variation of flexural rigidity across the western margin of East Antarctica, and a lithospheric free-edge at the Transantarctic Mountains Front. The rebound response is a complex function of lithospheric rigidity, wavelength or erosion, and lithospheric boundary conditions. We also calculate a maximum 4000 m of total rebound due to both valley incision and erosion of mountain tops. This represents 60% of the maximum rock uplift inferred for the mountain front on the bases of fission track data and flexure analysis. (author). 34 refs., 5 figs., 3 tabs

  4. Mountain range specific analog weather forecast model for ...

    Indian Academy of Sciences (India)

    used to draw weather forecast for that mountain range in operational weather forecasting mode, three days ... various road management activities and for better .... −0.8. 1.5. 0.0. Pir Panjal range (HP). 1989–90 to 2002–03. 14. Snow day. 2.2. −4.1 ..... ed days,. S. = snow day,. N. S. = no-snow day and. P. C. = per cent correct).

  5. Instrumentation for on-line mountain range displays

    International Nuclear Information System (INIS)

    van Asselt, W.K.; Ahrens, L.A.

    1994-01-01

    A method to obtain and process 'mountain range' displays of beam signals is described. A custom-made trigger generator and a digital oscilloscope are used for the data acquisition and the graphical interface package LabVIEW is used to process the data. High resolution displays of wall monitor signals updating every AGS cycle have proven very powerful as a beam diagnostic

  6. Ranging and grouping patterns of a western lowland gorilla group at Bai Hokou, Central African Republic.

    Science.gov (United States)

    Remis, M J

    1997-01-01

    The ranging and grouping patterns of a gorilla group were studied during 27 months from 1990-1992 at the Bai Hokou study site, Central African Republic. The study group ranged far daily (average = 2.3 km/day) and had a large home range (22.9 km2), relative to mountain gorillas, and ranging patterns differed between years. During 1990-1992, the bimale study group foraged less cohesively and had more flexible grouping patterns than mountain gorillas. The study group sometimes split into two distinct foraging subgroups, each led by a silverback, and these subgroups occasionally slept apart (mean = 950 m apart). Lowland gorillas rely on many of the same fruit resources as sympatric chimpanzees, and under certain demographic situations gorillas, like sympatric chimpanzees, may adapt their foraging group size to reduce intragroup feeding competition. However, the fiber content of the lowland gorilla diet likely relaxes constraints on foraging party size and facilitates group cohesion relative to chimpanzees.

  7. Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogen

    Science.gov (United States)

    Mondro, Claire A.; Fisher, Donald; Yeh, En-Chao

    2017-05-01

    In the eastern Central Range of Taiwan there is a regional variation in the orientation of maximum finite stretch across the slate belt, with down-dip maximum stretch found in the western Central Range and along-strike maximum stretch in the eastern Central Range. Incremental strain histories from syntectonic fibers in pyrite pressure shadows indicate a progressive change in extension direction from down dip to along strike during deformation, there is a corresponding temporal variation in stretching direction shown in samples from the eastern edge of the Central Range, a pattern that mimics the regional west-to-east spatial variation. These observed temporal and spatial strain distributions are used to evaluate the kinematics associated with slaty cleavage development during advection through the Taiwan orogenic system. The subduction zone beneath the island of Taiwan is influenced by two types of obliquity that have the potential to generate the observed along-strike stretching. First, the plate motion vector of the Philippine Sea plate relative to the Eurasian plate is slightly oblique to the regional strike of the mountain range, which could result in partitioning of strike slip shearing into the interior of the collision. Second, the north-south Luzon volcanic arc on the Philippine Sea Plate is obliquely oriented relative to the northeast-southwest edge of the Eurasian continental margin, which could result in lateral extrusion of the ductile core of the range. Incremental strain histories in cleavage-parallel samples represent a time-for-space equivalence where the stretching direction is fixed relative to the position within the mountain belt architecture (e.g., the topographic divide), and temporal variations in the eastern central Range reflect lateral advection through the strain field in response to accretionary and erosional fluxes. Incremental strain histories in cleavage perpendicular samples show both clockwise and counter-clockwise rotation of

  8. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  9. Tourist phenomenon in Geoagiu Spa region within the Central Metaliferi Mountains

    Directory of Open Access Journals (Sweden)

    Dombay Ştefan

    2010-01-01

    Full Text Available The Central Metaliferi Mountains, situated in south-central side of the Apuseni Mountains, have a variety of natural and anthropic touristic potential, but, unfortunately, less known and not enough exploited. After conducting a survey in Geoagiu Spa we specifically recommend the following: increased number of one day tours, which are the main tourist destination in the region, many tours for visiting the major centers of cultural - historical monuments related to our past history, granting economic incentives for organizer of youth groups to attract the youth, diversification of tourist routes with thematic actions: curiosities of nature, environment, organizing sports events with different timetable covering all seasons and all series, attracting local and foreign investors by providing tax incentives and financial programs introducing touristic resort in the international circuit. .

  10. Myrtaceae throughout the Espinhaço Mountain Range of centraleastern Brazil: floristic relationships and geoclimatic controls

    Directory of Open Access Journals (Sweden)

    Mariana de Oliveira Bünger

    2014-03-01

    Full Text Available Although biological surveys and taxonomic revisions provide key information to ecological and evolutionary studies, there is a clear lack of floristic and phytogeographic studies of the mountainous regions of Brazil, which harbor some of the most threatened plant ecosystems on the planet. Myrtaceae has been reported to be one of the most important families in the upland areas of Brazil, as well as in the Atlantic Forest Domain. In this study, we investigated the floristic composition of Myrtaceae throughout the Espinhaço Mountain Range and adjacent highlands of central-eastern Brazil, testing the following hypotheses: floristic similarity increases with geographic proximity; and species distribution is affected by geoclimatic variables. We performed statistical analyses using a database containing records of 199 species in 19 areas and of their respective geoclimatic variables. We also performed ordination analysis using non-metric multidimensional scaling (NMDS, the first and second axes of which explained 69% and 78% of the variation, respectively. The NMDS analysis demonstrated that variations in the Myrtaceae flora are highly sensitive to geoclimatic variables and geographic proximity. The NMDS ordination also showed a predominantly south-north gradient, as did the cluster analysis. This gradient was highly correlated with variations in rainfall and temperature, which are also associated with the three domains that coincide with the Espinhaço Mountain Range.

  11. Makran Mountain Range, Indus River Valley, Pakistan, India

    Science.gov (United States)

    1984-01-01

    The enormous geologic pressures exerted by continental drift can be very well illustrated by the long northward curving parallel folded mountain ridges and valleys of the coastal Makran Range of Pakistan (27.0N, 66.0E). As a result of the collision of the northward bound Indian sub-continent into the Asian Continent, the east/west parallel range has been bent in a great northward arc and forming the Indus River valley at the interface of the collision.

  12. Small fishes crossed a large mountain range: Quaternary stream capture events and freshwater fishes on both sides of the Taebaek Mountains.

    Science.gov (United States)

    Kim, Daemin; Hirt, M Vincent; Won, Yong-Jin; Simons, Andrew M

    2017-07-01

    The Taebaek Mountains in Korea serve as the most apparent biogeographic barrier for Korean freshwater fishes, resulting in 2 distinct ichthyofaunal assemblages on the eastern (East/Japan Sea slope) and western (Yellow Sea and Korea Strait slopes) sides of the mountain range. Of nearly 100 species of native primary freshwater fishes in Korea, only 18 species occur naturally on both sides of the mountain range. Interestingly, there are 5 rheophilic species (Phoxinus phoxinus, Coreoleuciscus splendidus, Ladislavia taczanowskii, Iksookimia koreensis and Koreocobitis rotundicaudata) found on both sides of the Taebaek Mountains that are geographically restricted to the Osip River (and several neighboring rivers, for L. taczanowskii and I. koreensis) on the eastern side of the mountain range. The Osip River and its neighboring rivers also shared a rheophilic freshwater fish, Liobagrus mediadiposalis, with the Nakdong River on the western side of the mountain range. We assessed historical biogeographic hypotheses on the presence of these rheophilic fishes, utilizing DNA sequence data from the mitochondrial cytochrome b gene. Results of our divergence time estimation indicate that ichthyofaunal transfers into the Osip River (and several neighboring rivers in East Sea slope) have occurred from the Han (Yellow Sea slope) and Nakdong (Korea Strait slope) Rivers since the Late Pleistocene. The inferred divergence times for the ichthyofaunal transfer across the Taebaek Mountains were consistent with the timing of hypothesized multiple reactivations of the Osip River Fault (Late Pleistocene), suggesting that the Osip River Fault reactivations may have caused stream capture events, followed by ichthyofaunal transfer, not only between the Osip and Nakdong Rivers, but also between the Osip and Han Rivers. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Hydrological Dynamics In High Mountain Catchment Areas of Central Norway

    Science.gov (United States)

    Löffler, Jörg; Rößler, Ole

    Large-scaled landscape structure is regarded as a mosaic of ecotopes where process dynamics of water and energy fluxes are analysed due to its effects on ecosystem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER &WUNDRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high mountain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation regions ( JUNGet al. 1997, LÖFFLER &WUNDRAM 1997). Moreover, spatial differentiations of groundwater level, soil moisture and temperature profiles have been investigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the

  14. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    Science.gov (United States)

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  15. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Erin L. Clark

    2014-02-01

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC, where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC and one population of jack pine (AB were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the

  16. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    Science.gov (United States)

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  17. Monitoring glacier variations in the Urubamba and Vilcabamba Mountain Ranges, Peru, using "Landsat 5" images

    Science.gov (United States)

    Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian

    2013-04-01

    The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.

  18. Structure and dendroecology of Thuja occidentalis in disjunct stands south of its contiguous range in the central Appalachian Mountains, USA

    Directory of Open Access Journals (Sweden)

    Joshua A. Kincaid

    2016-11-01

    Full Text Available Background Information on forest structure, growth, and disturbance history is essential for effective forest management in a dynamic landscape. Because most of our research concerning the ecology and growth of Thuja occidentalis comes from sites in northern portions of its range, highly contextual biotic and abiotic factors that affect the species in more southern locales may not be fully accounted for. This research characterized the structural attributes and growth dynamics of Thuja occidentalis in disjunct forest stands south of its contiguous range margin. Methods The Thuja occidentalis forests examined in this research were located in the central Appalachian Mountains, USA, approximately 440 km south of the contiguous range margin of the species. Forest structural attributes were characterized in two Thuja occidentalis forest stands, which are rare in the region. Tree-ring chronologies were used to examine the influences of disturbance and climate on the growth of Thuja occidentalis. Results The forests contained a total of 13 tree species with Thuja occidentalis contributing substantially to the basal area of the sites. Thuja occidentalis stems were absent in the smallest size class, while hardwood species were abundant in the smallest classes. Thuja occidentalis stems also were absent from the < 70 years age class. By contrast, Thuja occidentalis snags were abundant within stands. Growth-release events were distributed across the disturbance chronology and generally affected a small number of trees. The Thuja occidentalis tree-ring chronology possessed an interseries correlation of 0.62 and mean sensitivity of 0.25. The correlation between mean temperature and Thuja occidentalis growth was weak and variable. Growth and moisture variables were more strongly correlated, and this relationship was predominantly positive. Conclusions Structural attributes indicate the forests are in the understory reinitiation stage of forest development

  19. Long-range atmospheric transport and the distribution of polycyclic aromatic hydrocarbons in Changbai Mountain.

    Science.gov (United States)

    Zhao, Xiangai; Kim, Seung-Kyu; Zhu, Weihong; Kannan, Narayanan; Li, Donghao

    2015-01-01

    The Changbai (also known as "Baekdu") Mountain, on the border between China and North Korea, is the highest mountain (2750 m) in northeastern China. Recently, this mountain region has experienced a dramatic increase in air pollution, not only because of increasing volumes of tourism-derived traffic but also because of the long-range transport of polluted westerly winds passing through major industrial and urban cities in the eastern region of China. To assess the relative importance of the two sources of pollution, 16 polycyclic aromatic hydrocarbons (PAHs) as model substances were determined in the mountain soil. A total of 32 soil samples were collected from different sides of the mountain at different latitudes between July and August of 2009. The ∑PAH concentrations were within the range 38.5-190.1 ng g(-1) on the northern side, 117.7-443.6 ng g(-1) on the southern side, and 75.3-437.3 ng g(-1) on the western side. A progressive increase in the level of ∑PAHs with latitude was observed on the southern and western sides that face the westerly wind with abundant precipitation. However, a similar concentration gradient was not observed on the northern side that receives less rain and is on the leeward direction of the wind. The high-molecular-weight PAH compounds were predominant in the soils on the southern and western sides, while low-molecular-weight PAHs dominated the northern side soils. These findings show that the distribution of PAHs in the mountain soil is strongly influenced by the atmospheric long-range transport and cold trapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis in the Tsinling and Daba Mountain region of northern China

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2009-04-01

    Full Text Available Abstract Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high

  1. Habitat-effectiveness index for elk on Blue Mountain Winter Ranges.

    Science.gov (United States)

    Jack Ward Thomas; Donavin A. Leckenby; Mark Henjum; Richard J. Pedersen; Larry D. Bryant

    1988-01-01

    An elk-habitat evaluation procedure for winter ranges in the Blue Mountains of eastern Oregon and Washington is described. The index is based on an interaction of size and spacing of cover and forage areas, roads open to traffic per unit of area, cover quality, and quantity and quality of forage.

  2. Relief Evolution in Tectonically Active Mountain Ranges

    Science.gov (United States)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  3. Estimating evapotranspiration in the central mountain region of Veracruz, Mexico

    OpenAIRE

    Ballinas, Mónica; Esperón-Rodríguez, Manuel; Barradas, Víctor L

    2015-01-01

    The global, regional and local hydrological cycle is strongly linked to vegetation distribution. The hydrological cycle is composed by precipitation, infiltration, runoff, transpiration and evaporation. Evaporation is influenced by high temperatures, high winds and low relative humidity. This work is focused on the study of evapotranspiration (ET) as the main variable of water loss in the water balance in the central mountain region of Veracruz, Mexico. ET was estimated using the Penman-Monte...

  4. Global patterns of protection of elevational gradients in mountain ranges.

    Science.gov (United States)

    Elsen, Paul R; Monahan, William B; Merenlender, Adina M

    2018-05-21

    Protected areas (PAs) that span elevational gradients enhance protection for taxonomic and phylogenetic diversity and facilitate species range shifts under climate change. We quantified the global protection of elevational gradients by analyzing the elevational distributions of 44,155 PAs in 1,010 mountain ranges using the highest resolution digital elevation models available. We show that, on average, mountain ranges in Africa and Asia have the lowest elevational protection, ranges in Europe and South America have intermediate elevational protection, and ranges in North America and Oceania have the highest elevational protection. We use the Convention on Biological Diversity's Aichi Target 11 to assess the proportion of elevational gradients meeting the 17% suggested minimum target and examine how different protection categories contribute to elevational protection. When considering only strict PAs [International Union for Conservation of Nature (IUCN) categories I-IV, n = 24,706], nearly 40% of ranges do not contain any PAs, roughly half fail to meet the 17% target at any elevation, and ∼75% fail to meet the target throughout ≥50% of the elevational gradient. Observed elevational protection is well below optimal, and frequently below a null model of elevational protection. Including less stringent PAs (IUCN categories V-VI and nondesignated PAs, n = 19,449) significantly enhances elevational protection for most continents, but several highly biodiverse ranges require new or expanded PAs to increase elevational protection. Ensuring conservation outcomes for PAs with lower IUCN designations as well as strategically placing PAs to better represent and connect elevational gradients will enhance ecological representation and facilitate species range shifts under climate change. Copyright © 2018 the Author(s). Published by PNAS.

  5. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  6. Management of spruce-fir in even-aged stands in the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander; Carleton B. Edminster

    1980-01-01

    Potential production of Engelmann spruce and subalpine fir in the central Rocky Mountains is simulated for vario.us combinations of stand density, site quality, ages, and thinning schedules. Such estimates are needed to project future development of stands managed in different ways for various uses.

  7. Precambrian crustal history of the Nimrod Group, central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Goodge, J.W.; Fanning, C.M.

    2002-01-01

    High-grade metamorphic and igneous rocks of the Nimrod Group represent crystalline basement to the central Transantarctic Mountains. Despite metamorphism and penetrative deformation during the Ross Orogeny, they preserve a deep record of Precambrian geologic history in this sector of the East Antarctic shield. A review of available U-Pb geochronometric data reveals multiple geologic events spanning 2.5 b.y. of Archean to Early Paleozoic time, including: (1) juvenile Archean crust production by magmatism between 3150 and 3000 Ma; (2) crustal stabilisation and metamorphism between 2955 and 2900 Ma; (3) ultra-metamorphism or anatexis at c. 2500 Ma; (4) deep-crustal metamorphism and magmatism between 1720 and 1730 Ma, redefining the Nimrod Orogeny; (5) post-1700 Ma sedimentation; and (6) basement reactivation involving high-grade metamorphism, magmatism, and penetrative deformation during the Ross Orogeny between 540 and 515 Ma. A strong regional metamorphic and deformational Ross overprint, dated by U-Pb and Ar thermochronology, had pronounced thermomechanical effects on the basement assemblage, yet rocks of the Nimrod Group retain robust evidence of their Precambrian ancestry. The zircon U-Pb record therefore demonstrates that primary crustal lithosphere of the East Antarctic shield extends to the central Transantarctic Mountains, and that it has undergone multiple episodes of reactivation culminating in the Ross Orogeny. (author). 48 refs., 2 figs., 1 tab

  8. Changes in the high-mountain vegetation of the Central Iberian Peninsula as a probable sign of global warming.

    Science.gov (United States)

    Sanz-Elorza, Mario; Dana, Elías D; González, Alberto; Sobrino, Eduardo

    2003-08-01

    Aerial images of the high summits of the Spanish Central Range reveal significant changes in vegetation over the period 1957 to 1991. These changes include the replacement of high-mountain grassland communities dominated by Festuca aragonensis, typical of the Cryoro-Mediterranean belt, by shrub patches of Juniperus communis ssp. alpina and Cytisus oromediterraneus from lower altitudes (Oro-Mediterranean belt). Climatic data indicate a shift towards warmer conditions in this mountainous region since the 1940s, with the shift being particularly marked from 1960. Changes include significantly higher minimum and maximum temperatures, fewer days with snow cover and a redistribution of monthly rainfall. Total yearly precipitation showed no significant variation. There were no marked changes in land use during the time frame considered, although there were minor changes in grazing species in the 19th century. It is hypothesized that the advance of woody species into higher altitudes is probably related to climate change, which could have acted in conjunction with discrete variations in landscape management. The pronounced changes observed in the plant communities of the area reflect the susceptibility of high-mountain Mediterranean species to environmental change.

  9. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  10. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  11. Landscape and Astronomy in Megalithic Portugal: the Carregal do Sal Nucleus and Star Mountain Range

    Directory of Open Access Journals (Sweden)

    Fabio Silva

    2013-02-01

    Full Text Available Central Portugal, delimited by the Douro river to the north and the Mondego to the south, is the second densest region of megalithic monuments in the country. The Neolithic archaeological record indicates seasonal transhumance between higher pastures in the summer and lower grounds in the winter. The monuments are found in lower ground and it has been suggested that they were built during the winter occupation of their surroundings. The astronomical orientation of their entrances lends further support to this hypothesis. A recent survey of the orientation of the chambers and corridors of these dolmens, conducted by the author, found good agreement with prior surveys, but also demonstrated that other interpretations are possible. This paper presents an update on the survey, including extra sites surveyed in the spring of 2011, as well as the GIS confirmation of all horizon altitudes that couldn’t be empirically measured. The megalithic nucleus of Carregal do Sal, on the Mondego valley, is then looked at in more detail. It is found that there is a preference for the orientation of dolmens towards Star Mountain Range in-line with the topographic arguments of landscape archaeology. In addition, it was found that the topography also marks the rise of particular red stars, Betelgeuse and Aldebaran, during the period of megalithic building, at the onset of spring marking the transition from low ground to the high pastures. This hypothesis finds further support from toponymic folktales that explain the origin of the name of the mountain range.

  12. Soc stock in different forest-related land-uses in central Stara planina mountain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Zhiyanski Miglena

    2009-01-01

    /ha. The SOC stock in mountainous pasture was 20.7 (± 6.5 tones/ha, while in spruce plantation created on previous pasture it was 13.5 (±2.7 tones/ha. Our finding showed that forest conversions effect in central Stara Planina Mountain is expressed by decrease in SOC stock related with losses of carbon from the upper mineral soil decades after creation of coniferous plantations. Nevertheless the relatively large organic carbon storage in forest litter in the spruce plantations compensated C lost from mineral soil after the land-use change. The overall carbon stock both in forest litter and soil under plantations ranged from 56 tones/ha (pine to 77 tones/ha (spruce, while under natural beech forest and pasture the values were 70 and 81 tones/ha respectively. But in terms of stability C sequestrated in mineral soil is more desirable than C sequestrated in forest floor which are more vulnerable to decomposition following disturbances. The application of silvicultural activities in coniferous plantations created by conversion of forest lands or grasslands in the region of central Balkan is desirable to improve the carbon sequestration in soils.

  13. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  14. Analysis of Knickzones over a Coastal Mountain Range of the Korean Peninsula Implies Intensive Uplifts during the Opening of the East Sea

    Science.gov (United States)

    Byun, J.; Paik, K.

    2017-12-01

    The Korean Peninsula jutting out from the Eurasia Continent is bordered to the east by the East Sea (or Sea of Japan), a back-arc sea behind the Japan Islands Arc. Along the eastern margin of the peninsula, a coastal mountain range over 800 km long including peaks reaching up to ca 2,500 m develops with great escarpments facing the East Sea. Compared to the substantial studies related to drifting of the Japanese Islands from the peninsula and consequent the opening of the East Sea as back-arc basin (23 12 Ma), the development of the coastal mountain range assumed to be associated with the East Sea opening is poorly understood. In particular, no consensus has been made regarding the timing of the coastal mountain range: Continuous uplift from the Early Tertiary over the Pliocene versus intensive uplift during the Early Miocene near ca 22 Ma. Addressing this problem could help reveal the relation between the formation of the coastal mountain range and the East Sea opening. In this study, to figure out the timing of the formation of the coastal mountain range, we extracted quantitatively the knickzones in a drainage basin over the coastal mountain range and attempted to analyze the spatial distribution of potential transient knickzones which were induced by the development of the coastal mountain range and then would migrate upstream. According to our analysis, all the identified knickzones (n=19) are revealed as steady-state responses to 1) different lithologies, 2) coarse bed material inputs from tributaries, and 3) more resistant rock patch or local faults. Non-existence of the potential transient knickzones suggests that the transient knickzones due to the coastal mountain range building had already propagated up to each watershed boundary. Sequent analysis on the time spent for knickzone migration up to the boundary reveals that the time when the coastal mountain range had formed back to at least 6 8 Ma. Therefore, it becomes evident that the development of the

  15. The Demogeographic Crisis in Racha, Georgia: Depopulation in the Central Caucasus Mountains

    Directory of Open Access Journals (Sweden)

    Thomas Kohler

    2017-11-01

    Full Text Available Many rural mountain areas across the world are facing depopulation due to outmigration and negative natural population growth. This study examines depopulation in the mountains of Georgia based on the example of Oni municipality in the Racha region on the southern slopes of the Central (Greater Caucasus. Depopulation in Oni, as in other Georgian mountain areas, has been driven by the socioeconomic and political disruption associated with the ongoing transition from a planned to a market economy after the demise of the Soviet Union. Based on official Georgian statistics for the period from 1989 to 2014/2016, the study documents a 50% loss of population over this period. While data on migration are lacking, the natural growth rate dropped from about −5‰ to −14‰, due to a combined decrease in the number of women of childbearing age (20–49 years of age and in the number of births by women in this age group. Aging is reaching drastic levels, especially in rural communities, with 37% of the population in 2015 aged 65 and older. Settlements at higher altitudes are increasingly deserted. Investment in recreational economies based on local potentials such as hot springs, mountain tourism, and local (labeled products, coupled with the establishment of protected areas as “working landscapes,” could help create local employment and reverse current negative population dynamics.

  16. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Mountainous parts of the Yakama Nation lands in south-central Washington are mostly covered by basaltic lava flows and cinder cones that make up the Simcoe Mountains volcanic field. The accompanying geologic map of the central part of the volcanic field has been produced by the U.S. Geological Survey (USGS) on behalf of the Water Resources Program of the Yakama Nation. The volcanic terrain stretches continuously from Mount Adams eastward as far as Satus Pass and Mill Creek Guard Station. Most of the many hills and buttes are volcanic cones where cinders and spatter piled up around erupting vents while lava flows spread downslope. All of these small volcanoes are now extinct, and, even during their active lifetimes, most of them erupted for no more than a few years. On the Yakama Nation lands, the only large long-lived volcano capable of erupting again in the future is Mount Adams, on the western boundary.

  17. Evolution of Topography in Glaciated Mountain Ranges

    Science.gov (United States)

    Brocklehurst, Simon H.

    2002-01-01

    This thesis examines the response of alpine landscapes to the onset of glaciation. The basic approach is to compare fluvial and glacial laudscapes, since it is the change from the former to the latter that accompanies climatic cooling. This allows a detailed evaluation of hypotheses relating climate change to tectonic processes in glaciated mountain belts. Fieldwork was carried out in the eastern Sierra Nevada, California, and the Sangre de Cristo Range, Colorado, alongside digital elevation model analyses in the western US, the Southern Alps of New Zealand, and the Himalaya of northwestern Pakistan. hypothesis is overstated in its appeal to glacial erosion as a major source of relief production and subsequent peak uplift. Glaciers in the eastern Sierra Nevada and the western Sangre de Cristos have redistributed relief, but have produced only modest relief by enlarging drainage basins at the expense of low-relief topography. Glaciers have lowered valley floors and ridgelines by similar amounts, limiting the amount of "missing mass' that can be generated, and causing a decrease in drainage basin relief. The principal response of glaciated landscapes to rapid rock uplift is the development of towering cirque headwalls. This represents considerable relief production, but is not caused by glacial erosion alone. Large valley glaciers can maintain their low gradient regardless of uplift rate, which supports the "glacial buzzsaw" hypothesis. However, the inability of glaciers to erode steep hillslopes as rapidly can cause mean elevations to rise. Cosmogenic isotope dating is used to show that (i) where plucking is active, the last major glaciation removed sufficient material to reset the cosmogenic clock; and (ii) former glacial valley floors now stranded near the crest of the Sierra Nevada are at varying stages of abandonment, suggesting a cycle of drainage reorganiszation and relief inversion due to glacial erosion similar to that observed in river networks. Glaciated

  18. Mountain big sagebrush age distribution and relationships on the northern Yellowstone Winter Range

    Science.gov (United States)

    Carl L. Wambolt; Trista L. Hoffman

    2001-01-01

    This study was conducted within the Gardiner Basin, an especially critical wintering area for native ungulates utilizing the Northern Yellowstone Winter Range. Mountain big sagebrush plants on 33 sites were classified as large (≥22 cm canopy cover), small (

  19. Pilea nguruensis (Urticaceea), a new species from the Eastern Arc Mountains, central Tanzania

    DEFF Research Database (Denmark)

    Friis, Ib; Darbyshire, Iain; Wilmot-Dear, C. Melanie

    2015-01-01

    A new and distinctive species, Pilea nguruensis Friis & I. Darbysh. (Urticaceae), is described based on material collected in 2006 from moist montane forest in the Nguru South Forest Reserve, Nguru Mountains, central Tanzania, and its conservation status is assessed. The paper supplements a revis...

  20. Assessing the Priority Area of Mountainous Tourism Using Geospatial Approach in Kendal Regency, Central Java

    Science.gov (United States)

    Riwayatiningsih; Purnaweni, Hartuti

    2018-02-01

    Kendal is one of 35 regencies in Central Java which has diverse topographies, from low land, hilly, to mountainous areas. Mountainous area of Kendal with numerous unique and distinct natural environments, supported by various unique and distinct culture of its community can be used for tourism activities. Kendal has natural and sociocultural resources for developing tourism that must be considered by the local government. Therefore, nature based tourism resources assessment is important in order to determine the appropriate area in the planning of sustainable tourism destination. The objectives of this study are to assess and prioritize the potential area of mountainous tourism object in Kendal using geospatial approach based on criteria attractiveness, accessibility and amenity of the tourism object. Those criteria are modification of ADO-ODTWA guidelines and condition of the study location. There are 16 locations of tourism object that will be assessed. The result will be processed using ArcMap 10.3. The result will show the most potential tourism object that could become priority for mountainous tourism development in Kendal.

  1. Status of fisher in the northern Idaho panhandle and adjacent mountain ranges

    Science.gov (United States)

    Michael Lucid; L. Robinson; S. Cushman; L. Allen; M. Schwartz; K. Pilgrim

    2013-01-01

    The Multi-species Baseline Initiative (MBI) is a collaborative of organizations which is conducting a comprehensive inventory for fisher (Martes pennanti) and other wildlife species across the Idaho Panhandle and adjacent mountain ranges. From 2010-2012, MBI partners established 112 forest carnivore bait stations to collect photographs and DNA from 22 wildlife species...

  2. Erosion of an ancient mountain range, the Great Smoky Mountains, North Carolina and Tennessee

    Science.gov (United States)

    Matmon, A.; Bierman, P.R.; Larsen, J.; Southworth, S.; Pavich, M.; Finkel, R.; Caffee, M.

    2003-01-01

    Analysis of 10Be and 26Al in bedrock (n=10), colluvium (n=5 including grain size splits), and alluvial sediments (n=59 including grain size splits), coupled with field observations and GIS analysis, suggest that erosion rates in the Great Smoky Mountains are controlled by subsurface bedrock erosion and diffusive slope processes. The results indicate rapid alluvial transport, minimal alluvial storage, and suggest that most of the cosmogenic nuclide inventory in sediments is accumulated while they are eroding from bedrock and traveling down hill slopes. Spatially homogeneous erosion rates of 25 - 30 mm Ky-1 are calculated throughout the Great Smoky Mountains using measured concentrations of cosmogenic 10Be and 26Al in quartz separated from alluvial sediment. 10Be and 26Al concentrations in sediments collected from headwater tributaries that have no upstream samples (n=18) are consistent with an average erosion rate of 28 ?? 8 mm Ky-1, similar to that of the outlet rivers (n=16, 24 ?? 6 mm Ky-1), which carry most of the sediment out of the mountain range. Grain-size-specific analysis of 6 alluvial sediment samples shows higher nuclide concentrations in smaller grain sizes than in larger ones. The difference in concentrations arises from the large elevation distribution of the source of the smaller grains compared with the narrow and relatively low source elevation of the large grains. Large sandstone clasts disaggregate into sand-size grains rapidly during weathering and downslope transport; thus, only clasts from the lower parts of slopes reach the streams. 26Al/10Be ratios do not suggest significant burial periods for our samples. However, alluvial samples have lower 26Al/10Be ratios than bedrock and colluvial samples, a trend consistent with a longer integrated cosmic ray exposure history that includes periods of burial during down-slope transport. The results confirm some of the basic ideas embedded in Davis' geographic cycle model, such as the reduction of relief

  3. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  4. Biodiversity of the Hercynian mountains of central Europe

    Directory of Open Access Journals (Sweden)

    Jeník, Jan

    1998-12-01

    Full Text Available The vegetation of temperate Central Europe north of the Alps is mainly of low diversity broadleaf and conifer forest. The occurrence of three azonal habitat types: mires with their numerous microhabitats, the georelief of the karst and its deeply-cut river valleys, and ecological islands with a distinct vegetation near the tree-line of the middle-mountains causes local areas of high diversity. These high species diversity spots are the result of an interplay between physical, biotic and historical factors. A model of an anemo-orographic system with its underlying factors is described to explain the high plant and animal diversity in the corries (glacial cirques of the Hercynian mountains.

    [fr] La végétation de l'Europe Centrale tempérée au nord des Alpes nous montre surtout des forêts à de feuillues et de conifères à faible diversité. Cependant, la présence de trois types d'habitats azonaux peut produire une haute diversité au niveau local: zones humides avec leur nombreux microhabitats, reliefs karstiques et leur profonds défilés fluviaux, et enfin des îles écologiques avec une végétation particulière situées près de la limite supérieure des arbres (treeline. Ces secteurs riches en espèces peuvent s'expliquer par l'interaction des facteurs physiques, biotiques et historiques. Dans ce domaine nous proposons un système anémo-orographique avec ses facteurs inféodés qui pourrait expliquer la haute diversité animale et végétale dans les cirques glaciaires des montagnes hercyniennes. [es]Al N de los Alpes, la vegetación de la Europa Central templada está constituida fundamentalmente por bosques de baja diversidad, bien sean de hoja ancha o de coníferas. No obstante, la presencia de tres tipos de hábitats azonales aumenta la diversidad: charcos con sus numerosos microhábitats, el relieve kárstico con sus desfiladeros y las islas ecológicas con vegetación diversa cerca del límite superior del bosque en

  5. Turkish Children's Drawing of Nature in a Certain Way: Range of Mountains in the Back, the Sun, Couple of Clouds, a River Rising from the Mountains

    Science.gov (United States)

    Ulker, Riza

    2012-01-01

    This study reveals that Turkish kindergarten through 8th Grade (K-8) students draw nature pictures in a certain way; range of mountains in the background, a sun, a couple of clouds, a river rising from the mountains. There are similarities in the K-8 students' nature drawings in the way these nature items are organized on a drawing paper. We…

  6. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Science.gov (United States)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  7. Postobductional extension along and within the Frontal Range of the Eastern Oman Mountains

    Science.gov (United States)

    Mattern, Frank; Scharf, Andreas

    2018-04-01

    The Oman Mountains formed by late Cretaceous obduction of the Tethys-derived Semail Ophiolite. This study concerns the postobductional extension on the northern flank of the mountain belt. Nine sites at the northern margins of the Jabal Akhdar/Nakhl and Saih Hatat domes of the Eastern Oman ("Hajar") Mountains were investigated. The northern margins are marked by a system of major interconnected extensional faults, the "Frontal Range Fault". While the vertical displacements along the Saih Hatat and westerly located Jabal Nakhl domes measure 2.25-6.25 km, 0.5-4.5 km and 4-7 km, respectively, it amounts to 1-5 km along the Jabal Akhdar Dome. Extension had started during the late Cretaceous, towards the end of ophiolite emplacement. Two stages of extension can be ascertained (late Cretaceous to early Eocene and probably Oligocene) at the eastern part of the Frontal Range Fault System (Wadi Kabir and Fanja Graben faults of similar strike). Along the intervening and differently striking fault segments at Sad and Sunub the same two stages of deformation are deduced. The first stage is characterized again by extension. The second stage is marked by dextral motion, including local transtension. Probable Oligocene extension affected the Batinah Coast Fault while it also affected the Wadi Kabir Fault and the Fanja Graben. It is unclear whether the western portion of the Frontal Range Fault also went through two stages of deformation. Bedding-parallel ductile and brittle deformation is a common phenomenon. Hot springs and listwaenite are associated with dextral releasing bends within the fault system, as well as a basalt intrusion of probable Oligocene age. A structural transect through the Frontal Range along the superbly exposed Wadi Bani Kharous (Jabal Akhdar Dome) revealed that extension affected the Frontal Range at least 2.5 km south of the Frontal Range Fault. Also here, bedding-parallel shearing is important, but not exclusive. A late Cretaceous thrust was

  8. Amphibians of the Simbruini Mountains (Latium, Central Italy

    Directory of Open Access Journals (Sweden)

    Pierangelo Crucitti

    2010-07-01

    Full Text Available Little attention has been paid to the herpetological fauna of the Simbruini Mountains Regional Park, Latium (Central Italy. In this study, we surveyed 50 sites in the course of about ten years of field research, especially during the period 2005-2008. Nine amphibian species, four Caudata and five Anura, 60.0% out of the 15 amphibian species so far observed in Latium, were discovered in the protected area: Salamandra salamandra, Salamandrina perspicillata, Lissotriton vulgaris, Triturus carnifex, Bombina pachypus, Bufo balearicus, Bufo bufo, Rana dalmatina, Rana italica. Physiography of sites has been detailed together with potential threatening patterns. For each species the following topics have been discussed; ecology of sites, altitudinal distribution, phenology, sintopy. Salamandra salamandra and Bombina pachypus are at higher risk. The importance of the maintenance of artificial/natural water bodies for the conservation management of amphibian population of this territory is discussed.

  9. Skeletal and dental pathology of free-ranging mountain gorillas.

    Science.gov (United States)

    Lovell, N C

    1990-03-01

    The mountain gorillas of the central Virungas have been the subject of field study for the last 30 years; however, our understanding of morbidity and mortality in these apes is limited. This paper describes pathological conditions of the skeleton and dentition of these animals and evaluates lesions in relation to behavioral and environmental data. The skeletal remains of 31 mountain gorillas from the Karisoke Research Center were examined for enamel wear, carious lesions, abscesses, periodontal disease, antemortem tooth loss, trauma, inflammation, arthritis, neoplasia, and developmental anomalies. Two infants, three juveniles, 13 adult males, and 13 adult females form the sample. Enamel wear in the permanent posterior dentition is moderate. Six periapical abscesses were seen; three are associated with antemortem tooth breakage. No carious lesions were observed. Pronounced calculus buildup and alveolar resorption are the most notable pathological conditions of the dentition and affect all adult animals. The primary affliction of the skeleton is arthritis, which affects 14 animals. Vertebral degenerative disease predominates, but there is also temporomandibular joint involvement. Fractures occur at seven locations in the postcranium. In addition, there are five cranial injuries, including a fractured sagittal crest, and a penetrating wound to the vault, which is believed to result from a bite. Also thought to result from a bite is a case of cranial osteomyelitis. The only other inflammatory responses are two cases of idiopathic periostitis and one idiopathic lytic lesion. Button osteomas affect two animals and are the only neoplastic conditions observed. Two animals are afflicted by developmental abnormalities: one animal by idiopathic vertebral fusion and the other by spinal scoliosis.

  10. The influence of upper-crust lithology on topographic development in the central Coast Ranges of California

    Science.gov (United States)

    Garcia, A.F.; Mahan, S.A.

    2012-01-01

    A fundamental geological tenet is that as landscapes evolve over graded to geologic time, geologic structures control patterns of topographic distribution in mountainous areas such that terrain underlain by competent rock will be higher than terrain underlain by incompetent rock. This paper shows that in active orogens where markedly weak and markedly strong rocks are juxtaposed along contacts that parallel regional structures, relatively high topography can form where strain is localized in the weak rock. Such a relationship is illustrated by the topography of the central Coast Ranges between the Pacific coastline and the San Andreas fault zone (SAFZ), and along the length of the Gabilan Mesa (the "Gabilan Mesa segment" of the central Coast Ranges). Within the Gabilan Mesa segment, the granitic upper crust of the Salinian terrane is in contact with the accretionary-prism m??lange upper crust of the Nacimiento terrane along the inactive Nacimiento fault zone. A prominent topographic lineament is present along most of this lithologic boundary, approximately 50 to 65. km southwest of the SAFZ, with the higher topography formed in the m??lange on the southwest side of the Nacimiento fault. This paper investigates factors influencing the pattern of topographic development in the Gabilan Mesa segment of the central Coast Ranges by correlating shortening magnitude with the upper-crust compositions of the Salinian and Nacimiento terranes. The fluvial geomorphology of two valleys in the Gabilan Mesa, which is within the Salinian terrane, and alluvial geochronology based on optically-stimulated luminescence (OSL) age estimates, reveal that the magnitude of shortening accommodated by down-to-the-southwest tilting of the mesa since 400ka is less than 1 to 2m. Our results, combined with those of previous studies, indicate that at least 63% to 78% of late-Cenozoic, northeast-southwest directed, upper-crustal shortening across the Gabilan Mesa segment has been accommodated

  11. A Palaeoenvironmental contribution to the study of trashumance in the Gredos Mountain Range (Ávila

    Directory of Open Access Journals (Sweden)

    José Antonio López Sáez

    2009-04-01

    Full Text Available The Avilan sector of the Gredos Mountain Range represents one of the Iberian Peninsula’s most valuable cultural landscapes. From Prehistory to the present, the importance of trashumance in this region has played a key role in shaping its ecosystyems. Using pollen analysis to examine historical transformations in the region’s ecology, both those engendered by human activity and those relating to palaeoclimatic dynamics, this paper examines the diachronic evolution of the vegetation of the Serranillos Mountain Pass during the Late Holocene.

  12. Predicting the Spatial Distribution of Wolf (Canis lupus Breeding Areas in a Mountainous Region of Central Italy.

    Directory of Open Access Journals (Sweden)

    Elena Bassi

    Full Text Available Wolves (Canis lupus in Italy represent a relict west European population. They are classified as vulnerable by IUCN, though have increased in number and expanded their range in recent decades. Here we use 17 years of monitoring data (from 1993 to 2010 collected in a mountainous region of central Italy (Arezzo, Tuscany in an ecological niche-based model (MaxEnt to characterize breeding sites (i.e. the areas where pups were raised within home ranges, as detected from play-back responses. From a suite of variables related to topography, habitat and human disturbance we found that elevation and distance to protected areas were most important in explaining the locality of wolf responses. Rendezvous sites (family play-back response sites typically occurred between 800 and 1200 m a.s.l., inside protected areas, and were usually located along mountain chains distant from human settlements and roads. In these areas human disturbance is low and the densities of ungulates are typically high. Over recent years, rendezvous sites have occurred closer to urban areas as the wolf population has continued to expand, despite the consequent human disturbance. This suggests that undisturbed landscapes may be reaching their carrying capacity for wolves. This, in turn, may lead to the potential for increased human-wolf interactions in future. Applying our model, both within and beyond the species' current range, we identify sites both within the current range and also further afield, that the species could occupy in future. Our work underlines the importance of the present protected areas network in facilitating the recolonisation by wolves. Our projections of suitability of sites for future establishment as the population continues to expand could inform planning to minimize future wolf-human conflicts.

  13. Field-trip guide to mafic volcanism of the Cascade Range in Central Oregon—A volcanic, tectonic, hydrologic, and geomorphic journey

    Science.gov (United States)

    Deligne, Natalia I.; Mckay, Daniele; Conrey, Richard M.; Grant, Gordon E.; Johnson, Emily R.; O'Connor, Jim; Sweeney, Kristin

    2017-08-16

    The Cascade Range in central Oregon has been shaped by tectonics, volcanism, and hydrology, as well as geomorphic forces that include glaciations. As a result of the rich interplay between these forces, mafic volcanism here can have surprising manifestations, which include relatively large tephra footprints and extensive lava flows, as well as water shortages, transportation and agricultural disruption, and forest fires. Although the focus of this multidisciplinary field trip will be on mafic volcanism, we will also look at the hydrology, geomorphology, and ecology of the area, and we will examine how these elements both influence and are influenced by mafic volcanism. We will see mafic volcanic rocks at the Sand Mountain volcanic field and in the Santiam Pass area, at McKenzie Pass, and in the southern Bend region. In addition, this field trip will occur during a total solar eclipse, the first one visible in the United States in more than 25 years (and the first seen in the conterminous United States in more than 37 years).The Cascade Range is the result of subduction of the Juan de Fuca plate underneath the North American plate. This north-south-trending volcanic mountain range is immediately downwind of the Pacific Ocean, a huge source of moisture. As moisture is blown eastward from the Pacific on prevailing winds, it encounters the Cascade Range in Oregon, and the resulting orographic lift and corresponding rain shadow is one of the strongest precipitation gradients in the conterminous United States. We will see how the products of the volcanoes in the central Oregon Cascades have had a profound influence on groundwater flow and, thus, on the distribution of Pacific moisture. We will also see the influence that mafic volcanism has had on landscape evolution, vegetation development, and general hydrology.

  14. Influence of elevation and forest type on community assemblage and species distribution of shrews in the central and southern Appalachian mountains

    Science.gov (United States)

    W. Mark Ford; Timothy S. McCay; Michael A. Menzel; W. David Webster; Cathryn H. Greenberg; John F. Pagels; Joseph F. Merritt; Joseph F. Merritt

    2005-01-01

    We analyzed shrew community data from 398,832 pitfall trapnights at 303 sites across the upper Piedmont, Blue Ridge, northern Ridge and Valley, southern Ridge and Valley, Cumberland Plateau and Allegheny Mountains and Plateau sections of the central and southern Appalachian Mountains from Alabama to Pennsylvania. The objectives of our research were to describe regional...

  15. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    Science.gov (United States)

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  16. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    Science.gov (United States)

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  17. Environmental geochemistry at Red Mountain, an unmined volcanogenic massive sulphide deposit in the Bonnifield district, Alaska Range, east-central Alaska

    Science.gov (United States)

    Eppinger, R.G.; Briggs, P.H.; Dusel-Bacon, C.; Giles, S.A.; Gough, L.P.; Hammarstrom, J.M.; Hubbard, B.E.

    2007-01-01

    The unmined, pyrite-rich Red Mountain (Dry Creek) deposit displays a remarkable environmental footprint of natural acid generation, high metal and exceedingly high rate earth element (REE) concentrations in surface waters. The volcanogenic massive sulphide deposit exhibits well-constrained examples of acid-generating, metal-leaching, metal-precipitation and self-mitigation (via co-precipitation, dilution and neutralization) processes that occur in an undisturbed natural setting, a rare occurrence in North America. Oxidative dissolution of pyrite and associated secondary reactions under near-surface oxidizing conditions are the primary causes for the acid generation and metal leaching. The deposit is hosted in Devonian to Mississippian felsic metavolcanic rocks of the Mystic Creek Member of the Totatlanika Schist. Water samples with the lowest pH (many below 3.5), highest specific conductance (commonly >2500 ??S/cm) and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, Zn and, particularly, the REEs are found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH, lower specific conductance (370 to 830 ??S/cm), lower metal concentrations and measurable alkalinities. Water samples collected downstream of the alteration zone have pH and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not, and probably never have, supported significant aquatic life. ?? 2007 AAG/ Geological Society of London.

  18. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA

    Science.gov (United States)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.

    2017-09-01

    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  19. The mountains influence on Turkey Climate

    International Nuclear Information System (INIS)

    Sensoy, Serhat

    2004-01-01

    Since the Black sea mountains at the north of the country and the Taurus mountains in the south lay parallel to the seashore and rise very sharply rain clouds can not penetrate to the internal part of the country. Rain clouds drops most of their water on the slopes opposite the sea. As rain clouds pass over the mountains and reach Central Anatolia they have no significant capability of rain. For this reason, the Central Anatolia does not have very much precipitation. The difference between the rates of precipitation on the inner and outer slopes seems to be effective on the expansion of plants. For example, there is a subtropical climate prevailing on the Black sea shore between Sinop and Batum where precipitation is more than 1000-2000 mm yearly. Going from Sinop to the mouth of the Sakarya River the rate of precipitation goes down to 800-1250 mm in a year. Running from the Sakarya River to the western area covering Thrace the climate seems to be continental, and in the area dominant plant cover is of the Mediterranean type. Since the succession of the mountains in Western Anatolia lay perpendicular to the seashore, rain clouds penetrate towards the inner regions for about 400 km. The continental climate with long, dry and summer affects this area. In the Eastern region of Anatolia, since the elevation of the mountains exceeds 2500-3000 m, valleys are disorderly scattered and located at high elevations, and the northern Black sea mountains and Caucasian mountains hold the rain clouds, the area is effected by the continental climate with long and very cold winters. Consequently precipitation at the lgdir River goes down to 300 mm while it is 500-800 mm in most of areas and 1000-1500 mm in some regions towards northern Mu and Bingol provinces. As mentioned above, high mountains, which hold rain clouds, surround the Central Anatolia, which has caused drought in this region. In the central Anatolia covering Afyon, Eski hir, Ankara, Qankiri, Qorum, Amasya, Kayseri

  20. Prevalence of gastrointestinal helminth infections in free-range laying hens under mountain farming production conditions.

    Science.gov (United States)

    Wuthijaree, K; Lambertz, C; Gauly, M

    2017-12-01

    1. A cross-sectional study was conducted from September 2015 to July 2016 in South Tyrol, Northern Italy to examine the prevalence of gastrointestinal helminths in free-range laying hens under mountain farming production conditions. 2. A total of 280 laying hens from 14 free-range mountain farms (4 organic, 10 conventional) were randomly collected at the end of the laying period. Faecal samples were taken to analyse faecal egg counts (FEC) and faecal oocyst counts (FOC). The gastrointestinal tracts were removed post mortem and examined for the presence of helminths. 3. In faeces, FEC values averaged 258 eggs per g of faeces, which were dominated by Ascaridia galli and Heterakis gallinarum. Mean FOC was 80 oocysts/g. In the gastrointestinal tract, at least one nematode species was found in 99.3% of the examined hens. H. gallinarum was the most prevalent nematode (95.7%), followed by Capillaria spp. (66.8%) and A. galli (63.6%). Thirty per cent of the chickens were infected with cestodes (tapeworms). Correlation coefficients between worm counts of H. gallinarum, Capillaria spp. and A. galli ranged from 0.41 to 0.51. 5. The helminth prevalence did not differ between conventional and organic farms, whereas total worm burden was higher in organic compared with conventional farms (318.9 vs. 112.0). Prevalence and infection intensity did not differ between farms that used anthelmintic treatments and those that did not. 6. In conclusion, free-range laying hens under the studied mountain farming conditions are at high risk of nematode infection, especially in organic systems. The vast majority of hens are subclinical infected with at least one helminth species.

  1. Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA

    Science.gov (United States)

    Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.

    2016-01-01

    "Aim: Ponderosa pine (Pinus ponderosa) experienced one of the most extensive and rapid post-glacial plant migrations in western North America. We used plant macrofossils from woodrat (Neotoma) middens to reconstruct its spread in the Central Rocky Mountains, identify other vegetation changes coinciding with P. ponderosa expansion at the same sites, and relate P. ponderosa migrational history to both its modern phylogeography and to a parallel expansion by Utah juniper (Juniperus osteosperma).

  2. High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain

    NARCIS (Netherlands)

    Ruibal, C.; Platas, G.; Bills, G.F.

    2008-01-01

    Melanised fungi were isolated from rock surfaces in the Central Mountain System of Spain. Two hundred sixty six isolates were recovered from four geologically and topographically distinct sites. Microsatellite-primed PCR techniques were used to group isolates into genotypes assumed to represent

  3. A mass-wasting dominated Quaternary mountain range, the Coastal Range in eastern Taiwan

    Science.gov (United States)

    Hsieh, Meng-Long; Hogg, Alan; Song, Sheng-Rong; Kang, Su-Chen; Chou, Chun-Yen

    2017-12-01

    Fluvial bedrock incision, which creates topographic relief and controls hillslope development, has been considered the key medium linking denudation and tectonic uplift of unglaciated mountains. This article, however, shows a different scenario from the Coastal Range in eastern Taiwan. This range, with the steepness inherited from pre-orogenic volcanoes, has been subject to mass wasting even before its emergence above sea level no earlier than Middle Pleistocene. Numerous terraced alluvial fans/fan deltas record the ancient mass movements of the range, including rock avalanches. Multiple radiocarbon dates sequences not clearly related to the known climate-change events, and are believed to have been triggered mainly by severe rainfall events, large earthquakes, or their combinations. The resulting fluctuation of sediment yield has episodically changed river behavior, forming river terraces in catchments >1 km2. Alluvial terraces are typically exhibited close to the source ridges of mass movements, and strath terraces along the downstream parts of rivers. Both were created when enormous sediment supply had exceeded or matched the prevailing river transport capacity. This process, along with the protection by giant boulders from mass movement, disturbed the long-term incision trend of rivers in response to tectonic uplift. As a result, the observed Holocene bedrock incision at most sites has not kept pace with the tectonic uplift. The spatial contrast in mass-wasting histories further accounts for the great diversity of the terrace sequences, even in areas with similar tectonic and base-level conditions.

  4. Chemical constituents of sea buckthorn (Hippophae rhamnoides L. fruit in populations of central Alborz Mountains in Iran

    Directory of Open Access Journals (Sweden)

    A. Kuhkheil

    2017-07-01

    Full Text Available Background and objectives: Hippophae rhamnoides L. known as sea buckthorn is a deciduous medicinal shrub belonging to Elaeagnaceae family. In this study, the most important chemical constituents of sea buckthornwere evaluated in wild populations of central Alborz Mountains in Iran during the growth season of 2014 and 2015. Methods: Phytochemical analysis of fruit pulp and seed oil traits was performed using different methods of chromatography such as spectrophotometry, HPLC and GC. Results: Based on the results of combined analysis of variance, significant (p≤0.01 difference ranges between populations were found in respect to fruit dry weight (21.32 to 32.03%, total phenolic compounds (20.78 to 34.60 mg/g, extractable tannin (1.99 to 5.74 mg/g, glucose (38.14 to 110.70 mg/g, total carotenoids (0.80 to 1.17 mg/g, lycopene (0.13 to 0.20 mg/g, β-carotene (0.18 to 0.26 mg/g, total flavonoids (0.98 to 2.80 mg/g, total soluble solids (TSS (11.85 to 31.50%, vitamin C (1.47 to 8.96 mg/g, seed oil content (4.51 to 7.91%, and two major unsaturated fatty acids including linoleic acid (28.71 to 37.44% and linolenic acid (21.52 to 28.28%. Factor analysis based on principal component analysis (PCA revealed most important traits with the highest correlation factor such as vitamin C, carbohydrates, TSS, fruit dry weight (FDW, and tannin for the first component. Conclusion: content of vitamin C was the main variable in chemical constituents for effective detection of original wild populations of central Alborz Mountains. Accordingly, sea buckthorn populations were divided into four main clusters and groups with high diversity based on their chemical compositions.

  5. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  6. Geomorphology of the north flank of the Uinta Mountains

    Science.gov (United States)

    Bradley, W.H.

    1936-01-01

    The Uinta Mountains, whose northern margin is almost coincident with the southern boundary of Wyoming, extend from the Wasatch Range eastward across the northern part of Utah into northwestern Colorado. They were carved out of a large, simple anticlinal fold of sedimentary rocks arched up into essentially their present attitude at the end of the Cretaceous period. The Uinta Mountain group (Uinta quartzite of previous reports) a series of brick-red to purplish-red quartzite and sandstone beds of pre-Cambrian age, aggregating more than 12,000 feet in thickness, makes up the central mass of the range. Flanking the quartzite core and sharing its anticlinal structure are beds of limestone, sandstone, and shale ranging in age from Upper or Middle Cambrian to Upper Cretaceous. These rocks, which have a total thickness of about 15,000 feet, have been eroded from the higher part of the range, so the upturned edges of the harder

  7. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  8. Canthyporus reebae sp. nov. from the Itremo and Andringitra mountains of central eastern Madagascar (Coleoptera: Dytiscidae: Hydroporinae).

    Science.gov (United States)

    Manuel, Michaël; Ramahandrison, Andriamirado T

    2017-06-01

    Canthyporus reebae sp. nov. is described from the south-eastern part of the Itremo mountain range and from the Andringitra massif in central eastern Madagascar. The new species is the second one of the genus Canthyporus Zimmermann, 1919 to be recorded from Madagascar, the other being C. pauliani Guignot, 1951, so far endemic to the northern massif of Tsaratanana. The habitus and male and female reproductive structures of the new species are illustrated. Canthyporus reebae sp. nov. differs from C. pauliani notably by larger size, less parallel-sided and more evenly convex habitus, paler pronotum, more weakly impressed body surface reticulation, and a different shape of the median lobe of aedeagus. Differences with similar C. hottentottus-group species from mainland Africa are also discussed. Data on habitat preferences of C. reebae sp. nov. and a distribution map of Malagasy Canthyporus are presented and discussed.

  9. Central Asia Temperature and Precipitation Data, 1879-2003, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides temperature and precipitation data from 298 meteorological stations in the Northern Tien Shan and Pamir Mountain Ranges of Central Asia,...

  10. Rb/Sr ages of metamorphites of the Herbert Mountains, Shackleton Range, Antarctica

    International Nuclear Information System (INIS)

    Hofmann, J.; Pilot, J.; Schlichting, M.

    1981-01-01

    Results of Rb/Sr-age determinations from six mica schists, sampled in the upper part of the Shackleton metamorphic complex (Herbert Mountains, Shackleton Range, Antarctica) are reported. A three point isochrone gives an age of 470 +- 36 mio. yrs., a two point isochrone an age of 1414 +- 185 mio yrs. The first age marks a thermo-magmatic activation of early paleozoic age, the second one is interpretated as the age of regional metamorphism from the upper parts of the Shackleton metamorphic complex. The results are discussed under consideration of former age determinations. (author)

  11. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  12. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  13. Structural Discordance Between Neogene Detachments and Frontal Sevier Thrusts, Central Mormon Mountains, Southern Nevada

    Science.gov (United States)

    Wernicke, Brian; Walker, J. Douglas; Beaufait, Mark S.

    1985-02-01

    Detailed geologic mapping in the Mormon Mountains of southern Nevada provides significant insight into processes of extensional tectonics developed within older compressional orogens. A newly discovered, WSW-directed low-angle normal fault, the Mormon Peak detachment, juxtaposes the highest levels of the frontal most part of the east-vergent, Mesozoic Sevier thrust belt with autochthonous crystalline basement. Palinspastic analysis suggests that the detachment initially dipped 20-25° to the west and cut discordantly across thrust faults. Nearly complete lateral removal of the hanging wall from the area has exposed a 5 km thick longitudinal cross-section through the thrust belt in the footwall, while highly attenuated remnants of the hanging wall (nowhere more than a few hundred meters thick) structurally veneer the range. The present arched configuration of the detachment resulted in part from progressive "domino-style" rotation of a few degrees while it was active, but is largely due to rotation on younger, structurally lower, basement-penetrating normal faults that initiated at high-angle. The geometry and kinematics of normal faulting in the Mormon Mountains suggest that pre-existing thrust planes are not required for the initiation of low-angle normal faults, and even where closely overlapped by extensional tectonism, need not function as a primary control of detachment geometry. Caution must thus be exercised in interpreting low-angle normal faults of uncertain tectonic heritage such as those seen in the COCORP west-central Utah and BIRP's MOIST deep-reflection profiles. Although thrust fault reactivation has reasonably been shown to be the origin of a very few low-angle normal faults, our results indicate that it may not be as fundamental a component of orogenic architecture as it is now widely perceived to be. We conclude that while in many instances thrust fault reactivation may be both a plausible and attractive hypothesis, it may never be assumed.

  14. Home range dynamics of mountain hare (Lepus timidus in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Genini-Gamboni

    2009-02-01

    Full Text Available Abstract Little is known on the ecology and behaviour of alpine mountain hare (Lepus timidus. Between 1996 and 1997 we analysed by radiotracking the pattern of space use of 8 mountain hares from the Swiss Alps. We estimated home range size using both the kernel density estimator and the minimum convex polygon. We found smaller ranges (38 ha compared to those reported for the species in boreal or arctic habitats, but similar to ranges in Scotland. Hares did not use a centre of major activity (core area and showed high home range overlap, confirming their non-territorial behaviour. Smaller ranges were used during winter compared to the other seasons, whilst no difference in size was found between sexes. Riassunto Dinamica dell'uso dello spazio della lepre bianca (Lepus timidus nelle Alpi Svizzere Le informazioni relative all'ecologia e al comportamento della lepre alpina (Lepus timidus sono ad oggi scarse. In questo studio abbiamo analizzato l'utilizzo dello spazio di una popolazione di lepre bianca sulle Alpi Svizzere. Tra il 1996 e il 1997 sono stati marcati con redio collare 8 individui di lepre alpina. L'home range è stato calcolato utilizzando lo stimatore di densità kernel (KDE ed il metodo del minimo poligono convesso (MCP. L'ampiezza degli home range (38 ha è risultata inferiore a quella riportata per la specie in habitat boreali ed artici. ma simile a quella riscontrata in Scozia. All'interno dell home range non è stato rilevato alcun centro di maggiore attività (core area ed è stata evidenziata una notevole sovrapposizione tra gli stessi, confermando la non territorialità della specie. Le aree frequentate in inverno sono risultate più piccole rispetto alle altre stagioni e non sono state riscontrate differenze tra i sessi.

  15. A middle Pleistocene through middle Miocene moraine sequence in the central Transantarctic Mountains, Antarctica

    Science.gov (United States)

    Balter, A.; Bromley, G. R.; Balco, G.; Thomas, H.; Jackson, M. S.

    2017-12-01

    Ice-free areas at high elevation in the central Transantarctic Mountains preserve extensive moraine sequences and drift deposits that comprise a geologic record of former East Antarctic Ice Sheet thickness and extent. We are applying cosmogenic-nuclide exposure dating to determine the ages of these moraine sequences at Roberts Massif and Otway Massif, at the heads of the Shackleton and Beardmore Glaciers, respectively. Moraines at these sites are for the most part openwork boulder belts characteristic of deposition by cold-based ice, which is consistent with present climate and glaciological conditions. To develop our chronology, we collected samples from 30 distinct ice-marginal landforms and have so far measured >100 3He, 10Be, and 21Ne exposure ages. Apparent exposure ages range from 1-14 Ma, which shows that these landforms record glacial events between the middle Pleistocene and middle Miocene. These data show that the thickness of the East Antarctic Ice Sheet in this region was similar to or thicker than present for long periods between the middle Miocene and today. The time range represented by these moraine sequences indicates that they may also provide direct geologic evidence for East Antarctic Ice Sheet behavior during past periods of warmer-than-present climate, specifically the Miocene and Pliocene. As the East Antarctic Ice Sheet is the largest ice sheet on earth, understanding its sensitivity to warm-climate conditions is critical for projections of ice sheet behavior and sea-level rise in future warm climates.

  16. P-T data from central Bhutan imply distributed extensional shear at the Black Mountain "klippe"

    Science.gov (United States)

    Corrie, S. L.; Kohn, M. J.; Long, S. P.; McQuarrie, N.; Tobgay, T.

    2011-12-01

    The Southern Tibetan Detachment system (STDS) occurs along the entire length of the Himalayan orogen, and extensionally emplaces low-grade to unmetamorphosed Tethyan Himalayan (TH) rocks over highly metamorphosed Greater Himalayan sequence (GH) rocks. The base of TH remnants preserved in northern Bhutan all have top-to-the-north shear sense indicators (C'-type shear bands, asymmetric folds, and boudinaged leucogranite dikes) that are interpreted to reflect a discrete shear zone. In contrast, the GH-TH contact in the southernmost TH remnant (the Black Mountain region, central Bhutan) has been interpreted as depositional. A depositional contact limits the magnitude of displacement along the early STDS to 10's of km. If the GH-TH contact in the Black Mountain region is instead a discrete shear zone, as observed farther north, displacement on the STDS could be as high as 100's of km. To discriminate between these two interpretations, we determined peak metamorphic P-T conditions through the GH and TH sections, reasoning that a discrete shear zone would produce a distinct jump in metamorphic temperature, pressure or both. Thin section-scale kinematic indicators reveal pervasive top-to-the-north shear from 2-3 km structurally above the Main Central thrust (MCT) through the rest of the 11 km thick GH and TH sections. P-T conditions were determined from immediately above the MCT to 4 km above the GH-TH contact, with 19 samples from the GH, 6 from the overlying Chekha Fm (TH), and 9 from the overlying Maneting Fm (TH). We applied standard Fe-Mg exchange thermometers and Ca net-transfer barometers involving garnet. P-T conditions range from 700 °C and 11 kbar in migmatitic GHS to 600 °C and 8 kbar at the GH-Chekha contact, and 500 °C and 5 kbar at the top of the Maneting. We found no jumps in either temperature or pressure at any level, but a steeper than lithostatic pressure gradient, which we interpret to result from distributed extensional shear. The average thermal

  17. Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin

    DEFF Research Database (Denmark)

    Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie

    2017-01-01

    remains seismic. To quantify the rate of active deformation and the potential for major earthquakes in this region, we combine a structural and quantitative morphological analysis of the Yecheng-Pishan fold, along the topographic mountain front in the epicentral area. Using a seismic profile, we derive......The Western Kunlun mountain range is a slowly converging intra-continental orogen where deformation rates are too low to be properly quantified from geodetic techniques. This region has recorded little seismicity, but the recent July 2015 (Mw 6.4) Pishan earthquake shows that this mountain range...... a structural cross-section in which we identify the fault that broke during the Pishan earthquake, an 8-12 km deep blind ramp beneath the Yecheng-Pishan fold. Combining satellite images and DEMs, we achieve a detailed morphological analysis of the Yecheng-Pishan fold, where we find nine levels of incised...

  18. Home range characteristics of Mexican Spotted Owls in the Rincon Mountains, Arizona

    Science.gov (United States)

    Willey, David W.; van Riper, Charles

    2014-01-01

    We studied a small isolated population of Mexican Spotted Owls (Strix occidentalis lucida) from 1996–1997 in the Rincon Mountains of Saguaro National Park, southeastern Arizona, USA. All mixed-conifer and pine-oak forest patches in the park were surveyed for Spotted Owls, and we located, captured, and radio-tagged 10 adult birds representing five mated pairs. Using radio-telemetry, we examined owl home range characteristics, roost habitat, and monitored reproduction within these five territories. Breeding season (Mar–Sep) home range size for 10 adult owls (95% adaptive kernel isopleths) averaged 267 ha (±207 SD), and varied widely among owls (range 34–652 ha). Mean home range size for owl pairs was 478 ha (±417 ha SD), and ranged from 70–1,160 ha. Owls that produced young used smaller home ranges than owls that had no young. Six habitat variables differed significantly between roost and random sites, including: percent canopy cover, number of trees, number of vegetation layers, average height of trees, average diameter of trees, and tree basal area. Radio-marked owls remained in their territories following small prescribed management fires within those territories, exhibiting no proximate effects to the presence of prescribed fire.

  19. Small-for-gestational age prevalence risk factors in central Appalachian states with mountain-top mining.

    Science.gov (United States)

    Ferdosi, Hamid; Lamm, Steve H; Afari-Dwamena, Nana Ama; Dissen, Elisabeth; Chen, Rusan; Li, Ji; Feinleib, Manning

    2018-01-01

    To identify risk factors for small-for-gestational age (SGA) for counties in central Appalachian states (Kentucky (KY), Tennessee (TN), Virginia (VA), and West Virginia (WV)) with varied coal mining activities. Live birth certificate files (1990-2002) were used for obtaining SGA prevalence rates for mothers based on the coal mining activities of their counties of residence, mountain-top mining (MTM) activities, underground mining activities but no mountain-top mining activity (non-MTM), or having no mining activities (non-mining). Co-variable information, including maternal tobacco use, was also obtained from the live birth certificate. Adjusted odds ratios were obtained using multivariable logistic regression comparing SGA prevalence rates for counties with coal mining activities to those without coal mining activities and comparing SGA prevalence rates for counties with coal mining activities for those with and without mountain-top mining activities. Comparisons were also made among those who had reported tobacco use and those who had not. Both tobacco use prevalence and SGA prevalence were significantly greater for mining counties than for non-mining counties and for MTM counties than for non-MTM counties. Adjustment for tobacco use alone explained 50% of the increased SGA risk for mining counties and 75% of the risk for MTM counties, including demographic pre-natal care co-variables that explained 75% of the increased SGA risk for mining counties and 100% of the risk for MTM. The increased risk of SGA was limited to the third trimester births among tobacco users and independent of the mining activities of their counties of residence. This study demonstrates that the increased prevalence of SGA among residents of counties with mining activity was primarily explained by the differences in maternal tobacco use prevalence, an effect that itself was gestational-age dependent. Self-reported tobacco use marked the population at the increased risk for SGA in central

  20. Recent population trends of mountain goats in the Olympic Mountains, Washington

    Science.gov (United States)

    Jenkins, Kurt J.; Happe, Patricia J.; Beirne, Katherine F.; Hoffman, Roger A.; Griffin, Paul C.; Baccus, William T.; Fieberg, John

    2012-01-01

    Mountain goats (Oreamnos americanus) were introduced in Washington's Olympic Mountains during the 1920s. The population subsequently increased in numbers and expanded in range, leading to concerns by the 1970s over the potential effects of non-native mountain goats on high-elevation plant communities in Olympic National Park. The National Park Service (NPS) transplanted mountain goats from the Olympic Mountains to other ranges between 1981 and 1989 as a means to manage overabundant populations, and began monitoring population trends of mountain goats in 1983. We estimated population abundance of mountain goats during 18–25 July 2011, the sixth survey of the time series, to assess current population status and responses of the population to past management. We surveyed 39 sample units, comprising 39% of the 59,615-ha survey area. We estimated a population of 344 ± 72 (90% confidence interval [CI]) mountain goats in the survey area. Retrospective analysis of the 2004 survey, accounting for differences in survey area boundaries and methods of estimating aerial detection biases, indicated that the population increased at an average annual rate of 4.9% since the last survey. That is the first population growth observed since the cessation of population control measures in 1990. We postulate that differences in population trends observed in western, eastern, and southern sections of the survey zone reflected, in part, a variable influence of climate change across the precipitation gradient in the Olympic Mountains.

  1. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  2. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  3. Deep structure of the Alborz Mountains by joint inversion of P receiver functions and dispersion curves

    Science.gov (United States)

    Rastgoo, Mehdi; Rahimi, Habib; Motaghi, Khalil; Shabanian, Esmaeil; Romanelli, Fabio; Panza, Giuliano F.

    2018-04-01

    The Alborz Mountains represent a tectonically and seismically active convergent boundary in the Arabia - Eurasia collision zone, in western Asia. The orogenic belt has undergone a long-lasted tectono-magmatic history since the Cretaceous. The relationship between shallow and deep structures in this complex tectonic domain is not straightforward. We present a 2D velocity model constructed by the assemblage of 1D shear wave velocity (Vs) models from 26 seismic stations, mainly distributed along the southern flank of the Alborz Mountains. The shear wave velocity structure has been estimated beneath each station using joint inversion of P-waves receiver functions and Rayleigh wave dispersion curves. A substantiation of the Vs inversion results sits on the modeling of Bouguer gravity anomaly data. Our velocity and density models show low velocity/density anomalies in uppermost mantle of western and central Alborz at a depth range of ∼50-100 km. In deeper parts of the uppermost mantle (depth range of 100-150 km), a high velocity/density anomaly is located beneath most of the Mountain range. The spatial pattern of these low and high velocity/density structures in the upper mantle is interpreted as the result of post collisional delamination of lower part of the western and central Alborz lithosphere.

  4. Non-tectonic exposure Rates along Bedrock Fault Scarps in an active Mountain Belt of the central Apennines

    Science.gov (United States)

    Kastelic, Vanja; Burrato, Pierfrancesco; Carafa, Michele M. C.; Basili, Roberto

    2017-04-01

    The central Apennines (Italy) are a mountain chain affected by post-collisional active extension along NW-SE striking normal faults and well-documented regional-scale uplift. Moderate to strong earthquakes along the seismogenically active extensional faults are frequent in this area, thus a good knowledge on the characteristics of the hosting faults is necessary for realistic seismic hazard models. The studied bedrock fault surfaces are generally located at various heights on mountain fronts above the local base level of glacio-fluvial valleys and intermountain fluvio-lacustrine basins and are laterally confined to the extent of related mountain fronts. In order to investigate the exposure of the bedrock fault scarps from under their slope-deposit cover, a process that has often been exclusively attributed to co-seismic earthquake slip and used as proxy for tectonic slip rates and earthquake recurrence estimations, we have set up a measurement experiment along various such structures. In this experiment we measure the relative position of chosen markers on the bedrock surface and the material found directly at the contact with its hanging wall. We present the results of monitoring the contact between the exposed fault surfaces and slope deposits at 23 measurement points on 12 different faults over 3.4 year-long observation period. We detected either downward or upward movements of the slope deposit with respect to the fault surface between consecutive measurements. During the entire observation period all points, except one, registered a net downward movement in the 2.9 - 25.6 mm/yr range, resulting in the progressive exposure of the fault surface. During the monitoring period no major earthquakes occurred in the region, demonstrating the measured exposure process is disconnected from seismic activity. We do however observe a positive correlation between the higher exposure in respect to higher average temperatures. Our results indicate that the fault surface

  5. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains

    Science.gov (United States)

    Meng, Lihua; Chen, Gang; Li, Zhonghu; Yang, Yongping; Wang, Zhengkun; Wang, Liuyang

    2015-01-01

    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis. PMID:26013161

  6. High rates of energy expenditure and water flux in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea

    Science.gov (United States)

    Crocker, D.E.; Kofahl, N.; Fellers, G.D.; Gates, N.B.; Houser, D.S.

    2007-01-01

    We measured water flux and energy expenditure in free-ranging Point Reyes mountain beavers Aplodontia rufa phaea by using the doubly labeled water method. Previous laboratory investigations have suggested weak urinary concentrating ability, high rates of water flux, and low basal metabolic rates in this species. However, free-ranging measurements from hygric mammals are rare, and it is not known how these features interact in the environment. Rates of water flux (210 ?? 32 mL d-1) and field metabolic rates (1,488 ?? 486 kJ d-1) were 159% and 265%, respectively, of values predicted by allometric equations for similar-sized herbivores. Mountain beavers can likely meet their water needs through metabolic water production and preformed water in food and thus remain in water balance without access to free water. Arginine-vasopressin levels were strongly correlated with rates of water flux and plasma urea : creatinine ratios, suggesting an important role for this hormone in regulating urinary water loss in mountain beavers. High field metabolic rates may result from cool burrow temperatures that are well below lower critical temperatures measured in previous laboratory studies and suggest that thermoregulation costs may strongly influence field energetics and water flux in semifossorial mammals. ?? 2007 by The University of Chicago. All rights reserved.

  7. Stream flow regime of springs in the Mantiqueira Mountain Range region, Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Alisson Souza de Oliveira

    2014-09-01

    Full Text Available The stream flow regime of four springs located in the Mantiqueira Mountain Range region (MG was evaluated and correlated to the respective recharge area, relief characteristics, land cover and physical and hydrologic soil characteristics. The streamflow regime was characterized by monitoring of discharges, calculating the surface runoff and specific discharge and by modeling the discharge over the recession period using the Maillet method. As all recharge areas have similar relief the effect of it on the streamflow was not possible to identify. Analysis included determining the effect of drainage area size, soil characteristics and land cover on the indicators of the streamflow regime. Size of the recharge area had a positive influence on the indicators mean discharge and surface runoff volume and on the regulation of the streamflow regime (springs L4 and L1. The spring under the smallest area of influence provided the worst results for the above mentioned indicators (spring L3. The effect of forest cover (natural and planted, associated with soil characteristics, was evidenced by the indicators surface runoff (in depth and specific yield, both independent of the recharge area size (springs L4 and L2. The interaction of area size, soil characteristics and forest cover (natural and planted provided the best results for all indicators of streamflow regime in the springs studied in the Mantiqueira Mountain Range (spring L4.

  8. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    Science.gov (United States)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  9. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  10. Influence of spatial resolution on precipitation simulations for the central Andes Mountains

    Science.gov (United States)

    Trachte, Katja; Bendix, Jörg

    2013-04-01

    The climate of South America is highly influenced by the north-south oriented Andes Mountains. Their complex structure causes modifications of large-scale atmospheric circulations resulting in various mesoscale phenomena as well as a high variability in the local conditions. Due to their height and length the terrain generates distinctly climate conditions between the western and the eastern slopes. While in the tropical regions along the western flanks the conditions are cold and arid, the eastern slopes are dominated by warm-moist and rainy air coming from the Amazon basin. Below 35° S the situation reverses with rather semiarid conditions in the eastern part and temperate rainy climate along southern Chile. Generally, global circulation models (GCMs) describe the state of the global climate and its changes, but are disabled to capture regional or even local features due to their coarse resolution. This is particularly true in heterogeneous regions such as the Andes Mountains, where local driving features, e. g. local circulation systems, highly varies on small scales and thus, lead to a high variability of rainfall distributions. An appropriate technique to overcome this problem and to gain regional and local scale rainfall information is the dynamical downscaling of the global data using a regional climate model (RCM). The poster presents results of the evaluation of the performance of the Weather Research and Forecasting (WRF) model over South America with special focus on the central Andes Mountains of Ecuador. A sensitivity study regarding the cumulus parametrization, microphysics, boundary layer processes and the radiation budget is conducted. With 17 simulations consisting of 16 parametrization scheme combinations and 1 default run a suitable model set-up for climate research in this region is supposed to be evaluated. The simulations were conducted in a two-way nested mode i) to examine the best physics scheme combination for the target and ii) to

  11. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    Science.gov (United States)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out

  12. Sustainable yield of the Colle Quartara carbonate aquifer in the Southern Lepini Mountains (Central Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Conte

    2016-10-01

    Full Text Available The present research is aimed to contribute to the groundwater resource sustainable management of a carbonate aquifer in a test area of the Lepini Mountains (Central Italy. This aquifer constitutes a major exploited groundwater body of central Apennines. At regional scale, the hydrogeological features of the Lepini hydrostructure are well known. The present study focuses on a portion of the Lepini Mountains where important tapping-works for drinking water supply are in activity (about 1.2 m3/s. New investigations were carried out including: meteo-climatic analysis, spring discharge and hydrometric time series processing, pumping test result interpretation. In addition, a detailed lithostratigraphical and structural survey of a portion of the Lepini hydrostructure at 1:10,000 scale was performed also examining the dense network of discontinuities affecting the carbonate aquifer. Extensional Plio-Pleistocene tectonic activity displaced the carbonate rock sequence under the Pontina Plain, where the carbonate aquifer is confined. The investigation results have allowed the reconstruction of the hydrogeological conceptual model of the studied portion of carbonate massif. Given the scale of the study and the results of the investigation, the carbonate aquifer can be treated as an equivalent porous medium, and the simplified numerical model of the aquifer was constructed with the code MODFLOW-2005. The numerical model, still now under continuous implementation, produced first results on the current withdrawal sustainability, allowing evaluation of possible alternative exploitation scenarios of the carbonate aquifer also considering the probably not significant flow exchanges with the Pontina Plain aquifer.

  13. Lower Paleozoic carbonate rocks of Baird Mountains Quadrangle, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Dumoulin, J.A.; Harris, A.G.

    1985-04-01

    Lower Paleozoic carbonate rocks in the Baird Mountains quadrangle form a relatively thin (about 550 m), chiefly shallow-water succession that has been imbricately thrust and metamorphosed to lower greenschist facies. Middle and Upper Cambrian rocks - the first reported from the western Brooks Range - occur in the northeastern quarter of the quadrangle, south of Angayukaqsraq (formerly Hub) Mountain. They consist of marble grading upward into thin-bedded marble/dolostone couplets and contain pelagiellid mollusks, acetretid brachiopods, and agnostid trilobites. Sedimentologic features and the Pelagiellas indicate a shallow-water depositional environment. Overlying these rocks are Lower and Middle Ordovician marble and phyllite containing graptolites and conodonts of midshelf to basinal aspect. Upper Ordovician rocks in this area are bioturbated to laminated dolostone containing warm, shallow-water conodonts. In the Omar and Squirrel Rivers areas to the west, the Lower Ordovician carbonate rocks show striking differences in lithofacies, biofacies, and thickness. Here they are mainly dolostone with locally well-developed fenestral fabric and evaporite molds, and bioturbated to laminated orange- and gray-weathering dolomitic marble. Upper Silurian dolostone, found near Angayukaqsraq Mountain and on the central Squirrel River, contains locally abundant corals and stronmatoporoids. Devonian carbonate rocks are widely distributed in the Baird Mountains quadrangle; at least two distinct sequences have been identified. In the Omar area, Lower and Middle Devonian dolostone and marble are locally cherty and rich in megafossils. In the north-central (Nakolik River) area, Middle and Upper Devonian marble is interlayered with planar to cross-laminated quartz-carbonate metasandstone and phyllite.

  14. Impacts of biogeographic history and marginal population genetics on species range limits: a case study of Liriodendron chinense.

    Science.gov (United States)

    Yang, Aihong; Dick, Christopher W; Yao, Xiaohong; Huang, Hongwen

    2016-05-10

    Species ranges are influenced by past climate oscillations, geographical constraints, and adaptive potential to colonize novel habitats at range limits. This study used Liriodendron chinense, an important temperate Asian tree species, as a model system to evaluate the roles of biogeographic history and marginal population genetics in determining range limits. We examined the demographic history and genetic diversity of 29 L. chinense populations using both chloroplast and nuclear microsatellite loci. Significant phylogeographic structure was recovered with haplotype clusters coinciding with major mountain regions. Long-term demographical stability was suggested by mismatch distribution analyses, neutrality tests, and ecological niche models (ENM) and suggested the existence of LGM refuges within mountain regions. Differences in genetic diversity between central and marginal populations were not significant for either genomic region. However, asymmetrical gene flow was inferred from central populations to marginal populations, which could potentially limit range adaptation and expansion of L. chinense.

  15. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  16. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  17. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    Science.gov (United States)

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  18. Impacts of climate change on range expansion by the mountain pine beetle

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, A.L.; Taylor, S.W. [Canadian Forest Service, Victoria, BC (Canada). Pacific Forestry Centre; Regniere, J. [Canadian Forest Service, Quebec, PQ (Canada). Laurentian Forestry Centre; Logan, J.A.; Bentz, B.J. [United States Dept. of Agriculture, Logan, UT (United States). Logan Forestry Sciences Laboratory; Powell, J.A. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    2006-07-01

    The elevational and latitudinal range of mountain pine beetle (MPB) has been limited by climatic conditions that are currently unfavorable for brood development. This study examined the impact of climatic conditions on the establishment and persistence of MPB using a spatially explicit, climate-driven simulation tool. Historic weather records were also used to create maps of past habitats for MPB in British Columbia. Map overlays were then created to determine if MPB has expanded its range due to changes in the province's climate. The distribution of climatically suitable habitats was examined in 10-year increments. Results of the study showed an increase in benign habitats. MPB populations have expanded into new areas as a result of changes in climate. Additional range expansion for MPB was then assessed using a global circulation model along with a conservative forcing scenario that forecast a doubling of carbon dioxide (CO{sub 2}) by 2050. Weather conditions were then combined with a climatic suitability model in order to examine areas of climatically suitable habitats. It was concluded that continued eastward expansion by MPB is probable. 44 refs., 4 tabs., 7 figs.

  19. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    Science.gov (United States)

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  1. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    Science.gov (United States)

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  2. Rb-Sr ages of Precambrian sediments from the Ovruch mountain range, northwestern Ukraine (U.S.S.R.)

    International Nuclear Information System (INIS)

    Gorokhov, I.M.; Varshavskaya, E.S.; Kutyavin, E.P.; Clauer, N.; Drannik, A.S.

    1981-01-01

    A mineralogical and Rb-Sr geochronological study of Precambrian sediments and metasediments from the Ovruch mountain range (northwestern Ukraine) shows two distinct events: a slight metamorphism of the Belokorovichi Formation 1575 +- 30 Ma ago which precedes the deposition of the Zbranki Formation at 1389 +- 71 Ma (lambda 87 Rb = 1.42 x 10 -11 y -1 ). (Auth.)

  3. Post-Eocene tectonics of the Central Taurus Mountains

    Directory of Open Access Journals (Sweden)

    Ergün AKAY

    1988-06-01

    Full Text Available In post-Eocene time, the Central Taurus mountains have been subjected to four episodes of compression in probably Upper Eocene — Lower Oligocene, Langhian, Upper Tortonian, and Upper Pliocene to recent times. In the Upper Eocene — Lower Oligocene compressional period, Ecemiş, and Beyşehir conjugate faults which have both vertical and lateral components have been formed after an N - S compression. In the Langhian compression period, the Lycian nappes were emplaced from the NW to SE and this tectonic movement has also effected the Antalya and the Adana Miocene basins. In the Upper Tortonian compression period, firstly a WSW-ENE compression has resulted in the formation of Aksu thrust, Kırkkavak oblique reverse fault, Köprüçay syncline, Beşkonak anticline, Radyoring anticline, Taşağıl syncline and Kargı reverse faults. In this period a later phase of N — S compression has formed Çakallar folds, Gökçeler normal fault, the smooth anticline in Mut Karaman and the syncline in Ulukışla. In the latest compressional period from Upper Pliocene to recent, first on E — W compression which can be recognized by some mesoscopic faults has been developed and later a N — S compression resulted in the formation of the active faults on Ecemiş and Gökçeler faults, and the Antalya bay graben.

  4. Heavy Metals in Spring and Bottled Drinking Waters of Sibylline Mountains National Park (Central Italy).

    Science.gov (United States)

    Annibaldi, Anna; Illuminati, Silvia; Truzzi, Cristina; Scarponi, Giuseppe

    2018-02-01

    Heavy metal concentrations (cadmium, lead, and copper) in spring, tap, and bottled waters of the Sibylline Mountains National Park (central Italy) were investigated using square wave anodic stripping voltammetry from 2004 to 2011. The mean (±SD) concentrations detected (1.3 ± 0.4 ng L -1 cadmium, 14 ± 6 ng L -1 lead, and 0.16 ± 0.10 μg L -1 copper) were below the limits stipulated by Italian and European legislation for drinking and natural mineral water. In the three studied areas of the park (Mount Bove north, Mount Bove south, and springs of River Nera) with very few exceptions, both mineral waters bottled in the area and aqueduct waters from public fountains had approximately the same metal concentrations as did the spring waters from which they were derived. Conversely, substantially higher metal concentrations were found at some sites in private houses, which may be due to release of metals from old metal pipes. At the time of this study, waters of Sibylline Mountains National Park were of good quality, and no influence of the bottling process on heavy metal concentrations was found.

  5. Exploration-systems approach to the Copper Mountain area uranium deposits, central Wyoming. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Sayala, D.; Lindgren, J.; Babcock, L.

    1982-09-01

    This report presents the results of multidisciplinary investigations of uranium deposits in the Copper Mountain District of central Wyoming. Although the studies on which the report is based began in 1977, work on the project has been discontinuous and was conducted partly by investigators no longer on the project. The project report represents an effort by the authors to compile and interpret the various data and to draw reasonable conclusions. Although an attempt is made to integrate, where possible, the results of different studies (or surveys), the report is organized into individual sections that present methods and results for each approach used. Investigations reported separately include geology, geochemistry, geophysics, and emanometry. These are aimed at characterizing and understanding the Copper Mountain uranium district and aiding in the detection of similar districts. A summary of overall project results, a comparison of the usefulness of individual approaches or combinations of approaches, and conclusions are presented in separate report sections for the project as a whole. All six sections in this report have been abstracted and indexed

  6. Cryogenic cave carbonates from the Cold Wind Cave, Nízke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian

    Directory of Open Access Journals (Sweden)

    Zak K.

    2009-07-01

    Full Text Available Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the Nízke Tatry Mountains(Slovakia, is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within anarrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontalcave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surroundingthe cave were less pronounced than today. The central part of the Nízke Tatry Mountains, together with the cave systems, wasuplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation ofnumerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout theQuaternary.In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonateranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C andO stable isotope compositions of the carbonate (δ13C: 0.72 to 6.34 ‰, δ18O: –22.61 to –13.68 ‰ V-PDB and the negative relationbetween δ13C and δ18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC. Publishedmodels suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably duringtransitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in thesequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.7±2.3, 104.0±2.9, and180.0±6.3 ka are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one caveduring two glacial periods (Saalian and Weichselian.

  7. Distribution of uranium 226Ra, 210Pb and 210Po in the ecological cycle in mountain regions of Central Yugoslavia

    International Nuclear Information System (INIS)

    Milosevic, Z.; Horsic, E.; Kljajic, R.; Bauman, A.

    1980-01-01

    The distribution of uranium, 226 Ra, 210 Pb and 210 Po in the uncultivated mountain regions of Central Yugoslavia was investigated. Samples of beef (meat and bones), milk, cheese, grass and podsolic soil were analyzed. The results showed that the distribution of these radionuclides in this ecologically unpolluted environment was no different from cultivated regions in other parts of the world. (UK)

  8. A measurement of the experience preferences of central Appalachian mountain bicyclists

    Science.gov (United States)

    Roy Ramthun; Jefferson D. Armistead

    2001-01-01

    As the sport of mountain biking has grown in popularity, many localities have begun to develop facilities and promote cycling based tourism. Unfortunately, these promotional efforts often occur with little knowledge of the characteristics and preferences of mountain bikers. This study was an initial effort to collect descriptive data on the riding, travel and spending...

  9. Assessment of relative active tectonics, south central Alborz (north Iran)

    Science.gov (United States)

    Khavari, R.; Ghorashi, M.; Arian, M.

    2009-04-01

    The paper present a method for evaluating relative active tectonics based on geomorphic indices useful in evaluating morphology and topography. Indices used include: stream length-gradient index (SL), drainage basin asymmetry (Af), hypsometric integral (Hi), ratio of valley-floor width to valley height (Vf), index of drainage basin shape (Bs), and index of mountain front sinuosity (Smf). Results from the analysis are accumulated and expressed as an index of relative active tectonics (Iat), which we divide into four classes from relatively low to highest tectonic activity. The study area along the south flank of the central Alborz mountain range in north Iran is an ideal location to test the concept of an index to predict relative tectonic activity on a basis of area rather than a single valley or mountain front. The recent investigations show that neotectonism has played a key role in the geomorphic evolution of this part of the Alborz mountain range. Geomorphic indices indicate the presence of differential uplifting in the geological past. The area surrounding the Amirkabir lake shows very high relative tectonic activity.

  10. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  11. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  12. New Structural Interpretation of the Central Confusion Range, Western Utah, Based On Balanced Cross Sections

    Science.gov (United States)

    Yezerski, D.; Greene, D. C.

    2009-12-01

    The Confusion Range is a topographically low mountain range in the Basin and Range of west-central Utah, located east of and in the hanging wall of the Snake Range core complex. Previous workers have used a gravity sliding model to interpret the Confusion Range as a large structural trough or synclinorium (e.g. Hose, 1977). Based on existing mapping (Hose, 1965; Hintze, 1974) and new field data, we use balanced and restored cross sections to reinterpret the structure of the Confusion Range as an east-vergent fold-and-thrust belt formed during the Sevier Orogeny. The Confusion Range consists of Cambro-Ordovician through Triassic strata, with predominantly thick-bedded, competent carbonate rocks in the lower Paleozoic (lPz) section and incompetent shales and thin-bedded carbonates in the upper Paleozoic (uPz) section. The contrasting mechanical behavior of these stratigraphic sections results in faulted folds within uPz carbonates above detachments in shale-rich units, deforming in response to ramp-flat thrust faulting of the underlying lPz units. East of the axis of the Conger Mountain (Mtn) syncline, we attribute the increase in structural elevation of lPz rocks to a subsurface thrust sheet consisting of lPz strata that advanced eastward via a high-angle ramp from a lower detachment in the Kanosh Shale to an upper detachment in the Pilot Shale. The doubling of lPz strata that resulted continues through the eastern Confusion Range where a series of small-displacement thrust faults comprising the Kings Canyon thrust system gently tilt strata to the west. In the Conger Range, west of the Conger Mtn syncline, our analysis focuses on reinterpreting the geometrically unlikely folding depicted in previous cross sections as more admissible, fault-cored, asymmetric, detached folding. In our interpretation, resistance created by a steeply-dipping thrust ramp in the lPz section west of Conger Mtn resulted in folding of uPz strata into an east-vergent anticline. Continued east

  13. Luminescence characteristics of quartz from Hsuehshan Range (Central Taiwan) and implications for thermochronometry

    International Nuclear Information System (INIS)

    Wu, Tzu-Shuan; Jain, Mayank; Guralnik, Benny; Murray, Andrew S.; Chen, Yue-Gau

    2015-01-01

    The mountain building processes in Taiwan are currently among the most rapid in the world. However, the spatial and temporal dynamics of this orogen are still poorly resolved within the <0.5 Ma timescale, reflecting methodological gaps in addressing young and rapid bedrock cooling by erosion. Optically Stimulated Luminescence (OSL) from quartz is an emerging thermochronometer that could potentially provide valuable low-temperature markers on a ∼0.1 Ma timescale. Here we study four meta-sandstone samples from the Hsuehshan Range in central Taiwan. We characterize the OSL from these samples in terms of feldspar contamination, saturation dose, signal components, and thermal stability. We conclude that the OSL is dominated by the fast component, and is therefore amenable to dose measurement using the SAR protocol. Based on the luminescence characteristics and ambient dose rate, we suggest that these samples may be valuable for evaluating recent cooling rates exceeding 360 ± 100 °C/Ma, in places where the alternative thermal scenarios (instantaneous cooling or prolonged isothermal storage) may be ruled out by external geological constraints. - Highlights: • Bedrock quartz with well-behaved luminescence characteristics are found in Taiwan. • Kinetic parameters for samples in this study are confirmed as typical quartz. • Quartz OSL-thermochronometer may work for cooling rate exceeding 360 ± 100 °C/Ma.

  14. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  15. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  16. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  17. Ecological wisdom of Hindu-Javanese community settlement in Cetho Hamlet, Lawu Mountains, Central Java, Indonesia

    Science.gov (United States)

    Ikhsan, Fauzan Ali; Setioko, Bambang; Suprapti, Atiek

    2017-12-01

    Dwelling culture of Java community has a long history. In Javanese community point of view, Javanese culture is not a homogeneous entity. There is a diversity characteristic of a regional nature of Javanese culture, which is caused by differences in the natural environment on the island of Java. Dwelling Culture settled in the mountains is a variant form of Javanese culture that has its own uniqueness. This study aimed to describe the local values of the rural settlement structure of in Lawu mountains with Hindu-Javanese culture background. This study used a qualitative approach with case study strategy. The locus of research is in the Cetho hamlet on the slopes of Mount Lawu Karanganyar, Central Java. The results showed that local values in the neighborhoods of Cetho hamlet is based on the Memayu Hayuning Bawana philosophy. These concepts are abstracted into various aspects of settlements in Cetho hamlet such as aspects of dwelling house setting, water management, and ritual activities related to environmental management. Memayu Hayuning Bawana philosophy becomes a cultural space coloring the ecological action of the population of Cetho hamlet. The comprehensive motivation of ecological action ultimately leads to one final goal, namely the desire to maintain a harmonic atmosphere with the surroundings.

  18. From the central Jura mountains to the molasse basin (France and Switzerland)

    International Nuclear Information System (INIS)

    Sommaruga, A.

    2011-01-01

    This illustrated article discusses the geology of the area covering the Swiss Jura chain of mountains and the molasse basin which is to be found to the south-east of the mountain chain. The geological setting with the Jura Mountains and the molasse basin are described, as are the rocks to be found there. Their structures and faults are discussed in detail and their origin and formation are described. The paper presents a number of geological profiles and maps. The methods used to explore these structures are noted, which also indicated the presence of permo-carboniferous troughs in the molasse basin

  19. From the central Jura mountains to the molasse basin (France and Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Sommaruga, A. [Institut de Géophysique, University of Lausanne, Bâtiment Amphipôle, Lausanne (Switzerland)

    2011-07-01

    This illustrated article discusses the geology of the area covering the Swiss Jura chain of mountains and the molasse basin which is to be found to the south-east of the mountain chain. The geological setting with the Jura Mountains and the molasse basin are described, as are the rocks to be found there. Their structures and faults are discussed in detail and their origin and formation are described. The paper presents a number of geological profiles and maps. The methods used to explore these structures are noted, which also indicated the presence of permo-carboniferous troughs in the molasse basin.

  20. A sightability model for mountain goats

    Science.gov (United States)

    Rice, C.G.; Jenkins, K.J.; Chang, W.-Y.

    2009-01-01

    Unbiased estimates of mountain goat (Oreamnos americanus) populations are key to meeting diverse harvest management and conservation objectives. We developed logistic regression models of factors influencing sightability of mountain goat groups during helicopter surveys throughout the Cascades and Olympic Ranges in western Washington during summers, 20042007. We conducted 205 trials of the ability of aerial survey crews to detect groups of mountain goats whose presence was known based on simultaneous direct observation from the ground (n 84), Global Positioning System (GPS) telemetry (n 115), or both (n 6). Aerial survey crews detected 77 and 79 of all groups known to be present based on ground observers and GPS collars, respectively. The best models indicated that sightability of mountain goat groups was a function of the number of mountain goats in a group, presence of terrain obstruction, and extent of overstory vegetation. Aerial counts of mountain goats within groups did not differ greatly from known group sizes, indicating that under-counting bias within detected groups of mountain goats was small. We applied HorvitzThompson-like sightability adjustments to 1,139 groups of mountain goats observed in the Cascade and Olympic ranges, Washington, USA, from 2004 to 2007. Estimated mean sightability of individual animals was 85 but ranged 0.750.91 in areas with low and high sightability, respectively. Simulations of mountain goat surveys indicated that precision of population estimates adjusted for sightability biases increased with population size and number of replicate surveys, providing general guidance for the design of future surveys. Because survey conditions, group sizes, and habitat occupied by goats vary among surveys, we recommend using sightability correction methods to decrease bias in population estimates from aerial surveys of mountain goats.

  1. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  2. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas.

    Science.gov (United States)

    Parrott, Joshua Curtis; Shepack, Alexander; Burkart, David; LaBumbard, Brandon; Scimè, Patrick; Baruch, Ethan; Catenazzi, Alessandro

    2017-06-01

    Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.

  3. Assessing wildfire exposure in the Wildland-Urban Interface area of the mountains of central Argentina.

    Science.gov (United States)

    Argañaraz, J P; Radeloff, V C; Bar-Massada, A; Gavier-Pizarro, G I; Scavuzzo, C M; Bellis, L M

    2017-07-01

    Wildfires are a major threat to people and property in Wildland Urban Interface (WUI) communities worldwide, but while the patterns of the WUI in North America, Europe and Oceania have been studied before, this is not the case in Latin America. Our goals were to a) map WUI areas in central Argentina, and b) assess wildfire exposure for WUI communities in relation to historic fires, with special emphasis on large fires and estimated burn probability based on an empirical model. We mapped the WUI in the mountains of central Argentina (810,000 ha), after digitizing the location of 276,700 buildings and deriving vegetation maps from satellite imagery. The areas where houses and wildland vegetation intermingle were classified as Intermix WUI (housing density > 6.17 hu/km 2 and wildland vegetation cover > 50%), and the areas where wildland vegetation abuts settlements were classified as Interface WUI (housing density > 6.17 hu/km 2 , wildland vegetation cover planning aimed at reducing wildfire risk in WUI communities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hildenbrandia rivularis (Rhodophyta in central Poland

    Directory of Open Access Journals (Sweden)

    Joanna Żelazna-Wieczorek

    2011-01-01

    Full Text Available Freshwater red algae Hildenbrandia rivularis has been noted for the first time in central Poland near the Lodz agglomeration. Until now, this alga was recorded only in mountain and Polish Lowland areas. The wide range of habitat conditions influencing the occurrence for this protected species has been determined in the spring niche. The possible threat to habitat where H. rivularis occurs, is connected with construction and exploitation of the A2 highway.

  5. Hildenbrandia rivularis (Rhodophyta) in central Poland

    OpenAIRE

    Joanna Żelazna-Wieczorek; Maciej Ziułkiewicz

    2011-01-01

    Freshwater red algae Hildenbrandia rivularis has been noted for the first time in central Poland near the Lodz agglomeration. Until now, this alga was recorded only in mountain and Polish Lowland areas. The wide range of habitat conditions influencing the occurrence for this protected species has been determined in the spring niche. The possible threat to habitat where H. rivularis occurs, is connected with construction and exploitation of the A2 highway.

  6. Natural foci of Borrelia lusitaniae in a mountain region of Central Europe.

    Science.gov (United States)

    Tarageľová, Veronika Rusňáková; Mahríková, Lenka; Selyemová, Diana; Václav, Radovan; Derdáková, Markéta

    2016-03-01

    Lyme borreliosis is the most prevalent tick-borne disease in Europe. It is caused by spirochaetes of the Borrelia burgdorferi sensu lato (s.l.) complex and transmitted to humans by ticks of the genus Ixodes. Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana are the most common genospecies in Central Europe. In contrast, Borrelia lusitaniae predominates in Mediterranean countries such as Portugal, Morocco, and Tunisia. In Slovakia, its prevalence is low and restricted to only a few sites. The aim of our research was to study the expansion of ticks into higher altitudes in the ecosystem of the Malá Fatra mountains (north Slovakia) and their infection with B. burgdorferi s.l. pathogens. Questing ticks were collected by flagging in seven years (2004, 2006-2011) at three different altitudes: low (630-660 m above sea level (ASL)), intermediate (720-750 m ASL), and high (1040-1070 m ASL). Tick abundance was highest at the lowest altitude and lowest at the highest altitude. The average infection prevalence of B. burgdorferi s.l. in nymphs and adults was 16.8% and 36.2%, respectively. The number of infected ticks decreased from 38.5% at the lowest altitude to 4.4% at the highest altitude. B. lusitaniae was the most frequently found genospecies (>60% of the ticks found positive for B. burgdorferi s.l.) in all sites in all the studied years with the exception of 2008 when B. afzelii predominated (62%). Our study confirms the spread of Ixodes ricinus ticks to higher altitudes in Slovakia. The discovery that our mountain study sites were a natural foci of B. lusitaniae was unexpected because this genospecies is usually associated with lizards and xerothermic habitats. Copyright © 2015 Elsevier GmbH. All rights reserved.

  7. Regional Comparative Unit Cost Studies for Maintenance and Operation of Physical Plants in Universities and Colleges in Central States Region and Rocky Mountain Region.

    Science.gov (United States)

    Association of Physical Plant Administrators, Corvallis, OR.

    Presented in this document are data pertaining to maintenance and operations costs at colleges and universities in the central states region and the Rocky Mountain region. The major accounts included in the cost analysis are: (1) physical plant administration, (2) building maintenance, (3) custodial services, (4) utilities, (5) landscape and…

  8. Preliminary hydrologic evaluation of the North Horn Mountain coal-resource area, Utah

    Science.gov (United States)

    Graham, M.J.; Tooley, John E.; Price, Don

    1981-01-01

    North Horn Mountain is part of a deeply dissected plateau in central Utah which is characterized by deep, narrow, steep-walled canyons with local relief of more than 1,000 feet. Geologic units exposed in the North Horn Mountain area range in age from Late Cretaceous to Holocene and contain two mineable seams of Cretaceous coal. The area is in the drainage basin of the San Rafael River, in the Colorado River Basin. Runoff from the mountain is ephemeral. This runoff to the San Rafael River is by way of Cottonwood and Perron Creeks and represents less than 10 percent of their average annual runoff. Probable peak discharges (100-year flood) for the ephemeral streams draining North Horn Mountain are estimated to range from 200 to 380 cubic feet per second.The chemical quality of surface water in the area is good. The water is generally of a calcium magnesium bicarbonate type with average dissolved solids less than 500 milligrams per liter. Annual sediment yield in most of the area ranges from 0.1 to 0.2 acre-foot per square mile but locally is as high as 1.0 acre-foot per square mile. Most of the sediment is eroded during cloudbursts.Most of the ground water above the coal on North Horn Mountain probably is in perched aquifers. These aquifers support the flow of small seeps and springs. In some areas, the regional water table appears to extend upward into the coal. The principal source of recharge is precipitation that probably moves to aquifers along faults, joints, or fractures. This movement is apparently quite rapid. The dissolved-solids concentrations of ground water in the North Horn Mountain area range from less than 500 to about 1,000 milligrams per liter.Coal mining on North Horn Mountain should have minor "effects on the quantity and quality of surface water. The maximum predicted decrease in the annual flow of Ferron and Cottonwood Creeks is less than U percent. The sediment loads of affected streams could be significantly increased if construction were to

  9. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China

    Science.gov (United States)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.

    1990-11-01

    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  10. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Science.gov (United States)

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  11. Anfibios de las Sierras Pampeanas Centrales de Argentina: diversidad y distribución altitudinal

    Directory of Open Access Journals (Sweden)

    Julián N. Lescano

    2015-09-01

    Full Text Available Amphibians from Sierras Pampeanas Centrales of Argentina: diversity and altitudinal distribution. Sierras Pampeanas Centrales (SPC mountains are located in Córdoba and San Luis provinces (Argentina and represent an area of unique biogeographic importance. In this paper we provide a synthesis about the knowledge of diversity and altitudinal distribution of anurans that inhabit SPC mountains. We compiled a species list through different information sources (field data, biological collections and bibliography. Using this information we characterize altitudinal distribution range of each species and analyze associations between species richness and composition and altitude gradient. We recorded 24 amphibians species belonging to five families. These species are heterogeneously distributed over the altitude gradient of SPC. We detect a linear negative relationship between altitude and species richness and defined assemblages associated with different altitude sectors. The results obtained in the paper represent basic information that will be useful to evaluate anthropogenic impact on this particular and fragile mountain system.

  12. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    Science.gov (United States)

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it

  13. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.

    1989-01-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab

  14. Territorial dynamics and stable home range formation for central place foragers.

    Directory of Open Access Journals (Sweden)

    Jonathan R Potts

    Full Text Available Uncovering the mechanisms behind territory formation is a fundamental problem in behavioural ecology. The broad nature of the underlying conspecific avoidance processes are well documented across a wide range of taxa. Scent marking in particular is common to a large range of terrestrial mammals and is known to be fundamental for communication. However, despite its importance, exact quantification of the time-scales over which scent cues and messages persist remains elusive. Recent work by the present authors has begun to shed light on this problem by modelling animals as random walkers with scent-mediated interaction processes. Territories emerge as dynamic objects that continually change shape and slowly move without settling to a fixed location. As a consequence, the utilisation distribution of such an animal results in a slowly increasing home range, as shown for urban foxes (Vulpes vulpes. For certain other species, however, home ranges reach a stable state. The present work shows that stable home ranges arise when, in addition to scent-mediated conspecific avoidance, each animal moves as a central place forager. That is, the animal's movement has a random aspect but is also biased towards a fixed location, such as a den or nest site. Dynamic territories emerge but the probability distribution of the territory border locations reaches a steady state, causing stable home ranges to emerge from the territorial dynamics. Approximate analytic expressions for the animal's probability density function are derived. A programme is given for using these expressions to quantify both the strength of the animal's movement bias towards the central place and the time-scale over which scent messages persist. Comparisons are made with previous theoretical work modelling central place foragers with conspecific avoidance. Some insights into the mechanisms behind allometric scaling laws of animal space use are also given.

  15. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  16. Long-range dependence in returns and volatility of Central European Stock Indices

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2010-01-01

    Roč. 2010, č. 3 (2010), s. 1-19 R&D Projects: GA ČR GD402/09/H045 Institutional research plan: CEZ:AV0Z10750506 Keywords : long-range dependence * rescaled range * modified rescaled range * bootstrapping Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-long-range dependence in returns and volatility of central european stock indices.pdf

  17. Equilibrium of vegetation and climate at the European rear edge. A reference for climate change planning in mountainous Mediterranean regions.

    Science.gov (United States)

    Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D

    2011-05-01

    Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.

  18. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  19. Late Eocene Uplift of the Al Hajar Mountains, Oman, Supported by Stratigraphy and Low-Temperature Thermochronology

    Science.gov (United States)

    Hansman, Reuben J.; Ring, Uwe; Thomson, Stuart N.; den Brok, Bas; Stübner, Konstanze

    2017-12-01

    Uplift of the Al Hajar Mountains in Oman has been related to either Late Cretaceous ophiolite obduction or the Neogene Zagros collision. To test these hypotheses, the cooling of the central Al Hajar Mountains is constrained by 10 apatite (U-Th)/He (AHe), 15 fission track (AFT), and four zircon (U-Th)/He (ZHe) sample ages. These data show differential cooling between the two major structural culminations of the mountains. In the 3 km high Jabal Akhdar culmination AHe single-grain ages range between 39 ± 2 Ma and 10 ± 1 Ma (2σ errors), AFT ages range from 51 ± 8 Ma to 32 ± 4 Ma, and ZHe single-grain ages range from 62 ± 3 Ma to 39 ± 2 Ma. In the 2 km high Saih Hatat culmination AHe ages range from 26 ± 4 to 12 ± 4 Ma, AFT ages from 73 ± 19 Ma to 57 ± 8 Ma, and ZHe single-grain ages from 81 ± 4 Ma to 58 ± 3 Ma. Thermal modeling demonstrates that cooling associated with uplift and erosion initiated at 40 Ma, indicating that uplift occurred 30 Myr after ophiolite obduction and at least 10 Myr before the Zagros collision. Therefore, this uplift cannot be related to either event. We propose that crustal thickening supporting the topography of the Al Hajar Mountains was caused by a slowdown of Makran subduction and that north Oman took up the residual fraction of N-S convergence between Arabia and Eurasia.

  20. Mountain cedar allergens found in nonpollen tree parts.

    Science.gov (United States)

    Goetz, D W; Goetz, M A; Whisman, B A

    1995-09-01

    Mountain cedar (Juniperus ashei) pollen is the principal aeroallergen in south central Texas from late December through February. The major mountain cedar allergen is a 40-kD glycoprotein, gp40. To identify allergens in mountain cedar wood, leaves, and berries and to detect mountain cedar allergen in smoke from burning male or female trees. SDS-PAGE plus mountain cedar human sIgE and monoclonal antibody immunoblots identified mountain cedar allergens within pollen and nonpollen tree part extracts. IgE immunoblots identified a single wood allergen at 36 kD and three berry allergens at 36, 26-27, and 21 kD, in addition to known pollen allergens. Mountain cedar monoclonal antibody bound an allergen epitope present not only on 40, 33, and 28-kD pollen allergens, but also on 36 and 32-kD wood allergens, and the 26-27-kD berry allergen. Immunoblot studies detected no mountain cedar allergen in leaves and no allergen in smoke from burning male and female trees. Allergens constituted a much smaller percentage of extractable protein in wood and berries than in pollen. Mountain cedar berry allergen content is too small to give credence to the ingestion of berries as a folk medicine treatment of mountain cedar pollinosis. In addition, while smoke from burning mountain cedar trees may be irritating, it contains no allergens that could cause allergic rhinoconjunctivitis.

  1. The Neogene molasse deposits of the Zagros Mountains in central Dezful Embayment: facies, sedimentary environments and controls

    Directory of Open Access Journals (Sweden)

    Ali Hossein Jalilian

    2016-03-01

    Full Text Available The upper part of Neogene sequence of the Zagros Mountains consists of a clastic succession which is identified as Aghajari and Bakhtyari formations. The sequence is an excellent example of synorogenic sedimentation or molasse deposited in northern portion of the Zagros foreland basin. Sedimentological analysis of an outcrop section representing Miocene-Pliocene sediments in central Dezful Embayment resulted in recognizing 9 lithofacies and 4 architectural elements. These lithofacies include conglometate (Gt, Gh, Gmm, sandstone (Sp, Sh, Sr, St and mudstone (Fm, Fl that were deposited in meandering stream, braided river and alluvial fan environments. Paleocurrent analysis of cross-beds, channels and asymmetric ripple marks indicate that these Neogene clastics were mainly drived from Cretaceous to Paleogene highlands in the Zagros Mountains on the north. This stratigraphic record is coarsening-upward and formed by a regressive depositional megacycle under arid climate. Facies and depositional history analysis show that sedimentation of the Zagros molasse was primarily controlled by base-level changes rather than catchment lithology or climate. The sedimentary record of this regressive megacycle reveales the base-level was constantly falling down on one hand and the provenance was uplifting on the other hand. Tectonic activities and Zagros Mountains rising in the Late Miocene resulted in deposition of fining-upward point-bar and floodplain sequences of the Aghajari Formation in low-gradient meandering streams. The Lahbari Member of the Aghajari Formation represents deposition in braided rivers that composed predominantly of flood-plain deposits in the Early Pliocene. Finally, the sedimentary cycle of the Zagros molasse deposits terminated with massive conglomerates of the Bakhtyari Formation deposited in large alluvial fans near the source area.

  2. Recognition of strong earthquake-prone areas (M ≥ 6.0) within mountain belts of Central Europe

    International Nuclear Information System (INIS)

    Gorshkov, Alexander I.; Soloviev, Alexander A.; Panza, Giuliano F.; Aoudia, Abdelkrim

    2003-06-01

    Within mountain belts of Central Europe we identify seismogenic nodes, specific structures formed at the intersections of fault zones. The nodes have been delineated with the morphostructural zoning method. Some of the delineated nodes host the crustal M ≥ 6.0 earthquakes. To identify all nodes where earthquakes with M ≥ 6.0 may occur, we have employed the pattern-recognition algorithm CORA- 3. The recognized seismogenic nodes are characterized by the contrast in neotectonic movements and by an increased fragmentation of the crust at depth. The results obtained indicate a high seismic potential for the studied area and provide important information for seismic hazard assessment: a number of nodes where strong events have not occurred so far, have been recognized prone to large earthquakes. (author)

  3. Central American Flying Weather

    Science.gov (United States)

    1985-12-01

    CEILING; VISIBILITY; WIND, PRECIPITATIDNc’--." HAZE, SMOKE, TEMPORALE ; MOUNTAIN WAVE; MILITARY METEOROLOGY. 4k- / ’A. bstract; Asummary of~ing weather...1 The " Temporale " ....................................1 Mountain Waves ......................I...............1 Severe Thunderstorms...charts. The for any part of Central America lies in having: Tactical Pilota.e Chart series , produced by the Df -.nse Mapping Agency, is * A good, basic

  4. Spatial Patterns of Species Diversity and Phylogenetic Structure of Plant Communities in the Tianshan Mountains, Arid Central Asia

    Directory of Open Access Journals (Sweden)

    Hong-Xiang Zhang

    2017-12-01

    Full Text Available The Tianshan Mountains, located in arid Central Asia, have a humid climate and are biodiversity hotspots. Here, we aimed to clarify whether the pattern of species diversity and the phylogenetic structure of plant communities is affected by environmental variables and glacial refugia. In this study, plant community assemblies of 17 research sites with a total of 35 sample plots were investigated at the grassland/woodland boundaries on the Tianshan Mountains. Community phylogeny of these plant communities was constructed based on two plant DNA barcode regions. The indices of phylogenetic diversity and phylogenetic community structure were calculated for these sample plots. We first estimated the correlation coefficients between species richness (SR and environmental variables as well as the presence of glacial refugia. We then mapped the significant values of indices of community phylogeny (PD, RPD, NRI, and NTI to investigate the correlation between community phylogeny and environmental structure or macrozones in the study area. The results showed that a significantly higher value of SR was obtained for the refugial groups than for the colonizing groups (P < 0.05; presence of refugia and environmental variables were highly correlated to the pattern of variation in SR. Indices of community phylogeny were not significantly different between refugial and colonizing regions. Comparison with the humid western part showed that plant communities in the arid eastern part of the Tianshan Mountains tended to display more significant phylogenetic overdispersion. The variation tendency of the PhyloSor index showed that the increase in macro-geographical and environmental distance did not influence obvious phylogenetic dissimilarities between different sample plots. In conclusion, glacial refugia and environmental factors profoundly influenced the pattern of SR, but community phylogenetic structure was not affected by glacial refugia among different plant

  5. Long-lived Control of Sierras Pampeanas Ranges on Andean Foreland Basin Evolution Revealed by Coupled Low-temperature Thermochronology and Sedimentology

    Science.gov (United States)

    Stevens Goddard, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.

    2017-12-01

    The Sierras Pampeanas ranges of west-central Argentina (28º- 31ºS) are a classic example of thick-skinned style basement block uplifts. The style and timing of uplift in these mountain ranges has widely been attributed to the onset of flat-slab subduction in the middle to late Miocene. However, the majority of low-temperature thermochronometers in the Sierras Pampeanas have much older cooling dates. Thermal modeling derived from new low-temperature thermochronometers in Sierra de Velasco, one of the highest relief (> 4 km) mountains in the Sierras Pampeanas, suggest that the rocks in these ranges have been at near-surface temperatures (history of long-lived topography illustrated in Sierra de Velasco can be expanded to other ranges in the Sierras Pampeanas by integrating multiple data sets.

  6. Estimating abundance of mountain lions from unstructured spatial sampling

    Science.gov (United States)

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and

  7. Glacier Monitoring and Capacity Building: Important Ingredients for Sustainable Mountain Development

    Directory of Open Access Journals (Sweden)

    Samuel U. Nussbaumer

    2017-02-01

    Full Text Available Glacier observation data from major mountain regions of the world are key to improving our understanding of glacier changes: they deliver fundamental baseline information for climatological, hydrological, and hazard assessments. In many mountain ecosystems, as well as in the adjacent lowlands, glaciers play a crucial role in freshwater provision and regulation. This article first presents the state of the art on glacier monitoring and related strategies within the framework of the Global Terrestrial Network for Glaciers (GTN-G. Both in situ measurements of changes in glacier mass, volume, and length as well as remotely sensed data on glacier extents and changes over entire mountain ranges provide clear indications of climate change. Based on experiences from capacity-building activities undertaken in the Tropical Andes and Central Asia over the past years, we also review the state of the art on institutional capacity in these regions and make further recommendations for sustainable mountain development. The examples from Peru, Ecuador, Colombia, and Kyrgyzstan demonstrate that a sound understanding of measurement techniques and of the purpose of measurements is necessary for successful glacier monitoring. In addition, establishing durable institutions, capacity-building programs, and related funding is necessary to ensure that glacier monitoring is sustainable and maintained in the long term. Therefore, strengthening regional cooperation, collaborating with local scientists and institutions, and enhancing knowledge sharing and dialogue are envisaged within the GTN-G. Finally, glacier monitoring enhances the resilience of the populations that depend on water resources from glacierized mountains or that are affected by hazards related to glacier changes. We therefore suggest that glacier monitoring be included in the development of sustainable adaptation strategies in regions with glaciated mountains.

  8. The White Mountain Recreational Enterprise: Bio-Political Foundations for White Mountain Apache Natural Resource Control, 1945–1960

    Directory of Open Access Journals (Sweden)

    David C. Tomblin

    2016-07-01

    Full Text Available Among American Indian nations, the White Mountain Apache Tribe has been at the forefront of a struggle to control natural resource management within reservation boundaries. In 1952, they developed the first comprehensive tribal natural resource management program, the White Mountain Recreational Enterprise (WMRE, which became a cornerstone for fighting legal battles over the tribe’s right to manage cultural and natural resources on the reservation for the benefit of the tribal community rather than outside interests. This article examines how White Mountain Apaches used the WMRE, while embracing both Euro-American and Apache traditions, as an institutional foundation for resistance and exchange with Euro-American society so as to reassert control over tribal eco-cultural resources in east-central Arizona.

  9. Developing landscape habitat models for rare amphibians with small geographic ranges: a case study of Siskiyou Mountains salamanders in the western USA

    Science.gov (United States)

    Nobuya Suzuki; Deanna H. Olson; Edward C. Reilly

    2007-01-01

    To advance the development of conservation planning for rare species with small geographic ranges, we determined habitat associations of Siskiyou Mountains salamanders (Plethodon stormi) and developed habitat suitability models at fine (10 ha), medium (40 ha), and broad (202 ha) spatial scales using available geographic information systems data and...

  10. Historic Frequency and Severity of Fire in Whitebark Pine Forests of the Cascade Mountain Range, USA

    Directory of Open Access Journals (Sweden)

    Michael P. Murray

    2018-02-01

    Full Text Available Whitebark pine (Pinus albicaulis Engelm. is a foundation species of high elevation forest ecosystems in the Cascade Mountain Range of Oregon, Washington, and British Columbia. We examined fire evidence on 55 fire history sites located in the Cascade Range. To estimate dates of historic fires we analyzed 57 partial cross-sections from fire-scarred trees plus 700 increment cores. The resulting 101 fire events indicate fire has been a widespread component of Cascadian whitebark pine stands. Results are site specific and vary considerably. Whitebark pine stands appear to burn in a variety of severities and frequencies. Sites where fire intervals were detected ranged from 9 to 314 years, with a median of 49 years, and averaging 67 years. Fire intervals shortened significantly with higher latitudes. In assessing the most recent fire event at each site, overall, 56 percent burned as stand replacing events. In the 20th century, the number of fires diminished significantly. Due to conservation imperatives, re-introducing fire should be undertaken with extreme care to avoid substantial mortality of this endangered species.

  11. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age

    Science.gov (United States)

    Zhang, Qian; Yi, Chaolu; Fu, Ping; Wu, Yubin; Liu, Jinhua; Wang, Ninglian

    2018-04-01

    Delineating glacier change during the Little Ice Age (LIA) is of great importance when attempting to understand regional climatic changes and can also help to improve the understanding of any predictions of future glacial changes. However, such knowledge is still lacking for some critical regions of the Tibetan Plateau (TP). In this study, we mapped 4188 contemporary glaciers and reconstructed 1216 LIA areas of glacial coverage in the Gangdise Mountains to the north of the Himalaya using Google Earth satellite imagery. We estimated their paleoglacial areas and equilibrium line altitudes (ELAs) based on the toe-to-headwall altitude ratio (THAR) method. Results show that most glaciers are small (ELA ranges from 5516 to 6337 m asl; the LIA ELA ranged from 5476 to 6329 m asl. Contemporary and LIA ELA values rise from southeast to northwest. As a general rule, the rise in the ELA value decreases from the eastern to the central Gangdise Mountains and then increases westward, with a mean ELA rise of 45 m. Multiple regression models suggest that 46.8% of the glacier area loss can be explained by glacier elevation, area, and slope. However, only 15.5% of the rise in ELA values can be explained by glacial geometric, topographic, or locational parameters. The spatial pattern of modern ELA values in this region appears inversely related to precipitation, which decreases from southeast to northwest, implying that precipitation is one of the key controls of ELAs. This is also consistent with results from elsewhere in High Asia. In contrast to the Gangdise Mountains' eastern and western sectors, glaciers in the central sector have undergone less change, i.e., in terms of reductions in length, area loss, and rises in ELA. Topography can of course also influence glacial change by creating shielding and/or rainshadow effects and by affecting local temperatures.

  12. Unraveling the diversification history of grasshoppers belonging to the “Trimerotropis pallidipennis” (Oedipodinae: Acrididae species group: a hotspot of biodiversity in the Central Andes

    Directory of Open Access Journals (Sweden)

    Noelia Verónica Guzmán

    2017-09-01

    Full Text Available The Andean Mountain range has been recognized as one of the biodiversity hotspots of the world. The proposed mechanisms for such species diversification, among others, are due to the elevation processes occurring during the Miocene and the intensive glacial action during the Pleistocene. In this study we investigated the diversification history of the grasshopper Trimerotropis pallidipennis species complex which shows a particularly wide latitudinal and altitudinal distribution range across the northern, central and southern Andes in South America. Many genetic lineages of this complex have been so far discovered, making it an excellent model to investigate the role of the central Andes Mountains together with climatic fluctuations as drivers of speciation. Phylogenetics, biogeographic and molecular clock analyses using a multi-locus dataset revealed that in Peru there are at least two, and possibly four genetic lineages. Two different stocks originated from a common ancestor from North/Central America—would have dispersed toward southern latitudes favored by the closure of the Panama Isthmus giving rise to two lineages, the coastal and mountain lineages, which still coexist in Peru (i.e., T. pallidipennis and T. andeana. Subsequent vicariant and dispersal events continued the differentiation process, giving rise to three to six genetic lineages (i.e., clades detected in this study, which were geographically restricted to locations dispersed over the central Andes Mountains in South America. Our results provide another interesting example of “island diversification” motored by the topography plus unstable climatic conditions during the Pleistocene, pointing out the presence of a hotspot of diversification in the Andean region of Peru.

  13. Monarch (Danaus plexippus L. Nymphalidae) migration, nectar resources and fire regimes in the Ouachita Mountains of Arkansas

    Science.gov (United States)

    D. Craig Rudolph; Charles A. Ely; Richard R. Schaefer; J. Howard Williamson; Ronald E. Thill

    2006-01-01

    Monarchs (Danaus plexippus) pass through the Ouachita Mountains in large numbers in September and October on their annual migration to overwintering sites in the Transvolcanic Belt of central Mexico. Monarchs are dependent on nectar resources to fuel their migratory movements. In the Ouachita Mountains of west-central Arkansas migrating monarchs...

  14. 10Be exposure age chronology of the last glaciation of the Roháčská Valley in the Western Tatra Mountains, central Europe

    Science.gov (United States)

    Engel, Zbyněk; Mentlík, Pavel; Braucher, Régis; Křížek, Marek; Pluháčková, Markéta; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim; Aster Team; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim

    2017-09-01

    10Be exposure ages from moraines and bedrock sites in the Roháčská Valley provide chronology of the last glaciation in the largest valley of the Western Tatra Mts., the Western Carpathians. The minimum apparent exposure age of 19.4 ± 2.1 ka obtained for the oldest sampled boulder and the mean age of 18.0 ± 0.8 ka calculated for the terminal moraine indicate that the oldest preserved moraine was probably deposited at the time of the global Last Glacial Maximum (LGM). The age of this moraine coincides with the termination of the maximum glacier expansion in other central European ranges, including the adjacent High Tatra Mts. and the Alps. The equilibrium line altitude (ELA) of the LGM glacier in the Roháčská Valley, estimated at 1400-1410 m a.s.l., was 50-80 m lower than in the eastern part of the range, indicating a positive ELA gradient from west to east among the north-facing glaciers in the Tatra Mts. Lateglacial glacier expansion occurred no later than 13.4 ± 0.5 ka and 11.9 ± 0.5 ka, as indicated by the mean exposure ages calculated for re-advance moraines. This timing is consistent with the exposure age chronology of the last Lateglacial re-advance in the High Tatra Mts., Alps and lower mountain ranges in central Europe. The ELA in the Roháčská Valley estimated at 1690-1770 m a.s.l. in this period was located 130-300 m lower than in the north-facing valleys in the High Tatra Mts. 10Be exposure ages obtained for a rock glacier constrains the timing of this landform stabilization in the Salatínska Valley and provides the first chronological evidence for the Lateglacial activity of rock glaciers in the Carpathians.

  15. Rocky Mountain spotted fever, Panama.

    Science.gov (United States)

    Estripeaut, Dora; Aramburú, María Gabriela; Sáez-Llorens, Xavier; Thompson, Herbert A; Dasch, Gregory A; Paddock, Christopher D; Zaki, Sherif; Eremeeva, Marina E

    2007-11-01

    We describe a fatal pediatric case of Rocky Mountain spotted fever in Panama, the first, to our knowledge, since the 1950s. Diagnosis was established by immunohistochemistry, PCR, and isolation of Rickettsia rickettsii from postmortem tissues. Molecular typing demonstrated strong relatedness of the isolate to strains of R. rickettsii from Central and South America.

  16. Climatic niche of Selinum alatum (Apiaceae, Selineae), a new invasive plant species in Central Europe and its alterations according to the climate change scenarios: Are the European mountains threatened by invasion?

    Science.gov (United States)

    Konowalik, Kamil; Proćków, Małgorzata; Proćków, Jarosław

    2017-01-01

    In recent years, a few established populations of Selinum alatum have been found in the Eastern Carpathians outside its native range that is the Caucasus and the Armenian Highlands. The species is spreading predominantly in Poland where it can outcompete native plants in certain cases. This study addresses a potential climatic niche of the plant with the special aims to illuminate future spreading and indicate areas suitable for invasion. Our results show that the extent of the favourable habitat of the species is broader than currently known. This suggests that the plant has the ability to become a potential new element in some semi-natural or disturbed ecosystems associated with mountainous areas, especially in Central and Southern Europe. Future (2070) models mostly rendered similar suitability maps, but showed slight differences over particular areas and a contraction of suitable habitats, mainly in the northern part of the non-native range.

  17. Climatic modulation of seismicity in the Alpine-Himalayan mountain range

    International Nuclear Information System (INIS)

    Panza, G.F.; Peresan, A.; Zuccolo, E.

    2009-04-01

    The influence of strain field variations associated with seasonal and longer term climatic phenomena on earthquake occurrence is investigated. Two regions (Himalaya and Alps), characterized by present day mountain building and relevant glaciers retreat, as well as by sufficiently long earthquake catalogues, are suitable for the analysis. Secular variations of permanent glaciers dimensions, which are naturally grossly correlated with long-term average surface atmosphere temperature changes, as well as seasonal snow load, cause crustal deformations that modulate seismicity. (author)

  18. Anticipating Central Asian Water Stress: Variation in River Flow Dependency on Melt Waters from Alpine to Plains in the Remote Tien Shan Range, Kyrgyzstan Using a Rapid Hydro Assessment Methodology

    Science.gov (United States)

    Hill, A. F.; Wilson, A. M.; Williams, M. W.

    2016-12-01

    The future of mountain water resources in High Asia is of high interest to water managers, development organizations and policy makers given large populations downstream reliant on snow and ice sourced river flow. Together with historical and cultural divides among ex-Soviet republics, a lack of central water management following the Soviet break-up has led to water stress as trans-boundary waters weave through and along borders. New upstream hydropower development, a thirsty downstream agricultural sector and a shrinking Aral Sea has led to increasing tension in the region. Despite these pressures and in contrast to eastern High Asia's Himalayan basins (Ganges, Brahmaputra), little attention has been given to western High Asia draining the Pamir and Tien Shan ranges (Syr Darya and Amu Darya basins) to better understand the hydrology of this vast and remote area. Difficult access and challenging terrain exacerbate challenges to working in this remote mountain region. As part of the Contributions to High Asia Runoff from Ice and Snow (CHARIS) project, we asked how does river flow source water composition change over an alpine-to-plains domain of Kyrgyzstan's Naryn River in the Syr Darya basin? In addition, what may the future hold for river flow in Central Asia given the differing responses of snow and ice to climate changes? Utilizing a Rapid Hydrologic Assessment methodology including a suite of pre-field mapping techniques we collected in situ water chemistry data at targeted, remote mountain sites over 450km of the Naryn River over an elevation gradient from glacial headwaters to the lower lying areas - places where people, hydropower and agriculture utilize water. Chemical and isotope tracers were used to separate stream flow to understand relative dependency on melt waters as the river moves downstream from glaciers and snow covered areas. This case study demonstrates a technique to acquire field data over large scales in remote regions that facilitates

  19. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  20. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  1. Estimating background denudation rates and delivery of landslide sediment from a time series of 10Be concentrations in landslide dominated basins in the southern Central Range of Taiwan

    Science.gov (United States)

    Chen, C. Y.; Willett, S.; West, A. J.; Dadson, S. J.; Hovius, N.; Christl, M.; Shyu, J. B. H.

    2017-12-01

    The southern Central Range of Taiwan is located at a tectonic transition zone between an oceanic subduction zone and the arc-continent collision forming the Taiwan orogen. The rapidly evolving tectonic setting, tropical climate and frequent typhoons result in a complex uplift pattern, transient landscapes and extensive landslides. For this study, we obtained a series of 10Be concentrations over the last decade for 13 major drainage basins in the southern Central Range, bracketing the occurrence of a major typhoon, Morakot, which hit Taiwan in 2009 and triggered thousands of landslides. This time series allows us to simultaneously estimate the background erosion rate and assess the impact of Morakot-triggered landslides on 10Be concentrations. The time series of 10Be concentrations shows temporally lower concentrations of 10Be indicating dilution following the Morakot event in most basins. The diluted 10Be concentrations imply erosion rates up to three times higher than the lowest measured rates in the same basins. We constructed a simple sediment-mixing model parameterized by a sudden input of sediment supplied from landslides superimposed on a background denudation rate. This model was calibrated to measured landslide inventories and the series of 10Be data. We obtain a range of permissible background erosion rate and fraction of landslide sediments over time for each basin. The inferred background erosion rate reveals a northward increasing trend, reflecting the initial stage of the mountain building and indicating tectonic forcing is the main driver of the landscape evolution in the southern Central Range. The temporal changes in fraction of landslide sediments show that the available landslide material generated by the Morakot event is decreasing over time with a timescale of several years.

  2. Changing climate and endangered high mountain ecosystems in Colombia.

    Science.gov (United States)

    Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea

    2008-07-15

    High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these

  3. Mountain goat abundance and population trends in the Olympic Mountains, Washington, 2011

    Science.gov (United States)

    Jenkins, Kurt; Happe, Patricia; Griffin, Paul C.; Beirne, Katherine; Hoffman, Roger; Baccus, William

    2011-01-01

    We conducted an aerial helicopter survey between July 18 and July 25, 2011, to estimate abundance and trends of introduced mountain goats (Oreamnos americanus) in the Olympic Mountains. The survey was the first since we developed a sightability correction model in 2008, which provided the means to estimate the number of mountain goats present in the surveyed areas and not seen during the aerial surveys, and to adjust for undercounting biases. Additionally, the count was the first since recent telemetry studies revealed that the previously defined survey zone, which was delineated at lower elevations by the 1,520-meter elevation contour, did not encompass all lands used by mountain goats during summer. We redefined the lower elevation boundary of survey units before conducting the 2011 surveys in an effort to more accurately estimate the entire mountain goat population. We surveyed 39 survey units, comprising 39 percent of the 59,615-hectare survey area. We estimated a mountain goat population of 344±44 (standard error, SE) in the expanded survey area. Based on this level of estimation uncertainty, the 95-percent confidence interval ranged from 258 to 430 mountain goats at the time of the survey. To permit comparisons of mountain goat populations between the 2004 and 2011 surveys, we recomputed population estimates derived from the 2004 survey using the newly developed bias correction methods, and we computed the 2004 and 2011 surveys based on comparable survey zone definitions (for example, using the boundaries of the 2004 survey). The recomputed estimates of mountain goat populations were 217±19 (SE) in 2004 and 303±41(SE) in 2011. The difference between the current 2011 population estimate (344±44[SE]) and the recomputed 2011 estimate (303±41[SE]) reflects the number of mountain goats counted in the expanded lower elevation portions of the survey zone added in 2011. We conclude that the population of mountain goats has increased in the Olympic Mountains at

  4. Logs of Paleoseismic Excavations Across the Central Range Fault, Trinidad

    Science.gov (United States)

    Crosby, Christopher J.; Prentice, Carol S.; Weber, John; Ragona, Daniel

    2009-01-01

    This publication makes available maps and trench logs associated with studies of the Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. Our studies were conducted in 2001 and 2002. We mapped geomorphic features indicative of active faulting along the right-lateral, Central Range Fault, part of the South American-Caribbean plate boundary in Trinidad. We excavated trenches at two sites, the Samlalsingh and Tabaquite sites. At the Samlalsingh site, sediments deposited after the most recent fault movement bury the fault, and the exact location of the fault was unknown until we exposed it in our excavations. At this site, we excavated a total of eleven trenches, six of which exposed the fault. The trenches exposed fluvial sediments deposited over a strath terrace developed on Miocene bedrock units. We cleaned the walls of the excavations, gridded the walls with either 1 m X 1 m or 1 m X 0.5 m nail and string grid, and logged the walls in detail at a scale of 1:20. Additionally, we described the different sedimentary units in the field, incorporating these descriptions into our trench logs. We mapped the locations of the trenches using a tape and compass. Our field logs were scanned, and unit contacts were traced in Adobe Illustrator. The final drafted logs of all the trenches are presented here, along with photographs showing important relations among faults and Holocene sedimentary deposits. Logs of south walls were reversed in Illustrator, so that all logs are drafted with the view direction to the north. We collected samples of various materials exposed in the trench walls, including charcoal samples for radiocarbon dating from both faulted and unfaulted deposits. The locations of all samples collected are shown on the logs. The ages of seventeen of the charcoal samples submitted for radiocarbon analysis at the University of Arizona Accelerator Mass Spectrometry Laboratory in Tucson, Ariz., are given in Table 1. Samples found in

  5. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    Science.gov (United States)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  6. Current re-vegetation patterns and restoration issues in degraded geological phosphorus-rich mountain areas: A synthetic analysis of Central Yunnan, SW China

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2017-06-01

    Full Text Available China has the largest area of inland geological phosphorus-rich (GPR mountains in the world, where vegetation restoration is key to safeguarding the environment. We reviewed the published literature and collected new data in order to analyze re-vegetation patterns and the status of plant communities in central Yunnan. The aim of our analysis was to suggest future improvements to restoration strategies in GPR mountain regions. Our results showed that spontaneous recovery was the most widespread type of restoration. N-fixing species such as Coriaria nepalensis and Alnus nepalensis play a vital role in succession. In the past, monoculture tree plantation was the primary method used in afforestation activities in central Yunnan; in recent years however, several different methods of restoration have been introduced including the use of agroforestry systems. For practical restoration, we found that spontaneous recovery was capable of delivering the best results, but that during its early stages, restoration results were affected by several factors including erosion risk, the origin of propagates and environmental variation. In contrast, methods employing human-made communities performed better in their early stages, but were constrained by higher costs and vulnerability to degradation and erosion. The use of N-fixing species such as A. nepalensis and Acacia mearnsii in plantations were unsuccessful in restoring full ecosystem functions. The success of restoration activities in GPR mountain regions could be improved through the following measures: (1 developing a better understanding of the respective advantages and disadvantages of current natural and human-engineered restoration approaches; (2 elucidating the feedback mechanism between phosphorus-rich soil and species selected for restoration, especially N-fixing species; (3 introducing market incentives aimed at encouraging specific restoration activities such as agroforestry, and improving the

  7. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms.

    Directory of Open Access Journals (Sweden)

    Jeanne A Robert

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.

  8. Floristic changes at Khersan Glacier Territory, Alamkuh Mountain, Central Alborz, North of Iran

    Directory of Open Access Journals (Sweden)

    KOUROSH KAVOUSI

    2016-02-01

    Full Text Available Abstract. Kavousi K, Nejadsattari T, Asri Y, Ejtehadi H, Khavari-Nejad RA. 2016. Floristic changes at Khersan Glacier Territory, Alamkuh Mountain, Central Alborz, North of Iran. Biodiversitas 17: 11-15. Extensive investigation in subnival-nival area around Khersan glacier moraine introduced 71 vascular plant species. From this list 43 species have been listed in Noroozi (2001 in “ subnival-nival vascular plant species of Iran : a unique high mountain flora and its threat from climate warming ” and the others are new for subnival- nival area of Iran. Among this plant list 31 species had introduced with Kotschy (1861a,b, Bornmuller (1904, Melchior (1937, Klein (1982, european researchers and the other is named for the first time from Khersan glacier territory. Many species such as Astragalus macrosemius, Pseudocamelina kleinii, Crepis multicaulis subsp. congesta, Didymophysa fedtschenkoana and Draba melanopus due to glacier condition have very sensitive habitat, vulnerable and only gathered from restrict area with conservation value. Vegetation change happened in many nival and subnival area with upward movement in the same habitat and movement from lower altitude at alpine towards summit in subnival and nival. Carex oreophila, Campanula stevenii, Bromus barchystachyus, Oxytropis immersa, Erigeron uniflorus,Trachydium pauciradiatum, Scorzonera radicosa and some other species are surprisingly movement to subnival area and many nival and subnival species such as Didymophysa aucheri, Didymophysa fedtschenkoana, Dracocephalum aucheri and Arabis caucasica have come significantly upward in nival. The movement is different in all side of Khersan glacier moraine in north, south and the east (beside moraine tongue slops and limited with presence of soil natural generation and other ecological remarks. Limitation for soil generation starts at different altitude in northern, southern and eastern slopes of Khersan glacier valley. This study examined

  9. Seroprevalence of Toxoplasma gondii in American Black Bears ( Ursus americanus ) of the Central Appalachians, USA.

    Science.gov (United States)

    Cox, John J; Murphy, Sean M; Augustine, Ben C; Guthrie, Joseph M; Hast, John T; Maehr, Sutton C; McDermott, Joseph

    2017-07-01

    We assessed Toxoplasma gondii seroprevalence in 53 free-ranging American black bears ( Ursus americanus ) in the Central Appalachian Mountains, US. Seroprevalence was 62% with no difference between males and females or between juvenile and adult bears. Wildlife agencies should consider warnings in hunter education programs to reduce the chances for human infection from this source.

  10. Human impacts to mountain streams

    Science.gov (United States)

    Wohl, Ellen

    2006-09-01

    Mountain streams are here defined as channel networks within mountainous regions of the world. This definition encompasses tremendous diversity of physical and biological conditions, as well as history of land use. Human effects on mountain streams may result from activities undertaken within the stream channel that directly alter channel geometry, the dynamics of water and sediment movement, contaminants in the stream, or aquatic and riparian communities. Examples include channelization, construction of grade-control structures or check dams, removal of beavers, and placer mining. Human effects can also result from activities within the watershed that indirectly affect streams by altering the movement of water, sediment, and contaminants into the channel. Deforestation, cropping, grazing, land drainage, and urbanization are among the land uses that indirectly alter stream processes. An overview of the relative intensity of human impacts to mountain streams is provided by a table summarizing human effects on each of the major mountainous regions with respect to five categories: flow regulation, biotic integrity, water pollution, channel alteration, and land use. This table indicates that very few mountains have streams not at least moderately affected by land use. The least affected mountainous regions are those at very high or very low latitudes, although our scientific ignorance of conditions in low-latitude mountains in particular means that streams in these mountains might be more altered than is widely recognized. Four case studies from northern Sweden (arctic region), Colorado Front Range (semiarid temperate region), Swiss Alps (humid temperate region), and Papua New Guinea (humid tropics) are also used to explore in detail the history and effects on rivers of human activities in mountainous regions. The overview and case studies indicate that mountain streams must be managed with particular attention to upstream/downstream connections, hillslope

  11. Subpixel Snow-covered Area Including Differentiated Grain Size from AVIRIS Data Over the Sierra Nevada Mountain Range

    Science.gov (United States)

    Hill, R.; Calvin, W. M.; Harpold, A. A.

    2016-12-01

    Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.

  12. Leaf litter copepods from a cloud forest mountain top in Honduras (Copepoda: Cyclopidae, Canthocamptidae).

    Science.gov (United States)

    Fiers, Frank; Jocque, Merlijn

    2013-01-01

    Five different species of Copepoda were extracted from a leaf litter sample collected on the top (at 2000 m a.s.l.) of a cloud forested mountain in El Cusuco National Park, Honduras. Three of them, one Cyclopidae and two Canthocamptidae are new to science, and are described herein. Olmeccyclops hondo sp. nov. is the second representative thus far known of this New World genus. Moraria catracha sp. nov. and Moraria cusuca sp. nov. are the first formally described members of the genus occurring in Central America. The concept of a "Moraria-group" is considered to be an artificial grouping and is limited here to the genera Moraria and Morariopsis only. The distributional range of this group is essentially Holarctic, with the mountainous regions in Honduras, and probably in west Nicaragua, as the southernmost limits in the New World.

  13. Bridging Glaciological and Hydrological Trends in the Pamir Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    Malte Knoche

    2017-06-01

    Full Text Available With respect to meteorological changes and glacier evolution, the southern Pamir Mountains are a transition zone between the Pamirs, Hindu Kush and Karakoram, which are water towers of Central Asia. In this study, we compare runoff and climate trends in multiple time periods with glacial changes reported in the literature. Recent glacier evolution in the Southern Pamirs and its contribution to river runoff are studied in detail. Uncertainties of estimating glacier retreat contribution to runoff are addressed. Runoff trends in the Pamir-Hindu Kush-Karakoram region appear to be a strong proxy for glacier evolution because they exhibit the same spatial pattern as glacial change. There is an anomaly in the North-West Pamirs and Northern Karakoram, showing decreasing runoff trends. In the opposite way, there is a glacier and hydrological change experienced in the Southern Pamirs and Hindu Kush. The prevailing hypothesis for the Karakoram Anomaly, decreasing summer temperatures along with increasing precipitation rates, seems to be valid for the North-Western Pamirs, as well. In the Southern Pamirs, temperature trends have been rising since 1950. Here, the unique water cycle of exclusively winter precipitation does not protect glaciers from accelerated retreat. Snow cover is preset to melt within the seasonal water cycle, due to much lower precipitation amounts falling on glaciers. Therefore, a probable increase in westerly precipitation in both regions causes glacier mass gain in the Northern Pamirs and rising river flows in the Southern Pamirs.

  14. Long-range dependence in returns and volatility of Central European Stock Indices

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2010-01-01

    Roč. 17, č. 27 (2010), s. 50-67 ISSN 1212-074X R&D Projects: GA ČR GD402/09/H045; GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 5183/2010 Institutional research plan: CEZ:AV0Z10750506 Keywords : long-range dependence * bootstrapping * rescaled range analysis * rescaled variance analysis Subject RIV: AH - Economics http://library.utia.cas.cz/separaty/2010/E/kristoufek-long-range dependence in returns and volatility of central european stock indices bces.pdf

  15. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    Directory of Open Access Journals (Sweden)

    T. Mochizuki

    2016-11-01

    Full Text Available To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16 were analyzed for normal (C1–C10, branched chain (iC4–iC6, aromatic (benzoic and toluic acid isomers, and hydroxyl (glycolic and lactic monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC. Acetic acid (C2 was found to be a dominant species (average 125 ng g−1, followed by formic acid (C1 (85.7 ng g−1 and isopentanoic acid (iC5 (20.0 ng g−1. We found a strong correlation (r =  0.88 between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 % were higher than that in 2011 (3.75 ± 2.62 %, being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r =  0.90 with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss–Ca2+ (0.27 was significantly higher than those (0.00036–0.0018 obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87 between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic

  16. How fast is the denudation of the Taiwan Mountains? (Invited)

    Science.gov (United States)

    Siame, L. L.; Derrieux, F.; KANG, C.; Bourles, D. L.; Braucher, R.; Léanni, L.; Chen, R.; Lee, J.; Chu, H.; Chang, C.; Byrne, T. B.

    2013-12-01

    Orogenic settings are particularly well suited to study and quantify the coupling relations between tectonics, topography, climate and erosion since they record tectonic evolution along convergent margins and the connection between deep and surface processes. However, the interaction of deep and shallow processes is still poorly understood and the role they play in the exhumation of rocks, the structural and kinematic evolution of orogenic wedges, and the relation between tectonics and climate-dependent surface processes are still debated. Therefore, quantification of denudation rates in a wide range of climatic and tectonic settings, as well as at various time and space scales, is a critical step in calibrating and validating landscape evolution models. In this study, we focus on the mountains of the arc-continent collision in Taiwan, which serve as one of the best examples in the world to understand and study mountain building processes. We investigate the pattern and magnitude of denudation rates at the scale of the orogenic system, deriving denudation rates from in situ-produced cosmogenic nuclide 10Be concentrations measured in (1) river-borne quartz minerals sampled at major watersheds outlets, and (2) bedrock outcrops along ridge crests and at summits located along the major drainage divide of the belt. We determined a denudation pattern showing a clear discrepancy between the western (1.7×0.2 mm/yr) and eastern (4.1×0.5 mm/yr) sides of the range. Conversely, bedrock denudation determined along ridge crests, summits and flat surfaces preserved at high elevations are characterized by significantly lower denudation rates on the order of 0.24×0.03 mm/yr. Altogether, the cosmogenic-derived denudation pattern at the orogen-scale reflects fundamental mountain building processes from frontal accretion in the Western Foothills to basal accretion and fast exhumation in the Central Range. Applied to the whole orogen, such field-based approach thus provides

  17. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  18. Potential postwildfire debris-flow hazards: a prewildfire evaluation for the Sandia and Manzano Mountains and surrounding areas, central New Mexico

    Science.gov (United States)

    Tillery, Anne C.; Haas, Jessica R.; Miller, Lara W.; Scott, Joe H.; Thompson, Matthew P.

    2014-01-01

    Wildfire can drastically increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although there is no way to know the exact location, extent, and severity of wildfire, or the subsequent rainfall intensity and duration before it happens, probabilities of fire and debris-flow occurrence for different locations can be estimated with geospatial analysis and modeling efforts. The purpose of this report is to provide information on which watersheds might constitute the most serious, potential, debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall in the Sandia and Manzano Mountains. Potential probabilities and estimated volumes of postwildfire debris flows in the unburned Sandia and Manzano Mountains and surrounding areas were estimated using empirical debris-flow models developed by the U.S. Geological Survey in combination with fire behavior and burn probability models developed by the U.S. Department of Agriculture Forest Service. The locations of the greatest debris-flow hazards correlate with the areas of steepest slopes and simulated crown-fire behavior. The four subbasins with the highest computed debris-flow probabilities (greater than 98 percent) were all in the Manzano Mountains, two flowing east and two flowing west. Volumes in sixteen subbasins were greater than 50,000 square meters and most of these were in the central Manzanos and the western facing slopes of the Sandias. Five subbasins on the west-facing slopes of the Sandia Mountains, four of which have downstream reaches that lead into the outskirts of the City of Albuquerque, are among subbasins in the 98th percentile of integrated relative debris-flow hazard rankings. The bulk of the remaining subbasins in the 98th percentile of integrated relative debris-flow hazard rankings are located along the highest and steepest slopes of the Manzano Mountains. One

  19. Modeling Temporal-Spatial Earthquake and Volcano Clustering at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    T. Parsons; G.A. Thompson; A.H. Cogbill

    2006-01-01

    The proposed national high-level nuclear repository at Yucca Mountain is close to Quaternary faults and cinder cones. The frequency of these events is low, with indications of spatial and temporal clustering, making probabilistic assessments difficult. In an effort to identify the most likely intrusion sites, we based a 3D finite element model on the expectation that faulting and basalt intrusions are primarily sensitive to the magnitude and orientation of the least principal stress in extensional terranes. We found that in the absence of fault slip, variation in overburden pressure caused a stress state that preferentially favored intrusions at Crater Flat. However, when we allowed central Yucca Mountain faults to slip in the model, we found that magmatic clustering was not favored at Crater Flat or in the central Yucca Mountain block. Instead, we calculated that the stress field was most encouraging to intrusions near fault terminations, consistent with the location of the most recent volcanism at Yucca Mountain, the Lathrop Wells cone. We found this linked fault and magmatic system to be mutually reinforcing in the model in that dike inflation favored renewed fault slip

  20. Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change.

    Directory of Open Access Journals (Sweden)

    Wallace M Meyer

    Full Text Available The few studies that have addressed past effects of climate change on species distributions have mostly focused on plants due to the rarity of historical faunal baselines. However, hyperdiverse groups like Arthropoda are vital to monitor in order to understand climate change impacts on biodiversity. This is the first investigation of ground-dwelling arthropod (GDA assemblages along the full elevation gradient of a mountain range in the Madrean Sky Island Region, establishing a baseline for monitoring future changes in GDA biodiversity. To determine how GDA assemblages relate to elevation, season, abiotic variables, and corresponding biomes, GDA were collected for two weeks in both spring (May and summer (September 2011 in the Santa Catalina Mountains, Arizona, using pitfall traps at 66 sites in six distinct upland (non-riparian/non-wet canyon biomes. Four arthropod taxa: (1 beetles (Coleoptera, (2 spiders (Araneae, (3 grasshoppers and crickets (Orthoptera, and (4 millipedes and centipedes (Myriapoda were assessed together and separately to determine if there are similar patterns across taxonomic groups. We collected 335 species of GDA: 192/3793 (species/specimens Coleoptera, 102/1329 Araneae, 25/523 Orthoptera, and 16/697 Myriapoda. GDA assemblages differed among all biomes and between seasons. Fifty-three percent (178 species and 76% (254 species of all GDA species were found in only one biome and during only one season, respectively. While composition of arthropod assemblages is tied to biome and season, individual groups do not show fully concordant patterns. Seventeen percent of the GDA species occurred only in the two highest-elevation biomes (Pine and Mixed Conifer Forests. Because these high elevation biomes are most threatened by climate change and they harbor a large percentage of unique arthropod species (11-25% depending on taxon, significant loss in arthropod diversity is likely in the Santa Catalina Mountains and other isolated

  1. Fire and water: volcanology, geomorphology, and hydrogeology of the Cascade Range, central Oregon

    Science.gov (United States)

    Katharine V. Cashman; Natalia I. Deligne; Marshall W. Gannett; Gordon E. Grant; Anne. Jefferson

    2009-01-01

    This field trip guide explores the interactions among the geologic evolution, hydrology, and fluvial geomorphology of the central Oregon Cascade Range. Key topics include the geologic control of hydrologic regimes on both the wet and dry sides of the Cascade Range crest, groundwater dynamics and interaction between surface and groundwater in young volcanic arcs, and...

  2. INTEGRATING GEOPHYSICS, GEOLOGY, AND HYDROLOGY TO DETERMINE BEDROCK GEOMETRY CONTROLS ON THE ORIGIN OF ISOLATED MEADOW COMPLEXES WITHIN THE CENTRAL GREAT BASIN, NEVADA

    Science.gov (United States)

    Riparian meadow complexes found in mountain ranges of the Central Great Basin physiographic region (western United States) are of interest to researchers as they contain significant biodiversity relative to the surrounding basin areas. These meadow complexes are currently degradi...

  3. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  4. Land–Atmosphere Exchange of Water and Heat in the Arid Mountainous Grasslands of Central Asia during the Growing Season

    Directory of Open Access Journals (Sweden)

    Xiaotao Huang

    2017-09-01

    Full Text Available Arid grassland ecosystems are widely distributed across Central Asia. However, there is a lack of research and observations of the land–atmosphere exchange of water and heat in the arid grasslands in this region, particularly over complex surfaces. In this study, systematic observations were conducted from 2013 to 2015 using an HL20 Bowen ratio and TDR300 and WatchDog1400 systems to determine the characteristics of these processes during the growing season (April–October of the arid mountainous grasslands of this region. (1 The latent heat flux (Le was lower than the sensible heat flux (He overall, and a small transient decrease in Le was observed before its daytime maximum; daily comparative variations in both fluxes were closely related to vegetation growth. (2 Evapotranspiration (ET showed substantial variation across different years, seasons and months, and monthly variations in ET were closely related to vegetation growth. Water condensation (Q was low and relatively stable. Relatively high levels of soil water were measured in spring followed by a decreasing trend. The land–atmosphere exchange of water and heat during the growing season in this region was closely associated with phenology, available precipitation and terrain. This study provides data support for the scientific management of arid mountainous grasslands.

  5. Active tectonics of the Binalud Mountains, a key puzzle segment to describe Quaternary deformations at the northeastern boundary of the Arabia-Eurasia collision

    Science.gov (United States)

    Shabanian, Esmaeil; Bellier, Olivier; Siame, Lionel L.; Abbassi, Mohammad R.; Leanni, Laetitia; Braucher, Régis; Farbod, Yassaman; Bourlès, Didier L.

    2010-05-01

    , the relative motion between central Iran and Eurasia is partly taken-up by dextral-reverse oblique-slip faulting along the Neyshabur and Mashhad fault systems. This faulting mechanism implies a long-term rate of ~4 mm/yr for the range-parallel strike-slip faulting, and an uplift rate of ~2.4 mm/yr due to the range-normal shortening during late Quaternary. Our data provide the first geological constraints on the rate of active faulting on both sides of the Binalud Mountains, and allow us to examine the geological reliability of preexisting tectonic models proposed to describe the kinematics of active deformation at the northeastern boundary of the Arabia-Eurasia collision. Our results favor the northward translation of central Iran with respect to Eurasia through strike-slip faulting localized along distinct crustal scale fault systems rather than systematic block rotations around vertical axes.

  6. 75 FR 29686 - Proposed Establishment of the Pine Mountain-Mayacmas Viticultural Area

    Science.gov (United States)

    2010-05-27

    ... states that local growers report that Pine Mountain vineyards are naturally free of mildew, a vineyard... often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other areas. Pine..., these mountain soils include large amounts of sand and gravel. Pine Mountain soils are generally less...

  7. Yucca Mountain project prototype testing

    International Nuclear Information System (INIS)

    Hughes, W.T.; Girdley, W.A.

    1990-01-01

    The U.S. DOE is responsible for characterizing the Yucca Mountain site in Nevada to determine its suitability for development as a geologic repository to isolate high-level nuclear waste for at least 10,000 years. This unprecedented task relies in part on measurements made with relatively new methods or applications, such as dry coring and overcoring for studies to be conducted from the land surface and in an underground facility. The Yucca Mountain Project has, since 1988, implemented a program of equipment development and methods development for a broad spectrum of hydrologic, geologic, rock mechanics, and thermomechanical tests planned for use in an Exploratory Shaft during site characterization at the Yucca Mountain site. A second major program was fielded beginning in April 1989 to develop and test methods and equipment for surface drilling to obtain core samples from depth using only air as a circulating medium. The third major area of prototype testing has been during the ongoing development of the Instrumentation/ Data Acquisition System (IDAS), designed to collect and monitor data from down-hole instrumentation in the unsaturated zone, and store and transmit the data to a central archiving computer. Future prototype work is planned for several programs including the application of vertical seismic profiling methods and flume design to characterizing the geology at Yucca Mountain. The major objectives of this prototype testing are to assure that planned Site Characterization testing can be carried out effectively at Yucca Mountain, both in the Exploratory Shaft Facility (ESF), and from the surface, and to avoid potential major failures or delays that could result from the need to re-design testing concepts or equipment. This paper will describe the scope of the Yucca Mountain Project prototype testing programs and summarize results to date. 3 figs

  8. Modeling the Biophysical Impacts of Global Change in Mountain Biosphere Reserves

    NARCIS (Netherlands)

    Bugmann, H.; Björnsen Gurung, A.; Ewert, F.; Haeberli, W.; Guisan, A.; Fagre, D.; Kääb, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of

  9. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain)

    Science.gov (United States)

    Ruiz-Villanueva, Virginia; Díez-Herrero, Andrés; Stoffel, Markus; Bollschweiler, Michelle; Bodoque, José M.; Ballesteros, Juan A.

    2010-06-01

    Flash floods represent one of the most significant natural hazards with serious death tolls and economic damage at a worldwide level in general and in Mediterranean mountain catchments in particular. In these environments, systematic data is often lacking and analyses have to be based on alternative approaches such as dendrogeomorphology. In this study, we focus on the identification of flash floods based on growth disturbances (GD) observed in 98 heavily affected Mediterranean pine trees ( Pinus pinaster Ait.) located in or next to the torrential channel of the Pelayo River in the Spanish Central System. Flash floods are quite common in this catchment and are triggered by heavy storms, with high discharge and debris transport rates favoured by high stream gradients. Comparison of the anomalies in tree morphology and the position of the trees in the channel showed that the intensity of the disturbance clearly depends on geomorphology. The dating of past flash flood events was based on the number and intensity of GD observed in the tree-ring series and on the spatial distribution of affected trees along the torrent, thus allowing seven flash flood events during the last 50 years to be dated, namely in 1963, 1966, 1973, 1976, 1996, 2000, and 2005.

  10. Climate and environmental changes over the past 150 years inferred from the sediments of Chaiwopu Lake, central Tianshan Mountains, northwest China

    Science.gov (United States)

    Ma, Long; Wu, Jinglu; Abuduwaili, Jilili

    2013-04-01

    We used a 55-cm sediment core from shallow Chaiwopu Lake in the central Tianshan Mountains of Xinjiang, northwest China, to investigate climate and environmental changes in this arid region over the past ~150 years. The core was dated using 137Cs. We compared temporal changes in several sediment variables with recent meteorological and tree-ring records. Organic matter had a positive correlation with the Palmer Drought Severity Index in the central Tianshan Mountains, and the δ13C of organic matter had a positive correlation with regional temperature. We applied constrained incremental sum-of-squares cluster analysis to element concentrations in the core and identified three distinct zones: (1) 55-46 cm, ~1860-1910, (2) 46-26 cm, ~1910-1952, and (3) 26-0 cm, 1952-present. Between 1880 and 1910 AD, following the Little Ice Age (LIA), the sediment environment was relatively stable, climate was cold and dry, and the lake water displayed high salinity, in contrast to conditions during the LIA. During the LIA, westerlies carried more water vapor into Central Asia when the North Atlantic Oscillation was in a negative phase, and encountered the enhanced Siberia High, which probably led to increased precipitation. In the period 1910-1950 AD, the lake was shallow and the regional climate was unstable, with high temperatures and humidity. In the last ~15-20 years, human activities caused an increase in sediment magnetic susceptibility, and heavy metal and total phosphorus concentrations in the sediment were substantially enriched. Mean annual temperature displays a warming trend over the past 50 years, and the lowest temperature was observed in the 1950s. There has been an increase in annual total precipitation since the 1990s. The combined influences of climate and human activity on the lake environment during this period were faithfully recorded in sediments of Chaiwopu Lake. This study provides a scientific basis for environmental management and protection.

  11. Simulation of heavy, long-term rainfall over low mountain ranges; Simulation von Starkniederschlaegen mit langer Andauer ueber Mittelgebirgen

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, M.

    2003-03-01

    A diagnostic model for the estimation of orographic precipitation during large-scale upslide motions is presented. It is based on linear theory for 3-D mountain overflow. From the simulated vertical velocities rain intensities at the ground are calculated using a model for precipitation formation. Due to the small number of free parameters and because of the simple initialisation method, e.g. with single radiosonde data, the model is used for regionalisation of precipitation from rain gauge observations as well as for deriving its statistics under dynamical constraints. For Southwest Germany and Eastern France, with the low mountain ranges of the Vosges, Black Forest and Swabian Alb, model simulations are performed for individual events with heavy rainfall. Thereby it is evaluated, how realistic rainfall patterns can be obtained with a combination of model simulations and measurement data. Mean rainfall distributions are derived from simulations of all extreme events with 24-h totals over 60 mm at selected rain gauge stations between 1971 and 2000. Furthermore the calculation of rain sums for different return periods is performed using extreme value statistics. So it is possible to quantify the hazard potential of heavy rainfall, which may cause flooding or landslides, in high spatial resolution (2.5 x 2.5 km). (orig.)

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  13. Looking at the roots of the highest mountains: the lithospheric structure of the Himalaya-Tibet and the Zagros orogens. Results from a geophysical-petrological study

    Science.gov (United States)

    Tunini, L.; Jimenez-Munt, I.; Fernandez, M.; Villasenor, A.; Afonso, J. C.; Verges, J.

    2013-12-01

    The Himalaya-Tibet and Zagros orogens are the two most prominent mountain belts built by continental collision. They are part of a huge belt of Cenozoic age which runs from the Pyrenees to Burma. In its central sector, the collision with the southern margin of the Eurasian plate has resulted not only in the building of mountain ranges over the north-eastern edges of the Arabian and Indian plates but also in widespread deformation 1000-3000 km from the suture zones. Zagros and Himalaya-Tibet orogens share many geodynamic processes but at different rates, amount of convergence and stage of development. The study of their present-day structures provides new insights into their quasi coeval collisional event pointing out differences and similarities in the mountain building processes. We present 2D crust and upper mantle cross-sections down to 400 km depth, along four SW-NE trending profiles. Two profiles cross the Zagros Mountains, running from the Mesopotamian Foreland Basin up to the Alborz and Central Iran. Two other profiles run through the Himalaya-Tibetan orogen: the western transect crosses the western Himalaya, Tarim Basin, Tian Shan Mountains and Junggar Basin; the eastern transect runs from the Indian shield to the Beishan Basin, crossing the eastern Himalaya, Tibetan Plateau, Qaidam Basin and Qilian Mountains. We apply the LitMod-2D code which integrates potential fields (gravity and geoid), isostasy (elevation) and thermal (heat flow and temperature distribution) equations, and mantle petrology. The resulting crust and upper mantle structure is constrained by available data on elevation, Bouguer anomaly, geoid height, surface heat flow and seismic data including P- and S-wave tomography models. Our results show distinct deformation patterns between the crust and the lithospheric mantle beneath the Zagros and Himalaya-Tibetan orogens, indicating a strong strain partitioning in both areas. At crustal level, we found a thickening beneath the Zagros and the

  14. Long-range transported dissolved organic matter, ions and black carbon deposited on Central Asian snow covered glaciers

    Science.gov (United States)

    Schmale, Julia; Kang, Shichang; Peltier, Richard

    2014-05-01

    Ninety percent of the Central Asian population depend on water precipitated in the mountains stored in glaciers and snow cover. Accelerated melting of the snow and ice can be induced by the deposition of airborne impurities such as mineral dust, black carbon and co-emitted species leading to significant reductions of the surface albedo. However, Central Asia is a relatively understudied region and data on the source regions, chemical and microphysical characteristics as well as modelling studies of long-range transported air pollution and dust to the Tien Shan mountains is very scarce. We studied the atmospheric aerosol deposited most likely between summer 2012 and summer 2013on three different glaciers in the Kyrgyz Republic. Samples were taken from four snow pits on the glaciers Abramov (2 pits, 39.59 °N, 71.56 °E, 4390 m elevation, 240 cm deep, and 39.62°N, 71.52 °E, 4275 m elevation, 125 cm deep), Ak-Shiirak (41.80 °N, 78.18 °E, 4325 m elevation, 75 cm deep) and Suek (41.78 °N, 77.75 °E, 4341 m elevation, 200 cm deep). The latter two glaciers are located roughly within 6 and 38 km of an operating gold mine. The snow was analyzed for black carbon, ions, metals and organic carbon. We here focus on the results of inorganic ion measurements and organic carbon speciation based on analysis with an Aerodyne high-resolution time-of-flight aerosol spectrometer (HR-ToF-AMS) and potential pollution sources that can be deduced from the chemical information as well as back trajectories. Average contributions of snow impurities measured by the HR-ToF-AMS were dominated by organic carbon. Relative concentrations of organic carbon, sulfate, nitrate and ammonium in snow were 86 %, 3 %, 9 % and 2 % respectively for Abramov, 92 %, 1 %, 5 % and 1 % for Suek, and 95 %, 1 %, 3 % and 1 % for Ak-Shiirak. Generally, impurities on Suek and Ak-Shiirak were three and five times higher than on Abramov. Mass concentrations of organic carbon were on average 6 times higher in samples

  15. Epidote from the Zard Mountains, Kharan, Balochistan, Pakistan

    Science.gov (United States)

    Brownfield, Michael E.; Lowers, Heather; Betterton, William K.

    2013-01-01

    The authors received two unusual crystals of epidote from Rock Currier, Jewel Tunnel Imports, in 2012. The mineral specimens were collected at Zard Mountain (Zard Koh), in the central part of the Ruskoh Mountains (Rusk Koh), west of Kharan, Balochistan, Pakistan (written communication, Rock Currier, 2013). The epidote locality was most likely discovered in 2010. These epidote crystals were unusual in both form and composition. The large crystals were flat tabular and pseudohexagonal in shape which is an uncommon crystal form for a monoclinic mineral (fig. 1). Other specimens from the same locality have been described as pseudo-octahedral in shape. The two crystals range in size from 5.5 to 6.5 centimeters (2.2 to 2.6 inches) and are slightly magnetic. The epidote crystals have a core matrix that resembles a weathered igneous rock. Some micro brown- to reddish-titanite crystals were observed under a binocular microscope on the surface and core areas of the crystals (figs. 2 and 3). Other minerals observed in the core areas include feldspar, biotite, and quartz. The crystals display evidence of cluster-growth with points of attachment to other crystals. The epidotes were most likely collected in pockets of a weathered igneous-skarn deposit.

  16. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    Science.gov (United States)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2018-06-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/ Nh, V max/ Nh, U/ fL x , V max/ fR, h/ L x , and R/ L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/ Nh and U/ fL x , moderate h/ L x , and large V max/ Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max 2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  17. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    Science.gov (United States)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2017-05-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/Nh, V max/Nh, U/fL x , V max/fR, h/L x , and R/L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/Nh and U/fL x , moderate h/L x , and large V max/Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max}2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  18. SP mountain data analysis

    Science.gov (United States)

    Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.

    1981-01-01

    An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.

  19. Basement control of alkalic flood rhyolite magmatism of the Davis Mountains volcanic field, Trans-Pecos Texas, U.S.A.

    Science.gov (United States)

    Parker, Don F.; White, John C.; Ren, Minghua; Barnes, Melanie

    2017-11-01

    Voluminous silicic lava flows, erupted 37.4 Ma from widespread centers within the Davis Mountains Volcanic Field (DMVF), covered approximately 10,000 km2 with an initial volume as great as 1000 km3. Lava flows form three major stratigraphic units: the Star Mountain Rhyolite (minimum 220 km3) of the eastern Davis Mountains and adjacent Barilla Mountains, the Crossen Formation ( 75 km3) of the southern Davis Mountains, and the Bracks Rhyolite ( 75 km3) of the Rim Rock region west of the Davis Mountains proper. Similar extensive rhyolite lava also occurs in slightly younger units (Adobe Canyon Rhyolite, 125 km3, 37.1 Ma), Sheep Pasture Formation ( 125 km3, 36 Ma) and, less voluminously, in the Paisano central volcano ( 36.9 Ma) and younger units in the Davis Mountains. Individual lava flows from these units formed fields as extensive as 55 km and 300-m-thick. Flood rhyolite lavas of the Davis Mountains are marginally peralkaline quartz trachyte to low-silica rhyolite. Phenocrysts include alkali feldspar, clinopyroxene, FeTi oxides, and apatite, and, rarely, fayalite, as well as zircon in less peralkaline units. Many Star Mountain flows may be assigned to one of four geochemical groupings. Temperatures were moderately high, ranging from 911 to 860 °C in quartz trachyte and low silica rhyolite. We suggest that flood rhyolite magma evolved from trachyte magma by filter pressing processes, and trachyte from mafic magma in deeper seated plutons. The Davis Mountains segment of Trans-Pecos Texas overlies Grenville basement and is separated from the older Southern Granite and Rhyolite Province to the north by the Grenville Front, and from the younger Coahuila terrane to the south by the Ouachita Front. We suggest that basement structure strongly influenced the timing and nature of Trans-Pecos magmatism, probably in varying degrees of impeding the ascent of mantle-derived mafic magmas, which were produced by upwelling of asthenospheric mantle above the foundered Farallon slab

  20. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  1. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  2. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  3. Rock Geochemistry and Mineralogy from Fault Zones and Polymetallic Fault Veins of the Central Front Range, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Bove, Dana J.

    2010-01-01

    During the 2004 to 2008 field seasons, approximately 200 hand samples of fault and polymetallic vein-related rocks were collected for geochemical and mineralogical analyses. The samples were collected by the U.S. Geological Survey as part of the Evolution of Brittle Structures Task under the Central Colorado Assessment Project (CCAP) of the Mineral Resources Program (http://minerals.cr.usgs.gov/projects/colorado_assessment/index.html). The purpose of this work has been to characterize the relation between epithermal, polymetallic mineral deposits, paleostress, and the geological structures that hosted fluid flow and localization of the deposits. The data in this report will be used to document and better understand the processes that control epithermal mineral-deposit formation by attempting to relate the geochemistry of the primary structures that hosted hydrothermal fluid flow to their heat and fluid sources. This includes processes from the scale of the structures themselves to the far field scale, inclusive of the intrusive bodies that have been thought to be the sources for the hydrothermal fluid flow. The data presented in this report are part of a larger assessment effort on public lands. The larger study area spans the region of the southern Rocky Mountains in Colorado from the Wyoming to New Mexico borders and from the eastern boundary of the Front Range to approximately the longitude of Vail and Leadville, Colorado. Although the study area has had an extensive history of geological mapping, the mapping has resulted in a number of hypotheses that are still in their infancy of being tested. For example, the proximity of polymetallic veins to intrusive bodies has been thought to reflect a genetic relation between the two features; however, this idea has not been well tested with geochemical indicators. Recent knowledge regarding the coupled nature of stress, strain, fluid flow, and geochemistry warrant new investigations and approaches to test a variety of

  4. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  5. Distribution of lithostratigraphic units within the central block of Yucca Mountain, Nevada: A three-dimensional computer-based model, Version YMP.R2.0

    International Nuclear Information System (INIS)

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Drake, R.M. II; San Juan, C.A.; Spengler, R.W.; Geslin, J.K.; Moyer, T.C.

    1996-01-01

    Yucca Mountain, Nevada is underlain by 14.0 to 11.6 Ma volcanic rocks tilted eastward 3 degree to 20 degree and cut by faults that were primarily active between 12.7 and 11.6 Ma. A three-dimensional computer-based model of the central block of the mountain consists of seven structural subblocks composed of six formations and the interstratified-bedded tuffaceous deposits. Rocks from the 12.7 Ma Tiva Canyon Tuff, which forms most of the exposed rocks on the mountain, to the 13.1 Ma Prow Pass Tuff are modeled with 13 surfaces. Modeled units represent single formations such as the Pah Canyon Tuff, grouped units such as the combination of the Yucca Mountain Tuff with the superjacent bedded tuff, and divisions of the Topopah Spring Tuff such as the crystal-poor vitrophyre interval. The model is based on data from 75 boreholes from which a structure contour map at the base of the Tiva Canyon Tuff and isochore maps for each unit are constructed to serve as primary input. Modeling consists of an iterative cycle that begins with the primary structure-contour map from which isochore values of the subjacent model unit are subtracted to produce the structure contour map on the base of the unit. This new structure contour map forms the input for another cycle of isochore subtraction to produce the next structure contour map. In this method of solids modeling, the model units are presented by surfaces (structure contour maps), and all surfaces are stored in the model. Surfaces can be converted to form volumes of model units with additional effort. This lithostratigraphic and structural model can be used for (1) storing data from, and planning future, site characterization activities, (2) preliminary geometry of units for design of Exploratory Studies Facility and potential repository, and (3) performance assessment evaluations

  6. Klamath Mountains Ecoregion: Chapter 13 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.

    2012-01-01

    The Klamath Mountains Ecoregion covers approximately 47,791 km2 (18,452 mi2) of the Klamath and Siskiyou Mountains of northern California and southern Oregon (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is flanked by the Coast Range Ecoregion to the west, the Southern and Central California Chaparral and Oak Woodlands Ecoregion to the south, the Cascades and the Eastern Cascades Slopes and Foothills Ecoregions to the east, and the Willamette Valley Ecoregion to the north. The mild Mediterranean climate of the ecoregion is characterized by hot, dry summers and wet winters; the amount of winter moisture varies within the ecoregion, decreasing from west to east. The Klamath–Siskiyou Mountains region is widely recognized as an important biodiversity hotspot (Whittaker, 1960; Kruckeberg, 1984; Wagner, 1997; DellaSala and others, 1999), containing more than 3,500 plant species, more than 200 of which are endemic (Sawyer, 2007). A biological assessment by DellaSala and others (1999) ranked the Klamath–Siskiyou Mountains region as the fifth richest coniferous forest in terms of species diversity. In addition, the International Union for the Conservation of Nature considers the region an area of notable botanical importance (Wagner, 1997). Twenty-nine different species of conifers can be found in the Klamath Mountains Ecoregion (Sawyer, 1996).

  7. Fire Regime in Marginal Jack Pine Populations at Their Southern Limit of Distribution, Riding Mountain National Park, Central Canada

    Directory of Open Access Journals (Sweden)

    Jacques C. Tardif

    2016-09-01

    Full Text Available In central Canada, long fire history reconstructions are rare. In a context where both anthropogenic and climate influences on fire regime have changed, Parks Canada has a mandate to maintain ecological integrity. Here we present a fire history derived from fire-scarred jack pine (Pinus banksiana Lamb. trees growing at their southern distribution limit in Riding Mountain National Park (RMNP. In Lake Katherine Fire Management Unit (LKFMU, a subregion within the park, fire history was reconstructed from archival records, tree-ring records, and charcoal in lake sediment. From about 1450 to 1850 common era (CE the fire return intervals varied from 37 to 125 years, according to models. During the period 1864–1930 the study area burned frequently (Weibull Mean Fire Intervals between 2.66 and 5.62 years; this period coincided with the end of First Nations occupation and the start of European settlement. Major recruitment pulses were associated with the stand-replacing 1864 and 1894 fires. This period nevertheless corresponded to a reduction in charcoal accumulation. The current fire-free period in LKFMU (1930–today coincides with RMNP establishment, exclusion of First Nations land use and increased fire suppression. Charcoal accumulation further decreased during this period. In the absence of fire, jack pine exclusion in LKFMU is foreseeable and the use of prescribed burning is advocated to conserve this protected jack pine ecosystem, at the southern margins of its range, and in the face of potential climate change.

  8. Mountain building long after plate collision. Possible mechanisms

    Science.gov (United States)

    Artyushkov, Eugene; Chekhovich, Peter; Korikovsky, Sergei; Massonne, Hans-Joachim

    2016-04-01

    It is commonly believed that mountain building occurs synchronously to plate collision. However, it was well known long ago that in most cases mountain building began 10-100 Ma later. For example, in the Middle and Southern Urals collision occurred from the Late Devonian and until the Early Permian. The shortened regions remained covered by a shallow sea. High mountains began to form rapidly 10 Ma after the termination of collision. The Verkhoyansk Range in Northeastern Asia was strongly shortened at mid-Cretaceous time. It remained at a low altitude for 100 Ma and rose by 2 km in the Pleistocene. Compressive stresses most probably were acting in the Urals during all the epoch of collision. Strong shortening however occurred only as several impulses 1-2 Ma long. This can be explained by temporary weakening of the lithosphere due to a change in the mechanism of creep under infiltration of fluids from the mantle. To sustain a thickened crust at a low altitude, a density increase in the lithosphere was necessary. A possible cause could be metamorphism in crustal rocks, both mafic and felsic, under a pressure increase during collision. Rapid uplift of the shortened crust long after collision and establishment of a new temperature distribution indicates a density decrease in the lithosphere. Thus, on the Precambrian cratons which cover about 70% of continental areas collision terminated ≥ 500 Ma ago. However, during the last several Ma most of them underwent the uplift ranging from 100-200 m to 1000-1500 m. This occurred on the African continent, in central and eastern Australia, East Siberia, East Antarctica and in many other regions. Preservation of thick mantle roots precluded delamination of the lowermost lithosphere as a mechanism for the uplift. Due to a strong denudation of cratons deeply metamorphosed rocks of the lower crust emerged to a shallow depth. Under dry conditions for a long time they remained metastable. Recent inflow of fluid from the mantle

  9. The stability test of natural remanent magnetization (NRM) vulcanic rock of merapi mountain in central Java

    International Nuclear Information System (INIS)

    Husna; Rauf, Nurlela; Bijaksana, Satria

    2002-01-01

    An assessment has been done on magnetic properties of the rock from the area around the top of Merapi Mountain. The research conducted In form of stability test of Natural Remanent Magnetization (NRM), Which 16 specimens that used in that test were taken from Pasar Bubar, Kali Gendol and Kali Gendong Alternating Field Demagnetization Methods applied on measurement of intensity and direction of NRM and demagnetization process. The result shown that the rock from Pasar Bubar had mean intensity of 2255486 mA/meter with a range of declination 32.80 -650 and inclination -37.40 -3.90, Kali Gendol had mean intensity of 2469.387 mA/meter with range of declination of 356.10-110 and inclination of -490 --0.10, and Kali Gendong had mean Intensity of 4139.062 mA/meter with range of declination of 62.10 -12540 and inclination of -0.80 -3520. The stability test is determined from intensity curve, stereo net Plot. Zijderveld diagram and Maximum Angular Deviation (MAD) According the result, the specimen from kali gendol were the most stable and qualifield for further used on paleomagnetic study

  10. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  11. Basaltic volcanic episodes of the Yucca Mountain region

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1990-01-01

    The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs

  12. 76 FR 66629 - Establishment of the Pine Mountain-Cloverdale Peak Viticultural Area

    Science.gov (United States)

    2011-10-27

    ... explains. The petition states that local growers report that Pine Mountain vineyards are naturally free of.... Southern storms often stall over Pine Mountain and the Mayacmas range, dropping more rain than in other..., and very well to excessively well-drained. Also, these mountain soils include large amounts of sand...

  13. A test of the compensatory mortality hypothesis in mountain lions: a management experiment in West-Central Montana

    Science.gov (United States)

    Robinson, Hugh S.; Desimone, Richard; Hartway, Cynthia; Gude, Justin A.; Thompson, Michael J.; Mitchell, Michael S.; Hebblewhite, Mark

    2014-01-01

    Mountain lions (Puma concolor) are widely hunted for recreation, population control, and to reduce conflict with humans, but much is still unknown regarding the effects of harvest on mountain lion population dynamics. Whether human hunting mortality on mountain lions is additive or compensatory is debated. Our primary objective was to investigate population effects of harvest on mountain lions. We addressed this objective with a management experiment of 3 years of intensive harvest followed by a 6-year recovery period. In December 2000, after 3 years of hunting, approximately 66% of a single game management unit within the Blackfoot River watershed in Montana was closed to lion hunting, effectively creating a refuge representing approximately 12% (915 km2) of the total study area (7,908 km2). Hunting continued in the remainder of the study area, but harvest levels declined from approximately 9/1,000 km2 in 2001 to 2/1,000 km2 in 2006 as a result of the protected area and reduced quotas outside. We radiocollared 117 mountain lions from 1998 to 2006. We recorded known fates for 63 animals, and right-censored the remainder. Although hunting directly reduced survival, parameters such as litter size, birth interval, maternity, age at dispersal, and age of first reproduction were not significantly affected. Sensitivity analysis showed that female survival and maternity were most influential on population growth. Life-stage simulation analysis (LSA) demonstrated the effect of hunting on the population dynamics of mountain lions. In our non-hunted population, reproduction (kitten survival and maternity) accounted for approximately 62% of the variation in growth rate, whereas adult female survival accounted for 30%. Hunting reversed this, increasing the reliance of population growth on adult female survival (45% of the variation in population growth), and away from reproduction (12%). Our research showed that harvest at the levels implemented in this study did not

  14. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    Science.gov (United States)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a

  15. Aerogeophysical survey over Sør Rondane Mountains and its implications for revealing the tectonic evolution of East Antarctica

    Science.gov (United States)

    Mieth, Matthias; Steinhage, Daniel; Ruppel, Antonia; Damaske, Detlef; Jokat, Wilfried

    2013-04-01

    We are presenting new magnetic and gravity data of a high-resolution aerogephysical survey over the area of the Sør Rondane Mountains in the eastern Dronning Maud Land (DML). The aircraft survey is part of the joint geological and geophysical GEA campaign (Geodynamic Evolution of East Antarctica) of the Federal Agency for Geosciences and Natural Resources (BGR) and Alfred-Wegener-Institute for Polar and Marine Research (AWI), in cooperation with the Universities of Ghent, Bremen and Bergen. It was completed during the Antarctic summer season 2012/13, covering an area of more than 100000 square kilometer with a line spacing of 5 km. The data will be correlated with geological structures exposed in the mountain range as well as matched and merged with the data sets of the eastern and southern DML (acquired by AWI during the last decade) for comparison and discussion in the greater context of the tectonic evolution of East Antarctica. Preliminary results show that the magnetic anomaly pattern over the Sør Rondane Mountains differs from the pattern found over the central DML mountains as well as from the low amplitude pattern in between both regions, indicating a significant difference in the evolution of this region, which is in accordance with latest geological findings in this region.

  16. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  17. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1990-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive-waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  18. Tectonic stability and expected ground motion at Yucca Mountain

    International Nuclear Information System (INIS)

    1984-01-01

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs

  19. Tectonic stability and expected ground motion at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-10-02

    A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.

  20. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  1. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Science.gov (United States)

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  2. Central Asian supra-glacier snow melt enhanced by anthropogenic black carbon

    Science.gov (United States)

    Schmale, Julia; Flanner, Mark; Kang, Shichang; Sprenger, Michael; Farinotti, Daniel; Zhang, Qianggong; Guo, Junming; Li, Yang; Lawrence, Mark; Schwikowski, Margit

    2016-04-01

    In Central Asia, more than 60 % of the population depends on water stored in glaciers and mountain snow. Densely populated areas near lower-lying mountain ranges are particularly vulnerable and a recent study showed that the region might lose 50 % of its glacier mass by 2050. While temperature, precipitation and dynamic processes are key drivers of glacial change, deposition of light absorbing impurities such as mineral dust and black carbon can lead to accelerated melting through surface albedo reduction. Here, we discuss the origin of deposited mineral dust and black carbon and their impacts on albedo change and snow melt. 218 snow samples were taken on 4 glaciers, Abramov (Pamir), Suek, Glacier No. 354 and Golubin (Tien Shan), representing deposition between summer 2012 and 2014. They were analyzed for elemental carbon, mineral dust and iron among other parameters. We find the elemental carbon concentration to be at the higher end of the range reported for neighboring mountain ranges between 70 and 502 ng g-1 (interquartile range). To investigate the origin of the snow impurities, we used a Lagrangian particle dispersion model, LAGRANTO. Back trajectory ensembles of 40 members with varied starting points to capture the meteorological spread were released every 6 hours for the covered period at all sites. "Footprints" were calculated and combined with emission inventories to estimate the relative contribution of anthropogenic and natural BC to deposited aerosol on the glaciers. We find that more than 94 % of BC is of anthropogenic origin and the major source region is Central Asia followed by the Middle East. Further exploring the implications of mineral dust and BC deposition, we calculate the snow albedo reduction with the Snow-Ice-Aerosol-Radiative model (SNICAR). Even though mineral dust concentrations were up to a factor of 50 higher than BC concentrations, BC dominates the albedo reduction. Using these results we calculate the snow melt induced by

  3. Climate along the crest of the US Rocky Mountains during the last glaciation: preliminary insights from numerical modeling of paleoglaciers

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J.; Plummer, M. A.; Huss, E.; Spiess, V. M.; Mackall, B. T.; Jacobsen, R. E.; Quirk, B.

    2012-12-01

    Climate conditions at the time of the local Last Glacial Maximum (LGM) in the US Rocky Mountains were assessed using a 2-d coupled glacier energy/mass-balance and ice-flow model (Plummer and Phillips, 2003). The model was employed to understand the conditions that would be necessary to sustain valley glaciers and small mountain icecaps at their maximum extents in eight areas distributed along the crest of the range from northern New Mexico (35.8oN) to northern Montana (48.6oN). For each setting, model experiments yield a set of temperature and precipitation combinations that may have accompanied the local LGM. If the results of global and regional climate models are used to constrain temperature depression estimates from our model experiments, the following precipitation pattern emerges for the local LGM. In the northern Rocky Mountains in Montana and northern Wyoming, model results suggest a strong reduction in precipitation of 50% or more. In the central Rocky Mountains of southern Wyoming and Colorado, precipitation appears to have been 50-90% of modern. By contrast, precipitation appears to have been strongly enhanced in the southern Rocky Mountains of New Mexico. These results are broadly consistent with a pattern of precipitation observed in global and regional climate simulations of the LGM in the western U.S., in which precipitation was reduced in the northern Rocky Mountains but increased in the southern Rocky Mountains. This pattern may reflect a southward displacement of mean position the Pacific Jet Stream in western North America during and possibly following the LGM.

  4. Baboquivari Mountain plants: Identification, ecology, and ethnobotany [Book Review

    Science.gov (United States)

    Rosemary L. Pendleton

    2011-01-01

    The Sky Islands of southern Arizona and northwestern Mexico make up a region that is rich, both biologically and culturally. These isolated mountain ranges, separated by desert "seas," contain a unique and diverse flora and have long been home to indigenous peoples of the southwestern US. This book, Baboquivari Mountain Plants: Identification, Ecology, and...

  5. Crater palaeolakes in the Tibesti mountains (Central Sahara, North Chad) - New insights into past Saharan climates

    Science.gov (United States)

    Kröpelin, Stefan; Dinies, Michèle; Sylvestre, Florence; Hoelzmann, Philipp

    2016-04-01

    For the first time continuous lacustrine sections were sampled from the volcanic Tibesti Mountains (Chad): In the 900 m deep crater of Trou au Natron at Pic Toussidé (3,315 m a.s.l.) and from the 800 m deep Era Kohor, the major sub-caldera of Emi Koussi (3,445 m a.s.l.). The remnant diatomites on their slopes are located 360 m (Trou au Natron) and 125 m (Era Kohor) above the present day bottom of the calderas. These sediments from highly continental positions in the central Sahara are keys for the reconstruction of the last climatic cycles (Kröpelin et al. 2015). We report first results from sedimentary-geochemical (total organic and total inorganic carbon contents; total nitrogen; major elements; mineralogy) and palynological analyses for palaeo-environmental interpretations. The diatomites from the Trou au Natron comprise 330 cm of mostly calcitic sediments with relatively low organic carbon (basin. Two 14C-dated charcoals out of the upper part of the section indicate mid-Holocene ages and a linear extrapolation based on a sediment accumulation rate of 1.4mma-1 would lead to tentative dates of ~8650 cal a BP for basal lacustrine sediments and ~4450 cal a BP for the cessation of this lacustrine sequence. The diatomites from the Era Kohor reflect a suite of sections that in total sum up to 145 cm of mostly silica-based sediments with very low carbon contents (paradox of the Tibesti crater paleolakes (Central Sahara, North Chad). Abstract #64322 AGU-Fall-Meeting-2015.

  6. Evolution of endemism on a young tropical mountain.

    Science.gov (United States)

    Merckx, Vincent S F T; Hendriks, Kasper P; Beentjes, Kevin K; Mennes, Constantijn B; Becking, Leontine E; Peijnenburg, Katja T C A; Afendy, Aqilah; Arumugam, Nivaarani; de Boer, Hugo; Biun, Alim; Buang, Matsain M; Chen, Ping-Ping; Chung, Arthur Y C; Dow, Rory; Feijen, Frida A A; Feijen, Hans; Feijen-van Soest, Cobi; Geml, József; Geurts, René; Gravendeel, Barbara; Hovenkamp, Peter; Imbun, Paul; Ipor, Isa; Janssens, Steven B; Jocqué, Merlijn; Kappes, Heike; Khoo, Eyen; Koomen, Peter; Lens, Frederic; Majapun, Richard J; Morgado, Luis N; Neupane, Suman; Nieser, Nico; Pereira, Joan T; Rahman, Homathevi; Sabran, Suzana; Sawang, Anati; Schwallier, Rachel M; Shim, Phyau-Soon; Smit, Harry; Sol, Nicolien; Spait, Maipul; Stech, Michael; Stokvis, Frank; Sugau, John B; Suleiman, Monica; Sumail, Sukaibin; Thomas, Daniel C; van Tol, Jan; Tuh, Fred Y Y; Yahya, Bakhtiar E; Nais, Jamili; Repin, Rimi; Lakim, Maklarin; Schilthuizen, Menno

    2015-08-20

    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.

  7. Centralization of symptoms and lumbar range of motion in patients with low back pain.

    Science.gov (United States)

    Bybee, Ronald F; Olsen, Denise L; Cantu-Boncser, Gloria; Allen, Heather Condie; Byars, Allyn

    2009-05-01

    This quasi-experimental repeated measures study examined the relationship between centralization of symptoms and lumbar flexion and extension range of motion (ROM) in patients with low back pain. Rapid and lasting changes in lumbar ROM have been noted with centralization of symptoms. However, no study has objectively measured the changes in lumbar ROM occurring with centralization. Forty-two adult subjects (mean age, 45.68 years; SD=15.76 years) with low back pain and associated lower extremity symptoms were followed by McKenzie trained physical therapists. Subjects' lumbar ROM was measured at the beginning and end of each patient visit by using double inclinometers, and pain location was documented. Subjects were grouped as 1) centralized, 2) centralizing, or 3) noncentralized for comparisons of symptom and ROM changes. Data were analyzed by using multivariate analysis of variance and one-way analysis of variance. Significance was set at 0.05. A significant difference was found between initial and final mean extension ROM in the centralized and centralizing groups (p=0.003). No significant difference was found in the noncentralized group (p<0.05). Subjects (n=23) who demonstrated a change in pain location during the initial visit also showed a significant (p<0.001) change in extension ROM, whereas patients with no change in pain location (n=19) did not (p=0.848). Lumbar extension ROM increased as centralization occurred.

  8. Pinon-juniper management research at Corona Range and Livestock Research Center in Central New Mexico

    Science.gov (United States)

    Andres Cibils; Mark Petersen; Shad Cox; Michael Rubio

    2008-01-01

    Description: New Mexico State University's Corona Range and Livestock Research Center (CRLRC) is located in a pinon-juniper (PJ)/grassland ecotone in the southern Basin and Range Province in south central New Mexico. A number of research projects conducted at this facility revolve around soil, plant, livestock, and wildlife responses to PJ woodland management. The...

  9. What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas

    International Nuclear Information System (INIS)

    Katsoulakos, Nikolas M.; Kaliampakos, Dimitris C.

    2014-01-01

    Specific strategies for the energy sector should be a central part of a sustainable mountain policy. However, there is a lack of research on the energy issues of mountainous areas and specialized energy policy measures cannot be effectively supported. The determination of the energy demand in mountainous areas, which is an essential step in the direction of developing mountain energy policy, is analyzed in this paper. Greece has been selected as a case study. The results show that altitude is the decisive factor affecting degree-days and energy needs, within the geographical range of Greece. It is proved that the thermal, as well as the total energy demand are significantly increased in mountain settlements. The annual energy expenditure of a typical residence lying at an altitude of 1000 m proved to be 85% higher than the corresponding cost at sea level. This makes mountainous populations vulnerable to energy poverty. It is also proved that the subsidy policy for heating oil, in Greece, cannot alleviate energy poverty. The results of the present study can be utilized in the direction of re-designing the present policy and this is a completely necessary step for creating a sustainable policy for mountainous areas, in general. - Highlights: • The altitude’s influence on degree-days and energy needs in Greece was quantified. • Altitude affects heating degree-days 3.5 times more intensely than latitude in Greece. • A typical home has two times more thermal needs at 800 m than at sea-level in Greece. • The subsidy policy for heating oil is inadequate for Greek mountainous territories. • More than 85% of the households located over 800 m are energy poor in Greece

  10. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    Science.gov (United States)

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    We described the seasonal distribution of Geographic Positioning System (GPS)-collared mountain goats (Oreamnos americanus) in Mount Rainier, North Cascades, and Olympic National Parks to evaluate aerial survey sampling designs and provide general information for park managers. This work complemented a companion study published elsewhere of aerial detection biases of mountain goat surveys in western Washington. Specific objectives reported here were to determine seasonal and altitudinal movements, home range distributions, and temporal dynamics of mountain goat movements in and out of aerial survey sampling frames established within each park. We captured 25 mountain goats in Mount Rainier (9), North Cascades (5), and Olympic (11) National Parks, and fitted them with GPS-collars programmed to obtain 6-8 locations daily. We obtained location data on 23 mountain goats for a range of 39-751 days from 2003 to 2008. Altitudinal distributions of GPS-collared mountain goats varied individually and seasonally, but median altitudes used by individual goats during winter ranged from 817 to 1,541 meters in Olympic and North Cascades National Parks, and 1,215 to 1,787 meters in Mount Rainier National Park. Median altitudes used by GPS-collared goats during summer ranged from 1,312 to 1,819 meters in Olympic and North Cascades National Parks, and 1,780 to 2,061 meters in Mount Rainier National Park. GPS-collared mountain goats generally moved from low-altitude winter ranges to high-altitude summer ranges between June 11 and June 19 (range April 24-July 3) and from summer to winter ranges between October 26 and November 9 (range September 11-December 23). Seasonal home ranges (95 percent of adaptive kernel utilization distribution) of males and female mountain goats were highly variable, ranging from 1.6 to 37.0 kilometers during summers and 0.7 to 9.5 kilometers during winters. Locations of GPS-collared mountain goats were almost 100 percent within the sampling frame used for

  11. Geologic map of the greater Denver area, Front Range urban corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.

    1979-01-01

    This digital map shows the areal extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette from 1973 to 1977 and published in 1979 under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999) was digitized under the USGS Front Range Infrastructure Resources Project. In general, the mountainous areas in the western part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle comprises eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and a few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  12. K-Ar geochronology of the Survey Pass, Ambler River and Eastern Baird Mountains quadrangles, southwestern Brooks Range, Alaska

    Science.gov (United States)

    Turner, Donald L.; Forbes, R.B.; Mayfield, C.F.

    1978-01-01

    We report 76 previously unpublished K-Ar mineral ages from 47 metamorphic and igneous rocks in the southwestern Brooks Range. The pattern of radiometric ages is complex, reflecting the complex geologic history of this area. Local and regional radiometric evidence suggests that the southern Brooks Range schist belt has, at least in part, undergone a late Precambrian metamorphism and that the parent sedimentary and igneous rocks for the metamorphic rocks dated as late Precambrian are at least this old (Precambrian Z). This schist terrane experienced a major thermal event in mid-Cretaceous time, causing widespread resetting of nearly all K-Ar mica ages. A series of apparent ages intermediate between late Precambrian and mid-Cretaceous are interpreted as indicating varying amounts of partial argon loss from older rocks during the Cretaceous event. The schist belt is characterized by dominant metasediments and subordinate metabasites and metafelsites. Blueschists occur within the schist belt from the Chandalar quadrangle westward to the Baird Mountains quadrangle, but geologic evidence does not support the existence of a fossil subduction zone.

  13. Laws, Institutions and Transboundary Pasture Management in the High Pamir and Pamir-Alai Mountain Ecosystem of Central Asia

    Directory of Open Access Journals (Sweden)

    Michelle Lim

    2012-06-01

    Full Text Available Enhanced rangeland governance is a priority for the governments of the post-Soviet Central Asian states of the Kyrgyz Republic and Tajikistan. Major transitional challenges confront the newly independent states of Central Asia. These challenges include the withdrawal of subsidies previously provided by the centralised Soviet government; moves towards privatisation and the conversion of administrative boundaries to international boundaries. In this context transboundary approaches to rangeland management are essential. This paper highlights the challenges for effective pasture management in the Pamir, Pamir-Alai ecosystem; the inadequacies of pasture-related legal instruments and the absence of institutions for the implementation of these instruments. Transboundary management is hampered by the lack of agreements between the two countries and the differences between national level laws and institutions. Meaningful transboundary agreements and the harmonization of national level laws would be a significant step towards achieving sustainable transboundary pasture management. However, on their own these legal tools are insufficient. Long-term effective pasture management in the Pamir, Pamir-Alai ecosystem necessitates that the causes of degradation are addressed. Mountain communities would also need to be convinced of economic and other benefits before current resource-use practices could be expected to change. Institutional and capacity building and adequate funding are also fundamental to ensuring the effectiveness of any legal instruments that are developed and any strategies that are employed.

  14. 76 FR 22748 - Wisconsin Central Ltd.-Intra-Corporate Family Merger Exemption-Duluth, Missabe and Iron Range...

    Science.gov (United States)

    2011-04-22

    ... Ltd.--Intra-Corporate Family Merger Exemption-- Duluth, Missabe and Iron Range Railway Company and Duluth, Winnipeg and Pacific Railway Company Wisconsin Central Ltd. (WCL), Duluth, Missabe and Iron Range Railway Company (DMIR) and Duluth, Winnipeg and Pacific Railway Company (DWP) have jointly filed a...

  15. Chemical composition, antioxidant properties and antimicrobial activity of the essential oil of Murraya paniculata leaves from the mountains of Central Cuba.

    Science.gov (United States)

    Rodríguez, Elisa Jorge; Ramis-Ramos, Guillermo; Heyden, Yvan Vander; Simó-Alfonso, Ernesto F; Lerma-García, María Jesús; Saucedo-Hernández, Yanelis; Monteagudo, Urbano; Morales, Yeni; Holgado, Beatriz; Herrero-Martínez, José Manuel

    2012-11-01

    The essential oil of Murraya paniculata L leaves from the mountains of the Central Region of Cuba, obtained by hydrodistillation, was analyzed by gas chromatography-mass spectrometry. Eighteen compounds, accounting for 95.1% of the oil were identified. The major component was beta-caryophyllene (ca. 30%). The antioxidant activity of essential oil was evaluated against Cucurbita seed oil by peroxide, thiobarbituric acid and p-anisidine methods. The essential oil showed stronger antioxidant activity than that of butylated hydroxyanisole and butylated hydroxytoluene, but lower than that of propyl gallate. Moreover, this antioxidant activity was supported by the complementary antioxidant assay in the linoleic acid system and 2, 2'-diphenyl-1-picrylhydrazyl. The essential oil also showed good to moderate inhibitory effects against Klebsiellapneumoniae and Bacillus subtilis.

  16. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    Science.gov (United States)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  17. 3D Virtual Reality Applied in Tectonic Geomorphic Study of the Gombori Range of Greater Caucasus Mountains

    Science.gov (United States)

    Sukhishvili, Lasha; Javakhishvili, Zurab

    2016-04-01

    Gombori Range represents the southern part of the young Greater Caucasus Mountains and stretches from NW to SE. The range separates Alazani and Iori basins within the eastern Georgian province of Kakheti. The active phase of Caucasian orogeny started in the Pliocene, but according to alluvial sediments of Gombori range (mapped in the Soviet geologic map), we observe its uplift process to be Quaternary event. The highest peak of the Gombori range has an absolute elevation of 1991 m, while its neighboring Alazani valley gains only 400 m. We assume the range has a very fast uplift rate and it could trigger streams flow direction course reverse in Quaternary. To check this preliminary assumptions we are going to use a tectonic and fluvial geomorphic and stratigraphic approaches including paleocurrent analyses and various affordable absolute dating techniques to detect the evidence of river course reverses and date them. For these purposes we have selected river Turdo outcrop. The river itself flows northwards from the Gombori range and nearby region`s main city of Telavi generates 30-40 m high continuous outcrop along 1 km section. Turdo outcrop has very steep walls and requires special climbing skills to work on it. The goal of this particularly study is to avoid time and resource consuming ground survey process of this steep, high and wide outcrop and test 3D aerial and ground base photogrammetric modelling and analyzing approaches in initial stage of the tectonic geomorphic study. Using this type of remote sensing and virtual lab analyses of 3D outcrop model, we roughly delineated stratigraphic layers, selected exact locations for applying various research techniques and planned safe and suitable climbing routes for getting to the investigation sites.

  18. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  19. Remote sensing data of SP Mountain and SP Lava flow in North-Central Arizona

    Science.gov (United States)

    Schaber, G.G.; Elachi, C.; Farr, T.G.

    1980-01-01

    Multifrequency airborne radar image data of SP Mountain [Official name of feature (U.S. Geological Survey, 1970)] and SP flow (and vicinity) in north-central Arizona were obtained in diverse viewing directions and direct and cross-polarization, then compared with surface and aerial photography, LANDSAT multispectral scanner data, airborne thermal infrared imagery, surface geology, and surface roughness statistics. The extremely blocky, basaltic andesite of SP flow is significantly brighter on direct-polarization K-band (0.9-cm wavelength) images than on cross-polarized images taken simultaneously. Conversely, for the longer wavelength (25 cm) L-band radar images, the cross-polarization image returns from SP flow are brighter than the direct-polarized image. This effect is explained by multiple scattering and the strong wavelength dependence of polarization effects caused by the rectilinear basaltic andesite scatters. Two distinct types of surface relief on SP flow, one extremely blocky, the other subdued, are found to be clearly discriminated on the visible and thermal wavelength images but are separable only on the longer wavelength L-band radar image data. The inability of the K- and X- (3-cm wavelength) band radars to portray the differences in roughness between the two SP flow surface units is attributed to the radar frequency dependence of the surface-relief scale, which, described as the Rayleigh criterion, represents the transition between quasispecular and primarily diffuse backscatter. ?? 1980.

  20. Boundary element analysis of active mountain building and stress heterogeneity proximal to the 2015 Nepal earthquake

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2015-12-01

    The Himalayas are the tallest mountains on Earth with ten peaks exceeding 8000 meters, including Mt. Everest. The geometrically complex fault system at the Himalayan Range Front produces both great relief and great earthquakes, like the recent Mw=7.8 Nepal rupture. Here, we develop geometrically accurate elastic boundary element models of the fault system at the Himalayan Range Front including the Main Central Thrust, South Tibetan Detachment, Main Frontal Thrust, Main Boundary Thrust, the basal detachment, and surface topography. Using these models, we constrain the tectonic driving forces and frictional fault strength required to explain Quaternary fault slip rate estimates. These models provide a characterization of the heterogeneity of internal stress in the region surrounding the 2015 Nepal earthquake.

  1. Molecular phylogeography and population genetic structure of O. longilobus and O. taihangensis (Opisthopappus on the Taihang mountains.

    Directory of Open Access Journals (Sweden)

    Yiling Wang

    Full Text Available Historic events such as the uplift of mountains and climatic oscillations in the Quaternary periods greatly affected the evolution and modern distribution of the flora. We sequenced the trnL-trnF, ndhJ-trnL and ITS from populations throughout the known distributions of O. longilobus and O. taihangensis to understand the evolutionary history and the divergence related to the past shifts of habitats in the Taihang Mountains regions. The results showed high genetic diversity and pronounced genetic differentiation among the populations of the two species with a significant phylogeographical pattern (NST>GST, P<0.05, which imply restricted gene flow among the populations and significant geographical or environmental isolation. Ten chloroplast DNA (cpDNA and eighteen nucleus ribosome DNA (nrDNA haplotypes were identified and clustered into two lineages. Two corresponding refuge areas were revealed across the entire distribution ranges of O. longilobus and at least three refuge areas for O. taihangensis. O. longilobus underwent an evolutionary historical process of long-distance dispersal and colonization, whereas O. taihangensis underwent a population expansion before the main uplift of Taihang Mountains. The differentiation time between O. longilobus and O. taihangensis is estimated to have occurred at the early Pleistocene. Physiographic complexity and paleovegetation transition of Taihang Mountains mainly shaped the specific formation and effected the present distribution of these two species. The results therefore support the inference that Quaternary refugial isolation promoted allopatric speciation in Taihang Mountains. This may help to explain the existence of high diversity and endemism of plant species in central/northern China.

  2. What can we learn from fluvial incision in high mountains?

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000

  3. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    Science.gov (United States)

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  4. Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines

    Directory of Open Access Journals (Sweden)

    Robert Huber

    2013-09-01

    Full Text Available Mountain regions provide essential ecosystem goods and services (EGS for both mountain dwellers and people living outside these areas. Global change endangers the capacity of mountain ecosystems to provide key services. The Mountland project focused on three case study regions in the Swiss Alps and aimed to propose land-use practices and alternative policy solutions to ensure the provision of key EGS under climate and land-use changes. We summarized and synthesized the results of the project and provide insights into the ecological, socioeconomic, and political processes relevant for analyzing global change impacts on a European mountain region. In Mountland, an integrative approach was applied, combining methods from economics and the political and natural sciences to analyze ecosystem functioning from a holistic human-environment system perspective. In general, surveys, experiments, and model results revealed that climate and socioeconomic changes are likely to increase the vulnerability of the EGS analyzed. We regard the following key characteristics of coupled human-environment systems as central to our case study areas in mountain regions: thresholds, heterogeneity, trade-offs, and feedback. Our results suggest that the institutional framework should be strengthened in a way that better addresses these characteristics, allowing for (1 more integrative approaches, (2 a more network-oriented management and steering of political processes that integrate local stakeholders, and (3 enhanced capacity building to decrease the identified vulnerability as central elements in the policy process. Further, to maintain and support the future provision of EGS in mountain regions, policy making should also focus on project-oriented, cross-sectoral policies and spatial planning as a coordination instrument for land use in general.

  5. Turbulence and Mountain Wave Conditions Observed with an Airborne 2-Micron Lidar

    Science.gov (United States)

    Teets, Edward H., Jr.; Ehernberger, Jack; Bogue, Rodney; Ashburn, Chris

    2007-01-01

    Joint efforts by the National Aeronautics and Space Administration (NASA), the Department of Defense, and industry partners are enhancing the capability of airborne wind and turbulence detection. The Airborne Coherent Lidar for Advanced In-Flight Measurements (ACLAIM) was flown on three series of flights to assess its capability over a range of altitudes, air mass conditions, and gust phenomena. This paper describes the observation of mountain waves and turbulence induced by mountain waves over the Tehachapi and Sierra Nevada mountain ranges in southern California by lidar onboard the NASA Airborne Science DC-8 airplane. The examples in this paper compare lidar-predicted mountain waves and wave-induced turbulence to subsequent aircraft-measured true airspeed. Airplane acceleration data is presented describing the effects of the wave-induced turbulence on the DC-8 airplane. Highlights of the lidar-predicted airspeed from the two flights show increases of 12 m/s at the mountain wave interface and peak-to-peak airspeed changes of 10 m/s and 15 m/s in a span of 12 s in moderate turbulence.

  6. The polycyclic Lausche Volcano (Lausitz Volcanic Field) and its message concerning landscape evolution in the Lausitz Mountains (northern Bohemian Massif, Central Europe)

    Science.gov (United States)

    Wenger, Erik; Büchner, Jörg; Tietz, Olaf; Mrlina, Jan

    2017-09-01

    The Tertiary Lausitz Volcanic Field covers a broad area encompassing parts of Eastern Saxony (Germany), Lower Silesia (Poland) and North Bohemia (Czech Republic). Volcanism was predominantly controlled by the volcano-tectonic evolution of the Ohře Rift and culminated in the Lower Oligocene. This paper deals with the highest volcano of this area, the Lausche Hill (792.6 m a.s.l.) situated in the Lausitz Mountains. We offer a reconstruction of the volcanic edifice and its eruptive history. Its complex genesis is reflected by six different eruption styles and an associated petrographic variety. Furthermore, the Lausche Volcano provides valuable information concerning the morphological evolution of its broader environs. The remnant of an alluvial fan marking a Middle Paleocene-Lower Eocene (62-50 Ma) palaeo-surface is preserved at the base of the volcano. The deposition of this fan can be attributed to a period of erosion of its nearby source area, the Lausitz Block that has undergone intermittent uplift at the Lausitz Overthrust since the Upper Cretaceous. The Lausche Hill is one of at least six volcanoes in the Lausitz Mountains which show an eminent low level of erosion despite their Oligocene age and position on elevated terrain. These volcanoes are exposed in their superficial level which clearly contradicts their former interpretation as subvolcanoes. Among further indications, this implies that the final morphotectonic uplift of the Lausitz Mountains started in the upper Lower Pleistocene ( 1.3 Ma) due to revived subsidence of the nearby Zittau Basin. It is likely that this neotectonic activity culminated between the Elsterian and Saalian Glaciation ( 320 ka). The formation of the low mountain range was substantially controlled by the intersection of the Lausitz Overthrust and the Ohře Rift.

  7. Paleomagnetism of Jurassic radiolarian chert above the Coast Range ophiolite at Stanley Mountain, California, and implications for its paleogeographic origins

    Science.gov (United States)

    Hagstrum, J.T.; Murchey, B.L.

    1996-01-01

    Upper Jurassic red tuffaceous chert above the Coast Range ophiolite at Stanley Mountain, California (lat 35??N, long 240??E), contains three components of remanent magnetization. The first component (A; removed by ???100-???200 ??C) has a direction near the present-day field for southern California and is probably a recently acquired thermoviscous magnetization. A second component (B; removed between ???100 and ???600 ??C) is identical to that observed by previous workers in samples of underlying pillow basalt and overlying terrigenous sedimentary rocks. This component has constant normal polarity and direction throughout the entire section, although these rocks were deposited during a mixed polarity interval of the geomagnetic field. The B magnetization, therefore, is inferred to be a secondary magnetization acquired during accretion, uplift, or Miocene volcanism prior to regional clockwise rotation. The highest temperature component (C; removed between ???480 and 680 ??C) is of dual polarity and is tentatively interpreted as a primary magnetization, although it fails a reversal test possibly due to contamination by B. Separation of the B and C components is best shown by samples with negative-inclination C directions, and a corrected mean direction using only these samples indicates an initial paleolatitude of 32??N ?? 8??. Paleobiogeographic models relating radiolarian faunal distribution patterns to paleolatitude have apparently been incorrectly calibrated using the overprint B component. Few other paleomagnetic data have been incorporated in these models, and faunal distribution patterns are poorly known and mostly unqualified. The available data, therefore, do not support formation of the Coast Range ophiolite at Stanley Mountain near the paleoequator or accretion at ???10??N paleolatitude, as has been previously suggested based on paleomagnetic data, but indicate deposition near expected paleolatitudes for North America (35??N ?? 4??) during Late Jurassic

  8. Respiratory disease, behavior, and survival of mountain goat kids

    Science.gov (United States)

    Blanchong, Julie A.; Anderson, Christopher A.; Clark, Nicholas J.; Klaver, Robert W.; Plummer, Paul J.; Cox, Mike; Mcadoo, Caleb; Wolff, Peregrine L.

    2018-01-01

    Bacterial pneumonia is a threat to bighorn sheep (Ovis canadensis) populations. Bighorn sheep in the East Humboldt Mountain Range (EHR), Nevada, USA, experienced a pneumonia epizootic in 2009–2010. Testing of mountain goats (Oreamnos americanus) that were captured or found dead on this range during and after the epizootic detected bacteria commonly associated with bighorn sheep pneumonia die‐offs. Additionally, in years subsequent to the bighorn sheep epizootic, the mountain goat population had low kid:adult ratios, a common outcome for bighorn sheep populations that have experienced a pneumonia epizootic. We hypothesized that pneumonia was present and negatively affecting mountain goat kids in the EHR. From June–August 2013–2015, we attempted to observe mountain goat kids with marked adult females in the EHR at least once per week to document signs of respiratory disease; identify associations between respiratory disease, activity levels, and subsequent disappearance (i.e., death); and estimate weekly survival. Each time we observed a kid with a marked adult female, we recorded any signs of respiratory disease and collected behavior data that we fit to a 3‐state discrete hidden Markov model (HMM) to predict a kid's state (active vs. sedentary) and its probability of disappearing. We first observed clinical signs of respiratory disease in kids in late July–early August each summer. We observed 8 of 31 kids with marked adult females with signs of respiratory disease on 13 occasions. On 11 of these occasions, the HMM predicted that kids were in the sedentary state, which was associated with increased probability of subsequent death. We estimated overall probability of kid survival from June–August to be 0.19 (95% CI = 0.08–0.38), which was lower than has been reported in other mountain goat populations. We concluded that respiratory disease was present in the mountain goat kids in the EHR and negatively affected their activity levels and survival

  9. Constraints on seismic anisotropy beneath the Appalachian Mountains from Love-to-Rayleigh wave scattering

    Science.gov (United States)

    Servali, A.; Long, M. D.; Benoit, M.

    2017-12-01

    The eastern margin of North America has been affected by a series of mountain building and rifting events that have likely shaped the deep structure of the lithosphere. Observations of seismic anisotropy can provide insight into lithospheric deformation associated with these past tectonic events, as well as into present-day patterns of mantle flow beneath the passive margin. Previous work on SKS splitting beneath eastern North America has revealed fast splitting directions parallel to the strike of the Appalachian orogen in the central and southern Appalachians. A major challenge to the interpretation of SKS splitting measurements, however, is the lack of vertical resolution; isolating anisotropic structures at different depths is therefore difficult. Complementary constraints on the depth distribution of anisotropy can be provided by surface waves. In this study, we analyze the scattering of Love wave energy to Rayleigh waves, which is generated via sharp lateral gradients in anisotropic structure along the ray path. The scattered phases, known as quasi-Love (QL) waves, exhibit amplitude behavior that depend on the strength of the anisotropic contrast as well as the angle between the propagation azimuth and the anisotropic symmetry axis. We analyze data collected by the dense MAGIC seismic array across the central Appalachians. We examine teleseismic earthquakes of magnitude 6.7 and greater over a range of backazimuths, and isolate surface waves at periods between 100 and 500 seconds. We compare the data to synthetic seismograms generated by the Princeton Global ShakeMovie initiative to identify anomalous QL arrivals. We find evidence significant QL arrivals at MAGIC stations, with amplitudes depending on propagation azimuth and station location. Preliminary results are consistent with a sharp lateral gradient in seismic anisotropy across the Appalachian Mountains in the depth range between 100-200 km.

  10. Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Jan Mišurec

    2016-01-01

    Full Text Available The study focuses on spatio-temporal changes in the physiological status of the Norway spruce forests located at the central and western parts of the Ore Mountains (northwestern part of the Czech Republic, which suffered from severe environmental pollution from the 1970s to the 1990s. The situation started improving after the pollution loads decreased significantly at the end of the 1990s. The general trends in forest recovery were studied using the tasseled cap transformation and disturbance index (DI extracted from the 1985–2015 time series of Landsat data. In addition, 16 vegetation indices (VIs extracted from airborne hyperspectral (HS data acquired in 1998 using the Advanced Solid-State Array Spectroradiometer (ASAS and in 2013 using the Airborne Prism Experiment (APEX were used to study changes in forest health. The forest health status analysis of HS image data was performed at two levels of spatial resolution; at a tree level (original 2.0 m spatial resolution, as well as at a forest stand level (generalized to 6.0 m spatial resolution. The temporal changes were studied primarily using the VOG1 vegetation index (VI as it was showing high and stable sensitivity to forest damage for both spatial resolutions considered. In 1998, significant differences between the moderately to heavily damaged (central Ore Mountains and initially damaged (western Ore Mountains stands were detected for all the VIs tested. In 2013, the stands in the central Ore Mountains exhibited VI values much closer to the global mean, indicating an improvement in their health status. This result fully confirms the finding of the Landsat time series analysis. The greatest difference in Disturbance Index (DI values between the central (1998: 0.37 and western Ore Mountains stands (1998: −1.21 could be seen at the end of the 1990s. Nonetheless, levelling of the physiological status of Norway spruce was observed for the central and western parts of the Ore Mountains in

  11. Two new species of Neoperla (Plecoptera, Perlidae) from Dabie Mountains of China.

    Science.gov (United States)

    Li, Wei-Hai; Zhang, Sheng-Quan

    2014-01-01

    Two new species of the stonefly genus Neoperla, N. nigromarginata sp. n. and N. similiflavescens sp. n., are described from Dabie Mountains of Central China in the Liankangshan National Nature Reserve. The new species are compared with related congeners.

  12. Three-year movement patterns of adult desert tortoises at Yucca Mountain

    International Nuclear Information System (INIS)

    Holt, E.A.; Rautenstrauch, K.R.

    1995-01-01

    We studied the home-range size and site fidelity of adult desert tortoises (Gopherus agassizii) at Yucca Mountain, Nevada, during 1992-1994. Of 67 adult tortoises monitored at Yucca Mountain during this period, we evaluated the movements of 22 female and 16 male radiomarked tortoises that were located >50 times during each of the 1992, 1993, and 1994 activity seasons. We measured annual and three-year home range sizes by either 100% minimum convex polygon (MCP) or by 95% cluster

  13. Moessbauer spectra of white micas from the Central Western Carpathians Mountains

    International Nuclear Information System (INIS)

    Sitek, J; Toth, I; Sulak, M; Putis, M

    2010-01-01

    Potassium white micas from the rocks included into Cretaceous deformation zones (ca. 100-70 Ma in age) of the Central Western Carpathians were investigated by Moessbauer spectroscopy. White micas formed during a polystage evolution and changing P-T conditions of their crystallization in crustal-scale shear zones. We found criteria for distinguishing generations of celadonite-poor (muscovitic) and celadonite-rich (phengitic) white micas using Moessbauer spectroscopy. This method revealed contrasting spectra characterized by typical quadrupole doublets corresponding to Fe 2+ Fe 3+ contents in white micas. They are in the range of 2.9-3.0 mm/s for phengite, and 2.6-2.7 mm/s for muscovite. Moessbauer spectra reflect well the chemical changes in white mica aggregates, especially of those close to the end-member muscovite and (alumino-)celadonite compositions.

  14. Moessbauer spectra of white micas from the Central Western Carpathians Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Sitek, J; Toth, I [Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, Bratislava (Slovakia); Sulak, M; Putis, M, E-mail: jozef.sitek@stuba.s [Department of of Mineralogy and Petrology, Faculty of Natural Sciences, Comenius University Bratislava, Mlynska dolina G, 842 15 Bratislava (Slovakia)

    2010-03-01

    Potassium white micas from the rocks included into Cretaceous deformation zones (ca. 100-70 Ma in age) of the Central Western Carpathians were investigated by Moessbauer spectroscopy. White micas formed during a polystage evolution and changing P-T conditions of their crystallization in crustal-scale shear zones. We found criteria for distinguishing generations of celadonite-poor (muscovitic) and celadonite-rich (phengitic) white micas using Moessbauer spectroscopy. This method revealed contrasting spectra characterized by typical quadrupole doublets corresponding to Fe{sup 2+} Fe{sup 3+} contents in white micas. They are in the range of 2.9-3.0 mm/s for phengite, and 2.6-2.7 mm/s for muscovite. Moessbauer spectra reflect well the chemical changes in white mica aggregates, especially of those close to the end-member muscovite and (alumino-)celadonite compositions.

  15. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  16. Four New Species of Nepenthes L. (Nepenthaceae from the Central Mountains of Mindanao, Philippines

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    2014-06-01

    Full Text Available Together with the islands of Sumatra (Indonesia and Borneo (Indonesia, Malaysia, the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.

  17. Isolation of Bartonella henselae and Two New Bartonella Subspecies, Bartonella koehlerae Subspecies boulouisii subsp. nov. and Bartonella koehlerae Subspecies bothieri subsp. nov. from Free-Ranging Californian Mountain Lions and Bobcats

    Science.gov (United States)

    Chomel, Bruno B.; Molia, Sophie; Kasten, Rickie W.; Borgo, Gina M.; Stuckey, Matthew J.; Maruyama, Soichi; Chang, Chao-chin; Haddad, Nadia; Koehler, Jane E.

    2016-01-01

    Domestic cats are the natural reservoir of Bartonella henselae, B. clarridgeiae and B. koehlerae. To determine the role of wild felids in the epidemiology of Bartonella infections, blood was collected from 14 free-ranging California mountain lions (Puma concolor) and 19 bobcats (Lynx rufus). Bartonella spp. were isolated from four (29%) mountain lions and seven (37%) bobcats. These isolates were characterized using growth characteristics, biochemical reactions, molecular techniques, including PCR-RFLP of selected genes or interspacer region, pulsed-field gel electrophoresis (PFGE), partial sequencing of several genes, and DNA-DNA hybridization. Two isolates were identical to B. henselae genotype II. All other isolates were distinguished from B. henselae and B. koehlerae by PCR-RFLP of the gltA gene using endonucleases HhaI, TaqI and AciI, with the latter two discriminating between the mountain lion and the bobcat isolates. These two novel isolates displayed specific PFGE profiles distinct from B. henselae, B. koehlerae and B. clarridgeiae. Sequences of amplified gene fragments from the three mountain lion and six bobcat isolates were closely related to, but distinct from, B. henselae and B. koehlerae. Finally, DNA-DNA hybridization studies demonstrated that the mountain lion and bobcat strains are most closely related to B. koehlerae. We propose naming the mountain lion isolates B. koehlerae subsp. boulouisii subsp. nov. (type strain: L-42-94), and the bobcat isolates B. koehlerae subsp. bothieri subsp. nov. (type strain: L-17-96), and to emend B. koehlerae as B. koehlerae subsp. koehlerae. The mode of transmission and the zoonotic potential of these new Bartonella subspecies remain to be determined. PMID:26981874

  18. Mountain Permafrost in the Yukon Territory, Canada: Mapping and Modelling

    Science.gov (United States)

    Lewkowicz, A. G.; Bonnaventure, P.; Schultz, E.; Etzelmuller, B.

    2006-12-01

    The distribution and characteristics of mountain permafrost in North America are poorly known compared to lowland permafrost, and predictions of climatic change impacts are therefore subject to a higher degree of uncertainty. Recent DC resistivity soundings in association with borehole temperature information in the Yukon Territory, show the wide range of permafrost conditions that can exist at sites separated by short distances. To provide baseline information for future modelling, efforts are underway to produce a detailed map of permafrost probability in the mountains of the southern half of the Yukon Territory (60-65°N), an area greater than 200 x 103km2. The methodology is based on the Basal Temperature of Snow (BTS) technique, first developed in the European Alps. Ground surface temperatures measured at the base of snow > 80 cm thick in late winter are an indicator of permafrost presence or absence. We have used this method successfully in three study areas of about 200 km2: first, Wolf Creek basin near Whitehorse (Lewkowicz and Ednie, 2004) and now the western side of the Ruby Range adjacent to Kluane Lake, and the Haines Summit area in northwestern British Columbia. In each area, (1) we installed miniature temperature loggers at the ground surface and in the air to check on the timing of the BTS measurements; (2) we measured BTS values in the elevation zone across which permafrost was expected to become widespread; (3) we modelled the BTS spatial field using elevation (from a 30 m DEM) and potential incoming solar radiation (PISR) as the independent variables; and (4) we used logistic regression to compare the modelled BTS values with pit observations made in late-summer of the presence or absence of frozen ground. Both elevation and PISR were significant in the Wolf Creek and Ruby Range sites which have relatively continental climates and fall within the Upper Yukon-Stikine Basin climatic region (Wahl et al., 1987). For the Haines Summit area, however

  19. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    OpenAIRE

    Antonio Jesús Pérez-Luque; Cristina Patricia Sánchez-Rojas; Regino Zamora; Ramón Pérez-Pérez; Francisco Javier Bonet

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems...

  20. Natural regeneration of deforested areas dominated by Pteridium aquilinum (L. Kuhn located in the serra da mantiqueira mountain range

    Directory of Open Access Journals (Sweden)

    Selma Cristina Ribeiro

    2013-03-01

    Full Text Available This study was set out with the objective of analyzing successional process in areas which are deforested and dominated by Pteridium aquilinum in the Serra da Mantiqueira mountain range, by researching the natural regeneration of shrub and tree species and evaluating both disturbance history and the edaphic conditions on the natural regeneration community. This research investigated two abandoned pasture areas in Bocaina de Minas county exposed to natural regeneration intervals ranging from six years (area named 6A to twenty years (area named 20A. The inventory occurred from sixty plots of 10 m², where all samples surveyed were between 0.15 m and 3 m high. All samples were identified and both the diameter in ground level and total height of the specimens were measured. The survey totaled 1,159 samples and 53 species. Melastomataceae was registered with the highest species richness and the highest specimen abundance. The two sampled areas showed species composition differences, with Jaccard similarity coefficient equal to 3.7%. The canonical correspondence analysis showed the correlations between natural regeneration stratum and non-labile phosphorus and clay in the 6A area. On the other hand, the 20A area showed correlations between plant regeneration and the K, P, Ca²+, Al³+ levels, with higher pH levels, and with the sum of exchangeable bases. In addition, the vegetation surveyed in area 20A was correlated with higher Pteridium population density. The results showed that the dominance of Pteridium aquilinum leads to successional process under inhibition, in which the ferns act negatively on the richness and abundance of shrub populations. It was also confirmed the Pteridium's affinity to steep areas, mainly in higher altitudes, where the soil is acid, as well as its preference to disturbed areas. Moreover, we highlight the fragilities of the mountain environments and the importance of preserving natural vegetation, as well as the bracken

  1. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.

    2013-09-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  2. Differentiating simple and composite tectonic landscapes using numerical fault slip modeling with an example from the south central Alborz Mountains, Iran

    KAUST Repository

    Landgraf, A.; Zielke, Olaf; Arrowsmith, J. R.; Ballato, P.; Strecker, M. R.; Schildgen, T. F.; Friedrich, A. M.; Tabatabaei, S. H.

    2013-01-01

    The tectonically driven growth of mountains reflects the characteristics of the underlying fault systems and the applied tectonic forces. Over time, fault networks might be relatively static, but stress conditions could change and result in variations in fault slip orientation. Such a tectonic landscape would transition from a “simple” to a “composite” state: the topography of simple landscapes is correlated with a single set of tectonic boundary conditions, while composite landscapes contain inherited topography due to earlier deformation under different boundary conditions. We use fault interaction modeling to compare vertical displacement fields with topographic metrics to differentiate the two types of landscapes. By successively rotating the axis of maximum horizontal stress, we produce a suite of vertical displacement fields for comparison with real landscapes. We apply this model to a transpressional duplex in the south central Alborz Mountains of Iran, where NW oriented compression was superseded by neotectonic NE compression. The consistency between the modeled displacement field and real landforms indicates that the duplex topography is mostly compatible with the modern boundary conditions, but might include a small remnant from the earlier deformation phase. Our approach is applicable for various tectonic settings and represents an approach to identify the changing boundary conditions that produce composite landscapes. It may be particularly useful for identifying changes that occurred in regions where river profiles may no longer record a signal of the change or where the spatial pattern of uplift is complex.

  3. Natural Radioactivity of Intrusive-Metamorphic and Sedimentary Rocks of the Balkan Mountain Range (Serbia, Stara Planina

    Directory of Open Access Journals (Sweden)

    Sanna Masod Abdulqader

    2017-12-01

    Full Text Available Stara Planina (also known as the Balkan mountain range is known for numerous occurrences and deposits of uranium and associated radionuclides. It is also famous for its geodiversity. The geologic framework is highly complex. The mountain is situated between the latitudes of 43° and 44° N and the longitudes from 22°16′ to 23°00′ E. Uranium exploration and radioactivity testing on Stara Planina began back in 1948. Uranium has also been mined in the zone of Kalna, within the Janja granite intrusive. The naturally radioactive geologic units of Stara Planina are presented in detail in this paper. The main sources of radioactivity on Stara Planina can be classified as: 1. Granitic endogenous—syngenetic–epigenetic deposits and occurrences; 2. Metamorphogenic—syngenetic; and 3. Sedimentary, including occurrences of uranium deposition and fluctuation caused by water in different types of sedimentary rocks formed in a continental setting, which could be classified under epigenetic types. The area of Stara Planina with increased radioactivity (higher than 200 cps, measured by airborne gamma spectrometry, is about 380 square kilometers. The highest values of measured radioactivity and uranium grade were obtained from a sample taken from the Mezdreja uranium mine tailing dump, where 226Ra measures 2600 ± 100 Bq/kg and the uranium grade is from 76.54 to 77.65 ppm U. The highest uranium (and lead concentration, among all samples, is measured in graphitic schist with high concentrations of organic (graphitic material from the Inovska Series—99.47 ppm U and 107.69 ppm Pb. Thorium related radioactivity is the highest in granite samples from the Janja granite in the vicinity of the Mezdreja granite mine and the Gabrovnica granite mine tailing dump, and it is the same—250 ± 10 Bq/kg for 232Th, while the thorium grade varies from 30.82 to 60.27 ppm Th. In gray siltstones with a small amount of organic material, the highest radioactivity is

  4. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  5. The Geologic Story of the Uinta Mountains

    Science.gov (United States)

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  6. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    Science.gov (United States)

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Managing Rocky Mountain spotted fever.

    Science.gov (United States)

    Minniear, Timothy D; Buckingham, Steven C

    2009-11-01

    Rocky Mountain spotted fever is caused by the tick-borne bacterium Rickettsia rickettsii. Symptoms range from moderate illness to severe illness, including cardiovascular compromise, coma and death. The disease is prevalent in most of the USA, especially during warmer months. The trademark presentation is fever and rash with a history of tick bite, although tick exposure is unappreciated in over a third of cases. Other signature symptoms include headache and abdominal pain. The antibiotic therapy of choice for R. rickettsii infection is doxycycline. Preventive measures for Rocky Mountain spotted fever and other tick-borne diseases include: wearing long-sleeved, light colored clothing; checking for tick attachment and removing attached ticks promptly; applying topical insect repellent; and treating clothing with permethrin.

  8. Shrubline but not treeline advance matches climate velocity in montane ecosystems of south-central Alaska.

    Science.gov (United States)

    Dial, Roman J; Smeltz, T Scott; Sullivan, Patrick F; Rinas, Christina L; Timm, Katriina; Geck, Jason E; Tobin, S Carl; Golden, Trevor S; Berg, Edward C

    2016-05-01

    Tall shrubs and trees are advancing into many tundra and wetland ecosystems but at a rate that often falls short of that predicted due to climate change. For forest, tall shrub, and tundra ecosystems in two pristine mountain ranges of Alaska, we apply a Bayesian, error-propagated calculation of expected elevational rise (climate velocity), observed rise (biotic velocity), and their difference (biotic inertia). We show a sensitive dependence of climate velocity on lapse rate and derive biotic velocity as a rigid elevational shift. Ecosystem presence identified from recent and historic orthophotos ~50 years apart was regressed on elevation. Biotic velocity was estimated as the difference between critical point elevations of recent and historic logistic fits divided by time between imagery. For both mountain ranges, the 95% highest posterior density of climate velocity enclosed the posterior distributions of all biotic velocities. In the Kenai Mountains, mean tall shrub and climate velocities were both 2.8 m y(-1). In the better sampled Chugach Mountains, mean tundra retreat was 1.2 m y(-1) and climate velocity 1.3 m y(-1). In each mountain range, the posterior mode of tall woody vegetation velocity (the complement of tundra) matched climate velocity better than either forest or tall shrub alone, suggesting competitive compensation can be important. Forest velocity was consistently low at 0.1-1.1 m y(-1), indicating treeline is advancing slowly. We hypothesize that the high biotic inertia of forest ecosystems in south-central Alaska may be due to competition with tall shrubs and/or more complex climate controls on the elevational limits of trees than tall shrubs. Among tall shrubs, those that disperse farthest had lowest inertia. Finally, the rapid upward advance of woody vegetation may be contributing to regional declines in Dall's sheep (Ovis dalli), a poorly dispersing alpine specialist herbivore with substantial biotic inertia due to dispersal reluctance. © 2015

  9. Mountain peatlands range from CO2 sinks at high elevations to sources at low elevations: Implications for a changing climate

    Science.gov (United States)

    David J. Millar; David J. Cooper; Kathleen A. Dwire; Robert M. Hubbard; Joseph. von Fischer

    2016-01-01

    Mountain fens found in western North America have sequestered atmospheric carbon dioxide (CO2) for millennia, provide important habitat for wildlife, and serve as refugia for regionally-rare plant species typically found in boreal regions. It is unclear how Rocky Mountain fens are responding to a changing climate. It is possible that fens found at lower elevations may...

  10. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  11. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  12. Convective boundary layer heights over mountainous terrain - A review of concepts -

    Science.gov (United States)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  13. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Science.gov (United States)

    Carretier, Sébastien; Goddéris, Yves; Martinez, Javier; Reich, Martin; Martinod, Pierre

    2018-03-01

    The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains sparsely covered by regolith

  14. Methodological issues in implementing a sustainable forest management plan in remote mountain areas - The Karakorum (Pakistan)

    OpenAIRE

    Ferrari, Efrem

    2014-01-01

    Based on a practical case-study, the Central Karakorum National Park - Gilgit-Baltistan - Pakistan, the aim of the thesis is to present a methodological framework for promoting the sustainable forest management in mountain areas characterized by remoteness, difficulties of access and where few data are available. Forest resources of Karakorum Mountains assume an essential role for the livelihoods of local communities, heavily dependent on wood for heating, cooking and construction purposes...

  15. Meteorological Conditions of Floods In The Chilean Andes Mountains

    Science.gov (United States)

    Vergara, J.

    Catastrophic floods occurred on mountains River during 2000 and 2001. The meteo- rological conditions of flood during the last five years have analyzed. For example, the flood of June 29 of 2000 occurred after one of extremely wettest June of the last 40 years were snowfall was 991cm in the Aconcagua Valley. Infrequently storms activ- ity generated a huge snowfall and rainfall over the Andes mountains on June of 2000 (1525mm in El Maule Valley) and the end of the unusually period, the flood was trig- gered by rising temperatures on the mountains and heavy rain (199mm in 24 hours) fall over the fresh snow on the morning of June 29 and floods wave developed and moved down along of the all river located on Central part of Chile, the foods peak was 2970.5m3/s on the El Maule basin in the morning of June 29. The regional meteoro- logical models with the hydrological forecasting was used for alert of the floods.

  16. Climbing in the high volcanoes of central Mexico

    Science.gov (United States)

    Secor, R. J.

    1984-01-01

    A chain of volcanoes extends across central Mexico along the 19th parallel, a line just south of Mexico City. The westernmost of these peaks is Nevado de Colima at 4,636 feet above sea level. A subsidiary summit of Nevado de Colima is Volcan de Colima, locally called Fuego (fire) it still emits sulphurous fumes and an occasional plume of smoke since its disastrous eruption in 1941. Parictuin, now dormant, was born in the fall of 1943 when a cornfield suddenly erupted. Within 18 months, the cone grew more than 1,700 feet. Nevado de Toluca is a 15,433-foot volcanic peak south of the city of Toluca. Just southeast of Mexico City are two high volcanoes that are permanently covered by snow: Iztaccihuatl (17,342 fet) and Popocatepetl (17,887 feet) Further east is the third highest mountain in North America: 18,700-foot Citlateptl, or El Pico de Orizaba. North of these high peaks are two volcanoes, 14, 436-foot La Malinche and Cofre de Perote at 14,048 feet. This range of mountains is known variously as the Cordillera de Anahuac, the Sierra Volcanica Transversal, or the Cordillera Neovolcanica. 

  17. Modeling the biophysical impacts of global change in mountain biosphere reserves

    Science.gov (United States)

    Bugmann, H.K.M.; Bjornsen, F. Ewert; Haeberli, W.; Guisan, Antoine; Fagre, Daniel B.; Kaab, A.

    2007-01-01

    Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.

  18. Rain, Rain, Go Away, Come Again Another Day. Weather Preferences of Summer Tourists in Mountain Environments

    Directory of Open Access Journals (Sweden)

    Robert Steiger

    2016-04-01

    Full Text Available Weather and climate are important factors for travel decision-making and overall tourist satisfaction. As central motivators for destination choice, they directly and indirectly influence demand patterns and can be a resource and limitation for tourism at the same time. In this paper, results of an in-situ survey of mountain summer tourists (n = 733 in the Alps in Southern Germany are presented. Respondents rated ‘rain’ as the most important aspect of weather during their holiday. During a 7-day holiday, 2.1 days of continuous rain are accepted, and 3.1 days of days with thunderstorms. The ideal temperature range is between 21 and 25 °C, thus lying 4–7 degrees lower than for beach tourism. Temperatures below 15 °C and above 30 °C are perceived as unacceptable. Statistically significant differences were found for several tourist types: Older tourists are more sensitive to heat, tourists with sports activities are more tolerant to cool temperatures, first-time visitors are more sensitive to rain and families with children prefer higher temperatures. From the results, some implications for mountain destinations arise: mountain destinations could be promoted as a heat refuge, and attracting sports tourists might be a promising way to reduce weather sensitivity; however, some variety of well-promoted weather independent attractions seems to be mandatory.

  19. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    Science.gov (United States)

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  20. Water Balance and Forest Productivity in Mediterranean Mountain Environments

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarascia-Mugnozza

    2010-06-01

    Full Text Available The availability of water resources is one of the major drivers affecting forest and agricultural productivity. The sensitivity of Mediterranean forest species to water shortage is becoming even more relevant in relation to climate changes, that for Southern Europe could lead to an increase in temperature of 2 to 3 °C, paralleled by a decrease of 5 to 15% of summer rainfall. It is then important to study the relationship between water balance and productivity of important forest tree species such as beech and mountain pines that represent the upper limit of forest vegetation in almost all the Apennines range. In the present paper, the measurements of water balance, evapotranspiration, carbon exchange and productivity in beech and pine forests of central-southern Italy (Abruzzo and Calabria regions are reported. The results are obtained in the course of several years of experimentation with innovative techniques and integrated at the canopy level.

  1. Mountain lions prey selectively on prion-infected mule deer

    OpenAIRE

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2009-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (?2 years old) deer with prevalence among sympatric deer taken by hunters i...

  2. The mountain Cer: Potentials for tourism development

    Directory of Open Access Journals (Sweden)

    Grčić Mirko D.

    2003-01-01

    Full Text Available In northwest of Serbia in the meridians directions an elongated mountain range of Cer with Iverak and Vlašić stretches itself. On the north it goes down to Mačva and Posavina, on the west to Podrinje, on the east to the valley of Kolubara, on the south to the basins and valleys of Jadar and upper Kolubara, which separate it from the mountains of Valjevo and Podrinje area. Cer mountain offers extremely good condition for development of eco-tourism. The variety of relief with gorgeous see-sites, natural rarities, convenient bio-climatic conditions, significant water resources, forest complexes, medieval fortresses, cultural-historic monuments, richness of flora and fauna, preserved rural environment, traditions and customs of local population, were all neglected as strategic factors in the development of tourism. This mountain’s potentials are quite satisfactory for the needs of eco-tourism, similar to the National Park of Fruška Gora, but it has lacked an adequate ecotourist strategy so far. This study aims to pointing to the potential and possibilities of ecotourist valorization of this mountain.

  3. Investigation of uranium 238 level in phosphate rock samples from kurun mountain Eastern Nuba Mountains in the State of Kordfan (western Sudan)

    International Nuclear Information System (INIS)

    Yagoub, N. H. M.

    2014-06-01

    The natural radionuclide content of 20 samples collected from Kurun Mountain, western Sudan, has been determined using gamma spectrometry. The data showed that ''2''3 8 U and its decay products were the principal contributors of radioactivity in phosphate deposits. The range of the activity concentration was measured in apatite phosphate rock samples was 378.03-1332.58 Bq/Kg with a mean value of 815.46 Bq/Kg and the data showed that most of samples concentrated in medial comparable with top and bottom of mountain. The distribution of samples indicated that the weathering effect and the rainfall may be the main reasons to enhance the mobility and solubility of uranium from top to bottom of mountain.(Author)

  4. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    Science.gov (United States)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  5. Chemical characterization of aerosols at the summit of Mountain Tai in Central East China

    Directory of Open Access Journals (Sweden)

    C. Deng

    2011-07-01

    Full Text Available PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT (1534 m a.s.l. in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, and Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–287.6 μg m−3 and 17.2–235.7 μg m−3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3, Cl, F, PO43−, NO2, CH3COO, CH2C2O42−, C2H4C2O42−, HCOO, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+, and 19 elements of all samples were measured. SO42−, NO3, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.50 % and 72.65 % of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006 and 0.49(2007 in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc. showed higher concentration in spring than summer, while most of the pollution species (SO42−, NO3, K

  6. Silvicultural systems and cutting methods for ponderosa pine forests in the Front Range of the central Rocky Mountains

    Science.gov (United States)

    Robert R. Alexander

    1986-01-01

    Guidelines are provided to help forest managers and silviculturists develop even- and/or uneven-aged cutting practices needed to convert old-growth and mixed ponderosa pine forests in the Front Range into managed stands for a variety of resource needs. Guidelines consider stand conditions, and insect and disease susceptibility. Cutting practices are designed to...

  7. Advances in global mountain geomorphology

    Science.gov (United States)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  8. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  9. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia.

    Science.gov (United States)

    Spengler, Robert; Frachetti, Michael; Doumani, Paula; Rouse, Lynne; Cerasetti, Barbara; Bullion, Elissa; Mar'yashev, Alexei

    2014-05-22

    Archaeological research in Central Eurasia is exposing unprecedented scales of trans-regional interaction and technology transfer between East Asia and southwest Asia deep into the prehistoric past. This article presents a new archaeobotanical analysis from pastoralist campsites in the mountain and desert regions of Central Eurasia that documents the oldest known evidence for domesticated grains and farming among seasonally mobile herders. Carbonized grains from the sites of Tasbas and Begash illustrate the first transmission of southwest Asian and East Asian domesticated grains into the mountains of Inner Asia in the early third millennium BC. By the middle second millennium BC, seasonal camps in the mountains and deserts illustrate that Eurasian herders incorporated the cultivation of millet, wheat, barley and legumes into their subsistence strategy. These findings push back the chronology for domesticated plant use among Central Eurasian pastoralists by approximately 2000 years. Given the geography, chronology and seed morphology of these data, we argue that mobile pastoralists were key agents in the spread of crop repertoires and the transformation of agricultural economies across Asia from the third to the second millennium BC.

  10. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  11. A new network on mountain geomorphosites

    Science.gov (United States)

    Giusti, Christian

    2013-04-01

    Since about two decades, the value of geoheritage in mountain areas has been re-discovered in various parts of the Alps (Reynard et al., 2010) and other mountain ranges, and various initiatives (protection of sites worthy of protection, inventories of geomorphosites, geotourist promotion, creation of geoparks, etc.) to conserve or promote mountain geoheritage have been developed. As mountains are recognized as natural areas with a very high geodiversity, and at the same time as areas with a great potential for the development of soft tourism, a new Network on Mountain Geomorphosites was created in October 2012 in conclusion to a workshop organized by the University of Lausanne (Switzerland). The Network is open to all researchers active in geoheritage, geoconservation and geotourism studies in mountain areas. For the first years research will focus on three main issues: - Geoheritage and natural processes: Mountains are very sensitive areas where climate change impacts are very acute and where active geomorphological processes rapidly modify landscapes. It is hypothesized that geoheritage will be highly impacted by global change in the future. Nevertheless, at the moment, very little research is carried out on the evolution of landforms recognized as geoheritage and no specific management measures have been developed. Also, the tourist activities related to geoheritage, especially the trails developed to visit geomorphosites, are sensitive to geomorphological processes in mountain areas in a context of global change, and need, therefore, to be better addressed by geomorphologists. - Geotourism: During the last two decades numerous initiatives have developed geotourism in mountain areas. Nevertheless, studies addressing issues such as the needs of the potential public(s) of geotourism, the evaluation of the quality of the geotourist products developed by scientists and/or local authorities, and the assessment of the economic benefits of geotourism for the regional

  12. Ecology of Land Cover Change in Glaciated Tropical Mountains

    Directory of Open Access Journals (Sweden)

    Kenneth R. Young

    2014-12-01

    Full Text Available Tropical mountains contain unique biological diversity, and are subject to many consequences of global climate change, exasperated by concurrent socioeconomic shifts. Glaciers are in a negative mass balance, exposing substrates to primary succession and altering downslope wetlands and streams. A review of recent trends and future predictions suggests a likely reduction in areas of open habitat for species of high mountains due to greater woody plant cover, accompanied by land use shifts by farmers and pastoralists along the environmental gradients of tropical mountains. Research is needed on the biodiversity and ecosystem consequences of successional change, including the direct effects of retreating glaciers and the indirect consequences of combined social and ecological drivers in lower elevations. Areas in the high mountains that are protected for nature conservation or managed collectively by local communities represent opportunities for integrated research and development approaches that may provide ecological spaces for future species range shifts.

  13. Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin

    Directory of Open Access Journals (Sweden)

    M. Prasch

    2013-05-01

    Full Text Available Water supply of most lowland cultures heavily depends on rain and melt water from the upstream mountains. Especially melt-water release of alpine mountain ranges is usually attributed a pivotal role for the water supply of large downstream regions. Water scarcity is assumed as consequence of glacier shrinkage and possible disappearance due to global climate change (GCC, in particular for large parts of Central and Southeast Asia. In this paper, the application and validation of a coupled modeling approach with regional climate model (RCM outputs and a process-oriented glacier and hydrological model is presented for the central Himalayan Lhasa River basin despite scarce data availability. Current and possible future contributions of ice melt to runoff along the river network are spatially explicitly shown. Its role among the other water balance components is presented. Although glaciers have retreated and will continue to retreat according to the chosen climate scenarios, water availability is and will be primarily determined by monsoon precipitation and snowmelt. Ice melt from glaciers is and will be a minor runoff component in summer monsoon-dominated Himalayan river basins.

  14. Geothermal hydrology of Valles Caldera and the southwestern Jemez Mountains, New Mexico

    Science.gov (United States)

    Trainer, Frank W.; Rogers, Robert J.; Sorey, M.L.

    2000-01-01

    The Jemez Mountains in north-central New Mexico are volcanic in origin and have a large central caldera known as Valles Caldera. The mountains contain the Valles geothermal system, which was investigated during 1970-82 as a source of geothermal energy. This report describes the geothermal hydrology of the Jemez Mountains and presents results of an earlier 1972-75 U.S. Geological Survey study of the area in light of more recent information. Several distinct types of thermal and nonthermal ground water are recognized in the Jemez Mountains. Two types of near-surface thermal water are in the caldera: thermal meteoric water and acid sulfate water. The principal reservoir of geothermal fluids is at depth under the central and western parts of the caldera. Nonthermal ground water in Valles Caldera occurs in diverse perched aquifers and deeper valley-fill aquifers. The geothermal reservoir is recharged by meteorically derived water that moves downward from the aquifers in the caldera fill to depths of 6,500 feet or more and at temperatures reaching about 330 degrees Celsius. The heated geothermal water rises convectively to depths of 2,000 feet or less and mixes with other ground water as it flows away from the geothermal reservoir. A vapor zone containing steam, carbon dioxide, and other gases exists above parts of the liquid-dominated geothermal zone. Two subsystems are generally recognized within the larger geothermal system: the Redondo Creek subsystem and the Sulphur Creek subsystem. The permeability in the Redondo Creek subsystem is controlled by stratigraphy and fault-related structures. Most of the permeability is in the high-angle, normal faults and associated fractures that form the Redondo Creek Graben. Faults and related fractures control the flow of thermal fluids in the subsystem, which is bounded by high-angle faults. The Redondo Creek subsystem has been more extensively studied than other parts of the system. The Sulphur Springs subsystem is not as well

  15. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  16. Geomorphological records of diachronous quarrying activities along the ancient Appia route at the Aurunci Mountain pass (Central Italy)

    Science.gov (United States)

    Di Luzio, E.; Carfora, P.

    2018-04-01

    The topic of this research consists in the description of landscape modifications occurring from the 4th century BCE to the 19th century CE as a consequence of quarrying activities on carbonate slopes along a tract of the ancient Appia route crossing the central Apennine belt at the Aurunci Mountain pass (Lazio region, central Italy). The main objectives were to discern different quarrying phases and techniques, quantify quarrying activities and understand the role of quarrying in create morphological features. Multidisciplinary studies were completed including aerial photogrammetry, geoarchaeological field surveys, morphometric characterization of quarry areas, structural analysis of rock outcrops aided by terrestrial photogrammetry, GPS measurements. The results of this study show how the local geomorpological and tectonic setting determined which kinds of extractable rock material, i.e., rock blocks or breccias, were used for different purposes. Moreover, different phases of extraction were evidenced. A main Roman quarrying phase, lasting between the 4th century BCE and the 1st century CE, was recognized as taking place over eight quarry areas. These are delimited by sharp edges and have regular shapes, revealing in some cases a staircase-like morphological profile, and are characterized by similar volumes of extracted rock material. A later quarrying phase -the Bourbon Age, 19th century CE-is assumed to be evidenced instead by five quarries with a peculiar semi-elliptical shape and different volumes of carved material. Seven quarries were found to be of uncertain age. The quarry system described in this paper, together with geomorphological records of slope cuts, terraced surfaces, and the remains of retaining walls, represents a unique and important example of anthropogenic landscape modification in the territory of the central Apennines caused by the construction and maintenance of a Roman road over the centuries. This could be relevant for further studies on

  17. The mountain pine beetle and whitebark pine waltz: Has the music changed?

    Science.gov (United States)

    Barbara J. Bentz; Greta Schen-Langenheim

    2007-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae) (MPB), is a bark beetle native to western North American forests, spanning wide latitudinal and elevational gradients. MPB infest and reproduce within the phloem of most Pinus species from northern Baja California in Mexico to central British Columbia in...

  18. Minerals in the Foods Eaten by Mountain Gorillas (Gorilla beringei)

    OpenAIRE

    Cancelliere, Emma C.; DeAngelis, Nicole; Nkurunungi, John Bosco; Raubenheimer, David; Rothman, Jessica M.

    2014-01-01

    Minerals are critical to an individual's health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei) in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in s...

  19. Greater sage-grouse nest predators in the Virginia Mountains of northwestern Nevada

    Science.gov (United States)

    Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.

    2013-01-01

    Greater sage-grouse Centrocercus urophasianus, hereafter sage-grouse, populations have declined across their range due to the loss, degradation, and fragmentation of habitat. Habitat alterations can lead not only to vegetative changes but also to shifts in animal behavior and predator composition that may influence population vital rates, such as nest success. For example, common ravens Corvus corax are sage-grouse nest predators, and common raven abundance is positively associated with human-caused habitat alterations. Because nest success is a central component to sage-grouse population persistence, research that identifies factors influencing nest success will better inform conservation efforts. We used videography to unequivocally identify sage-grouse nest predators within the Virginia Mountains of northwestern Nevada, USA, from 2009 to 2011 and used maximum likelihood to calculate daily probability of nest survival. In the Virginia Mountains, fires, energy exploration, and other anthropogenic activities have altered historic sage-grouse habitat. We monitored 71 sage-grouse nests during the study, placing video cameras at 39 nests. Cumulative nest survival for all nests was 22.4% (95% CI, 13.0–33.4%), a survival rate that was significantly lower than other published results for sage-grouse in the Great Basin. Depredation was the primary cause for nest failure in our study (82.5%), and common ravens were the most frequent sage-grouse nest predator, accounting for 46.7% of nest depredations. We also successfully documented a suite of mammalian and reptilian species depredating sage-grouse nests, including some predators never previously confirmed in the literature to be sage-grouse nest predators (i.e., bobcats Lynx rufus and long-tailed weasels Mephitis frenata). Within the high elevation, disturbed habitat of the Virginia Mountains, low sage-grouse nest success may be limiting sage-grouse population growth. These results suggest that management actions that

  20. Potential field studies of the central San Luis Basin and San Juan Mountains, Colorado and New Mexico, and southern and western Afghanistan

    Science.gov (United States)

    Drenth, Benjamin John

    This dissertation includes three separate chapters, each demonstrating the interpretive utility of potential field (gravity and magnetic) geophysical datasets at various scales and in various geologic environments. The locations of these studies are the central San Luis Basin of Colorado and New Mexico, the San Juan Mountains of southwestern Colorado, and southern and western Afghanistan. The San Luis Basin is the northernmost of the major basins that make up the Rio Grande rift, and interpretation of gravity and aeromagnetic data reveals patterns of rifting, rift-sediment thicknesses, distribution of pre-rift volcanic and sedimentary rocks, and distribution of syn-rift volcanic rocks. Syn-rift Santa Fe Group sediments have a maximum thickness of ˜2 km in the Sanchez graben near the eastern margin of the basin along the central Sangre de Cristo fault zone. Under the Costilla Plains, thickness of these sediments is estimated to reach ˜1.3 km. The Santa Fe Group sediments also reach a thickness of nearly 1 km within the Monte Vista graben near the western basin margin along the San Juan Mountains. A narrow, north-south-trending structural high beneath San Pedro Mesa separates the graben from the structural depression beneath the Costilla Plains. Aeromagnetic anomalies are interpreted to mainly reflect variations of remanent magnetic polarity and burial depth of the 5.3-3.7 Ma Servilleta basalt of the Taos Plateau volcanic field. Magnetic-source depth estimates indicate patterns of subsidence following eruption of the basalt and show that the Sanchez graben has been the site of maximum subsidence. One of the largest and most pronounced gravity lows in North America lies over the rugged San Juan Mountains in southwestern Colorado. A buried, low-density silicic batholith related to an Oligocene volcanic field coincident with the San Juan Mountains has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was

  1. Colluvial deposits as a possible weathering reservoir in uplifting mountains

    Directory of Open Access Journals (Sweden)

    S. Carretier

    2018-03-01

    Full Text Available The role of mountain uplift in the evolution of the global climate over geological times is controversial. At the heart of this debate is the capacity of rapid denudation to drive silicate weathering, which consumes CO2. Here we present the results of a 3-D model that couples erosion and weathering during mountain uplift, in which, for the first time, the weathered material is traced during its stochastic transport from the hillslopes to the mountain outlet. To explore the response of weathering fluxes to progressively cooler and drier climatic conditions, we run model simulations accounting for a decrease in temperature with or without modifications in the rainfall pattern based on a simple orographic model. At this stage, the model does not simulate the deep water circulation, the precipitation of secondary minerals, variations in the pH, below-ground pCO2, and the chemical affinity of the water in contact with minerals. Consequently, the predicted silicate weathering fluxes probably represent a maximum, although the predicted silicate weathering rates are within the range of silicate and total weathering rates estimated from field data. In all cases, the erosion rate increases during mountain uplift, which thins the regolith and produces a hump in the weathering rate evolution. This model thus predicts that the weathering outflux reaches a peak and then falls, consistent with predictions of previous 1-D models. By tracking the pathways of particles, the model can also consider how lateral river erosion drives mass wasting and the temporary storage of colluvial deposits on the valley sides. This reservoir is comprised of fresh material that has a residence time ranging from several years up to several thousand years. During this period, the weathering of colluvium appears to sustain the mountain weathering flux. The relative weathering contribution of colluvium depends on the area covered by regolith on the hillslopes. For mountains

  2. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges

    Science.gov (United States)

    Haeberli, Wilfried; Schaub, Yvonne; Huggel, Christian

    2017-09-01

    While glacier volumes in most cold mountain ranges rapidly decrease due to continued global warming, degradation of permafrost at altitudes above and below glaciers is much slower. As a consequence, many still existing glacier and permafrost landscapes probably transform within decades into new landscapes of bare bedrock, loose debris, sparse vegetation, numerous new lakes and steep slopes with slowly degrading permafrost. These new landscapes are likely to persist for centuries if not millennia to come. During variable but mostly extended future time periods, such new landscapes will be characterized by pronounced disequilibria within their geo- and ecosystems. This especially involves long-term stability reduction of steep/icy mountain slopes as a slow and delayed reaction to stress redistribution following de-buttressing by vanishing glaciers and to changes in mechanical strength and hydraulic permeability caused by permafrost degradation. Thereby, the probability of far-reaching flood waves from large mass movements into lakes systematically increases with the formation of many new lakes and systems of lakes in close neighborhood to, or even directly at the foot of, so-affected slopes. Results of recent studies in the Swiss Alps are reviewed and complemented with examples from the Cordillera Blanca in Peru and the Mount Everest region in Nepal. Hot spots of future hazards from potential flood waves caused by large rock falls into new lakes can already now be recognized. To this end, integrated spatial information on glacier/permafrost evolution and lake formation can be used together with scenario-based models for rapid mass movements, impact waves and flood propagation. The resulting information must then be combined with exposure and vulnerability considerations related to settlements and infrastructure. This enables timely planning of risk reduction options. Such risk reduction options consist of two components: Mitigation of hazards, which in the present

  3. Inbreeding in Gredos mountain range (Spain): contribution of multiple consanguinity and intervalley variation.

    Science.gov (United States)

    Fuster, V; Jiménez, A M; Colantonio, S E

    2001-04-01

    The present paper examines consanguineous marriages occurring between 1874 and 1975 in three valleys (Tormes, Alberche, and Tiétar) in the Sierra de Gredos mountain range, Avila province, Spain. Information was obtained from parish registers of 42 localities, corresponding to a total of 41,696 weddings. Consanguineous marriages were defined as those up to the third degree of consanguinity (second cousins). From 1874 to 1975 the percentage of related mates was 4.45% and the inbreeding coefficient was 0.0011868 (for 1874 to 1917 corresponding figures up to the fourth degree were 16.44% and 0.00 19085, respectively). In order to ascertain the characteristics and evolution of mating patterns in Gredos, the contribution of each degree of kinship was analyzed as a whole and then for each valley separately. Regarding total consanguineous marriages in Gredos, there is a low frequency of uncle-niece matings (0.21%) and a first-second cousin mating ratio (C22/C33) of 0.23 (up to the third degree of consanguinity). Before 1918 multiple matings (i.e., those involving more than a single relationship) accounted for 19.16% of consanguineous marriages (up to the fourth degree). The observed frequencies of multiple consanguineous marriages was, on average, about twice that expected at random, and the proportion of such marriages to total inbreeding was 34.65%. The temporal change of the Gredos inbreeding pattern was characterized by a recent decrease; the highest inbreeding levels correspond to the period from 1915 to 1944. Finally, intervalley differences (maximum inbreeding coefficient in the Tormes, minimum in the Tiétar) are interpreted considering the geography, population size, and population mobility for each valley

  4. Stand and within-stand factors influencing Golden-winged Warbler use of regenerating stands in the central Appalachian Mountains

    Directory of Open Access Journals (Sweden)

    Marja H. Bakermans

    2015-06-01

    Golden-winged Warblers in the central Appalachian Mountains that managers should strive for 15% young forest in a heavily forested landscape (>70% forest cover and cluster stands within 1-2 km of other young forest habitats.

  5. TopoGreenland: Lithospheric structure and topography in Central-Eastern Greenland

    Science.gov (United States)

    Thybo, H.; Shulgin, A.; Kraft, H. A.; Vinnik, L. P.

    2017-12-01

    We present models of the seismic structure of the crust and upper mantle in the interior of Greenland based on new seismological data from the TopoGreenland experiment. Until this experiment, all seismic data in Greenland was acquired close to the coast, where the crustal structure is affected by oceanic break-up. The TopoGreenland data acquisition programme in central-eastern Greenland included the first controlled source seismic experiment in interior Greenland and deployment of 24 broadband (BB) onshore stations for 3 years, partly on the ice cap. The 320 km long seismic refraction/wide-angle reflection profile was acquired on the ice cap by a team of six people during two-months in summer of 2011. We present a 2D velocity model of the crust based on tomographic inversion and forward ray tracing modelling of the controlled source data. It shows a decrease of crustal thickness from 47 km below the centre of Greenland in the western to 40 km in its eastern part of the profile. High lower crustal velocities (Vp 6.8 - 7.3 km/s) below central Greenland may result from past collision tectonics or be related to the passage of the Iceland mantle plume. Crustal receiver functions in the surrounding area demonstrate constant structure along the coast and pronounced, relatively sharp variation in crustal thickness around the mountains at the edge of the ice cap. Surprisingly the thickest crust is observed below the lowest topography under the ice cap, whereas the crust is thin below the high mountains at its edge, and thins further below elevated topography out to the coast. Receiver Function interpretation of the mantle and transition zone structure shows a complicated mosaic variation that cannot be correlated to the variation in topography. The origin of the pronounced mountain ranges around the North Atlantic Ocean with average elevation above 1500 m and peak elevations of more than 3.5 km near Scoresby Sund in Eastern Greenland, is unknown. Our new results demonstrate

  6. Lead Levels in the Bones of Small Rodents from Alpine and Subalpine Habitats in the Tian-Shan Mountains, Kyrgyzstan

    Directory of Open Access Journals (Sweden)

    Zuzana Ballová

    2018-01-01

    Full Text Available High mountain areas are an appropriate indicator of anthropogenic lead (Pb, which can reach remote mountain ranges through long distance atmospheric transport. We compared the content of Pb in ecologically equivalent rodent species from Tian-Shan with European mountain ranges including the Tatra, Vitosha and Rila mountains. We used bone tissues from terminal tail vertebrae of small rodents for detection of Pb levels through electro-thermal atomic absorption spectroscopy (AAS. The tailbones of Tian-Shan rodents had significantly lower Pb levels than snow voles from the Tatra Mountains, but there was no significant difference in comparison with the Vitosha and Rila mountains. We can conclude that Tian-Shan shows lower pollution by Pb than the Tatras, which may be a result of prolonged industrialization of north-western Europe and strongly prevailing west winds in this region.

  7. Minerals in the foods eaten by mountain gorillas (Gorilla beringei.

    Directory of Open Access Journals (Sweden)

    Emma C Cancelliere

    Full Text Available Minerals are critical to an individual's health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods.

  8. Minerals in the foods eaten by mountain gorillas (Gorilla beringei).

    Science.gov (United States)

    Cancelliere, Emma C; DeAngelis, Nicole; Nkurunungi, John Bosco; Raubenheimer, David; Rothman, Jessica M

    2014-01-01

    Minerals are critical to an individual's health and fitness, and yet little is known about mineral nutrition and requirements in free-ranging primates. We estimated the mineral content of foods consumed by mountain gorillas (Gorilla beringei beringei) in the Bwindi Impenetrable National Park, Uganda. Mountain gorillas acquire the majority of their minerals from herbaceous leaves, which constitute the bulk of their diet. However, less commonly eaten foods were sometimes found to be higher in specific minerals, suggesting their potential importance. A principal component analysis demonstrated little correlation among minerals in food items, which further suggests that mountain gorillas might increase dietary diversity to obtain a full complement of minerals in their diet. Future work is needed to examine the bioavailability of minerals to mountain gorillas in order to better understand their intake in relation to estimated needs and the consequences of suboptimal mineral balance in gorilla foods.

  9. Understanding karst environments by thermo-hygrometric monitoring: preliminary results from the Cesi Mountain karst system (Central Italy

    Directory of Open Access Journals (Sweden)

    Lucio Di Matteo

    2016-06-01

    Full Text Available The understanding of karst systems is of paramount importance for the protection and valorisation of these environments. A multidisciplinary study is presented to investigate the possible interconnection between karst features of a karst area located in the south-western part of the Martani chain (Cesi Mountain, Central Italy. This hydrogeological structure contributes to recharge a deep regional aquifer. The latter feeds the high discharge and salinity Stifone springs. In the southwestern part of Martani chain, seven caves have been mapped, five of which are hosted in the Calcare Massiccio Formation. The analysis of thermo-hygrometric data collected since Autumn 2014 into the caves and those from external meteorological stations, showed the timing of the airflow inversion occurring on late winter/early spring and summer/ early autumn. Despite the complexity of the morphology of caves and of conceptual models of airflow pattern, these data seem to indicate that the monitored small caves could be interconnected to a considerably wider cave system. Data here presented coupled with the knowledge on hydrogeological and geological-structural setting of the limestone massif are useful to drive future speleological explorations, aiming to discover new large cavities and to better understand the water recharge process.

  10. Glimpses of East Antarctica: Aeromagnetic and satellite magnetic view from the central Transantarctic Mountains of East Antarctica

    Science.gov (United States)

    Finn, Carol A.; Goodge, John W.

    2010-01-01

    Aeromagnetic and satellite magnetic data provide glimpses of the crustal architecture within the Ross Sea sector of the enigmatic, ice-covered East Antarctic shield critical for understanding both global tectonic and climate history. In the central Transantarctic Mountains (CTAM), exposures of Precambrian basement, coupled with new high-resolution magnetic data, other recent aeromagnetic transects, and satellite magnetic and seismic tomography data, show that the shield in this region comprises an Archean craton modified both by Proterozoic magmatism and early Paleozoic orogenic basement reactivation. CTAM basement structures linked to the Ross Orogeny are imaged 50–100 km farther west than previously mapped, bounded by inboard upper crustal Proterozoic granites of the Nimrod igneous province. Magnetic contrasts between craton and rift margin sediments define the Neoproterozoic rift margin, likely reactivated during Ross orogenesis and Jurassic extension. Interpretation of satellite magnetic and aeromagnetic patterns suggests that the Neoproterozoic rift margin of East Antarctica is offset by transfer zones to form a stepwise series of salients tracing from the CTAM northward through the western margin of the Wilkes Subglacial Basin to the coast at Terre Adélie. Thinned Precambrian crust inferred to lie east of the rift margin cannot be imaged magnetically because of modification by Neoproterozoic and younger tectonic events.

  11. A revised Lithostratigraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain

  12. Ordovician and Silurian Phi Kappa and Trail Creek formations, Pioneer Mountains, central Idaho; stratigraphic and structural revisions, and new data on graptolite faunas

    Science.gov (United States)

    Dover, James H.; Berry, William B.N.; Ross, Reuben James

    1980-01-01

    clastic rocks reported in previously measured sections of the Phi Kappa, as well as the sequence along Phi Kappa Creek from which the name originates, are excluded from the Phi Kappa as revised and are reassigned to two structural plates of Mississippian Copper Basin Formation; other strata now excluded from the formation are reassigned to the Trail Creek Formation and to an unnamed Silurian and Devonian unit. As redefined, the Phi Kappa Formation is only about 240 m thick, compared with the 3,860 m originally estimated, and it occupies only about 25 percent of the outcrop area previously mapped in 1930 by H. G. Westgate and C. P. Ross. Despite this drastic reduction in thickness and the exclusion of the rocks along Phi Kappa Creek, the name Phi Kappa is retained because of widely accepted prior usage to denote the Ordovician graptolitic shale facies of central Idaho, and because the Phi Kappa Formation as revised is present in thrust slices on Phi Kappa Mountain, at the head of Phi Kappa Creek. The lithic and faunal consistency of this unit throughout the area precludes the necessity for major facies telescoping along individual faults within the outcrop belt. However, tens of kilometers of tectonic shortening seems required to juxtapose the imbricated Phi Kappa shale facies with the Middle Ordovician part of the carbonate and quartzite shale sequence of east central Idaho. The shelf rocks are exposed in the Wildhorse structural window of the northeastern Pioneer Mountains, and attain a thickness of at least 1,500 m throughout the region north and east of the Pioneer Mountains. The Phi Kappa is in direct thrust contact on intensely deformed medium- to high-grade metamorphic equivalents of the same shelf sequence in the Pioneer window at the south end of the Phi Kappa-Trail Creek outcrop belt. Along East Pass, Big Lake, and Pine Creeks, north of the Pioneer Mountains, some rocks previously mapped as Ramshorn Slate are lithologically and faunally equivalent to the P

  13. DEVONIAN RUGOSE CORALS FROM THE KARAKORUM MOUNTAINS (NORTHERN PAKISTAN

    Directory of Open Access Journals (Sweden)

    STEFAN SCHRÖDER

    2004-11-01

    Full Text Available The Karakorum Block is regarded as a microplate of "Gondwanan" origin and was part of the Cimmerian continent ("Mega Lhasa" which rifted away from the northern margin of Gondwana during the Late Palaeozoic/Early Mesozoic. From the Northern Karakorum Range (Yarkhun and Karambar River Valleys: structurally belonging to the Northern Sedimentary Belt an Upper Givetian to Lower Frasnian rugose coral fauna of the Shogram Formation is described. The fauna is dominated by cosmopolitan genera such as Hexagonaria, Disphyllum, Macgeea and the Temnophyllum/Spinophyllum group, generally showing a geographically wide distribution, although being absent from the Eastern Americas Realm in the Upper Givetian/Lower Frasnian. Therefore its components are of little use for biogeographical deductions at sub-realm level, and in explaining the relation between the Karakorum Range and other Cimmerian crustal blocks. A remarkable exception is the first record of the genus Pseudopexiphyllum outside of Turkey, indicating a connection to the western part of the Cimmerides. On species level, the coral fauna of the Shogram Formation is characterized by the development of a diverse and rather unique fauna including about 35 taxa, that differs from the faunas known from neighbouring crustal blocks. So far, faunistic links to the Central Iranian Microcontinent (Yazd-, and Tabas-Block, the northwest Iranian Plate (Elburz, Central Pamir, the Lhasa Block and Western Qiangtang are not clear, and although each of these fragments are believed to be closely connected they were apparently not in direct contact during the Devonian. However, the Karakorum fauna is remarkably close to one known from the Helmand Block in Afghanistan, showing a very similar generic composition that includes numerous morphologically closely related, although not identical species. Accordingly, the restricted faunal exchange led to the development of new taxa. Distribution of the new species of Spinophyllum

  14. Winter severity and snowiness and their multiannual variability in the Karkonosze Mountains and Jizera Mountains

    Science.gov (United States)

    Urban, Grzegorz; Richterová, Dáša; Kliegrová, Stanislava; Zusková, Ilona; Pawliczek, Piotr

    2017-09-01

    This paper analyses winter severity and snow conditions in the Karkonosze Mountains and Jizera Mountains and examines their long-term trends. The analysis used modified comprehensive winter snowiness (WSW) and winter severity (WOW) indices as defined by Paczos (1982). An attempt was also made to determine the relationship between the WSW and WOW indices. Measurement data were obtained from eight stations operated by the Institute of Meteorology and Water Management - National Research Institute (IMGW-PIB), from eight stations operated by the Czech Hydrological and Meteorological Institute (CHMI) and also from the Meteorological Observatory of the University of Wrocław (UWr) on Mount Szrenica. Essentially, the study covered the period from 1961 to 2015. In some cases, however, the period analysed was shorter due to the limited availability of data, which was conditioned, inter alia, by the period of operation of the station in question, and its type. Viewed on a macroscale, snow conditions in the Karkonosze Mountains and Jizera Mountains (in similar altitude zones) are clearly more favourable on southern slopes than on northern ones. In the study area, negative trends have been observed with respect to both the WSW and WOW indices—winters have become less snowy and warmer. The correlation between the WOW and WSW indices is positive. At stations with northern macroexposure, WOW and WSW show greater correlation than at ones with southern macroexposure. This relationship is the weakest for stations that are situated in the upper ranges (Mount Śnieżka and Mount Szrenica).

  15. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  16. Treeline advances along the Urals mountain range - driven by improved winter conditions?

    Science.gov (United States)

    Hagedorn, Frank; Shiyatov, Stepan G; Mazepa, Valeriy S; Devi, Nadezhda M; Grigor'ev, Andrey A; Bartysh, Alexandr A; Fomin, Valeriy V; Kapralov, Denis S; Terent'ev, Maxim; Bugman, Harald; Rigling, Andreas; Moiseev, Pavel A

    2014-11-01

    High-altitude treelines are temperature-limited vegetation boundaries, but little quantitative evidence exists about the impact of climate change on treelines in untouched areas of Russia. Here, we estimated how forest-tundra ecotones have changed during the last century along the Ural mountains. In the South, North, Sub-Polar, and Polar Urals, we compared 450 historical and recent photographs and determined the ages of 11,100 trees along 16 altitudinal gradients. In these four regions, boundaries of open and closed forests (crown covers above 20% and 40%) expanded upwards by 4 to 8 m in altitude per decade. Results strongly suggest that snow was an important driver for these forest advances: (i) Winter precipitation has increased substantially throughout the Urals (~7 mm decade(-1) ), which corresponds to almost a doubling in the Polar Urals, while summer temperatures have only changed slightly (~0.05°C decade(-1) ). (ii) There was a positive correlation between canopy cover, snow height and soil temperatures, suggesting that an increasing canopy cover promotes snow accumulation and, hence, a more favorable microclimate. (iii) Tree age analysis showed that forest expansion mainly began around the year 1900 on concave wind-sheltered slopes with thick snow covers, while it started in the 1950s and 1970s on slopes with shallower snow covers. (iv) During the 20th century, dominant growth forms of trees have changed from multistemmed trees, resulting from harsh winter conditions, to single-stemmed trees. While 87%, 31%, and 93% of stems appearing before 1950 were from multistemmed trees in the South, North and Polar Urals, more than 95% of the younger trees had a single stem. Currently, there is a high density of seedlings and saplings in the forest-tundra ecotone, indicating that forest expansion is ongoing and that alpine tundra vegetation will disappear from most mountains of the South and North Urals where treeline is already close to the highest peaks. © 2014

  17. Tectonic uplift-influenced monsoonal changes promoted hominin occupation of the Luonan Basin: Insights from a loess-paleosol sequence, eastern Qinling Mountains, central China

    Science.gov (United States)

    Fang, Qian; Hong, Hanlie; Zhao, Lulu; Furnes, Harald; Lu, Huayu; Han, Wen; Liu, Yao; Jia, Zhuoyue; Wang, Chaowen; Yin, Ke; Algeo, Thomas J.

    2017-08-01

    Quaternary soil deposits from northern and southern China are distinctly different, reflecting variability of the East Asian monsoon north and south of the Qinling Mountains. Coeval sediments from the transitional climatic zone of central China, which are little studied to date, have the potential to improve our understanding of Quaternary monsoon changes and associated influences on hominin occupation of this region. Here, we investigate in detail a well-preserved and continuous Quaternary loess-paleosol sequence (Shangbaichuan) from the Luonan Basin, using a variety of weathering indices including major and trace element ratios, clay mineralogy, and Fe-oxide mineralogy. The whole-rock samples display similar rare earth element patterns characterized by upper continental crustal ratios: (La/Yb)N ≈ 9.5 and Eu/Eu* ≈ 0.65. Elemental data such as (La/Yb)N, La/Th and Eu/Eu* ratios show a high degree of homogeneity, suggesting that dust in the source region may have been thoroughly mixed and recycled, resulting in all samples having a uniform initial composition. Indices for pedogenic weathering such as Na/K, Ba/Sr, Rb/Sr, CIA, CIW, CPA, PIA, kaolinite/illite, (kaolinite + smectite)/illite, and hematite/(hematite + goethite) exhibit similar secular trends and reveal a four-stage accumulation history. The indices also indicate that the climate was warmer and wetter during the most recent interglacial stage, compared with coeval environments of the Chinese Loess Plateau. Secular changes in weathering intensity can be related to stepwise uplift of the Qinling Mountains and variation in East Asian monsoon intensity, both of which played significant roles in controlling climate evolution in the Luonan Basin. Furthermore, intensified aridity and winter monsoon strength in dust source areas, as evidenced by mineralogic and geochemical changes, may have been due to the mid-Pleistocene climate transition. Based on temporal correlation of warmer and wetter climatic conditions

  18. Rainfall-runoff-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya, India

    Science.gov (United States)

    Kothyari, B. P.; Verma, P. K.; Joshi, B. K.; Kothyari, U. C.

    2004-06-01

    The Bhetagad watershed in Kumaon Hills of Central Himalaya represents for hydro-meteorological conditions of the middle mountains over the Hindu Kush Himalayas. This study was conducted to assess the runoff, soil loss and subsequent nutrient losses from different prominent land uses in the Bhetagad watershed of Central Himalayas. Four experimental natural plots each of 20 m length and 5 m width were delineated on four most common land covers viz, pine forests, tea plantation, rainfed agricultural and degraded lands. Monthly values of runoff, soil loss and nutrient loss, for four successive years (1998-2001), from these land uses were quantified following standard methodologies. The annual runoff in these plots ranged between 51 and 3593 m 3/ha while the annual soil loss varied between 0.06 and 5.47 tonnes/ha during the entire study period. The loss of organic matter was found to be maximum in plot having pine forest followed by plot having tea plantation as the land cover. Annual loss of total N (6.24 kg/ha), total P (3.88 kg/ha) and total K (5.98 kg/ha),per unit loss of soil (tonnes/ha), was maximum from the plot having rainfed agricultural crop as the land cover. The loss of total N ranged between 0.30 and 21.27 kg/ha, total P ranged between 0.14 and 9.42 kg/ha, total K ranged from 0.12 to 11.31 kg/ha whereas organic matter loss varied between 3.65 and 255.16 kg/ha, from different experimental plots. The findings will lead towards devising better conservation/management options for mountain land use systems.

  19. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.

    Directory of Open Access Journals (Sweden)

    Jiří Flousek

    Full Text Available Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše, where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta. It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.

  20. Remains of mining in the territory of villages´ Červenica and Zlatá Baňa in the mountain range of Slanské vrchy

    OpenAIRE

    Rudolf Magula; Ján Brehuv

    2007-01-01

    This article is devoted to the territory that is recondite for mining activities. It is situated in a north part of the mountain range of Slanské vrchy. There are villages that were known as mining villages in the past. The mining activities for gold, silver and mercury had only a local economical importance, beside of the output or production of opal. The output of opal on this territory was world noted, in the past. The aim of this article is to remit at some historical facts about former m...

  1. The Olympic Mountains Experiment for GPM (OLYMPEX)

    Science.gov (United States)

    Houze, R.; McMurdie, L. A.; Petersen, W. A.; Schwaller, M.

    2016-12-01

    The GPM satellite has made it possible to observe the amount and nature of precipitation in remote areas of midlatitudes, including oceans and mountain ranges. OLYMPEX conducted over the Olympic Mountains on the northwest coast of Washington State was designed to provide the means for evaluating the physical basis of the algorithms used to convert GPM satellite measurements to determine the amount and nature of precipitation in midlatitude extratropical cyclones. Microphysical processes producing precipitation are highly sensitive to the vertical profile of temperature. In the tropics, the domain of the TRMM satellite, the temperature profile varies only slightly. GPM algorithms, however, must account for the strong horizontal variation of temperature profiles in baroclinic storms systems of midlatitudes and for the variations of precipitation mechanisms caused by passage of these storms over mountains. The OLYMPEX scientific strategy was: 1) collect a statistically robust set of measurements in midlatitude cyclones upstream of, over, and downstream of a midlatitude mountain range that can be used to improve GPM satellite algorithms; 2) determine how the physics and dynamics of the mechanisms affecting precipitation formation in relation to storm structure and terrain. To accomplish these goals 3 aircraft, 4 scanning dual polarization Doppler radars, supplemental soundings, and sophisticated surface instruments were deployed on the Olympic Peninsula of Washington, where Pacific frontal systems produce seasonal precipitation of 2000-4000 mm. 13 storms were observed. 3 of these were atmospheric rivers. The NASA DC-8 and ER-2 aircraft overflew the storms with instruments similar to those on GPM. The U. North Dakota Citation sampled hydrometeors in situ. Preliminary analysis indicates that one of the primary modes of orographic enhancement is low-level moist flow rising over the lower windward slopes and producing many very small drops. Ice-phase processes producing

  2. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations

    Science.gov (United States)

    Wrzesien, Melissa L.; Durand, Michael T.; Pavelsky, Tamlin M.; Kapnick, Sarah B.; Zhang, Yu; Guo, Junyi; Shum, C. K.

    2018-02-01

    Despite the importance of mountain snowpack to understanding the water and energy cycles in North America's montane regions, no reliable mountain snow climatology exists for the entire continent. We present a new estimate of mountain snow water equivalent (SWE) for North America from regional climate model simulations. Climatological peak SWE in North America mountains is 1,006 km3, 2.94 times larger than previous estimates from reanalyses. By combining this mountain SWE value with the best available global product in nonmountain areas, we estimate peak North America SWE of 1,684 km3, 55% greater than previous estimates. In our simulations, the date of maximum SWE varies widely by mountain range, from early March to mid-April. Though mountains comprise 24% of the continent's land area, we estimate that they contain 60% of North American SWE. This new estimate is a suitable benchmark for continental- and global-scale water and energy budget studies.

  3. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  4. Degradation of High Mountain Ecosystems in Northern Europe

    Institute of Scientific and Technical Information of China (English)

    J(o)rg L(o)ffler

    2004-01-01

    Data material of a long-term highmountain ecosystem research project was used to interpret the grazing impact of reindeers. In central Norway investigations were conducted to both, areas where reindeer grazing is excluded, and areas where intensive pasturing is present for a long period of time.The comparative analysis of grazing impact was based on similar environmental conditions. The results were transposed to northern Norway where dramatic overgrazing had been exceeding the carrying capacity.Using landscape ecological mappings, especially of vege ation and soils, the impact of reindeer grazing in different areas became obvious. Non-grazedlichen-dominated ecosystems of the snow-free locations functioned sensitively near the limit of organism survival. These localities were most influenced by grazing as they offer the winter forage to the reindeers. So, intensive grazing in central Norway led to landscape degradation by destruction of the vegetation and superinduced by soil erosion.Those features were comparable to the situation in northern Norway, where a broad-scale destruction of the environment combined with a depression of the altitudinal belts had occurred due to overgrazing.Functioning principles of intact high mountain systems were explained and used to interpret the environmental background for the understanding of degradation phenomena. Finally, the use of a new model calculating the carrying capacity of high mountain landscape was discussed.

  5. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations.

    Directory of Open Access Journals (Sweden)

    Riikka Levänen

    Full Text Available In Fennoscandia, mountain hare (Lepus timidus and brown hare (Lepus europaeus hybridize and produce fertile offspring, resulting in gene flow across the species barrier. Analyses of maternally inherited mitochondrial DNA (mtDNA show that introgression occur frequently, but unavailability of appropriate nuclear DNA markers has made it difficult to evaluate the scale- and significance for the species. The extent of introgression has become important as the brown hare is continuously expanding its range northward, at the apparent expense of the mountain hare, raising concerns about possible competition. We report here, based on analysis of 6833 SNP markers, that the introgression is highly asymmetrical in the direction of gene flow from mountain hare to brown hare, and that the levels of nuclear gene introgression are independent of mtDNA introgression. While it is possible that brown hares obtain locally adapted alleles from the resident mountain hares, the low levels of mountain hare alleles among allopatric brown hares suggest that hybridization is driven by stochastic processes. Interspecific geneflow with the brown hare is unlikely to have major impacts on mountain hare in Fennoscandia, but direct competition may.

  6. Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe).

    Science.gov (United States)

    Tichavský, Radek; Šilhán, Karel; Tolasz, Radim

    2017-02-01

    /floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mössbauer spectra of white micas from the Central Western Carpathians Mountains

    Science.gov (United States)

    Sitek, J.; Sulák, M.; Putiš, M.; Tóth, I.

    2010-03-01

    Potassium white micas from the rocks included into Cretaceous deformation zones (ca. 100-70 Ma in age) of the Central Western Carpathians were investigated by Mössbauer spectroscopy. White micas formed during a polystage evolution and changing P-T conditions of their crystallization in crustal-scale shear zones. We found criteria for distinguishing generations of celadonite-poor (muscovitic) and celadonite-rich (phengitic) white micas using Mössbauer spectroscopy. This method revealed contrasting spectra characterized by typical quadrupole doublets corresponding to Fe2+ Fe3+ contents in white micas. They are in the range of 2.9-3.0 mm/s for phengite, and 2.6-2.7 mm/s for muscovite. Mössbauer spectra reflect well the chemical changes in white mica aggregates, especially of those close to the end-member muscovite and (alumino-)celadonite compositions.

  8. The impact of periglacial cover beds on runoff generation in a small spring catchment, Ore Mountains

    Science.gov (United States)

    Heller, Katja; Hübner, Rico; Kleber, Arno

    2010-05-01

    The knowledge of hillslope processes is essential to improve pollutant research and flood prediction. Relic periglacial covers are widespread on slopes of the central European low mountain ranges. Cover beds are assumed to be an important control factor for subcutaneous water flow paths. Periglacial cover beds originated by solifluction, kryoturbation and accumulation of loess during Pleistocene times. Differences in bulk density, sediment type, as well as structure and rate of coarse clasts in the layers result in vertical disparity in hydraulic conductivity (anisotropy), leading to interflow. This hypothesis has been testing in an ongoing study in a small spring catchment (6 ha) in the eastern Ore Mountains, south-eastern Germany, since November 2007. The study area is underlain by gneiss and is formed as a slope hollow. The cover beds consist of a 3-layer complex with upper layer, intermediate layer and basal layer. Soil water tension within the layers is measured with 76 recording tensiometers. Electrical resistivity tomography was used to monitor the spatial dispersal of soil moisture. Results of hydrometrical measurements and of electrical resistivity surveys will be described and new findings on slope water dynamics will be presented.

  9. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    Science.gov (United States)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  10. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    Science.gov (United States)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active

  11. Mountain lions prey selectively on prion-infected mule deer

    Science.gov (United States)

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2010-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271

  12. Paleomagnetism and tectonics of the Jura arcuate mountain belt in France and Switzerland

    Science.gov (United States)

    Gehring, Andreas U.; Keller, Peter; Heller, Friedrich

    1991-02-01

    Goethite and hematite in ferriferous oolitic beds of Callovian age from the Jura mountains (Switzerland, France) carry either pre- and/or post-tectonic magnetization. The frequent pre-tectonic origin of goethite magnetization indicates a temperature range during formation of the arcuate Jura mountain belt below the goethite Néel temperature of about 100°C. The scatter of the pre-tectonic paleomagnetic directions ( D = 11.5° E, I = 55.5°; α95 = 4.7) which reside both in goethite and hematite, provides strong evidence that the arcuate mountain belt was shaped without significant rotation. The paleomagnetic results support tectonic thin-skinned models for the formation of the Jura mountain belt.

  13. Chronometric investigations of the Middle to Upper Paleolithic transition in the Zagros Mountains using AMS radiocarbon dating and Bayesian age modelling.

    Science.gov (United States)

    Becerra-Valdivia, Lorena; Douka, Katerina; Comeskey, Daniel; Bazgir, Behrouz; Conard, Nicholas J; Marean, Curtis W; Ollé, Andreu; Otte, Marcel; Tumung, Laxmi; Zeidi, Mohsen; Higham, Thomas F G

    2017-08-01

    The Middle to Upper Paleolithic transition is often linked with a bio-cultural shift involving the dispersal of modern humans outside of Africa, the concomitant replacement of Neanderthals across Eurasia, and the emergence of new technological traditions. The Zagros Mountains region assumes importance in discussions concerning this period as its geographic location is central to all pertinent hominin migration areas, pointing to both east and west. As such, establishing a reliable chronology in the Zagros Mountains is crucial to our understanding of these biological and cultural developments. Political circumstance, coupled with the poor preservation of organic material, has meant that a clear chronological definition of the Middle to Upper Paleolithic transition for the Zagros Mountains region has not yet been achieved. To improve this situation, we have obtained new archaeological samples for AMS radiocarbon dating from three sites: Kobeh Cave, Kaldar Cave, and Ghār-e Boof (Iran). In addition, we have statistically modelled previously published radiocarbon determinations for Yafteh Cave (Iran) and Shanidar Cave (Iraqi Kurdistan), to improve their chronological resolution and enable us to compare the results with the new dataset. Bayesian modelling results suggest that the onset of the Upper Paleolithic in the Zagros Mountains dates to 45,000-40,250 cal BP (68.2% probability). Further chronometric data are required to improve the precision of this age range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Searching pristine source of two gabbric plutons outcroping in Central Sierras Pampeanas Range, Argentina

    International Nuclear Information System (INIS)

    Daziano, C.; Ayala, R.

    2010-01-01

    This work is about the study of two gabbric plutons outcrop ing throughout Central Sierras Pampeanas range (Cordoba province, Argentina). San Lorenzo hill gabbric plutons is in the Upper proterozoic age whereas Cañada del Puerto belongs to the Early proterozoic.They are stock-type igneous bodies and they are intrusive s in an Upper Precambrian crystalline basement; it is mainly composed by gneisses, migmatites, schistes, marbles, amphibolite s, tact's, serpentinites and related rocks

  15. Occupational Health in Mountainous Kyrgyzstan.

    Science.gov (United States)

    Dzhusupov, Kenesh O; Colosio, Claudio; Tabibi, Ramin; Sulaimanova, Cholpon T

    2015-01-01

    In the period of transition from a centralized economy to the market economy, occupational health services in Kyrgyzstan have survived through dramatic, detrimental changes. It is common for occupational health regulations to be ignored and for basic occupational health services across many industrial enterprises and farms to be neglected. The aim of this study was to demonstrate the present situation and challenges facing occupational health services in Kyrgyzstan. The transition from centralized to the market economy in Kyrgyzstan has led to increased layoffs of workers and unemployment. These threats are followed by increased workload, and the health and safety of workers becomes of little concern. Private employers ignore occupational health and safety; consequently, there is under-reporting of occupational diseases and accidents. The majority of enterprises, especially those of small or medium size, are unsanitary, and the health status of workers remains largely unknown. The low official rates of occupational diseases are the result of data being deliberately hidden; lack of coverage of working personnel by medical checkups; incompetent management; and the poor quality of staff, facilities, and equipment. Because Kyrgyzstan is a mountainous country, the main environmental and occupational factor of enterprises is hypoxia. Occupational health specialists have greatly contributed to the development of occupational medicine in the mountains through science and practice. The enforcement of existing strong occupational health legislation and increased financing of occupational health services are needed. The maintenance of credible health monitoring and effective health services for workers, re-establishment of medical services and sanitary-hygienic laboratories in industrial enterprises, and support for scientific investigations on occupational risk assessment will increase the role of occupational health services in improving the health of the working population

  16. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers.

    Science.gov (United States)

    Semerikov, Vladimir L; Semerikova, Svetlana A; Polezhaeva, Maria A; Kosintsev, Pavel A; Lascoux, Martin

    2013-10-01

    While many species were confined to southern latitudes during the last glaciations, there has lately been mounting evidence that some of the most cold-tolerant species were actually able to survive close to the ice sheets. The contribution of these higher latitude outposts to the main recolonization thrust remains, however, untested. In the present study, we use the first range-wide survey of genetic diversity at cytoplasmic markers in Siberian larch (Larix sibirica; four mitochondrial (mt) DNA loci and five chloroplast (cp) DNA SSR loci) to (i) assess the relative contributions of southern and central areas to the current L. sibirica distribution range; and (ii) date the last major population expansion in both L. sibirica and adjacent Larix species. The geographic distribution of cpDNA variation was uninformative, but that of mitotypes clearly indicates that the southernmost populations, located in Mongolia and the Tien-Shan and Sayan Mountain ranges, had a very limited contribution to the current populations of the central and northern parts of the range. It also suggests that the contribution of the high latitude cryptic refugia was geographically limited and that most of the current West Siberian Plain larch populations likely originated in the foothills of the Sayan Mountains. Interestingly, the main population expansion detected through Approximate Bayesian Computation (ABC) in all four larch species investigated here pre-dates the LGM, with a mode in a range of 220,000-1,340,000 years BP. Hence, L. sibirica, like other major conifer species of the boreal forest, was strongly affected by climatic events pre-dating the Last Glacial Maximum. © 2013 John Wiley & Sons Ltd.

  17. When did the Penglai orogeny begin on Taiwan?: Geochronological and petrographic constraints on the exhumed mountain belts and foreland-basin sequences

    Science.gov (United States)

    Chen, W. S.; Syu, S. J.; Yeh, J. J.

    2017-12-01

    Foreland basin receives large amounts of synorogenic infill that is eroded from the adjacent exhumed mountain belt, and therefore provides the important information on exhumation evolution. Furthermore, a complete stratigraphic sequence of Taiwan mountain belt consists of five units of Miocene sedimentary rocks (the Western Foothills and the uppermost sequence on the proto-Taiwan mountain belt), Oligocene argillite (the Hsuehshan Range), Eocene quartzite (the Hsuehshan Range), Eocene-Miocene slate and schist (Backbone Range), and Cretaceous schist (Backbone Range) from top to bottom. Based on the progressive unroofing history, the initiation of foreland basin received sedimentary lithic sediments from the uppermost sequence of proto-Taiwan mountain belt, afterwards, and receiving low- to medium-grade metamorphic lithic sediments in ascending order of argillite, quartzite, slate, and schist clasts. Therefore, the sedimentary lithics from mountain belt were deposited which represents the onset of the mountain uplift. In this study, the first appearance of sedimentary lithic sediments occurs in the Hengchun Peninsula at the middle Miocene (ca. 12-10 Ma). Thus, sandstone petrography of the late Miocene formation (10-5.3 Ma) shows a predominantly recycled sedimentary and low-grade metamorphic sources, including sandstone, argillite and quartzite lithic sediments of 10-25% which records erosion to slightly deeper metamorphic terrane on the mountain belt. Based on the results of previous thermogeochronological studies of the Yuli belt, it suggests that the middle Miocene occurred mountain uplift. The occurrence of low-grade metamorphic lithic sediments in the Hengchun Peninsula during late Miocene is coincident with the cooling ages of uplift and denuded Yuli schist belt at the eastern limb of Backbone Range.

  18. Analyse de la tectonique récente et active dans l'Alborz Central et la région de Téhéran :
    « Approche morphotectonique et paléoseismologique »

    OpenAIRE

    Nazari , Hamid

    2006-01-01

    This thesis aims to analyze the active tectonics and its structural heritage in the Central Alborz- active mountain range in northern of Iran lining the South-Caspian basin - and to characterize theseismic hazard in the area of Teheran, a fifteen million inhabitant metropolis, located on the southernfrontal thrust of the range. The methods that have been used are those of the morphotectonics andthe paleosismology (satellite images, aerial pictures, Digital Elevation Models, geomorphology,geol...

  19. Impacts of glacier recession and declining meltwater on mountain societies

    DEFF Research Database (Denmark)

    Carey, Mark; Molden, Olivia C.; Rasmussen, Mattias Borg

    2017-01-01

    . It identifies four main areas of existing research: (1) socioeconomic impacts; (2) hydropower; (3) agriculture, irrigation, and food security; and (4) cultural impacts. The article also suggests paths forward for social sciences, humanities, and natural sciences research that could more accurately detect......, including irrigation, agriculture, hydropower, potable water, livelihoods, recreation, spirituality, and demography. Unfortunately, research focusing on the human impacts of glacier runoff variability in mountain regions remains limited, and studies often rely on assumptions rather than concrete evidence...... about the effects of shrinking glaciers on mountain hydrology and societies. This article provides a systematic review of international research on human impacts of glacier meltwater variability in mountain ranges worldwide, including the Andes, Alps, greater Himalayan region, Cascades, and Alaska...

  20. Composite Sunrise Butte pluton: Insights into Jurassic–Cretaceous collisional tectonics and magmatism in the Blue Mountains Province, northeastern Oregon

    Science.gov (United States)

    Johnson, Kenneth H.; Schwartz, J.J.; Žák, Jiří; Verner, Krystof; Barnes, Calvin G.; Walton, Clay; Wooden, Joseph L.; Wright, James E.; Kistler, Ronald W.

    2015-01-01

    The composite Sunrise Butte pluton, in the central part of the Blue Mountains Province, northeastern Oregon, preserves a record of subduction-related magmatism, arc-arc collision, crustal thickening, and deep-crustal anatexis. The earliest phase of the pluton (Desolation Creek unit) was generated in a subduction zone environment, as the oceanic lithosphere between the Wallowa and Olds Ferry island arcs was consumed. Zircons from this unit yielded a 206Pb/238U age of 160.2 ± 2.1 Ma. A magmatic lull ensued during arc-arc collision, after which partial melting at the base of the thickened Wallowa arc crust produced siliceous magma that was emplaced into metasedimentary rocks and serpentinite of the overthrust forearc complex. This magma crystallized to form the bulk of the Sunrise Butte composite pluton (the Sunrise Butte unit; 145.8 ± 2.2 Ma). The heat necessary for crustal anatexis was supplied by coeval mantle-derived magma (the Onion Gulch unit; 147.9 ± 1.8 Ma).The lull in magmatic activity between 160 and 148 Ma encompasses the timing of arc-arc collision (159–154 Ma), and it is similar to those lulls observed in adjacent areas of the Blue Mountains Province related to the same shortening event. Previous researchers have proposed a tectonic link between the Blue Mountains Province and the Klamath Mountains and northern Sierra Nevada Provinces farther to the south; however, timing of Late Jurassic deformation in the Blue Mountains Province predates the timing of the so-called Nevadan orogeny in the Klamath Mountains. In both the Blue Mountains Province and Klamath Mountains, the onset of deep-crustal partial melting initiated at ca. 148 Ma, suggesting a possible geodynamic link. One possibility is that the Late Jurassic shortening event recorded in the Blue Mountains Province may be a northerly extension of the Nevadan orogeny. Differences in the timing of these events in the Blue Mountains Province and the Klamath–Sierra Nevada Provinces suggest that

  1. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  2. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  3. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    International Nuclear Information System (INIS)

    Hausel, W.D.

    1983-01-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s

  4. Static stress transfer during the 2002 Nenana Mountain-Denali Fault, Alaska, earthquake sequence

    Science.gov (United States)

    Anderson, G.; Ji, C.

    2003-01-01

    On 23 October 2002, the Mw 6.7 Nenana Mountain earthquake occurred in central Alaska. It was followed on 3 November 2002 by the Mw 7.9 Denali Fault mainshock, the largest strike-slip earthquake to occur in North America during the past 150 years. We have modeled static Coulomb stress transfer effects during this sequence. We find that the Nenana Mountain foreshock transferred 30-50 kPa of Coulomb stress to the hypocentral region of the Denali Fault mainshock, encouraging its occurrence. We also find that the two main earthquakes together transferred more than 400 kPa of Coulomb stress to the Cross Creek segment of the Totschunda fault system and to the Denali fault southeast of the mainshock rupture, and up to 80 kPa to the Denali fault west of the Nenana Mountain rupture. Other major faults in the region experienced much smaller static Coulomb stress changes.

  5. Report on gravity measurements and replacement of an unmanned magnetometer in the Sor Rondane Mountains, Eastern Dronning Maud Land, 2013 (JARE-55

    Directory of Open Access Journals (Sweden)

    Yusuke Suganuma

    2014-11-01

    Full Text Available Gravity measurements, replacement of the unmanned magnetometer, and a reconnaissance flight to the Belgica Mountains were carried out in the Sor Rondane Mountains as a part of the 55 th Japanese Antarctic Research Expedition (JARE-55. The field party comprised two geodesists, one geomorphologists, and one magnetospheric scientist. The Belgian Antarctic Research Expedition (BELARE and International Polar Foundation (IPF supported this field expedition. Dronning Maud Land Air Network (DROMLAN provided airborne access from Cape Town, South Africa to the Sor Rondane Mountains via Novolazarevskaya Airbase. The survey areas of this field expedition are the central parts of the Sor Rondane Mountains and the Belgica Mountains. This report summarizes the field expedition in terms of operations, logistics, and weather observations.

  6. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus: a comparison between central and range edge populations.

    Directory of Open Access Journals (Sweden)

    Rita M Araújo

    Full Text Available Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity of population growth rate showed that fertility elements had a small contribution to λ(s that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental

  7. Spatial and temporal dynamics of fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations.

    Science.gov (United States)

    Araújo, Rita M; Serrão, Ester A; Sousa-Pinto, Isabel; Åberg, Per

    2014-01-01

    Persistence of populations at range edges relies on local population dynamics and fitness, in the case of geographically isolated populations of species with low dispersal potential. Focusing on spatial variations in demography helps to predict the long-term capability for persistence of populations across the geographical range of species' distribution. The demography of two ecological and phylogenetically close macroalgal species with different life history characteristics was investigated by using stochastic, stage-based matrix models. Populations of Ascophyllum nodosum and Fucus serratus were sampled for up to 4 years at central locations in France and at their southern range limits in Portugal. The stochastic population growth rate (λ(s)) of A. nodosum was lower and more variable in central than in southern sites whilst for F. serratus this trend was reversed with λ(s) much lower and more variable in southern than in central populations. Individuals were larger in central than in southern populations for both species, which was reflected in the lower transition probabilities of individuals to larger size classes and higher probability of shrinkage in the southern populations. In both central and southern populations elasticity analysis (proportional sensitivity) of population growth rate showed that fertility elements had a small contribution to λ(s) that was more sensitive to changes in matrix transitions corresponding to survival. The highest elasticities were found for loop transitions in A. nodosum and for growth to larger size classes in F. serratus. Sensitivity analysis showed high selective pressure on individual growth for both species at both locations. The results of this study highlight the deterministic role of species-specific life-history traits in population demography across the geographical range of species. Additionally, this study demonstrates that individuals' life-transitions differ in vulnerability to environmental variability and

  8. Genetic sampling of Palmer's chipmunks in the Spring Mountains, Nevada

    Science.gov (United States)

    Kevin S. McKelvey; Jennifer E. Ramirez; Kristine L. Pilgrim; Samuel A. Cushman; Michael K. Schwartz

    2013-01-01

    Palmer's chipmunk (Neotamias palmeri) is a medium-sized chipmunk whose range is limited to the higher-elevation areas of the Spring Mountain Range, Nevada. A second chipmunk species, the Panamint chipmunk (Neotamias panamintinus), is more broadly distributed and lives in lower-elevation, primarily pinyon-juniper (Pinus monophylla-Juniperus osteosperma) habitat...

  9. Visions and Vanities: John Andrew Rice of Black Mountain College. Southern Biography Series.

    Science.gov (United States)

    Reynolds, Katherine Chaddock

    This biography presents the life of John Andrew Rice, who founded Black Mountain College (North Carolina) in 1933 to implement his philosophy of education, including the centrality of artistic experience and emotional development to learning in all disciplines and the need for democratic governance shared between faculty and students. Born in…

  10. The adder (Vipera berus in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position

    Directory of Open Access Journals (Sweden)

    Shaopeng Cui

    2016-08-01

    Full Text Available As the most widely distributed snake in Eurasia, the adder (Vipera berus has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder’s southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains’ elevation gradient, but the population abundance declines gradually due to a drying climate.

  11. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    Science.gov (United States)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment

  12. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Science.gov (United States)

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  13. Microrefugia, Climate Change, and Conservation of Cedrus atlantica in the Rif Mountains, Morocco

    Directory of Open Access Journals (Sweden)

    Rachid Cheddadi

    2017-10-01

    Full Text Available This study reconstructs and interprets the changing range of Atlas cedar in northern Morocco over the last 9,000 years. A synthesis of fossil pollen records indicated that Atlas cedars occupied a wider range at lower elevations during the mid-Holocene than today. The mid-Holocene geographical expansion reflected low winter temperatures and higher water availability over the whole range of the Rif Mountains relative to modern conditions. A trend of increasing aridity observed after 6,000 years BP progressively reduced the range of Atlas cedar and prompted its migration toward elevations above 1,400 masl. To assess the impact of climate change on cedar populations over the last decades, we performed a transient model simulation for the period between 1960 and 2010. Our simulation showed that the range of Atlas cedar decreased by about 75% over the last 50 years and that the eastern populations of the range in the Rif Mountains were even more threatened by the overall lack of water availability than the western ones. Today, Atlas cedar populations in the Rif Mountains are persisting in restricted and isolated areas (Jbel Kelti, Talassemtane, Jbel Tiziren, Oursane, Tidighine that we consider to be modern microrefugia. Conservation of these isolated populations is essential for the future survival of the species, preserving polymorphisms and the potential for population recovery under different climatic conditions.

  14. Granulomatous pneumonia due to Spirocerca lupi in two free-ranging maned wolves (Chrysocyon brachyurus) from central Brazil

    Science.gov (United States)

    This case report describes the anatomic pathology findings in two free-ranging maned wolves (Chrysocyon brachyurus) from central-western region of Brazil presenting granulomatous pneumonia associated with intralesional infection by Spirocerca lupi. Both wolves had multiple, white, 1-1.5 cm in diamet...

  15. Geologic and geophysical maps of the eastern three-fourths of the Cambria 30' x 60' quadrangle, central California Coast Ranges

    Science.gov (United States)

    Graymer, R.W.; Langenheim, V.E.; Roberts, M.A.; McDougall, Kristin

    2014-01-01

    The Cambria 30´ x 60´ quadrangle comprises southwestern Monterey County and northwestern San Luis Obispo County. The land area includes rugged mountains of the Santa Lucia Range extending from the northwest to the southeast part of the map; the southern part of the Big Sur coast in the northwest; broad marine terraces along the southwest coast; and broadvalleys, rolling hills, and modest mountains in the northeast. This report contains geologic, gravity anomaly, and aeromagnetic anomaly maps of the eastern three-fourths of the 1:100,000-scale Cambria quadrangle and the associated geologic and geophysical databases (ArcMap databases), as well as complete descriptions of the geologic map units and the structural relations in the mapped area. A cross section is based on both the geologic map and potential-field geophysical data. The maps are presented as an interactive, multilayer PDF, rather than more traditional pre-formatted map-sheet PDFs. Various geologic, geophysical, paleontological, and base map elements are placed on separate layers, which allows the user to combine elements interactively to create map views beyond the traditional map sheets. Four traditional map sheets (geologic map, gravity map, aeromagnetic map, paleontological locality map) are easily compiled by choosing the associated data layers or by choosing the desired map under Bookmarks.

  16. Preferential retention of POPs on the northern aspect of mountains

    International Nuclear Information System (INIS)

    Tremolada, Paolo; Parolini, Marco; Binelli, Andrea; Ballabio, Cristiano; Comolli, Roberto; Provini, Alfredo

    2009-01-01

    Soils are the main reservoirs of POPs in mountain ecosystems, but the great variability of the concentrations, also at small scale, leaves some uncertainties in the evaluation of environmental burdens and exposure. The role of the aspect of the mountain side and the seasonal variation in the contamination levels was analysed by means of several soil samples taken from central Italian Alps. A greater contamination content was present in northern soils with a mean ratio between the north vs. south normalised concentration of around a factor of 2 (North-South Enrichment Factor). Experimental factors agreed with theoretical calculations based on temperature-specific calculated K sa values. From May to November consistent differences in normalised concentrations up to 5-fold were observed. A dynamic picture of the POP contamination in high altitudinal soils is derived from the data in this work, with spring-summer half-lives between 60 and 120 days for most of the compounds. - This paper discusses the accumulation of POPs in soils in relation to the aspect of the mountain side and supports the idea of a seasonal cycle of POPs in this matrix.

  17. Expansion of deciduous tall shrubs but not evergreen dwarf shrubs inhibited by reindeer in Scandes mountain range.

    Science.gov (United States)

    Vowles, Tage; Gunnarsson, Bengt; Molau, Ulf; Hickler, Thomas; Klemedtsson, Leif; Björk, Robert G

    2017-11-01

    One of the most palpable effects of warming in Arctic ecosystems is shrub expansion above the tree line. However, previous studies have found that reindeer can influence plant community responses to warming and inhibit shrubification of the tundra.We revisited grazed (ambient) and ungrazed study plots (exclosures), at the southern as well as the northern limits of the Swedish alpine region, to study long-term grazing effects and vegetation changes in response to increasing temperatures between 1995 and 2011, in two vegetation types (shrub heath and mountain birch forest).In the field layer at the shrub heath sites, evergreen dwarf shrubs had increased in cover from 26% to 49% but were unaffected by grazing. Deciduous dwarf and tall shrubs also showed significant, though smaller, increases over time. At the birch forest sites, the increase was similar for evergreen dwarf shrubs (20-48%) but deciduous tall shrubs did not show the same consistent increase over time as in the shrub heath.The cover and height of the shrub layer were significantly greater in exclosures at the shrub heath sites, but no significant treatment effects were found on species richness or diversity.July soil temperatures and growing season thawing degree days (TDD) were higher in exclosures at all but one site, and there was a significant negative correlation between mean shrub layer height and soil TDD at the shrub heath sites. Synthesis . This study shows that shrub expansion is occurring rapidly in the Scandes mountain range, both above and below the tree line. Tall, deciduous shrubs had benefitted significantly from grazing exclosure, both in terms of cover and height, which in turn lowered summer soil temperatures. However, the overriding vegetation shift across our sites was the striking increase in evergreen dwarf shrubs, which were not influenced by grazing. As the effects of an increase in evergreen dwarf shrubs and more recalcitrant plant litter may to some degree counteract some of

  18. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Dias Meireles

    2015-03-01

    Full Text Available The upper montane forests in the southern and southeastern regions of Brazil have an unusual and discontinuous geographic distribution at the top of the Atlantic coastal mountain ranges. To describe the floristic composition and structure of the Atlantic Forest near its upper altitudinal limit in southeastern Brazil, 30 plots with 10 × 10 m were installed in three forest sites between 2,200 and 2,300 m.a.s.l. at Serra Fina. The floristic composition and phytosociological structure of this forest were compared with other montane and upper montane forests. In total, 704 individuals were included, belonging to 24 species, 15 families, and 19 genera. Myrsinaceae, Myrtaceae, Symplocaceae, and Cunoniaceae were the most important families, and Myrsine gardneriana, Myrceugenia alpigena, Weinmannia humilis, and Symplocos corymboclados were the most important species. The three forest sites revealed differences in the abundance of species, density, canopy height, and number of stems per individual. The upper montane forests showed structural similarities, such as lower richness, diversity, and effective number of species, and they tended to have higher total densities and total dominance per hectare to montane forests. The most important species in these upper montane forests belong to Austral-Antartic genera or neotropical and pantropical genera that are typical of montane areas. The high number of species shared by these forests suggests past connections between the vegetation in southern Brazilian high-altitude areas.

  19. Kinematic Analysis of Fault-Slip Data in the Central Range of Papua, Indonesia

    Directory of Open Access Journals (Sweden)

    Benyamin Sapiie

    2016-01-01

    Full Text Available DOI:10.17014/ijog.3.1.1-16Most of the Cenozoic tectonic evolution in New Guinea is a result of obliquely convergent motion that ledto an arc-continent collision between the Australian and Pacific Plates. The Gunung Bijih (Ertsberg Mining District(GBMD is located in the Central Range of Papua, in the western half of the island of New Guinea. This study presentsthe results of detailed structural mapping concentrated on analyzing fault-slip data along a 15-km traverse of theHeavy Equipment Access Trail (HEAT and the Grasberg mine access road, providing new information concerning thedeformation in the GBMD and the Cenozoic structural evolution of the Central Range. Structural analysis indicatesthat two distinct stages of deformation have occurred since ~12 Ma. The first stage generated a series of en-echelonNW-trending (π-fold axis = 300° folds and a few reverse faults. The second stage resulted in a significant left-lateralstrike-slip faulting sub-parallel to the regional strike of upturned bedding. Kinematic analysis reveals that the areasbetween the major strike-slip faults form structural domains that are remarkably uniform in character. The changein deformation styles from contractional to a strike-slip offset is explained as a result from a change in the relativeplate motion between the Pacific and Australian Plates at ~4 Ma. From ~4 - 2 Ma, transform motion along an ~ 270°trend caused a left-lateral strike-slip offset, and reactivated portions of pre-existing reverse faults. This action had aprofound effect on magma emplacement and hydrothermal activity.

  20. Abundance and Ecology of Leopards (Panthera pardus) in the Udzungwa Mountains, Tanzania

    DEFF Research Database (Denmark)

    Havmøller, Rasmus Gren

    habitats such as rainforests. The Udzungwa Mountains in South Central Tanzania are covered in both rainforest and more familiar African habitats, holds an incredible number of mammal species and a completely unknown population of leopards. In this study I used automatic camera traps that took photos of all...

  1. Impact of ecological and social factors on ranging in western gorillas.

    Science.gov (United States)

    Doran-Sheehy, Diane M; Greer, David; Mongo, Patrice; Schwindt, Dylan

    2004-10-01

    We examined the influence of ecological (diet, swamp use, and rainfall) and social (intergroup interaction rate) factors on ranging behavior in one group of western gorillas (Gorilla gorilla gorilla) during a 16-month study. Relative to mountain gorillas, western gorillas live in habitats with reduced herb densities, more readily available fruit (from seasonal and rare fruit trees), and, at some sites, localized large open clearings (swamps and "bais"). Ranging behavior reflects these ecological differences. The daily path length (DPL) of western gorillas was longer (mean=2,014 m) than that of mountain gorillas, and was largely related to fruit acquisition. Swamp use occurred frequently (27% of days) and incurred a 50% increase in DPL, and 77% of the variation in monthly frequency of swamp use was explained by ripe fruit availability within the swamp, and not by the absence of resources outside the swamp. The annual home-range size was 15.4 km2. The western gorilla group foraged in larger areas each month, and reused them more frequently and consistently through time compared to mountain gorillas. In contrast to mountain gorillas, intergroup encounters occurred at least four times more frequently, were usually calm rather than aggressive, and had no consistent effect on DPL or monthly range size for one group of western gorillas. High genetic relatedness among at least some neighboring males [Bradley et al., Current Biology, in press] may help to explain these results, and raises intriguing questions about western gorilla social relationships.

  2. The Diversity and Productivity of Indigenous Forage in Former Limestone Mining Quarry in Karst Mountain of Southern Gombong, Central Java Indonesia

    Directory of Open Access Journals (Sweden)

    Doso Sarwanto

    2015-05-01

    Full Text Available Indonesia is a country that has a lot of limestone mountains, covering 15.4 million hectares. Limestone mountains have strategic functions as limestone is used as building materials and as raw material in cement industry. Therefore, limestone mining quarry in various areas of limestone mountains in Indonesia is increasingly widespread. The biggest negative impact of limestone mining is the formed open land which is abandoned and unutilized. Changes in the ecosystem will lead to the reduced levels of diversity and productivity of indigenous forage which will ultimately reduce the performance and development of ruminants livestock kept by farmers in the mountainous region of limestone. This study aims to determine the diversity and productivity of indigenous forage on former limestone mining quarry in limestone mountains of southern Gombong. The research was conducted through survey by identifying and measuring the forage production of sample plots assigned purposively. Location of the study was divided into three categories, mild, moderate and heavy mining. Results showed that soil fertility levels in open fields of former limestone mining in southern Gombong mountains are low with total N content of 0.049 - 0.141%, total P2O5 of 0.067 - 0.133% and total K2O of 0.086 - 0.100%. The diversity of indigenous forage on mild mining was more diverse than that of moderate and heavy mining, i.e. 13 species comprising 7 grass species, 2 legumes species, and 4 species of shrubs. The most dominant species in all mining categories are Cynodon dactylon, Imperata cylindrica, Ageratum conyzoides and Mikania micrantha. The results also showed that in the open land of mild mining had the highest production of fresh and dry matter compared to that of moderate and severe mining

  3. Mountains on Io: High-resolution Galileo observations, initial interpretations, and formation models

    Science.gov (United States)

    Turtle, E.P.; Jaeger, W.L.; Keszthelyi, L.P.; McEwen, A.S.; Milazzo, M.; Moore, J.; Phillips, C.B.; Radebaugh, J.; Simonelli, D.; Chuang, F.; Schuster, P.; Alexander, D.D.A.; Capraro, K.; Chang, S.-H.; Chen, A.C.; Clark, J.; Conner, D.L.; Culver, A.; Handley, T.H.; Jensen, D.N.; Knight, D.D.; LaVoie, S.K.; McAuley, M.; Mego, V.; Montoya, O.; Mortensen, H.B.; Noland, S.J.; Patel, R.R.; Pauro, T.M.; Stanley, C.L.; Steinwand, D.J.; Thaller, T.F.; Woncik, P.J.; Yagi, G.M.; Yoshimizu, J.R.; Alvarez Del Castillo, E.M.; Beyer, R.; Branston, D.; Fishburn, M.B.; Muller, Birgit; Ragan, R.; Samarasinha, N.; Anger, C.D.; Cunningham, C.; Little, B.; Arriola, S.; Carr, M.H.; Asphaug, E.; Morrison, D.; Rages, K.; Banfield, D.; Bell, M.; Burns, J.A.; Carcich, B.; Clark, B.; Currier, N.; Dauber, I.; Gierasch, P.J.; Helfenstein, P.; Mann, M.; Othman, O.; Rossier, L.; Solomon, N.; Sullivan, R.; Thomas, P.C.; Veverka, J.; Becker, T.; Edwards, K.; Gaddis, L.; Kirk, R.; Lee, E.; Rosanova, T.; Sucharski, R.M.; Beebe, R.F.; Simon, A.; Belton, M.J.S.; Bender, K.; Fagents, S.; Figueredo, P.; Greeley, R.; Homan, K.; Kadel, S.; Kerr, J.; Klemaszewski, J.; Lo, E.; Schwarz, W.; Williams, D.; Williams, K.; Bierhaus, B.; Brooks, S.; Chapman, C.R.; Merline, B.; Keller, J.; Tamblyn, P.; Bouchez, A.; Dyundian, U.; Ingersoll, A.P.; Showman, A.; Spitale, J.; Stewart, S.; Vasavada, A.; Breneman, H.H.; Cunningham, W.F.; Johnson, T.V.; Jones, T.J.; Kaufman, J.M.; Klaasen, K.P.; Levanas, G.; Magee, K.P.; Meredith, M.K.; Orton, G.S.; Senske, D.A.; West, A.; Winther, D.; Collins, G.; Fripp, W.J.; Head, J. W.; Pappalardo, R.; Pratt, S.; Prockter, L.; Spaun, N.; Colvin, T.; Davies, M.; DeJong, E.M.; Hall, J.; Suzuki, S.; Gorjian, Z.; Denk, T.; Giese, B.; Koehler, U.; Neukum, G.; Oberst, J.; Roatsch, T.; Tost, W.; Wagner, R.; Dieter, N.; Durda, D.; Geissler, P.; Greenberg, R.J.; Hoppa, G.; Plassman, J.; Tufts, R.; Fanale, F.P.; Granahan, J.C.

    2001-01-01

    During three close flybys in late 1999 and early 2000 the Galileo spacecraft ac-quired new observations of the mountains that tower above Io's surface. These images have revealed surprising variety in the mountains' morphologies. They range from jagged peaks several kilometers high to lower, rounded structures. Some are very smooth, others are covered by numerous parallel ridges. Many mountains have margins that are collapsing outward in large landslides or series of slump blocks, but a few have steep, scalloped scarps. From these observations we can gain insight into the structure and material properties of Io's crust as well as into the erosional processes acting on Io. We have also investigated formation mechanisms proposed for these structures using finite-element analysis. Mountain formation might be initiated by global compression due to the high rate of global subsidence associated with Io's high resurfacing rate; however, our models demonstrate that this hypothesis lacks a mechanism for isolating the mountains. The large fraction (???40%) of mountains that are associated with paterae suggests that in some cases these features are tectonically related. Therefore we have also simulated the stresses induced in Io's crust by a combination of a thermal upwelling in the mantle with global lithospheric compression and have shown that this can focus compressional stresses. If this mechanism is responsible for some of Io's mountains, it could also explain the common association of mountains with paterae. Copyright 2001 by the American Geophysical Union.

  4. The interaction of katabatic winds and mountain waves

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Gregory Steve [Colorado State Univ., Fort Collins, CO (United States)

    1997-01-01

    The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

  5. Devonian and Lower Carboniferous Conodonts of the Cantabrian Mountains (Spain) and their stratigraphic application

    NARCIS (Netherlands)

    Adrichem Boogaert, van H.A.

    1967-01-01

    A short review of the literature on the stratigraphy of the Devonian and the Lower Carboniferous of the Cantabrian Mountains precedes the report of the author's stratigraphic and palaeontologic observations in León: the Río Esla area (Gedinnian to Viséan), the central Cantabrian area (Famennian to

  6. Study of natural biota of and biologic recovery possibilities for closed tunnels of the Degelen mountain complex

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Baiganov, A.T.; Seisebaev, A.T.; Nesipbaev, Sh.T.; Dzhanin, B.T.; Sultanova, B.M.

    1998-01-01

    Processes of degradation due to nuclear testing affected all the components of the ecosystems stems of the Degelen Mountain Complex. The composition of the vegetative cover of the Degelen Mountains distinguishes by the diversity of vegetation due to significant differentiation of ecological conditions of vegetation growth. Here the following types of vegetation are present: steppe, meadow, forest, bushes, and desert. The peculiarity of vegetation is the presence of large forest areas (containing birch, aspen-birch, and poplar-aspen areas) in narrow mountain valleys and the certain locations of the main fragments of forests typical for them. In accordance with the methodology of the vertical zoning, the following zones have been determined on the territory of the Degelen Mountains: 1) a zone of mountainous meadow and motley-feather steppe; 2) a zone of bushes. During the field work of the Inst. of Radiation Safety and Ecology (IRSE) on analysis of Degelen Mountains' flora 387 species of vascular plants of 58 families have been found. This data permits to characterize the structure and the patterns of the specific flora on the representative area of the Degelen Mountains on the southeast edge of the Central Kazakstan Low Hills. The assessment of flora taxonomic diversity, the quantitative set of species and families reflects the specific properties inherent in flora of the Degelen Mountains of the east edge of the Central Kazakstan Low Hills. The floristic composition of the Degelen Mountain Complex is more rich as compared to that one of the other two test fields of the former STS: Experimental Field - 148 species, Balapan - 192 species. Data of ecological, geological and butanic studies allowed to determine the main types of anthropogenic destruction of the ecosystem and the nature of their spatial distribution, the major cenosis-forming species for every type of anthropogenic residence and the radioecological growth amplitude of the dominant cenosis

  7. Lithospheric controls on crustal reactivation and intraplate mountain building in the Gobi Corridor, Central Asia

    Science.gov (United States)

    Cunningham, D.

    2017-12-01

    This talk will review the Permian-Recent tectonic history of the Gobi Corridor region which includes the actively deforming Gobi Altai-Altai, Eastern Tien Shan, Beishan and North Tibetan foreland. Since terrane amalgamation in the Permian, Gobi Corridor crust has been repeatedly reactivated by Triassic-Jurassic contraction/transpression, Late Cretaceous extension and Late Cenozoic transpression. The tectonic history of the region suggests the following basic principle for intraplate continental regions: non-cratonized continental interior terrane collages are susceptible to repeated intraplate reactivation events, driven by either post-orogenic collapse and/or compressional stresses derived from distant plate boundary convergence. Thus, important related questions are: 1) what lithospheric pre-conditions favor intraplate crustal reactivation in the Gobi Corridor (simple answer: crustal thinning, thermal weakening, strong buttressing cratons), 2) what are the controls on the kinematics of deformation and style of mountain building in the Gobi-Altai-Altai, Beishan and North Tibetan margin (simple answer: many factors, but especially angular relationship between SHmax and `crustal grain'), 3) how does knowledge of the array of Quaternary faults and the historical earthquake record influence our understanding of modern earthquake hazards in continental intraplate regions (answer: extrapolation of derived fault slip rates and recurrence interval determinations are problematic), 4) what important lessons can we learn from the Mesozoic-Cenozoic tectonic history of Central Asia that is applicable to the tectonic evolution of all intraplate continental regions (simple answer: ancient intraplate deformation events may be subtly expressed in the rock record and only revealed by low-temperature thermochronometers, preserved orogen-derived sedimentary sequences, fault zone evidence for younger brittle reactivation, and recognition of a younger class of cross-cutting tectonic

  8. Background radiation dose-rates to non-human biota in a high mountain habitat in Norway

    DEFF Research Database (Denmark)

    Brown, J.E.; Gelsvik, R.; Kålås, J.A.

    2009-01-01

    concerning these radioisotopes for components of the ecosystem, field work was conducted in a semi-natural, mountainous location in central Norway. Preliminary (since no correction was made for ingrowth from 210Pb) whole-body activity concentrations of 210Po in 2 species of small mammal were commensurate...

  9. Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research

    Science.gov (United States)

    Beutel, Jan

    2017-04-01

    Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch

  10. Topography- and Species-Dependent Climatic Responses in Radial Growth of Picea meyeri and Larix principis-rupprechtii in the Luyashan Mountains of North-Central China

    Directory of Open Access Journals (Sweden)

    Wentao Zhang

    2015-01-01

    Full Text Available Dendroecological techniques were used to examine the relationships between topographic aspects, climate factors and radial growth of Picea meyeri and Larix principis-rupprechtii in Luyashan Mountains, North-Central China. Four sites were selected at timberline and totally 67 trees and 134 cores were collected. Pearson correlation and regression surface analysis were conducted to reveal the growth-climate relationships. The results indicated that the two species both showed significant negative correlations with temperature during preceding November on the two topographic aspects. On both slope aspects, growth of P. meyeri exhibited significant negative correlations with precipitation in current June, whereas growth of L. principis-rupprechtii showed significant negative correlations with precipitation in preceding September. On north-facing slope, tree growth was limited by low temperature in early growing season, which not shown on south-facing slope. If climate warming continues, L. principis-rupprechtii may be more favored and a reverse between relationships with temperature and precipitation maybe occur in growth of trees. Treeline position on the north-facing slope may possess a greater potential for elevation shifting than the south-facing slope. Our results supply useful information for discussing the potential effect of future climate on the forest growth in North-Central China.

  11. Patterns of resistance to Cronartium ribicola in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    A. W. Schoettle; R. A. Sniezko; A. Kegley; R. Danchok; K. S. Burns

    2012-01-01

    The core distribution of Rocky Mountain bristlecone pine, Pinus aristata Engelm., extends from central Colorado into northern New Mexico, with a disjunct population on the San Francisco Peaks in northern Arizona. Populations are primarily at high elevations and often define the alpine treeline; however, the species can also be found in open mixed conifer stands with...

  12. Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes

    Science.gov (United States)

    Cereceda-Balic, F.; Palomo-Marín, M. R.; Bernalte, E.; Vidal, V.; Christie, J.; Fadic, X.; Guevara, J. L.; Miro, C.; Pinilla Gil, E.

    2012-02-01

    Seasonal snow precipitation in the Andes mountain range is evaluated as an environmental indicator of the composition of atmospheric emissions in Santiago de Chile metropolitan area, by measuring a set of representative trace elements in snow samples by ICP-MS. Three late winter sampling campaigns (2003, 2008 and 2009) were conducted in three sampling areas around Cerro Colorado, a Central Andes mountain range sector NE of Santiago (36 km). Nevados de Chillán, a sector in The Andes located about 500 km south from the metropolitan area, was selected as a reference area. The experimental results at Cerro Colorado and Nevados de Chillán were compared with previously published data of fresh snow from remote and urban background sites. High snow concentrations of a range of anthropogenic marker elements were found at Cerro Colorado, probably derived from Santiago urban aerosol transport and deposition combined with the effect of mining and smelting activities in the area, whereas Nevados de Chillán levels roughly correspond to urban background areas. Enhanced concentrations in surface snow respect to deeper samples are discussed. Significant differences found between the 2003, 2008 and 2009 anthropogenic source markers profiles at Cerro Colorado sampling points were correlated with changes in emission sources at the city. The preliminary results obtained in this study, the first of this kind in the southern hemisphere, show promising use of snow precipitation in the Central Andes as a suitable matrix for receptor model studies aimed at identifying and quantifying pollution sources in Santiago de Chile.

  13. MOUNTAIN TOURISM INTERCONNECTIONS. VARIATION OF MOUNTAIN TOURIST FLOW IN SUCEAVA COUNTY

    Directory of Open Access Journals (Sweden)

    George CHEIA

    2013-12-01

    Full Text Available Mountain tourism, in addition to one of the most common types of tourism, is generated by a complex of factors and at the same time, triggers a series of processes involving tourism phenomenon, especially the environment where it is taking place. This paper aims to discuss some of these causal factors, and the relationship between this type of tourism and the tourist area itself (1. By using SPSS analytical methods , it can be practically demonstrated the impact of mountain tourist flow in spas (2 and mountain resorts (3 in Suceava county.

  14. Mountain pine beetles and emerging issues in the management of woodland caribou in Westcentral British Columbia

    Directory of Open Access Journals (Sweden)

    Deborah Cichowski

    2005-05-01

    Full Text Available The Tweedsmuir—Entiako caribou (Rangifer tarandus caribou herd summers in mountainous terrain in the North Tweedsmuir Park area and winters mainly in low elevation forests in the Entiako area of Westcentral British Columbia. During winter, caribou select mature lodgepole pine (Pinus contorta forests on poor sites and forage primarily by cratering through snow to obtain terrestrial lichens. These forests are subject to frequent large-scale natural disturbance by fire and forest insects. Fire suppression has been effective in reducing large-scale fires in the Entiako area for the last 40—50 years, resulting in a landscape consisting primarily of older lodgepole pine forests, which are susceptible to mountain pine beetle (Dendroctonus ponderosae attack. In 1994, mountain pine beetles were detected in northern Tweedsmuir Park and adjacent managed forests. To date, mountain pine beetles have attacked several hundred thousand hectares of caribou summer and winter range in the vicinity of Tweedsmuir Park, and Entiako Park and Protected Area. Because an attack of this scale is unprecedented on woodland caribou ranges, there is no information available on the effects of mountain pine beetles on caribou movements, habitat use or terrestrial forage lichen abundance. Implications of the mountain pine beetle epidemic to the Tweedsmuir—Entiako woodland caribou population include effects on terrestrial lichen abundance, effects on caribou movement (reduced snow interception, blowdown, and increased forest harvesting outside protected areas for mountain pine beetle salvage. In 2001 we initiated a study to investigate the effects of mountain pine beetles and forest harvesting on terrestrial caribou forage lichens. Preliminary results suggest that the abundance of Cladina spp. has decreased with a corresponding increase in kinnikinnick (Arctostaphylos uva-ursi and other herbaceous plants. Additional studies are required to determine caribou movement and

  15. Sustainable Food Security in the Mountains of Pakistan: Towards a Policy Framework.

    Science.gov (United States)

    Rasul, Golam; Hussain, Abid

    2015-01-01

    The nature and causes of food and livelihood security in mountain areas are quite different to those in the plains. Rapid socioeconomic and environmental changes added to the topographical constraints have exacerbated the problem of food insecurity in the Hindu Kush-Himalayan (HKH) region. In Pakistan, food insecurity is significantly higher in the mountain areas than in the plains as a result of a range of biophysical and socioeconomic factors. The potential of mountain niche products such as fruit, nuts, and livestock has remained underutilized. Moreover, the opportunities offered by globalization, market integration, remittances, and non-farm income have not been fully tapped. This paper analyzes the opportunities and challenges of food security in Pakistan's mountain areas, and outlines a framework for addressing the specific issues in terms of four different types of area differentiated by agro-ecological potential and access to markets, information, and institutional services.

  16. Source-to-sink constraints on tectonic and sedimentary evolution of the western Central Range and Cenderawasih Bay (Indonesia)

    Science.gov (United States)

    Babault, Julien; Viaplana-Muzas, Marc; Legrand, Xavier; Van Den Driessche, Jean; González-Quijano, Manuel; Mudd, Simon M.

    2018-05-01

    The island of New Guinea is the result of continent-arc collision that began building the island's Central Range during the late Miocene. Recent studies have shown that rapid subduction, uplift and exhumation events took place in response to rapid, oblique convergence between the Pacific and the Australian plates. The tectonic and sedimentary evolution of Cenderawasih Bay, in the northwestern part of the New Guinea Island is still poorly understood: this bay links a major structural block, the Kepala Burung block, to the island's Central Ranges. Previous studies have shown that Cenderawasih Bay contains a thick (>8 km) sequence of undated sediments. One hypothesis claims that the embayment resulted from a 3 Ma opening created by anticlockwise rotation of the Kepala Burung block with respect to the northern rim of the Australian plate. Alternatively, the current configuration of Cenderawasih Bay could have resulted from the southwest drift of a slice of volcanics and oceanic crust between 8 and 6 Ma. We test these hypotheses using (i) a geomorphologic analysis of the drainage network dynamics, (ii) a reassessment of available thermochronological data, and (iii) seismic lines interpretation. We suggest that sediments started to accumulate in Cenderawasih Bay and onshore in the Waipoga Basin in the late Miocene since the inception of growth of the Central Range, beginning at 12 Ma, resulting in sediment accumulation of up to 12,200 m. This evidence is more consistent with the second hypothesis, and the volume of sediment accumulated means it is unlikely that the embayment was the result of recent (2-3 Ma) rotation of structural blocks. At first order, we predict that infilling is mainly composed of siliciclastics sourced in the graphite-bearing Ruffaer Metamorphic Belt and its equivalent in the Weyland Overthrust. Ophiolites, volcanic arc rocks and diorites contribute minor proportions. From the unroofing paths in the Central Range we deduce two rates of solid phase

  17. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Oltchev, A.; June, T.

    2008-01-01

    in remote tropical areas. We used a 16-month continuous CO2 flux and meteorological dataset from a mountainous tropical rain forest in central Sulawesi, Indonesia to derive values of epsilon(Pg). and to investigate the relationship between P-g and Q(abs). Absorption was estimated with a 1D SVAT model from...

  18. San Gabriel Mountains, California, Radar image, color as height

    Science.gov (United States)

    2000-01-01

    This topographic radar image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the

  19. Regional groundwater modeling of the saturated zone in the vicinity of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ahola, M.; Sagar, B.

    1992-10-01

    Results of groundwater modeling of the saturated zone in the vicinity of Yucca Mountain are presented. Both a regional (200 x 200 km) and subregional (50 x 50 km) model were used in the analyses. Simulations were conducted to determine the impact of various disruptive that might take place over the life span of a proposed Yucca Mountain geologic conditions repository on the groundwater flow field, as well as changes in the water-table elevations. These conditions included increases in precipitation and groundwater recharge within the regional model, changes in permeability of existing hydrogeologic barriers, a:nd the vertical intrusion of volcanic dikes at various orientations through the saturated zone. Based on the regional analysis, the rise in the water-table under Yucca Mountain due to various postulated conditions ranged from only a few meters to 275 meters. Results of the subregional model analysis, which was used to simulate intrusive dikes approximately 4 kilometers in length in the vicinity of Yucca Mountain, showed water-table rises ranging from a few meters to as much as 103 meters. Dikes oriented approximately north-south beneath Yucca Mountain produced the highest water-table rises. The conclusions drawn from this analysis are likely to change as more site-specific data become available and as the assumptions in the model are improved

  20. Altitudinal and thermal gradients of hepatic Cyp1A gene expression in natural populations of Salmo trutta from high mountain lakes and their correlation with organohalogen loads

    Energy Technology Data Exchange (ETDEWEB)

    Jarque, Sergio; Gallego, Eva [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Bartrons, Mireia; Catalan, Jordi [Center for Advanced Studies of Blanes (CEAB-CSIC), Acces Cala St. Francesc 14, 17300-Blanes, Catalonia (Spain); Grimalt, Joan O. [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Pina, Benjamin, E-mail: bpcbmc@cid.csic.e [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain)

    2010-05-15

    The biomarker of xenobiotic exposure cytochrome p450A1 (Cyp1A) was used to analyze the biological response to chemical pollution in Salmo trutta (brown trout) from nine high mountain European lakes in Norway, Tatras, Tyrol, and central Pyrenees. Hepatic Cyp1A mRNA levels correlated both with the reciprocal of absolute annual average air temperatures of the sampled lakes and with muscle concentrations of several hydrophobic organohalogen compounds (OC), including chlorinated polychlorobiphenyls (PCB), DDE, and DDT. The correlation between Cyp1A expression and OC content was observed across the whole temperature range (between -0.7 deg. C and +6.2 deg. C), but also in the absence of any thermal gradient. We concluded that airborne pollutants accumulate in high mountain lake fish at concentrations high enough to increase Cyp1A expression, among other possible effects. As geographical distribution of semi-volatile OC is strongly influenced by air temperatures, future climate modifications will potentially enhance their physiological effects in lake ecosystems. - Altitudinal gradients of hepatic Cyp1A gene expression in mountain trout correlate with geographic and individual organohalogen distribution.

  1. Plant biodiversity patterns on Helan Mountain, China

    Science.gov (United States)

    Jiang, Yuan; Kang, Muyi; Zhu, Yuan; Xu, Guangcai

    2007-09-01

    A case study was conducted to mountainous ecosystems in the east side of Helan Mountain, located in the transitional zone between steppe and desert regions of China, aiming to reveal the influences of four environmental factors on features of plant biodiversity—the spatial pattern of vegetation types, and the variation of α- and β-diversities in vegetation and flora. Field surveys on vegetation and flora and on environmental factors were conducted, and those field data were analyzed through CCA (Canonical Correspondence Analysis), and through Shannon-Weiner index for α-diversity and Sørensen index for β-diversity. The preliminary results are: (1) Ranked in terms of their impacts on spatial patterns of plant biodiversity, the four selected environmental factors would be: elevation > location > slope > exposure. (2) The variation of Shannon-Weiner index along the altitudinal gradient is similar to that of species amount within altitudinal belts spanning 200 m each, which suggests a unimodal relationship between the species richness and the environmental condition with regards to altitudinal factors. Both the Shannon-Weiner index and the species richness within each altitudinal belt reach their maximum at elevation range from about 1700 to 2000 m a.s.l. (3) The altitudinal extent with the highest Shannon-Weiner index is identical to the range, where both the deciduous broad-leaved forest, and the temperate evergreen coniferous and deciduous broad-leaved mixed forest distribute. The altitudinal range from 1700 to 2200 m a.s.l. is the sector with both high level of species richness and diversified vegetation types. (4) The variation of β-diversity along the altitude is consistent with the vegetation vertical zones. According to the Sørensen index between each pair of altitudinal belts, the transition of vegetation spectrum from one zone to another, as from the base horizontal zone, the desert steppe, to the first vertical zone, the mountain open forest and

  2. Applied chemical ecology of the mountain pine beetle

    Science.gov (United States)

    Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich

    2014-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...

  3. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  4. 76 FR 7875 - Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take...

    Science.gov (United States)

    2011-02-11

    ... the central Idaho and Yellowstone area nonessential experimental populations of gray wolves in the...-0000-C3] Nonessential Experimental Populations of Gray Wolves in the Northern Rocky Mountains; Lethal Take of Wolves in the Lolo Elk Management Zone of Idaho; Draft Environmental Assessment AGENCY: Fish...

  5. Geochemical survey maps of the wildernesses and roadless areas in the White Mountains National Forest, Coos, Grafton, and Carroll counties, New Hampshire

    Science.gov (United States)

    Canney, F.C.; Howd, F.H.; Domenico, J.A.; Nakagawa, H.M.

    1987-01-01

    The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine what mineral values, if any, may be present. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results a geochemical survey of the Great Gulf and Presidential Range-Dry River Wilderness Areas; the Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Jobildunk, Carr Mountain, Sandwich Range, and the Dry River Extention (2 parcels) Roadless Areas; and the intervening and immediately surrounding areas in the White Mountain National Forest, Coos, Grafton, and Carroll Counties, New Hampshire. The Great Gulf Wilderness was established when the Wilderness Act was passed in 1964, and the Presidential Range-Dray Wiver Wilderness was established by Public Law 93-622, January 3, 1975. The Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Carr Mountain, and Jobildunk areas were classified as a further planning area during the Second Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service, January 1979.

  6. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  7. Cross-scale analysis of the region effect on vascular plant species diversity in southern and northern European mountain ranges.

    Directory of Open Access Journals (Sweden)

    Jonathan Lenoir

    Full Text Available BACKGROUND: The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? METHODOLOGY/PRINCIPAL FINDINGS: We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n = 403 in each region to quantify four diversity components: (i total number of species occurring in a region (total γ-diversity, (ii number of species that could occur in a target plot after environmental filtering (habitat-specific γ-diversity, (iii pair-wise species compositional turnover between plots (plot-to-plot β-diversity and (iv number of species present per plot (plot α-diversity. We found strong region effects on total γ-diversity, habitat-specific γ-diversity and plot-to-plot β-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot α-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. CONCLUSIONS/SIGNIFICANCE: We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot α-diversity, and may also affect the larger-scale diversity

  8. Mountain biking injuries in rural England.

    Science.gov (United States)

    Jeys, L M; Cribb, G; Toms, A D; Hay, S M

    2001-06-01

    Off road mountain biking is now an extremely popular recreation and a potent cause of serious injury. To establish the morbidity associated with this sport. Data were collected prospectively over one year on all patients presenting with an injury caused by either recreational or competitive off road mountain biking. Eighty four patients were identified, 70 males and 14 females, with a mean age of 22.5 years (range 8-71). Most accidents occurred during the summer months, most commonly in August. Each patient had an average of 1.6 injuries (n = 133) and these were divided into 15 categories, ranging from minor soft tissue to potentially life threatening. Operative intervention was indicated for 19 patients (23%) and several required multiple procedures. The commonest injuries were clavicle fractures (13%), shoulder injuries (12%), and distal radial fractures (11%). However, of a more sinister nature, one patient had a C2/3 dislocation requiring urgent stabilisation, one required a chest drain for a haemopneumothorax, and another required an emergency and life saving nephrectomy. This sport has recently experienced an explosion in popularity, and, as it carries a significant risk of potentially life threatening injury across all levels of participation, the use of protective equipment to reduce this significant morbidity may be advisable.

  9. Verification of the Global Precipitation Measurement (GPM) Satellite by the Olympic Mountains Experiment (OLYMPEX)

    Science.gov (United States)

    McMurdie, L. A.; Houze, R.

    2017-12-01

    Measurements of global precipitation are critical for monitoring Earth's water resources and hydrological processes, including flooding and snowpack accumulation. As such, the Global Precipitation Measurement (GPM) Mission `Core' satellite detects precipitation ranging from light snow to heavy downpours in a wide range locations including remote mountainous regions. The Olympic Mountains Experiment (OLYMPEX) during the 2015-2016 fall-winter season in the mountainous Olympic Peninsula of Washington State provide physical and hydrological validation for GPM precipitation algorithms and insight into the modification of midlatitude storms by passage over mountains. The instrumentation included ground-based dual-polarization Doppler radars on the windward and leeward sides of the Olympic Mountains, surface stations that measured precipitation rates, particle size distributions and fall velocities at various altitudes, research aircraft equipped with cloud microphysics probes, radars, lidar, and passive radiometers, supplemental rawinsondes and dropsondes, and autonomous recording cameras that monitored snowpack accumulation. Results based on dropsize distributions (DSDs) and cross-sections of radar reflectivity over the ocean and windward slopes have revealed important considerations for GPM algorithm development. During periods of great precipitation accumulation and enhancement by the mountains on windward slopes, both warm rain and ice-phase processes are present, implying that it is important for GPM retrievals be sensitive to both types of precipitation mechanisms and to represent accurately the concentration of precipitation at the lowest possible altitudes. OLYMPEX data revealed that a given rain rate could be associated with a variety of DSDs, which presents a challenge for GPM precipitation retrievals in extratropical cyclones passing over mountains. Some of the DSD regimes measured during OLYMPEX stratiform periods have the same characteristics found in prior

  10. Early to Middle Jurassic tectonic evolution of the Bogda Mountains, Northwest China: Evidence from sedimentology and detrital zircon geochronology

    Science.gov (United States)

    Ji, Hongjie; Tao, Huifei; Wang, Qi; Qiu, Zhen; Ma, Dongxu; Qiu, Junli; Liao, Peng

    2018-03-01

    The Bogda Mountains, as an important intracontinental orogenic belt, are situated in the southern part of the Central Asian Orogenic Belt (CAOB), and are a key area for understanding the Mesozoic evolution of the CAOB. However, the tectonic evolution of the Bogda Mountains remains controversial during the Mesozoic Era, especially the Early to Middle Jurassic Periods. The successive Lower to Middle Jurassic strata are well preserved and exposed along the northern flank of the Western Bogda Mountains and record the uplift processes of the Bogda Mountains. In this study, we analysed sedimentary facies combined with detrital zircon U-Pb geochronology at five sections of Lower to Middle Jurassic strata to detect the tectonic evolution and changes of provenance in the Bogda area. During Early to Middle Jurassic times, the fluvial, deltaic and lacustrine environments dominated in the western section of the Bogda area. The existence of Early Triassic peak age indicates that the Bogda Mountains did not experience uplift during the period of early Badaowan Formation deposition. The Early Triassic to Late Permian granitoid plutons and Carboniferous volcanic rocks from the Barkol and Santanghu areas were the main provenances. The significant change in the U-Pb age spectrum implies that the Eastern Bogda Mountains initiated uplift in the period of late Badaowan Formation deposition, and the Eastern Junggar Basin and the Turpan-Hami Basin were partially partitioned. The Eastern Bogda Mountains gradually became the major provenance. From the period of early Sangonghe to early Toutunhe Formations deposition, the provenance of the sediments and basin-range frame were similar to that of late Badaowan. However, the Eastern Bogda Mountains suffered intermittent uplift three times, and successive denudation. The uplifts respectively happened in early Sangonghe, late Sangonghe to early Xishanyao, and late Xishanyao to early Toutunhe. During the deposition stage of Toutunhe Formation, a

  11. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  12. Spatiotemporal patterns of precipitation inferred from streamflow observations across the Sierra Nevada mountain range

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Newman, Andrew J.; Hughes, Mimi; McGurk, Bruce; Lundquist, Jessica D.

    2018-01-01

    Given uncertainty in precipitation gauge-based gridded datasets over complex terrain, we use multiple streamflow observations as an additional source of information about precipitation, in order to identify spatial and temporal differences between a gridded precipitation dataset and precipitation inferred from streamflow. We test whether gridded datasets capture across-crest and regional spatial patterns of variability, as well as year-to-year variability and trends in precipitation, in comparison to precipitation inferred from streamflow. We use a Bayesian model calibration routine with multiple lumped hydrologic model structures to infer the most likely basin-mean, water-year total precipitation for 56 basins with long-term (>30 year) streamflow records in the Sierra Nevada mountain range of California. We compare basin-mean precipitation derived from this approach with basin-mean precipitation from a precipitation gauge-based, 1/16° gridded dataset that has been used to simulate and evaluate trends in Western United States streamflow and snowpack over the 20th century. We find that the long-term average spatial patterns differ: in particular, there is less precipitation in the gridded dataset in higher-elevation basins whose aspect faces prevailing cool-season winds, as compared to precipitation inferred from streamflow. In a few years and basins, there is less gridded precipitation than there is observed streamflow. Lower-elevation, southern, and east-of-crest basins show better agreement between gridded and inferred precipitation. Implied actual evapotranspiration (calculated as precipitation minus streamflow) then also varies between the streamflow-based estimates and the gridded dataset. Absolute uncertainty in precipitation inferred from streamflow is substantial, but the signal of basin-to-basin and year-to-year differences are likely more robust. The findings suggest that considering streamflow when spatially distributing precipitation in complex terrain

  13. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania

    DEFF Research Database (Denmark)

    Hall, Jaclyn; Burgess, Neil David; Lovett, Jon

    2009-01-01

    Deforestation is a major threat to the conservation of biodiversity, especially within global centers of endemism for plants and animals. Elevation, the major environmental gradient in mountain regions of the world, produces a rapid turnover of species, where some species may exist only in narrow...... elevations and target conservation and restoration efforts throughout these ecosystems' entire elevational ranges.......Deforestation is a major threat to the conservation of biodiversity, especially within global centers of endemism for plants and animals. Elevation, the major environmental gradient in mountain regions of the world, produces a rapid turnover of species, where some species may exist only in narrow...... elevational ranges. We use newly compiled datasets to assess the conservation impact of deforestation on threatened trees across an elevational gradient within the Eastern Arc Mountains of Tanzania. The Eastern Arc has suffered an estimated 80% total loss in historical forest area and has lost 25% of forest...

  14. Transformation of tourist landscapes in mountain areas: Case studies from Slovakia

    Directory of Open Access Journals (Sweden)

    Branislav Chrenka

    2011-11-01

    Full Text Available After two decades of deregulated free market economy the post-socialist rural mountain areas are being unprecedently commodified. Landscapes of tourist consumption with specific behaviour patterns are produced and reproduced. The paper explores how landscapes are transformed due to massive investments into tourist infrastructure with questionable impacts on quality of life and environmental sustainability. Power relations and related production of space are analysed in three case studies in the selected mountain areas in Slovakia. First, the Oščadnica case study reflects on rural landscape rapidly transformed by massive ski resort development and deforestation. Second, the Tále golf course development case study describes commodification and gentrification processes in Central Slovakia. Third, the High Tatras case study explores how power structures push on the transformation of the oldest and most visited National Park in Slovakia.

  15. The Standley allotment: a history of range recovery.

    Science.gov (United States)

    Gerald S. Strickler; Wade B. Hall

    1980-01-01

    One of the first range research programs on National Forest lands was conducted by Dr. Arthur W. Sampson in the Wallowa Mountains, Oregon, between 1907 and 1911. This paper reviews the historical perspective of and the basic range management principles and practices developed from Sampson's studies as well as the land and grazing management of the study area to...

  16. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador.

    Science.gov (United States)

    Fabian, Peter; Kohlpaintner, Michael; Rollenbeck, Ruetger

    2005-09-01

    Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3 degrees 58'S, 79 degrees 5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5-4.4 kg N/ha year) and nitrate (0.5-0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/North East during January-March (Colombia, Venezuala, Northern Brazil) and East/SouthEast during July-September (Peru, Brazil). Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. The

  17. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    Science.gov (United States)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  18. Myrtaceae throughout the Espinhaço Mountain Range of centraleastern Brazil: floristic relationships and geoclimatic controls

    OpenAIRE

    Bünger, Mariana de Oliveira; Stehmann, João Renato; Oliveira-Filho, Ary Teixeira

    2014-01-01

    Although biological surveys and taxonomic revisions provide key information to ecological and evolutionary studies, there is a clear lack of floristic and phytogeographic studies of the mountainous regions of Brazil, which harbor some of the most threatened plant ecosystems on the planet. Myrtaceae has been reported to be one of the most important families in the upland areas of Brazil, as well as in the Atlantic Forest Domain. In this study, we investigated the floristic composition of Myrta...

  19. Effect of variations in the geologic data base on mining at Yucca Mountain for NNWSI

    International Nuclear Information System (INIS)

    1984-12-01

    This study was conducted to assess the impact of the known geologic factors and their variations at Yucca Mountain on the mining of the underground repository. The repository horizon host rock was classified according to the Norwegian Geotechnical Institute Tunneling Quality Index, which, in turn, qualified the range of ground support for the geologic and hydrologic conditions in the proposed repository area. The CSIR Classification System was used to verify the results of the NGI System. The expected range of requirements are well within normal mining industry standards and unusual or expensive ground support requirements are not expected to be required at Yucca Mountain. The amount of subsurface geologic information on Yucca Mountain is limited to data from a few drill holes. Variations in the existing data base are probable and should be provided for in the conceptual designs

  20. Age constraints on fluid inclusions in calcite at Yucca Mountain

    International Nuclear Information System (INIS)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-01-01

    The(sup 207)Pb/(sup 235)U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88(+-) 0.05 and 9.7(+-) 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event

  1. EVOLUTIVE AND STRUCTURAL CHANGES OF MOUNTAIN TOURISM WITH IMPACT ON SUSTAINABLE DEVELOPMENT IN ROMANIA

    Directory of Open Access Journals (Sweden)

    RODICA-MANUELA GOGONEA

    2014-05-01

    Full Text Available Following the global economic crisis, sustainable development of tourism in Romania, is still one of the main drivers of economic recovery mechanism. Treated in an integrating vision, sustainable tourism includes a wide range of matters affecting mountain tourism a basic shape of this area of activity. The study highlights the level of development and place of mountain tourism, among other forms of Romanian tourism through evolutionary and structural analysis of the number of structures for tourist arrivals and overnight stays within them. Purposes of determining aspects of mountain tourism development are aiming to detect its impact on sustainable development. However, the overall image of the development of mountain tourism has created the premises for the adoption of strategies for sustainable development of tourism in Romania

  2. Escaping to the summits: phylogeography and predicted range dynamics of Cerastium dinaricum, an endangered high mountain plant endemic to the western Balkan Peninsula.

    Science.gov (United States)

    Kutnjak, Denis; Kuttner, Michael; Niketić, Marjan; Dullinger, Stefan; Schönswetter, Peter; Frajman, Božo

    2014-09-01

    The Balkans are a major European biodiversity hotspot, however, almost nothing is known about processes of intraspecific diversification of the region's high-altitude biota and their reaction to the predicted global warming. To fill this gap, genome size measurements, AFLP fingerprints, plastid and nuclear sequences were employed to explore the phylogeography of Cerastium dinaricum. Range size changes under future climatic conditions were predicted by niche-based modeling. Likely the most cold-adapted plant endemic to the Dinaric Mountains in the western Balkan Peninsula, the species has conservation priority in the European Union as its highly fragmented distribution range includes only few small populations. A deep phylogeographic split paralleled by divergent genome size separates the populations into two vicariant groups. Substructure is pronounced within the southeastern group, corresponding to the area's higher geographic complexity. Cerastium dinaricum likely responded to past climatic oscillations with altitudinal range shifts, which, coupled with high topographic complexity of the region and warmer climate in the Holocene, sculptured its present fragmented distribution. Field observations revealed that the species is rarer than previously assumed and, as shown by modeling, severely endangered by global warming as viable habitat was predicted to be reduced by more than 70% by the year 2080. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    C. Narama

    2018-04-01

    Full Text Available Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000  m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary, and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth–drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i a debris landform containing ice (ice-cored moraine complex, (ii a depression with water supply on a debris landform as a potential lake basin, and (iii no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2 in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s−1 at peak discharge.

  4. Physiological demands of downhill mountain biking.

    Science.gov (United States)

    Burr, Jamie F; Drury, C Taylor; Ivey, Adam C; Warburton, Darren E R

    2012-12-01

    Mountain biking is a popular recreational pursuit and the physiological demands of cross-country style riding have been well documented. However, little is known regarding the growing discipline of gravity-assisted downhill cycling. We characterised the physiological demands of downhill mountain biking under typical riding conditions. Riding oxygen consumption (VO(2)) and heart rate (HR) were measured on 11 male and eight female experienced downhill cyclists and compared with data during a standardised incremental to maximum (VO(2max)) exercise test. The mean VO(2) while riding was 23.1 ± 6.9 ml · kg(-1) · min(-1) or 52 ± 14% of VO(2max) with corresponding heart rates of 146 ± 11 bpm (80 ± 6% HRmax). Over 65% of the ride was in a zone at or above an intensity level associated with improvements in health-related fitness. However, the participants' heart rates and ratings of perceived exertion were artificially inflated in comparison with the actual metabolic demands of the downhill ride. Substantial muscular fatigue was evident in grip strength, which decreased 5.4 ± 9.4 kg (5.5 ± 11.2%, P = 0.03) post-ride. Participation in downhill mountain biking is associated with significant physiological demands, which are in a range associated with beneficial effects on health-related fitness.

  5. Mineral waters from the Tanzawa Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Oki, Y; Tajima, Y; Hirano, T; Ogino, K; Hirota, S; Takahashi, S; Kokaji, F; Moriya, M; Sugimoto, M

    1964-11-01

    Mineral waters from the depths of the Tanzawa mountains are briefly characterized as having high pH values ranging from 9.5 to 10.0. The origin of the mineral waters is discussed in relation to zeolites extensively developed along fractures and joints throughout the Tanzawa mountains. Thermal water (33/sup 0/C) of the Nakagawa spa may be regarded as evidence of past strong geothermal activity. Measurement of geothermal gradient at two locations, Nakagawa (12.6/sup 0/C/100m) and Higashi-sawa (5.55/sup 0/C/100m) also supports the presence of weak thermal activity in the depths. Chemical analysis of the mineral waters indicates that the pH of the system is chiefly controlled by the ratio of CO/sub 3//sup - -//HCO/sub 3//sup -/. The following reaction with zeolites promotes an increase of the pH: HCO/sub 3//sup -/ + (Ca/Na) zeolites reversible CO/sub 3//sup - -/ + H-type (Ca/Na) zeolites + (Ca/sup + +//Na/sup +/).

  6. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  7. Centrality evolution of the charged–particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Bourjau, Christian; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Grachov, Oleg Anatolievich; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Gronefeld, Julius Maximilian; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jahnke, Cristiane; Jakubowska, Monika Joanna; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Dong Jo; Kim, Daehyeok; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trombetta, Giuseppe; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Weiser, Dennis Franz; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Chunhui, Zhang; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-03-10

    The centrality dependence of the charged–particle pseudorapidity density measured with ALICE in Pb–Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV over a broad pseudorapidity range is presented. This Letter extends to more peripheral collisions the previous results reported by ALICE. No strong evolution of the charged–particle pseudorapidity density distributions with centrality is observed, and when the results are normalized to the number of participating nucleons in the collisions, the centrality evolution is likewise small. This suggests that hard contributions to the charged–particle multiplicity are limited. The broad pseudorapidity range allows precise estimates of the total number of produced charged particles which we find to range from $162\\pm 22$(syst.) to $17170\\pm 770$(syst.) in 80–90% and 0–5% central collisions, respectively. The results are compared to models which describe ${\\rm d}N_{\\rm ch}/{\\rm d}\\eta$ at mid–rapidity in the most central Pb–Pb collisions and it is found that t...

  8. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  9. Why replication is important in landscape genetics: American black bear in the Rocky Mountains

    Science.gov (United States)

    R. A. Short Bull; Samuel Cushman; R. Mace; T. Chilton; K. C. Kendall; E. L. Landguth; Michael Schwartz; Kevin McKelvey; Fred W. Allendorf; G. Luikart

    2011-01-01

    We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation,...

  10. Plant invasions in mountains: Global lessons for better management

    Science.gov (United States)

    McDougall, K.L.; Khuroo, A.A.; Loope, L.L.; Parks, C.G.; Pauchard, A.; Reshi, Z.A.; Rushworth, I.; Kueffer, C.

    2011-01-01

    Mountains are one of few ecosystems little affected by plant invasions. However, the threat of invasion is likely to increase because of climate change, greater anthropogenic land use, and continuing novel introductions. Preventive management, therefore, will be crucial but can be difficult to promote when more pressing problems are unresolved and predictions are uncertain. In this essay, we use management case studies from 7 mountain regions to identify common lessons for effective preventive action. The degree of plant invasion in mountains was variable in the 7 regions as was the response to invasion, which ranged from lack of awareness by land managers of the potential impact in Chile and Kashmir to well-organized programs of prevention and containment in the United States (Hawaii and the Pacific Northwest), including prevention at low altitude. In Australia, awareness of the threat grew only after disruptive invasions. In South Africa, the economic benefits of removing alien plants are well recognized and funded in the form of employment programs. In the European Alps, there is little need for active management because no invasive species pose an immediate threat. From these case studies, we identify lessons for management of plant invasions in mountain ecosystems: (i) prevention is especially important in mountains because of their rugged terrain, where invasions can quickly become unmanageable; (ii) networks at local to global levels can assist with awareness raising and better prioritization of management actions; (iii) the economic importance of management should be identified and articulated; (iv) public acceptance of management programs will make them more effective; and (v) climate change needs to be considered. We suggest that comparisons of local case studies, such as those we have presented, have a pivotal place in the proactive solution of global change issues. ?? International Mountain Society.

  11. Mountain Weather and Climate, Third Edition

    Science.gov (United States)

    Hastenrath, Stefan

    2009-05-01

    For colleagues with diverse interests in the atmosphere, glaciers, radiation, landforms, water resources, vegetation, human implications, and more, Mountain Weather and Climate can be a valuable source of guidance and literature references. The book is organized into seven chapters: 1, Mountains and their climatological study; 2,Geographical controls of mountain meteorological elements; 3, Circulation systems related to orography; 4, Climatic characteristics of mountains; 5, Regional case studies; 6, Mountain bioclimatology; and 7, Changes in mountain climates. These chapters are supported by l78 diagrams and photographs, 47 tables, and some 2000 literature references. The volume has an appendix of units and energy conversion factors and a subject index, but it lacks an author index.

  12. Snow hydrology in Mediterranean mountain regions: A review

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  13. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  14. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Science.gov (United States)

    Bresciani, Etienne; Cranswick, Roger H.; Banks, Eddie W.; Batlle-Aguilar, Jordi; Cook, Peter G.; Batelaan, Okke

    2018-03-01

    Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream-aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  15. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Directory of Open Access Journals (Sweden)

    E. Bresciani

    2018-03-01

    Full Text Available Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR or subsurface flow from the mountain (mountain-block recharge, MBR. While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  16. Report on geomorphologic and geodesic field surveys in the Sor Rondane Mountains, Eastern Dronning Maud Land, 2011-2012 (JARE-53

    Directory of Open Access Journals (Sweden)

    Yusuke Suganuma

    2012-11-01

    Full Text Available Geomorphologic and geodetic field surveys were carried out in the Sor Rondane Mountains, East Dronning Maud Land, Antarctica, during the 2011-2012 summer season as part of the 53rd Japanese Antarctic Research Expedition (JARE-53. The field party consisted of three geomorphologists, one geodesist, and one field assistant. The expedition was supported by the Belgian Antarctic Research Expedition (BELARE and the International Polar Foundation (IPF. Dronning Maud Land Air Network (DROMLAN provided air transport from Cape Town, South Africa to the Sor Rondane Mountains via Novolazarevskaya Airbase. The survey areas were the central and western parts of the Sor Rondane Mountains. This report summarizes the field expedition in terms of operations, logistics, and weather records.

  17. Cryptic diversity in Ptyodactylus (Reptilia: Gekkonidae from the northern Hajar Mountains of Oman and the United Arab Emirates uncovered by an integrative taxonomic approach.

    Directory of Open Access Journals (Sweden)

    Marc Simó-Riudalbas

    Full Text Available The Hajar Mountains of south-eastern Arabia form an isolated massif surrounded by the sea to the east and by a large desert to the west. As a result of their old geological origin, geographical isolation, complex topography and local climate, these mountains provide an important refuge for endemic and relict species of plants and animals. With 19 species restricted to the Hajar Mountains, reptiles are the vertebrate group with the highest level of endemicity, becoming an excellent model for understanding the patterns and processes that generate and shape diversity in this arid mountain range. The geckos of the Ptyodactylus hasselquistii species complex are the largest geckos in Arabia and are found widely distributed across the Arabian Mountains, constituting a very important component of the reptile mountain fauna. Preliminary analyses suggested that their diversity in the Hajar Mountains may be higher than expected and that their systematics should be revised. In order to tackle these questions, we inferred a nearly complete calibrated phylogeny of the genus Ptyodactylus to identify the origin of the Hajar Mountains lineages using information from two mitochondrial and four nuclear genes. Genetic variability within the Hajar Mountains was further investigated using 68 specimens of Ptyodactylus from 46 localities distributed across the entire mountain range and sequenced for the same genes as above. The molecular phylogenies and morphological analyses as well as niche comparisons indicate the presence of two very old sister cryptic species living in allopatry: one restricted to the extreme northern Hajar Mountains and described as a new species herein; the other distributed across the rest of the Hajar Mountains that can be confidently assigned to the species P. orlovi. Similar to recent findings in the geckos of the genus Asaccus, the results of the present study uncover more hidden diversity in the northern Hajar Mountains and stress once

  18. Tectonic and erosion-driven uplift in the Gamburtsev Subglacial Mountains of East Antarctica

    Science.gov (United States)

    Ferraccioli, Fausto; Jordan, Tom; Watts, Tony; Bell, Robin; Jamieson, Stewart; Finn, Carol; Damaske, Detlef

    2014-05-01

    Understanding the mechanisms leading to intraplate mountain building remains a significant challenge in Earth Sciences compared to ranges formed along plate margins. The most enigmatic intraplate mountain range on Earth is the Gamburtsev Subglacial Mountains (GSM) located in the middle of the Precambrian East Antarctic Craton. During the International Polar Year, the AGAP project acquired 120,000 line km of new airborne geophysical data (Bell et al., 2011, Science) and seismological observations (Hansen et al., 2010, EPSL) across central East Antarctica. Models derived from these datasets provide new geophysical perspectives on crustal architecture and possible uplift mechanisms for the enigmatic GSM (Ferraccioli et al., 2011, Nature). The geophysical data define a 2,500-km-long Paleozoic to Mesozoic rift system in East Antarctica surrounding the GSM. A thick high-density lower crustal root is partially preserved beneath the range and has been interpreted as formed during the Proterozoic assembly of East Antarctica. Rifting could have triggered phase/density changes at deep crustal levels, perhaps restoring some of the latent root buoyancy, as well as causing rift-flank uplift. Permian rifting is well-established in the adjacent Lambert Rift, and was followed by Cretaceous strike-slip faulting and transtension associated with Gondwana break-up; this phase may have provided a more recent tectonic trigger for the initial uplift of the modern GSM. The Cretaceous rift-flank uplift model for the Gamburtsevs is appealing because it relates the initiation of intraplate mountain-building to large-scale geodynamic processes that led to the separation of Greater India from East Antarctica. It is also consistent with several geological and geophysical interpretations within the Lambert Rift. However, recent detrital thermochrology results from Oligocene-Quaternary sediments in Prydz Bay (Tochlin et al., 2012, G3) argue against the requirement for major Cretaceous rift

  19. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  20. Yucca Mountain digital database

    International Nuclear Information System (INIS)

    Daudt, C.R.; Hinze, W.J.

    1992-01-01

    This paper discusses the Yucca Mountain Digital Database (DDB) which is a digital, PC-based geographical database of geoscience-related characteristics of the proposed high-level waste (HLW) repository site of Yucca Mountain, Nevada. It was created to provide the US Nuclear Regulatory Commission's (NRC) Advisory Committee on Nuclear Waste (ACNW) and its staff with a visual perspective of geological, geophysical, and hydrological features at the Yucca Mountain site as discussed in the Department of Energy's (DOE) pre-licensing reports

  1. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Rio Grande Region, New Mexico, and Texas

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, Kenneth A.; Langer, William H.

    1989-01-01

    The Rio Grande region, New Mexico and Texas, includes most of the area east of the Rio Grande to the Sacramento Mountains. The region encompasses two large basins, the Jornada del Muerto and Tularosa basins, and the intervening San Andres Mountains. The valley surfaces generally have altitudes from 600 to 1,500 meters, and the mountain ranges generally have altitudes from 1,500 to 2,400 meters. About one-half the area is underlain by basin fill. Sedimentary rocks that crop out in the Rio Grande region range in age from Precambrian to Holocene. The oldest Precambrian rocks are metamorphosed and intruded by plutons. Paleozoic rocks are primarily carbonates, with argillaceous beds in the older Paleozoic units. Clastic and gypsum are in greater abundance in younger Paleozoic units of Pennsylvanian and Permian age. The Mesozoic rocks primarily are clastic rocks with some limestone. Cenozoic rocks consist of sequences of conglomerate, sandstone, mudstone, and siltstone, derived from adjacent mountain masses, interbedded with basalt and andesite flows and silicic tuffs. Early to middle Tertiary volcanic and tectonic processes resulted in the implacement of plutonic bodies; volcanic activity continued into the Quaternary. Media considered to have potential for isolation of high-level radioactive waste include intrusive rocks, ash-flow tuff, and basaltic lava flows. Laharic and mudflow breccia and argillaceous beds also may be potential host rocks. These and other rocks may be potential media in areas where the unsaturated zone is thick. Quaternary faults are more common in the southern one-half of the region than in the northern one-half. Range-bounding faults with evidence of Quaternary movement extend northward into the central part of the region. Volcanic activity in the northern part of the region includes basalt flows of Quaternary age. Historical crustal uplift and seismicity have occurred in the vicinity of Socorro, New Mexico. The region is bordered on the west by

  2. Composition and biogeography of forest patches on the inland mountains of the southern Cape

    Directory of Open Access Journals (Sweden)

    C. J. Geldenhuys

    1997-10-01

    Full Text Available Patterns in species richness of 23 small, isolated forests on the inland mountains of the southern Cape were studied. Species richness of woody plants and vines of the Kouga-Baviaanskloof Forests was higher than in the western mountain complexes, where species richness in the more southern Rooiberg and Kamanassie Mountains was higher than in the Swartberg range. The Rooiberg, a dry mountain with small forests far away from the coastal source area, had more species than, and contained many species which are absent from, the larger, moister forests of the Kamanassie which are closest to the coastal source areas. Neither altitude nor distance from the source area, the forests south of the coastal mountains, nor long-distance dispersal, adequately explained the variation in species richness. The variations are best explained in terms of dispersal corridors along the Gouritz and Gamtoos River systems which connect the coastal forests with the inland mountains. The distribution patterns of four species groups in relation to the geomorphological history of the two river systems provide relative dates for the expansion and contraction of temperate forest, subtropical forest and subtropical transitional thicket in the southern Cape.

  3. Remains of mining in the territory of villages´ Červenica and Zlatá Baňa in the mountain range of Slanské vrchy

    Directory of Open Access Journals (Sweden)

    Rudolf Magula

    2007-10-01

    Full Text Available This article is devoted to the territory that is recondite for mining activities. It is situated in a north part of the mountain range of Slanské vrchy. There are villages that were known as mining villages in the past. The mining activities for gold, silver and mercury had only a local economical importance, beside of the output or production of opal. The output of opal on this territory was world noted, in the past. The aim of this article is to remit at some historical facts about former mines and to draw our attention to some attempts for building up, the educational and touristic path on this territory.

  4. Botanical Provenance of Traditional Medicines From Carpathian Mountains at the Ukrainian-Polish Border

    OpenAIRE

    Weronika Kozlowska; Charles Wagner; Charles Wagner; Erin M. Moore; Erin M. Moore; Adam Matkowski; Slavko Komarnytsky; Slavko Komarnytsky

    2018-01-01

    Plants were an essential part of foraging for food and health, and for centuries remained the only medicines available to people from the remote mountain regions. Their correct botanical provenance is an essential basis for understanding the ethnic cultures, as well as for chemical identification of the novel bioactive molecules with therapeutic effects. This work describes the use of herbal medicines in the Beskid mountain ranges located south of Krakow and Lviv, two influential medieval cen...

  5. Recreational mountain biking injuries.

    Science.gov (United States)

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  6. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  7. Measured and modelled trends in European mountain lakes: results of fifteen years of cooperative studies

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available Papers included in this Special Issue of the Journal of Limnology present results of long-term ecological research on mountain lakes throughout Europe. Most of these studies were performed over the last 15 years in the framework of some EU-funded projects, namely AL:PE 1 and 2, MOLAR and EMERGE. These projects together considered a high number of remote lakes in different areas or lake districts in Europe. Central to the projects was the idea that mountain lakes, while subject to the same chemical and biological processes controlling lowland lakes, are more sensitive to any input from their surroundings and can be used as earlywarning indicators of atmospheric pollution and climate change. A first section of this special issue deal with the results of long-term monitoring programmes at selected key-sites. A second section focuse on site-specific and regional applications of an acidification model designed to reconstruct and predict long-term changes in the chemistry of mountain lakes.

  8. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  9. Paleomagnetism of the Talesh Mountains and implications for the geodynamics of NW Iran

    Science.gov (United States)

    Langereis, C. G.; Kuijper, C. B.; Rezaeian, M.; van der Boon, A.; Cotton, L.; Pastor-Galan, D.; Krijgsman, W.

    2017-12-01

    Since the late Eocene, convergence and subsequent collision between Arabia and Eurasia was accommodated both in the overriding Eurasian plate - which includes the Iranian plateau - and by subduction and accretion of the Neotethys and Arabian margin. Determining rotations of the Talesh is of crucial importance for estimating crustal shortening in the Arabia-Eurasia collision region. Previously, we quantified how much Arabia-Eurasia convergence was accommodated north of the Talesh mountains of NW Iran (120 km). Since the Eocene, the Talesh and western Alborz Mountains show a 16° net clockwise rotation relative to Eurasia. In our kinematic restoration, we considered the Talesh and western Alborz Mountains as a coherent single block, with a length of 600 km. However, on a smaller scale ( 100 km), the Talesh Mountains show a Z-shaped outcrop pattern of Eocene volcanic rocks. Here, we present new paleomagnetic data from Cretaceous sediments and Eocene volcanics of the Talesh Mountains, which cover a gap in our previous work. We reconstruct vertical axis rotations of the Z-shape. For the Eocene, our results indicate an increasing amount of CW rotation with respect to Eurasia from south to north: 24° in the southeast to 49° in the central Talesh. Cretaceous data show significantly larger rotations of 70-100° CW. This could indicate that curvature in the Talesh is progressive through time. The formation of this orocline must have started after the Eocene at the latest. However, it seems that not all of the outcrop pattern can be explained by the observed vertical axis rotations yet.

  10. Rocky Mountain spotted fever

    Science.gov (United States)

    ... spotted fever on the foot Rocky Mountain spotted fever, petechial rash Antibodies Deer and dog tick References McElligott SC, Kihiczak GG, Schwartz RA. Rocky Mountain spotted fever and other rickettsial infections. In: Lebwohl MG, Heymann ...

  11. Survey of foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    Directory of Open Access Journals (Sweden)

    Spencer eTaft

    2015-05-01

    Full Text Available The secondary compounds of pines (Pinus can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana has a wide natural distribution range in North America (Canada and USA and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae, which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine’s distribution, (‒:(+-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine’s range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  12. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  13. San Gabriel Mountains, California, Shaded relief, color as height

    Science.gov (United States)

    2000-01-01

    This topographic image shows the relationship of the urban area of Pasadena, California to the natural contours of the land. The image includes the alluvial plain on which Pasadena and the Jet Propulsion Laboratory sit, and the steep range of the San Gabriel Mountains. The mountain front and the arcuate valley running from upper left to the lower right are active fault zones, along which the mountains are rising. The chaparral-covered slopes above Pasadena are also a prime area for wildfires and mudslides. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards for cities along the front of active mountain ranges.This shaded relief image was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to white at the highest elevations. This image contains about 2300 meters (7500 feet) of total relief. White speckles on the face of some of the mountains are holes in the data caused by steep terrain. These will be filled using coverage from an intersecting pass.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna

  14. 21st century climate change threatens mountain flora unequally across Europe

    DEFF Research Database (Denmark)

    Engler, R.; Randin, C. F.; Thuiller, W.

    2011-01-01

    Continental-scale assessments of 21st century global impacts of climate change on biodiversity have forecasted range contractions for many species. These coarse resolution studies are, however, of limited relevance for projecting risks to biodiversity in mountain systems, where pronounced...... microclimatic variation could allow species to persist locally, and are ill-suited for assessment of species-specific threat in particular regions. Here, we assess the impacts of climate change on 2632 plant species across all major European mountain ranges, using high-resolution (ca. 100 m) species samples...... and data expressing four future climate scenarios. Projected habitat loss is greater for species distributed at higher elevations; depending on the climate scenario, we find 36–55% of alpine species, 31–51% of subalpine species and 19–46% of montane species lose more than 80% of their suitable habitat...

  15. Man-induced transformation of mountain meadow soils of Aragats mountain massif (Armenia)

    Science.gov (United States)

    Avetisyan, M. H.

    2018-01-01

    The article considers issues of degradation of mountain meadow soils of the Aragats mountain massif of the Republic of Armenia and provides the averaged research results obtained for 2013 and 2014. The present research was initiated in the frames of long-term complex investigations of agroecosystems of Armenia’s mountain massifs and covered sod soils of high mountain meadow pasturelands and meadow steppe grasslands lying on southern slope of Mt. Aragats. With a purpose of studying the peculiarities of migration and transformation of flows of major nutrients namely carbon, nitrogen, phosphorus in study mountain meadow and meadow steppe belts of the Aragats massif we investigated water migration of chemical elements and regularities of their leaching depending on different belts. Field measurement data have indicated that organic carbon and humus in a heavily grazed plot are almost twice as low as on a control site. Lysimetric data analysis has demonstrated that heavy grazing and illegal deforestation have brought to an increase in intrasoil water acidity. The results generated from this research support a conclusion that a man’s intervention has brought to disturbance of structure and nutrient and water regimes of soils and loss of significant amounts of soil nutrients throughout the studied region.

  16. Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb–Pb collisions at sNN=2.76 TeV

    Directory of Open Access Journals (Sweden)

    J. Adam

    2016-03-01

    Full Text Available The centrality dependence of the charged-particle pseudorapidity density measured with ALICE in Pb–Pb collisions at sNN=2.76 TeV over a broad pseudorapidity range is presented. This Letter extends the previous results reported by ALICE to more peripheral collisions. No strong change of the overall shape of charged-particle pseudorapidity density distributions with centrality is observed, and when normalised to the number of participating nucleons in the collisions, the evolution over pseudorapidity with centrality is likewise small. The broad pseudorapidity range (−3.5<η<5 allows precise estimates of the total number of produced charged particles which we find to range from 162±22(syst. to 17170±770(syst. in 80–90% and 0–5% central collisions, respectively. The total charged-particle multiplicity is seen to approximately scale with the number of participating nucleons in the collision. This suggests that hard contributions to the charged-particle multiplicity are limited. The results are compared to models which describe dNch/dη at mid-rapidity in the most central Pb–Pb collisions and it is found that these models do not capture all features of the distributions.

  17. Assessing and Predicting Erosion from Off Highway Vehicle Trails in Front-Range Rocky Mountain Watersheds.

    Science.gov (United States)

    Howard, M. J.; Silins, U.; Anderson, A.

    2016-12-01

    Off highway vehicle (OHV) trails have the potential to deliver sediment to sensitive headwater streams and increased OHV use is a growing watershed management concern in many Rocky Mountain regions. Predictive tools for estimating erosion and sediment inputs are needed to support assessment and management of erosion from OHV trail networks. The objective of this study was to a) assess erodibility (K factor) and total erosion from OHV trail networks in Rocky Mountain watersheds in south-west Alberta, Canada, and to b) evaluate the applicability of the Universal Soil Loss Equation (USLE) for predicting OHV trail erosion to support erosion management strategies. Measured erosion rates and erodibility (K) from rainfall simulation plots on OHV trails during the summers of 2014 and 2015 were compared to USLE predicted erosion from these same trails. Measured erodibility (K) from 23 rainfall simulation plots was highly variable (0.001-0.273 Mg*ha*hr/ha*MJ*mm) as was total seasonal erosion from 52 large trail sections (0.0595-43.3 Mg/ha) across trail segments of variable slope, stoniness, and trail use intensity. In particular, intensity of trail use had a large effect on both erodibility and total erosion that is not presently captured by erodibility indices (K) derived from soil characteristics. Results of this study suggest that while application of USLE for predicting erosion from OHV trail networks may be useful for initial coarse erosion assessment, a better understanding of the effect of factors such as road/trail use intensity on erodibility is needed to support use of USLE or associated erosion prediction tools for road/trail erosion management.

  18. How Far into Europe Did Pikas (Lagomorpha: Ochotonidae) Go during the Pleistocene? New Evidence from Central Iberia

    Science.gov (United States)

    Laplana, César; Sevilla, Paloma; Arsuaga, Juan Luis; Arriaza, Mari Carmen; Baquedano, Enrique; Pérez-González, Alfredo

    2015-01-01

    This paper reports the first find of pika remains in the Iberian Peninsula, at a site in central Spain. A fragmented mandible of Ochotona cf. pusilla was unearthed from Layer 3 (deposited some 63.4±5.5 ka ago as determined by thermoluminescence) of the Buena Pinta Cave. This record establishes new limits for the genus geographic distribution during the Pleistocene, shifting the previous edge of its known range southwest by some 500 km. It also supports the idea that, even though Europe’s alpine mountain ranges represented a barrier that prevented the dispersal into the south to this and other taxa of small mammals from central and eastern Europe, they were crossed or circumvented at the coldest time intervals of the end of the Middle Pleistocene and of the Late Pleistocene. During those periods both the reduction of the forest cover and the emersion of large areas of the continental shelf due to the drop of the sea level probably provided these species a way to surpass this barrier. The pika mandible was found accompanying the remains of other small mammals adapted to cold climates, indicating the presence of steppe environments in central Iberia during the Late Pleistocene. PMID:26535576

  19. Soil organic matter dynamics at the paramo and puna highlands in the Andean mountains

    Science.gov (United States)

    Ángeles Muñoz, M.; Faz, Ángel; Mermut, Ahmet R.; Zornoza, Raúl

    2014-05-01

    Mountains and uplands represent the most diverse and fragile ecosystems in the world, cover about 20% of the terrestrial surface and are distributed across all continents and major ecoregions. The Andean Plateau is the main mountain range of the American continent and one of the largest in the world with more than 7,500 km. The soil organic matter is a corner stone in the fertility management of the Andean agriculture as well as in the erosion control. However, its role is still much unknown in these ecosystems. Moreover, the influence of current global climatic change on soil organic C reservoirs and dynamics is still not clearly understood. The aim of this work was to review the soil C dynamics and the implication of the soil organic matter in the fertility management, erosion control, conservation of biodiversity and global climate change to improve the knowledge on the mountain Andean highlands. Climate, landscape, soil C pools, biomass and management were studied. In general, the Andean climate is affected by three main factors: ocean currents, winds and orography characterized by an abrupt topography. The entire Andean belt is segmented into the Northern, Central and Southern Andes. Northern Andes are called paramo and are characterized by humid climate while Central and Southern Andes dryer zones are called puna. Most of the region is tectonically and volcanically active. Sedimentary rocks predominated in the paramo while sedimentary, igneous and metamorphic ones prevailed in the puna. The most common soils were Andosols, Regosols, Umbrisols and Histosols. The cold and wet climate and the low atmospheric pressure favored organic matter accumulation in the soil. The accumulation of organic matter is further enhanced by the formation of organomineral complexes strongly resistant to the microbial breakdown mainly in the paramo. High organic C contents were observed in the paramo (10%) oppositely to the low contents found in the dryer puna (1%). The C/N ratio

  20. Rail Access to Yucca Mountain: Critical Issues

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-01-01

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area

  1. The quantitative soil quality assessment tobacco plant in Sindoro mountainous zone

    Directory of Open Access Journals (Sweden)

    Supriyadi

    2014-04-01

    Full Text Available The long-term cultivation of tobacco (Nicotiana tabacum plant in the Sindoro mountainous zone of Central Java has resulted in soil quality degradation that could affect economic development in the region if sustainable production practices are not identified. The objective of the study was to identify appropriate indicators for assessing soil quality on tobacco plant. The quantitative soil quality indicators were total organic-C, pH, available P and available K (chemical, soil depth, bulk density, AWC (available water capacity and soil aggregate stability (physical, and qCO2 (soil respiration, MBC (microbial biomass carbon (biological. The decreases in the soil aggregate stability, available water capacity, cation exchange capacity, soil respiration, microbial biomass carbon and total organic-C; or increases in bulk density (compaction, available P, available K and total nitrogen indicated the decrease in soil quality due to long-term tobacco production. The result of this research showed that the change of soil quality had occurred in Sindoro Mountain. The Soil Quality Index (SQI for three land use systems in Sindoro mountain (forest, mixed farm, and tobacco were 0.60, 0.47, and 0.57, respectively. The comparison of these rates with soil quality classes showed that the soil quality presented moderate to good level of quality; class SQI.

  2. Complex layering of the Orange Mountain Basalt: New Jersey, USA

    Science.gov (United States)

    Puffer, John H.; Block, Karin A.; Steiner, Jeffrey C.; Laskowich, Chris

    2018-06-01

    The Orange Mountain Basalt of New Jersey is a Mesozoic formation consisting of three units: a single lower inflated sheet lobe about 70 m thick (OMB1), a middle pillow basalt about 10 to 20 m thick (OMB2), and an upper compound pahoehoe flow about 20 to 40 m thick (OMB3). The Orange Mountain Basalt is part of the Central Atlantic Magmatic Province. Quarry and road-cut exposures of OMB1 near Paterson, New Jersey, display some unusual layering that is the focus of this study. OMB1 exposures displays the typical upper crust, core, and basal crust layers of sheet lobes but throughout the Patterson area also display distinct light gray layers of microvesicular basalt mineralized with albite directly over the basal crust and under the upper crust. The lower microvesicular layer is associated with mega-vesicular diapirs. We propose that the upper and lower microvesicular layers were composed of viscous crust that was suddenly quenched before it could devolatilize immediately before the solidification of the core. During initial cooling, the bottom of the basal layer was mineralized with high concentrations of calcite and albite during a high-temperature hydrothermal event. Subsequent albitization, as well as zeolite, prehnite, and calcite precipitation events, occurred during burial and circulation of basin brine heated by recurring Palisades magmatism below the Orange Mountain Basalt. Some of the events experienced by the Orange Mountain Basalt are unusual and place constraints on the fluid dynamics of thick flood basalt flows in general. The late penetration of vesicular diapirs through the entire thickness of the flow interior constrains its viscosity and solidification history.

  3. The Mountain Passes of Atlatlahuca: a 15th and 16th Century Strategic Space

    Directory of Open Access Journals (Sweden)

    Gustavo Garza Merodio

    2016-11-01

    th century. The cultural approach in geography aims to understand the thoughts and priorities of local inhabitants within their territorial context in different historical stages. In our case, the territorial structure we aim to explain involves physical changes in landscape, as well as changes in land use or in the way the environment is perceived according to different cultural practices. In physical and biological terms, our case of study is located in the transition zone between Nearctic and Neotropical regions in southern-central Mexico. The mountain passes of Atlatlahuca descend from around 2 700 m a.s.l. to approximately 2 000 m in the valley of Tenancingo within less than 15 kilometers. The physical characteristics that assured a broad range of supplies and the control of vast territories. In our cultural reconstruction, besides physical and biological conditions, it is also necessary to understand the concept of altepetl: a nahuatl word that literally means “water mountain” and defines the Mesoamerican post-Classic urban space. Most of the altepetl found by the Spaniards became pueblos de indios in the sixteenth century. In the Matlatzinca language –the predominant language in the area before the Aztec conquest circa 1470– altepetl translates to inpuhetzi. The territorial structure we attempt to explain is based on the settlement of several inpuhetzi during the early Mesoamerican post-Classic times, some at the Nevado de Toluca piedmont and others on isolated mountains within the upper Lerma basin: Tenango and Atlaltlahuca were among these settlements. This location allowed the Matlatzinca people to defend themselves from the attacks coming from the basin of Mexico. However, this defense does not explain the permanence and magnificence accomplished by the Matlatzinca for centuries. For us, the control of the Atlatlahuca mountain passes is key in the achievement of such grandeur, a territorial pattern shared with other nations settled along the Trans

  4. Soil classification based on cone penetration test (CPT) data in Western Central Java

    Science.gov (United States)

    Apriyono, Arwan; Yanto, Santoso, Purwanto Bekti; Sumiyanto

    2018-03-01

    This study presents a modified friction ratio range for soil classification i.e. gravel, sand, silt & clay and peat, using CPT data in Western Central Java. The CPT data was obtained solely from Soil Mechanic Laboratory of Jenderal Soedirman University that covers more than 300 sites within the study area. About 197 data were produced from data filtering process. IDW method was employed to interpolated friction ratio values in a regular grid point for soil classification map generation. Soil classification map was generated and presented using QGIS software. In addition, soil classification map with respect to modified friction ratio range was validated using 10% of total measurements. The result shows that silt and clay dominate soil type in the study area, which is in agreement with two popular methods namely Begemann and Vos. However, the modified friction ratio range produces 85% similarity with laboratory measurements whereby Begemann and Vos method yields 70% similarity. In addition, modified friction ratio range can effectively distinguish fine and coarse grains, thus useful for soil classification and subsequently for landslide analysis. Therefore, modified friction ratio range proposed in this study can be used to identify soil type for mountainous tropical region.

  5. New records on the Abruzzo brown bear range, particularly on Gran Sasso and Laga Mountains / Osservazioni sull'areale dell'orso marsicano, con particolare riferimento al Gran Sasso e ai Monti della Laga

    Directory of Open Access Journals (Sweden)

    Marco Bologna

    1992-07-01

    Full Text Available Abstract New records of Abruzzo brown bear (Ursus arctos marsicanus in some mountain massifs of Central Apennines (Laga, Gran Sasso, Velino, Sirente and Northern Molise are reported. These records are discussed in relation to the recent dispersion of the relictual population, and the probable recolonization of some areas where the brown bear went out in the last two centuries. Riassunto Viene brevemente discusso il fenomeno di dispersione e ricolonizzazione di aree montane centro-appenniniche da parte dell'orso bruno marsicano. Tra i nuovi reperti, particolarmente significativi sono quelli più settentrionali, relativi ai Monti della Laga ed al Gran Sasso, dove la specie era estinta da circa duecento anni.

  6. Cenozoic tectono-thermal history of the Tordrillo Mountains, Alaska: Paleocene-Eocene ridge subduction, decreasing relief, and late Neogene faulting

    Science.gov (United States)

    Benowitz, Jeff A.; Haeussler, Peter J.; Layer, Paul W.; O'Sullivan, Paul B.; Wallace, Wes K.; Gillis, Robert J.

    2012-01-01

    Topographic development inboard of the continental margin is a predicted response to ridge subduction. New thermochronology results from the western Alaska Range document ridge subduction related orogenesis. K-feldspar thermochronology (KFAT) of bedrock samples from the Tordrillo Mountains in the western Alaska Range complement existing U-Pb, 40Ar/39Ar and AFT (apatite fission track) data to provide constraints on Paleocene pluton emplacement, and cooling as well as Late Eocene to Miocene vertical movements and exhumation along fault-bounded blocks. Based on the KFAT analysis we infer rapid exhumation-related cooling during the Eocene in the Tordrillo Mountains. Our KFAT cooling ages are coeval with deposition of clastic sediments in the Cook Inlet, Matanuska Valley and Tanana basins, which reflect high-energy depositional environments. The Tordrillo Mountains KFAT cooling ages are also the same as cooling ages in the Iliamna Lake region, the Kichatna Mountains of the western Alaska Range, and Mt. Logan in the Wrangell-St. Elias Mountains, thus rapid cooling at this time encompasses a broad region inboard of, and parallel to, the continental margin extending for several hundred kilometers. We infer these cooling events and deposition of clastic rocks are related to thermal effects that track the eastward passage of a slab window in Paleocene-Eocene time related to the subduction of the proposed Resurrection-Kula spreading ridge. In addition, we conclude that the reconstructed KFATmax negative age-elevation relationship is likely related to a long period of decreasing relief in the Tordrillo Mountains.

  7. Contrasting neogene denudation histories of different structural regions in the transantarctic mountains rift flank constrained by cosmogenic isotope measurements

    NARCIS (Netherlands)

    Wateren, F.M. van der; Dunai, T.J.; Balen, R.T. van; Klas, W.; Verbers, A.L.L.M.; Passchier, S.; Herpers, U.

    1999-01-01

    Separate regions within the Transantarctic Mountains, the uplifted flank of the West Antarctic rift system, appear to have distinct Neogene histories of glaciation and valley downcutting. Incision of deep glacial outlet valleys occurred at different times throughout central and northern Victoria

  8. Rocky Mountain Spotted Fever

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Rocky Mountain Spotted Fever Credit: CDC A male cayenne tick, Amblyomma cajennense, ... and New Mexico. Why Is the Study of Rocky Mountain Spotted Fever a Priority for NIAID? Tickborne diseases are becoming ...

  9. Vertical structure and microphysical characteristics of precipitation on the high terrain and lee side of the Olympic Mountains

    Science.gov (United States)

    Zagrodnik, J. P.; McMurdie, L. A.; Houze, R.

    2017-12-01

    As mid-latitude cyclones pass over coastal mountain ranges, the processes producing their clouds and precipitation are modified when they encounter complex terrain, leading to a maximum in precipitation fallout on the windward slopes and a minimum on the lee side. The precipitation that does reach the high terrain and lee side of a mountain range can be theoretically determined by a complex interaction between the dynamics of air lifting over the terrain, the thermodynamics of moist air, and the microphysical time required to grow particles large enough to fall out. To date, there have been few observational studies that have focused on the nonlinear microphysical processes contributing to the variability of precipitation that is received on the lee side slopes of a mountain range such as the Olympic Mountains. The 2015-16 Olympic Mountains Experiment (OLYMPEX) collected unprecedented observations on the high terrain and lee side of the Olympic Mountains including frequent soundings on Vancouver Island, dual-polarization Doppler radar, multi-frequency airborne radar, and ground-based particle size and crystal habit observations at the higher elevation Hurricane Ridge site. We utilize these observations to examine the evolution of the vertical structure and microphysical precipitation characteristics over the high terrain and leeside within the context of large-scale dynamic and thermodynamic conditions that evolve during the passage of cold season mid-latitude cyclones. The primary goal is to determine the degree to which the observed variability in lee side precipitation amount and microphysical properties are controlled by variations in temperature, flow speed and direction, shear, and stability associated with characteristic synoptic storm sectors and frontal passages.

  10. A spatial database of bedding attitudes to accompany Geologic map of the greater Denver area, Front Range Urban Corridor, Colorado

    Science.gov (United States)

    Trimble, Donald E.; Machette, Michael N.; Brandt, Theodore R.; Moore, David W.; Murray, Kyle E.

    2003-01-01

    This digital map shows bedding attitude symbols display over the geographic extent of surficial deposits and rock stratigraphic units (formations) as compiled by Trimble and Machette 1973-1977 and published in 1979 (U.S. Geological Survey Map I-856-H) under the Front Range Urban Corridor Geology Program. Trimble and Machette compiled their geologic map from published geologic maps and unpublished geologic mapping having varied map unit schemes. A convenient feature of the compiled map is its uniform classification of geologic units that mostly matches those of companion maps to the north (USGS I-855-G) and to the south (USGS I-857-F). Published as a color paper map, the Trimble and Machette map was intended for land-use planning in the Front Range Urban Corridor. This map recently (1997-1999), was digitized under the USGS Front Range Infrastructure Resources Project (see cross-reference). In general, the mountainous areas in the west part of the map exhibit various igneous and metamorphic bedrock units of Precambrian age, major faults, and fault brecciation zones at the east margin (5-20 km wide) of the Front Range. The eastern and central parts of the map (Colorado Piedmont) depict a mantle of unconsolidated deposits of Quaternary age and interspersed outcroppings of Cretaceous or Tertiary-Cretaceous sedimentary bedrock. The Quaternary mantle is comprised of eolian deposits (quartz sand and silt), alluvium (gravel, sand, and silt of variable composition), colluvium, and few landslides. At the mountain front, north-trending, dipping Paleozoic and Mesozoic sandstone, shale, and limestone bedrock formations form hogbacks and intervening valleys.

  11. Study on Regional Geology and Uranium Mineralization of Schwaner Mountains West and Central Kalimantan

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Djoko-Soetarno; MS; Liliek-Subiantoro; Retno-Witjahyati

    2004-01-01

    Uranium occurrences indication in Kalimantan has been discovered at metamorphic and granites rocks of Schwaner Mountains as the radioactivity and geochemical anomalies. A regional geology of Schwaner Mountains show a watershed of West and East Kalimantan consist of Pinoh metamorphic rocks that was intruded by tonalitic and granitic batholite. The goal of this study is to observe the mechanism of the Uranium occurrences related to the regional tectonic, metamorphic rocks, tonalite and granitic batholite. Permokarbonaferrous metamorphic rocks as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally as the big masses of roof pendant within tonalite mass. The metamorphic rocks originally derived from sedimentary process that produce a high content of uranium as well as a fine grained volcanic material. This uranium is deposited within neritic facies. Those sediments have been metamorphosed by low grade Abukuma regional metamorphism at the condition about 540 o C and 2000 bar. In early Cretaceous Tonalite of Sep auk intruded the rock and both metamorphics and tonalites. Those rocks were intruded by Late Cretaceous alkalin granite of Sukadana. Those crystalline rocks overlaid by an unconformity-related Kampari and Tebidah Formations that including within Melawi Group of Tertiary age. Uranium mineralization as the centimetric-metric veins related to tectonic N 100 o -110 o E and N 50 o E lineaments. Uranium was interpreted as a volcanic sedimentary origin, than it re mobilized by low grade regional metamorphism process. This enuchment process was carried out by fluor, boron and other metalliferous mineral within hydrothermal solutions of Sukadana granite. (author)

  12. Facing unprecedented drying of the Central Andes? Precipitation variability over the period AD 1000–2100

    International Nuclear Information System (INIS)

    Neukom, Raphael; Salzmann, Nadine; Huggel, Christian; Rohrer, Mario; Calanca, Pierluigi; Acuña, Delia; Christie, Duncan A; Morales, Mariano S

    2015-01-01

    Projected future trends in water availability are associated with large uncertainties in many regions of the globe. In mountain areas with complex topography, climate models have often limited capabilities to adequately simulate the precipitation variability on small spatial scales. Also, their validation is hampered by typically very low station density. In the Central Andes of South America, a semi-arid high-mountain region with strong seasonality, zonal wind in the upper troposphere is a good proxy for interannual precipitation variability. Here, we combine instrumental measurements, reanalysis and paleoclimate data, and a 57-member ensemble of CMIP5 model simulations to assess changes in Central Andes precipitation over the period AD 1000–2100. This new database allows us to put future projections of precipitation into a previously missing multi-centennial and pre-industrial context. Our results confirm the relationship between regional summer precipitation and 200 hPa zonal wind in the Central Andes, with stronger Westerly winds leading to decreased precipitation. The period of instrumental coverage (1965–2010) is slightly dryer compared to pre-industrial times as represented by control simulations, simulations from the past Millennium, ice core data from Quelccaya ice cap and a tree-ring based precipitation reconstruction. The model ensemble identifies a clear reduction in precipitation already in the early 21st century: the 10 year running mean model uncertainty range (ensemble 16–84% spread) is continuously above the pre-industrial mean after AD 2023 (AD 2028) until the end of the 21st century in the RCP2.6 (RCP8.5) emission scenario. Average precipitation over AD 2071–2100 is outside the range of natural pre-industrial variability in 47 of the 57 model simulations for both emission scenarios. The ensemble median fraction of dry years (defined by the 5th percentile in pre-industrial conditions) is projected to increase by a factor of 4 until 2071

  13. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM.

    Science.gov (United States)

    Meng, Xianyong; Long, Aihua; Wu, Yiping; Yin, Gang; Wang, Hao; Ji, Xiaonan

    2018-02-26

    Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature. We found that since the 1960s, the air temperature in Xinjiang shows an increasing trend and the distribution of precipitation in the Tianshan area is quite complex. The precipitation is increasing in the south of the Tianshan Mountains (Southern Xinjiang, SX) and decreasing in the mountainous areas. The CRU and WM data indicate that precipitation in the north of the Tianshan Mountains (Northern Xinjiang, NX) is increasing, while the APHRO data show an opposite trend. The downscaled results from RegCM are generally consistent with the extrapolated gridded datasets in terms of the spatiotemporal patterns. We believe that our results can provide useful information in developing a regional climate model in Central Asia where meteorological stations are scarce.

  14. Inferring the colonization of a mountain range--refugia vs. nunatak survival in high alpine ground beetles.

    Science.gov (United States)

    Lohse, Konrad; Nicholls, James A; Stone, Graham N

    2011-01-01

    It has long been debated whether high alpine specialists survived ice ages in situ on small ice-free islands of habitat, so-called nunataks, or whether glacial survival was restricted to larger massifs de refuge at the periphery. We evaluate these alternative hypotheses in a local radiation of high alpine carabid beetles (genus Trechus) in the Orobian Alps, Northern Italy. While summits along the northern ridge of this mountain range were surrounded by the icesheet as nunataks during the last glacial maximum, southern areas remained unglaciated. We analyse a total of 1366 bp of mitochondrial (Cox1 and Cox2) data sampled from 150 individuals from twelve populations and 530 bp of nuclear (PEPCK) sequence sampled for a subset of 30 individuals. Using Bayesian inference, we estimate ancestral location states in the gene trees, which in turn are used to infer the most likely order of recolonization under a model of sequential founder events from a massif de refuge from the mitochondrial data. We test for the paraphyly expected under this model and for reciprocal monophyly predicted by a contrasting model of prolonged persistence of nunatak populations. We find that (i) only three populations are incompatible with the paraphyly of the massif de refuge model, (ii) both mitochondrial and nuclear data support separate refugial origins for populations on the western and eastern ends of the northern ridge, and (iii) mitochondrial node ages suggest persistence on the northern ridge for part of the last ice age. © 2010 Blackwell Publishing Ltd.

  15. Oroclinal Bending and Mountain Uplift in the Central Andes

    Science.gov (United States)

    Mpodozis, C.; Arriagada, C.; Roperch, P.

    2007-05-01

    The large paleomagnetic database now available for the Central Andes permits a good understanding of the overall spatial and temporal variations of rotations. Mesozoic to Early Paleogene rocks along the forearc of northern Chile (23°-28°S) record significant clockwise rotations (>25°) [Arriagada et al., 2006, Tectonics, doi:10.1029/2005TC001923]. Along the forearc of southern Peru, counterclockwise rotations recorded within flat lying red-beds (Moquegua Formation) increase from about -30° at 17.5°S to - 45° at15.5°S and decrease through time from the late Eocene to the late Oligocene-early Miocene [Roperch et al., 2006, Tectonics, doi:10.1029/2005TC001882]. Recently published thermo-chronological studies show evidence for strong exhumation within Bolivian Eastern Cordillera and the Puna plateau starting in the Eocene while structural studies indicate that the majority of crustal shortening in the Eastern Cordillera occurred during the Eocene-Oligocene, although the final stages of deformation may have continued through the Early Miocene. Rotations in the Peruvian and north Chilean forearc thus occurred at the same time than deformation and exhumation/uplift within the Eastern Cordillera. In contrast Neogene forearc rocks in southern Peru and northern Chile do not show evidences of rotation but low magnitude (10°) counterclockwise rotations are usually found in mid to late Miocene rocks from the northern Altiplano. These Neogene rotations are concomitant with shortening in the Sub-Andean zone and sinistral strike-slip faulting along the eastern edge of the northern Altiplano. We interpret the rotation pattern along the southern Peru and north Chile forearc as a result of strong late Eocene- late Oligocene oroclinal bending of the Central Andes associated with shortening gradients along the Eastern Cordillera associated both with the Abancay deflection and the Arica bend. The amount and spatial distribution of pre-Neogene shortening needed to account for

  16. Water-resources reconnaissance of the Ouachita Mountains, Arkansas

    Science.gov (United States)

    Albin, Donald R.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles in Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  17. Superimposed extension and shortening in the southern Salinas Basin and La Panza Range, California: A guide to Neogene deformation in the Salinian block of the central California Coast Ranges

    Science.gov (United States)

    Colgan, Joseph P.; McPhee, Darcy K.; McDougall, Kristin; Hourigan, Jeremy K.

    2013-01-01

    We synthesized data from geologic maps, wells, seismic-reflection profiles, potential-field interpretations, and low-temperature thermochronology to refine our understanding of late Cenozoic extension and shortening in the Salinian block of the central California Coast Ranges. Data from the La Panza Range and southern Salinas Basin document early to middle Miocene extension, followed by Pliocene and younger shortening after a period of little deformation in the late Miocene. Extension took place on high-angle normal faults that accommodated ∼2% strain at the scale of the ∼50-km-wide Salinian block (oriented perpendicular to the San Andreas fault). Shortening was accommodated by new reverse faults, reactivation of older normal faults, and strike-slip faulting that resulted in a map-view change in the width of the Salinian block. The overall magnitude of shortening was ∼10% strain, roughly 4–5 times greater than the amount of extension. The timing and magnitude of deformation in our study area are comparable to that documented in other Salinian block basins, and we suggest that the entire block deformed in a similar manner over a similar time span. The timing and relative magnitude of extension and shortening may be understood in the context of central Coast Range tectonic boundary conditions linked to rotation of the western Transverse Ranges at the south end of the Salinian block. Older models for Coast Range shortening based on balanced fault-bend fold-style cross sections are a poor approximation of Salinian block deformation, and may lead to mechanically improbable fault geometries that overestimate the amount of shortening.

  18. Channel heads in mountain catchments subject to human impact - The Skrzyczne range in Southern Poland

    Science.gov (United States)

    Wrońska-Wałach, Dominika; Żelazny, Mirosław; Małek, Stanisław; Krakowian, Katarzyna; Dąbek, Natalia

    2018-05-01

    Channel heads in mountain catchments are increasingly influenced by human activity. The disturbance of mountain headwater areas in moderate latitudes by the clearing of trees and the associated logging, road building and hydrotechnical constructions contribute to changes in the water cycle and consequently may induce a change in channel head development. Here we examine channel heads in the Beskid Śląski Mts., one of the areas most affected by ecological disaster in the Polish Flysch Carpathians. An ecological disaster associated with the decline of spruce trees in the 1980s and 1990s caused a substantial decrease (of about 50%) in the land area occupied by spruce forest in the Beskid Śląski Mts. As a result, headwater areas were subject to multidirectional changes in the environment. The purpose of this paper is to determine the detailed characteristics of channel heads currently developing in the analyzed headwater areas, as well as to identify independent factors that affect the evolution of channel heads. Geomorphological mapping was conducted in 2012 in the vicinity of springs in the study area. One-way ANOVA was used to determine the significance of differences between mean values calculated for groups identified based on: i) geomorphologic processes (hollows with rock veneer - h, spring niches - sn, gullies - g), ii) location vs. transformation of channel heads (forested areas vs., deforested areas with road constructions). Principal component analysis (PCA) was used to determine the structure and general patterns associated with relationships between the parameters of a channel head and its contribution area, as well as to identify and interpret new (orthogonal) spaces defined using distinct factors. As far as we know, this kind of approach has been never applied before. A total of 80 channel heads surrounding 104 springs were surveyed close to the main ridge in the study area. A total of 14 morphometric parameters were taken into account in this study

  19. Central nervous system dysfunction associated with Rocky Mountain spotted fever infection in five dogs.

    Science.gov (United States)

    Mikszewski, Jessica S; Vite, Charles H

    2005-01-01

    Five dogs from the northeastern United States were presented with clinical signs of neurological disease associated with Rocky Mountain spotted fever (RMSF) infection. Four of the five dogs had vestibular system dysfunction. Other neurological signs included paresis, tremors, and changes in mentation. All of the dogs had an elevated indirect fluorescent antibody titer or a positive semiquantitative enzyme screening immunoassay titer for Rickettsia rickettsii at the time of presentation. Although a higher mortality rate has been reported for dogs with neurological symptoms and RMSF infection, all of the dogs in this study improved with appropriate medical therapy and supportive care.

  20. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    Science.gov (United States)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  1. Comparative analysis of the evaluation of the intrinsic vulnerability in carbonate aquifers (Canete Mountain Range, province of Malaga); Analisis comparativo de la evaluacion de la vulnerabilidad intrinseca de acuiferos carbonaticos (Sierra de Canete, provincia de Malaga)

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Madrid, A.; Carrasco Cantos, F.; Martinez Navarrete, C.

    2009-07-01

    Groundwater of the carbonate aquifers of Canete Mountain Range constitute a basic source for water supply to different populations. Vulnerability intrinsic assesment is one of the most useful tools for the protection of the groundwater bodies, for this reason, this area has been chosen, to realize a comparative analysis, by means of the use of tools of spatial analysis and technical statistics of a Geographical Information System. In this work, Reduced DRASTIC, COP and RISK method have been applied, due to the fact that they are the methods used by Spain, both first ones, to evaluate the vulnerability of the groundwater bodies in the inter communal basins of the whole national territory, and for BRGM of France, the last one, to approach the carbonate aquifers protection. The obtained results show as the COP and RISK methods, specifics of carbonate aquifers, there show results more according to the characteristics of Canete Mountain Range that the obtained ones with Reduced DRASTIC, which unsaturated zone valuation causes an undervaluing the results of vulnerability obtained. (Author) 35 refs.

  2. Paleomagnetic and geochronologic constraints on the geodynamic evolution of the Central Dinarides

    NARCIS (Netherlands)

    de Leeuw, Arjan; Mandic, Oleg; Krijgsman, Wout; Kuiper, Klaudia; Hrvatović, Hazim

    2012-01-01

    The geodynamic evolution of the Dinaride Mountains of southeastern Europe is relatively poorly understood, especially in comparison with the neighboring Alps and Carpathians. Here, we construct a new chronostratigraphy for the post-orogenic intra-montane basins of the Central Dinarides based on

  3. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  4. Thermal evolution of Lower Paleozoic sedimentary successions from organic and inorganic studies: the case history of the Holy Cross Mountains (central Poland)

    Science.gov (United States)

    Trolese, Matteo; Stefano Celano, Antonio; Corrado, Sveva; Caricchi, Chiara; Schito, Andrea; Aldega, Luca

    2015-04-01

    The rapid increase in shale gas production in the USA has triggered a growing interest in unconventional resources in Eastern and Northern Europe. In this framework, the potential shale gas reserves in Poland are the most promising in Europe, extending from the Baltic Sea to the Ukraine border. In this area, the Baltic, Podlasie and Lublin basins have already become objective of shale gas exploration and the Holy Cross Mountains (HCM, Central Poland) represents the outcropping analog of the buried targeted Lower Paleozoic successions, providing a unique opportunity to study and assess source rock potential. In this work, we provide new thermal maturity data of Paleozoic rocks exposed in the HCM. A multi-method approach, coupling organic matter/graptolites (i.e., marine organoclasts) optical analysis and X-ray diffraction of clay-sized fraction of sediments, was applied to constrain the burial - thermal evolution of the sedimentary succession. The investigated area of the HCM includes two different tectonic blocks: the Łysogóry region to the North and the Kielce region to the South, separated by the Holy Cross Fault (HCF). lllite content in mixed layer illite-smectite determinations and vitrinite/graptolites reflectance measurements (Roeq%), performed on samples (Cambrian - Devonian) collected from both the regions, show a substantial difference between the two blocks in terms of thermal maturity and burial history. Roeq% values in the southern block range from 0.5% to 1.0%, with few exceptions, indicating early to mid-mature stage of hydrocarbon generation. Samples collected in the northern block show much higher values, mainly from 1.2% up to 1.7%, representative of the gas generation window. The I-S ordering type also shows relevant differences in the two blocks. In the southern block, mixed-layered clay minerals varies from R1 (short-range) to R3 (long-range), whereas R3 structures are recorded in the northern block. Vitrinite reflectance and mixed-layer I

  5. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia; Peterman, Zell; Oliver, Thomas A.; Gascoyne, Mel; Laaksoharju, Marcus

    2011-02-01

    performed in order to conduct such screening. 4. Analyse the final dataset with the multivariate geochemical code M3 in order to identify the endmember waters needed to explain the chemistry of the groundwaters in the Yucca Mountain area. 5. Define the best mixing model and compute the mixing proportions in terms of the selected endmember waters. Particularly important are the mixing proportions of the waters down-gradient of Yucca Mountain, in the Central Amargosa River area

  6. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia (Geochemical Modelling Group, Dept. of Earth Sciences, Univ. of Zaragoza (Spain)); Peterman, Zell; Oliver, Thomas A. (U.S. Geological Survey (United States)); Gascoyne, Mel (Gascoyne Geoprojects Inc (Canada)); Laaksoharju, Marcus (Geopoint AB (Sweden))

    2011-02-15

    performed in order to conduct such screening. 4. Analyse the final dataset with the multivariate geochemical code M3 in order to identify the endmember waters needed to explain the chemistry of the groundwaters in the Yucca Mountain area. 5. Define the best mixing model and compute the mixing proportions in terms of the selected endmember waters. Particularly important are the mixing proportions of the waters down-gradient of Yucca Mountain, in the Central Amargosa River area

  7. Density and Habitat Relationships of the Endemic White Mountain Fritillary (Boloria chariclea montinus (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    Kent P. McFarland

    2017-06-01

    Full Text Available We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary (Boloria chariclea montinus. Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.

  8. Geologic map of the Alamosa 30’ × 60’ quadrangle, south-central Colorado

    Science.gov (United States)

    Thompson, Ren A.; Shroba, Ralph R.; Michael N. Machette,; Fridrich, Christopher J.; Brandt, Theodore R.; Cosca, Michael A.

    2015-10-15

    The Alamosa 30'× 60' quadrangle is located in the central San Luis Basin of southern Colorado and is bisected by the Rio Grande. The Rio Grande has headwaters in the San Juan Mountains of Colorado and ultimately discharges into the Gulf of Mexico 3,000 kilometers (km) downstream. Alluvial floodplains and associated deposits of the Rio Grande and east-draining tributaries, La Jara Creek and Conejos River, occupy the north-central and northwestern part of the map area. Alluvial deposits of west-draining Rio Grande tributaries, Culebra and Costilla Creeks, bound the Costilla Plain in the south-central part of the map area. The San Luis Hills, a northeast-trending series of flat-topped mesas and hills, dominate the landscape in the central and southwestern part of the map and preserve fault-bound Neogene basin surfaces and deposits. The Precambrian-cored Sangre de Cristo Mountains rise to an elevation of nearly 4,300 meters (m), almost 2,000 m above the valley floor, in the eastern part of the map area. In total, the map area contains deposits that record surficial, tectonic, sedimentary, volcanic, magmatic, and metamorphic processes over the past 1.7 billion years.

  9. Final Environmental Assessment for the Establishment of an Air-to-Surface Helicopter Gunnery Training Target Set at White Sands Missile Range, New Mexico

    Science.gov (United States)

    2007-12-01

    Mockingbird Mountains. The range would consist of two target groups, with armored personnel carrier hulks in the target groups. One Helicopter...valley between Fairview Mountain and the Mockingbird Mountains (see Figure 2-2). The range would consist of two target groups, with armored personnel...pursue, hunt, take, capture, or kill ; attempt to take, capture, or kill ; possess, offer to or sell, barter, purchase, deliver, or cause to be shipped

  10. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps

    Science.gov (United States)

    Verfaillie, Deborah; Lafaysse, Matthieu; Déqué, Michel; Eckert, Nicolas; Lejeune, Yves; Morin, Samuel

    2018-04-01

    This article investigates the climatic response of a series of indicators for characterizing annual snow conditions and corresponding meteorological drivers at 1500 m altitude in the Chartreuse mountain range in the Northern French Alps. Past and future changes were computed based on reanalysis and observations from 1958 to 2016, and using CMIP5-EURO-CORDEX GCM-RCM pairs spanning historical (1950-2005) and RCP2.6 (4), RCP4.5 and RCP8.5 (13 each) future scenarios (2006-2100). The adjusted climate model runs were used to drive the multiphysics ensemble configuration of the detailed snowpack model Crocus. Uncertainty arising from physical modeling of snow accounts for 20 % typically, although the multiphysics is likely to have a much smaller impact on trends. Ensembles of climate projections are rather similar until the middle of the 21st century, and all show a continuation of the ongoing reduction in average snow conditions, and sustained interannual variability. The impact of the RCPs becomes significant for the second half of the 21st century, with overall stable conditions with RCP2.6, and continued degradation of snow conditions for RCP4.5 and 8.5, the latter leading to more frequent ephemeral snow conditions. Changes in local meteorological and snow conditions show significant correlation with global temperature changes. Global temperature levels 1.5 and 2 °C above preindustrial levels correspond to a 25 and 32 % reduction, respectively, of winter mean snow depth with respect to the reference period 1986-2005. Larger reduction rates are expected for global temperature levels exceeding 2 °C. The method can address other geographical areas and sectorial indicators, in the field of water resources, mountain tourism or natural hazards.

  11. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; Prach, Karel

    2004-01-01

    Roč. 23, č. 1 (2004), s. 15-27 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z6087904 Keywords : forest management * mountain spruce forest * natural regeneration Subject RIV: GK - Forestry Impact factor: 0.890, year: 2004 http://www.sciencedirect.com

  12. Denudation history of the Snowy Mountains: constraints from apatite fission track thermochronology

    International Nuclear Information System (INIS)

    Kohn, B.P.; Gleadow, A.J.W.; Cox, S.J.D.

    1999-01-01

    Apatite fission track thermo chronology from Early Palaeozoic granitoids centred around the Kosciuszko massif of the Snowy Mountains, records a denudation history that was episodic and highly variable. The form of the apatite fission track age profile assembled from vertical sections and hydro-electric tunnels traversing the mountains, together with numerical forward modelling, provide strong evidence for two episodes of accelerated denudation, commencing in Late Permian - Early Triassic (ca 270 250 Ma) and mid-Cretaceous (ca 110-100 Ma) times, and a possible third episode in the Cenozoic. Denudation commencing in the Late Permian - Early Triassic wins widespread in the eastern and Central Snowy Mountains area, continued through much of the Triassic, and amounted to at least ∼2.0-2,4 km. This episode was probably the geomorphic response to the Hunter-Bowen Orogeny. Post-Triassic denudation to the present in these areas amounted to ∼2.0-2.2 km. Unambiguous evidence for mid-Cretaceous cooling and possible later cooling is confined to a north-south-trending sinuous belt, up to ∼15km wide by at least 35km long, of major reactivated Palaeozoic faults on the western side of the mountains. This zone is the most deeply exposed area of the Kosciuszko block. Denudation accompanying these later events totalled up to ∼1.8-2.0 km and ∼2.0 2.25 km respectively. Mid-Cretaceous denudation marks the onset of renewed tectonic activity in the south-eastern highlands following a period of relative quiescence since the Late Triassic, and establishes a temporal link with the onset of extension related to the opening of the Tasman Sea. Much of the present day relief of the mountains resulted from surface uplift which disrupted the post-mid-Cretaceous apatite fission track profile by variable offsets on faults. Copyright (1999) Geological Society of Australia

  13. The origins of mountain geoecology

    Directory of Open Access Journals (Sweden)

    Ives, Jack D.

    2012-05-01

    Full Text Available Mountain geoecology, as a sub-discipline of Geography, stems from the life and work of Carl Troll who, in turn, was inspired by the philosophy and mountain travels of Alexander von Humboldt. As founding chair of the IGU Commission on High-Altitude Geoecology (1968, Troll laid the foundations for inter-disciplinary and international mountain research. The paper traces the evolution of the Commission and its close links with the UNESCO Man and Biosphere Programme (1972- and the United Nations University’s mountain Project (1978-. This facilitated the formation of a major force for inclusion of a mountain chapter in AGENDA 21 during the 1992 Rio de Janeiro Herat Summit (UNCED and the related designation by the United Nations of 2002 as the International Year of Mountains. In this way, mountain geoecology not only contributed to worldwide mountain research but also entered the political arena in the struggle for sustainable mountain development and the well-being of mountain people.La geoecología de montaña, como sub-disciplina de la Geografía, entronca con la vida y trabajo de Carl Troll, quien, a su vez, fue inspirado por la filosofía y viajes de Alexander von Humboldt. Como presidente fundador de la comisión de la UGI sobre High Altitude Geoecology (1968, Troll colocó las bases para la investigación interdisciplinar e internacional de las montañas. Este trabajo presenta la evolución de la Comisión y sus estrechas relaciones con el Programa Hombre y Biosfera de UNESCO (1972- y con el Proyecto de montaña de la Universidad de Naciones Unidas (1978-. Esto facilitó la inclusión de un capítulo sobre la montaña en AGENDA 21 durante la Cumbre de la Tierra de Río de Janeiro (UNCED, y la consiguiente designación de 2002 como el Año Internacional de las Montañas por parte de Naciones Unidas. En este sentido, la geoecología de montaña no sólo contribuyó a la investigación de las montañas del mundo sino que también empujó a la pol

  14. 77 FR 75186 - Notice of Closure, Target Shooting Public Safety Closure on the Lake Mountains in Utah County, UT

    Science.gov (United States)

    2012-12-19

    ... Land Management, Department of the Interior. ACTION: Notice of Closure. SUMMARY: The Bureau of Land... impacts is completed through the land use planning process. The Lake Mountains are a small mountain range... ridge. There are private residences along the lake shore. Utah Lake is a popular area for recreationists...

  15. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  16. Changes in the Mountain Cryosphere and Potential Risks to Downstream Communities: Insights from the Indian Himalayan Region

    Science.gov (United States)

    Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus

    2017-04-01

    and tunnel, linking Kullu with Lahual and Spiti districts in the north. Our studies have shown that this corridor is threatened by a range of climate related hazards, including debris flows, flash floods, and snow avalanches, highlighting the need to consider climate change scenarios to ensure the long-term sustainability of vital transportation networks in mountain regions. Often a transboundary perspective is required. For example, in 2000 a landslide dammed lake located in Tibet breached, causing the loss of at least 156 lives in the Indian district of Kinnaur located 100 km downstream, with infrastructural damage and loss of revenue estimated at up to US 222 million. Considering the wide-ranging ways in which downstream societies interact with and depend upon mountain environments, systematic monitoring and assessment of changes in the high mountain cryosphere is essential to ensure that adaptation decisions are evidence-based, and well supported by latest scientific understanding.

  17. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting

    Science.gov (United States)

    Millar, David J.; Cooper, David J.; Ronayne, Michael J.

    2018-06-01

    Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.

  18. Plutons and accretionary episodes of the Klamath Mountains, California and Oregon

    Science.gov (United States)

    Irwin, William P.; Wooden, Joseph L.

    1999-01-01

    The Klamath Mountains consist of various accreted terranes and include many plutons that range in composition from gabbro to granodiorite. Some of the plutons (preaccretionary plutons) were parts of terranes before the terranes accreted; others (accretionary plutons) intruded during or after the accretion of their host terrane(s). This report attempts to (1) graphically illustrate how the Klamath Mountains grew by the accretion of allochthonous oceanic terranes during early Paleozoic to Cretaceous times, (2) identify the plutons as either preaccretionary or accretionary, and (3) genetically relate the plutonic intrusions to specific accretionary episodes. The eight accretionary episodes portrayed in this report are similar to those shown by Irwin and Mankinen (1998) who briefly described the basis for the timing of the episodes and who illustrated the ~110 degrees of clockwise rotation of the Klamath Mountains since Early Devonian time. Each episode is named for the accreting terrane. In all episodes (Figs. 1-8), the heavy black line represents a fault that separates the accreting oceanic rocks on the left from earlier accreted terranes on the right. The preaccretionary plutons are shown within the accreting oceanic crustal rocks to the left of the heavy black line, and the accretionary plutons in most instances are shown intruding previously accreted terranes to the right. Episodes earlier than the Central Metamorphic episode (Fig. 1), and that may have been important in the formation of the early Paleozoic nucleous of the province (the Eastern Klamath terrane), are not known. The 'Present Time' distribution of the accreted terranes and plutons is shown at a large scale in Figure 9. The schematic vertical section (Fig. 10) depicts the terranes as a stack of horizontal slabs that include or are intruded by vertical plutons. Note that at their base the ~170 Ma preaccretionary plutons of the Western Hayfork subterrane are truncated by the ~164 Ma Salt Creek

  19. Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008

    Science.gov (United States)

    Zhou, Hang; Aizen, Elena; Aizen, Vladimir

    2017-01-01

    A series of statistics describing seasonal Snow Cover Extent and timing in Central Asia (CA) have been derived from AVHRR satellite images for the time period from 1986 to 2008. Analysis of long term mean snow cover statistics shows that the area weighted mean of long term Snow Covering Days (SCD) for the whole CA is 95.2 ± 65.7 days. High elevation mountainous areas above 3000 m in Altai, Tien Shan and Pamir, which account for about 2.8% of total area in CA, have SCD > 240 days. Deserts (Karakorum Desert, Taklamakan Desert, Kumtag Desert) and rain shadow areas of major mountains, accounting for 27.0% of total area in CA, have SCD in the range of 0-30 days. Factors affecting snow cover distribution have been analyzed using simple linear regression and segmented regression. For plain regions and windward regions, the SCD rate is + 5.9 days/100 m, while for leeward regions, the rate jumps from + 0.7 days/100 m to + 10.0 days/100 m at about 2335 m. Latitude affects the SCD, especially in plain regions with insignificant change of elevation, with rates of 9-10 days/degree from south to north. The Mann-Kendal test and the Theil-Sen regression methods have been applied to analyze the spatial heterogeneous trends of change of SCD, Snow Cover Onset Date (SCOD), and Snow Cover Melt Date (SCMD). Area weighed mean SCD in the whole CA does not exhibit significant trend of change from 1986 to 2008. Increase of SCD was observed in the northeastern Kazakh Steppe. Low elevation areas below 2000 m in Central Tien Shan and Eastern Tien Shan, as well as mid-elevation areas from 1000 m to 3000 m in Western Tien Shan, Pamiro-Alai and Western Pamir, also experienced increase of SCD, associated with both earlier SCOD and later SCMD. Decrease of SCD was observed in mountainous areas of Altai, Tien Shan and Pamir, and vast areas in plains surrounding the Aral Sea.

  20. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    Science.gov (United States)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2