WorldWideScience

Sample records for mountain potential repository

  1. Thermal Management and Analysis for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. A. Van Luik

    2004-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced waste (mostly from spent nuclear fuel) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. Table 1 provides an overview of design constraints related to thermal management after repository closure. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and

  2. Thermal management and analysis for a potential yucca mountain repository

    International Nuclear Information System (INIS)

    Van Luik, A.

    2005-01-01

    In the current Yucca Mountain repository design concept, heat from the emplaced. waste (mostly from spent nuclear fuel.) would keep the temperature of the rock around the waste packages higher than the boiling point of water for hundreds to thousands of years after the repository is closed. The design concept allows below-boiling portions of the pillars between drifts to serve as pathways for the drainage of thermally mobilized water and percolating groundwater by limiting the distance that boiling temperatures extend into the surrounding rock. This design concept takes advantage of host rock dry out, which would create a dry environment within the emplacement drifts and reduce the amount of water that might otherwise be available to enter the drifts and contact the waste packages during this thermal pulse. The Yucca Mountain repository design concept also provides flexibility to allow for operation over a range of lower thermal operating conditions. The thermal conditions within the emplacement drifts can be varied, along with the relative humidity, by modifying operational parameters such as the thermal output of the waste packages, the spacing of the waste packages in the emplacement drifts, and. the duration and rate of active and passive ventilation. A lower range has been examined to quantify lower-temperature thermal conditions (temperatures and associated humidity conditions) in the emplacement drifts and to quantify impacts to the required emplacement area and excavated drift length. This information has been used to evaluate the potential long-term performance of a lower-temperature repository and to estimate the increase in costs associated with operating a lower-temperature repository. This presentation provides an overview of the thermal management evaluations that have been conducted to investigate a range of repository thermal conditions and includes a summary of the technical basis that supports these evaluations. The majority of the material

  3. Important parameters in the performance of a potential repository at Yucca Mountain (TSPA-1995)

    International Nuclear Information System (INIS)

    Atkins, J.E.; Sevougian, S.D.; Lee, J.H.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    A total system performance assessment (TSPA) was conducted to determine how a potential repository at Yucca Mountain would behave. Using the results of this TSPA, regression was done to determine which parameters had the most important effect on the repository performance. These results were consistent with the current conceptual understanding of the repository

  4. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  5. Transportation cask decontamination and maintenance at the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Hill, R.R.

    1992-04-01

    This study investigates spent fuel cask handling experience at existing nuclear facilities to determine appropriate cask decontamination and maintenance operations at the potential Yucca Mountain repository. These operations are categorized as either routine or nonroutine. Routine cask decontamination and maintenance tasks are performed in the cask preparation area at the repository. Casks are taken offline to a separate cask maintenance area for major nonroutine tasks. The study develops conceptual designs of the cask preparation area and cask maintenance area. The functions, layouts, and major features of these areas are also described

  6. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1985-01-01

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  7. Geochemical homogeneity of tuffs at the potential repository level, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Zell E.; Cloke, Paul

    2001-01-01

    In a potential high-level radioactive waste repository at Yucca Mountain, Nevada, radioactive waste and canisters, drip shields protecting the waste from seepage and from rock falls, the backfill and invert material of crushed rock, the host rock, and water and gases contained within pores and fractures in the host rock together would form a complex system commonly referred to as the near-field geochemical environment. Materials introduced into the rock mass with the waste that are designed to prolong containment collectively are referred to as the Engineered Barrier System, and the host rock and its contained water and gases compose the natural system. The interaction of these component parts under highly perturbed conditions including temperatures well above natural ambient temperatures will need to be understood to assess the performance of the potential repository for long-term containment of nuclear waste. The geochemistry and mineralogy of the rock mass hosting the emplacement drifts must be known in order to assess the role of the natural system in the near-field environment. Emplacement drifts in a potential repository at Yucca Mountain would be constructed in the phenocryst-poor member of the Topopah Spring Tuff which is composed of both lithophysal and nonlithophysal zones. The chemical composition of the phenocryst-poor member has been characterized by numerous chemical analyses of outcrop samples and of core samples obtained by surface-based drilling. Those analyses have shown that the phenocryst-poor member of the Topopah Spring Tuff is remarkably uniform in composition both vertically and laterally. To verify this geochemical uniformity and to provide rock analyses of samples obtained directly from the potential repository block, major and trace elements were analyzed in core samples obtained from drill holes in the cross drift, which was driven to provide direct access to the rock mass where emplacement drifts would be constructed

  8. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  9. Identification of structures, systems, and components important to safety at the potential repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Hartman, D.J.; Miller, D.D.; Klamerus, L.J.

    1991-10-01

    This study recommends which structures, systems, and components of the potential repository at Yucca Mountain are important to safety. The assessment was completed in April 1990 and uses the reference repository configuration in the Site Characterization Plan Conceptual Design Report and follows the methodology required at that time by DOE Procedure AP6.10-Q. Failures of repository items during the preclosure period are evaluated to determine the potential offsite radiation doses and associated probabilities. Items are important to safety if, in the event they fail to perform their intended function, an accident could result which causes a dose commitment greater than 0.5 rem to the whole body or any organ of an individual in an unrestricted area. This study recommends that these repository items include the structures that house spent fuel and high-level waste, the associated filtered ventilation exhaust systems, certain waste- handling equipment, the waste containers, the waste treatment building structure, the underground waste transporters, and other items listed in this report. This work was completed April 1990. 27 refs., 7 figs., 9 tabs

  10. Strategic Basis for License Application Planning for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Newberry, C. M.; Brocoum, S. J.; Gamble, R. P.; Murray, R. C.; Cline, M.

    2002-01-01

    If Yucca Mountain, Nevada is designated as the site for development of a geologic repository for disposal of spent nuclear fuel and high-level radioactive waste, the Department of Energy (DOE) must obtain Nuclear Regulatory Commission (NRC) approval first for repository construction, then for an operating license, and, eventually, for repository closure and decommissioning. The licensing criteria defined in Code of Federal Regulations, Title 10, Part 63 (10 CFR Part 63) establish the basis for these NRC decisions. Submittal of a license application (LA) to the NRC for authorization to construct a repository at the Yucca Mountain site is, at this point, only a potential future action by the DOE. The policy process defined in the Nuclear Waste Policy Act (NWPA), as amended, for recommendation and designation of Yucca Mountain as a repository site makes it difficult to predict whether or when the site might be designated. The DOE may only submit a LA to the NRC if the site designation takes effect. In spite of this uncertainty, the DOE must take prudent and appropriate action now, and over the next several years, to prepare for development and timely submittal of a LA. This is particularly true given the need for the DOE to develop, load, and certify the operation of its electronic information system to provide access to its relevant records as part of the licensing support network (LSN) in compliance with NRC requirements six months prior to LA submittal. The DOE must also develop a LA, which is a substantially different document from those developed to support a Site Recommendation (SR) decision. The LA must satisfy NRC licensing criteria and content requirements, and address the acceptance criteria defined by the NRC in its forthcoming Yucca Mountain Review Plan (YMRP). The content of the LA must be adequate to facilitate NRC acceptance and docketing for review, and the LA and its supporting documents must provide the documented basis for the NR C findings required

  11. Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Short, D.W.; Ruffner, D.J.; Jardine, L.J.

    1991-10-01

    We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements

  12. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  13. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C.; Ballou, L.B.; Revelli, M.A.; Ducharme, A.R.; Shephard, L.E.; Dudley, W.W.; Hoxie, D.T.; Herbst, R.J.; Patera, E.A.; Judd, B.R.; Docka, J.A.; Rickertsen, L.D.

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE's Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ''current information'' or ''available evidence.''

  14. Environmental Impacts of Transportation to the Potential Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.; Best, R.; Bolton, P.; Adams, P.

    2002-01-01

    The Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada analyzes a Proposed Action to construct, operate, monitor, and eventually close a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. As part of the Proposed Action, the EIS analyzes the potential impacts of transporting commercial and DOE spent nuclear fuel and high-level radioactive waste to Yucca Mountain from 77 sites across the United States. The analysis includes information on the comparative impacts of transporting these materials by truck and rail and discusses the impacts of building a rail line or using heavy-haul trucks to move rail casks from a mainline railroad in Nevada to the site. This paper provides an overview of the analyses and the potential impacts of these transportation activities. The potential transportation impacts were looked at from two perspectives: transportation of spent nuclear fuel and high-level radioactive waste by legal-weight truck or by rail on a national scale and impacts specific to Nevada from the transportation of these materials from the State borders to the Yucca Mountain site. In order to address the range of impacts that could result from the most likely modes, legal-weight truck and rail, the EIS employed two analytical scenarios--mostly legal-weight truck and mostly rail. Estimated national transportation impacts were based on 24 years of transportation activities. Approximately 8 fatalities could occur from all causes in the nationwide general population from incident-free transportation activities of the mostly legal-weight truck scenario and about 4 from the mostly rail scenario. The analysis examined the radiological consequences under the maximum foreseeable accident scenario and also overall accident risk. The overall accident risk over the 24 year period would be about 0.0002 latent cancer fatality for

  15. Supplemental Performance Analyses for the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S. D.; McNeish, J. A.; Coppersmith, K.; Jenni, K. E.; Rickertsen, L. D.; Swift, P. N.; Wilson, M. L.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. To facilitate public review and comment, in May 2001 the DOE released the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. The report summarizes the results of more than 20 years of scientific and engineering studies. Based on internal reviews of the S and ER and its key supporting references, the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (2) and the Analysis Model Reports and Process Model Reports cited therein, the DOE has recently identified and performed several types of analyses to supplement the treatment of uncertainty in support of the consideration of a possible site recommendation. The results of these new analyses are summarized in the two-volume report entitled FY01 Supplemental Science and Performance Analysis (SSPA) (3,4). The information in this report is intended to supplement, not supplant, the information contained in the S and ER. The DOE recognizes that important uncertainties will always remain in any assessment of the performance of a potential repository over thousands of years (1). One part of the DOE approach to recognizing and managing these uncertainties is a commitment to continued testing and analysis and to the continued evaluation of the technical basis supporting the possible recommendation of the site, such as the analysis contained in the SSPA. The goals of the work described here are to provide insights into the implications of newly quantified uncertainties, updated science, and evaluations of lower operating temperatures on the performance of a potential Yucca Mountain repository and to increase confidence in the results of the TSPA described

  16. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States); Laub, T.W. [Sandia National Labs., Albuquerque, NM (United States)

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10{sup {minus}11}/yr to 10{sup {minus}5}/yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10{sup {minus}9}/yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution.

  17. Preclosure radiological safety analysis for accident conditions of the potential Yucca Mountain Repository: Underground facilities

    International Nuclear Information System (INIS)

    Ma, C.W.; Sit, R.C.; Zavoshy, S.J.; Jardine, L.J.; Laub, T.W.

    1992-06-01

    This preliminary preclosure radiological safety analysis assesses the scenarios, probabilities, and potential radiological consequences associated with postulated accidents in the underground facility of the potential Yucca Mountain repository. The analysis follows a probabilistic-risk-assessment approach. Twenty-one event trees resulting in 129 accident scenarios are developed. Most of the scenarios have estimated annual probabilities ranging from 10 -11 /yr to 10 -5 /yr. The study identifies 33 scenarios that could result in offsite doses over 50 mrem and that have annual probabilities greater than 10 -9 /yr. The largest offsite dose is calculated to be 220 mrem, which is less than the 500 mrem value used to define items important to safety in 10 CFR 60. The study does not address an estimate of uncertainties, therefore conclusions or decisions made as a result of this report should be made with caution

  18. Total system performance predictions (TSPA-1995) for the potential high-level waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Andrews, R.W.; McNeish, J.A.

    1996-01-01

    The management and operating contractor for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, has been recently completed a new performance assessment of the ability of the repository to isolate and contain nuclear waste for long time periods (up to 1,000,000 years). Sensitivity analyses determine the most important physical parameters and processes, using the most current information and models

  19. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  20. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.

    1993-01-01

    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  1. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  2. Sequential evaluation of the potential geologic repository site at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Bjerstedt, T.W.

    1996-01-01

    This paper discusses the changes that are planned for the characterization program at Yucca Mountain due to budget changes. Yucca Mountain is the only site being studied in the US for a geologic repository. Funding for the site characterization program at Yucca Mountain program was cut by roughly one half from the 1994 projected budget to complete three major milestones. These project milestones included: (1) a time-phased determination of site suitability, and if a positive finding, (2) completion of an Environmental Impact Statement, and (3) preparation of a License Application to the US NRC to authorize repository construction. In reaction, Yucca Mountain Site Characterization Project has shifted from parallel development of these milestones to a sequenced approach with the site suitability evaluation being replaced with a management assessment. Changes to the regulatory structure for the disposal program are under consideration by DOE and the NRC. The possibility for NRC and Doe to develop a site-specific regulatory structure follows from the National Energy Policy Act of 1992 that authorized the US EPA to develop a site specific environmental standard for Yucca Mountain

  3. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  4. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design, waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely

  5. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k d ) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone

  6. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. The new information incorporated in TSPA 1993 includes (1) revised estimates of radionuclide solubilities (and their thermal and geochemical dependency), (2) thermal and geochemical dependency of spent fuel waste alteration and glass dissolution rates, (3) new distribution coefficient (k{sub d}) estimates, (4) revised estimates of gas-phase velocities and travel times, and (5) revised hydrologic modeling of the saturated zone which provides updated estimates of the advective flux through the saturated zone.

  7. Thermal modeling for a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1994-03-01

    Repository performance models based on numerical simulation of fluid and heat flows have recently been developed by several different groups. Model conceptualizations generally focus on large-scale average behavior. This comparison finds that current performance assessment (PA) models use generally similar approximations and parameters. Certain differences exist in some performance-relevant parameters, especially absolute permeabilities, characteristic curves, and thermal conductivities. These reflect present uncertainties about the most appropriate parameters applicable to Yucca Mountain and must be resolved through future field observations and laboratory measurements. For a highly heterogeneous fractured-porous hydrogeologic system such as Yucca Mountain, water infiltration through the unsaturated zone is expected to be dominated by highly localized phenomena. These include fast channelized flow along preferential paths in fractures, and frequent local ponding. The extended dry repository concept proposed by the Livermore group is reviewed. Predictions of large-scale drying around the repository on the average for large thermal loads cannot be taken to indicate that waste packages will not be contacted by liquid water, and that aqueous-phase transport of contaminants is not possible. Specifically, the authors find that modest water infiltration, on the order of a few millimeters per year, would be sufficient to overwhelm the vaporization capacity of the repository heat and inundate the waste packages within a time frame of a few thousand years. A preliminary analysis indicates that channelized flow of water may persist over large vertical distances. The vaporization-condensation cycle has a capacity for generating huge amounts of ponded water. A small fraction of the total condensate, if ponded and then episodically released, would be sufficient to cause liquid phase to make contact with the waste packages

  8. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  9. Evaluation Of Groundwater Pathways And Travel Times From The Nevada Test Site To The Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    K.F. Pohlman; J. Zhu; M. Ye; J. Chapman; C. Russell; D.S. Shafer

    2006-01-01

    Yucca Mountain (YM), Nevada, has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH, we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring timeframe at the proposed repository. We include uncertainty in effective porosity, as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times

  10. A review of the available technologies for sealing a potential underground nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.

    1994-11-01

    The purpose of this report is to assess the availability of technologies to seal underground openings. The technologies are needed to seal the potential high-level radioactive waste repository at Yucca Mountain. Technologies are evaluated for three basic categories of seal components: backfill (general fill and graded fill), bulkheads, and grout curtains. Not only is placement of seal components assessed, but also preconditioning of the placement area and seal component durability. The approach taken was: First, review selected sealing case histories (literature searches and site visits) from the mining, civil, and defense industries; second, determine whether reasonably available technologies to seal the potential repository exist; and finally, identify deficiencies in existing technologies. It is concluded that reasonably available technologies do exist to place backfill, bulkheads, and grout curtains. Technologies also exist to precondition areas where seal components are to be placed. However, if final performance requirements are stringent for these engineered structures, some existing technologies may need to be developed. Deficiencies currently do exist in technologies that demonstrate the long-term durability and performance of seal components. Case histories do not currently exist that demonstrate the placement of seal components in greatly elevated thermal and high-radiation environments and in areas where ground support (rock bolts and concrete liners) has been removed. The as-placed, in situ material properties for sealing materials appropriate to Yucca Mountain are not available

  11. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    International Nuclear Information System (INIS)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A.; Mishra, S.

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  12. Methodology used for total system performance assessment of the potential nuclear waste repository at yucca mountain (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Devonec, E.; Sevougian, S.D.; Mattie, P.D.; Mcneish, J.A. [Duke Engineering and Services, Town Center Drive, Las Vegas (United States); Mishra, S. [Duke Engineering and Services, Austin, TX (United States)

    2001-07-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates the performance of the repository when various natural or engineered barriers are assumed to be degraded. The objective of these analyses is to evaluate the performance of the potential repository system under conditions ranging from expected to highly unlikely, though physically possible conditions. (author)

  13. Methodology Used for Total System Performance Assessment of the Potential Nuclear Waste Repository at Yucca Mountain (USA)

    International Nuclear Information System (INIS)

    E. Devibec; S.D. Sevougian; P.D. Mattie; J.A. McNeish; S. Mishra

    2001-01-01

    The U.S. Department of Energy and its contractors are currently evaluating a site in Nevada (Yucca Mountain) for disposal of high-level radioactive waste from U.S. commercial nuclear plants and U.S. government-owned facilities. The suitability of the potential geologic repository is assessed, based on its performance in isolating the nuclear waste from the environment. Experimental data and models representing the natural and engineered barriers are combined into a Total System Performance Assessment (TSPA) model [1]. Process models included in the TSPA model are unsaturated zone flow and transport, thermal hydrology, in-drift geochemistry, waste package degradation, waste form degradation, engineered barrier system transport, saturated zone flow and transport, and biosphere transport. Because of the uncertainty in the current data and in the future evolution of the total system, simulations follow a probabilistic approach. Multiple realization simulations using Monte Carlo analysis are conducted over time periods of up to one million years, which estimates a range of possible behaviors of the repository. The environmental impact is measured primarily by the annual dose received by an average member of a critical population group residing 20 km down-gradient of the potential repository. In addition to the nominal scenario, other exposure scenarios include the possibility of disruptive events such as volcanic eruption or intrusion, or accidental human intrusion. Sensitivity to key uncertain processes is analyzed. The influence of stochastic variables on the TSPA model output is assessed by ''uncertainty importance analysis'', e.g., regression analysis and classification tree analysis. Further investigation of the impact of parameters and assumptions is conducted through ''one-off analysis'', which consists in fixing a parameter at a particular value, using an alternative conceptual model, or in making a different assumption. Finally, robustness analysis evaluates

  14. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  15. Long-Term Waste Package Degradation Studies at the Yucca Mountain Potential High-Level Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Mon, K. G.; Bullard, B. E.; Longsine, D. E.; Mehta, S.; Lee, J. H.; Monib, A. M.

    2002-01-01

    The Site Recommendation (SR) process for the potential repository for spent nuclear fuel (SNF) and high-level nuclear waste (HLW) at Yucca Mountain, Nevada is underway. Fulfillment of the requirements for substantially complete containment of the radioactive waste emplaced in the potential repository and subsequent slow release of radionuclides from the Engineered Barrier System (EBS) into the geosphere will rely on a robust waste container design, among other EBS components. Part of the SR process involves sensitivity studies aimed at elucidating which model parameters contribute most to the drip shield and waste package degradation characteristics. The model parameters identified included (a) general corrosion rate model parameters (temperature-dependence and uncertainty treatment), and (b) stress corrosion cracking (SCC) model parameters (uncertainty treatment of stress and stress intensity factor profiles in the Alloy 22 waste package outer barrier closure weld regions, the SCC initiation stress threshold, and the fraction of manufacturing flaws oriented favorably for through-wall penetration by SCC). These model parameters were reevaluated and new distributions were generated. Also, early waste package failures due to improper heat treatment were added to the waste package degradation model. The results of these investigations indicate that the waste package failure profiles are governed by the manufacturing flaw orientation model parameters and models used

  16. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.

  17. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.

  18. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

    International Nuclear Information System (INIS)

    Atkins, J.E.; Lee, J.H.; Lingineni, S.; Mishra, S.; McNeish, J.A.; Sassani, D.C.; Sevougian, S.D.

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993

  19. Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1995-11-01

    The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation's commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews

  20. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Correspondence and request for oral presentations for US Department of Energy public hearings

    International Nuclear Information System (INIS)

    1983-01-01

    This volume contains correspondence and requests by the public citizens for oral presentation at the public hearings for the proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Written comments are also included on: the proposed nomination; the issues to be addressed in the Environmental Assessment; and the issues to be addressed by any Site Characterization Plan, if developed

  1. Acceptance of waste for disposal in the potential United States repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Svinicki, K.

    1996-01-01

    This paper addresses the process for the acceptance of waste into the waste management system (WMS) with a focus on the detailed requirements identified from the Waste Acceptance System Requirements Document. Also described is the recent dialogue between OCRWM and the Office of Environmental Management to resolve issues, including the appropriate interpretation and application of regulatory and system requirements to DOE-owned spent fuel. Some information is provided on the design of the repository system to aid the reader in understanding how waste that is accepted into the WMS is received and emplaced in the repository

  2. US Department of Energy Approach to Probabilistic Evaluation of Long-Term Safety for a Potential Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dr. R. Dyer; Dr. R. Andrews; Dr. A. Van Luik

    2005-01-01

    at the end of the site-characterization phase to warrant moving ahead to construction, the expectation is that still more confidence may be had in the next evaluation of risk for a repository at Yucca Mountain. More confidence does not always mean lower risk, just as less uncertainty does not necessarily mean lower risk. What needs to be shown is that there is a basis for confidence in the outcome of such evaluations, meaning that the potential repository promises to provide acceptable public safety, as defined by the regulation, at every phase in its long life

  3. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  4. Modeling flow and transport pathways to the potential repository horizon at Yucca Mountain

    International Nuclear Information System (INIS)

    Wolfsberg, A.V.; Roemer, G.J.C.; Fabryka-Martin, J.T.; Robinson, B.A.

    1998-01-01

    The isotopic ratios of 36 Cl/Cl are used in conjunction with geologic interpretation and numerical modeling to evaluate flow and transport pathways, processes, and model parameters in the unsaturated zone at Yucca Mountain. By synthesizing geochemical and geologic data, the numerical model results provide insight into the validity of alternative hydrologic parameter sets, flow and transport processes in and away from fault zones, and the applicability of 36 Cl/Cl ratios for evaluating alternative conceptual models

  5. Use of an analog site near Raymond, California, to develop equipment and methods for characterizing a potential high-level, nuclear waste repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Umari, A.M.J.; Geldon, A.; Patterson, G.; Gemmell, J.; Earle, J.; Darnell, J.

    1994-01-01

    Yucca Mountain, Nevada, currently is being investigated by the U.S. Geological Survey as a potential site for a high-level nuclear waste repository. Planned hydraulic-stress and tracer tests in fractured, tuffaceous rocks below the water table at Yucca Mountain will require work at depths in excess of 1,300 feet. To facilitate prototype testing of equipment and methods to be used in aquifer tests at Yucca Mountain, an analog site was selected in the foothills of the Sierra Nevada near Raymond, California. Two of nine 250- to 300-feet deep wells drilled into fractured, granitic rocks at the Raymond site have been instrumented with packers, pressure transducers, and other equipment that will be used at Yucca Mountain. Aquifer tests conducted at the Raymond site to date have demonstrated a need to modify some of the equipment and methods conceived for use at Yucca Mountain

  6. Applications of natural analogue studies to Yucca Mountain as a potential high level radioactive waste repository

    International Nuclear Information System (INIS)

    1995-02-01

    The 5-member group convened in Las Vegas, Nov. 11-13, 1991, to clarify the extent to which studies of natural analogues can assist the Yucca Mountain site characterization (SC) project. This document is to provide guidance and recommendations to DOE for the implementation of natural analogue studies in the SC program. Performance assessment, integrity of engineered barriers, and communication to the public and the scientific community are stressed. The reference design being developed by Babcock ampersand Wilcox Fuel Company are reviewed. Guidelines for selecting natural analogues are given. Quality assurance is discussed. Recommendations are given for developing an effective natural analogue program within the SC program

  7. The hydrothermal stability of cement sealing materials in the potential Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Krumhansl, J.L.; Hinkebein, T.E.; Myers, J.

    1991-01-01

    Cementitious materials, together with other materials, are being considered to seal a potential repository at Yucca Mountain. A concern with cementitious materials is the chemical and mineralogic changes that may occur as these materials age while in contact with local ground waters. A combined theoretical and experimental approach was taken to determine the ability to theoretically predict mineralogic changes. The cementitious material selected for study has a relatively low Ca:Si ratio approaching that of the mineral tobermorite. Samples were treated hydrothermally at 200 degrees C with water similar to that obtained from the J-13 well on the Nevada Test Site. Post-test solutions were analyzed for pH as well as dissolved K, Na, Ca, Al, and Si. Solid phases formed during these experiments were characterized by scanning electron microscopy and X- ray diffraction. These findings were compared with predictions made by the geochemical modeling code EQ3NR/E06. It was generally found that there was good agreement between predicted and experimental results

  8. Interaction of nuclear waste panels with shafts and access ramps for a potential repository at Yucca Mountain: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-09-01

    A series of two-dimensional and three-dimensional analyses of a potential nuclear waste repository at Yucca Mountain were performed to estimate the thermal stresses that would be experienced at the possible locations of shafts or ramps providing access to the repository horizon. Two alternative assumptions were made for the initial state of stress, and calculations were performed to investigate behavior at repository scale. The computed states of stress were also used as boundary conditions for a series of analyses of the access ramps and vertical shafts. The results of the repository scale analyses indicated that there is a region above the repository horizon where the horizontal stresses are reduced as a consequence of the thermal loads imposed by waste emplacement. If the initial state of stress is relatively low then the total horizontal stresses near the ground surface above the repository may be tensile. An evaluation of the total stress state relative to the strength of the rock matrix and vertical and near vertical joints indicates that there is no potential for development of new fractures in the matrix, but joints near the surface could be activated if the initial stress state is low. 13 refs., 24 figs., 4 tabs

  9. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D.; Langford, D.W.; Ouderkirk, S.J.

    1993-01-01

    The placement of high-level radioactive wastes in minded repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models

  10. Preliminary total-system analysis of a potential high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, P.W.; Doremus, L.A.; Engel, D.W.; Miley, T.B.; Murphy, M.T.; Nichols, W.E.; White, M.D. [Pacific Northwest Lab., Richland, WA (United States); Langford, D.W.; Ouderkirk, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-01-01

    The placement of high-level radioactive wastes in mined repositories deep underground is considered a disposal method that would effectively isolate these wastes from the environment for long periods of time. This report describes modeling performed at PNL for Yucca Mountain between May and November 1991 addressing the performance of the entire repository system related to regulatory criteria established by the EPA in 40 CFR Part 191. The geologic stratigraphy and material properties used in this study were chosen in cooperation with performance assessment modelers at Sandia National Laboratories (SNL). Sandia modeled a similar problem using different computer codes and a different modeling philosophy. Pacific Northwest Laboratory performed a few model runs with very complex models, and SNL performed many runs with much simpler (abstracted) models.

  11. Potential retrieval of radioactive wastes at the proposed Yucca Mountain repository

    International Nuclear Information System (INIS)

    Goble, R.; Golding, D.; Kasperson, R.E.

    1988-06-01

    The absence of risk-based criteria for retrieval planning does not mean, of course, that DOE has been unconcerned about the risks of a retrieval operation or that pertinent information has not been generated. On the other hand, it is worrisome that there has not yet been a systematic identification and assessment of the potential risks. The goals of this preliminary review are: to explore the nature of the risks associated with a retrieval operation; to assess the adequacy of DOE's evaluation of these risks; to identify unresolved issues requiring further attention, and to examine implications for the state of Nevada

  12. Supplemental Performance Analyses for Igneous Activity and Human Intrusion at the Potential High-Level Nuclear Waste Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Swift, P.; Gaither, K.; Freeze, G.; McCord, J.; Kalinich, D.; Saulnier, G.; Statham, W.

    2002-01-01

    The U.S. Department of Energy (DOE) is considering the possible recommendation of a site at Yucca Mountain, Nevada, for the potential development of a geologic repository for the disposal of high-level radioactive waste and spent nuclear fuel. Consequences of hypothetical disruption of the Yucca Mountain site by igneous activity or human intrusion have been evaluated in the Yucca Mountain Science and Engineering Report (S and ER) (1), which presents technical information supporting the consideration of the possible site recommendation. Since completion of the S and ER, supplemental analyses have examined possible impacts of new information and alternative assumptions on the estimates of the consequences of these events. Specifically, analyses of the consequences of igneous disruption address uncertainty regarding: (1) the impacts of changes in the repository footprint and waste package spacing on the probability of disruption; (2) impacts of alternative assumptions about the appropriate distribution of future wind speeds to use in the analysis; (3) effects of alternative assumptions about waste particle sizes; and (4) alternative assumptions about the number of waste packages damaged by igneous intrusion; and (5) alternative assumptions about the exposure pathways and the biosphere dose conversion factors used in the analysis. Additional supplemental analyses, supporting the Final Environmental Impact Statement (FEIS), have examined the results for both igneous disruption and human intrusion, recalculated for a receptor group located 18 kilometers (km) from the repository (the location specified in 40 CFR 197), rather than at the 20 km distance used in the S and ER analyses

  13. Pre-construction geologic section along the cross drift through the potential high-level radioactive waste repository, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Potter, C.J.; Day, W.C.; Sweetkind, D.S.; Juan, C.S.; Drake, R.M. II

    1998-01-01

    As part of the Site Characterization effort for the US Department of Energy's Yucca Mountain Project, tunnels excavated by tunnel boring machines provide access to the volume of rock that is under consideration for possible underground storage of high-level nuclear waste beneath Yucca Mountain, Nevada. The Exploratory Studies Facility, a 7.8-km-long, 7.6-m-diameter tunnel, has been excavated, and a 2.8-km-long, 5-m-diameter Cross Drift will be excavated in 1998 as part of the geologic, hydrologic and geotechnical evaluation of the potential repository. The southwest-trending Cross Drift branches off of the north ramp of the horseshoe-shaped Exploratory Studies Facility. This report summarizes an interpretive geologic section that was prepared for the Yucca Mountain Project as a tool for use in the design and construction of the Cross Drift

  14. Study of nuclear waste storage capacity at Yucca mountain repository

    International Nuclear Information System (INIS)

    Zhou Wei; Apted, M.; Kessler, J.H.

    2008-01-01

    The Yucca Mountain repository is applying license for storing 70000 MTHM nuclear waste including commercial spent nuclear fuel (CSNF) and defense high-level radioactive waste (HLW). The 70000 MTHM is a legal not the technical limit. To study the technical limit, the Electric Power Research Institute (EPRI) carried out a systematic study to explore the potential impact if the repository will accept more waste. This paper describes the model and results for evaluating the spent-fuel disposal capacity for a repository at Yucca Mountain from the thermal and hydrological point of view. Two proposed alternative repository designs are analyzed, both of which would fit into the currently well-characterized site and, therefore, not necessitating any additional site characterization at Yucca Mountain. The two- and three-dimensional models for coupled thermo-hydrological analysis extends from the surface to the water table, covering all the major and subgroup rock layers of the planned repository, as well as formations above and below the repository horizon. A dual-porosity and dual-permeability approach is used to model coupled heat and mass transfer through fracture formations. The waste package heating and ventilation are all assumed to follow those of the current design. The results show that the repository is able to accommodate three times the amount of spent fuel compared to the current design, without extra spatial expansion or exceeding current thermal and hydrological constraints. (authors)

  15. Exploratory shaft facility: It's role in the characterization of the Yucca Mountain site for a potential nuclear repository

    International Nuclear Information System (INIS)

    Kalia, H.N.; Merson, T.J.

    1990-01-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab

  16. Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, H.N.; Merson, T.J.

    1990-03-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

  17. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr. [Lawrence Livermore National Lab., CA (United States); Gdowski, G.E. [KMI, Inc., Albuquerque, NM (United States)

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices.

  18. Selection of candidate container materials for the conceptual waste package design for a potential high level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; Halsey, W.G.; McCright, R.D.; Clarke, W.L. Jr.; Gdowski, G.E.

    1993-02-01

    Preliminary selection criteria have been developed, peer-reviewed, and applied to a field of 41 candidate materials to choose three alloys for further consideration during the advanced conceptual design phase of waste package development for a potential high level nuclear waste repository at Yucca Mountain, Nevada. These three alloys are titanium grade 12, Alloy C-4, and Alloy 825. These selections are specific to the particular conceptual design outlined in the Site Characterization Plan. Other design concepts that may be considered in the advanced conceptual design phase may favor other materials choices

  19. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration

  20. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T ampersand MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document

  1. Continuing Science and Technology at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Finch, R.J.

    2005-01-01

    Yucca Mountain, Nevada, was designated in 2002 to be the site for the nation's first permanent geological repository for spent nuclear fuel and high-level radioactive waste. The process of selecting a site for the repository began nearly 25 years ago with passage of the Nuclear Waste Policy Act in 1982. The Department of Energy (DOE) is responsible for submitting a license application to the Nuclear Regulatory Commission for constructing and operating the repository, and DOE's Office of Civilian Radioactive Waste Management (OCRWM) is charged with carrying out this action. The use of multiple natural and engineered barriers in the current repository design are considered by OCRWM to be sufficiently robust to warrant license approval; however, potential design enhancements and increased understanding of both natural and engineered barriers, especially over the long time frames during which the waste is to remain isolated from human contact continue to be examined. The Office of Science and Technology and International (OST andI) was created within OCRWM to help explore novel technologies that might lower overall costs and to develop a greater understanding of processes relevant to the long-term performance of the repository. A brief overview of Yucca Mountain, and the role that OST andI has in identifying technological or scientific advances that could make repository operations more efficient or performance more robust, will be presented. It is important to note, however, that adopting any of OST andI's technological or scientific developments will be at the discretion of OCRWM's Office of Repository Development (ORD)

  2. Preliminary results of trench mapping at the site of prospective surface facilities for the potential Yucca Mountain repository, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Swan, F.H.; Thomas, A.P.; Angell, M.M.

    1993-01-01

    Mapping and trenching studies are yielding data needed to evaluate the surface faulting potential within Midway Valley, a half graben bounded by west-dipping normal faults on the northeast margin of Yucca Mountain. These studies document the presence of two north-trending zones of fractures within Quaternary deposits along the west-central part of the Midway Valley half-graben block. The westernmost zone of fractures, located along the eastern base of Exile Hill, overlies a complex zone of bedrock faulting and may be related to an apparent down-on-the-east step in the contact between bedrock and colluvium. Fractures striking ∼N15E extend upwards from this apparent bedrock step through early (?) to middle (?) Pleistocene colluvium. The fractures do not extend into the overlying late Pleistocene colluvium. No vertical or lateral separation of the probably middle to late Pleistocene colluvium across fractures can be detected with a resolution of 5 cm or less in most cases. The Quaternary deposits are much thicker along the eastern zone of fractures and bedrock was not exposed. The presence of continuous thin layers within the alluvial strata demonstrate the absence of any detectable vertical or lateral separation of the middle (?) Pleistocene deposits across the fractures within the eastern zone with a high degree of confidence. The results of the authors studies indicate that faults within the west-central part of the Midway Valley structural block have had little or no displacement since at least the mid Quaternary. Therefore, potential for surface fault rupture in this area is extremely low

  3. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs

  4. Achieving transparency in the total system performance assessment of a potential high level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bailey, J.; Rickertsen, L.; Cotton, T.

    1999-01-01

    This paper has presented an approach to quantitative assessment of the degree of postclosure defense-in-depth provided by the reference system of the VA (Viability Assessment). This approach identifies principal barriers, assesses barriers for common uncertainty and failure mode, conducts barrier neutralization analyses, and evaluates overall defense-in-depth. The neutralization approach of step 3 is particularly useful in untangling the contributions of various barriers to the results calculated by performance assessments. In fact, it provides the only way of assessing the contribution of barriers that are fully redundant with one another. The approach has been applied to the VA reference system. It shows how the natural transport barriers contribute to performance of the system. Since their individual contributions are redundant, uncertainties in those individual contributions are reduced in importance. The analyses also suggest uncertainties common to both of these barriers are important to the safety assessment. Thus, the approach appears to be capable of determining the contribution of the principal barriers to system performance. The ability to use performance assessment to show not only how the repository system is expected to perform, but also how it achieves that performance, should contribute substantially towards providing needed transparency to the safety case for a geologic repository. It is also a valuable tool during the development of the repository design and associated safety case, by identifying areas in which performance would be enhanced by increased redundancy

  5. The use of performance assessment for the potential high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Lee, Joon H.; Andrews, R. W.

    1997-01-01

    This paper covers the introduction and overview of the Yucca Mountain site, the overview of waste package and EBS design, the organization of CRWMS M and O, the overview of total system performance assessment (TSPA), the components of TSPA model, the examples results of TSPA component models, and the example results of TSPA scoping sensitivity analyses. 22 figs

  6. Environmental impact of Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Ahn, Joonhong

    2005-01-01

    Environmental impact of the Yucca Mountain Repository (YMR) has been quantitatively evaluated in terms of the radiotoxicity of transuranic (TRU) and fission-product radionuclides existing in the environment after released from failed packages. Inventory abstraction has been made based on the data published in Final Environmental Impact Statement published by US DOE. Mathematical model and computation code have been developed based on analytical solutions. Environmental impact from the commercial spent nuclear fuel (CSNF) packages is about 90% of the total impact including the contribution from defense waste (DW) packages. Impacts due to isotopes of Cm, Am, Pu and Np, and their decay daughters are dominant, compared with those from fission-product nuclides. Numerical results show that reduction of the TRU nuclides by a factor of 100 makes the impact from CSNF smaller than that from DW. (author)

  7. Scenarios constructed for the effects of tectonic processes on the potential nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Barr, G.E.; Borns, D.J.; Fridrich, C.

    1996-10-01

    A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flow rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs

  8. U.S. DEPARTMENT OF ENERGY EXPERIENCE IN CREATING AND COMMUNICATING THE CASE FOR THE SAFETY OF A POTENTIAL YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    W.J. Boyle; A.E. Van Luik

    2005-01-01

    Experience gained by the U.S. Department of Energy (the Department) in making the recommendation for the development of the Yucca Mountain site as the nation's first high-level waste and spent nuclear fuel repository is useful for creating documents to support the next phase in the repository program, the licensing phase. The experience that supported the successful site-recommendation process involved a three-tiered approach. First, was making a highly technical case for regulatory compliance. Second, was making a broader case for safety in an Environmental Impact Statement. And third, producing plain language brochures, made available to the public in hard copy and on the Internet, to explain the Department's action and its legal and scientific bases. This paper reviews lessons learned from this process, and makes suggestions for the next stage of the repository program: licensing

  9. Total System Performance Assessment, 1993: An evaluation of the potential Yucca Mountain repository, B00000000-01717-2200-00099, Rev. 01

    International Nuclear Information System (INIS)

    Andrews, R.W.; Dale, T.F.; McNeish, J.A.

    1994-03-01

    Total System Performance Assessments are an important component in the evaluation of the suitability of Yucca Mountain, Nevada as a potential site for a mined geologic repository for the permanent disposal of high-level radioactive wastes in the United States. The Total System Performance Assessments are conducted iteratively during the site characterization to identify issues which should be addressed by the characterization and design activities as well as providing input to regulatory/licensing and programmatic decisions. During fiscal years 1991 and 1992, the first iteration of Total System Performance Assessment (hereafter referred to as TSPA 1991) was completed by Sandia National Laboratories and Pacific Northwest Laboratory. Beginning in fiscal year 1993, the Civilian Radioactive Waste Management System Management and Operating Contractor was assigned the responsibility to plan, coordinate, and contribute to the second iteration of Total System Performance Assessment (hereafter referred to as TSPA 1993). This document presents the objectives, approach, assumptions, input, results, conclusions, and recommendations associated with the Management and Operating Contractor contribution to TSPA 1993. A parallel effort was conducted by Sandia National Laboratories and is reported in Wilson et al. (1994, in press)

  10. Photogeologic study of small-scale linear features near a potential nuclear-waste repository site at Yucca Mountain, southern Nye County, Nevada

    International Nuclear Information System (INIS)

    Throckmorton, C.K.

    1987-01-01

    Linear features were mapped from 1:2400-scale aerial photographs of the northern half of the potential underground nuclear-waste repository site at Yucca Mountain by means of a Kern PG 2 stereoplotter. These features were thought to be the expression of fractures at the ground surface (fracture traces), and were mapped in the caprock, upper lithophysal, undifferentiated lower lithophysal and hackly units of the Tiva Canyon Member of the Miocene Paintbrush Tuff. To determine if the linear features corresponded to fracture traces observed in the field, stations (areas) were selected on the map where the traces were both abundant and located solely within one unit. These areas were visited in the field, where fracture-trace bearings and fracture-trace lengths were recorded. Additional data on fracture-trace length and fracture abundance, obtained from ground-based studies of cleared pavements located within the study area were used to help evaluate data collected for this study. 16 refs., 4 figs., 2 tabs

  11. Assessment of risk associated with long-term corrosion of alloy 22 and Ti-7 in the potential yucca mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Ahn, T.M.; Pensado, O.; Dunn, D.

    2004-01-01

    Full text of publication follows: The potential high-level nuclear waste (HLW) repository at Yucca Mountain (YM) may rely on the robustness of the outer container of the waste package (WP) as one of many barriers for waste isolation. The container is proposed to be constructed of Alloy 22, a Ni-Cr-Mo alloy known to be resistant to localized corrosion and stress corrosion cracking. Additionally, drip shields (DS) will be emplaced above the WP to minimize the groundwater contact, in the form of seepage, with the WP. The candidate alloy to construct the drip shields is a titanium based alloy (Ti-7) with some small amounts of Pd and is also known for resistance to localized corrosion. To enhance confidence of long-term WP and DS lifetimes, it is necessary to assess the conditions under which loss of passivity or localized degradation processes could occur. The accelerated degradation processes may include uniform passivity breakdown, localized corrosion, and stress corrosion cracking. This paper evaluates how such processes may occur under the long-term YM repository conditions. In the uniform passivity breakdown, three potential concerns are evaluated. The first is anodic sulphur segregation at the interface between the passive film and the bare metal. This paper models the cyclic behavior of free transient fast dissolution (induced by sulfur segregation) and re-passivation. The second is the potential accumulation of corrosion products on the WP surface, which may act as cathode of large surface area leading to fast corrosion. The effective ratio of the corrosion product area to the bare metal area is evaluated. The third is the ion selectivity in the corrosion products to alter the aqueous chemistry, which may accelerate or inhibit the corrosion. Thermodynamics of ionic sorption in the corrosion products is reviewed. In the localized corrosion, the groundwater chemistry on the WP surface is evaluated at the temperatures of the WP above 100 deg. C during the early

  12. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structure is controlled by strict adherence to building or professional- engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the- art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design- analysis process

  13. Repository-relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.; Veleckis, E.

    1989-04-01

    A repository environment poses a challenge to developing a testing program because of the diverse nature of conditions that may exist at a given time during the life of the repository. A starting point is to identify whether any potential waste-water contact modes are particularly deleterious to the waste form performance, and whether any interactions between materials present in the waste package environment need to be accounted for during modeling the waste form reaction. The Unsaturated Test method in one approach that has been developed by the Yucca Mountain Project (YMP) to investigate the above issues, and a description of results that have been obtained during the testing of glass and unirradiated UO 2 are the subject of this report. 10 refs., 7 figs., 4 tabs

  14. Post-closure radiation dose assessment for Yucca Mountain repository

    International Nuclear Information System (INIS)

    Jia Mingyan; Zhang Xiabin; Yang Chuncai

    2006-01-01

    A brief introduction of post-closure long-term radiation safety assessment results was represented for the yucca mountain high-level waste geographic disposal repository. In 1 million years after repository closure, for the higher temperature repository operating mode, the peak annual dose would be 150 millirem (120 millirem under the lower-temperature operating mode) to a reasonably maximally exposed individual approximately 18 kilometers (11 miles) from the repository. The analysis of a drilling intrusion event occurring at 30,000 years indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers (11 miles) downstream of the repository would be 0.002 millirem. The analysis of an igneous activity scenario, including a volcanic eruption event and igneous intrusion event indicated a peak of the mean annual dose to the reasonably maximally exposed individual approximately 18 kilometers downstream of the repository would be 0.1 millirem. (authors)

  15. Waste package/engineered barrier system design concepts for the direct disposal of spent fuel in the potential United States' repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stahl, D.; Harrison, D.J.

    1993-01-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package development program is to design a waste package and associated engineered barrier system (EBS) that meets the applicable regulatory requirements for safe disposal of spent nuclear fuel and solidified high-level waste (HLW) in a geologic repository. Attainment of this goal relies on a multi-barrier approach, the unsaturated nature of the Yucca Mountain site, consideration of technical alternatives, and sufficient resolution of technical and regulatory uncertainties. To accomplish this, an iterative system engineering approach will be used. The NWPA of 1982 limits the content of the first US repository to 70,000 metric tons of heavy metal (MTHM). The DOE Mission Plan describes the implementation of the provisions of the NWPA for the waste management system. The Draft 1988 approach will involve selecting candidate designs, evaluating them against performance requirements, and then selecting one or two preferred designs for further detailed evaluation and final design. The reference design of the waste package described in the YMP Site Characterization Plan is a thin-walled, vertical borehole-emplaced waste package with an air gap between the package and the rock wall. The reference design appeared to meet the design requirement. However, the degree of uncertainty was large. This uncertainty led to considering several more-robust design concepts during the Advanced Conceptual Design phase of the program that include small, drift-emplaced packages and higher capacity, drift-emplaced packages, both partially and totally self-shielded. Metallic as well as ceramic materials are being considered

  16. Environmental program overview for a high-level radioactive waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    1988-12-01

    The United States plans to begin operating the first repository for the permanent disposal of high-level nuclear waste early in the next century. In February 1983, the US Department of Energy (DOE) identified Yucca Mountain, in Nevada, as one of nine potentially acceptable sites for a repository. To determine its suitability, the DOE evaluated the Yucca Mountain site, along with eight other potentially acceptable sites, in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The purpose of the Environmental Program Overview (EPO) for the Yucca Mountain site is to provide an overview of the overall, comprehensive approach being used to satisfy the environmental requirements applicable to sitting a repository at Yucca Mountain. The EPO states how the DOE will address the following environmental areas: aesthetics, air quality, cultural resources (archaeological and Native American components), noise, radiological studies, soils, terrestrial ecosystems, and water resources. This EPO describes the environmental program being developed for the sitting of a repository at Yucca Mountain. 1 fig., 3 tabs

  17. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective

  18. A radiological disadvantage for siting a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Spiegler, P.

    1996-01-01

    At Yucca mountain, the disposal of large amounts of U-238, U-234, and Pu-238 will result in a long term build-up of Rn-222. In time, because of erosion, the repository horizon will move closer to the surface and large amounts of Rn-222 gas will be able to leak into the atmosphere. The area surrounding Yucca Mountain will become a site of high radioactive background. Sullivan and Pescatore have brought the issue to the attention of the DOE

  19. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

  20. Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-12-01

    In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs

  1. Stability of underground openings in the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Blejwas, T.E.

    1989-01-01

    The licensing of a repository for high-level radioactive waste will require assurances that underground openings do not experience frequent major instabilities, which are defined here as sudden movements of blocks of rock that limit the functions of the openings. Although the design of nuclear power plant structures is controlled by strict adherence to building or professional-engineering codes, this approach is not practical for the structural design of underground facilities because the design must accommodate a varied and partially defined geologic setting. However, regulations require the reduction of the potential for deleterious rock movement and the design of openings to maintain the option to retrieve waste. The present plans for meeting these requirements for a repository at Yucca Mountain, Nevada, include a program of state-of-the-art analyses and modified forms of existing empirically based design methods. An extensive experimental program is required to provide confidence in the results of the design-analysis process. 7 refs., 1 fig

  2. Proposed nomination of Yucca Mountain as a potential high-level radioactive waste repository. Registration and transcript of proceedings of US Department of Energy public hearings, Las Vegas, Nevada, March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing were: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Department's formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons, including a chairperson, who were not employees of the Department of Energy, and who had not participated in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 29 participants, beginning with those of the Governor of Nevada

  3. US Department of Energy public hearing for the proposed nomination of Yucca Mountain as a potential high level radioactive waste repository. Registration and transport of proceedings, Reno, Nevada - March 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The purpose of this public hearing was: (1) to solicit comments on the nomination of Yucca Mountain for site characterization as a potential high-level radioactive waste repository; (2) to solicit issues to be included in an Environmental Assessment supporting the Departments' formal nomination of that site; and (3) to solicit issues to be addressed in the Site Characterization Plan which would subsequently be issued prior to proceeding with site characterization. The public hearing utilized a panel comprising of three persons including a chairperson, who were not employees of the Department of Energy, and who had not participated directly in the preparation of the proposed nomination of Yucca Mountain. This volume contains statements from 24 participants

  4. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Lukens, Wayne W. (Lawrence Berkeley National Laboratory)

    2006-03-01

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop also covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.

  5. Assessment of the impact of a nuclear waste repository at Yucca Mountain on the economic development potential of Las Vegas, Clark County, and the surrounding area

    International Nuclear Information System (INIS)

    Boyle, M.R.

    1989-01-01

    Growth Strategies Organization has completed an assessment of the Las Vegas MSA's competitiveness in the attraction of new business facilities to the area. That report found that under current business climate conditions and in the present economic development market place, the region is a competitive site for about one hundred of the six hundred types of primary businesses studied. It is almost competitive as a location for another 80 to 90 types of businesses and is a marginal choice for another 200 business groups. In other words, Clark County, as is, fully satisfies the basic requirements of almost a sixth of the businesses in this study. With minor improvements in areas such as the skill mix of its work force and the quality of its educational facilities and with an effective campaign to improve the area's image, the Las Vegas area could become a competitive location for about two-thirds of all business groups -- a very large shift in marketability. The proposed nuclear waste repository that he Federal government has proposed for siting at Yucca Mountain more than a hundred miles from Las Vegas would become operational after the turn of the century, more than fifteen years from now. Its influence on business investment decisions would be felt in the mid- to late-1990s if the final decision were made and announced. To measure that impact it would be desirable to establish a baseline that reflects Clark County's competitiveness as a business facility location in the middle of the next decade. In constructing that baseline, several variables could be considered -- changes in business climate conditions in the area other than the nuclear waste repository; and changes in the location decision process itself resulting from changes in technology and in market pressures

  6. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs. fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  7. Modeling of strongly heat-driven flow processes at a potential high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Pruess, K.; Tsang, Y.

    1993-01-01

    Two complementary numerical models for analyzing high-level nuclear waste emplacement at Yucca Mountain have been developed. A vertical cross-sectional (X-Z) model permits a realistic representation of hydrogeologic features, such as alternating tilting layers of welded and non-welded tuffs, fault zones, and surface topography. An alternative radially symmetric (R-Z) model is more limited in its ability to describe the hydrogeology of the site, but is better suited to model heat transfer in the host rock. Our models include a comprehensive description of multiphase fluid and heat flow processes, including strong enhancements of vapor diffusion from pore-level phase change effects. The neighborhood of the repository is found to partially dry out from the waste heat. A condensation halo of large liquid saturation forms around the drying zone, from which liquid flows downward at large rates. System response to infiltration from the surface and to ventilation of mined openings is evaluated. The impact of the various flow processes on the waste isolation capabilities of the site is discussed

  8. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  9. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Krier, D.J.; Perry, F.V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10 -8 per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone (∼80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption

  10. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  11. Evaluating the Long-Term Safety of a Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Luik, Abe Van

    2002-01-01

    Regulations require that the repository be evaluated for its health and safety effects for 10,000 years for the Site Recommendation process. Regulations also require potential impacts to be evaluated for up to a million years in an Environmental Impact Statement. The Yucca Mountain Project is in the midst of the Site Recommendation process. The Total System Performance Assessment (TSPA) that supports the Site Recommendation evaluated safety for these required periods of time. Results showed it likely that a repository at this site could meet the licensing requirements promulgated by the Nuclear Regulatory Commission. The TSPA is the tool that integrates the results of many years of scientific investigations with design information to allow evaluations of potential far-future impacts of building a Yucca Mountain repository. Knowledge created in several branches of physics is part of the scientific basis of the TSPA that supports the Site Recommendation process.

  12. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Cowart, C.G.; Notz, K.J.

    1992-10-01

    This report presents the results of a fully documented peer review of DOE/RW-0184, Rev. 1, ''Characteristics of Potential Repository Wastes''. The peer review was chaired and administered by oak Ridge National Laboratory (ORNL) for the Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) and was conducted in accordance with OCRWM QA procedure QAAP 3.3 ''Peer Review'' for the purpose of quailing the document for use in OCRWM quality-affecting work. The peer reviewers selected represent a wide range of experience and knowledge particularly suitable for evaluating the subject matter. A total of 596 formal comments were documented by the seven peer review panels, and all were successfully resolved. The peers reached the conclusion that DOE/RW-0184, Rev. 1, is quality determined and suitable for use in quality-affecting work

  13. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  14. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  15. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    International Nuclear Information System (INIS)

    J.H. Payer

    2005-01-01

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control

  16. An evaluation of environmental effects of the DOE HLW repository siting and characterization program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winsor, M.F.; Ulland, L.M.

    1989-01-01

    This paper presents highlights of the Nevada Nuclear Waste Project Office (NWPO) environmental investigations in progress on the environmental effects of past and proposed activities of the Department of Energy (DOE) at the Yucca Mountain repository. The environmental investigations refer to those studies specifically related to resource evaluation, impact assessment and mitigation planning for the repository program; it is defined to exclude consideration of technical suitability determinations, socioeconomics and transportation. This paper addresses the question of what are the disturbances created by past and proposed DOE activities related to repository siting and characterization at Yucca Mountain. It discusses considerations in linking disturbance to the potential for significant adverse environmental impacts

  17. Cost-Effective Cementitious Material Compatible with Yucca Mountain Repository Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dole, LR

    2004-12-17

    The current plans for the Yucca Mountain (YM) repository project (YMP) use steel structures to stabilize the disposal drifts and connecting tunnels that are collectively over 100 kilometers in length. The potential exist to reduce the underground construction cost by 100s of millions of dollars and improve the repository's performance. These economic and engineering goals can be achieved by using the appropriate cementitious materials to build out these tunnels. This report describes the required properties of YM compatible cements and reviews the literature that proves the efficacy of this approach. This report also describes a comprehensive program to develop and test materials for a suite of underground construction technologies.

  18. Impacts of seismic activity on long-term repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Gauthier, J.H.; Wilson, M.L.; Borns, D.J.; Arnold, B.W.

    1995-01-01

    Several effects of seismic activity on the release of radionuclides from a potential repository at Yucca Mountain are quantified. Future seismic events are predicted using data from the seismic hazard analysis conducted for the Exploratory Studies Facility (ESF). Phenomenological models are developed, including rockfall (thermal-mechanical and seismic) in unbackfilled emplacement drifts, container damage caused by fault displacement within the repository, and flow-path chance caused by changes in strain. Using the composite-porosity flow model (relatively large-scale, regular percolation), seismic events show little effect on total-system releases; using the weeps flow model (episodic pulses of flow in locally saturated fractures), container damage and flow-path changes cause over an order of magnitude increase in releases. In separate calculations using, more realistic representations of faulting, water-table rise caused by seismically induced changes in strain are seen to be higher than previously estimated by others, but not sufficient to reach a potential repository

  19. Preliminary evaluation of techniques for transforming regional climate model output to the potential repository site in support of Yucca Mountain future climate synthesis

    International Nuclear Information System (INIS)

    Church, H.W.; Zak, B.D.; Behl, Y.K.

    1995-06-01

    The report describes a preliminary evaluation of models for transforming regional climate model output from a regional to a local scale for the Yucca Mountain area. Evaluation and analysis of both empirical and numerical modeling are discussed which is aimed at providing site-specific, climate-based information for use by interfacing activities. Two semiempirical approaches are recommended for further analysis

  20. Development of rail access to the proposed repository site at Yucca Mountain

    International Nuclear Information System (INIS)

    Standish, P.N.; Seidler, P.E.; Andrews, W.B.; Shearin, G.

    1991-01-01

    In accordance with the Nuclear Waste Policy Amendment Act of 1987, Yucca Mountain was designated as the initial site to be investigated as a potential repository for the disposal of high-level radioactive waste. The Yucca Mountain site is an undeveloped area located on the southwestern edge of the Nevada Test Site (NTS), about 100 miles northwest of Las Vegas. The site currently lacks rail service or an existing right-of-way. If the Yucca Mountain site is found suitable for the repository, rail service is considered desirable by the Office of Civilian Radioactive Waste Management (OCRWM) program because of the potential of rail transportation to reduce (1) costs and (2) number of shipments, relative to highway transportation. Therefore, it is necessary to conduct a study to determine (1) that there are alignments for a potential rail line from existing mainline railroads to Yucca Mountain and (2) that these are consistent with present rail design standards and are acceptable relative to environmental and land access considerations

  1. Repository relevant testing applied to the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Bates, J.K.; Woodland, A.B.; Wronkiewicz, D.J.; Cunnane, J.C.

    1990-10-01

    The tuff beds of Yucca Mountain, Nevada, are currently being investigated as a site for the disposal of high-level nuclear waste in an underground repository. If this site is found suitable, the repository would be located in the unsaturated zone above the water table, and a description of the site and the methodology of assessing the performance of the repository are described in the Site Characterization Plan (SCP). While many factors are accounted for during performance assessment, an important input parameter is the degradation behavior of the waste forms, which may be either spent fuel or reprocessed waste contained in a borosilicate glass matrix. To develop the necessary waste form degradation input, the waste package environment needs to be identified. This environment will change as the waste decays and also is a function of the repository design which has not yet been finalized. At the present time, an exact description of the waste package environment is not available. The SCP does provide an initial description of conditions that can be used to guide waste form evaluation. However, considerable uncertainty exists concerning the conditions under which waste form degradation and radionuclide release may occur after the waste package containment barriers are finally breached. The release conditions that are considered to be plausible include (1) a open-quotes bathtubclose quotes condition in which the waste becomes fully or partially submerged in water that enters the breached container and accumulates to fill the container up to the level of the breach opening, (2) a open-quotes wet dripclose quotes or open-quotes trickle throughclose quotes condition in which the waste form is exposed to dripping water that enters through the top and exits the bottom of a container with multiple holes, and (3) a open-quotes dryclose quotes condition in which the waste form is exposed to a humid air environment

  2. Preliminary assessment of clinoptilolite K/Ar results from Yucca Mountain, Nevada: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Bish, D.L.; Broxton, D.E.; Chipera, S.J.

    1992-01-01

    At Yucca Mountain, evidence for at least three distinct temporal groups of clinoptilolites can be delineated from the preliminary K/Ar dates (2--3 Ma; 4--5 Ma; 7--11 Ma). The older K/Ar dates that are similar to published illite/smectite ages (9--12 Ma) may be crystallization ages, whereas the younger dates probably represent continued diagenetic reactions of older clinoptilolites with percolating fluids. The K/Ar dates increase with depth, suggesting minimal argon loss in the deeper samples. Internal consistency of the clinoptilolite K/Ar results at different levels within the drill holes suggest that dating of K-rich zeolites may provide useful information for assessing the zeolitization at Yucca Mountain. Variations in the K/Ar dates are probably related to Ar loss during dissolution of older clinoptilolites and to contamination by finely crystalline feldspars

  3. Second generation waste package design and storage concept for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Armijo, Joseph Sam; Kar, Piyush; Misra, Manoranjan

    2006-01-01

    The reference waste package design and operating mode to be used in the Yucca Mountain Repository is reviewed. An alternate (second generation) operating concept and waste package design is proposed to reduce the risk of localized corrosion of waste packages and to reduce repository costs. The second generation waste package design and storage concept is proposed for implementation after the initial licensing and operation of the reference repository design. Implementation of the second generation concept at Yucca Mountain would follow regulatory processes analogous to those used successfully to extend the design life and uprate the power of commercial light water nuclear reactors in the United States. The second generation concept utilizes the benefits of hot dry storage to minimize the potential for localized corrosion of the waste package by liquid electrolytes. The second generation concept permits major reductions in repository costs by increasing the number of fuel assemblies stored in each waste package, by eliminating the need for titanium drip shields and by fabricating the outer container from corrosion resistant low alloy carbon steel

  4. The Yucca Mountain Repository - Too Little, Too Late

    International Nuclear Information System (INIS)

    Eriksson, L.G.; Pentz, D.L.

    2009-01-01

    In 2008, the U.S. Department of Energy (US DOE) announced that the nation's first (and only pursued) deep geological disposal system (repository) for 70,000 metric tonnes of spent nuclear fuel (SNF) and other high-level radioactive waste (HLW) at the Yucca Mountain (YM) site in Nevada would: 1. Not be able to accommodate the projected stockpile of utility-generated SNF beyond 2010. 2. Open no earlier than in 2020, i.e., more than 22 years behind the statutory-mandated opening date. In the meantime, the US DOE is legally obligated to compensate the utilities from January 31, 1998, until it takes title to the utilities' SNF. In 2005 when the YM SNF repository was projected to open in 2010, the utilities estimated that, depending upon how close to 2010 the YM repository opened, the 'breach-of-contract' compensation could be in the range of between 100 billion and 300 billion U.S. dollars ($300 B), which would exceed the 2008 projected life-cycle cost of $96 B for the YM repository. It thus seems appropriate to look beyond the YM repository and call upon the U.S. Congress to promptly act and open new avenues allowing the US DOE to more timely and cost-effectively take title to both existing and pending SNF the current fleet of 104 reactors will generate through the next 60 years. Options for SNF arising from an additional 50 reactors should also be provided. Based on our more than 60 years of combined involvement in nuclear waste management in the USA and abroad, we submit the following industrial-scale-proven, repository-related, nuclear-waste-management and disposition solutions for prompt Congressional consideration and action: 1. An increase in the disposal capacity (and perhaps mission) of the YM repository. 2. Prompt establishment of at least one large federal monitored retrievable storage (MRS) facility for utility-generated SNF. 3. Continued research in reprocessing options of existing and pending SNF with defined milestones. 4. Resurrection of a second

  5. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities

  6. Characterizing the Evolution of the In-Drift Environment in a Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Abraham Van Luik

    2004-01-01

    This presentation provides a high-level summary of the approach taken to achieve a conceptual understanding of the chemical environments likely to exist in the proposed Yucca Mountain repository after the permanent closure of the facility. That conceptual understanding was then made quantitative through laboratory and modeling studies. This summary gives an overview of the in-drift chemical environment modeling that was needed to evaluate a Yucca Mountain repository: it describes the geological, hydrological, and geochemical aspects of the chemistry of water contacting engineered barriers and includes a summary of the technical basis that supports the integration of this information into the total system performance assessment. In addition, it presents a description of some of the most important data and processes influencing the in-drift environment, and describes how data and parameter uncertainty are propagated through the modeling. Sources of data include: (1) external studies regarding climate changes; (2) site-specific studies of the structure of the mountain and the properties of its rock layers; (3) properties of dust in the mountain and investigations of the potential for deliquescence on that dust to create solutions above the boiling point of water; (4) obtaining thermal data from a comprehensive thermal test addressing coupled processes; and (5) modeling the evolution of the in-drift environment at several scales. Model validation is also briefly addressed

  7. Repository Safety Strategy: Strategy for Protecting Public Health and Safety after Closure of a Yucca Mountain Repository, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    1998-01-01

    The updated Strategy to Protect Public Health and Safety explains the roles that the natural and engineered systems are expected to play in achieving the objectives of a potential repository system at Yucca Mountain. These objectives are to contain the radionuclides within the waste packages for thousands of years, and to ensure that annual doses to a person living near the site will be acceptably low. This strategy maintains the key assumption of the Site Characterization Plan (DOE 1988) strategy that the potential repository level (horizon) will remain unsaturated. Thus, the strategy continues to rely on the natural attributes of the unsaturated zone for primary protection by providing a setting where waste packages assisted by other engineered barriers are expected to contain wastes for thousands of years. As in the Site Characterization Plan (DOE 1988) strategy, the natural system from the walls of the underground openings (drifts) to the human environment is expected to provide additional defense by reducing the concentrations of any radionuclides released from the waste packages. The updated Strategy to Protect Public Health and Safety is the framework for the integration of site information, repository design and assessment of postclosure performance to develop a safety case for the viability assessment and a subsequent license application. Current site information and a reference design are used to develop a quantitative assessment of performance to be compared with a performance measure. Four key attributes of an unsaturated repository system that are critical to meeting the objectives: (1) Limited water contacting the waste packages; (2) Long waste package lifetime; (3) Slow rate of release of radionuclides from the waste form; and (4) Concentration reduction during transport through engineered and natural barriers.

  8. Integrity of radioactive waste packages at the Yucca mountain repository

    International Nuclear Information System (INIS)

    Sandquist, G.; Biaglow, A.; Huber, M.; Jagmin, C.

    2004-01-01

    Several of the important physical and chemical processes that impact the integrity of the radioactive waste packages planned for disposal at the proposed Repository at Yucca Mountain are examined. These processes are described by the aerodynamic, thermodynamic, and chemical interactions associated with the waste packages. The effects of chemical corrosion, mechanical erosion, temperature distributions throughout the repository environs, interactions of air, water, and solid particles, and radiological and biological influences are addressed. Materials will be exposed to at least 3 conditions threatening the integrity of the waste package: 1) accumulated dust and particles on the package surface and suspended in the air, 2) chemical reactions from deposits on the waste package infrastructure materials and tight contact areas, and crevices, and 3) environmental factors affecting chemical reactions such as moisture, pH, Eh, and radiolysis. All 3 of these conditions can combine and produce damaging impacts upon the thin protective layer on the alloy surface of the waste package. There are certain benefits from the low-temperature operating mode with ambient temperature below 85 Celsius degrees, but the materials could be subjected to a maximum temperature of 180 Celsius degrees which might introduce stress corrosion cracking and high temperature effects

  9. THE PROPOSED YUCCA MOUNTAIN REPOSITORY FROM A CORROSIVE PERSPECTIVE

    International Nuclear Information System (INIS)

    PAYER JH

    2006-01-01

    The proposed Yucca Mountain Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. Researchers at Case are part of a Department of Energy Corrosion and Materials Performance Cooperative. This team of leading scientists/engineers from major universities and national laboratories is working together to further enhance the understanding of the role of engineered barriers in waste isolation. The team is organized to address important topics: (1) Long-term behavior of protective, passive films; (2) Composition and properties of moisture in contact with metal surfaces; and (3) Rate of penetration and extent of corrosion damage over extremely long times. The work will also explore technical enhancements and seek to offer improvements in materials costs and reliability

  10. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  11. Assessing microbiologically induced corrosion of waste package materials in the Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J. M., LLNL

    1998-01-01

    The contribution of bacterial activities to corrosion of nuclear waste package materials must be determined to predict the adequacy of containment for a potential nuclear waste repository at Yucca Mountain (YM), NV. The program to evaluate potential microbially induced corrosion (MIC) of candidate waste container materials includes characterization of bacteria in the post-construction YM environment, determination of their required growth conditions and growth rates, quantitative assessment of the biochemical contribution to metal corrosion, and evaluation of overall MIC rates on candidate waste package materials.

  12. Preparation for kinetic measurements on the silicates of the Yucca Mountain potential repository. [Final report], June 15, 1993--September 30, 1993

    International Nuclear Information System (INIS)

    1993-01-01

    Part 1, ''The Preparation of Clinoptilolite, Mordenite and Analcime,'' summarized progress made during the contract period on preparing Na-end member clinoptilolite, mordenite, and analcime. The objective is to use the prepared zeolites to determine rates of dissolution and precipitation in laboratory flow-through systems in both this lab to 350 C and by the geochemists at Yale University to about 80 C. Because clinoptilolite represents the most complicated phase of these three zeolites and it is most abundant at Yucca Mountain, the authors have concentrated most of their efforts on its preparation. They have collected, high-concentration natural clinoptilolite samples. A hindered settling technique that takes advantage of the relatively low specific gravity of clinoptilolite coupled with ultrasonic cleaning in deionized water has been employed. This material is now a mixed Na-K zeolite which must then be converted to the pure Na-end member composition. In Part 2, ''Draft Manuscript on the Heterogeneous Kinetics of Cristobalite,'' experiments on the rates of reactions of dissolution and precipitation of cristobalite were carried at 150--300 C. Results show that cristobalite may precipitate from hydrothermal solution if the concentration of Si(OH) 4 exceeds that at quartz saturation and is less than that of amorphous silica saturation and if there are cristobalite nuclei present. Such nuclei may occur where there has been devitrification of volcanic glasses, for example. Cristobalite has refused to crystallize in the absence of such nuclei. Steady state concentrations were reached experimentally after starting at 150 degree with initially supersaturated solutions and at 200 C starting with either supersaturated or undersaturated solutions. From the steady state conditions, equilibrium constants can be derived

  13. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the repository and

  14. Review of microbial responses to abiotic environmental factors in the context of the proposed Yucca Mountain repository

    Energy Technology Data Exchange (ETDEWEB)

    Meike, A. [Lawrence Livermore National Lab., Livermore, CA (United States); Stroes-Gascoyne, S

    2000-10-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behaviour into performance assessment models. One effort was to expand an existing modelling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories, 1) abiotic factors, 2) community dynamics and in-situ considerations, 3) nutrient considerations and 4) transport of radionuclides. The complete bibliography (included in Appendix A) represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain. The first part of the report (Chapters 1-3) is a review of general microbial states, phases and requirements for growth, conditions for 'normal growth' and other types of growth, survival strategies and cell death. It contains primarily well-established ideas in microbiology. Microbial capabilities for survival and adaptation to environmental changes are examined because a repository placed at Yucca Mountain would have two effects. First, the natural environment would be perturbed by the excavation and construction of the

  15. Scenarios constructed for nominal flow in the presence of a repository at Yucca Mountain and vicinity

    International Nuclear Information System (INIS)

    Barr, G.E.; Hunter, R.L.; Dunn, E.; Flint, A.

    1995-03-01

    Scenario development for the system performance assessment of the Yucca Mountain Site Characterization Project defines a scenario as a well-posed problem connecting an initiating event with radionuclide release to the accessible environment by a logical and physically possible combination or sequence of features, events, and processes. Drawing on the advice and assistance of the Project's principal investigators (PIs), a collection of release scenarios initiated by the nominal ground-water flow occurring in the vicinity of the potential Yucca Mountain high-level-waste repository is developed and described in pictorial form. This collection of scenarios is intended to provide a framework to assist PIs in recognizing essential field and calculational analyses, to assist performance assessment in providing guidance to site characterization, and to continue the effort to exhaustively identify all features, events, and processes important to releases. It represents a step in the iterative process of identifying what details of the potential site are important for safe disposal. 67 refs

  16. A Summary of Properties Used to Evaluate INEEL Calcine Disposal in the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Dahl, C.A.

    2003-01-01

    To support evaluations of the direct disposal of Idaho National Engineering and Environmental Laboratory calcines to the repository at Yucca Mountain, an evaluation of the performance of the calcine in the repository environment must be performed. This type of evaluation demonstrates, through computer modeling and analysis, the impact the calcine would have on the ability of the repository to perform its function of containment of materials during the repository lifetime. This report discusses parameters that were used in the scoping evaluation conducted in FY 2003. It provides nominal values for the parameters, with explanation of the source of the values, and how the values were modified for use in repository analysis activities

  17. The impact of repository heat on thermo-hydrological performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-09-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. These analyses have demonstrated that the only significant source of liquid water is nonequilibrium fracture flow from: (1) meteoric sources, (2) condensate drainage generated under boiling conditions, and (3) condensate drainage generated under sub-boiling conditions. The first source of liquid water arises from the ambient system; the second and third sources are generated by repository heat. Buoyant vapor flow, occurring either on a sub-repository scale or on a mountain scale, may play an important role in the generation of the second and third sources of liquid water. By considering a wide range in bulk permeability, k b , the authors identify the threshold k b (called k b hyd ) at which buoyant, vapor convection begins to dominate hydrological behavior, and the threshold k b (called k b th ) at which this convection begins to dominate thermal behavior. They find that k b th is generally an order of magnitude larger than k b hyd and that the development of a large above-boiling zone suppresses the effects of buoyant vapor flow. Of particular concern are conditions that promote the focusing of vapor flow and condensate drainage, which could result in persistent two-phase conditions (often referred to as the heat-pipe effect) in the vicinity of WPs. The results of this study underscore the need for in situ heater tests to help diagnose the potential for the major repository-heat-driven sources of fracture flow

  18. Preliminary safety assessment study for the conceptual design of a repository in tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-12-01

    Preliminary estimates of the upper bounds on postulated worst-case radiological releases resulting from possible accidents during the operating period of a prospective repository in tuff at Yucca Mountain are presented. Possible disrupting events are screened to identify the accidents of greatest potential consequence. The radiological dose commitments for the general public and repository personnel are estimated for postulated releases caused by natural phenomena, man-made events, and operational accidents. All postulated worst-case releases result in doses to the public that are lower than the 0.5-rem, whole-body dose-per-accident limit set by the Nuclear Regulatory Commission (NRC) in 10 CFR 60. Doses to repository personnel are within the NRC's 5.0-rem/yr occupational exposure limit set in 10 CFR 20 for normal operations. Doses are within this limit for all accidents except the transportation accident and fire in a drift. A preliminary risk assessment has also been performed. Based on this preliminary safety study, the proposed site boundaries and design criteria routinely used in constructing nuclear facilities appear to be adequate to protect the safety of the general public during the operating phase of the repository

  19. THERMAL CONDUCTIVITY OF THE POTENTIAL REPOSITORY HORIZON

    Energy Technology Data Exchange (ETDEWEB)

    J.E. BEAN

    2004-09-27

    The primary purpose of this report is to assess the spatial variability and uncertainty of bulk thermal conductivity in the host horizon for the repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). Design plans indicate that approximately 81 percent of the repository will be excavated in the Tptpll, approximately 12 percent in the Tptpmn, and the remainder in the Tptul and Tptpln (BSC 2004 [DIRS 168370]). This report provides three-dimensional geostatistical estimates of the bulk thermal conductivity for the four stratigraphic layers of the repository horizon. The three-dimensional geostatistical estimates of matrix and lithophysal porosity, dry bulk density, and matrix thermal conductivity are also provided. This report provides input to various models and calculations that simulate heat transport through the rock mass. These models include the ''Drift Degradation Analysis, Multiscale Thermohydrologic Model, Ventilation Model and Analysis Report, Igneous Intrusion Impacts on Waste Packages and Waste Forms, Drift-Scale Coupled Processes (DST and TH Seepage) Models'', and ''Drift Scale THM Model''. These models directly or indirectly provide input to the total system performance assessment (TSPA). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large-scale (centimeters-meters) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity.

  20. Seismotectonic investigations for Yucca Mountain high-level waste repository: Rationale for defining scope

    International Nuclear Information System (INIS)

    Gupta, D.C.; Blackford, M.E.

    1990-01-01

    The geologic, seismic, and engineering characteristics of the Yucca Mountain site and its environs need to be investigated in sufficient scope and detail to provide reasonable assurance that they are sufficiently well understood to permit an adequate evaluation of the proposed site for the development of a high-level waste repository. The paper examines the extent of seismotectonic investigations needed for proper evaluation of the geologic setting. At the Yucca Mountain site, a thorough understanding of tectonic phenomena such as seismicity and faulting is critical to the identification of potentially disqualifying conditions. Study of the tectonic movement, stress, or co-tectonic effects that could affect the performance of the waste-handling facilities, waste package, underground openings, shaft and borehole seals, and long-term alteration of geohydrology would be necessary. In addition, the uncertainties involved in evaluating the effect of seismotectonics on the radionuclide transport mechanism need to be thoroughly investigated. 8 refs., 1 fig

  1. Viability Assessment of a Repository at Yucca Mountain. Volume 1: Introduction and Site Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This first volume contains an introduction to the viability assessment, including the purpose, scope, waste forms, technical challenges, an historical perspective, regulatory framework, management of the repository, technical components, preparations for the license application, and repository milestones after the assessment. The second part of this first volume addresses characteristics of the Yucca Mountain site.

  2. Potential Future Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cline, M.; Perry, F.; Valentine, G.; Smistad, E.

    2005-01-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10 -8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10 -8 be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  3. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  4. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  5. Geology and hydrogeology of the proposed nuclear waste repository at Yucca Mountain, Nevada and the surrounding area

    International Nuclear Information System (INIS)

    Mattson, S.R.; Broxton, D.E.; Buono, A.; Crowe, B.M.; Orkild, P.P.

    1989-01-01

    In late 1987 Congress issued an amendment to the Nuclear Waste Policy Act of 1982 which directed the characterization of Yucca Mountain, Nevada as the only remaining potential site for the Nation's first underground high-level radioactive waste repository. The evaluation of a potential underground repository is guided and regulated by policy established by the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Environmental Protection Agency (EPA), Department of Transportation (DOT), and the US Congress. The Yucca Mountain Project is the responsibility of the DOE. The purpose of this field trip is to introduce the present state of geologic and hydrologic knowledge concerning this site. This report describes the field trip. 108 refs., 6 figs., 1 tab

  6. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY: PROCEEDINGS

    International Nuclear Information System (INIS)

    K.C. Holt

    2006-01-01

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO 4 - but are not expected to be durable. On the other hand, durable materials, such as

  7. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Holt

    2006-03-13

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body, a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other

  8. Regulatory compliance for a Yucca Mountain Repository: A performance assessment perspective

    International Nuclear Information System (INIS)

    Dyer, J.R.; Van Luik, A.E.; Gil, A.V.; Brocoum, S.J.

    1997-01-01

    The U.S. Department of Energy's Yucca Mountain Site Characterization Project is scheduled to submit a License Application in the year 2002. The License Application is to show compliance with the regulations promulgated by the U.S. Nuclear Regulatory Commission which implement standards promulgated by the U.S. Environmental Protection Agency. These standards are being revised, and it is not certain what their exact nature will be in term of either the performance measure(s) or the time frames that are to be addressed. This paper provides some insights pertaining to this regulatory history, an update on Yucca Mountain performance assessments, and a Yucca Mountain Site Characterization Project perspective on proper standards based on Project experience in performance assessment for its proposed Yucca Mountain Repository system. The Project's performance assessment based perspective on a proper standard applicable to Yucca Mountain may be summarized as follows: a proper standard should be straight forward and understandable; should be consistent with other standards and regulations; and should require a degree of proof that is scientifically supportable in a licensing setting. A proper standard should have several attributes: (1) propose a reasonable risk level as its basis, whatever the quantitative performance measure is chosen to be, (2) state a definite regulatory time frame for showing compliance with quantitative requirements, (3) explicitly recognize that the compliance calculations are not predictions of actual future risks, (4) define the biosphere to which risk needs to be calculated in such a way as to constrain potentially endless speculation about future societies and future human actions, and (5) have as its only quantitative requirement the risk limit (or surrogate performance measure keyed to risk) for the total system

  9. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Revision 1

    International Nuclear Information System (INIS)

    1996-08-01

    This topical report is the second in a series of three reports being developed by the US Department of Energy (DOE) to document the preclosure seismic design of structures, systems, and components (SSCs) that are important to the radiological safety of the potential repository at Yucca Mountain, Nevada. The first topical report, Methodology to Assess Fault Displacement and Vibratory Ground Motion Hazards at Yucca Mountain, YMP/TR-002-NP, was submitted to the US Nuclear Regulatory Commission (NRC) staff for review and comment in 1994 and has been accepted by the staff. The DOE plans to implement this methodology in fiscal year 1997 to develop probabilistic descriptions of the vibratory ground motion hazard and the fault displacement hazard at the Yucca Mountain site. The second topical report (this report) describes the DOE methodology and acceptance criteria for the preclosure seismic design of SSCs important to safety. A third report, scheduled for fiscal year 1998, will document the results of the probabilistic seismic hazard assessment (conducted using the methodology in the first topical report) and the development of the preclosure seismic design inputs. This third report will be submitted to NRC staff for review and comment as a third topical report or as a design study report

  10. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Meike, A.; Stroes-Gascoyne, S.

    2000-01-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain

  11. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  12. A geologic scenario for catastrophic failure of the Yucca Mountain Nuclear Waste Repository, Nevada

    International Nuclear Information System (INIS)

    McMackin, M.R.

    1993-01-01

    A plausible combination of geologic factors leading to failure can be hypothesized for the Yucca Mountain Nuclear Waste Repository. The scenarios is constructed using elementary fault mechanics combined with geologic observations of exhumed faults and published information describing the repository site. The proposed repository site is located in the Basin and Range Province, a region of active crustal deformation demonstrated by widespread seismicity. The Yucca Mountain area has been characterized as tectonically quiet, which in the context of active crustal deformation may indicate the accumulation of the stresses approaching the levels required for fault slip, essentially stick-slip faulting. Simultaneously, dissolution of carbonate rocks in underlying karst aquifers is lowering the bulk strength of the rock that supports the repository site. Rising levels of hydrostatic stress concurrent with a climatically-driven rise in the water table could trigger faulting by decreasing the effective normal stress that currently retards fault slip. Water expelled from collapsing caverns in the underlying carbonate aquifer could migrate upward with sufficient pressure to open existing fractures or create new fractures by hydrofracturing. Water migrating through fractures could reach the repository in sufficient volume to react with heated rock and waste perhaps creating steam explosions that would further enhance fracture permeability. Closure of conduits in the underlying carbonate aquifer could lead to the elevation of the saturated zone above the level of the repository resulting in sustained saturation of radioactive waste in the repository and contamination of through-flowing groundwater

  13. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-01-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF (∼260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit (∼570,000 MTHM) could be emplaced. (authors)

  14. Southern Nevada residents' views about the Yucca Mountain high-level nuclear waste repository and related issues: A comparative analysis of urban and rural survey data

    International Nuclear Information System (INIS)

    Krannich, R.S.; Little, R.L.; Mushkatel, A.; Pijawka, K.D.; Jones, P.

    1991-10-01

    Two separate surveys were undertaken in 1988 to ascertain southern Nevadans' views about the Yucca Mountain repository and related issues. The first of these studies focused on the attitudes and perceptions of residents in the Las Vegas metropolitan area. The second study addressed similar issues, but focused on the views of residents in six rural communities in three counties adjacent to the Yucca Mountain site. However, parallel findings from the two data sets have not been jointly analyzed in order to identify ways in which the views and orientations of residents in the rural and urban study areas may be similar or different. The purpose of this report is to develop and present a comparative assessment of selected issues addressed in the rural and urban surveys. Because both urban and rural populations would potentially be impacted by the Yucca Mountain repository, such an analysis will provide important insights into possible repository impacts on the well-being of residents throughout southern Nevada

  15. Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Proposed Action addressed in this EIS is to construct, operate and monitor, and eventually close a geologic repository at Yucca Mountain in southern Nevada for the disposal of spent nuclear fuel and high-level radioactive waste currently in storage at 72 commercial and 5 DOE sites across the United States. The EIS evaluates (1) projected impacts on the Yucca Mountain environment of the construction, operation and monitoring, and eventual closure of the geologic repository; (2) the potential long-term impacts of repository disposal of spent nuclear fuel and high-level radioactive waste; (3) the potential impacts of transporting these materials nationally and in the State of Nevada; and (4) the potential impacts of not proceeding with the Proposed Action

  16. Effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level waste

    International Nuclear Information System (INIS)

    Ofoegbu, G.I.; Bagtzoglou, A.C.; Green, R.T.; Muller, M.A.

    1999-01-01

    Numerical modeling was conducted to identify potential perched-water sites and examine the effects of perched water on thermally driven moisture flow at the proposed Yucca Mountain repository for high-level nuclear waste. It is demonstrated that perched-water zones may occur at two horizons on the up-dip side of faults such as the Ghost Dance Fault (GDF): in nonwelded volcanic strata [such as the Paintbrush Tuff nonwelded (PTn) stratigraphic unit], where juxtaposition of welded strata against nonwelded may constitute a barrier to lateral flow within the nonwelded strata; and in fractured horizons of underlying welded units [such as the Topopah Spring welded (TSw) unit] because of focused infiltration fed by overlying perched zones. The potential perched zones (PPZs) may contain perched water (which would flow freely into a well or opening) if infiltration rates are high enough. At lower infiltration rates, the PPZs contain only capillary-held water at relatively high saturations. Areas of the proposed repository that lie below PPZs are likely to experience relatively high percolation flux even if the PPZ contains only capillary-held water at high saturation. As a result, PPZs that contain only capillary-held water may be as important to repository performance as those that contain perched water. Thermal loading from emplaced waste in the repository is not likely to have an effect on PPZs located on adequate distance above the repository (such as in the PTn). As a result, such PPZs may be considered as permanent features of the environment. On the other hand, PPZs close to the repository depth (such as those that may occur in the TSw rock unit) would experience an initial period of spatial growth and increased saturation following waste emplacement. Thereafter, drying would begin at the repository horizon with perched-zone growth simultaneously above and below the repository. As a result, after the initial period of expansion, PPZs close to the repository horizon

  17. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; G.M. Gordon; R.B. Rebak

    2005-10-13

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking.

  18. DEGRADATION MODES OF ALLOY 22 IN YUCCA MOUNTAIN REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    Hua, F.; Gordon, G.M.; Rebak, R.B.

    2005-01-01

    The nuclear waste package design for Yucca Mountain (Nevada, USA), in its current configuration, consists of a double wall cylindrical container fabricated using a highly corrosion resistant Ni-based Alloy 22 for the outer barrier and type 316 stainless steel for the inner structural vessel. A mailbox-shaped drip shield fabricated primarily using Ti Grade 7 will cover the waste packages. The environmental degradation of the relevant materials have been extensively studied and modeled for over ten years. This paper reviews the state-of-the-art understanding of the degradation modes of Alloy 22 (N06022) due to its interaction with the predicted in-drift mountain conditions including temperature and types of electrolytes. Subjects discussed include thermal aging and phase stability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced cracking

  19. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  20. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-care vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  1. Initial Q-list for the prospective Yucca Mountain repository based on items important to safety and waste isolation

    International Nuclear Information System (INIS)

    Laub, T.W.; Jardine, L.J.

    1987-01-01

    A method for identifying items important to safety based on a probabilistic risk assessment approach was developed and implemented for the conceptual design of the Yucca Mountain repository. No items were classified as important to safety; however, six items were classified as potentially important to safety. These were the shipping cask, the cranes and the truck or rail-car vehicle stops in the cask receiving and preparation area, the hot cell structure of the waste packaging hot cells, the cranes in the waste packaging hot cells, and the waste-handling building fire protection system. In addition, a method for identifying items important to waste isolation was developed and implemented. Two hydrogeologic units of the Yucca Mountain site were classified as important to waste isolation: the Calico Hills nonwelded zeolitic unit and the Calico Hills nonwelded vitric unit. The preliminary Q-list for the Yucca Mountain repository is comprised of the two units of the site classified as important to waste isolation and contains no items important to safety

  2. Multiscale Thermohydrologic Model Supporting the License Application for the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    T.A. Buscheck; Y. Sun; Y. Hao

    2006-01-01

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermal-hydrologic (TH) conditions within emplacement tunnels (drifts) and in the adjoining host rock at Yucca Mountain, Nevada, which is the proposed site for a radioactive waste repository in the US. Because these predictions are used in the performance assessment of the Yucca Mountain repository, they must address the influence of variability and uncertainty of the engineered- and natural-system parameters that significantly influence those predictions. Parameter-sensitivity studies show that the MSTHM predictions adequately propagate the influence of parametric variability and uncertainty. Model-validation studies show that the influence of conceptual-model uncertainty on the MSTHM predictions is insignificant compared to that of parametric uncertainty, which is propagated through the MSTHM

  3. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  4. Waste package for Yucca Mountain repository: Strategy for regulatory compliance

    International Nuclear Information System (INIS)

    Cloninger, M.; Short, D.; Stahl, D.

    1989-02-01

    This document summarizes the strategy given in the Site Characterization Plan (1) for demonstrating compliance with the post closure performance objectives for the waste package and the Engineered Barrier System (EBS) contained in the Code of Federal Regulations. The strategy consists of the development of a conservative waste package design that will meet the regulatory requirements with sufficient margin for uncertainty using a multi-barrier approach that takes advantage of the unsaturated nature of the Yucca Mountain site. This strategy involves an iterative process designed to achieve compliance with the requirements for substantially complete containment and EBS release. The strategy will be implemented in such a manner that sufficient evidence will be provided for presentation to the Nuclear Regulatory Commission (NRC) so that it may make a finding that there is ''reasonable assurance'' that these performance requirements will indeed be met. In implementing the strategy, DOE recognizes four fundamental goals: (1) protect public health and safety; (2) minimize financial and other resource commitments; (3) comply with applicable laws and regulations; and (4) maintain an aggressive schedule. The strategy is intended to be a reasonable balance of these competing goals. 7 refs., 3 figs., 1 tab

  5. Making the post-closure safety case for the proposed yucca mountain repository

    International Nuclear Information System (INIS)

    Swift, P.; Van Luik, A.

    2008-01-01

    This presentation provided an overview of the Yucca Mountain repository post-closure safety case. The safety case concept is being integrated into the license application being prepared for Yucca Mountain, by giving particularly close attention to the treatment of uncertainties, thereby bringing available lines of evidence into the supporting information, as appropriate, to build a comprehensive argument for safety and regulatory compliance. For Yucca Mountain, it is expected that there will be open questions in the safety case to be presented to the regulator and a programme will be outlined on what information is to be gathered (and how) prior to the next iteration in the licensing process to address such open issues. A one-hundred year operational phase is foreseen and planned, and the changes in knowledge and approaches that occur over time will have to be accommodated through the formal licensing process. (authors)

  6. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  7. Calculations supporting evaluation of potential environmental standards for Yucca Mountain

    International Nuclear Information System (INIS)

    Duguid, J.O.; Andrews, R.W.; Brandstetter, E.; Dale, T.F.; Reeves, M.

    1994-04-01

    The Energy Policy Act of 1992, Section 801 (US Congress, 1992) provides for the US Environmental Protection Agency (EPA) to contract the National Academy of Sciences (NAS) to conduct a study and provide findings and recommendations on reasonable standards for the disposal of high-level wastes at the Yucca Mountain site. The NAS study is to provide findings and recommendations which include, among other things, whether a health-based standard based on dose to individual members of the public from releases to the accessible environment will provide a reasonable standard for the protection of the health and safety of the public. The EPA, based upon and consistent with the findings and recommendations of the NAS, is required to promulgate standards for protection of the public from releases from radioactive materials stored or disposed of in a repository at the Yucca Mountain site. This document presents a number of different ''simple'' analyses of undisturbed repository performance that are intended to provide input to those responsible for setting appropriate environmental standards for a potential repository at the Yucca Mountain site in Nevada. Each of the processes included in the analyses has been simplified to capture the primary significance of that process in containing or isolating the waste from the biosphere. In these simplified analyses, the complex waste package interactions were approximated by a simple waste package ''failure'' distribution which is defined by the initiation and rate of waste package ''failures''. Similarly, releases from the waste package and the engineered barrier system are controlled by the very near field environment and the presence and rate of advective and diffusive release processes. Release was approximated by either a simple alteration-controlled release for the high solubility radionuclides and either a diffusive or advective-controlled release for the solubility-limited radionuclides

  8. A performance assessment review tool for the proposed radioactive waste repository at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Mohanty, Sitakanta; Codell, Richard

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC), with the assistance of the Center for Nuclear Waste Regulatory Analyses, has developed a Total-system Performance Assessment (TPA) Code to assist in evaluating the performance of the Yucca Mountain (YM) High-Level Waste Repository in Nevada, proposed by the U.S. Department of Energy (DOE). The proposed YM repository would be built in a thick sequence of partially saturated volcanic tuff above the water table. Among the unique challenges of this environment are (1) the transport of radionuclides would take place partially through highly heterogeneous unsaturated rock; (2) the waste packages (WPs) would be generally exposed to oxidizing conditions, and (3) water either infiltrating from the surface or recirculating because of decay heat may drip onto the WPs. Tools such as the TPA code and embedded techniques for evaluating YM performance are aimed at (1) determining the parameters and key parts of the repository system that have the most influence on repository performance; (2) performing alternative conceptual models studies, especially with bounding models; (3) estimating the relative importance of the physical phenomena that lead to human exposure to radionuclides; and (4) improving NRC staff capabilities in performance assessment and associated license application reviews. This paper presents an overview of the NRC conceptual framework, approach to conducting system-level sensitivity analyses for determining influential parameters, and alternative conceptual model studies to investigate the effect of model uncertainties. (author)

  9. Nevada potential repository preliminary transportation strategy: Study 1

    International Nuclear Information System (INIS)

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated

  10. Nevada potential repository preliminary transportation strategy: Study 1

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1995-04-01

    Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

  11. MRS system study for the repository: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Sinagra, T.A.; Harig, R.

    1990-12-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ''MRS'') on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations of a geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. 6 refs., 83 figs., 57 tabs

  12. Preclosure safety analysis for a prospective Yucca Mountain conceptual design repository

    International Nuclear Information System (INIS)

    Ma, C.W.; Jardine, L.J.

    1989-12-01

    A preliminary probabilistic risk assessment was performed for the prospective Yucca Mountain conceptual design repository. A new methodology to quantify radioactive source terms was developed and applied in the analysis. The study identified 42 event trees comprising 278 accident scenarios. The maximum offsite dose evaluated in this study is about 1000 mrem. For the majority of the accident scenarios, either the offsite dose is less than 100 mrem or the probability of occurrence is less than 1 x 10 -9 /yr. Only 11 accident scenarios with a dose larger than 100 mrem and an associated probability greater than 1 x 10 -9 /yr were identified. A more detailed follow-on analysis for seismic events of various severity was also performed, and similar results were obtained. Therefore, based on the results of this analysis, no significant risk to the general public was identified during the preclosure period for the conceptual repository design. 13 refs., 4 figs., 2 tabs

  13. MRS system study for the repository: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Sinagra, T.A.; Harig, R.

    1990-12-01

    The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM), has initiated a waste management system study to identify the impacts of the presence or absence of a monitored retrievable storage facility (hereinafter referred to as ''MRS'') on system costs and program schedules. To support this study, life-cycle cost estimates and construction schedules have been prepared for the surface and underground facilities and operations geologic nuclear waste repository at Yucca Mountain, Nye County, Nevada. Nine different operating scenarios (cases) have been identified by OCRWM for inclusion in this study. For each case, the following items are determined: the repository design and construction costs, operating costs, closure and decommissioning costs, required staffing, construction schedules, uncertainties associated with the costs and schedules, and shipping cask and disposal container throughputs. This document contains A-D

  14. THE DECISION TO RECOMMEND YUCCA MOUNTAIN AND THE NEXT STEPS TOWARD LICENSED REPOSITORY DEVELOPMENT

    International Nuclear Information System (INIS)

    Barrett, L. H.

    2002-01-01

    After more than 20 years of carefully planned and reviewed scientific field work by the U.S. Department of Energy, the U.S. Geological Survey, and numerous other organizations, Secretary of Energy Abraham concluded in January that the Yucca Mountain site is suitable, within the meaning of the Nuclear Waste Policy Act, for development as a permanent nuclear waste and spent fuel repository. In February, the Secretary recommended to the President that the site be developed for licensed disposal of these wastes, and the President transmitted this recommendation to Congress. This paper summarizes key technical and national interest considerations that provided the basis for the recommendation. It also discusses the program's near-term plans for repository development if Congress designates the site

  15. Characteristics of potential repository wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continue and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.

  16. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    P. Swift; A.V. Luik

    2006-01-01

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  17. Making the Postclosure Safety Case for the Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    P. Swift; A.V. Luik

    2006-08-28

    The International Atomic Energy Agency (IAEA), in its advisory standard for geological repositories promulgated jointly with the Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development, explicitly distinguishes between the concepts of a safety case and a safety assessment. As defined in the advisory standard, the safety case is a broader set of arguments that provide confidence and substantiate the formal analyses of system safety made through the process of safety assessment. Although the IAEAYs definitions include both preclosure (i.e., operational) safety and post-closure performance in the overall safety assessment and safety case, the emphasis in here is on long-term performance after waste has been emplaced and the repository has been closed. This distinction between pre- and postclosure aspects of the repository is consistent with the U.S. regulatory framework defined by the U.S. Environmental Protection Agency (Chapter 40 of the Code of Federal Regulations, Part 197, or 40 CFR 197) [2] and implemented by the U.S. Nuclear Regulatory Commission (Chapter 10 of the Code of Federal Regulations, Part 63, or 10 CFR 63) [3]. The separation of the pre- and postclosure safety cases is also consistent with the way in which the U.S. Department of Energy has assigned responsibilities for developing the safety case. Bechtel SAIC Company is the Management and Operating contractor responsible for the design and operation of the Yucca Mountain facility and is therefore responsible for the preparation of the preclosure aspects of the safety case. Sandia National Laboratories has lead responsibility for scientific work evaluating post-closure performance, and therefore is responsible for developing the post-closure aspects of the safety case. In the context of the IAEA definitions, both preclosure and postclosure safety, including safety assessment and the safety case, will be documented in the license application being prepared for the

  18. Selection criteria for container materials at the proposed Yucca Mountain high level nuclear waste repository

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1989-11-01

    A geological repository has been proposed for the permanent disposal of the nation's high level nuclear waste at Yucca Mountain in the Nevada desert. The containers for this waste must remain intact for the unprecedented service lifetime of 1000 years. A combination of engineering, regulatory, and licensing requirements complicate the container material selection. In parallel to gathering information regarding the Yucca Mountain service environment and material performance data, a set of selection criteria have been established which compare candidate materials to the performance requirements, and allow a quantitative comparison of candidates. These criteria assign relative weighting to varied topic areas such as mechanical properties, corrosion resistance, fabricability, and cost. Considering the long service life of the waste containers, it is not surprising that the corrosion behavior of the material is a dominant factor. 7 refs

  19. The use of performance assessments in Yucca Mountain repository waste package design activities

    International Nuclear Information System (INIS)

    Jardine, L.J.

    1990-01-01

    The Yucca Mountain Project is developing performance assessment approaches as part of the evaluations of the suitability of Yucca Mountain as a repository site. Lawrence Livermore National Laboratory is developing design concepts and the scientific performance assessment methodologies and techniques used for the waste package and engineered barrier system components. This paper presents an overview of the approach under development for postclosure performance assessments that will guide the conceptual design activities and assist in the site suitability evaluations. This approach includes establishing and modeling for the long time periods required by regulations: near-field environment characteristics surrounding the emplaced wastes; container materials performance responses; and waste form properties. All technical work is being done under a fully qualified quality assurance program

  20. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs

  1. Challenges and issues with building a potential railroad to Yucca Mountain

    International Nuclear Information System (INIS)

    Sweeney, R.L.

    2004-01-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public

  2. Challenges and issues with building a potential railroad to Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, R.L.

    2004-07-01

    On July 23, 2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the U.S. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. DOE believes that the Repository EIS provides the environmental impact information necessary to make certain broad transportation-related decisions, namely the choice of a national mode of transportation outside Nevada (mostly rail or mostly legal-weight truck), the choice among alternative transportation modes in Nevada (mostly rail, mostly legal-weight truck, or heavy-haul truck with use of an associated intermodal transfer station), and the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based

  3. Palaeohydrogeological modelling for potential future repository sites

    International Nuclear Information System (INIS)

    2001-01-01

    In order to consider the future behaviour of a groundwater system over time scales of relevance to repository safety assessment, it is necessary to develop an understanding of how the groundwater system has changed over time. This can be done through studying the palaeohydrogeology of the groundwater system. The EQUIP project (Evidence from Quaternary Infills for Palaeohydrogeology) set out to develop and evaluate methodologies for obtaining palaeohydrogeological information from fracture infill minerals formed under past groundwater conditions. EQUIP was a collaborative project funded jointly by the European Commission and, in the UK, by the Environment Agency and UK Nirex Limited. The project also involved partners in Finland, France, Spain and Sweden. The fracture infill material chosen for this investigation was calcite, because its reactions in low temperature groundwater environments are fairly well understood and it is fairly ubiquitous in both crystalline and sedimentary rocks. In addition, geochemical modelling suggests that plausible time scales for growth of individual calcite crystals are in the range 10 to 10,000 years, so they may accumulate a record of groundwater evolution over periods of significant climate change. The project was based on four sites, having different climate histories and geological conditions, at which drillcore samples of the deep crystalline rocks, accompanied by hydrogeological and hydrochemical data for the current groundwater conditions, were already available. The principal study sites were Olkiluoto in Finland, Aspo/Laxemar in Sweden, Sellafield in the UK and Vienne in France. The results of the study focus on the morphology and bulk compositions of calcite, compositional zoning of calcite crystals and compositions of fluid inclusions. There are systematic variations in bulk compositions with depth and also in discrete compositional fluctuations (or zones) in individual calcite crystals. These are inferred to reflect

  4. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    Energy Technology Data Exchange (ETDEWEB)

    NA

    2002-03-26

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a

  5. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    International Nuclear Information System (INIS)

    2002-01-01

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that the Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of

  6. Proposed preliminary definition of the disturbed-zone boundary appropriate for a repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Langkopf, B.S.

    1987-12-01

    Some of the calculations that support the licensing of a repository for high-level radioactive waste will use the regulatory concept of a disturbed zone. The Nevada Nuclear Waste Storage Investigations (NNWSI) project must determine the location of the boundary of the disturbed zone for use in these calculations. This paper summarizes results of computer analyses and laboratory experiments and suggests a preliminary definition for the boundary of the disturbed zone for the unsaturated environment at Yucca Mountain. Although the intent of this paper is to define the boundary of the disturbed zone at the edge of significant changes in intrinsic hydrologic properties, there is no evidence of changes in intrinsic hydrologic properties that could significantly change the groundwater travel time from the repository to the water table. Such a result suggests that the disturbed zone at Yucca Mountain is of minimal extent. Because the analyses and experiments reviewed here indicate that there are a variety of changes near the waste package and because the results are subject to uncertainty, the preliminary suggestion for the extent of the disturbed zone is a value larger than the results themselves would suggest: the boundary is proposed to be a plane 10 m below the lower boundary of the waste packages. 88 refs., 12 figs., 5 tabs

  7. Thermal Conductivity of the Potential Repository Horizon Model Report

    International Nuclear Information System (INIS)

    Ramsey, J.

    2002-01-01

    The purpose of this report is to assess the spatial variability and uncertainty of thermal conductivity in the host horizon for the proposed repository at Yucca Mountain. More specifically, the lithostratigraphic units studied are located within the Topopah Spring Tuff (Tpt) and consist of the upper lithophysal zone (Tptpul), the middle nonlithophysal zone (Tptpmn), the lower lithophysal zone (Tptpll), and the lower nonlithophysal zone (Tptpln). The Tptpul is the layer directly above the repository host layers, which consist of the Tptpmn, Tptpll, and the Tptpln. Current design plans indicate that the largest portion of the repository will be excavated in the Tptpll (Board et al. 2002 [157756]). The main distinguishing characteristic among the lithophysal and nonlithophysal units is the percentage of large scale (cm-m) voids within the rock. The Tptpul and Tptpll, as their names suggest, have a higher percentage of lithophysae than the Tptpmn and the Tptpln. Understanding the influence of the lithophysae is of great importance to understanding bulk thermal conductivity and perhaps repository system performance as well. To assess the spatial variability and uncertainty of thermal conductivity, a model is proposed that is functionally dependent on the volume fraction of lithophysae and the thermal conductivity of the matrix portion of the rock. In this model, void space characterized as lithophysae is assumed to be air-saturated under all conditions, while void space characterized as matrix may be either water- or air-saturated. Lithophysae are assumed to be air-saturated under all conditions since the units being studied are all located above the water table in the region of interest, and the relatively strong capillary forces of the matrix will, under most conditions, preferentially retain any moisture present in the rock

  8. Evaluation of site-generated radioactive waste treatment and disposal methods for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Subramanian, C.V.; Jardine, L.J.

    1989-01-01

    This study identifies the sources of radioactive wastes that may be generated at the proposed high-level waste (HLW) repository at Yucca Mountain, NV, estimates the waste quantities and characteristics, compares technologies available for waste treatment and disposal, and develops recommended concepts for site-generated waste treatment and disposal. The scope of this study is limited to operations during the emplacement phase, in which 70,000 MTU of high-level waste will be received and emplaced at the proposed repository. The evaluations consider all radioactive wastes generated during normal operations in surface and underground facilities. Wastes generated as a result of accidents are not addressed; accidents that could result in large quantities of radioactive waste are expected to occur very infrequently and temporary, portable systems could be used for any necessary cleanup. The results of this study can be used to develop more definitive plans for managing the site-generated wastes and as a basis for the design of associated facilities at the proposed repository

  9. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  10. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    International Nuclear Information System (INIS)

    Burgess, T.; Noakes, M.; Spampinato, P.

    2005-01-01

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R and D program for improvements to remote handling technology that support operating enhancements

  11. Robotics Scoping Study to Evaluate Advances in Robotics Technologies that Support Enhanced Efficiencies for Yucca Mountain Repository Operations

    Energy Technology Data Exchange (ETDEWEB)

    T. Burgess; M. Noakes; P. Spampinato

    2005-03-17

    This paper presents an evaluation of robotics and remote handling technologies that have the potential to increase the efficiency of handling waste packages at the proposed Yucca Mountain High-Level Nuclear Waste Repository. It is expected that increased efficiency will reduce the cost of operations. The goal of this work was to identify technologies for consideration as potential projects that the U.S. Department of Energy Office of Civilian Radioactive Waste Management, Office of Science and Technology International Programs, could support in the near future, and to assess their ''payback'' value. The evaluation took into account the robotics and remote handling capabilities planned for incorporation into the current baseline design for the repository, for both surface and subsurface operations. The evaluation, completed at the end of fiscal year 2004, identified where significant advantages in operating efficiencies could accrue by implementing any given robotics technology or approach, and included a road map for a multiyear R&D program for improvements to remote handling technology that support operating enhancements.

  12. The mountain Cer: Potentials for tourism development

    Directory of Open Access Journals (Sweden)

    Grčić Mirko D.

    2003-01-01

    Full Text Available In northwest of Serbia in the meridians directions an elongated mountain range of Cer with Iverak and Vlašić stretches itself. On the north it goes down to Mačva and Posavina, on the west to Podrinje, on the east to the valley of Kolubara, on the south to the basins and valleys of Jadar and upper Kolubara, which separate it from the mountains of Valjevo and Podrinje area. Cer mountain offers extremely good condition for development of eco-tourism. The variety of relief with gorgeous see-sites, natural rarities, convenient bio-climatic conditions, significant water resources, forest complexes, medieval fortresses, cultural-historic monuments, richness of flora and fauna, preserved rural environment, traditions and customs of local population, were all neglected as strategic factors in the development of tourism. This mountain’s potentials are quite satisfactory for the needs of eco-tourism, similar to the National Park of Fruška Gora, but it has lacked an adequate ecotourist strategy so far. This study aims to pointing to the potential and possibilities of ecotourist valorization of this mountain.

  13. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    Energy Technology Data Exchange (ETDEWEB)

    F. Hua; P. Pasupathi; N. Brown; K. Mon

    2005-09-19

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  14. Some Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository Study (The Yucca Mountain Project)

    International Nuclear Information System (INIS)

    Hua, F.; Pasupathi, P.; Brown, N.; Mon, K.

    2005-01-01

    The safe disposal of radioactive waste requires that the waste be isolated from the environment until radioactive decay has reduced its toxicity to innocuous levels for plants, animals, and humans. All of the countries currently studying the options for disposing of high-level nuclear waste (HLW) have selected deep geologic formations to be the primary barrier for accomplishing this isolation. In U.S.A., the Nuclear Waste Policy Act of 1982 (as amended in 1987) designated Yucca Mountain in Nevada as the potential site to be characterized for high-level nuclear waste (HLW) disposal. Long-term containment of waste and subsequent slow release of radionuclides into the geosphere will rely on a system of natural and engineered barriers including a robust waste containment design. The waste package design consists of a highly corrosion resistant Ni-based Alloy 22 cylindrical barrier surrounding a Type 316 stainless steel inner structural vessel. The waste package is covered by a mailbox-shaped drip shield composed primarily of Ti Grade 7 with Ti Grade 24 structural support members. The U.S. Yucca Mountain Project has been studying and modeling the degradation issues of the relevant materials for some 20 years. This paper reviews the state-of-the-art understanding of the degradation processes based on the past 20 years studies on Yucca Mountain Project (YMP) materials degradation issues with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the 10,000 years regulatory period. This paper provides an overview of the current understanding of the likely degradation behavior of the waste package and drip shield in the repository after the permanent closure of the facility. The degradation scenario discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking and hydrogen induced

  15. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada: Volume 1

    International Nuclear Information System (INIS)

    1987-08-01

    Environmental protection during the course of siting and constructing a repository is mandated by NWPA in conjunction with various phases of repository siting and development. However, DOE has issued no comprehensive, integrated plan for environmental protection. Consequently, it is unclear how DOE will accomplish environmental assessment, monitoring, impact mitigation, and site reclamation. DOE should, therefore, defer further implementation of its current characterization program until a comprehensive environmental protection plan is available. To fulfill its oversight responsibilities the State of Nevada has proposed a comprehensive environmental program for the Yucca Mountain site that includes immediately undertaking studies to establish a 12-month baseline of environmental information at the site; adopting the DOE Site Characterization Plan (SCP) and the engineering design plans it will contain as the basis for defining the impact potential of site characterization activities; using the environmental baseline and the SCP to evaluate the efficacy of the preliminary impact analyses reported by DOE in the EA; using the SCP as the basis for discussions with federal, state, and local regulatory authorities to decide which environmental requirements apply and how they can be complied with; using the SCP, the EA impact review, and the compliance requirements to determine the scope of reclamation measures needed; and developing environmental monitoring and impact mitigation plans based on the EA impact review, compliance requirements, and anticipated reclamation needs

  16. Viability Assessment of a Repository at Yucca Mountain. Volume 3: Total System Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume reports the development of TSPA for the VA. This first section defines the general process involved in developing any TSPA, it describes the overall TSPA process as implemented by programs in the US and elsewhere in the world, and discusses the acceptability of TSPA as a process or tool for analyzing a nuclear waste repository system. Section 2 discusses the more specific use of the TSPA process for the TSPA-VA for Yucca Mountain, including goals, approach, and methods. It also includes a very brief synopsis of TSPA-VA results. Section 3 briefly discusses each of the component models that comprise the TSPA-VA. Each TSPA component model represents a discrete set of processes. The TSPA-VA components are: unsaturated zone flow, thermal hydrology, near- field geochemical environment, waste package degradation, waste form alteration and mobilization, unsaturated zone transport, saturated zone flow and transport, and biosphere. For each of these components, this section introduces the conceptualization of each individual process, describes the data sources, and discusses model parameter development and computer methods used to simulate each component. Section 4 explains the mechanics of how the individual TSPA components were combined into a ''base case'' and then provides the ''expected value'' results of a deterministic base case analysis. Section 4 also contains a description of the probabilistic analyses and results that help determine the relative importance of the various TSPA components and the data used to describe the components. Section 5 addresses sensitivity studies run for each of the TSPA components to understand how uncertainty in various parameters within a component change the TSPA results. Section 6 presents the findings of the sensitivity studies run on the various components in Section 5, and prioritizes the findings of the entire set of uncertainty and sensitivity studies of the components relative

  17. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  18. The impact of thermal loading on repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1992-01-01

    This paper reports that in the unsaturated zone at Yucca Mountain, liquid flow along preferential fracture pathways is the only credible mechanism capable of bringing water to waste packages and transporting radionuclides to the water table. Three categories of features or mechanisms will mitigate the impact of flow along preferential fracture pathways: discontinuity in fracture pathways, liquid-phase dispersion in fracture networks, and fracture-matrix interaction. For repository areal power densities (APDs) that are too low to result in significant boiling or rock dry-out effects, the primary mode of fracture-matrix interaction is matrix imbibition. For high APDs, boiling and enhanced matrix imbibition due to rock dry-out significantly add to the capacity of the unsaturated zone to retard fracture-dominated flow

  19. Uncertain analysis of preclosure accident doses for the Yucca Mountain repository

    International Nuclear Information System (INIS)

    Ma, C.W.; Miller, D.D.; Zavoshy, S.J.; Jardine, L.J.

    1990-01-01

    This study presents a generic methodology that can be used to evaluate the uncertainty in the calculated accidental offsite doses at the Yucca Mountain repository during the preclosure period. For demonstration purposes, this methodology is applied to two specific accident scenarios: the first involves a crane dropping an open container with consolidated fuel rods, the second involves container failure during emplacement or removal operations. The uncertainties of thirteen parameters are quantified by various types of probability distributions. The Latin Hypercube Sampling method is used to evaluate the uncertainty of the offsite dose. For the crane-drop scenario with concurrent filter failure, the doses due to the release of airborne fuel particles are calculated to be 0.019, 0.32, and 2.8 rem at confidence levels of 10%, 50%, and 90%, respectively. For the container failure scenario with concurrent filter failure, the 90% confidence-level dose is 0.21 rem. 20 refs., 4 figs., 3 tabs

  20. Modeling The Inhalation Exposure Pathway In Performance Assessment Of Geologic Radioactive Waste Repository At Yucca Mountain

    International Nuclear Information System (INIS)

    M.A. Wasiolek

    2006-01-01

    Inhalation exposure pathway modeling has recently been investigated as one of the tasks of the BIOPROTA Project (BIOPROTA 2005). BIOPROTA was set up to address the key uncertainties in long term assessments of contaminant releases into the environment arising from radioactive waste disposal. Participants of this international Project include national authorities and agencies, both regulators and operators, with responsibility for achieving safe and acceptable radioactive waste management. The objective of the inhalation task was to investigate the calculation of doses arising from inhalation of particles suspended from soils within which long-lived radionuclides, particularly alpha emitters, had accumulated. It was recognized that site-specific conditions influence the choice of conceptual model and input parameter values. Therefore, one of the goals of the task was to identify the circumstances in which different processes included in specific inhalation exposure pathway models were important. This paper discusses evaluation of processes and modeling assumptions specific to the proposed repository at Yucca Mountain as compared to the typical approaches and other models developed for different assessments and project specific contexts. Inhalation of suspended particulates that originate from contaminated soil is an important exposure pathway, particularly for exposure to actinides such as uranium, neptunium and plutonium. Radionuclide accumulation in surface soil arises from irrigation of soil with contaminated water over many years. The level of radionuclide concentration in surface soil depends on the assumed duration of irrigation. Irrigation duration is one of the parameters used on biosphere models and it depends on a specific assessment context. It is one of the parameters addressed in this paper from the point of view of assessment context for the proposed repository at Yucca Mountain. The preferred model for the assessment of inhalation exposure uses

  1. Nevada potential repository preliminary transportation strategy Study 2. Volume 1

    International Nuclear Information System (INIS)

    1996-02-01

    The objectives of this study were to build on the findings of the Nevada Potential Repository Preliminary Transportation Strategy Study 1 (CRWMS M ampersand O 1995b), and to provide additional information for input to the repository environmental impact statement (EIS) process. In addition, this study supported the future selection of a preferred rail corridor and/or heavy haul route based on defensible data, methods, and analyses. Study research did not consider proposed legislation. Planning was conducted according to the Civilian Radioactive Waste Management Program Plan (DOE 1994a). The specific objectives of Study 2 were to: eliminate or reduce data gaps, inconsistencies, and uncertainties, and strengthen the analysis performed in Study 1; develop a preliminary list of rail route evaluation criteria that could be used to solicit input from stakeholders during scoping meetings. The evaluation criteria will be revised based on comments received during scoping; restrict and refine the width of the four rail corridors identified in Study 1 to five miles or less, based on land use constraints and engineering criteria identified and established in Study 2; evaluate national-level effects of routing spent nuclear fuel and high-level waste to the four identified branch lines, including the effects of routing through or avoiding Las Vegas; continue to gather published land use information and environmental data to support the repository EIS; continue to evaluate heavy haul truck transport over three existing routes as an alternative to rail and provide sufficient information to support the repository EIS process; and evaluate secondary uses for rail (passenger use, repository construction, shared use)

  2. A Framework for the Analysis of Localized Corrosion at the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Payer, J H; Carroll, S A; Gdowski, G E; Rebak, R B; Michels, T C; Miller, M C; Henson, V E

    2006-01-01

    The proposed Repository presents a familiar materials performance application that is regularly encountered in energy, transportation and other industries. The widely accepted approach to dealing with materials performance is to identify the performance requirements, to determine the operating conditions to which materials will be exposed and to select materials of construction that perform well in those conditions. A special feature of the proposed Yucca Mountain Repository is the extremely long time frame of interest, i.e. 10,000's of years and longer. Thus, the time evolution of the environment in contact with waste package surfaces and the time evolution of corrosion damage that may result are of primary interest in the determination of expected performance. An approach is presented to the analysis of localized corrosion during a time period when it is possible for waters from drips and seepage to contact the waste package surfaces, and the analysis is demonstrated for the water chemistry of mixed salt solutions and a set of time-temperature-relative humidity profiles for a hot, mid and cool temperature waste package. Based on the analysis, there are large time periods when localized corrosion can not be supported, and no corrosion damage will occur. Further analysis can then focus on time periods when it is possible for localized corrosion to occur and the determination of the evolution of any corrosion damage

  3. Modeling fault rupture hazard for the proposed repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Coppersmith, K.J.; Youngs, R.R.

    1992-01-01

    In this paper as part of the Electric Power Research Institute's High Level Waste program, the authors have developed a preliminary probabilistic model for assessing the hazard of fault rupture to the proposed high level waste repository at Yucca Mountain. The model is composed of two parts: the earthquake occurrence model that describes the three-dimensional geometry of earthquake sources and the earthquake recurrence characteristics for all sources in the site vicinity; and the rupture model that describes the probability of coseismic fault rupture of various lengths and amounts of displacement within the repository horizon 350 m below the surface. The latter uses empirical data from normal-faulting earthquakes to relate the rupture dimensions and fault displacement amounts to the magnitude of the earthquake. using a simulation procedure, we allow for earthquake occurrence on all of the earthquake sources in the site vicinity, model the location and displacement due to primary faults, and model the occurrence of secondary faulting in conjunction with primary faulting

  4. The impact of thermal loading on repository performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1992-01-01

    In the unsaturated zone at Yucca Mountain, liquid flow along preferential fracture pathways is the only credible mechanism capable of bringing water to waste packages and transporting radionuclide to the water table. Three categories of features or mechanisms will mitigate the impact of flow along preferential fracture pathways: (1) discontinuity in fracture pathways, (2) liquid-phase dispersion in fracture networks, and (3) fracture-matrix interaction. For repository areal power densities (APDs) that are too low to result in significant boiling or rock dry-out effects, the primary mode of fracture-matrix interaction is matrix imbibition. For high APDs, boiling and enhanced matrix imbibition due to rock dry-out significantly add to the capacity of the unsaturated zone to retard fracture-dominated flow. With the use of V-TOUGH code, hydrothermal flow calculations are made for a range of APDs and spent fuel ages. For APD > 20 kW/acre, repository-heat-generated flow of vapor and liquid in fractures is found to dominate the ambient hydrological system. For high APDs, boiling conditions can persist for 10,000 yr or longer and rock-dry benefits for at least 100,000 yr

  5. Evaluation of a potential nuclear fuel repository criticality: Lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.R.; Evans, D.

    1995-10-01

    This paper presents lessons learned from a Probabilistic Risk Assessment (PRA) of the potential for a criticality in a repository containing spent nuclear fuel with high enriched uranium. The insights gained consisted of remarkably detailed conclusions about design issues, failure mechanisms, frequencies and source terms for events up to 10,000 years in the future. Also discussed are the approaches taken by the analysts in presenting this very technical report to a nontechnical and possibly antagonistic audience.

  6. Evaluation of a potential nuclear fuel repository criticality: Lessons learned

    International Nuclear Information System (INIS)

    Wilson, J.R.; Evans, D.

    1995-01-01

    This paper presents lessons learned from a Probabilistic Risk Assessment (PRA) of the potential for a criticality in a repository containing spent nuclear fuel with high enriched uranium. The insights gained consisted of remarkably detailed conclusions about design issues, failure mechanisms, frequencies and source terms for events up to 10,000 years in the future. Also discussed are the approaches taken by the analysts in presenting this very technical report to a nontechnical and possibly antagonistic audience

  7. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  8. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  9. Understanding the Potential for Volcanoes at Yucca Mountain

    International Nuclear Information System (INIS)

    NA

    2002-01-01

    By studying the rocks and geologic features of an area, experts can assess whether it is vulnerable to future volcanic eruptions. Scientists have performed extensive studies at and near Yucca Mountain to determine whether future volcanoes could possibly affect the proposed repository for nuclear waste

  10. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit''. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes

  11. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  12. Multiscale Thermohydrologic Model Analyses of Heterogeneity and Thermal-Loading Factors for the Proposed Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Glascoe, L.G.; Buscheck, T.A.; Gansemer, J.; Sun, Y.; Lee, K.

    2002-01-01

    The MultiScale ThermoHydrologic Model (MSTHM) predicts thermohydrologic (TH) conditions in emplacement drifts and the adjoining host rock throughout the proposed nuclear-waste repository at Yucca Mountain. The MSTHM is a computationally efficient approach that accounts for TH processes occurring at a scale of a few tens of centimeters around individual waste packages and emplacement drifts, and for heat flow at the multi-kilometer scale at Yucca Mountain. The modeling effort presented here is an early investigation of the repository and is simulated at a lower temperature mode and with a different panel loading than the repository currently being considered for license application. We present these recent lower temperature mode MSTHM simulations that address the influence of repository-scale thermal-conductivity heterogeneity and the influence of preclosure operational factors affecting thermal-loading conditions. We can now accommodate a complex repository layout with emplacement drifts lying in non-parallel planes using a superposition process that combines results from multiple mountain-scale submodels. This development, along with other improvements to the MSTHM, enables more rigorous analyses of preclosure operational factors. These improvements include the ability to (1) predict TH conditions on a drift-by-drift basis, (2) represent sequential emplacement of waste packages along the drifts, and (3) incorporate distance- and time-dependent heat-removal efficiency associated with drift ventilation. Alternative approaches to addressing repository-scale thermal-conductivity heterogeneity are investigated. We find that only one of the four MSTHM submodel types needs to incorporate thermal-conductivity heterogeneity. For a particular repository design, we find that the most influential parameters are (1) percolation-flux distribution, (2) thermal-conductivity heterogeneity within the host-rock units, (3) the sequencing of waste-package emplacement, and (4) the

  13. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang

    1994-01-01

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP)

  14. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  15. Viability Assessment of a Repository at Yucca Mountain. Volume 4: License Application Plan and Costs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    Volume 4 provides the DOE plan and cost estimate for the remaining work necessary to proceed from completing this VA to submitting an LA to NRC. This work includes preparing an EIS and evaluating the suitability of the site. Both items are necessary components of the documentation required to support a decision in 2001 by the Secretary of Energy on whether or not to recommend that the President approve the site for development as a repository. If the President recommends the site to Congress and the site designation becomes effective, then DOE will submit the LA to NRC in 2002 for authorization to construct the repository. The work described in Volume 4 constitutes the last step in the characterization of the Yucca Mountain site and the design and evaluation of the performance of a repository system in the geologic setting of this site. The plans in this volume for the next 4 years' work are based on the results of the previous 15 years' work, as reported in Volumes 1, 2, and 3 of this VA. Volume 1 summarizes what DOE has learned to date about the Yucca Mountain site. Volume 2 describes the current, reference repository design, several design options that might enhance the performance of the reference design, and several alternative designs that represent substantial departures from the reference design. Volume 2 also summarizes the results of tests of candidate materials for waste packages and for support of the tunnels into which waste would be emplaced. Volume 3 provides the results of the latest performance assessments undertaken to evaluate the performance of the design in the geologic setting of Yucca Mountain. The results described in Volumes 1, 2, and 3 provide the basis for identifying and prioritizing the work described in this volume. DOE believes that the planned work, together with the results of previous work, will be sufficient to support a site suitability evaluation for site recommendation and, if the site is recommended and designated, a

  16. Expected brine movement at potential nuclear waste repository salt sites

    International Nuclear Information System (INIS)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m 3 brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs

  17. Analytical model for screening potential CO2 repositories

    Science.gov (United States)

    Okwen, R.T.; Stewart, M.T.; Cunningham, J.A.

    2011-01-01

    Assessing potential repositories for geologic sequestration of carbon dioxide using numerical models can be complicated, costly, and time-consuming, especially when faced with the challenge of selecting a repository from a multitude of potential repositories. This paper presents a set of simple analytical equations (model), based on the work of previous researchers, that could be used to evaluate the suitability of candidate repositories for subsurface sequestration of carbon dioxide. We considered the injection of carbon dioxide at a constant rate into a confined saline aquifer via a fully perforated vertical injection well. The validity of the analytical model was assessed via comparison with the TOUGH2 numerical model. The metrics used in comparing the two models include (1) spatial variations in formation pressure and (2) vertically integrated brine saturation profile. The analytical model and TOUGH2 show excellent agreement in their results when similar input conditions and assumptions are applied in both. The analytical model neglects capillary pressure and the pressure dependence of fluid properties. However, simulations in TOUGH2 indicate that little error is introduced by these simplifications. Sensitivity studies indicate that the agreement between the analytical model and TOUGH2 depends strongly on (1) the residual brine saturation, (2) the difference in density between carbon dioxide and resident brine (buoyancy), and (3) the relationship between relative permeability and brine saturation. The results achieved suggest that the analytical model is valid when the relationship between relative permeability and brine saturation is linear or quasi-linear and when the irreducible saturation of brine is zero or very small. ?? 2011 Springer Science+Business Media B.V.

  18. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  19. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  20. Uncertainty and sensitivity analysis in performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon C.; Hansen, Clifford W.; Sallaberry, Cédric J.

    2012-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, a detailed performance assessment (PA) for the YM repository was completed in 2008 and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository. The following aspects of the 2008 YM PA are described in this presentation: (i) conceptual structure and computational organization, (ii) uncertainty and sensitivity analysis techniques in use, (iii) uncertainty and sensitivity analysis for physical processes, and (iv) uncertainty and sensitivity analysis for expected dose to the reasonably maximally exposed individual (RMEI) specified the NRC’s regulations for the YM repository. - Highlights: ► An overview of performance assessment for the proposed Yucca Mountain radioactive waste repository is presented. ► Conceptual structure and computational organization are described. ► Uncertainty and sensitivity analysis techniques are described. ► Uncertainty and sensitivity analysis results for physical processes are presented. ► Uncertainty and sensitivity analysis results for expected dose are presented.

  1. Emplacement feasibility of a multi-tier, expanded capacity repository at Yucca Mountain, Nevada USA

    International Nuclear Information System (INIS)

    Apted, Michael; Kessler, John; Fairhurst, Charles

    2008-01-01

    A geological repository at Yucca Mountain has been proposed for the disposal of spent fuel from the US commercial reactors and other radioactive waste. A legislative capacity of 70,000 MTHM has been set by the Nuclear Waste Policy Act of 1982, including 63,000 MTHM of commercial spent nuclear fuel (CSNF), the projected amount of CSNF that will be produced by about 2014. Policy issues remain as to how to handle waste that is generated beyond 2014 from a growing nuclear industry in the US. The Electric Power Research Institute (EPRI) is independently evaluating the technical, rather than legislative, limit of CSNF that could be safely disposed at Yucca Mountain. Geological, thermal management, safety and cost factors have been recently evaluated by EPRI (2006; 2007) for grouped emplacement drifts and/or a multi-tier repository. EPRI's evaluation of emplacement feasibility for a multi-tier concept is described here. Expanded capacity concepts as envisioned for Yucca Mountain (EPRI, 2006; 2007) assume excavation of one or two additional levels of drifts parallel to or above and/or below the original drift excavations. For the latter multi-tier concept each 'tier' or 'level' would essentially replicate the original layer with a 30-m separation between tiers. This arrangement essentially doubles or triples the capacity of the repository for a two- or three-tier design, respectively. The main issues that affect the feasibility of expanded capacity design are; (i) ventilation requirements; (ii) radiation hazards; (iii) thermal and thermo-mechanical constraints. (i)Ventilation: The repository design involves waste packages mounted in close proximity to each other in 600-m long drifts that remain open and actively ventilated for at least 50-100 years. Analyses,conservatively assuming that all three repository levels operate simultaneously, indicate no technological obstacles in meeting ventilation requirements for sustained simultaneous operation ba sed on current industrial

  2. THE INFLUENCE OF REPOSITORY THERMAL LOAD ON MULTIPHASE FLOW AND HEAT TRANSFER IN THE UNSATURATED ZONE OF YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    Yu-Shu Wu; Sumit Mukhopadhyay; Keni Zhang; G.S. Bodvarsson

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH) processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  3. The Influence of Proposed Repository Thermal Load on Multiphase Flow and Heat Transfer in the Unsaturated Zone of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Y.-S.; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G.S.

    2006-01-01

    This paper investigates the impact of proposed repository thermal-loading on mountain-scale flow and heat transfer in the unsaturated fractured rock of Yucca Mountain, Nevada. In this context, a model has been developed to study the coupled thermal-hydrological (TH)processes at the scale of the entire Yucca Mountain. This mountain-scale TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the latest rock thermal and hydrological properties. The TH model consists of a two-dimensional north-south vertical cross section across the entire unsaturated zone model domain and uses refined meshes near and around the proposed repository block, based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climatic conditions. The model simulations provide insights into thermally affected liquid saturation, gas- and liquid-phase fluxes, and elevated water and rock temperature, which in turn allow modelers to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts

  4. Preclosure Seismic Design Methodology for a Geologic Repository at Yucca Mountain

    International Nuclear Information System (INIS)

    K. Coppersmith

    2004-01-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) intends to use for preclosure seismic design of structures, systems, and components (SSCs) that are important to safety (ITS) in the geologic repository operations area. 10 Code of Federal Regulations (CFR) Part 63 [DIRS 156605], states that for a license to be issued for operation of a high-level radioactive waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public (Section 63.41[c] [DIRS 156605]). Section 63.21(c)(5) [DIRS 156605] requires that a preclosure safety analysis (PCSA) be performed to ensure that the preclosure performance objectives (Section 63.111 [DIRS 156605]) have been met. The PCSA is a systematic examination of the site, the design, and the potential hazards (Section 63.102[f] [DIRS 156605]), including a comprehensive identification of potential event sequences. Potential naturally-occurring hazards include those event sequences that are initiated by earthquake ground motions or fault displacements due to earthquakes

  5. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1993-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain according the performance objective--10 CFR 60.112. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  6. Seismic considerations in sealing a potential high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Richardson, A.M.; Lin, Ming

    1992-01-01

    The potential repository system is intended to isolate high-level radioactive waste at Yucca Mountain. One subsystem that may contribute to achieving this objective is the sealing subsystem. This subsystem is comprised of sealing components in the shafts, ramps, underground network of drifts, and the exploratory boreholes. Sealing components can be rigid, as in the case of a shaft seal, or can be more compressible, as in the case of drift fill comprised of mined rockfill. This paper presents the preliminary seismic response of discrete sealing components in welded and nonwelded tuff. Special consideration is given to evaluating the stress in the seal, and the behavior of the interface between the seal and the rock. The seismic responses are computed using both static and dynamic analyses. Also presented is an evaluation of the maximum seismic response encountered by a drift seal with respect to the angle of incidence of the seismic wave. Mitigation strategies and seismic design considerations are proposed which can potentially enhance the overall response of the sealing component and subsequently, the performance of the overall repository system

  7. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  8. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  9. Multiscale Model Simulations of Temperature and Relative Humidity for the License Application of the Proposed Yucca Mountain Repository

    Science.gov (United States)

    Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.

    2003-12-01

    For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock

  10. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  11. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  12. Viability Assessment of a Repository at Yucca Mountain. Volume 2: Preliminary Design Concept for the Repository and Waste Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-01

    This volume describes the major design features of the Monitored Geologic Repository. This document is not intended to provide an exhaustive, detailed description of the repository design. Rather, this document summarizes the major systems and primary elements of the design that are radiologically significant, and references the specific technical documents and design analyses wherein the details can be found. Not all portions of the design are at the same level of completeness. Highest priority has been given to assigning resources to advance the design of the Monitored Geologic Repository features that are important to radiological safety and/or waste isolation and for which there is no NRC licensing precedent. Those features that are important to radiological safety and/or waste isolation, but for which there is an NRC precedent, receive second priority. Systems and features that have no impact on radiological safety or waste isolation receive the lowest priority. This prioritization process, referred to as binning, is discussed in more detail in Section 2.3. Not every subject discussed in this volume is given equal treatment with regard to the level of detail provided. For example, less detail is provided for the surface facility design than for the subsurface and waste package designs. This different level of detail is intentional. Greater detail is provided for those functions, structures, systems, and components that play key roles with regard to protecting radiological health and safety and that are not common to existing nuclear facilities already licensed by NRC. A number of radiological subjects are not addressed in the VA, (e.g., environmental qualification of equipment). Environmental qualification of equipment and other radiological safety considerations will be addressed in the LA. Non-radiological safety considerations such as silica dust control and other occupational safety considerations are considered equally important but are not addressed in

  13. SPONTANEOUS POTENTIAL INVESTIGATIONS IN SEMENIC MOUNTAINS

    Directory of Open Access Journals (Sweden)

    P. URDEA

    2014-11-01

    Full Text Available Spontaneous Potential Investigations in Semenic Mountains. The use of geophysical methods such as that of Spontaneous Potential (SP to investigate areas where the geomorphological processes occur, has the role to identify less visible processes as for example subcutaneous erosion or piping, subsoil water drainage and finding specific spatial differences of these processes. Comparative study of these sites allows correlation between geomorphological factors, soil and climate, but also to observe the evolution of subsurface erosion or underground water infiltration over time. During this investigation a series of mesh grids have been made in areas with different characteristics (lithology, pedology, slope, exposition, etc. at different time periods in order to spot and analyse the change in data in the chosen sites, various conditions given. Values expressed in millivolts (mV obtained by the Spontaneous Potential method have been put into an algorithm for interpolation looking to yield a pattern of values of what is happening in the soil during that period of time. Thus, in the autumn, the investigation site at the nivation niche Baia Vulturilor, returned values of between -22.6 mV and 65.6 mV, while in spring in the same site, values were within the range of -14.4 mV / 30.1 mV. On the other hand, on the site of the cryopediment under the Semenic peak, in the spring, return values ranged from -40.4 mV and -1.1 mV. A particular case is that of the glacis near Piatra Goznei peak; in this area anthropogenic electricity influences on soil can be found. Based on some models a trend of water movement in the soil could be established, this depending heavily on the amount of precipitation infiltration, local lithology, depth of soil and their structure, and evapotranspiration process. Water movement in the soil may be a correlation with sediment movement in soil horizons and instability manifested on the slopes.

  14. Use of One-On Analysis to Evaluate Total System Performance of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Saulnier, G.J. Jr.; Lee, K.P.; Mehta, S.; Sevougian, S.D.; Kalinich, D.; McNeish, J.A.

    2002-01-01

    The Yucca Mountain Site Characterization Project is currently evaluating the future performance of the proposed U.S. high-level nuclear waste repository. Using the Total System Performance Assessment (TSPA) model, a stylized analysis was conducted to evaluate the relative importance of natural and engineered barriers to movement of radionuclides from the proposed repository. These stylized ''one-on'' analyses consist of sequentially adding features, components, and processes, associated with the natural and engineered barriers, incorporated within the TSPA model and evaluating the effect of these elements on repository performance, as measured by the total mean annual dose to a reasonably maximally exposed individual. The analyses are ''stylized'' in the sense that they are performed to gain insight only. They are not meant to represent a real physical system in most cases, and in some cases allow the TSPA model to simulate results using parameter ranges outside the normal bounds of the TSPA model. In particular, the analyses provide insight into the relative contributions of repository features and processes in a way that is not possible using the full TSPA performance-assessment model. For example, in the nominal scenario of the TSPA model, the contribution of the natural system is masked by the contribution of the engineered system

  15. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.; Layman, M.; Kraus, N.N.; Chalmers, J.; Gesel, G.; Flynn, J.

    1989-07-01

    This paper describes a program of research designed to assess the potential impacts of a high-level nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to ''unfortunate events'' associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is that of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigmatization are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development

  16. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.

    1989-01-01

    This paper addresses the potential for the proposed Yucca Mountain repository to have serious adverse economic impacts on the city of Las Vegas and the State of Nevada. Adverse economic impacts may be expected to result from two related social processes. One has to do with perceptions of risk and socially amplified reactions to unfortunate events associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The second process that may trigger significant adverse impacts is that of stigmatization. The conceptual underpinnings of risk perception, social amplification, and stigma are discussed in this paper and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse effects on tourism, migration, and business development

  17. Impacts of Stable Element Intake on C and I Dose Estimates - Implications for Proposed Yucca Mountain Repository

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Moeller; M.T. Ryan; Lin-Shen C. Sun; R.N. Cherry Jr.

    2004-12-21

    The purpose of this study was to evaluate the influence of the intake of stable isotopes of carbon and iodine on the committed doses due to the ingestion of {sup 14}C and {sup 129}I. This was accomplished through the application of two different computational approaches. The first was based on the assumption that ground (drinking) water was the only source of intake of both {sup 14}C and {sup 129}I and stable carbon and stable iodine. For purposes of the second approach, the intake of {sup 14}C and {sup 129}I was still assumed to be only that in the ground (drinking) water, but the intake of stable carbon and stable iodine was assumed to be that in the drinking water plus other components of the diet. The doses were estimated using either a conversion formula or the applicable dose coefficients in Federal Guidance Reports No. 11 and No. 13. Serving as input for the analyses was the estimated maximum concentration of {sup 14}C or {sup 129}I that would be present in the ground water due to potential releases from the proposed Yucca Mountain high-level radioactive waste repository during the first 10,000 years after closure. The estimated concentrations of stable carbon and iodine were based on analyses of ground water samples collected in the Amargosa Valley, NV. Based on the accompanying analyses, three conclusions were reached. First, no dose estimate, using a conversion formula in which the ratios of the stable to radioactive isotopes of an element serve as input, should ever be made without including the stable element intake contributions from all components of the diet. Second, the study suggests that the dose coefficients for {sup 129}I in Federal Guidance Reports No. 11 and No. 12 which, in turn, are based on publications of the ICRP, may not be appropriate for application in developed nations of the world, especially those in which relatively large amounts of seafood are consumed and the use of iodized salt is common. The estimated average daily intake of

  18. Suitability of natural soils for foundations for surface facilities at the prospective Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Ho, D.M.; Sayre, R.L.; Wu, C.L.

    1986-11-01

    In this report, the natural soils at the Yucca Mountain site are evaluated for the purpose of assessing the suitability of the soils for the foundations of the surface facilities at the prospective repository. The areas being considered for locating the surface facilities are situated on an alluvial plain at the base of Yucca Mountain. Preliminary parameters for foundation design have been developed on the basis of limited field and laboratory study of soils at four test pit locations conducted during May and June 1984. Preliminary recommendations for construction are also included in this report. The gravel-sand alluvial deposits were found to be in a dense to very dense state, which is suitable for foundations of the surface facilities. The design parameters described in this report have been developed for conceptual design, but need to be verified before final design

  19. Fabrication and closure development of corrosion resistant containers for Nevada's Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-11-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 2 figs., 4 tabs

  20. Deep geological repository: Starting communication at potentially suitable sites

    International Nuclear Information System (INIS)

    Sumberova, Vera

    2001-01-01

    The siting of a deep geological repository in the Czech Republic is and will be a complicated process, since it is the first siting process of a nuclear facility designed from the start to be located at non-nuclear sites and to be organised under democratic conditions. This presentation describes the concept of radioactive waste and spent nuclear management in the Czech Republic, Communication activities of Radioactive Waste Repository Authority (RAWRA) with local representatives and lessons learned

  1. Risk assessment for the Yucca Mountain high-level nuclear waste repository site: Estimation of volcanic disruption. Final report

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang.

    1992-01-01

    In this article, we model the volcanism near the proposed nuclear waste repository at Yucca Mountain, Nevada, U.S.A. by estimating the instantaneous recurrence rate using a nonhomogeneous Poisson process with Weibull intensity and by using a homogeneous Poisson process to predict future eruptions. We then quantify the probability that any single eruption is disruptive in terms of a (prior) probability distribution, since not every eruption would result in disruption of the repository. Bayesian analysis is performed to evaluate the volcanic risk. Based on the Quaternary data, a 90% confidence interval for the instantaneous recurrence rate near the Yucca Mountain site is (1.85 x 10 -6 /yr, 1.26 x 10 -5 /yr). Also, using these confidence bounds, the corresponding 90% confidence interval for the risk (probability of at least one disruptive eruption) for an isolation time of 10 4 years is (1.0 x 10 -3 , 6.7 x 10 -3 ), if it is assumed that the intensity remains constant during the projected time frame

  2. Monitoring Programme of Radionuclide Migration Through Food Chains at Low and Intermediate Level Radioactive Waste Repository in Trgoska Gora Mountain

    International Nuclear Information System (INIS)

    Schaller, A.; Lokner, V.; Kucar Dragicevic, S.; Subasic, D.; Barisic, D.

    2001-01-01

    Full text: Basic objective of the paper is to prepare a comprehensive programme of monitoring at the preferred site for low and intermediate level radioactive waste repository in the region of Trgovska Gora mountain. The programme is based on available information regarding hydrogeology, lithostratigraphy, tectonics, seismotectonics, geomorphology, meteorology, bioecology, demography and other site relevant disciplines. It is supposed to ensure (1) identification of the zero state at the broader region of the Trgovska gora mountain, and (2) to underline activities needed for monitoring of concentrations of expected radionuclides throughout possible pathways (particularly through food chains) that would migrate to the biosphere in the period after start of radioactive waste repository operation. Inventory of radionuclides contained in the radioactive waste to be disposed of at the site is naturally an important element of the programme structure. There should be identified those radionuclides which concentrations require to be monitored. Concentration measuring methods are proposed in the article. In addition, relevant aquatic and terrestrial organisms, serving as bioindicators, are identified. Types, quantities, frequency and methodology of sampling present an important part of the monitoring programme. Determination of monitoring sites for undertaking particular types of sampling (e.g. stream waters, stream sediment, detritus, ichtiofauna, groundwater, terrestrial organisms, honey, etc.), presenting an important aspect of a well-organised monitoring programme, is also included into this presentation. (author)

  3. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  4. Cost Comparison for the Transfer of Select Calcined Waste Canisters to the Monitored Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Michael B. Heiser; Clark B. Millet

    2005-01-01

    This report performs a life-cycle cost comparison of three proposed canister designs for the shipment and disposition of Idaho National Laboratory high-level calcined waste currently in storage at the Idaho Nuclear Technology and Engineering Center to the proposed national monitored geologic repository at Yucca Mountain, Nevada. Concept A (2 x 10-ft) and Concept B (2 x 15-ft) canisters are comparable in design, but they differ in size and waste loading options and vary proportionally in weight. The Concept C (5.5 x 17.5-ft) canister (also called the ''super canister''), while similar in design to the other canisters, is considerably larger and heavier than Concept A and B canisters and has a greater wall thickness. This report includes estimating the unique life-cycle costs for the three canister designs. Unique life-cycle costs include elements such as canister purchase and filling at the Idaho Nuclear Technology and Engineering Center, cask preparation and roundtrip consignment costs, final disposition in the monitored geologic repository (including canister off-loading and placement in the final waste disposal package for disposition), and cask purchase. Packaging of the calcine ''as-is'' would save $2.9 to $3.9 billion over direct vitrification disposal in the proposed national monitored geologic repository at Yucca Mountain, Nevada. Using the larger Concept C canisters would use 0.75 mi less of tunnel space, cost $1.3 billion less than 10-ft canisters of Concept A, and would be complete in 6.2 years

  5. Seismic activity parameters of the Finnish potential repository sites

    International Nuclear Information System (INIS)

    Saari, J.

    2000-10-01

    Posiva Oy has started a project for estimating the possible earthquake induced rock movements on the deposition holes containing canisters of spent nuclear fuel. These estimates will be made for the four investigation sites, Romuvaara, Kivetty, Olkiluoto and Haestholmen. This study deals with the current and future seismicity associated with the above mentioned sites. Seismic belts that participate the seismic behaviour of the studied sites have been identified and the magnitude-frequency distributions of these belts have been estimated. The seismic activity parameters of the sites have been deduced from the characteristics of the seismic belts in order to forecast the seismicity during the next 100,000 years. The report discusses the possible earthquakes induced by future glaciation. The seismic interpretation seems to indicate that the previous postglacial faults in Finnish Lapland have been generated in compressional environment. The orientation of the rather uniform compression has been NW-SE, which coincide with the current stress field. It seems that, although the impact of postglacial crustal rebound must have been significant, the impact of plate tectonics has been dominant. A major assumption of this study has been that future seismicity will generally resemble the current seismicity. However, when the postglacial seismicity is concerned, the magnitude-frequency distribution is likely different and the expected maximum magnitude will be higher. Maximum magnitudes of future postglacial earthquakes have been approximated by strain release examinations. Seismicity has been examined within the framework of the lineament maps, in order to associate the future significant earthquakes with active fault zones in the vicinity of the potential repository sites. (orig.)

  6. Recent characterization activities of Midway Valley as a potential repository surface facility site

    International Nuclear Information System (INIS)

    Gibson, J.D.; Wesling, J.R.; Swan, F.H.; Bullard, T.F.

    1992-01-01

    Midway Valley, located at the eastern base of Yucca Mountain, Nye County, Nevada, has been identified as a possible location for the surface facilities of a potential high-level nuclear-waste repository. This structural and topographic valley is bounded by two north- trending, down-to-the-west normal faults: the Paintbrush Canyon fault on the east and the Bow Ridge fault on the west. Surface and near-surface geological data have been acquired from Midway Valley during the past three years with particular emphasis on evaluating the existence of Quaternary faults. A detailed (1:6000) surficial geological map has been prepared based on interpretation of new and existing aerial photographs, field mapping, soil pits, and trenches. No evidence was found that would indicate displacement of these surficial deposits along previously unrecognized faults. However, given the low rates of Quaternary faulting and the extensive areas that are covered by late Pleistocene to Holocene deposits south of Sever Wash, Quaternary faulting between known faults cannot be precluded based on surface evidence alone. Middle to late Pleistocene alluvial fan deposits (Unit Q3) exist at or near the surface throughout Midway Valley. Confidence is increased that the potential for surface fault rupture in Midway Valley can be assessed by excavations that expose the deposits and soils associated with Unit Q3 or older units (middle Pleistocene or earlier)

  7. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons

  8. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    M.G. Wallace

    2005-01-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km 2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  9. Comparison of potential radiological consequences from a spent-fuel repository and natural uranium deposits

    International Nuclear Information System (INIS)

    Wick, O.J.; Cloninger, M.O.

    1980-09-01

    A general criterion has been suggested for deep geological repositories containing spent fuel - the repositories should impose no greater radiological risk than due to naturally occurring uranium deposits. The following analysis investigates the rationale of that suggestion and determines whether current expectations of spent-fuel repository performance are consistent with such a criterion. In this study, reference spent-fuel repositories were compared to natural uranium-ore deposits. Comparisons were based on intrinsic characteristics, such as radionuclide inventory, depth, proximity to aquifers, and regional distribution, and actual and potential radiological consequences that are now occurring from some ore deposits and that may eventually occur from repositories and other ore deposits. The comparison results show that the repositories are quite comparable to the natural ore deposits and, in some cases, present less radiological hazard than their natural counterparts. On the basis of the first comparison, placing spent fuel in a deep geologic repository apparently reduces the hazard from natural radioactive materials occurring in the earth's crust by locating the waste in impermeable strata without access to oxidizing conditions. On the basis of the second comparison, a repository constructed within reasonable constraints presents no greater hazard than a large ore deposit. It is recommended that if the naturally radioactive environment is to be used as a basis for a criterion regarding repositories, then this criterion should be carefully constructed. The criterion should be based on the radiological quality of the waters in the immediate region of a specific repository, and it should be in terms of an acceptable potential increase in the radiological content of those waters due to the existence of the repository

  10. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada

    International Nuclear Information System (INIS)

    Slovic, P.; Layman, M.; Kraus, N.; Flynn, J.; Chalmers, J.; Gesell, G.

    1991-01-01

    This study investigates the potential impacts of the proposed nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse impacts may be expected to result from perceptions of risk, stigmatization, and socially amplified reactions to 'unfortunate events' associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The conceptual underpinnings of risk perception, stigmatization, and social amplification are discussed and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse economic effects. The possibility that intense negative imagery associated with the repository may cause significant harm to Nevada's economy can no longer be ignored by serious attempts to assess the risks and impacts of this unique facility. The behavioral processes described here appear relevant as well to the social impact assessment of any proposed facility that produces, uses, transports, or disposes of hazardous materials

  11. Perceived risk, stigma, and potential economic impacts of a high-level nuclear waste repository in Nevada.

    Science.gov (United States)

    Slovic, P; Layman, M; Kraus, N; Flynn, J; Chalmers, J; Gesell, G

    1991-12-01

    This study investigates the potential impacts of the proposed nuclear waste repository at Yucca Mountain, Nevada, upon tourism, retirement and job-related migration, and business development in Las Vegas and the state. Adverse impacts may be expected to result from perceptions of risk, stigmatization, and socially amplified reactions to "unfortunate events" associated with the repository (major and minor accidents, discoveries of radiation releases, evidence of mismanagement, attempts to sabotage or disrupt the facility, etc.). The conceptual underpinnings of risk perception, stigmatization, and social amplification are discussed and empirical data are presented to demonstrate how nuclear images associated with Las Vegas and the State of Nevada might trigger adverse economic effects. The possibility that intense negative imagery associated with the repository may cause significant harm to Nevada's economy can no longer be ignored by serious attempts to assess the risks and impacts of this unique facility. The behavioral processes described here appear relevant as well to the social impact assessment of any proposed facility that produces, uses, transports, or disposes of hazardous materials.

  12. Potential host media for a high-level waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Hustrulid, W

    1982-01-01

    Earlier studies of burial of radioactive wastes in geologic repositories had concentrated on salt formations for well-publicized reasons. However, under the Carter administration, significant changes were made in the US nuclear waste management program. Changes which were made were: (1) expansion of the number of rock types under consideration; (2) adoption of the multiple-barrier approach to waste containment; (3) additional requirements for waste retrieval; and (4) new criteria proposed by the Nuclear Regulatory Commission for the isolation of high-level waste in geologic repositories. Results of the studies of different types of rocks as repository sites are summarized herein. It is concluded that each generic rock type has certain advantages and disadvantages when considered from various aspects of the waste disposal problem and that characteristics of rocks are so varied that a most favorable or least favorable rock type cannot be easily identified. This lack of definitive characteristics of rocks makes site selection and good engineering barriers very important for containment of the wastes. (BLM)

  13. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  14. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  15. A conceptual subsurface facility design for a high-level nuclear waste repository at Yucca Mountain

    International Nuclear Information System (INIS)

    McKenzie, D.G., III; Bhattacharyya, K.K.; Segrest, A.M.

    1996-01-01

    The US Department of Energy is responsible for the design, construction, operation and closure of a repository in which to permanently dispose of the nation's high level nuclear waste. In addition to the objective of safely isolating the waste inventory, the repository must provide a safe working environment for its workforce, and protect the public. The conceptual design for this facility is currently being developed. Tunnel Boring Machine will be used to excavate 228 kilometers of tunneling to construct the facility over a 30 year period. The excavation operations will be physically separated from the waste emplacement operations, and each operation will have its own dedicated ventilation system. The facility is being designed to remain open for 150 years

  16. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  17. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    International Nuclear Information System (INIS)

    Best, Ralph; Winnard, T.; Ross, S.; Best, R.

    2001-01-01

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as

  18. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  19. Management of scientific and engineering data collected during site characterization of a potential high-level waste repository

    International Nuclear Information System (INIS)

    Newbury, C.M.; Heitland, G.W.

    1992-01-01

    This paper discusses the characterization of Yucca Mountain as a potential site for a high-level nuclear waste repository encompasses many diverse investigations to determine the nature of the site. Laboratory and on-site investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and past use of the area, to name a few. Effective use of the data from these investigations requires development of a system for the collection, storage, and dissemination of those scientific and engineering data needed to support model development, design, and performance assessment. The time and budgetary constraints associated with this project make sharing of technical data within the geoscience community absolutely critical to the successful solution of the complex scientific problem challenging us

  20. Preliminary analysis of the cost and risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Madsen, M.M.; Cashwell, J.W.; Joy, D.S.

    1983-06-01

    This report documents preliminary cost and risk analyses that were performed in support of the Nuclear Waste Terminal Storage (NWTS) program. The analyses compare the costs and hazards of transporting wastes to each of five regions that contain potential candidate nuclear waste repository sites being considered by the NWTS program. These regions are: the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain, and Hanford. Two fuel-cycle scenarios were analyzed: once-through and reprocessing. Transportation was assumed to be either entirely by truck or entirely by rail for each of the scenarios. The results from the risk analyses include those attributable to nonradiological causes and those attributable to the radioactive character of the wastes being transported. 17 references

  1. Review of the potential effects of alkaline plume migration from a cementitious repository for radioactive waste

    International Nuclear Information System (INIS)

    Savage, D.

    1997-01-01

    Extensive use of cement and concrete is envisaged in the construction of geological repositories for low and intermediate-level radioactive wastes, both for structural, and encapsulation and backfilling purposes. Saturation of these materials with groundwater may occur in the post-closure period of disposal, producing a hyperalkaline pore fluid with a pH in the range 10-13.5. These pore fluids have the potential to migrate from the repository according to local groundwater flow conditions and react chemically with the host rock. These chemical reactions may affect the rock's capacity to retard the migration of radionuclides released from the repository after the degradation of the waste packages. The effects of these chemical reactions on the behaviour of the repository rock as a barrier to waste migration need to be investigated for the purposes of assessing the safety of the repository design (so-called 'safety assessment' or 'performance assessment'). The objectives of the work reported here were to: identify those processes influencing radionuclide mobility in the geosphere which could be affected by plume migration; review literature relevant to alkali-rock reaction; contact organisations carrying out relevant research and summarise their current and future activities; and make recommendations how the effects of plume migration can be incorporated into models of repository performance assessment. (author)

  2. Treatment of uncertainty in the US department of energy's yucca mountain repository total system performance assessment (TSPA)

    International Nuclear Information System (INIS)

    Van Luik, A.; Zwahlen, E.

    2004-01-01

    The regulatory requirements being addressed in the US geological repository programme for spent nuclear fuel and high-level waste specify that performance assessment is to be used to address probabilistically defined mean-value dose constraints. Dose was chosen as the preferred performance measure because an acceptable dose limit could be selected through the regulation-setting process, based on a defined acceptable risk. By setting a dose limit, arguments about the conversion of a potential dose to a potential risk was taken off the table as a potential licensing issue. However, the probabilistic approach called for actually delivers a 'risk of a dose', a risk of a potential given dose value to a hypothetical person living at a set distance from the repository, with a set lifestyle, between the time of permanent closure and 10 000 years. Analyses must also be shown for the peak dose if it occurs after 10 000 years, essentially to a million years. For uncertain parameters that are important to system performance, the goal is to present an analysis that, in accord with applicable regulation, focuses on the mean value of the performance measure but also explores the 'full range of defensible and reasonable parameter distributions'.... System performance evaluations should not be unduly influenced by... 'extreme physical situations and parameter values'. These disclosure requirements are to be met by showing a range of potential outcomes and designating the mean value within that range. (author)

  3. The convention planning process: Potential impact of a high-level Nuclear Waste Repository in Nevada

    International Nuclear Information System (INIS)

    Kunreuther, H.; Easterling, D.; Kleindorfer, P.

    1988-09-01

    This report presents results from two studies that test whether a high level nuclear waste repository sites at Yucca Mountain, Nevada will diminish the willingness of meeting planners to schedule conventions, trade shows, and other meetings in Las Vegas. The first study, a focus group interview with nine meeting planners from the Philadelphia area, found little evidence that planners' selection decisions would be influenced by environmental hazards (e.g., earthquakes, pollution), unless planners were led to believe that these hazards would have a direct impact on convention delegates and the planner could conceivably be held personally responsible for any such impacts. Participants did point out that they would be sensitive to continued media coverage of a negative event, as this might stigmatize the city in the eyes of delegates. The results from the focus group guided the development of a larger and more formal questionnaire survey of meeting planners who were known to have selected Las Vegas for a meeting. Of the 153 planners recruited, 114 had a future meeting scheduled and 39 had arranged a meeting that was recently held in the city. Subjects first answered a number of questions that described the process by which they chose Las Vegas among the possible convention cities. They were then instructed to reconsider their decision in light of seven different scenarios pertaining to the repository at Yucca Mountain

  4. Workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories, July 27-28, 1977

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1977-01-01

    The workshop on Potentially Disruptive Phenomena for Nuclear Waste Repositories brought together experts in the geosciences to identify and evaluate potentially disruptive events and processes and to contribute ideas on how to extrapolate data from the past into the next one million years. The analysis is to be used to model a repository in geologic media for long-term safety assessments of nuclear waste storage. The workshop included invited presentations on the following items: an overview of the Waste Isolation Safety Assessment Program (WISAP), simulation techniques, subjective probabilities and methodology of obtaining data, similar modeling efforts at Lawrence Livermore and Sandia Laboratories, and geologic processes or events

  5. Experimental investigation of hydrous pyrolysis of diesel fuel and the effect of pyrolysis products on performance of the candidate nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Jackson, K.J.; Carroll, S.A.

    1994-01-01

    It is thought that a significant amount of diesel fuel and other hydrocarbon-rich phases may remain inside the candidate nuclear waste repository at Yucca Mountain after construction and subsequent emplacement of radioactive waste. Although the proposed repository horizon is above the water table, the remnant hydrocarbon phases may react with hydrothermal solutions generated by high temperature conditions that will prevail for a period of time in the repository. The preliminary experimental results of this study show that diesel fuel hydrous pyrolysis is minimal at 200 degrees C and 70 bars. The composition of the diesel fuel remained constant throughout the experiment and the concentration of carboxylic acids in the aqueous phases was only slightly above the detection limit (1-2 ppm) of the analytical technique

  6. Uncertainty and sensitivity analysis in the 2008 performance assessment for the proposed repository for high-level radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. As part of this development, an extensive performance assessment (PA) for the YM repository was completed in 2008 (1) and supported a license application by the DOE to the U.S. Nuclear Regulatory Commission (NRC) for the construction of the YM repository (2). This presentation provides an overview of the conceptual and computational structure of the indicated PA (hereafter referred to as the 2008 YM PA) and the roles that uncertainty analysis and sensitivity analysis play in this structure.

  7. Assessing the state/nation distributional equity issues associated with the proposed Yucca Mountain repository: A conceptual approach

    International Nuclear Information System (INIS)

    Kasperson, R.E.; Ratick, S.; Renn, O.

    1988-06-01

    This paper addresses one quite specific part of this broad range of issues -- the distribution of impacts to the state of Nevada and to the nation likely to be associated with the proposed Yucca Mountain repository. As such, it is one of four analyses of the overall equity problems and needs to be read in conjunction with our proposed overall framework for the equity studies and the several other specific analyses. The objective of this report is to consider how an analysis might be made of the distribution of projected outcomes between the state and nation. At the same time, it needs to be clear that no attempt will be made actually to implement the analysis that is proposed. What follows is a conceptual statement that identifies the analytical issues and problems and proposes an approach for overcoming them. Significantly, it must be remembered that this report will not address procedural equity issues between the state and nation for this is the subject of a separate analysis. 10 refs., 2 figs

  8. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  9. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  10. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  11. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-04-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C.

  12. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    International Nuclear Information System (INIS)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-01-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C

  13. Appraisal of hard rock for potential underground repositories of radioactive wastes

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1977-10-01

    The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  14. Long term effects on potential repository sites: occurrence and diagenesis of anhydrite

    International Nuclear Information System (INIS)

    Bath, A.H.; George, I.A.; Milodowski, A.E.; Darling, W.G.

    1985-10-01

    The report deals with the long-term behaviour of anhydrite as a potential host rock for deep disposal of intermediate-level radioactive wastes. The principal long-term effect on the integrity of such a repository is the possibility of penetration of groundwater and consequent transformation to gypsum. Therefore, in order to assess the chydrological and geochemical processes of hydration in detail, mineralogical and geochemical analyses have been carried out on anhydrite samples in a drillcore taken near Darlington, United Kingdom. The results are discussed in terms of the long-term integrity of anhydrite as a repository site. (U.K.)

  15. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1985-01-01

    Laboratory experiments have shown that groundwater conditions in a Stripa granite repository will be as reducing as those in a basalt repository. The final oxidation potential (Eh) at 70 0 C for Stripa groundwater deaerated and equilibrated with crystalline granite was -0.45V. In contrast, the oxidation potential at 60 0 C for Grande Ronde groundwater equilibrated with basalt was -0.40V. The reducing groundwater conditions were found to slightly decrease the time-dependent release of soluble components from the waste glass. Spectrophotometric analysis of the equilibrated groundwaters indicated the presence of Fe 2+ confirming that the Fe 2+ /Fe 3+ couple is controlling the oxidation potential. It was also shown that in the alkaline pH regime of these groundwaters the iron species are primarily associated with x-ray amorphous precipitates in the groundwater. Gamma radiolysis in the absence of waste glass and in the absence of oxygen further reduces the oxidation potential of both granitic and basaltic groundwaters. The effect is more pronounced in the basaltic groundwater. The mechanism for this decrease is under investigation but appears related to the reactive amorphous precipitate. The results of these tests suggest that H 2 may not escape from the repository system as postulated and that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present. 23 refs., 3 figs., 3 tabs

  16. Compilation of data for thermomechanical analyses of four potential salt repositories

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.; Loken, M.C.; Osnes, J.D.; Wagner, R.A.

    1986-01-01

    This report includes a collection and summarization of the data which are necessary to perform thermomechanical analyses of four potential salt repository sites: Paradox Basin, Utah; Permian Basin, Texas; Richton Dome, Mississippi; and Vacherie Dome, Louisiana. Thermal, mechanical, and hydrogeological material properties are presented so that the numerical analyses can be subdivided into three geometric regions: canister, disposal room, and repository site. Data are presented for the salt formations, the surrounding geological units, and for human-made materials placed in the repository such as the nuclear waste and its protective steel liner. Wherever possible, site-specific data are used which have been determined from laboratory testing of drill core or from interpretation of geophysical logs. Although much effort has been made to obtain the most appropriate data, there are deficiencies because some of the required site-specific data are either not available or are inconsistent with anticipated values

  17. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  18. What do we mean by a cold repository?

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1994-01-01

    The topic of thermal loading of a potential repository at Yucca Mountain in Nevada has been the subject of intense discussion within the project technical community. While terms such as ''Hot Repository'' and ''Cold Repository'' are frequently used, they have not been clearly defined. In particular, the definition of a cold repository has remained the opinion of each individual. This has led to confusion and misunderstanding. In this paper, a number of observed definitions for a cold repository are discussed along with the technical implications, assumptions and inconsistencies. Finally, a common language is suggested

  19. Geographic conditions for distribution of agriculture and potentials for tourism development on Mokra mountain

    Directory of Open Access Journals (Sweden)

    Knežević Marko

    2009-01-01

    Full Text Available This work considers important natural conditions of distribution of agricultural production, cattle breeding in particular, and also potentials for tourism development on Mokra mountain. Half-nomadic cattle breeding in mountain settlements was highly developed in recent past. It represented the main source of existence for local highlanders. Today it is neglected and in phase of dying out. The mountain disposes with excellent natural potentials for ecological and mountain tourism, but these potentials are unused.

  20. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  1. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  2. Corrosion of similar and dissimilar metal crevices in the engineered barrier system of a potential nuclear waste repository

    International Nuclear Information System (INIS)

    He, X.; Dunn, D.S.; Csontos, A.A.

    2007-01-01

    Crevice corrosion is considered possible if the corrosion potential (E corr ) exceeds the repassivation potential for crevice corrosion (E rcrev ). In this study, potentiodynamic polarization and potentiostatic hold were used to determine the E rcrev of similar and dissimilar metal crevices in the engineered barrier system of the potential Yucca Mountain repository in 0.5 M NaCl, 4 M NaCl, and 4 M MgCl 2 solutions at 95 deg. C. The results were compared with data previously obtained using crevices formed between Alloy 22 and polytetrafluoroethylene. It was observed that, except for Type 316L stainless steel, all other metal-to-metal crevices were less susceptible to crevice corrosion than the corresponding metal-to-polytetrafluoroethylene crevices. Measurements of galvanic coupling were used to evaluate the crevice corrosion propagation behavior in 5 M NaCl solution at 95 deg. C. The crevice specimens were coupled to either an Alloy 22 or a Titanium Grade 7 plate using metal or polytetrafluoroethylene crevice washers. Crevice corrosion of Type 316L stainless steel propagated without repassivation. For all the tests using a polytetrafluoroethylene crevice washer, crevice corrosion of Alloy 22 was initiated at open circuit potential by the addition of CuCl 2 as an oxidant, whereas no crevice corrosion of Alloy 22 was initiated for all the tests using Alloy 22 or Titanium Grade 7 metals as crevice washer. However, crevice corrosion propagation was found to be very limited under such test conditions

  3. Geohydrology surrounding a potential high-level nuclear waste repository in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Brandstetter, A.; Kroitoru, L.; Andrews, R.W.; Thackston, J.W.

    1984-01-01

    The Gibson Dome area in the Paradox Basin in southeastern Utah has been identified as a potential location for a high-level nuclear waste repository on the basis of an adequate thickness of bedded salt formations at desirable depths, suitable topography for surface facilities, few known archaeological sites, less resource potential than otherwise similar areas, and long-term geologic and tectonic stability. The area appears also suitable from a geohydrologic viewpoint, on the basis of data collected and analyses performed to date. The upper, near-surface, geologic formations include both regionally continuous water-bearing formations and locally perched ground waters that discharge into nearby surface streams and into the Colorado River. Below the Paradox salts, the formations of interest with respect to repository safety include regionally continuous water-bearing formations, with the Leadville limestone being the principal water-transmitting unit. Flows in all water-bearing formations are essentially horizontal. If a vertical connection were established through a potential repository, hydraulic gradients indicate that the flow would first be downward from the upper to the lower formations and then laterally, principally in the Leadville formation. There are some indications that minor leakage could occur into the Colorado River as close as Cataract Canyon, about 20 to 25 km (10 to 15 miles) from a potential repository location in Davis Canyon, or into the Colorado River in Marble Canyon (Arizona), about 240 km (150 miles) to the southwest. Groundwater flow from a repository to these locations is unlikely, however, since water would first have to penetrate the essentially impermeable salt layers before it would reach the Leadville formation. 11 references, 4 figures

  4. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    International Nuclear Information System (INIS)

    Valentine, G.A.

    1996-01-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth's surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository

  5. Physical processes of magmatism and effects on the potential repository: Synthesis of technical work through Fiscal Year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, G.A.

    1996-09-01

    This chapter summarizes data collection and model calculations through FY 95 under Study Plan 8.3.1.8.1.2 Physical Processes of Magmatism and Effects on the Potential Repository. The focus of this study plan is to gather information that ultimately constrains the consequences of small-volume, basaltic magmatic activity at or near a potential repository. This is then combined with event probability estimates, described elsewhere in this synthesis report, to yield a magmatic risk assessment. Tere are two basic classes of effects of magmatisms that are considered here: (1) Eruptive effects, whereby rising magma intersects a potential repository, entrains radioactive waste, and erupts it onto the earth`s surface. (2) Subsurface effects, which includes a wide range of processes such as hydrothermal flow, alteration of mineral assemblages in the potential repository system, and alteration of hydrologic flow properties of the rocks surrounding a potential repository.

  6. Assessment of potential perturbations to Posiva's SF repository at Olkiluoto from the ONKALO Facility

    International Nuclear Information System (INIS)

    Alexander, W.R.; Neall, F.B.

    2007-06-01

    Although the site of the proposed spent fuel repository at Olkiluoto in southwest Finland has been extensively investigated over the last fifteen years, Posiva decided to construct a rock characterisation facility (RCF) at the site to collect more detailed information on the host rock. The data provided by the ONKALO RCF will support the detailed repository design and safety assessment (SA) and will allow construction and disposal methods to be tested under relevant in situ conditions. ONKALO has been so designed that it can act as access routes and auxiliary rooms for the SF repository and so may be in use for the entire operational phase of the repository (currently up to 100 years). Extensive experience from deep mining suggests that such an extended period of operation could have a major impact on both the host rock formation and any nearby facilities, such as the SF repository, and, consequently, Posiva decided to investigate potential perturbations to the repository caused by the existence of ONKALO. A preliminary assessment was carried out in 2003, before construction of the RCF began, and this was recently partially updated in early 2006. This current report represents the most recent update of these reports and has the primary aims of: checking if the previous reports have missed any essential issues; evaluating whether the identified issues have been treated in an appropriate manner; updating the reports in the light of new information. This is carried out based on data from ONKALO itself and on improved understanding of some of the perturbation mechanisms identified in the original studies along with a consideration of newly identified processes. This report differs from the previous studies in addressing the issues in a more SA-oriented manner (for example, focussing the examination of potential perturbations on a re-worked FEP list), allowing the work reported here to be more easily dovetailed with future SA studies on the Olkiluoto repository

  7. VerSi - A Methodology for a Comparison of Potential Repository Sites

    International Nuclear Information System (INIS)

    Hund, Wilhelm

    2010-09-01

    In the year 2000 the moratorium on the exploration of the Gorleben salt dome as a potential repository for all kinds of radioactive waste became effective as a result of the consensus agreement between the Federal Government and the utilities about phasing out nuclear energy in Germany. All exploration activities were interrupted for at maximum ten years to clarify conceptual and safety relevant questions. A new set of safety requirements for the final disposal of heat-generating radioactive waste in deep geological formations was established in July 2009 by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). As the BMU intended to carry out a comparison of potential repository sites it was necessary to initiate the development of a methodology for the identification of the site with the highest level of safety. A comparison of different repository sites requires a tool ensuring most confident and objective criteria for the comparison, whereas up to present long-term safety analyses were focused on confirming the suitability of sites by meeting the protection objectives by the measures of dose and risk. Within the 2006 established project VerSi a methodology for comparing different sites in different host rocks will be developed on the basis of long-term safety analyses taking into account geoscientific databases, inventory of radioactive waste, waste containers, corresponding disposal concepts and the feasibility of appropriate backfilling and closure concepts. The development of the method is aiming at providing measures other than dose and risk for the evaluation of the level of safety. For testing the tools a HLW-repository hosted in a salt dome (Gorleben) will be compared with a generic HLW-repository in consolidated clay as a host rock. As until now in Germany no clay stone site has been investigated for hosting a HLW repository, the required data are transferred from international research projects and repository concepts

  8. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    International Nuclear Information System (INIS)

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  9. Potential site selection for radioactive waste repository using GIS (Study area: Negeri Sembilan) - Phase 1

    International Nuclear Information System (INIS)

    Ahmad Hasnulhadi Che Kamaruddin; Faizal Azrin Abdul Razalim; Mohd Abdul Wahab Yusof; Nik Marzukee Nik Ibrahim; Nazran Harun; Muhammad Fathi Sujan; Karuppiah, T.; Surip, N.; Malik, N.N.A.; Che Musa, R.

    2010-01-01

    The main purpose in this paper is to create the Geographic Information System (GIS) based analysis on the potential site area for near-surface radioactive waste repository in the state of Negeri Sembilan. There are several parameters should be considered related to the safety assessment in selecting the potential site. These parameters such as land-use, urban area, soil, rainfall, lithology, lineament, geomorphology, landslide potential, slope, elevation, hydrogeology and protected land need to be considered before choosing the site. In this phase, we only consider ten parameters for determining the potential suitable site. (author)

  10. UPDATING AN EXPERT ELICITATION IN THE LIGHT OF NEW DATA: TEN YEARS OF PROBABILISTIC VOLCANIC HAZARD ANALYSIS FOR THE PROPOSED HIGH-LEVEL RADIOACTIVE WASTE REPOSITORY AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    F.V. Perry; A. Cogbill; R. Kelley

    2005-01-01

    The U.S. Department of Energy (DOE) considers volcanism to be a potentially disruptive class of events that could affect the safety of the proposed high-level waste repository at Yucca Mountain. Volcanic hazard assessment in monogenetic volcanic fields depends on an adequate understanding of the temporal and spatial pattern of past eruptions. At Yucca Mountain, the hazard is due to an 11 Ma-history of basaltic volcanism with the latest eruptions occurring in three Pleistocene episodes to the west and south of Yucca Mountain. An expert elicitation convened in 1995-1996 by the DOE estimated the mean hazard of volcanic disruption of the repository as slightly greater than 10 -8 dike intersections per year with an uncertainty of about two orders of magnitude. Several boreholes in the region have encountered buried basalt in alluvial-filled basins; the youngest of these basalts is dated at 3.8 Ma. The possibility of additional buried basalt centers is indicated by a previous regional aeromagnetic survey conducted by the USGS that detected approximately 20 magnetic anomalies that could represent buried basalt volcanoes. Sensitivity studies indicate that the postulated presence of buried post-Miocene volcanoes to the east of Yucca Mountain could increase the hazard by an order of magnitude, and potentially significantly impact the results of the earlier expert elicitation. Our interpretation of the aeromagnetic data indicates that post-Miocene basalts are not present east of Yucca Mountain, but that magnetic anomalies instead represent faulted and buried Miocene basalt that correlates with nearby surface exposures. This interpretation is being tested by drilling. The possibility of uncharacterized buried volcanoes that could significantly change hazard estimates led DOE to support an update of the expert elicitation in 2004-2006. In support of the expert elicitation data needs, the DOE is sponsoring (1) a new higher-resolution, helicopter-borne aeromagnetic survey

  11. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    D.M. Jolley; T.F. Ehrhorn; J. Horn

    2002-03-19

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C{sub 160}(H{sub 280}O{sub 80})N{sub 30}P{sub 2}S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated

  12. Microbial Impacts to the Near-Field Environment Geochemistry (MING): A Model for Estimating Microbial Communities in Repository Drifts at Yucca Mountain

    International Nuclear Information System (INIS)

    Jolley, D.M.; Ehrhorn, T.F.; Horn, J.

    2002-01-01

    Geochemical and microbiological modeling was performed to evaluate the potential quantities and impact of microorganisms on the geochemistry of the area adjacent to and within nuclear waste packages in the proposed repository drifts at Yucca Mountain, Nevada. The microbial growth results from the introduction of water, ground support, and waste package materials into the deep unsaturated rock. The simulations, which spanned one million years, were accomplished using a newly developed computer code, Microbial Impacts to the Near-Field Environment Geochemistry (MING). MING uses environmental thresholds for limiting microbial growth to temperatures below 120 C and above relative humidities of 90 percent in repository drifts. Once these thresholds are met, MING expands upon a mass balance and thermodynamic approach proposed by McKinley and others (1997), by using kinetic rates to supply constituents from design materials and constituent fluxes including solubilized rock components into the drift, to perform two separate mass-balance calculations as a function of time. The first (nutrient limit) assesses the available nutrients (C, N, P and S) and calculates how many microorganisms can be produced based on a microorganism stoichiometry of C 160 (H 280 O 80 )N 30 P 2 S. The second (energy limit) calculates the energy available from optimally combined redox couples for the temperature, and pH at that time. This optimization maximizes those reactions that produce > 15kJ/mol (limit on useable energy) using an iterative linear optimization technique. The final available energy value is converted to microbial mass at a rate of 1 kg of biomass (dry weight) for every 64 MJ of energy. These two values (nutrient limit and energy limit) are then compared and the smaller value represents the number of microorganisms that can be produced over a specified time. MING can also be adapted to investigate other problems of interest as the model can be used in saturated and unsaturated

  13. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  14. Final Systems Development Report for the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    The Systems Development Report represents the third major step in the Clark County Socioeconomic Impact Assessment of the Proposed High-Level Nuclear Waste Repository at Yucca Mound Nevada. The first of these steps was to forge a Research Design that would serve as a guide for the overall research process. The second step was the construction of the Base Case, the purpose of which was to describe existing conditions in Clark County in the specified analytic areas of Economic-Demographic/Fiscal, Emergency Planning and Management, Transportation and Sociocultural analysis. The base case description will serve as a basis for assessing changes in these topic areas that might result from the Yucca Mountain project. These changes will be assessed by analyzing conditions with and without repository development in the county. Prior to performing such assessments, however, the snapshot type of data found in the base case must be operationalized or systematized to allow for more dynamic data utilization. In other words, a data system that can be used to analyze the consequences of the introduction of different variables (or variable values) in the Clark County context must be constructed. Such a system must be capable of being updated through subsequent data collection and monitoring efforts to both provide a rolling base case and supply information necessary to construct trend analyses. For example, during the Impact Assessment phase of the study process, the without repository analysis is accomplished by analyzing growth for the county given existing conditions and likely trends. These data are then compared to the with Yucca Mountain project conditions anticipated for the county. Similarly, once the emergency planning management and response needs associated with the repository are described, these needs will be juxtaposed against existing (and various future) capacity(ies) in order to determine the nature and magnitude of impacts in this analytic area. Analogous tasks

  15. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a 'snapshot' or 'base case' look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future

  16. Appraisal of hard rock for potential underground repositories of radioactive wastes. LBL-7004

    International Nuclear Information System (INIS)

    Cook, N.G.W.

    1978-01-01

    Underground burial of radioactive wastes in hard rock may be an effective and safe means of isolating them from the environment and from man. The mechanical safety and stability of such an underground repository depends largely on the virgin state of stress in the rock, groundwater pressures, the strengths of the rocks, heating by the decay of the radioactive wastes, and the layout of the excavations and the disposition of waste cannisters within them. A large body of pertinent data exists in the literature, and each of these factors has been analyzed in the light of this information. The results indicate that there are no fundamental geological nor mechanical reasons why repositories capable of storing radioactive wastes should not be excavated at suitable sites in hard rock. However, specific tests to determine the mechanical and thermal properties of the rocks at a site would be needed to provide the data for the engineering design of a repository. Also, little experience exists of the effects on underground excavations of thermal loads, so that this aspect requires theoretical study and experimental validation. The depths of these potential repositories would lie in the range from 0.5 km to 2.0 km below surface, depending upon the strength of the rock. Virgin states of stress have been measured at such depths which would retard the ingress of groundwater and obviate the incidence of faulting. A typical repository comprising three horizons each with a total area of 5 km 2 would have the capacity to store wastes with thermal output of 240 MW

  17. Methods of simulating low redox potential (Eh) for a basalt repository

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1983-01-01

    Basalt groundwaters have inherently low redox potentials, approximately -0.4V, which can be measured with platinum electrodes, but are difficult to reproduce during leaching experiments. In the presence of deionized water, crushed basalt reaches the measured Eh-pH values of a basalt repository. Other waste package components, such as iron, will interact with groundwater in different ways under oxic or anoxic conditions since the presence of any redox active solid will affect the groundwater Eh. 26 references, 4 figures

  18. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-01-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  19. CLIMATE CHANGE AND WATER POTENTIAL OF THE PAMIR MOUNTAINS

    Directory of Open Access Journals (Sweden)

    Alexander F. Finaev

    2016-01-01

    Full Text Available The Pamir region supplies water for most countries of the Central Asia. Discussions and arguments with regard to reduction of water resources related to climate change are popular today among various governmental and international institutions being a greatconcern for modern society. Probable decrease of the Pamirs runoff will affect downstreamcountries that can face water deficiency. However, there is no scientific rationale behindsuch disputes. The Pamir region is a remote, high-mountainous and hard-to-access area with scarce observation network and no reliable data. It is not sufficiently investigated in order to perform any assessment of climate change. This article represents results of study of climate parameters change (such as temperature, precipitation and river discharge in the Pamirs. The study area covers all countries included in this mountain region (Tajikistan, China, Afghanistan and Kyrgyzstan. Observation records, remote sensing data and GIS modeling were used in the present work. Chronological data series were divided into two equal time intervals and were treated as climatic periods. Further analysis of climate change helped to estimate its influence on change of water potential in the Pamirs. The paper considers issues of liquid and solid precipitation change in the study area.

  20. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    I. Wong

    2004-01-01

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M and O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes

  1. Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV

    Energy Technology Data Exchange (ETDEWEB)

    I. Wong

    2004-11-05

    This report describes a site-response model and its implementation for developing earthquake ground motion input for preclosure seismic design and postclosure assessment of the proposed geologic repository at Yucca Mountain, Nevada. The model implements a random-vibration theory (RVT), one-dimensional (1D) equivalent-linear approach to calculate site response effects on ground motions. The model provides results in terms of spectral acceleration including peak ground acceleration, peak ground velocity, and dynamically-induced strains as a function of depth. In addition to documenting and validating this model for use in the Yucca Mountain Project, this report also describes the development of model inputs, implementation of the model, its results, and the development of earthquake time history inputs based on the model results. The purpose of the site-response ground motion model is to incorporate the effects on earthquake ground motions of (1) the approximately 300 m of rock above the emplacement levels beneath Yucca Mountain and (2) soil and rock beneath the site of the Surface Facilities Area. A previously performed probabilistic seismic hazard analysis (PSHA) (CRWMS M&O 1998a [DIRS 103731]) estimated ground motions at a reference rock outcrop for the Yucca Mountain site (Point A), but those results do not include these site response effects. Thus, the additional step of applying the site-response ground motion model is required to develop ground motion inputs that are used for preclosure and postclosure purposes.

  2. Role of groundwater oxidation potential and radiolysis on waste glass performance in crystalline repository environments

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Bibler, N.E.

    1986-01-01

    Laboratory experiments have shown that groundwater conditions in a granite repository will be as reducing as those in a basalt repository. Chemical analysis of the reduced groundwaters confirmed that the Fe 2+ /Fe 3+ couple controls the oxidation potential (Eh). The reducing groundwater conditions were found to decrease the time-dependent release of soluble elements (Li and B) from the waste glass. However, due to the lower solubility of multivalent elements released from the glass when the groundwaters are reducing, these elements have significantly lower concentrations in the leachates. Gamma radiolysis reduced the oxidation potential of both granitic and basaltic groundwater in the absence of both waste glass and oxygen. This occurred in tests at atmospheric pressure where H 2 could have escaped from the solution. The mechanism for this decrease in Eh is under investigation but appears related to the reactive amorphous precipitate in both groundwaters. The results of these tests suggest that radiolysis may not cause the groundwaters to become oxidizing in a crystalline repository when abundant Fe 2+ species are present

  3. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  4. Determination of Importance Evaluation for the ESF Enhanced Characterization of the Repository Block Cross Drift

    International Nuclear Information System (INIS)

    S. Goodin

    2002-01-01

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein

  5. Determination of Importance Evaluation for the ESF Enhanced Charcterization of the Repository Block Cross Drift

    Energy Technology Data Exchange (ETDEWEB)

    S. Goodin

    2002-01-09

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein.

  6. SCALING ANALYSIS OF REPOSITORY HEAT LOAD FOR REDUCED DIMENSIONALITY MODELS

    International Nuclear Information System (INIS)

    MICHAEL T. ITAMUA AND CLIFFORD K. HO

    1998-01-01

    The thermal energy released from the waste packages emplaced in the potential Yucca Mountain repository is expected to result in changes in the repository temperature, relative humidity, air mass fraction, gas flow rates, and other parameters that are important input into the models used to calculate the performance of the engineered system components. In particular, the waste package degradation models require input from thermal-hydrologic models that have higher resolution than those currently used to simulate the T/H responses at the mountain-scale. Therefore, a combination of mountain- and drift-scale T/H models is being used to generate the drift thermal-hydrologic environment

  7. A preliminary analysis of the risk of transporting nuclear waste to potential candidate commercial repository sites

    International Nuclear Information System (INIS)

    Madsen, M.M.

    1984-01-01

    In accordance with the provisions of the Nuclear Waste Policy Act of 1982, environmental assessments for potential candidate sites are required to provide a basis for selection of the first site for disposal of commercial radioactive waste in deep geologic repositories. A preliminary analysis of the impacts of transportation for each of the five potential sites will be described. Transportation was assumed to be entirely by truck or entirely by rail in order to obtain bounding impacts. This paper presents both radiological and nonradiological risks for the once-through fuel cycle

  8. Data-driven mapping of the potential mountain permafrost distribution.

    Science.gov (United States)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2017-07-15

    Existing mountain permafrost distribution models generally offer a good overview of the potential extent of this phenomenon at a regional scale. They are however not always able to reproduce the high spatial discontinuity of permafrost at the micro-scale (scale of a specific landform; ten to several hundreds of meters). To overcome this lack, we tested an alternative modelling approach using three classification algorithms belonging to statistics and machine learning: Logistic regression, Support Vector Machines and Random forests. These supervised learning techniques infer a classification function from labelled training data (pixels of permafrost absence and presence) with the aim of predicting the permafrost occurrence where it is unknown. The research was carried out in a 588km 2 area of the Western Swiss Alps. Permafrost evidences were mapped from ortho-image interpretation (rock glacier inventorying) and field data (mainly geoelectrical and thermal data). The relationship between selected permafrost evidences and permafrost controlling factors was computed with the mentioned techniques. Classification performances, assessed with AUROC, range between 0.81 for Logistic regression, 0.85 with Support Vector Machines and 0.88 with Random forests. The adopted machine learning algorithms have demonstrated to be efficient for permafrost distribution modelling thanks to consistent results compared to the field reality. The high resolution of the input dataset (10m) allows elaborating maps at the micro-scale with a modelled permafrost spatial distribution less optimistic than classic spatial models. Moreover, the probability output of adopted algorithms offers a more precise overview of the potential distribution of mountain permafrost than proposing simple indexes of the permafrost favorability. These encouraging results also open the way to new possibilities of permafrost data analysis and mapping. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    International Nuclear Information System (INIS)

    Bradbury, J.A.

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project's ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab

  10. Illustration of sampling-based approaches to the calculation of expected dose in performance assessments for the proposed high level radioactive waste repository at Yucca Mountain, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig (Arizona State University, Tempe, AZ); Sallaberry, Cedric J. PhD. (.; .)

    2007-04-01

    A deep geologic repository for high level radioactive waste is under development by the U.S. Department of Energy at Yucca Mountain (YM), Nevada. As mandated in the Energy Policy Act of 1992, the U.S. Environmental Protection Agency (EPA) has promulgated public health and safety standards (i.e., 40 CFR Part 197) for the YM repository, and the U.S. Nuclear Regulatory Commission has promulgated licensing standards (i.e., 10 CFR Parts 2, 19, 20, etc.) consistent with 40 CFR Part 197 that the DOE must establish are met in order for the YM repository to be licensed for operation. Important requirements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. relate to the determination of expected (i.e., mean) dose to a reasonably maximally exposed individual (RMEI) and the incorporation of uncertainty into this determination. This presentation describes and illustrates how general and typically nonquantitive statements in 40 CFR Part 197 and 10 CFR Parts 2, 19, 20, etc. can be given a formal mathematical structure that facilitates both the calculation of expected dose to the RMEI and the appropriate separation in this calculation of aleatory uncertainty (i.e., randomness in the properties of future occurrences such as igneous and seismic events) and epistemic uncertainty (i.e., lack of knowledge about quantities that are poorly known but assumed to have constant values in the calculation of expected dose to the RMEI).

  11. Suggested data-gathering methods for the assessment of attitudes of Nevada citizens toward location of a repository at Yucca Mountain: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, J A

    1986-12-01

    The purpose of this paper is to outline a variety of methods that could be used by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project to assess the attitudes of Nevada citizens toward the location of a repository at Yucca Mountain. The paper is divided into three chapters: Chapter 1 provides a background discussion; Chapter 2 discusses different social science methods and summarizes the advantages and disadvantages of each; and Chapter 3 outlines a conceptual approach to integrating several methods into one overall strategy for assessment. An assessment of the attitudes of persons who may be affected by repository activities will (1) enhance the NNWSI Project`s ability to conduct the social impact assessment that can be included in an Environmental Impact Statement (EIS); (2) provide an information base for understanding and anticipating public responses; (3) allow the NNWSI Project to scope and prioritize issues that arise in the public debate that may occur over the repository location; and (4) help to facilitate communication and cooperation between the US Department of Energy (DOE) and state and local entities in the process of conducting the study. 114 refs., 1 tab.

  12. Expected dose for the early failure scenario classes in the 2008 performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Helton, J.C.; Hansen, C.W.; Sallaberry, C.J.

    2014-01-01

    Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the determination of expected dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository for the early waste package (WP) failure scenario class and the early drip shield (DS) failure scenario class in the 2008 YM PA. The following topics are addressed: (i) properties of the early failure scenario classes and the determination of dose and expected dose the RMEI, (ii) expected dose and uncertainty in expected dose to the RMEI from the early WP failure scenario class, (iii) expected dose and uncertainty in expected dose to the RMEI from the early DS failure scenario class, (iv) expected dose and uncertainty in expected dose to the RMEI from the combined early WP and early DS failure scenario class with and without the inclusion of failures resulting from nominal processes, and (v) uncertainty in the occurrence of early failure scenario classes. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA. - Highlights: • Extensive work has been carried out by the U.S. DOE in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. • Properties of the early failure scenario classes (i.e. early waste package failure and early drip shield failure) in the 2008 YM performance assessment are described. • Determination of dose, expected dose and expected (mean

  13. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    International Nuclear Information System (INIS)

    Pescatore, C.; Sullivan, T.M.

    1992-01-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated

  14. Proposed sealing field tests for a potential high-level radioactive waste repository in unsaturated tuff

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.

    1992-01-01

    This paper contains a general description of the field tests proposed for the Yucca Mountain Site Characterization Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns associated with sealing components. Ten discrete tests are proposed to address these concerns. These tests are divided into two categories -- simple and complex tests. The simple tests are: the small-scale in situ tests: the intermediate-scale borehole seal tests; the fracture grouting tests; the surface backfill tests; and the grouted rock mass tests. The complex tests are the seepage control tests; in situ backfill tests; in situ bulkhead tests; large-scale shaft seal tests; and remote borehole seal tests. These tests are proposed to be performed in welded and nonwelded tuff environments. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the exploratory studies facility. Some tests may be performed before license application and some after license application

  15. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    International Nuclear Information System (INIS)

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  16. Shear Slip Potential Induced by Thermomechanical Loading in an Underground Repository for Nuclear Waste

    International Nuclear Information System (INIS)

    Lee, Jaewon; Min, Kibok; Stephansson, Ove

    2010-01-01

    In the context of a deep geological repository for nuclear water, the thermal stress generated by nuclear waster is expected to contribute to shear slip and dilation, which will eventually alter the fracture permeability in the region. In this study, the probability of the occurrence of shear slip at a fracture was examined by the Mohr-Coulomb failure criterion. The study was based on the fracture orientation generated by the Latin hypercube sampling method, which can improve the efficiency of Monte Carlo simulations by the use of a more systematic approach for selecting the input samples. Statistical data of fracture orientations from the site investigation in Forsmark, Sweden, were used in this study. The historical assessment of thermal stress was based on three-dimensional finite element modeling of a geological repository that measures 800 m by 2000 m and on a time scale up to 10,000 years. The results show that the probability of shear slip evolved differently at six selected points due to the difference stresses at each point. However, it was evident that the probability of shear slip was more that twice as large as the initial probability of failure. This increased permeability and micro seismicity, which can be an issue during the initial operation of the repository. The study provided a quantitative assessment of the probability of shear slip at a fracture, which is an important parameter for assessing the performance of a geological repository. Conclusions are summarized as follows: · With random orientation data, the probability of shear slip around the repository model increases with increased thermal stress. · The probability of shear slip depends on the manner in which the thermal stress is generated. Higher shear slip is expected with higher differential thermal stress. · The probability of shear slip at Forsmark was less than 1 %. If different sites have fracture sets with more overlap, however, the probability may become increase. Therefore, a

  17. Long term effects on potential repository sites: the alteration of the Lower Oxford Clay during weathering

    International Nuclear Information System (INIS)

    Milowdowski, A.E.; Bloodworth, A.J.; Wilmot, R.D.

    1985-09-01

    The report is one of a short series describing work carried out to investigate the long-term effects of various geological processes on the performance of both shallow and deep repositories for low and intermediate-level radioactive wastes. This paper deals with the alteration as a result of weathering of the Lower Oxford Clay, a potential host rock for shallow disposal of wastes. A description of the Lower Oxford Clay is given, along with the weathering of argillaceous rocks. Investigations of the weathering at the Elstow Storage Depot are described, as well as the implications for radioactive waste disposal. (U.K.)

  18. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  19. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  20. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  1. Preclosure seismic design methodology for a geologic repository at Yucca Mountain. Topical report YMP/TR-003-NP

    International Nuclear Information System (INIS)

    1996-10-01

    This topical report describes the methodology and criteria that the U.S. Department of Energy (DOE) proposes to use for preclosure seismic design of structures, systems, and components (SSCs) of the proposed geologic repository operations area that are important to safety. Title 10 of the Code of Federal Regulations, Part 60 (10 CFR 60), Disposal of High-Level Radioactive Wastes in Geologic Repositories, states that for a license to be issued for operation of a high-level waste repository, the U.S. Nuclear Regulatory Commission (NRC) must find that the facility will not constitute an unreasonable risk to the health and safety of the public. Section 60.131 (b)(1) requires that SSCs important to safety be designed so that natural phenomena and environmental conditions anticipated at the geologic repository operations area will not interfere with necessary safety functions. Among the natural phenomena specifically identified in the regulation as requiring safety consideration are the hazards of ground shaking and fault displacement due to earthquakes

  2. Potentials for development of spa tourism in region of Cer Mountain: Western Serbia

    Directory of Open Access Journals (Sweden)

    Grčić Mirko

    2006-01-01

    Full Text Available Because of their particularities, thermal and mineral springs at the foothill of Cer Mountain deserve special analysis. This is the reason we wrote this article, aiming to take reader's attention to the touristic potentials of the spa zone of Cer Mountain and possibilities for its perspective development. From the medical and excursion-recreational tourism point of view, there is a possibility for combining the spa tourism with the complementary values of Cer Mountain.

  3. Preliminary Evaluation of the Effects of Buried Volcanoes on Estimates of Volcano Probability for the Proposed Repository Site at Yucca Mountain, Nevada

    Science.gov (United States)

    Hill, B. E.; La Femina, P. C.; Stamatakos, J.; Connor, C. B.

    2002-12-01

    Probability models that calculate the likelihood of new volcano formation in the Yucca Mountain (YM) area depend on the timing and location of past volcanic activity. Previous spatio-temporal patterns indicated a 10-4 to 10-3 probability of volcanic disruption of the proposed radioactive waste repository site at YM during the 10,000 year post-closure performance period (Connor et al. 2000, JGR 105:1). A recent aeromagnetic survey (Blakely et al. 2000, USGS OFR 00-188), however, identified up to 20 anomalies in alluvium-filled basins, which have characteristics indicative of buried basalt (O'Leary et al. 2002, USGS OFR 02-020). Independent evaluation of these data, combined with new ground magnetic surveys, shows that these anomalies may represent at least ten additional buried basaltic volcanoes, which have not been included in previous probability calculations. This interpretation, if true, nearly doubles the number of basaltic volcanoes within 30 km [19 mi] of YM. Moreover, the magnetic signature of about half of the recognized basaltic volcanoes in the YM area cannot be readily identified in areas where bedrock also produces large amplitude magnetic anomalies, suggesting that additional volcanoes may be present but undetected in the YM area. In the absence of direct age information, we evaluate the potential effects of alternative age assumptions on spatio-temporal probability models. Interpreted burial depths of >50 m [164 ft] suggest ages >2 Ma, based on sedimentation rates typical for these alluvial basins (Stamatakos et al., 1997, J. Geol. 105). Defining volcanic events as individual points, previous probability models generally used recurrence rates of 2-5 volcanoes/million years (v/Myr). If the identified anomalies are buried volcanoes that are all >5 Ma or uniformly distributed between 2-10 Ma, calculated probabilities of future volcanic disruption at YM change by <30%. However, a uniform age distribution between 2-5 Ma for the presumed buried volcanoes

  4. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; McBride, C.M.

    1985-01-01

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inability to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs

  5. Potential role of ABC-assisted repositories in U.S. plutonium and high-level waste disposition

    Energy Technology Data Exchange (ETDEWEB)

    Berwald, D.; Favale, A.; Myers, T. [Grumman Aerospace Corporation, Bethpage, NY (United States)] [and others

    1995-10-01

    This paper characterizes the issues involving deep geologic disposal of LWR spent fuel rods, then presents results of an investigation to quantify the potential role of Accelerator-Based Conversion (ABC) in an integrated national nuclear materials and high level waste disposition strategy. The investigation used the deep geological repository envisioned for Yucca Mt., Nevada as a baseline and considered complementary roles for integrated ABC transmutation systems. The results indicate that although a U.S. geologic waste repository will continue to be required, waste partitioning and accelerator transmutation of plutonium, the minor actinides, and selected long-lived fission products can result in the following substantial benefits: plutonium burndown to near zero levels, a dramatic reduction of the long term hazard associated with geologic repositories, an ability to place several-fold more high level nuclear waste in a single repository, electricity sales to compensate for capital and operating costs.

  6. Oxidative alteration of uraninite at the Nopal I deposit, Mexico: Possible contaminant transport and source term constraints for the proposed repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Leslie, B.W.; Pearcy, E.C.; Prikryl, J.D.

    1993-01-01

    The Nopal I uranium deposit at Pena Blanca, Mexico is being studied as a natural analog of the proposed high-level nuclear waste repository at Yucca Mountain. Identification of secondary uranium phases at Nopal I, and the sequence of their formation after uraninite oxidation, provides insight into the source term for uranium, and suggests that uranophane may control uranium release and transport in a silici, tuffaceous, chemically oxidizing, and hydrologically unsaturated environment. Possible constraints on contaminant transport at Nopal I are derived from the spatial distribution of uranium and from measurements of 238 U decay-series isotopes. The analyses indicate that flow of U-bearing fluids was influenced strongly by fracture density, but that the flow of these fluids was not restricted to fractures. Gamma spectroscopic measurements of 238 U decay-series isotopes indicates secular equilibrium, which suggests undetectable U transport under present conditions

  7. Analysis simulation of tectonic earthquake impact to the lifetime of radioactive waste container and equivalent dose rate predication in Yucca Mountain geologic repository, Nevada test site, USA

    International Nuclear Information System (INIS)

    Ko, I.S.; Imardjoko, Y.U.; Karnawati, Dwikorita

    2003-01-01

    US policy not to recycle her spent nuclear fuels brings consequence to provide a nuclear waste repository site Yucca Mountain in Nevada, USA, considered the proper one. High-level radioactive waste to be placed into containers and then will be buried in three hundred meter underground tunnels. Tectonic earthquake is the main factor causing container's damage. Goldsim version 6.04.007 simulates mechanism of container's damage due to a great devastating impact load, the collapse of the tunnels. Radionuclide inventories included are U-234, C-14, Tc-99, I-129, Se-79, Pa-231, Np-237, Pu-242, and Pu-239. Simulation carried out in 100,000 years time span. The research goals are: 1). Estimating tunnels stan-up time, and 2). Predicting the equivalent dose rate contributed by the included radionuclides to the human due to radioactive polluted drinking water intake. (author)

  8. Analysis of the potential formation of a Breccia chimney beneath the WIPP repository

    International Nuclear Information System (INIS)

    Spiegler, P.

    1982-05-01

    This report evaluates the potential formation of a Breccia pipe beginning at the Bell Canyon aquifer beneath the WIPP repository and the resulting release of radioactivity to the surface. Rock mechanics considerations indicate that the formation of a Breccia pipe by collapse of a cavern is not reasonable. Even if rock mechanics is ignored, the overlying strata act as a barrier and would prevent the release of radioactivity to the biosphere. Gradual formation of a Breccia pipe is so slow that the plutonium-239 in the waste (one of the most important long-lived components) would decay during formation. If Bell Lake and San Simon Sinks are the surface manifestation of a regional deep dissolution wedge, such a wedge is too far removed to represent pipe forming activity near the WIPP site. The formation of a Breccia pipe under the WIPP repository is highly unlikely. If it did occur, the concentration of plutonium-239 in brine reaching the surface would be less than the maximum permissible concentration in water specified in the Code of Federal Regulation Title 10, part 20

  9. Investigations of hydro-tectonic hazards at the proposed Yucca Mountain high-level nuclear waste repository. Annual report - Nevada

    International Nuclear Information System (INIS)

    Livingston, D.E.

    1994-01-01

    This document includes several reports describing scientific studies of the origin of near surface calcite/silica deposits at Yucca Mountain, Nevada. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  10. State-of-the-art for evaluating the potential impact of flooding on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    This report is a review of the state-of-the-art for evaluating the potential impact of flooding on a deep radioactive-waste repository, namely, for predicting the future occurrence of catastrophic flooding and for estimating the effect of such flooding on waste containment characteristics. Several detrimental effects are identified: flooding can increase groundwater seepage velocities through a repository within the framework of the existing hydrologic system and thus increase the rate of radioactive-waste leakage to the biosphere; flooding may alter repository hydrology by reversing flow gradients, relocating sources of groundwater recharge and discharge, or shortening seepage paths, thereby producing unpredictable leakage; saturation of a vadose-zone repository during flooding can increase groundwater seepage velocities by several orders of magnitude; and flooding can damage repository-media containment properties by inducing seismic or chemical instability or increasing fracture permeability in relatively shallow repository rock as a result of redistributing in-situ stresses. Short-term flooding frequency and magnitude can be predicted statistically by analyzing historical records of flooding. However, long-term flooding events that could damage a permanent repository cannot be predicted with confidence because the geologic record is neither unique nor sufficienly complete for statistical analysis. It is more important to identify parameters characterizing containment properties (such as permeability, groundwater gradient, and shortest seepage path length to the biosphere) that could be affected by future flooding, estimate the maximum magnitude of flooding that could occur within the life of the repository by examining the geologic record, and determine the impact such flooding could have on the parameter values

  11. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  12. Bomb-Pulse Chlorine-36 At The Proposed Yucca Mountain Repository Horizon: An Investigation Of Previous Conflicting Results And Collection Of New Data

    International Nuclear Information System (INIS)

    J. Cizdziel

    2006-01-01

    Previous studies by scientists at Los Alamos National Laboratory (LANL) found elevated ratios of chlorine-36 to total chloride ( 36 Cl/Cl) in samples of rock collected from the Exploratory Studies Facility (ESF) and the Enhanced Characterization of the Repository Block (ECRB) at Yucca Mountain as the tunnels were excavated. The data were interpreted as an indication that fluids containing 'bomb-pulse' 36 Cl reached the repository horizon in the ∼50 years since the peak period of above-ground nuclear testing. Moreover, the data support the concept that so-called fast pathways for infiltration not only exist but are active, possibly through a combination of porous media, faults and/or other geologic features. Due to the significance of 36 Cl data to conceptual models of unsaturated zone flow and transport, the United States Geological Survey (USGS) was requested by the Department of Energy (DOE) to design and implement a study to validate the LANL findings. The USGS chose to drill new boreholes at select locations across zones where bomb-pulse ratios had previously been identified. The drill cores were analyzed at Lawrence Livermore National Laboratory (LLNL) for 36 Cl/Cl using both active and passive leaches, with the USGS/LLNL concluding that the active leach extracted too much rock-Cl and the passive leach did not show bomb-pulse ratios. Because consensus was not reached between the USGS/LLNL and LANL on several fundamental points, including the conceptual strategy for sampling, interpretation and use of tritium ( 3 H) data, and the importance and interpretation of blanks, in addition to the presence or absence of bomb-pulse 36 Cl, an evaluation by an independent entity, the University of Nevada, Las Vegas (UNLV), using new samples was initiated. This report is the result of that study. The overall objectives of the UNLV study were to investigate the source or sources of the conflicting results from the previous validation study, and to obtain additional data to

  13. Dose rates as a function of time due to postulated radionuclide releases from the U.S. Yucca Mountain high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Moeller, Dade W.; Sun, Lin-Shen C.; Cherry, Robert

    2008-01-01

    The Yucca Mountain repository, which is located in a remote area in the State of Nevada, is being constructed for the long-term care and disposal of spent nuclear fuel and vitrified high-level radioactive waste. In accordance with U.S. law, the U.S. Environmental Protection Agency (USEPA) promulgated Standards that limit the dose rates to members of the public due to the consumption of ground water, alone, and the consumption of ground water plus agricultural products irrigated with the contaminated ground water, and other exposures, such as those from external sources and the inhalation of airborne radioactive materials. As part of this exercise, the USEPA identified eight specific radionuclides to which their Standards are to apply. These are: 14 C, 99 Tc, 129 I, 226 Ra, 228 Ra, 237 Np, 239 Pu, and 241 Am. For purposes of the associated dose rate estimates, a range of conservative assumptions have been applied, all of which are designed to assure that the estimated dose rates are well above what might be expected under 'real-world' conditions. As a first step, it was assumed that: (1) at 10 4 year after repository closure, a fractional release of 10 -5 of the entire repository radionuclide inventory occurred; (2) the only prior reduction in the inventory was that due to radioactive decay; and (3) the sole path of exposure to neighboring population groups was through the consumption of 2 L d -1 of contaminated ground water. The accompanying analyses revealed that, of the eight radionuclides, only 226 Ra, 237 Np, and 239 Pu, will represent a significant source of dose at that time. To provide perspective and insights, the next step was to estimate the committed effective dose rates for all eight radionuclides based on an assumed fractional release each year of 10 -5 of the inventory from the time of repository closure up through the 10 6 year. For purposes of providing perspective, it was assumed that each dose rate estimate was independent, that is, no releases

  14. Swelling pressures of a potential buffer material for high-level waste repository

    International Nuclear Information System (INIS)

    Lee, Jae Owan; Cho, Won Jin; Chun, Kwan Sik

    1999-01-01

    The swelling pressure of a potential buffer material was measured and the effect of dry density, bentonite content and initial water content on the swelling pressure was investigated to provide the information for the selection of buffer material in a high-level waste repository. Swelling tests were carried out according to Box-Behnken's experimental design. Measured swelling pressures were in the wide range of 0.7 Kg/cm 2 to 190.2 Kg/cm 2 under given experimental conditions. Based upon the experimental data, a 3-factor polynomial swelling model was suggested to analyze the effect of dry density, bentonite content and initial water content on the swelling pressure. The swelling pressure increased with an increase in the dry density and bentonite content, while it decreased with increasing the initial water content and, beyond about 12 wt.% of the initial water content, levelled to nearly constant value. (author). 21 refs., 10 figs., 4 tabs

  15. Preliminary analyses of scenarios for potential human interference for repositories in three salt formations

    International Nuclear Information System (INIS)

    1985-10-01

    Preliminary analyses of scenarios for human interference with the performance of a radioactive waste repository in a deep salt formation are presented. The following scenarios are analyzed: (1) the U-Tube Connection Scenario involving multiple connections between the repository and the overlying aquifer system; (2) the Single Borehole Intrusion Scenario involving penetration of the repository by an exploratory borehole that simultaneously connects the repository with overlying and underlying aquifers; and (3) the Pressure Release Scenario involving inflow of water to saturate any void space in the repository prior to creep closure with subsequent release under near lithostatic pressures following creep closure. The methodology to evaluate repository performance in these scenarios is described and this methodology is applied to reference systems in three candidate formations: bedded salt in the Palo Duro Basin, Texas; bedded salt in the Paradox Basin, Utah; and the Richton Salt Dome, Mississippi, of the Gulf Coast Salt Dome Basin

  16. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2009 of the performance of a repository for spent nuclear fuel and high - level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a) Regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives, (c) technical milestones of implementing institutions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safety on the performance assessment for the Yucca Mountain license

  17. Backfilling techniques and materials in underground excavations: Potential alternative backfill materials in use in Posiva's spent fuel repository concept

    International Nuclear Information System (INIS)

    Dixon, D.A.; Keto, P.

    2009-05-01

    A variety of geologic media options have been proposed as being suitable for safely and permanently disposing of spent nuclear fuel or fuel reprocessing wastes. In Finland the concept selected is construction of a deep repository in crystalline rock (Posiva 1999, 2006; SKB 1999), likely at the Olkiluoto site (Posiva 2006). Should that site prove suitable, excavation of tunnels and several vertical shafts will be necessary. These excavations will need to be backfilled and sealed as emplacement operations are completed and eventually all of the openings will need to be backfilled and sealed. Clay-based materials were selected after extensive review of materials options and the potential for practical implementation in a repository and work over a 30+ year period has led to the development of a number of workable clay-based backfilling options, although discussion persists as to the most suitable clay materials and placement technologies to use. As part of the continuous process of re-evaluating backfilling options in order to provide the best options possible, placement methods and materials that have been given less attention have been revisited. Primary among options that were and continue to be evaluated as a potential backfill are cementitious materials. These materials were included in the list of candidate materials initially screened in the late 1970's for use in repository backfilling. Conventional cement-based materials were quickly identified as having some serious technical limitations with respect their ability to fulfil the identified requirements of backfill. Concerns related to their ability to achieve the performance criteria defined for backfill resulted in their exclusion from large-scale use as backfill in a repository. Development of new, less chemically aggressive cementitious materials and installation technologies has resulted in their re-evaluation. Concrete and cementitious materials have and are being developed that have chemical, durability

  18. Fluid flow and reactive transport around potential nuclear waste emplacement tunnels at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spycher, N.F.; Sonnenthal, E.L.; Apps, J.A.

    2002-01-01

    The evolution of fluid chemistry and mineral alteration around a potential waste emplacement tunnel (drift) is evaluated using numerical modeling. The model considers the flow of water, gas, and heat, plus reactions between minerals, CO 2 gas, and aqueous species, and porosity permeability-capillary pressure coupling for a dual permeability (fractures and matrix) medium. Two possible operating temperature modes are investigated: a ''high-temperature'' case with temperatures exceeding the boiling point of water for several hundred years, and a ''loW--temperature'' case with temperatures remaining below boiling for the entire life of the repository. In both cases, possible seepage waters are characterized by dilute to moderate salinities and mildly alkaline pH values. These trends in fluid composition and mineral alteration are controlled by various coupled mechanisms. For example, upon heating and boiling, CO 2 exsolution from pore waters raises pH and causes calcite precipitation. In condensation zones, this CO 2 redissolves, resulting in a decrease in pH that causes calcite dissolution and enhances feldspar alteration to clays. Heat also enhances dissolution of wallrock minerals leading to elevated silica concentrations. Amorphous silica precipitates through evaporative concentration caused by boiling in the high-temperature case, but does not precipitate in the loW--temperature case. Some alteration of feldspars to clays and zeolites is predicted in the high-temperature case. In both cases, calcite precipitates when percolating waters are heated near the drift. The predicted porosity decrease around drifts in the high-temperature case (several percent of the fracture volume) is larger by at least one order of magnitude than in the low temperature case. Although there are important differences between the two investigated temperature modes in the predicted evolution of fluid compositions and mineral alteration around drifts, these differences are small relative to

  19. DOE's Yucca Mountain studies

    International Nuclear Information System (INIS)

    1992-12-01

    This booklet is about the disposal of high-level nuclear waste in the United States. It is for readers who have a general rather than a technical background. It discusses why scientists and engineers thinkhigh-level nuclear waste may be disposed of safely underground. It also describes why Yucca Mountain, Nevada, is being studied as a potential repository site and provides basic information about those studies

  20. Assessing the potentialities of integrated modelling during early phases of siting and design of a geological repository: the REGIME exercise

    Energy Technology Data Exchange (ETDEWEB)

    Genty, A.; Certes, C.; Serres, C.; Besnus, F. [Institut de Radioprotection et de Surete Nucleaire IRSN, 92 - Fontenay aux Roses (France); Fischer-Appelt, K.; Baltes, B.; Rohlig, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2003-01-01

    This paper presents the safety assessment exercise 'REGIME' (Repository Evaluation performed by GRS and IRSN through a Modelling Exercise) performed jointly by GRS and IRSN. The main objective of the project is to test the ability of integrated modelling to contribute to site selection and repository conception in the context of high-level radioactive waste disposal. The project is divided in two parts. Phase 1 consisted in studying different flow patterns in a given geological context. The selected hydrogeological contexts and three site locations potentially favourable for hosting a repository are described. Phase 2, under progress, aims at evaluating the rote of limitation of releases played by the different components of the disposal system taking into account possible dysfunctions. The main issues to be addressed in phase 2, the modelling outline and the scenarios to be studied are presented. (authors)

  1. Overview of the current CRWMS repository design

    International Nuclear Information System (INIS)

    Daniel, R.B.; Teraoka, G.M.

    1998-01-01

    This paper summarizes the current design for a potential geologic repository for spent fuels and high-level wastes at Yucca Mountain, Nevada. The objective of the paper is to present the key design features of the Mined Geologic Disposal System (MGDS) surface facilities and MGDS subsurface facilities. The paper describes the following: surface layout; waste handling operations design; subsurface design; and the underground transport and emplacement design. A more detailed presentation of key features is provided in the ''Reference design description for a geologic repository'' which is located on the YMP Homepage at www.ymp.gov

  2. Microbial activity at Yucca Mountain

    International Nuclear Information System (INIS)

    Horn, J.M.; Meike, A.

    1995-01-01

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified

  3. Microbial activity at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.

    1995-09-25

    The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

  4. Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Voegele, Michael D.

    2014-01-01

    This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding. - Highlights: • Progression of events associated with repository design to accommodate tunnel boring machine and in-drift waste package emplacement are discussed. • Change in container design from small, single-layered stainless steel vessel to large, two-layered nickel alloy vessel is discussed. • The addition of drip shield to limit the

  5. Evidence of prehistoric flooding and the potential for future extreme flooding at Coyote Wash, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Glancy, P.A.

    1994-01-01

    Coyote Wash, an approximately 0.3-square-mile drainage on the eastern flank of Yucca Mountain, is the potential location for an exploratory shaft to evaluate the suitability of Yucca Mountain for construction of an underground repository for the storage of high-level radioactive wastes. An ongoing investigation is addressing the potential for hazards to the site and surrounding areas from flooding and related fluvial-debris movement. Unconsolidated sediments in and adjacent to the channel of North Fork Coyote Wash were examined for evidence of past floods. Trenches excavated across and along the valley bottom exposed multiple flood deposits, including debris-flow deposits containing boulders as large as 2 to 3 feet in diameter. Most of the alluvial deposition probably occurred during the late Quaternary. Deposits at the base of the deepest trench overlie bedrock and underlie stream terraces adjacent to the channel; these sediments are moderately indurated and probably were deposited during the late Pleistocene. Overlying nonindurated deposits clearly are younger and may be of Holocene age. This evidence of intense flooding during the past indicates that severe flooding and debris movement are possible in the future. Empirical estimates of large floods of the past range from 900 to 2,600 cubic feet per second from the 0.094-square-mile drainage area of North Fork Coyote Wash drainage at two proposed shaft sites. Current knowledge indicates that mixtures of water and debris are likely to flow from North Fork Coyote Wash at rates up to 2,500 cubic feet per second. South Fork Coyote Wash, which has similar basin area and hydraulic characteristics, probably will have concurrent floods of similar magnitudes. The peak flow of the two tributaries probably would combine near the potential sites for the exploratory shaft to produce future flow of water and accompanying debris potentially as large as 5,000 cubic feet per second

  6. Long term effects on potential repository sites: climatic and geomorphological changes

    International Nuclear Information System (INIS)

    Seddon, M.B.; Worsley, P.

    1985-05-01

    A study of the effects of climatic variability on the geomorphological processes operating on the landscape are important in the study of radioactive waste repository sites. The effects of glacial erosion and deposition are fundamental to an examination of repository safety, particularly in North Britain. Rates of climatic shift need to be examined. Predictive simulation models, based on a knowledge of past climatic events, for future global climates are proposed. (UK)

  7. Human intrusion into geologic repositories for high-level radioactive waste: potential and prevention

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, F X [Nuclear Regulatory Commission, Washington, DC (USA). Office of Nuclear Regulatory Research

    1981-12-01

    Isolation of high-level radioactive waste over long periods of time requires protection not only from natural events and processes, but also from the deliberate or inadvertent activities of future societies. This paper evaluates the likelihood of inadvertent human intrusion due to the loss of societal memory of the repository site. In addition measures to prevent inadvertent intrusion, and to guide future societies in any decision to deliberately intrude into the repository are suggested.

  8. Two factors important to the criticality potential of spent fuel in geologic repositories

    International Nuclear Information System (INIS)

    Gore, B.F.; Jenquin, U.P.

    1981-02-01

    Two factors important to the criticality potential of spent fuel in geologic repositories are: the residual fissile content of the fuel, and the extent to which geochemical processes might somehow separate and accumulate plutonium from other spent fuel materials. This paper presents the results of two calculational surveys defining conditions required for criticality. In the first, homogeneous spherical mixtures of spent fuel actinide oxides and water with water reflection are analyzed. Graphs of minimum critical mass vs duration of in-reactor exposure are presented. Parametric variations from a base case are explored, including the effects of initial enrichment, post exposure radioactive decay and addition of rock materials to the mixture. In the second study, homogeneous spherical mixtures devoid of water, containing plutonium and a neutronically optimized rock material, with a thick rock neutron reflector are analyzed. Graphs of Pu critical mass are presented as a function of concentration over the range from 2 to 100 g Pu/l. Parametric variations from a base case are explored, including effects of rock composition, 240 Pu content and uranium contamination of the plutonium

  9. MAJOR REPOSITORY DESIGN ISSUES

    International Nuclear Information System (INIS)

    JACK N. BAILEY, DWAYNE CHESTNUT, JAMES COMPTON AND RICHARD D. SNELL

    1997-01-01

    The Yucca Mountain Project is focused on producing a four-part viability assessment in late FY98. Its four components (design, performance assessment, cost estimate, and licensing development plan) must be consistent. As a tool to compare design and performance assessment options, a series of repository pictures were developed for the sequential time phases of a repository. The boundaries of the time phases correspond to evolution in the engineered barrier system (EBS)

  10. Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form

    International Nuclear Information System (INIS)

    Keiser, D.D.

    1996-11-01

    Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne's waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne's metal waste form in light of the Yucca Mountain activities

  11. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations' 2030 Agenda

    Directory of Open Access Journals (Sweden)

    Georg Gratzer

    2017-08-01

    Full Text Available The world is facing numerous and severe environmental, social, and economic challenges. To address these, in September 2015 the General Assembly of the United Nations adopted the resolution Transforming our World: The 2030 Agenda for Sustainable Development. The United Nations' 17 sustainable development goals (SDGs and their 169 targets are ambitious, broadly encompassing, and indivisible. They are intended to guide nations and communities toward attaining healthy and peaceful livelihoods free of poverty and hunger. Collectively the goals envision sound and safe environments, where global threats like climate change are successfully combated through both mitigation and adaptation. Agenda 2030 envisages sustainable production patterns with inclusive, effective economies and institutions. It is of specific relevance to mountain communities, where the population is predominantly rural and half of the rural inhabitants experience food insecurity and are often highly dependent on forest resources. Mountain forests also contribute to human welfare well beyond the local community: through functions such as climate and hydrological services provided at regional and global scales, and harvested commodities traded at multiple economic scales. In this introductory essay we argue that sustainable forest management in mountain areas disproportionately contributes to achieving the SDGs. We discuss (1 the potential of mountain forests to help achieve SDGs in mountainous regions and beyond, (2 the potential of the SDGs to help solve severe socioeconomic and ecological problems in forested mountain areas, and (3 challenges and opportunities associated with implementing the SDGs. We base our argumentation also on the 8 papers presented in this Focus Issue of Mountain Research and Development. Together, they establish a clear connection between sustainable use and protection of mountain forests and vital ecosystem services upon which many regions depend. We

  12. State-of-the-art report on potentially useful materials for sealing nuclear waste repositories

    International Nuclear Information System (INIS)

    Coons, W.; Bergstroem, A.; Gnirk, P.; Gray, M.; Knecht, B.; Pusch, R.; Steadman, J.; Stillborg, B.; Tokonami, Masayasu; Vaajasaari, M.

    1987-06-01

    Seals, including fracture seals, may be used to limit groundwater flow into and away and to limit the release of radionuclides that may be transported by groundwater movement. Seals, if required to achieve repository performance or desirable from a performance standpoint, should have as long service life as possible; the primary means to assure long-term sealing functions is to assure long-term stability of the materials selected for sealing. Seal materials selection and seal design will depend on quantitative sealing criteria; these criteria have not been established and probably cannot be established generically; each repository will have different sealing criteria and individually selected seal materials and designs. In light of the above, however, the priority fracture seal materials, i.e., bentonite grouts and cementitious grouts and their mixtures, will probably be widely applicable and will meet sealing requirements that may be imposed by any of the participants' repository programs. (orig./HP)

  13. An example postclosure risk assessment using the potential Yucca Mountain Site

    International Nuclear Information System (INIS)

    Doctor, P.G.; Eslinger, P.W.; Elwood, D.M.; Engel, D.W.; Freshley, M.D.; Liebetrau, A.M.; Reimus, P.W.; Strenge, D.L.; Tanner, J.E.; Van Luik, A.E.

    1992-05-01

    The risk analysis described in this document was performed for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) over a 2-year time period ending in June 1988. The objective of Pacific Northwest Laboratory's (PNL) task was to demonstrate an integrated, though preliminary, modeling approach for estimating the postclosure risk associated with a geologic repository for the disposal of high-level nuclear waste. The modeling study used published characterization data for the proposed candidate site at Yucca Mountain, Nevada, along with existing models and computer codes available at that time. Some of the site data and conceptual models reported in the Site Characterization Plan published in December 1988, however, were not yet available at the time that PNL conducted the modeling studies

  14. Fault stress analysis for the Yucca Mountain site characterization project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1992-01-01

    An understanding of the state of stress on faults is important for pre- and post-closure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. it was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  15. Fault stress analysis for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Bauer, S.J.; Hardy, M.P.; Goodrich, R.; Lin, M.

    1991-01-01

    An understanding of the state of stress on faults is important for pre- and postclosure performance considerations for the potential high-level radioactive waste repository at Yucca Mountain. This paper presents the results of three-dimensional numerical analyses that provide estimates of the state of stress through time (10,000 years) along three major faults in the vicinity of the potential repository due to thermal stresses resulting from waste emplacement. It was found, that the safety factor for slip close to the potential repository increases with time after waste emplacement. Possible fault slip is predicted above and below the potential repository for certain loading conditions and times. In general, thermal loading reduces the potential for slip in the vicinity of the potential repository

  16. Technical test description of activities to determine the potential for spent fuel oxidation in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1985-06-01

    The potential change in the oxidation state of spent fuel during its residence in a repository must be known to evaluate its radionuclide retention capabilities. Once the container breaches, the spent fuel in a repository sited above the water table will be exposed to a moist air atmosphere at low temperatures. Thermodynamically, there is no reason why the fuel should not oxidize to a higher oxidation state under these conditions, given enough time. Depending on the rate of oxidation, higher oxides with potentially higher leach rates may eventually form or the cladding may even split open. If either of these oxidation effects occurs, the ability of spent fuel to retard radionuclide migration will be reduced. A technical test description is presented to study spent fuel oxidation at low temperatures characteristic of the post-container breach period and at high temperatures in a moist inert atmosphere characteristic of a sealed container with waterlogged fuel, early in the repository life. The approach taken will be to perform tests and evaluations to gain understanding of the operative oxidation mechanisms, to obtain oxidation rate data, and to make projections of potential long-term fuel oxidation states. Time and temperature dependence of existing models will be evaluated, and the dependence of the model projections on fuel variables will be determined. 27 refs., 7 figs., 4 tabs

  17. State-of-the-art for evaluating the potential impact of tectonism and volcanism on a radioactive waste repository

    International Nuclear Information System (INIS)

    1980-01-01

    Most estimates of the time required for safe isolation of radioactive wastes from the biosphere range from 100,000 to 1,000,000 years. For such long time spans, it is necessary to assess the potential effects of geologic processes such as volcanism and tectonic activity on the integrity of geologic repositories. Predictions of geologic phenomena can be based on probabilistic models, which assume a random distribution of events. The necessary historic and geologic records are rarely available to provide an adequate data base for such predictions. The observed distribution of volcanic and tectonic activity is not random, and appears to be controlled by extremely complex deterministic processes. The advent of global plate tectonic theory in the past two decades has been a giant step toward understanding these processes. At each potential repository site, volcanic and tectonic processes should be evaluated to provide the most thorough possible understanding of those deterministic processes. Based on this knowledge, judgements will have to be made as to whether or not the volcanic and tectonic processes pose unacceptable risk to the integrity of the repository. This report describes the potential hazards associated with volcanism and tectonism, and the means for evaluating these processes

  18. R and D on performance assessment of a potential LILW repository

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Lee, Sung Hee; Han, Kyung Won; Lee, Y M

    2001-01-01

    In this technical report Important issues and assessment methods related to post-closure safety of a proposed repository has been discussed, regarding LILW disposal. At first, to summarize the new proposal on the amendment of the MOST Notice 96-16, KAERI set up the overall directions on future R and D over performance assessment. In addition relevant overseas project such as Finnish POSIVA's VLJ repository project was thoroughly reviewed along with the recent progress of the gas generation and migration R and D. In the post-closure safety analysis of the VLJ repository, in addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. The groundwater flow analysis and the biosphere analysis have been evaluated. The result of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. in the reference scenario the maximum expectation value of the individual dose rate is 0.03 mSv/a. in the realistic scenario the maximum expectation value of the dose rate is 0.0002 mSv/a In general gas generation sources are represented by radioactive gases and non-radioactive gases. The amount of radioactive gases is little that it does not make a significant influence on the safety of LILW repository, however non-radioactive gases can cause safety problem. As mentioned above, gas of LILW generated by corrosion and microbiology and their production rate can be estimated by computer simulation and long-term experiment.

  19. R and D on performance assessment of a potential LILW repository

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo; Lee, Sung Hee; Han, Kyung Won; Lee, Y. M

    2001-01-01

    In this technical report Important issues and assessment methods related to post-closure safety of a proposed repository has been discussed, regarding LILW disposal. At first, to summarize the new proposal on the amendment of the MOST Notice 96-16, KAERI set up the overall directions on future R and D over performance assessment. In addition relevant overseas project such as Finnish POSIVA's VLJ repository project was thoroughly reviewed along with the recent progress of the gas generation and migration R and D. In the post-closure safety analysis of the VLJ repository, in addition to the normal evolution scenario, several disturbed evolution and accident scenarios have been analysed. The groundwater flow analysis and the biosphere analysis have been evaluated. The result of the safety analysis show that radiation doses of any significance are caused only if a well is bored in the vicinity of the repository or if the groundwater discharge spot is inhabited and used for cultivation. in the reference scenario the maximum expectation value of the individual dose rate is 0.03 mSv/a. in the realistic scenario the maximum expectation value of the dose rate is 0.0002 mSv/a In general gas generation sources are represented by radioactive gases and non-radioactive gases. The amount of radioactive gases is little that it does not make a significant influence on the safety of LILW repository, however non-radioactive gases can cause safety problem. As mentioned above, gas of LILW generated by corrosion and microbiology and their production rate can be estimated by computer simulation and long-term experiment.

  20. Decompression of magma into repository tunnels

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    It is nontrivial to find and design safe repository sites for nuclear waste. It appears common sense to drill tunnels as repository sites in a mountain in remote and relatively dry regions. However, erosion of the waste canisters by naturally abundant chemicals in the mountains water cycle remains a

  1. ASH REDISTRIBUTION FOLLOWING A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN

    International Nuclear Information System (INIS)

    J. Pelletier; S. deLong; M.L. Cline; C. Harrington; G. Keating

    2005-01-01

    The redistribution of contaminated tephra by hillslope, fluvial, and pedologic processes is a poorly-constrained but important aspect of evaluating the radiological dose from an unlikely volcanic eruption at Yucca Mountain (YM). To better evaluate this hazard, we developed a spatially distributed, numerical model of tephra redistribution that integrates contaminated tephra from hill slopes and active channels, mixes it with clean sediment in the channel system, distributes it on the fan, and migrates it into the soil column. The model is coupled with an atmospheric dispersion model that predicts the deposition of radioactive waste-contaminated tephra at specified grid points. The redistribution model begins in the upper Fortymile Wash drainage basin where it integrates the tephra deposited on steep slopes and active channel beds within a GIS framework. The Fortymile Wash drainage basin is the focus of this model because tephra from only this basin reaches the Fortymile Wash alluvial fan by fluvial processes, and it is on this fan where the radiological dose to a hypothetical individual is compared to the regulatory standard (via additional biosphere models). The dilution effect of flood scour, mixing, and re-deposition within the upper basin is modeled using a dilution-mixing model widely used in the contaminant-transport literature. The accuracy of this model is established by comparing the model prediction with tephra concentrations measured in channels draining the Lathrop Wells volcanic center. The model combines the contaminated tephra transported from the upper basin with the tephra deposited directly on the fan as primary fallout. On the Fortymile Wash fan, channels and interchannel-divide areas are divided on the basis of soil-geomorphic mapping according to whether they are Holocene or Pleistocene in age. This approach allows the model to incorporate the effects of channel migration on the fan within the past 10,000 yr. The model treats the redistribution

  2. Yucca Mountain biological resources monitoring program

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  3. Identification and characterization of potential discharge areas for radionuclide transport by groundwater from a nuclear waste repository in Sweden.

    Science.gov (United States)

    Berglund, Sten; Bosson, Emma; Selroos, Jan-Olof; Sassner, Mona

    2013-05-01

    This paper describes solute transport modeling carried out as a part of an assessment of the long-term radiological safety of a planned deep rock repository for spent nuclear fuel in Forsmark, Sweden. Specifically, it presents transport modeling performed to locate and describe discharge areas for groundwater potentially carrying radionuclides from the repository to the surface where man and the environment could be affected by the contamination. The modeling results show that topography to large extent determines the discharge locations. Present and future lake and wetland objects are central for the radionuclide transport and dose calculations in the safety assessment. Results of detailed transport modeling focusing on the regolith and the upper part of the rock indicate that the identification of discharge areas and objects considered in the safety assessment is robust in the sense that it does not change when a more detailed model representation is used.

  4. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    Energy Technology Data Exchange (ETDEWEB)

    Heathcote, J.A. [Entec UK Ltd., Shrewsbury (United Kingdom)

    1997-04-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs.

  5. Scoping studies on the effect of quaternary climate change on the hydrogeology in the Sellafield potential repository zone

    International Nuclear Information System (INIS)

    Heathcote, J.A.

    1997-01-01

    The present investigations in the vicinity of the Sellafield potential repository zone have provided data on groundwater pressure and salinity to a depth of some 2000 m, for a section extending from the hills to the east of the zone, to the coast. As part of the process of demonstrating the suitability of the site for a deep repository, work has been undertaken to reconcile these observations of pressure and salinity with an understanding of the hydrogeology of the site. It is considered possible that the long glacial history of the site may in part be responsible for present observations. This work documents some preliminary studies to determine the possible magnitude of such glacial effects. 4 refs, 2 figs

  6. Snow hazard potential evaluation along G217 highway in Tianshan mountains by using GIS and RS

    Science.gov (United States)

    Tao, Jianwei

    2007-11-01

    Snow hazard especially avalanche potential along G217 national highway in Tianshan Mountains using remote sensing and GIS is evaluated and compared with actual site records of avalanche in a test area. Most places of the actual avalanche accidents are consistent with the places with the high snow hazard potential. But there are several places of the avalanche were not in the high hazard potential areas. The reason for this difference is discussed.

  7. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  8. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  9. Mountain bikes as seed dispersers and their potential socio-ecological consequences.

    Science.gov (United States)

    Weiss, Fabio; Brummer, Tyler J; Pufal, Gesine

    2016-10-01

    Seed dispersal critically influences plant community composition and species distributions. Increasingly, human mediated dispersal is acknowledged as important dispersal mechanism, but we are just beginning to understand the different vectors that might play a role. We assessed the role of mountain bikes as potential dispersal vectors and associated social-ecological consequences in areas of conservation concern near Freiburg, Germany. Seed attachment and detachment on a mountain bike were measured experimentally at distances from 0 to 500 m. We assessed effects of seed traits, weather conditions, riding distance and tire combinations using generalized linear mixed effect models. Most seeds detached from the mountain bike within the first 5-20 m. However, a small proportion of seeds remained on tires after 200-500 m. Attachment was higher, and the rate of detachment slower, in semi-wet conditions and lighter seeds travelled farther. Seed dispersal by mountain bikes was moderate compared to other forms of human mediated dispersal. However, we found that lighter seeds could attach to other bike parts and remain there until cleaning which, depending on riders' preferences, might only be after 70 km and in different habitats. Ecological impacts of mountain biking are growing with the popularity of the activity. We demonstrate that mountain bikes are effective seeds dispersers at landscape scales. Thus, management to mitigate their potential to spread non-native species is warranted. We suggest bike cleaning between rides, control of non-native species at trailheads and increased awareness for recreationalists in areas of conservation concern to mitigate the potential negative consequences of seed dispersal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Nuclear waste. DOE has terminated research evaluating crystalline rock for a repository

    International Nuclear Information System (INIS)

    Fultz, Keith O.; Sprague, John W.; Weigel, Dwayne E.; Price, Vincent P.

    1989-05-01

    We found that DOE terminated funding of research projects specifically designed to evaluate the suitability of crystalline rock for a repository. DOE continued other research efforts involving crystalline rock because they will provide information that it considers useful for evaluating the suitability of Yucca Mountain, Nevada, for a potential repository. Such research activities are not prohibited by the amendments. In January 1988, DOE began evaluating both its domestic and international research programs to ensure their compliance with the 1987 amendments. Several DOE offices and contractors were involved in the evaluation. DOE officials believe that the evaluation effectively brought the Office of Civilian Radioactive Waste Management activities into compliance with the amendments while maintaining useful international relations of continuing benefit to the nuclear waste program in general and to DOE's investigation of the Yucca Mountain site in particular. (The 1987 amendments designated Yucca Mountain as the only site that DOE is to investigate for a potential repository.) The approach and results of DOE's evaluation are discussed. Our review of DOE documents indicates that, by June 22, 1988, DOE completed its evaluation of ongoing crystalline rock research projects to ensure compliance with the 1987 amendments, terminated those research activities it identified as being specifically designed to evaluate the suitability of crystalline rock for a repository, continued some research activities involving crystalline rock because these activities would benefit the investigation and development of the Yucca Mountain repository site, and redirected some research activities so that they would contribute to investigating and developing the Yucca Mountain site

  11. Denitrification potential in sediments of headwater streams in the southern appalachian mountains, USA

    Science.gov (United States)

    Lara A. Martin; Patrick J. Mulholland; Jackson R. Webster; H. Maurice Vallett

    2001-01-01

    We investigated variations in resource availability (NOa-N and labile organic C [LOCJ] as determinants of potential denitrification in stream sediments in the southern Appalachian Mountains, USA. stream-water and sediments were sampled seasonally in 2 streams of contrasting NO3,-N availability, Noland Creek (high NO

  12. State-of-the-art for evaluating the potential effects of erosion and deposition on a radioactive waste repository. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The potential impact of future geologic processes on the integrity of a deep, high-level radioactive-waste repository is evaluated. The following study identifies the potential consequences of surface erosion and deposition on sub-surface repository containment characteristics and assesses the ability to measure and predict quantitatively the rates and corresponding extent of these processes in the long term. Numerous studies of the magnitudes and rates of surficial erosion and deposition that have been used to determine the minimum allowable depth for a geologic repository (300 m - NRC Code of Federal Regulations, Part 60.122, Draft 10) are cited in this report. Measurement and interpretation of potential rates and extent of surficial processes in these studies involved considerable uncertainty, and the implications of this uncertainty on presently proposed repository siting criteria are addressed herein. Important concepts that should be considered when developing siting criteria to protect against deleterious effects arising from future erosion or deposition are highlighted. Erosion agents that could affect deep repositories are distinguished in this report so that their individual and combined impacts may be examined. This approach is recommended when evaluating potential repository sites in diverse environments that are susceptible to different agents of erosion. In contrast, agents of sedimentation are not differentiated in this report because of their relatively minor impact on a deep repository

  13. Implications of Self-Potential Distribution for Groundwater Flow System in a Nonvolcanic Mountain Slope

    OpenAIRE

    Goto, Tada-nori; Kondo, Kazuya; Ito, Rina; Esaki, Keisuke; Oouchi, Yasuo; Abe, Yutaka; Tsujimura, Maki

    2012-01-01

    Self-potential (SP) measurements were conducted at Mt. Tsukuba, Japan, which is a nonvolcanic mountain, to infer groundwater flow system in the mountain. Survey routes were set around the northern slope, and the reliability of observed SP anomaly was checked by using SP values along parallel survey routes; the error was almost within 10 mV. The FFT analysis of the spatial SP distribution allows us a separation of raw data into two components with shorter and longer wavelength. In the shorter ...

  14. Potential impact of wind energy development of mountain flora and fauna in Rhone-Alpes

    International Nuclear Information System (INIS)

    Ladet, Alain; Bauvet, Corinne

    2005-03-01

    After a presentation of Rhone-Alpes mountain areas (massifs, constraints related to mountain climate, vegetation levels), this report proposes an overview of elements to be taken into account for the development of wind energy. It lists the different concerned public actors, reports a bibliographical study, indicates names and locations of sensitive species (fauna and flora) and natural environments. A synthesis indicates potential impacts, and outlines the patrimonial value, and then proposes an approach for the diagnosis and for the impact study. Appendices notably contain sheets which present the different concerned vegetal or animal species, and their important characteristics in terms of habitat and life

  15. Research Opportunities in Corrosion Science for Long-Term Prediction of Materials Performance: A Report of the DOE Workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''

    International Nuclear Information System (INIS)

    Payer, Joe H.; Scully, John R.

    2003-01-01

    The report summarizes the findings of a U.S. Department of Energy workshop on ''Corrosion Issues of Relevance to the Yucca Mountain Waste Repository''. The workshop was held on July 29-30, 2003 in Bethesda, MD, and was co-sponsored by the Office of Basic Energy Sciences and Office of Civilian Radioactive Waste Management. The workshop focus was corrosion science relevant to long-term prediction of materials performance in hostile environments, with special focus on relevance to the permanent disposal of nuclear waste at the Yucca Mountain Repository. The culmination of the workshop is this report that identifies both generic and Yucca Mountain Project-specific research opportunities in basic and applied topic areas. The research opportunities would be realized well after the U.S. Nuclear Regulatory Commission's initial construction-authorization licensing process. At the workshop, twenty-three invited scientists deliberated on basic and applied science opportunities in corrosion science relevant to long-term prediction of damage accumulation by corrosive processes that affect materials performance.

  16. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    Science.gov (United States)

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  17. Impact of partitioning and transmutation on repository design

    International Nuclear Information System (INIS)

    Carter, D. 'Buzz' Savage

    2004-01-01

    The U.S. Department of Energy's Advanced Fuel Cycle Initiative (AFCI) program is investigating spent nuclear fuel treatment technologies that have the potential to improve the performance of the proposed geologic repository at Yucca Mountain. Separating actinides and selected fission products from spent fuel, storing some of them as low level waste and transmuting them in thermal and/or fast reactors has the potential to reduce the volume, short and long-term heat load and radiotoxicity of the high level waste destined for the repository, effectively increasing its capacity by a factor of 50 or more above the current legislative limit. (author)

  18. Risk and uncertainty assessment for a potential HLW repository in Korea: TSPA 2006

    International Nuclear Information System (INIS)

    Hwang, Y.S.; Kang, C.H.

    2004-01-01

    KAERI has worked on the concept development on permanent disposal of HLW and its total system performance assessment since 1997. More than 36 000 MT of spent nuclear fuel from PWR and CANDU reactors is planned to be disposed of in crystalline bed-rocks. The total system performance assessment (TSPA) tools are under development. The KAERI FEP encyclopedia is actively developed to include all potential FEP suitable for Korean geo- and socio conditions. The FEPs are prioritized and then categorized to the intermediate level FEP groups. These groups become elements of the rock engineering system (RES) matrix. Then the sub-scenarios such as a container failure, groundwater migration, solute transport, etc are developed by connecting interactions between diagonal elements of the RES matrix. The full scenarios are developed from the combination of sub-scenarios. For each specific scenario, the assessment contexts and associated assessment method flow charts are developed. All information on these studies is recorded into the web based programme, FEAS (FEP to Assessment through Scenarios.) KAERI applies three basic programmes for the post closure radionuclide transport calculations; MASCOT-K, AMBER, and the new MDPSA under development. The MASCOT-K originally developed by Serco for a LLW repository has been extended extensively by KAERI to simulate release reactions such as congruent and gap releases in spent nuclear fuel. The new MDPSA code is dedicated for the probabilistic assessment of radio-nuclides in multi-dimensions of a fractured porous medium. To acquire input data for TSPA domestic experiment programmes as well as literature survey are performed. The data are stored in the Performance Assessment Input Data system (PAID.) To assure the transparency, traceability, retrievability, reproducibility, and review (T2R3) the web based KAERI QA system is developed. All tasks in TSPA are recorded under the concept of a 'Project' in this web system. Currently, FEAS, PAID

  19. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  20. Planning for investigation and evaluation of potential repository sites in Sweden

    International Nuclear Information System (INIS)

    Almen, K.E.; Stroem, A.

    1998-01-01

    The present stage of siting of the Swedish Deep Repository for spent nuclear fuel involves general siting studies on national and regional scales and feasibility studies on a municipal scale. Based on these studies, two areas will be selected for surface-based site investigations. The geoscientific site information will be used in the site evaluation process, in which performance and safety assessments and design studies are the major activities, in combination with geoscientific characterization. The safety report and EIA document from the site investigation stage will be the most important documents in the application for the siting permit and the permit to construct the deep repository. Detailed characterization will then verify the suitability of the selected site. The programme for geoscientific site investigations is based on experience from more than 20 years of field studies in several SKB projects, such as the Study Site Investigations , the Stripa Project, and the Aespoe Hard Rock Laboratory. The strategies and methodologies developed, implemented and verified within the Aespoe HRL are a very important source of information and know-how for the development of the site investigation programme. The investigations will produce geoscientific models that include all information needed to analyze the long-term safety of a deep repository located in and adapted to the geological conditions of the rock. The type of geoscientific information needed for performance and safety assessment, layout and design, environmental studies and for fundamental geoscientific understanding has been specified and compiled in a 'parameter' report. The general strategy is that performance assessment, layout and design studies will be conducted in parallel with the geoscientific investigations. Information will be transferred at logical occasions, when decisions have to be taken and when feedback is desirable for new investigation steps. The role of the geoscientific evaluation is to

  1. Potential impact of ICRP-30 on the calculated risk from waste repositories

    International Nuclear Information System (INIS)

    Croff, A.G.

    1981-01-01

    As a result of the large body of information that has been gathered since ICRP-2 was published (1959), the ICRP has undertaken the task of updating its radiation protection guidance. This update involves revision of the primary radiation guidance as well as the recalculation of intake limits (ICRP-30) based on update biological models, updated nuclide decay schemes, and a new method accounting for simultaneous dose to more than one organ. A detailed analysis of the impacts of ICRP-30 on waste repository safety and risk analyses would require an extensive and detailed study that has not yet been undertaken. Nevertheless, it is possible to identify, in an approximate manner, the impact of using ICRP-30 instead of 10 CFR 20/ICRP-2 in calculating the risk from radioactive repositories. Toward this end, the numerical guidance of ICRP-30 has been obtained and converted into RCG values for the general public using the same methods that were employed in deriving 10 CFR 20. The conversion was cross-checked by comparing 10 CFR 20 and ICRP-30-based values that were known to have remained the same. The most restrictive ICRP-30 RCGs were incorporated into the ORIGEN2 computer code, which was then used to calculate the toxicity of some radioactive materials of interest in waste repository considerations. As a basis for discussion, the toxicities of the spent fuel from a PWR and of the uranium ore required to make the fuel are given for both the 10 CFR 20 and ICRP-30-based RCGs. As is evident, the use of the revised RCGs reduces the toxicity of the spent fuel at times less than 100 years and increases the toxicity at times thereafter

  2. Aspects of potential magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Self, S.; Vaniman, D.; Amos, R.; Perry, F.

    1983-01-01

    Volcanic hazard studies, combining standard techniques of hazard appraisal and risk assessment are being undertaken with respect to storage of high-level, radioactive waste in southern Nevada. Consequence studies, the emphasis of this work, are evaluated by tracing the steps of ascent of basaltic magma including intersection and disruption of a repository followed by surface eruption. Theoretical considerations suggest basalt magma ascends rapidly from mantle depth (10's of cm/sec in the bubble-free regime) but may be trapped temporarily and fractionate at the mantle/crust interface. Basalt centers are fed from narrow linear dikes. Local sheet-like intrusions formed at depths of 200 to 300 m probably due to a combination of extensional faulting during emplacement and trapping within low-density tuff country rock, aided in part by a low magma-volatile content. Incorporation of radioactive waste in basalt magma is controlled by the dimensions of basalt dikes at repository depths and the depth of magma fragmentation. Dispersal pathways of waste should follow the pyroclastic component of a Strombolian eruption. The maximum volume of waste deposited with basaltic tephra can be traced approximately by assuming waste material is dispersed in the same patterns as country rock lithic fragments. Based on a basalt magma cycle that is similar to typical Strombolian centers, 180 m 3 of a repository inventory will be deposited in a scoria cone (of which approx. 1 m 3 will be exposed to the surface in a 10,000-year period), 320 to 900 m 3 will be deposited in a scoria-fall sheet (up to 12-km dispersal), and 21 m 3 will be dispersed regionally with a fine-grained particle component. 62 references, 8 figures, 2 tables

  3. Preliminary worst-case accident analysis to support the conceptual design of a potential repository in tuff

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-01-01

    The Nevada Waste Storage Investigations (NNWSI) Project is conducting investigations to determine suitability of a site at Yucca Mountain for development as a high-level waste repository. In support of conceptual design, a preliminary analysis has been performed to identify events that could cause radiological releases from the surface facilities during the operations period. Accidental releases were modeled short-duration release plumes, dispersed under averaged climatic conditions, using the AIRDOS-EPA code. consequences of these accidents, in 50-yr integrated dose commitments to operations personnel, to the minimally exposed member of the public, and to the general population in the surrounding area were calculated. risk to the general public from each event was also assessed. All postulated accidents result in doses to pers of the public that are lower than the 0.5 rem/accident limit set by the NRC in 10 CFR 60. For those accidents that do not involve both fire and breach of waste canisters, doses to operations personnel are behind the NRC limit for routine operations of 5 rem/yr set in 10 CFR 20. Accidents that involve fire and breach of waste canisters may cause doses to some operations personnel that are in excess of this limit

  4. Preliminary worst-case accident analysis to support the conceptual design of a potential repository in tuff

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is conducting investigations to determine the suitability of a site at Yucca Mountain for development as a high level waste repository. In support of the conceptual design, a preliminary analysis has been performed to identify events that could cause radiological releases from the surface facilities during the operations period. Accidental releases were modeled as short-duration release plumes, dispersed under averaged climatic conditions, using the AIRDOS-EPA code. The consequences of these accidents, in 50-yr integrated dose commitments to operations personnel, to the maximally exposed member of the public, and to the general population in the surrounding area were calculated. The risk to the general public from each event was also assessed. All postulated accidents result in doses to members of the public that are lower than the 0.5 rem/accident limit set by the NRC in 10 CFR 60. For those accidents that do not involve both fire and breach of waste canisters, doses to operations personnel are within the NRC limit for routine operations of 5 rem/yr set in 10 CFR 20. Accidents that involve fire and breach of waste canisters may cause doses to some operations personnel that are in excess of this limit. 18 references, 1 figure, 3 tables

  5. Nevada Test Site flood inundation study: Part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for USDOE, Office of Civilian Radioactive Waste Management

    International Nuclear Information System (INIS)

    Blanton, J.O. III.

    1992-01-01

    The Geological Survey (GS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. The Bureau of Reclamation was selected by the GS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates and associated inundation maps are necessary for successful waste repository design and construction. The standard step method for backwater computations, incorporating the Bernouli energy equation and the results of the PMF study were chosen as the basis for defining the areal extent of flooding

  6. Use of swelling clays to reduce permeability and its potential application to nuclear waste repository sealing

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1982-01-01

    The injection of swelling-clay slurries into joints or faults at a deep-burial nuclear waste disposal site may result in signficant permeability reductions for the effective containment of radioactive wastes. In an experiment conducted to illustrate the permeability change accompanying clay swelling, a coarse stone with interconnected pore spaces was injected with a clay-electrolyte slurry, modelling the pressure-grouting of a fractured repository rock. Subsequently, solutions with lower electroylte concentrations were driven through the clay-filled stone, corresponding to migration of lower salinity ground-waters through the clay-grouted fracture. The initial injection procedure reduced the permeability of the stone from 1--10 darcies to 700 nanodarcies; the changes in solution composition decreased permeability by more than 2 additional orders of magnitude to 3 nanodarcies. For application at a nuclear waste repository, the electrolyte concentration of the injected clay slurry should be made higher than that of the ground-water in the host rock. Subesquent interaction of the ground-water with the clays would initiate swelling and create the additional, post-injection permeability reductions that may be important in preventing the escape of buried radioactive wastes. The measured permeability of the clay filling is considerably lower than that of cement tested for borehole plugging. Clays also have the advantage over cement and chemical grouts in that they are geologically stable at relatively low temperatures and have a high capacity for radionuclide adsorption

  7. New three-dimensional far-field potential repository thermomechanical calculations

    International Nuclear Information System (INIS)

    Hardy, M.P.; Bai, M.; Goodrich, R.R.; Lin, M.; Carlisle, S.; Bauer, S.J.

    1993-03-01

    The thermomechanical effect on the exploratory ramps, drifts, and shafts as a result of high-level nuclear waste disposal is examined using a three-dimensional thermo-elastic model. The repository layout modeled is based on the use of mechanical mining of all excavations with equivalent waste emplacement areal power densities of 57 and 80 kW/acre. Predicted temperatures and stress changes for the north and south access drifts, east main drift, east-west exploratory drift, the north and south Calico Hills access ramps, the Calico Hills north-south exploratory drift, and the optional exploratory studies facility and man and materials shafts are presented for times 10, 35, 50, 100, 300, 500, 1000, 2000, 5000, and 10,000 years after the start of waste emplacement. The study indicates that the east-west exploratory drift at the repository horizon is subject to the highest thermomechanical impact because it is located closest the buried waste canisters. For most exploratory openings, the thermally induced temperatures and stresses tend to reach the maximum magnitudes at approximately 1000 years after waste emplacement

  8. The potential significance of permafrost to the behaviour of a deep radioactive waste repository

    International Nuclear Information System (INIS)

    McEwen, T.; Marsily, G.de

    1991-02-01

    Permafrost is one of the scenarios that is being considered as part of the groundwater flow and transport modelling for the Project-90 assessment. It is included as one of the primary Features, Events and Processes (FEPs) which are being kept outside the Process System in the SKB/SKI scenario development project. There is a large amount of evidence that Sweden has suffered several cycles of permafrost development over the Quaternary, approximately the last 2My, and climatic predictions for the next hundred thousand years suggest that similar climatic cycling is likely to occur. The presence of permafrost could have important effects on the hydrogeological regime and could therefore be important in modifying the release and dispersion of radionuclides from a repository. The climatic conditions of permafrost would also influence radionuclide migration and accumulation in the biosphere and the associated radiation exposure of man. These biosphere aspects are not considered here but the implications for discharge into the biosphere are examined, including the abstraction of groundwater by man in permafrost regions. This report reviews the evidence relating to permafrost development and discusses the possible implications for the long-term safety of a deep repository. (78 refs.) (au)

  9. Preliminary constitutive properties for salt and nonsalt rocks from four potential repository sites

    International Nuclear Information System (INIS)

    Pfeifle, T.W.; Mellegard, K.D.; Senseny, P.E.

    1983-07-01

    Results are presented from laboratory strength and creep tests performed on salt and nonsalt specimens from the Richton Dome in Mississippi, the Vacherie Dome in Louisiana, the Permian Basin in Texas, and the Paradox Basin in Utah. The constititive properties obtained for salt are the elastic moduli and the failure envelope at 24 0 C and parameter values for the exponential-time creep law. Some additional data are presented to indicate how the elastic moduli and strength change with temperature. The nonsalt constitutive properties reported are the elastic moduli, the unconfined compressive strength and the tensile strength at 24 0 C. The properties given in this report will be used in subsequent numerical simulations that will provide information to assist in the screening and selection of site locations for a nuclear waste repository and to assist in the repository design at the selected site. The matrix of tests performed is the minimum effort required to obtain these constitutive properties. The preliminary values obtained will be supplemented by additional testing for sites that are selected for further investigation

  10. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10 -9 /km 2 /y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10 -7 /y

  11. Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China

    Science.gov (United States)

    GAO, X.

    2017-12-01

    China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.

  12. Yucca Mountain Biological Resources Monitoring Program

    International Nuclear Information System (INIS)

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  13. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  14. Development of ACBIO: A Biosphere Template Using AMBER for a Potential Radioactive Waste Repository

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Hwang, Yong Soo; Kang, Chul Hyung; Hahn, Pil Soo

    2005-01-01

    Nuclides in radioactive wastes are assumed to be transported in the geosphere by groundwater and probably discharged into the biosphere. Quantitative evaluation of doses to human beings due to nuclide transport in the geosphere and through the various pathways in the biosphere is the final step of safety assessment of the radioactive waste repository. To calculate the flux to dose conversion factors (DCFs) for nuclides appearing at GBIs with their decay chains, a template ACBIO which is an AMBER case file based on mathematical model for the mass transfer coefficients between the compartments has been developed considering material balance among the compartments in biosphere and then implementing to AMBER, a general and flexible software tool that allows to build dynamic compartment models. An illustrative calculation with ACBIO is shown.

  15. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  16. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  17. A geotechnical evaluation of potentially acceptable sites for a high-level nuclear waste repository near the Red Lake Indian Reservation

    International Nuclear Information System (INIS)

    1986-01-01

    The scope and work which served as the basis for this report included the following major activities; (1) A review and summary of the screening methodologies utilized by DOE for the selection of proposed nuclear waste repository sites, including a description of the inherent weakness in those methodologies. (2) A description of the geologic and hydrologic features of the rock bodies selected by DOE and an identification of those features which could result in hazardous conditions as a result of the location of a high-level nuclear waste repository. (3) An assessment of potential environmental impacts of the repository and discussion of endanged species in the proposed repository project areas. This report is organized in three major sections in relationship to the scope of work. A list of references is also included at the end of this report. 37 refs., 2 figs

  18. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  19. Nuclear waste repository siting

    International Nuclear Information System (INIS)

    Soloman, B.D.; Cameron, D.M.

    1987-01-01

    This paper discusses the geopolitics of nuclear waste disposal in the USA. Constitutional choice and social equity perspectives are used to argue for a more open and just repository siting program. The authors assert that every potential repository site inevitably contains geologic, environmental or other imperfections and that the political process is the correct one for determining sites selected

  20. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-01-01

    In the San Bernardino Mountains of southern California, ozone (O 3 ) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O 3 concentrations decreased with peaks ∼180 ppb and ∼60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O 3 concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O 3 phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppm h, SUM60 - 112.7 ppm h, W126 - 98.3 ppm h, and AOT40 - 75 ppm h, representing the highest values reported for mountain areas in North America and Europe. - Although peak ozone concentrations have greatly decreased in the San Bernardino Mountains, very high ozone phytotoxic potential remains

  1. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  2. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  3. Changes in the Mountain Cryosphere and Potential Risks to Downstream Communities: Insights from the Indian Himalayan Region

    Science.gov (United States)

    Allen, Simon; Ballesteros, Juan Antonio; Huggel, Christian; Linsbauer, Andreas; Mal, Suraj; Singh Rana, Ranbir; Singh Randhawa, Surjeet; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Singh Samant, Sher; Stoffel, Markus

    2017-04-01

    Mountain environments around the world are often considered to be amongst the most sensitive to the impacts of climate change. For people living in mountain communities, there are clear challenges to be faced as their livelihoods and subsistence are directly dependent on their surrounding natural environment. But what of the wider implications for societies and large urban settlements living downstream - why should they care about the climate-driven changes occurring potentially hundreds of kilometers away in the snow and ice capped mountains? In this contribution we address this question, drawing on studies and experiences gained within joint Indo-Swiss research collaborations focused on the Indian Himalayan states of Himachal Pradesh and Uttarakhand. With the Intergovernmental Panel on Climate Change currently embarking on the scoping of their 6th Assessment Cycle, which includes a planned Special Report on Oceans and the Cryosphere, this contribution provides a timely reminder of the importance of mountain regions, and potential far-reaching consequences of changes in the mountain cryosphere. Our studies highlight several key themes which link the mountain environment to the lowland populated areas, including the role of the mountain cryosphere as a water source, far-reaching hazards and disasters that can originate from mountain regions, the role of mountains in providing essential ecosystem services, the economic importance of tourism in mountain regions, and the importance of transportation routes which pass through mountain environments. These themes are intricately linked, as for example demonstrated during the 2013 Uttarakhand flood disaster where many of the approximately 6000 fatalities were tourists visiting high mountain pilgrimage sites. As a consequence of the disaster, tourists stayed away during subsequent seasons with significant economic impacts felt across the State. In Himachal Pradesh, a key national transportation corridor is the Rohtang pass

  4. Evaluation and modelling of a potential repository site - Olkiluoto case study

    International Nuclear Information System (INIS)

    Saksa, P.; Ahokas, H.; Loefman, J.; Pitkaenen, P.; Paulamaeki, S.; Snellman, M.

    1998-01-01

    The observations, interpretations and estimates resulting from site investigations were developed into conceptual bedrock model of the Olkiluoto area. Model development has been an interdisciplinary process and three major iterations have occurred. Geochemical sampling and a programme of electromagnetic and electrical soundings were carried out and interpreted to model occurrences of groundwater types. The parametrisation and modifications needed between geological models and ground-water flow simulation model is discussed. The latest groundwater flow modelling effort comprises the transient flow analysis taking into account the effects of density variations, the repository, post-glacial land uplift and global sea level rise. The main flow modeling result quantities (the amount, direction, velocity and routes as well as concentration of water) are used for evaluation of the investigation sites and of the preconditions for safe final disposal of spent nuclear fuel. Integration of hydrological and hydrogeochemical methods and studies has provided the primary method for investigating the evolution. Testing of flow models with hydro-geochemical information is considered to improve the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. Bedrock model allows also comparisons to be made between its time-varying versions. The evolution of fracture frequency, fracture zone structures and hydraulic conductivity has been studied. A prediction-outcome comparison was made in selected boreholes and showed that the rock type was the easiest parameter to predict

  5. Cost estimate of the Yucca Mountain repository based on the site characterization plan conceptual design: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    Gruer, E.R.; Fowler, M.E.; Rocha, G.A.

    1987-06-01

    This report of the life-cycle costs of a mined repository in tuff is based on the site characterization conceptual design and contains estimates of two methods of waste emplacement - vertical and horizontal. The life cycle of the repository progresses from design and construction to emplacement operations that last 25 years. When emplacement has ended, a caretaker period begins and continues until 50 years from emplacement of the first waste. The life of the repository concludes with closure and decommissioning, which includes backfilling and sealing the repository, decontaminating and razing the surface facilities, restoring the land to as near its original condition as possible, and marking the site. The estimates, developed for each phase of the life cycle of the repository, are based on January 1986 constant (unescalated) dollars and include an allowance for contingency. This report mainly comprises explanations of design and operating assumptions, estimating methods, exclusions, definition of cost accounts, calculating procedures, data sources, staffing and other qualifying remarks. Cost estimates are approximations of value and should not be construed as exact. The cost and staffing detail provided in this estimate is commensurate with the detail in the conceptual design

  6. Mountain birch – potentially large source of sesquiterpenes into high latitude atmosphere

    Directory of Open Access Journals (Sweden)

    A. Arneth

    2009-11-01

    Full Text Available Emissions of volatile organic compounds (VOCs from mountain birches were measured in Abisko, northern Sweden. Mountain birches make up the majority of the tree biomass in Scandinavian high latitudes, a region subject to significant climate warming. The measurements were carried out in two growing seasons. The emissions of four branches, each from a different individual tree, were measured in June–August 2006 and one of them again in July 2007. The measurements were conducted using a dynamic flow through chamber covered with Teflon film. The studied mountain birches were found to emit substantial amounts of linalool, monoterpenes and sesquiterpenes. The monoterpene emission was dominated by sabinene. The magnitude and composition of the sesquiterpene emission changed dramatically between the years. For example, the average α-farnesene emission potential in 2006 was almost 2600 ng gdw−1 h−1 (3.5 pmol gdw−1 s−1 while in 2007 α-farnesene was not detected at all. Also the emissions of other sesquiterpenes decreased in 2007 to a fraction of that in 2006. One possible explanation for the change in emissions is the herbivory damage that occurred in the area in 2004. Herbivory is known to enhance the emissions of sesquiterpenes, especially those of α-farnesene, and the effect may last for several years.

  7. Implications of Self-Potential Distribution for Groundwater Flow System in a Nonvolcanic Mountain Slope

    Directory of Open Access Journals (Sweden)

    Tada-nori Goto

    2012-01-01

    Full Text Available Self-potential (SP measurements were conducted at Mt. Tsukuba, Japan, which is a nonvolcanic mountain, to infer groundwater flow system in the mountain. Survey routes were set around the northern slope, and the reliability of observed SP anomaly was checked by using SP values along parallel survey routes; the error was almost within 10 mV. The FFT analysis of the spatial SP distribution allows us a separation of raw data into two components with shorter and longer wavelength. In the shorter (altitudinal wavelength than ∼200 meters, several positive SP peaks of more than 100 mV in magnitude are present, which indicate shallow perched water discharges along the slope. In the regional SP pattern of longer wavelength, there are two major perturbations from the general trend reflecting the topographic effect. By comparing the SP and hydrological data, the perturbation around the foothill is interpreted to be caused by heterogeneous infiltration at the ground surface. The perturbation around the summit is also interpreted to be caused by heterogeneous infiltration process, based on a simplified numerical modeling of SP. As a result, the SP pattern is well explained by groundwater flow and infiltration processes. Thus, SP data is thought to be very useful for understanding of groundwater flow system on a mountain scale.

  8. Rail Access to Yucca Mountain: Critical Issues

    International Nuclear Information System (INIS)

    Halstead, R. J.; Dilger, F.; Moore, R. C.

    2003-01-01

    The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area

  9. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  10. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  11. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  12. Natural gels in the Yucca Mountain Area, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alternation of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository

  13. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  14. Consortial routes to effective repositories

    OpenAIRE

    Moyle, M.; Proudfoot, R.

    2009-01-01

    A consortial approach to the establishment of repository services can help a group of Higher Education Institutions (HEIs) to share costs, share technology and share expertise. Consortial repository work can tap into existing structures, or it can involve new groupings of institutions with a common interest in exploring repository development. This Briefing Paper outlines some of the potential benefits of collaborative repository activity, and highlights some of the technical and organisation...

  15. Preliminary investigation of two areas in New York State in terms of possible potential for hot dry rock geothermal energy. [Adirondack Mountains and Catskill Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Isachsen, Y.W.

    1978-09-27

    Two areas in New York State were studied in terms of possible long range potential for geothermal energy: the Adirondack Mountains which are undergoing contemporary doming, and an anomalous circular feature centered on Panther Mountain in the Catskill Mountains. The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The domical configuration of the area undergoing uplift, combined with subsidence at the northeastern perimeter of the dome, argues for a geothermal rather than glacioisostatic origin. A contemporary hot spot near the crust-mantle boundary is proposed as the mechanism of doming, based on analogy with uplifts of similar dimensions elsewhere in the world, some of which have associated Tertiary volcanics. The lack of thermal springs in the area, or high heat flow in drill holes up to 370 m deep, indicates that the front of the inferred thermal pulse must be at some depth greater than 1 km. From isopach maps by Rickard (1969, 1973), it is clear that the present Adirondack dome did not come into existence until sometime after Late Devonian time. Strata younger than this are not present to provide further time stratigraphic refinement of this lower limit. However, the consequent radial drainage pattern in the Adirondacks suggests that the dome is a relatively young tectonic feature. Using arguments based on fixed hot spots in central Africa, and the movement of North American plate, Kevin Burke (Appendix I) suggests that the uplift may be less than 4 m.y. old.The other area of interest, the Panther Mountain circular feature in the Catskill Mountains, was studied using photogeology, gravity and magnetic profiling, gravity modeling, conventional field methods, and local shallow seismic refraction profiling.

  16. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository; [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Freudenburg, W.R. [Wisconsin Univ., Madison, WI (United States); Carter, L.F.; Willard, W. [Washington State Univ., Pullman, WA (United States); Lodwick, D.G. [Miami Univ., Oxford, OH (United States); Hardert, R.A. [Arizona State Univ., Tempe, AZ (United States); Levine, A.G. [State Univ. of New York, Buffalo, NY (United States). Dept. of Sociology; Kroll-Smith, S. [New Orleans Univ., LA (United States); Couch, S.R. [Pennsylvania State Univ., University Park, PA (United States); Edelstein, M.R. [Ramapo College, Mahwah, NJ (United States)

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed.

  17. Social impacts of hazardous and nuclear facilities and events: Implications for Nevada and the Yucca Mountain high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Freudenburg, W.R.; Carter, L.F.; Willard, W.; Lodwick, D.G.; Hardert, R.A.; Levine, A.G.; Couch, S.R.; Edelstein, M.R.

    1992-05-01

    Social impacts of a nuclear waste repository are described. Various case studies are cited such as Rocky Flats Plant, the Feed Materials Production Center, and Love Canal. The social impacts of toxic contamination, mitigating environmental stigma and loss of trust are also discussed

  18. Simulated effects of potential withdrawals from wells near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tucce, Patrick; Faunt, Claudia C.

    1999-01-01

    The effects of potential future withdrawals from wells J-12, J-13, and UE-25c number 3 on the ground-water flow system in the area surrounding Yucca Mountain, Nevada, were simulated by using an existing (1997) three-dimensional regional ground-water flow model. The 1997 regional model was modified only to include changes at the pumped wells. Two steady-state simulations (baseline and predictive) were conducted to estimate changes in water level and changes in ground-water outflow from Jackass Flats, where the pumped wells are located, south to the Amargosa Desert

  19. Yucca Mountain biological resources monitoring program; Annual report FY92

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-02-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a potential site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities (SCA) do not adversely affect the environment at Yucca Mountain, an environmental program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG&G Energy Measurements, Inc. (EG&G/EM) during fiscal year 1992 (FY92) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  20. Repassivation potential for localized corrosion of Alloys 625 and C22 in simulated repository environments

    International Nuclear Information System (INIS)

    Cragnolino, G.A.; Dunn, D.S.; Sridhar, N.

    1998-01-01

    Two corrosion resistant nickel-based alloys, 625 and C22, have been selected by the US Department of Energy as candidate materials for the inner container of high-level radioactive waste packages. The susceptibility of these materials to localized corrosion was evaluated by measuring the repassivation potential as a function of solution chloride concentration and temperature using cyclic potentiodynamic polarization and lead-in-pencil potential step test methods. At intermediate Cl- concentrations, e.g., 0.028--0.4 M, the repassivation potential of alloy 625 is greater than that for alloy 825 and is dependent on the Cl- concentration. However, at higher concentrations, the repassivation potential is slightly less than that for alloy 825 and is weakly dependent on Cl- concentration. The repassivation potentials for alloy C-22 under all test conditions are considerably higher than those of either alloy 625 or 825 and are in the range where oxygen evolution is expected to occur

  1. Zonation of High Disaster Potential Communities for Remote Mountainous Areas in Southern Taiwan

    Science.gov (United States)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chang, Chwen-Ming; Chen, Jing-Wen; Chiang, Jie-Lun; Lu, Yi-Ching; Tsai, Hui-Wen

    2017-04-01

    About three-quarters of Taiwan are covered by hillside areas. Most of the hillside regions in Taiwan are sedimentary and metamorphic rocks which are fragile and highly weathered. In recent years, human development coupled with the global impact of extreme weather, typhoons and heavy rains have caused the landslide disasters and leaded to human causalities and properties loss. The landslides also endanger the major public works and almost make the overall industrial economic development and transport path overshadowed by disasters. Therefore, this research assesses the exploration of landslide potential analysis and zonation of high disaster potential communities for remote mountainous areas in southern Taiwan. In this study, the time series of disaster records and land change of remote mountainous areas in southern Taiwan are collected using techniques of interpretation from satellite images corresponding to multi-year and multi-rainfall events. To quantify the slope hazards, we adopt statistical analysis model to analyze massive data of slope disasters and explore the variance, difference and trend of influence factors of hillside disaster; establish the disaster potential analysis model under the climate change and construct the threshold of disaster. Through analysis results of disaster potential assessment, the settlement distribution with high-risk hazard potential of study area is drawn with geographic information system. Results of image classification show that the values of coefficient of agreement for different time periods are at high level. Compared with the historical disaster records of research areas, the accuracy of predicted landslide potential is in reasonable confidence level. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope and elevation of the research area. The results also show that the number and scale of secondary landslide sites are much larger than those of new landslide sites after rainfall

  2. Analysis of wind energy potential for agriculture pump in mountain area Aceh Besar

    Science.gov (United States)

    Syuhada, Ahmad; Maulana, Muhammad Ilham; Fuadi, Zahrul

    2017-06-01

    In this study, the potential of wind power for agricultural pump driver in Saree mountainous area of Aceh Besar is analyzed. It is found that the average usable wind speed is 6.41 m/s, which is potential to produce 893.96 Watt of electricity with the wind turbine rotor diameter of 3 m. This energy can be used to drive up to 614 Watt of water pump with static head of 20 m to irrigate 19 hectare of land, 7 hours a day. HOMER analysis indicated the lowest simulated NPC value of USD 10.028 with CoE of USD 0.717 kWh. It is also indicated that the wind has potential to produce 3452 kWh/year with lifetime of 15 years.

  3. YUCCA MOUNTAIN PROJECT - A BRIEFING -

    International Nuclear Information System (INIS)

    2003-01-01

    This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet

  4. Investigation of the potential of fogwater harvesting in the Western Mountainous parts of the Yemen

    International Nuclear Information System (INIS)

    Noman, A.A.; Al-Jailani, J.

    2007-01-01

    The Republic of Yemen is located in an arid to semi-arid region. Rainfall rates range from none at certain parts of the country to about 400 mm/yr in its mountainous parts. Rainfall has been harvested and collected in cisterns existed in the mountainous region for generations. In the dry season (October-February) and after the stored water is consumed, people mainly women and children have to travel long distances down wadis to fetch water from the nearest water source which is often not suitable for human consumption. This is the case in the western mountainous region, namely Hajja Governorate, which heavily depends on rain water for drinking, animal watering, domestic uses and irrigation. However, during the dry season this region experiences foggy conditions. This has prompted conducting a fog collection field study in this region to investigate the potential of providing an alternative source for water supply during the dry season. The study consisted of installing 26 standard fog collectors (SFC) of one m2 of polypropylene mesh at 19 sites in Hajja and measuring the daily fog water amounts collected during the period from 1 January to 31 March, 2003. The results indicated that fog collectors located closest to the red sea with an elevation ranged between 2000-2200 meters above sea level and winds from the west direction have produced the highest water output, reaching a maximum of about 4.5 liters per square meter of mesh per day over the three winter months period. The conclusion drawn is that though this technique is cheap, simple and promising, more investigations are still needed on the various parameters contributing to fog collection, such as, relative humidity, temperature and SFCs technologies. (author)

  5. Repository performance confirmation

    International Nuclear Information System (INIS)

    Hansen, Francis D.

    2011-01-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the

  6. Review and critique of the US Department of Energy environmental program plan for site characterization for a high-level waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    This report provides a review and critique of the US Department of Energy (DOE) environmental program plan for site characterization activities at Yucca Mountain which principally addresses compliance with federal and state environmental regulation and to a lesser extent monitoring and mitigation of significant adverse impacts and reclamation of disturbed areas. There are 15 documents which comprise the plan and focus on complying with the environmental requirements of the Nuclear Waste Policy Act, as amended, (NWPA) and with single-media environmental statutes and their regulations. All elements of the plan follow from the 1986 statutory environmental assessment (EA) required by NWPA which concluded that no significant adverse impacts would result from characterization of the Yucca Mountain site. The lack of appropriate environmental planning and review for site characterization at Yucca Mountain points to the need for an oversight function by the State of Nevada. It cannot be assumed that on its own DOE will properly comply with environmental requirements, especially the substantive requirements that comprise the intent of NEPA. Thus, procedures must be established to assure that the environmental interests of the State are addressed in the course of the Yucca Mountain Project. Accordingly, steps will be taken by the State of Nevada to review the soundness and efficacy of the DOE field surveys, monitoring and mitigation activities, reclamation actions, and ecological impact studies that follow from the DOE environmental program plans addressed by this review.

  7. Review and critique of the US Department of Energy environmental program plan for site characterization for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides a review and critique of the US Department of Energy (DOE) environmental program plan for site characterization activities at Yucca Mountain which principally addresses compliance with federal and state environmental regulation and to a lesser extent monitoring and mitigation of significant adverse impacts and reclamation of disturbed areas. There are 15 documents which comprise the plan and focus on complying with the environmental requirements of the Nuclear Waste Policy Act, as amended, (NWPA) and with single-media environmental statutes and their regulations. All elements of the plan follow from the 1986 statutory environmental assessment (EA) required by NWPA which concluded that no significant adverse impacts would result from characterization of the Yucca Mountain site. The lack of appropriate environmental planning and review for site characterization at Yucca Mountain points to the need for an oversight function by the State of Nevada. It cannot be assumed that on its own DOE will properly comply with environmental requirements, especially the substantive requirements that comprise the intent of NEPA. Thus, procedures must be established to assure that the environmental interests of the State are addressed in the course of the Yucca Mountain Project. Accordingly, steps will be taken by the State of Nevada to review the soundness and efficacy of the DOE field surveys, monitoring and mitigation activities, reclamation actions, and ecological impact studies that follow from the DOE environmental program plans addressed by this review

  8. Science is the first step to siting nuclear waste repositories

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and - most notably - tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  9. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  10. Reference design description for a geologic repository: Revision 01

    International Nuclear Information System (INIS)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified

  11. The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China.

    Science.gov (United States)

    Lei, Fumin; Qu, Yanhua; Song, Gang; Alström, Per; Fjeldså, Jon

    2015-03-01

    Little has been published to describe or interpret Asian biodiversity hotspots, including those in the East Himalayan Mountains of Southwest China (HMSC), thus making necessary a review of the current knowledge. The Pliocene and Pleistocene geological and glacial histories of the Asian continent differ from those of Europe and North America, suggesting different mechanisms of speciation and extinction, and, thus, different responses to climate changes during the Quaternary glaciations. This short review summarizes potential drivers in shaping and maintaining high species richness and endemism of birds in the HMSC. The geographical location at the junction of different biogeographical realms, the wide range of habitats and climates along the extensive elevational range, the complex topography and the distinct geological history of this region have probably contributed to the evolution of an exceptionally species-rich and endemic-rich, specialized montane avian fauna. The Mountain systems in the HMSC may have provided refugia where species survived during the glacial periods and barriers for preventing species dispersal after the glacial periods. More studies are required to further test this refugia hypothesis by comparing more cold-tolerent and warm-tolerent species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  12. Topical session proceedings of the 4. IGSC meeting on: the potential impacts on repository safety from potential partitioning and transmutation programme

    International Nuclear Information System (INIS)

    Wollrath, Juergen; Voinis, Sylvie; Hadermann, Joerg; Van Luik, Abraham E.

    2003-01-01

    /or vitrified high-level waste. Thus, a Topical Session that focused on 'The potential impacts on repository safety from a potential P and T programme' was organised in the framework of the 4. plenary meeting of the IGSC (Integration Group for the Safety Case). This Topical Session sought to create IGSC awareness regarding potential issues involving P and T, other potential fuel cycle changes, and a repository safety case. The Topical Session focused on the recent scientific developments in potential national P and T strategies, and on international research on P and T and the potential impacts of P and T deployment on repository long-term performance and safety. 53 participants represented several national waste management organisations, regulatory authorities, and research institutions from 16 OECD member countries, IAEA and EC. The Topical Session was split in three parts: - Part A was related to national P and T strategies (e.g. which radionuclide are affected by P and T; implication on step-wise decision-making, what are the changes in potential doses...) - Part B consisted of EC and NEA/NDC presentations on the technical bases of P and T; (e.g. what is the resulting inventory of P and T, what is the schedule regarding developing and deploying P and T processes?) and, based on background provided by the previous presentations, - Part C was aimed at discussing the impact of P and T strategies on IGSC-related issues, and agreeing to key messages to be delivered to the RWMC. The current synthesis presented in part A of this document is aimed at briefly reflecting the material presented at the Topical Session and providing a short overview of the main outcomes of its discussions. The written contributions are compiled as-received without further elaboration, either as presentations or papers, in part B of the document. Part C gives the list of participants at this Topical Session

  13. Yucca Mountain Biological Resources Monitoring Program. Progress report, October 1992--December 1993

    International Nuclear Information System (INIS)

    1994-05-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of (as amended in 1987) to study and characterize the suitability of Yucca Mountain as a potential geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a potential repository. To ensure that site characterization activities do not adversely affect the environment at Yucca Mountain, a program has been implemented to monitor and mitigate potential impacts and ensure activities comply with applicable environmental regulations. This report describes the activities and accomplishments of EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) from October 1992 through December 1993 for six program areas within the Terrestrial Ecosystem component of the environmental program for the Yucca Mountain Site Characterization Project (YMP): Site Characterization Effects, Desert Tortoises (Gopherus agassizii), Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support

  14. Automated facial recognition of manually generated clay facial approximations: Potential application in unidentified persons data repositories.

    Science.gov (United States)

    Parks, Connie L; Monson, Keith L

    2018-01-01

    This research examined how accurately 2D images (i.e., photographs) of 3D clay facial approximations were matched to corresponding photographs of the approximated individuals using an objective automated facial recognition system. Irrespective of search filter (i.e., blind, sex, or ancestry) or rank class (R 1 , R 10 , R 25 , and R 50 ) employed, few operationally informative results were observed. In only a single instance of 48 potential match opportunities was a clay approximation matched to a corresponding life photograph within the top 50 images (R 50 ) of a candidate list, even with relatively small gallery sizes created from the application of search filters (e.g., sex or ancestry search restrictions). Increasing the candidate lists to include the top 100 images (R 100 ) resulted in only two additional instances of correct match. Although other untested variables (e.g., approximation method, 2D photographic process, and practitioner skill level) may have impacted the observed results, this study suggests that 2D images of manually generated clay approximations are not readily matched to life photos by automated facial recognition systems. Further investigation is necessary in order to identify the underlying cause(s), if any, of the poor recognition results observed in this study (e.g., potential inferior facial feature detection and extraction). Additional inquiry exploring prospective remedial measures (e.g., stronger feature differentiation) is also warranted, particularly given the prominent use of clay approximations in unidentified persons casework. Copyright © 2017. Published by Elsevier B.V.

  15. Use of natural analog and modeling studies to constrain the effects of magmatic activity on long-term geologic repositories

    International Nuclear Information System (INIS)

    Valentine, G.A.; Rosenberg, N.D.; Crowe, B.M.; Perry, F.V.

    1995-01-01

    Examples of the application of natural-analog studies to the estimation of the consequences of a volcanic eruption penetrating a radioactive waste repository are given, including the criteria for analog selection and new data from ongoing studies. Examples of early modeling results focusing on the spatial and temporal scale of subsurface processes are also provided. All of these examples are taken from studies of the potential Yucca Mountain repository, Nevada, but similar approaches could be applied in other areas. In addition, studies of subsurface processes initiated by magmatic events serve as useful analogs for repository thermal loading studies

  16. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  17. Recreational potential as an indicator of accessibility control in protected mountain forest areas

    Institute of Scientific and Technical Information of China (English)

    Tomasz DUDEK

    2017-01-01

    The article presents research findings related to recreational use of forests located in protected mountainous areas with forestage of over 80%.The study was designed to identify recreational potential of the Carpathian national parks (Bieszczady National Park,Babia Góra National Park,Gorce National Park and Magura National Park;southern Poland) and to compare these findings with the actual number of visitors.The information received on the recreational potential of parks is important from the point of view of protection of natural resources and the financial situation of the parks.The calculated ratio may be an effective tool of management for park administration,that allows to reconcile statutory social and protective functions of national parks.The study determined the recreational potential of the forests with the use of recreational valorisation method designed for areas with varied terrain,and the evaluated factors included the stands of trees with their habitat and land relief.The permissible number of national park visitors,expressed as manhour/ha/year ranges from 19.31 in Bieszczady National Park (BG:19° 35′ E,49° 35′ N) to 32.06 in in Bieszczady National Park (B:22° 40′ E,49° 10′ N).In 3 out of 4 investigated parks,Magnra National Park (M:21°25′ E,49° 30′ N),Gorce National Park (G:20° 10′ E,49° 35′ N),B) recreation carrying capacity was not exceeded,whether or not the strictly protected area is taken into account.Only in BG was the recreation carrying capacity exceeded by nearly 24%,or by 85% if the strictly protected area is excluded from tourism-related exploitation.The presented procedure for monitoring access to mountain forests in national parks,from the viewpoint of natural resources conservation,can be applied in other mountainous areas covered with forests and exposed to tourist and recreational traffic,and in forests facing particular risk of recreational damage,e.g.in urban and suburban forests growing in areas

  18. Repository sealing concepts for the Nevada nuclear waste storage Investigations Project

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Freshley, M.D.

    1984-08-01

    This report describes concepts for sealing a nuclear waste repository in an unsaturated tuff environment. The repository site under consideration is Yucca Mountain, which is on and adjacent to the Nevada Test Site. The hydrogeology of Yucca Mountain, preliminary repository concepts, functional requirements and performance criteria for sealing, federal and state regulations, and hydrological calculations are considered in developing the sealing concepts. Water flow through the unsaturated zone is expected to be small and generally vertically downward with some potential to occur through discrete fault and fracture zones. These assumptions are used in developing sealing concepts for shafts, ramps, and boreholes. Sealing of discrete, water-producing faults and fracture zones encountered in horizontal emplacement holes and in access and emplacement drifts is also described. 49 references, 21 figures, 6 tables

  19. Mineral resource potential map of the Blanco Mountain and Black Canyon roadless areas, Inyo and Mono counties, California

    Science.gov (United States)

    Diggles, Michael F.; Blakely, Richard J.; Rains, Richard L.; Schmauch, Steven W.

    1983-01-01

    On the basis of geologic, geochemical, and geophysical investigations and a survey of mines and prospects, the mineral resource potential for gold, silver, lead, zinc, tungsten, and barite of the Blanco Mountain and Black Canyon Roadless Areas is judged to be low to moderate, except for one local area that has high potential for gold and tungsten resources.

  20. Numerical studies of rock-gas flow in Yucca Mountain; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B.; Amter, S.; Lu, Ning [Disposal Safety, Inc., Washington, DC (United States)

    1992-02-01

    A computer model (TGIF -- Thermal Gradient Induced Flow) of two-dimensional, steady-state rock-gas flow driven by temperature and humidity differences is described. The model solves for the ``fresh-water head,`` a concept that has been used in models of variable-density water flow but has not previously been applied to gas flow. With this approach, the model can accurately simulate the flows driven by small differences in temperature. The unsaturated tuffs of Yucca Mountain, Nevada, are being studied as a potential site for a repository for high-level nuclear waste. Using the TGIF model, preliminary calculations of rock-gas flow in Yucca Mountain are made for four east-west cross-sections through the mountain. Calculations are made for three repository temperatures and for several assumptions about a possible semi-confining layer above the repository. The gas-flow simulations are then used to calculate travel-time distributions for air and for radioactive carbon-14 dioxide from the repository to the ground surface.

  1. Stochastic simulation of pitting degradation of multi-barrier waste container in the potential repository at Yucca Mountain

    International Nuclear Information System (INIS)

    Lee, J.H.; Atkins, J.E.; Andrews, R.W.

    1995-01-01

    A detailed stochastic waste package degradation simulation model was developed incorporating the humid-air and aqueous general and pitting corrosion models for the carbon steel corrosion-allowance outer barrier and aqueous pitting corrosion model for the Alloy 825 corrosion-resistant inner barrier. The uncertainties in the individual corrosion models were also incorporated to capture the variability in the corrosion degradation among waste packages and among pits in the same waste package. Within the scope of assumptions employed in the simulations, the corrosion modes considered, and the near-field conditions from the drift-scale thermohydrologic model, the results of the waste package performance analyses show that the current waste package design appears to meet the 'controlled design assumption' requirement of waste package performance, which is currently defined as having less than 1% of waste packages breached at 1,000 years. It was shown that, except for the waste packages that fail early, pitting corrosion of the corrosion-resistant inner barrier has a greater control on the failure of waste packages and their subsequent degradation than the outer barrier. Further improvement and substantiation of the inner barrier pitting model (currently based on an elicitation) is necessary in future waste package performance simulation model

  2. Kinetic measurements on the silicates of the Yucca Mountain potential repository. Final report for October 1994--September 1995

    International Nuclear Information System (INIS)

    Barnes, H.L.; Wilkin, R.T.

    1995-08-01

    This Final Report includes a summary and discussion of results obtained under this project on the solubilities in subcritical aqueous solutions of Mont St. Hilaire analcime, Wikieup analcime, and Castle Creek Na-clinoptilolite. Also included here are the methods and results of hydrothermal flow-through experiments designed to measure the rates of Na-clinoptilolite dissolution and precipitation at 125 degree C. In this report, high-temperature solubility measurements made in our lab are integrated and discussed along with the low-temperature measurements made at Yale University. The final report prepared by the group at Yale University (Lasaga et al.) includes a synthesis of dissolution rate measurements made between 25 degree and 125 degree C on the Na-clinoptilolite

  3. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  4. Safety assessment for a potential SNF repository and its implication to the proliferation resistance nuclear fuel cycle

    International Nuclear Information System (INIS)

    Hwang, Y.; Jeong, M.S.; Seo, C.S.

    2007-01-01

    KAERI is developing the pyro-process technology to minimize the burden on permanent disposal of spent nuclear fuel. In addition, KAERI has developed the Korean Reference System for potential spent nuclear fuel disposal since 1997. The deep geologic disposal system is composed of a multi-barrier system in a crystalline rock to dispose of 36,000 MT of spent nuclear fuel (SNF) from a CANDU and a PWR. Quite recently, introduction of advanced nuclear fuel cycles such as pyro-processing is a big issue to solve the everlasting disposal problem and to assure the sustainable supply of fuel for reactors. To compare the effect of direct disposal of SNF with that of the high level waste disposal for waste generated from the advanced nuclear fuel cycles, the total system performance assessment for two different schemes is developed; one for direct disposal of SNF and the other for the introduction of the pyro-processing and direct disposal CANDU spent nuclear fuel. The safety indicators to assess the environmental friendliness of the disposal option are annual individual doses, toxicities and risks. Even though many scientists use the toxicity to understand the environmental friendliness of the disposal, scientifically the annual individual doses or risks are meaningful indicators for it. The major mechanisms to determine the doses and risks for direct disposal are as follows: (1) Dissolution mechanisms of uranium dioxides which control the dissolution of most nuclides such as TRU's and most parts of fission products. (2) Instant release fraction of highly soluble nuclides such as I-129, C-135, Tc-99, and others. (3) Retardation and dilution effect of natural and engineered barriers. (4) Dilution effect in the biosphere. The dominant nuclide is I-129 which follows both congruent and instantaneous release modes. Since its long half life associated with the instantaneous release I-129 is dominant well beyond one million. The impact of the TRU's is negligible until the significant

  5. Spotlight back on LHW with Yucca Mountain on Trump's horizon

    International Nuclear Information System (INIS)

    Shepherd, John

    2017-01-01

    After years of argument and delay could the US be edging closer to resurrecting proposals to build a national repository for high level nuclear waste (HLW) at Yucca Mountain in Nevada? The federal government has looked at the site with a view to establishing a repository since the 1970s. However, after pouring billions of dollars into projects and studies over the decades, the project remained bogged down in legal battles and opposition from politicians and pressure groups. Now, the US Nuclear Regulatory Commission (NRC) said it had directed its staff to use the equivalent of about EUR 95,000 from the national Nuclear Waste Fund on ''information-gathering activities'' that could pave the way for resuming a licensing review of Yucca Mountain as a potential deep geologic repository (DGR).

  6. Bibliography of publications related to Nevada-sponsored research of the proposed Yucca Mountain high-level radioactive waste repository site through 1994

    International Nuclear Information System (INIS)

    Johnson, M.

    1994-12-01

    Since 1985, the State of Nevada has sponsored academic/private sector research into various health, safety, and environmental issues identified with the Yucca Mountain site. This research has been documented in scientific peer-reviewed literature, conferences, and workshops, as well as numerous state-sponsored University thesis and dissertation programs. This document is a bibliography of the scientific articles, manuscripts, theses, dissertations, conference symposium abstracts, and meeting presentations produced as a result of state-sponsored research

  7. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  8. Reference design description for a geologic repository. Revision 02

    International Nuclear Information System (INIS)

    1999-01-01

    This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada. It describes the proposed design for a surface facility, subsurface repository, and waste packaging; it also presents the current design of the key engineering systems for the final four phases: operations, monitoring, closure, and postclosure. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. In accordance with current law, this design does not include an interim storage option. This document has six major sections. Section 1 describes the physical layout of the proposed repository. The second section describes the 4-phase evolution of the development of the proposed repository. Section 3 describes the reception of waste from offsite locations. The fourth section details the various systems that will package the waste and move it below ground as well as safety monitoring and closure. Section 5 describes the systems (both physical and analytical) that ensure continued safety after closure. The final section offers design options that may be adopted to increase the margin of safety

  9. Repositories; Repositorios

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Carolina Braccini; Tello, Cledola Cassia Oliveira de [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: cbf@cdtn.br; tellocc@cdtn.br

    2007-11-15

    The use of the nuclear energy is increasing in all areas. Then the radioactive waste management is in continuous development to comply the national and international established requirements. The final objective is to assure that it will not have any contamination of the public or the environmental, and that the exposition doses will be lower than the radiological protection limits. The multi barrier concept for the repository is internationally recognized. Among the repository types, the most used are: near surface, geological formations and of deposition in rock cavities. This article explains the concept and the types of repository and gives some examples of them. (author)

  10. Natural analogs for Yucca Mountain

    International Nuclear Information System (INIS)

    Murphy, W.M.

    1995-01-01

    High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece

  11. A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY

    International Nuclear Information System (INIS)

    2001-01-01

    The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft(reg s ign) Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft(reg s ign) Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the

  12. The vegetation of Yucca Mountain: Description and ecology

    International Nuclear Information System (INIS)

    1996-01-01

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot

  13. The vegetation of Yucca Mountain: Description and ecology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-29

    Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.

  14. Yucca Mountain Biological Resources Monitoring Program; Annual report, FY91

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The US Department of Energy (DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geologic repository for high-level nuclear waste. During site characterization, the DOE will conduct a variety of geotechnical, geochemical, geological, and hydrological studies to determine the suitability of Yucca Mountain as a repository. To ensure that site characterization activities (SCA) do not adversely affect the Yucca Mountain area, an environmental program has been implemented to monitor and mitigate potential impacts and to ensure that activities comply with applicable environmental regulations. This report describes the activities and accomplishments during fiscal year 1991 (FY91) for six program areas within the Terrestrial Ecosystem component of the YMP environmental program. The six program areas are Site Characterization Activities Effects, Desert Tortoises, Habitat Reclamation, Monitoring and Mitigation, Radiological Monitoring, and Biological Support.

  15. Probabilistic calculations and sensitivity analysis of parameters for a reference biosphere model assessing the potential exposure of a population to radionuclides from a deep geological repository

    Energy Technology Data Exchange (ETDEWEB)

    Staudt, Christian; Kaiser, Jan Christian [Helmholtz Zentrum Muenchen, Institute of Radiation Protection, Munich (Germany); Proehl, Gerhard [International Atomic Energy Agency, Division of Radiation, Transport and Waste Safety, Wagramerstrasse 5, 1400 Vienna (Austria)

    2014-07-01

    Radioecological models are used to assess the exposure of hypothetical populations to radionuclides. Potential radionuclide sources are deep geological repositories for high level radioactive waste. Assessment time frames are long since releases from those repositories are only expected in the far future, and radionuclide migration to the geosphere biosphere interface will take additional time. Due to the long time frames, climate conditions at the repository site will change, leading to changing exposure pathways and model parameters. To identify climate dependent changes in exposure in the far field of a deep geological repository a range of reference biosphere models representing climate analogues for potential future climate states at a German site were developed. In this approach, model scenarios are developed for different contemporary climate states. It is assumed that the exposure pathways and parameters of the contemporary biosphere in the far field of the repository will change to be similar to those at the analogue sites. Since current climate models cannot predict climate developments over the assessment time frame of 1 million years, analogues for a range of realistically possible future climate conditions were selected. These climate states range from steppe to permafrost climate. As model endpoint Biosphere Dose conversion factors (BDCF) are calculated. The radionuclide specific BDCF describe the exposure of a population to radionuclides entering the biosphere in near surface ground water. The BDCF are subject to uncertainties in the exposure pathways and model parameters. In the presented work, probabilistic and sensitivity analysis was used to assess the influence of model parameter uncertainties on the BDCF and the relevance of individual parameters for the model result. This was done for the long half-live radionuclides Cs-135, I-129 and U-238. In addition to this, BDCF distributions for nine climate reference regions and several scenarios were

  16. Repository operational criteria analysis

    International Nuclear Information System (INIS)

    Hageman, J.P.; Chowdhury, A.H.

    1992-08-01

    The objective of the ''Repository Operational Criteria (ROC) Feasibility Studies'' (or ROC task) was to conduct comprehensive and integrated analyses of repository design, construction, and operations criteria in 10 CFR Part 60 regulations, considering the interfaces and impacts of any potential changes to those regulations. The study addresses regulatory criteria related to the preclosure aspects of the geologic repository. The study task developed regulatory concepts or potential repository operational criteria (PROC) based on analysis of a repository's safety functions and other regulations for similar facilities. These regulatory concepts or PROC were used as a basis to assess the sufficiency and adequacy of the current criteria in 10 CFR Part 60. Where the regulatory concepts were same as current operational criteria, these criteria were referenced. The operations criteria referenced or the PROC developed are given in this report. Detailed analyses used to develop the regulatory concepts and any necessary PROC for those regulations that may require a minor change are also presented. The results of the ROC task showed a need for further analysis and possible major rule change related to the design bases of a geologic repository operations area, siting, and radiological emergency planning

  17. Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California

    Directory of Open Access Journals (Sweden)

    J. D. Pelletier

    2017-08-01

    Full Text Available The potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material, limits how fast erosion can occur in mountain ranges in the absence of widespread landsliding in bedrock or intact regolith. Traditionally, the potential soil production rate has been considered to be solely dependent on climate and rock characteristics. Data from the San Gabriel Mountains of California, however, suggest that topographic steepness may also influence potential soil production rates. In this paper I test the hypothesis that topographically induced stress opening of preexisting fractures in the bedrock or intact regolith beneath hillslopes of the San Gabriel Mountains increases potential soil production rates in steep portions of the range. A mathematical model for this process predicts a relationship between potential soil production rates and average slope consistent with published data. Once the effects of average slope are accounted for, a small subset of the data suggests that cold temperatures may limit soil production rates at the highest elevations of the range due to the influence of temperature on vegetation growth. These results suggest that climate and rock characteristics may be the sole controls on potential soil production rates as traditionally assumed but that the porosity of bedrock or intact regolith may evolve with topographic steepness in a way that enhances the persistence of soil cover in compressive-stress environments. I develop an empirical equation that relates potential soil production rates in the San Gabriel Mountains to the average slope and a climatic index that accounts for temperature limitations on soil production rates at high elevations. Assuming a balance between soil production and erosion rates on the hillslope scale, I illustrate the interrelationships among potential soil production rates, soil thickness, erosion rates, and topographic steepness that result from the

  18. MEDIA ENVIRONMENT AS FACTOR OF REALIZATION OF CREATIVE POTENTIAL OF FUTURE TEACHERS` IN THE MOUNTAIN SCHOOLS OF THE UKRAINIAN CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Alla Lebedieva

    2015-04-01

    Full Text Available The article shows up “media environment” as a factor of future teachers` creative potential realization in the mountainous schools of the Ukrainian Carpathians. The problem of using media environment as a factor of future teachers` creative potential in the mountainous schools of the Ukrainian Carpathians and the ways of its optimization is the main point of this research. Highlights ways to modernize social and professional orientation training of students in the creative process of nature is situates in information education and educational environment of high school. We consider the causal link use media environment as a factor of future teachers` creative potential and complexity of the teacher in the mountainous schools of the Ukrainian Carpathians. The basic function of the media environment are extensity, instrumental, communicative, interactive, multimedia. Reveals some aspects of training students to creatively active teaching process we describe subjects with objective possibilities in the formation of professional skills of future teachers` and which directly affect the realization of creative potential – “Ukrainian folk art”, “Basic recitation and rhetoric”, “The basis of pedagogical creativity”. The necessity of creating a full-fledged media environment in higher education is important condition of successful education as an important factor that allows the efficiency of the creative potential of future teachers` in the mountainous schools of the Ukrainian Carpathians.

  19. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  20. Banking Umbilical Cord Blood (UCB) Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India).

    Science.gov (United States)

    Pandey, Deeksha; Kaur, Simar; Kamath, Asha

    2016-01-01

    The concept of Umbilical Cord blood (UCB) stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India). Obtaining this information may help optimize recruitment efforts and improve patient education. Present explorative questionnaire based survey included 254 pregnant women in the final analysis. We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1%) was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB. Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  1. Banking Umbilical Cord Blood (UCB Stem Cells: Awareness, Attitude and Expectations of Potential Donors from One of the Largest Potential Repository (India.

    Directory of Open Access Journals (Sweden)

    Deeksha Pandey

    Full Text Available The concept of Umbilical Cord blood (UCB stem cells is emerging as a non-invasive, efficacious alternative source of hematopoietic stem cells to treat a variety of blood and bone marrow diseases, blood cancers, metabolic disorders and immune deficiencies. Aim of the present study was to determine the level of awareness about banking UCB among pregnant women in India. We also assessed patient perception for banking of UCB and explored the patient expectations of banking UCB in future. This is the first study to assess current attitudes, in a sample population of potential donors from one of the largest potential UCB repository (India. Obtaining this information may help optimize recruitment efforts and improve patient education.Present explorative questionnaire based survey included 254 pregnant women in the final analysis.We established only 26.5% pregnant women in our study population knew what exactly is meant by UCB. A large proportion (55.1% was undecided on whether they want to bank UCB or not. Women were more aware of the more advertised private cord blood banking compared to public banking. More than half of the pregnant women expected their obstetrician to inform them regarding UCB. One-third of the women in our population had undue expectations from banking of the UCB.Obstetricians should play a more active role in explaining the patients regarding pros and cons of UCB banking.

  2. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  3. Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions

    International Nuclear Information System (INIS)

    Gray, W.J.; Einziger, R.E.

    1998-04-01

    Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates

  4. Underground excavation methods for a high-level waste repository

    International Nuclear Information System (INIS)

    Peshel, J.; Gupta, D.; Nataraja, M.

    1990-01-01

    This paper reports on rock excavation methods for a High-Level Waste repository that should be selected to limit the potential for creating preferential pathways for groundwater to travel to the waste packages or for radionuclides to migrate to the accessible environment. The use of water and other foreign substances should be controlled so that the repository performance is not compromised. The excavated openings should remain stable so that operations can be carried out safely and the retrievability option maintained. As per the current conceptual designs presented by the Department of Energy, the exploratory shaft facility becomes a part of the repository if the Yucca Mountain site is found suitable for repository development. Therefore, the methods of constructing the underground openings should be compatible with the performance requirements for the repository. Also, the degree of damage to the rock surrounding the openings and the extent of the damage zone should not preclude adequate site characterization. The ESf construction and operation should be compatible with the site data gathering activities, such as geological, thermomechanical, hydrological and geochemical testing

  5. Ventilation planning for a prospective nuclear waste repository

    International Nuclear Information System (INIS)

    Wallace, K.G. Jr.

    1987-01-01

    In 1982, the US Congress passed the Nuclear Waste Policy Act to provide for the development of underground repositories for spent nuclear fuel. This development will be managed by the United States Department of Energy. In 1986, the President selected three areas for site characterization to determine their suitability for the development of an underground repository; those sites were: (1) A site in volcanic tuff located at Yucca Mountain in Nevada, (2) a site in bedded salt located in Deaf Smith County in Texas, and (3) a site in basalt located in Hanford, Washington. At present conceptual repository designs are being developed for each site. A key element of a repository design is the underground ventilation system required to support construction, nuclear waste emplacement, and potential waste retrieval. This paper describes the preliminary ventilation systems designed for the repository in tuff. The concept provides separate ventilation systems for the construction and waste emplacement activities. The paper further describes the means by which acceptable environmental conditions will be re-established to allow re-entry into previously closed rooms for the purpose of inspection, maintenance or retrieval

  6. A study of the landslide potential along the mountain road using environmental indices

    Science.gov (United States)

    Lin, C. Y.

    2014-12-01

    Utilization of slope land in recent years is rapid as a result of the dense population and limit of land resources in Taiwan. Therefore, mountain road plays an essential role for the necessity of human life. However, landslide disaster resulting in road failure occurred frequently in Taiwan on the slope land due to earthquake and typhoon. Previous studies found that the extreme rainfall coupled with the property of fragile geology could cause landslide. Nevertheless, the landslide occurrence might be affected by the drainage of the road side ditches. Taiwan Highway No.21 in Chi-Shan watershed and the forest roads located in Xiao-Lin Village, which failure during the hit of Typhoon Morakot in 2009, were selected for exploring the potential of vulnerable to landslides. Topographic Wetness Index (TWI) and Road Curvature (RC) were extracted along the road to indicate the potential sites which are vulnerable to slope failure. The surface runoff diverted by the road side ditches could spoil the sites with high RC due to the straight movement characteristics of the diverted runoff and cause the downslope collapse. The sites with higher mean value and lower standard deviation of Normalized Difference Vegetation Index (NDVI) derived from the SPOT imagery taken in dry and/or rainy seasons could be implied as the vegetation stands showing highly buffer effects in environmental stress due to having deeper soil layer, and are hardly interfered by the drought. The stands located in such sites once collapsed are often resulting in huge volumes of debris. Drainage Density (DD) index could be applied as the degrees of geologic fragile in the slope land. A road across the sites with higher mean value and lower standard deviation of NDVI and/or higher DD should be paid more attention because of having highly vulnerable to deep seated landslide. This study is focusing on extracting and analyzing the environmental indices such as TWI, RC, NDVI and DD for exploring the slope stability

  7. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  8. Calcite deposits in drill cores USW G-2 and USW GU-3/G-3 at Yucca Mountain, Nevada: Preliminary report

    International Nuclear Information System (INIS)

    Vaniman, D.T.

    1994-04-01

    Yucca Mountain is being studied as a potential site for deep geologic disposal of high-level radioactive waste. Should a repository be developed at Yucca Mountain, the preferred location is within the upper unsaturated tuffaceous volcanic rocks. In this location, one factor of concern is the amount and rate of aqueous transport through the unsaturated rocks toward the underlying saturated intervals. Calcite, one of the most recently-formed minerals at Yucca Mountain, is of minor abundance in the unsaturated rocks but is widely distributed. Studies of calcite ages, isotopic systematics, chemistry and petrography could lead to a better understanding of transport processes at Yucca Mountain

  9. Repository design

    Energy Technology Data Exchange (ETDEWEB)

    John, C M

    1982-01-01

    Various technical issues of radioactive waste design are addressed in this paper. Two approaches to repository design considered herein are: (1) design to minimize the disturbance of the hot rock; and (2) designs that intentionally modify the hot rock to insure better containment of the wastes. The latter designs range from construction of a highly impermeable barrier around a spherical cavern to creating a matrix of tunnels and boreholes to form a cage within which the hydraulic pressure is nearly constant. Examples of these design alternatives are described in some detail. It is concluded that proposed designs for repositories illustrate that performance criteria considered acceptable for such facilities can be met by appropriate site selection and repository engineering. With these technically feasible design concepts, it is also felt that socioeconomic and institutional issues can be better resolved. (BLM)

  10. Yucca Mountain Biological resources monitoring program

    International Nuclear Information System (INIS)

    1991-01-01

    The US Department of Energy (US DOE) is required by the Nuclear Waste Policy Act of 1982 (as amended in 1987) to study and characterize Yucca Mountain as a possible site for a geological repository for high-level radioactive waste. To ensure site characterization activities do not adversely affect the Yucca Mountain area, an environmental program, the Yucca Mountain Biological Resources Monitoring Program, has been implemented monitor and mitigate environmental impacts and to ensure activities comply with applicable environmental laws. Potential impacts to vegetation, small mammals, and the desert tortoise (an indigenous threatened species) are addressed, as are habitat reclamation, radiological monitoring, and compilation of baseline data. This report describes the program in Fiscal Years 1989 and 1990. 12 refs., 4 figs., 17 tabs

  11. Landscape Potential Analysis for Ecotourism Destination in the Resort Ii Salak Mountain, Halimun-Salak National Park

    Science.gov (United States)

    Kusumoarto, A.; Gunawan, A.; Nurazizah, G. R.

    2017-10-01

    The Resort II Salak Mountain has variety of landscape potential for created as ecotourism destination, especially the potential of the waterfall (curug) and sulphur crater (Kawah Ratu). The aim of this study was to identify and analyze the potential resources of the landscape to be created as ecotourism destination, Resort II Salak Mountain. This research was conducted through two phases: 1) identification of the attractions location that have potential resources for ecotourism destination, and 2) analysis of the level of potential resource of the landscape in each location using Analysis of Tourist Attraction Operational Destination (ATAOD). The study showed Resort II Salak Mountain has many ecotourism objects which have been used for ecotourism activities, such as hot spring baths, Curug Cigamea, Curug Ngumpet, Curug Seribu, Curug Pangeran, Curug Muara, Curug Cihurang, Kawah Ratu, camping ground, Curug Kondang and Curug Alami. The location of all waterfalls -curug, spread widely in the core zone for ecotourism. In the other hand, camping ground is located in the business zone, while Kawah Ratu is located in the natural forest, which is included in the buffer zone of Halimun-Salak National Park (HSNP). The result showed that the ecotourism objects with the highest potential value are Kawah Ratu, Curug Seribu, Curug Muara, Curug Kondang and Curug Ngumpet.

  12. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations.

    Science.gov (United States)

    Karaca, Yunus; Cicek, Mustafa; Tatli, Ozgur; Sahin, Aynur; Pasli, Sinan; Beser, Muhammed Fatih; Turedi, Suleyman

    2018-04-01

    This study explores the potential use of drones in searching for and locating victims and of motorized transportation of search and rescue providers in a mountain environment using a simulation model. This prospective randomized simulation study was performed in order to compare two different search and rescue techniques in searching for an unconscious victim on snow-covered ground. In the control arm, the Classical Line Search Technique (CLT) was used, in which the search is performed on foot and the victim is reached on foot. In the intervention arm, the Drone-snowmobile Technique (DST) was used, the search being performed by drone and the victim reached by snowmobile. The primary outcome of the study was the comparison of the two search and rescue techniques in terms of first human contact time. Twenty search and rescue operations were conducted in this study. Median time to arrival at the mannequin was 57.3min for CLT, compared to 8.9min for DST. The median value of the total searched area was 88,322.0m 2 for CLT and 228,613.0m 2 for DST. The median area searched per minute was 1489.6m 2 for CLT and 32,979.9m 2 for DST (pdrone using DST compared to the classical technique, and the victim can be located faster and reached earlier with rescuers transported by snowmobile. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preliminary calculations of release rates from spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.

    1991-01-01

    Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs

  14. Faulting in the Yucca Mountain region: Critical review and analyses of tectonic data from the central Basin and Range

    International Nuclear Information System (INIS)

    Ferrill, D.A.; Stirewalt, G.L.; Henderson, D.B.; Stamatakos, J.; Morris, A.P.; Spivey, K.H.; Wernicke, B.P.

    1996-03-01

    Yucca Mountain, Nevada, has been proposed as the potential site for a high-level waste (HLW) repository. The tectonic setting of Yucca Mountain presents several potential hazards for a proposed repository, such as potential for earthquake seismicity, fault disruption, basaltic volcanism, magma channeling along pre-existing faults, and faults and fractures that may serve as barriers or conduits for groundwater flow. Characterization of geologic structures and tectonic processes will be necessary to assess compliance with regulatory requirements for the proposed high level waste repository. In this report, we specifically investigate fault slip, seismicity, contemporary stain, and fault-slip potential in the Yucca Mountain region with regard to Key Technical Uncertainties outlined in the License Application Review Plan (Sections 3.2.1.5 through 3.2.1.9 and 3.2.2.8). These investigations center on (i) alternative methods of determining the slip history of the Bare Mountain Fault, (ii) cluster analysis of historic earthquakes, (iii) crustal strain determinations from Global Positioning System measurements, and (iv) three-dimensional slip-tendency analysis. The goal of this work is to assess uncertainties associated with neotectonic data sets critical to the Nuclear Regulatory Commission and the Center for Nuclear Waste Regulatory Analyses' ability to provide prelicensing guidance and perform license application review with respect to the proposed HLW repository at Yucca Mountain

  15. Preparing to Submit a License Application for Yucca Mountain

    International Nuclear Information System (INIS)

    W.J. Arthur; M.D. Voegele

    2005-01-01

    of the United States, approximately 100 miles (160 kilometers) northwest of Las Vegas (Figure 1). The location is remote from population centers, and there are no permanent residents within approximately 14 miles (23 km) of the site. Overall, Nye County has a population density of about two persons per square mile (two persons per 2.5 square km); in the vicinity of Yucca Mountain, it is significantly less. Yucca Mountain is a series of north-south-trending ridges extending approximately 25 miles (40 km), and consists of successive layers of fine-grained volcanic tuffs, millions of years old, underlain by older carbonate rocks. The alternating layers of welded and nonwelded volcanic tuffs have differing hydrologic properties that significantly impact the manner in which water moves through the mountain. The repository horizon will be in welded tuff located in the unsaturated zone, more than 1,000 feet (300 meters) above the water table in the present-day climate, and is expected to remain well above the water table during wetter future climate conditions. Future meteorology and climatology at Yucca Mountain are important elements in understanding the amount of water available to potentially interact with the waste

  16. Sellafield repository design concept

    International Nuclear Information System (INIS)

    1998-01-01

    Between 1989 and 1997, UK Nirex Ltd carried out a programme of investigations to evaluate the potential of a site adjacent to the BNFL Sellafield works to host a deep repository for the United Kingdom's intermediate-level and certain low-level radioactive waste. The programme of investigations was wound down following the decision in March 1997 to uphold the rejection of the Company's planning application for the Rock Characterisation Facility (RCF), an underground laboratory which would have allowed further investigations to confirm whether or not the site would be suitable. Since that time, the Company's efforts in relation to the Sellafield site have been directed towards documenting and publishing the work carried out. The design concept for a repository at Sellafield was developed in parallel with the site investigations through an iterative process as knowledge of the site and understanding of the repository system performance increased. This report documents the Sellafield repository design concept as it had been developed, from initial design considerations in 1991 up to the point when the RCF planning application was rejected. It shows, from the context of a project at that particular site, how much information and experience has been gained that will be applicable to the development of a deep waste repository at other potential sites

  17. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  18. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  19. THE DEVELOPMENT OF THE YUCCA MOUNTAIN PROJECT FEATURE, EVENT, AND PROCESS (FEP) DATABASE

    International Nuclear Information System (INIS)

    Freeze, G.; Swift, P.; Brodsky, N.

    2000-01-01

    A Total System Performance Assessment for Site Recommendation (TSPA-SR) has recently been completed (CRWMS M andO, 2000b) for the potential high-level waste repository at the Yucca Mountain site. The TSPA-SR is an integrated model of scenarios and processes relevant to the postclosure performance of the potential repository. The TSPA-SR scenarios and model components in turn include representations of all features, events, and processes (FEPs) identified as being relevant (i.e., screened in) for analysis. The process of identifying, classifying, and screening potentially relevant FEPs thus provides a critical foundation for scenario development and TSPA analyses for the Yucca Mountain site (Swift et al., 1999). The objectives of this paper are to describe (a) the identification and classification of the comprehensive list of FEPs potentially relevant to the postclosure performance of the potential Yucca Mountain repository, and (b) the development, structure, and use of an electronic database for storing and retrieving screening information about the inclusion and/or exclusion of these Yucca Mountain FEPs in TSPA-SR. The FEPs approach to scenario development is not unique to the Yucca Mountain Project (YMP). General systematic approaches are summarized in NEA (1992). The application of the FEPs approach in several other international radioactive waste disposal programs is summarized in NEA ( 1999)

  20. The importance of thermal loading conditions to waste package performance at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1994-10-01

    Temperature and relative humidity are primary environmental factors affecting waste package corrosion rates for the potential repository in the unsaturated zone at Yucca Mountain, Nevada. Under ambient conditions, the repository environment is quite humid. If relative humidity is low enough (<70%), corrosion will be minimal. Under humid conditions, corrosion is reduced if the temperature is low (<60 C). Using the V-TOUGH code, the authors model thermo-hydrological flow to investigate the effect of repository heat on temperature and relative humidity in the repository for a wide range of thermal loads. These calculations indicate that repository heat may substantially reduce relative humidity on the waste package, over hundreds of years for low thermal loads and over tens of thousands of year for high thermal loads. Temperatures associated with a given relative humidity decrease with increasing thermal load. Thermal load distributions can be optimized to yield a more uniform reduction in relative humidity during the boiling period

  1. Repository exploration

    International Nuclear Information System (INIS)

    Pentz, D.L.

    1984-01-01

    This paper discusses exploration objectives and requirements for a nuclear repository in the U.S.A. The importance of designing the exploration program to meet the system performance objectives is emphasized and some examples of the extent of exploration required before the License Application for Construction Authorization is granted are also discussed

  2. Production potential of photosynthesis in forest ecosystems of the low mountain Pokuttya (Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    S. Y. Milevskaya

    2016-02-01

    Full Text Available The aim of the study was testing on the example of a model region a method of estimation of the production potential of forest ecosystems and the consequences of anthropogenic changes there. The object of study is a typical Carpathian lower mountain forest in the basin of the river Lyuchka, an area of 14,806 ha. It has long undergone considerable agricultural transformations. Studies were based on cartographic modeling of modern anthropogenically transformed biogeocenotic cover using large scale satellite images. The main types of biogeocenotical cover were defined according to the altitudinal zonation of vegetation of the parts of the mountain terrain and the prevailing types of soil and hydrological conditions. For analytical procedures a database of materials describing the biometric features of the forests was created. It is possible to perform calculations of average and potential biometrical parameters of stands growing in different climatic, soil and hydrological conditions. The structure and the biological diversity of different vegetation types was determined by construction of mapping models of spatial structures of the basic types of biogeocenotic cover. The biological productivity of the main types of forest ecosystems was determined on base of the volume of timber stands. The mass of dry wood was determined taking into account its size and standard density of wood of different tree species. Calculation of the total volume of forest biomass was performed using the conversion factors of weight relative to the trunk timber volume. The mass of carbon deposited accounted for 50% of the total biomass. The average annual growth of biomass and carbon deposited was determined by dividing the volume of the stands by their average age. Calculation of phytocenosis consumed as a result of photosynthesis reaction of CO2, H2O and light energy was performed taking into account corresponding material and energy ratios. In general, in the course of

  3. Evaluation of possible host rocks for China's high level radioactive waste repository and the progress in site characterization at the Beishan potential site in NW China's Gansu province

    International Nuclear Information System (INIS)

    Wang Ju; Jin Yuanxin; Chen Zhangru; Chen Weiming; Wang Wenguang

    2000-01-01

    Evaluation of possible host rocks for China's high level radioactive waste repository is summarized in this paper. The distribution and characteristics of granite, tuff, clay stone, salt and loess in China are described, while maps showing the distribution of host rocks are presented. Because of the wide distribution, large scale, good heat conductivity and suitable mechanical properties, granite is considered as the most potential host rock. Some granite bodies distributed in NW China, SW China, South China and Inner Mongolia have been selected as potential areas. Detailed site characterization at Beishan area, Gansu Province NW China is in progress

  4. Geology of the Yucca Mountain Site Area, South