WorldWideScience

Sample records for mountain nevada tuffs

  1. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Castor, S.B.; Tingley, J.V.; Bonham, H.F. Jr.

    1994-01-01

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  2. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  3. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  4. Monitoring the vadose zone in fractured tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Weeks, E.P.; Thamir, F.; Yard, S.N.; Hofrichter, P.B.

    1985-01-01

    Unsaturated tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential repository for high-level radioactive waste. As part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy, the US Geological Survey has been conducting hydrologic, geologic, and geophysical investigations at Yucca Mountain and the surrounding region to provide data evaluation of the potential suitability of the site. Hydrologic investigations of the unsaturated zone at this site were started in 1982. A 17.5-inch- (44.5-centimeter-) diameter borehole (USW UZ-1) was drilled by the reverse-air vacuum-drilling technique to a depth of 1269 feet (387 meters). This borehole was instrumented at 33 depth levels. At 15 of the levels, 3 well screens were embedded in coarse-sand columns. The sand columns were isolated from each other by thin layers of bentonite, columns of silica flour, and isolation plugs consisting of expansive cement. Thermocouple psychrometers and pressure transducers were installed within the screens and connected to the data-acquisition system at the land surface through thermocouple and logging cables. Two of the screens at each level were equipped with access tubes to allow collection of pore-gas samples. In addition to these instruments, 18 heat-dissipation probes were installed within the columns of silica flour, some of which also had thermocouple psychrometers. 20 refs., 13 figs., 2 tabs

  5. Some geochemical considerations for a potential repository site in tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Erdal, B.R.; Bish, D.L.; Crowe, B.M.; Daniels, W.R.; Ogard, A.E.; Rundberg, R.S.; Vaniman, D.T.; Wolfsberg, K.

    1982-01-01

    The Nevada Nuclear Waste Storage Investigations, which is evaluating potential locations for a high-level waste repository at the Nevada Test Site and environs, is currently focusing its investigations on tuff, principally in Yucca Mountain, as a host rock. This paper discusses some of the geochemical investigations. Particular emphasis is placed on definition of some basic elements and necessary technical approaches for the geochemistry data acquisition and modeling program. Some site-specific tuff geochemical information that is important for site selection and repository performance will be identified and the current status of knowledge will then be discussed

  6. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  7. Analysis of the rock mechanics properties of volcanic tuff units from Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-08-01

    Over two hundred fifty mechanical experiments have been run on samples of tuff from Yucca Mountain, Nevada Test Site. Cores from the Topopah Spring, Calico Hills, Bullfrog and Tram tuff units were deformed to collect data for an initial evaluation of mechanical (elastic and strength) properties of the potential horizons for emplacement of commercial nuclear wastes. The experimental conditions ranged in sample saturation from room dry to fully saturated, confining pressure from 0.1 to 20 MPa, pore pressure from 0.1 to 5 MPa, temperature from 23 to 200 0 C, and strain rate from 10 -7 to 10 -2 s -1 . These test data have been analyzed for variations in elastic and strength properties with changes in test conditions, and to study the effects of bulk-rock characteristics on mechanical properties. In addition to the site-specific data on Yucca Mountain tuff, mechanical test results on silicic tuff from Rainier Mesa, Nevada Test Site, are also discussed. These data both overlap and augment the Yucca Mountain tuff data, allowing more definitive conclusions to be reached, as well as providing data at some test conditions not covered by the site-specific tests

  8. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-01-01

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as ''physical-property stratigraphy'' as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs

  9. Geologic character of tuffs in the unsaturated zone at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.B.; Spengler, R.W.; Diehl, S.; Lappin, A.R.; Chornack, M.P.

    1982-12-31

    At Yucca Mountain, a potential site for a high-level nuclear waste repository on the Nevada Test Site in southern Nevada, evaluation of the geologic setting and rock physical properties, along with previous regional hydrologic studies, has provided background that can be used for construction of a preliminary conceptual hydrologic model of the unsaturated zone. The 500-m-thick unsaturated portion of Yucca Mountain consists of alternating layers of two contrasting types of tuff. One type consists of highly fractured, densely welded, relatively nonporous but highly transmissive ash-flow tuffs. The other type consists of relatively unfractured, nonwelded, highly porous but relatively nontransmissive, argillic and zeolitic bedded tuffs and ash-flow tuffs. The contrast between these two sets of distinctive physical properties results in a stratified sequence best described as "physical-property stratigraphy" as opposed to traditional petrologic stratigraphy of volcanic rocks. The vast majority of recharge through the unsaturated zone is assumed to be vertical; the dominant migration may occur in fractures of densely welded tuffs and in the matrix of nonwelded tuff, but the mode of fluid flow in these unsaturated systems is undetermined. Limited lateral flow of recharge may occur at horizons where local perched water tables may exist above relatively nontransmissive zeolitized nonwelded tuffs. The pervasive north-northwest-striking fractures may control the direction of lateral flow of recharge, if any, in the unsaturated zone, and certainly that direction coincides closely with the observed southeasterly flow direction in the saturated zone under Yucca Mountain. Empirical evaluation of this conceptual hydrologic model has begun. 41 refs., 18 figs., 2 tabs.

  10. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  11. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    K.M. SCOFIELD

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes

  12. Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada

    Science.gov (United States)

    Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.

    2009-01-01

    Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.

  13. Triaxial- and uniaxial-compression testing methods developed for extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mower, T.E.; Higgins, J.D. [Colorado School of Mines, Golden, CO (USA). Dept. of Geology and Geological Engineering; Yang, I.C. [Geological Survey, Denver, CO (USA). Water Resources Div.

    1989-12-31

    To support the study of hydrologic system in the unsaturated zone at Yucca Mountain, Nevada, two extraction methods were examined to obtain representative, uncontaminated pore-water samples from unsaturated tuff. Results indicate that triaxial compression, which uses a standard cell, can remove pore water from nonwelded tuff that has an initial moisture content greater than 11% by weight; uniaxial compression, which uses a specifically fabricated cell, can extract pore water from nonwelded tuff that has an initial moisture content greater than 8% and from welded tuff that has an initial moisture content greater than 6.5%. For the ambient moisture conditions of Yucca Mountain tuffs, uniaxial compression is the most efficient method of pore-water extraction. 12 refs., 7 figs., 2 tabs.

  14. Geochemical homogeneity of tuffs at the potential repository level, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Zell E.; Cloke, Paul

    2001-01-01

    In a potential high-level radioactive waste repository at Yucca Mountain, Nevada, radioactive waste and canisters, drip shields protecting the waste from seepage and from rock falls, the backfill and invert material of crushed rock, the host rock, and water and gases contained within pores and fractures in the host rock together would form a complex system commonly referred to as the near-field geochemical environment. Materials introduced into the rock mass with the waste that are designed to prolong containment collectively are referred to as the Engineered Barrier System, and the host rock and its contained water and gases compose the natural system. The interaction of these component parts under highly perturbed conditions including temperatures well above natural ambient temperatures will need to be understood to assess the performance of the potential repository for long-term containment of nuclear waste. The geochemistry and mineralogy of the rock mass hosting the emplacement drifts must be known in order to assess the role of the natural system in the near-field environment. Emplacement drifts in a potential repository at Yucca Mountain would be constructed in the phenocryst-poor member of the Topopah Spring Tuff which is composed of both lithophysal and nonlithophysal zones. The chemical composition of the phenocryst-poor member has been characterized by numerous chemical analyses of outcrop samples and of core samples obtained by surface-based drilling. Those analyses have shown that the phenocryst-poor member of the Topopah Spring Tuff is remarkably uniform in composition both vertically and laterally. To verify this geochemical uniformity and to provide rock analyses of samples obtained directly from the potential repository block, major and trace elements were analyzed in core samples obtained from drill holes in the cross drift, which was driven to provide direct access to the rock mass where emplacement drifts would be constructed

  15. Paleotransport of lanthanides and strontium recorded in calcite compositions from tuffs at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Chipera, S.J.

    1996-01-01

    Secondary calcite occurs in both saturated and unsaturated hydrologic zones (SZ and UZ, respectively) in the tuffs at Yucca Mountain, Nevada, USA. In the upper UZ, the major constituents of the calcite crystal structure (C, O) have surface origins. At greater depth there is a open-quotes barren zone,close quotes straddling the water table, where calcite is rare and mixing of surface and subsurface sources may occur. Deep in the SZ, distinctive Mn calcites reflect deep sources, including Ca released as analcime or albite formed and carbonates derived from underlying Paleozoic rocks. In the UZ and in the barren zone, above the deep Mn calcites, variations in calcite lanthanide chemistry can be used to distinguish rhyolitic from quartz-latitic sources. Lanthanide ratios and Sr contents of calcites record the chemical evolution of waters flowing through the UZ and upper SZ. Variations in calcite chemistry in the UZ and in the barren zone show that (1) Sr, which is readily exchanged with clays or zeolites, is essentially removed from some flowpaths that are in contact with these minerals and (2) traces of Mn oxides found in the tuffs have a significant effect of groundwater chemistry in the UZ and in the barren zone by removing almost all Ce from solution (evidenced by characteristic Ce depletions in calcite throughout this zone). Extreme Ce removal may be a result of Ce oxidation (Ce 3+ → Ce 4+ ) at the surfaces of some Mn oxides, particularly rancieite. Higher Sr contents and lack of Ce depletions in the deeper Mn calcites reflect different ages, origins, and transport systems. The calcite record of lanthanide and Sr transport in the UZ shows that minor minerals (clays and zeolites) and even trace minerals (Mn oxides) will affect the compositions of groundwaters that flow over distances greater than a few tens of meters. 43 refs., 8 figs., 4 tabs

  16. LITHOSTRATIGRAPHY AND SHEAR-WAVE VELOCITY IN THE CRYSTALLIZED TOPOPAH SPRING TUFF, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    D. BUESCH; K.H. STOKOE; M. SCHUHEN

    2006-01-01

    Evaluation of the seismic response of the proposed spent nuclear fuel and high-level radioactive waste repository at Yucca Mountain, Nevada, is in part based on the seismic properties of the host rock, the 12.8-million-year-old Topopah Spring Tuff. Because of the processes that formed the tuff, the densely welded and crystallized part has three lithophysal and three nonlithophysal zones, and each zone has characteristic variations in lithostratigraphic features and structures of the rocks. Lithostratigraphic features include lithophysal cavities, rims on lithophysae and some fractures, spots (which are similar to rims but without an associated cavity or aperture), amounts of porosity resulting from welding, crystallization, and vapor-phase corrosion and mineralization, and fractures. Seismic properties, including shear-wave velocity (V s ), have been measured on 38 pieces of core, and there is a good ''first order'' correlation with the lithostratigraphic zones; for example, samples from nonlithophysal zones have larger V s values compared to samples from lithophysal zones. Some samples have V s values that are beyond the typical range for the lithostratigraphic zone; however, these samples typically have one or more fractures, ''large'' lithophysal cavities, or ''missing pieces'' relative to the sample size. Shear-wave velocity data measured in the tunnels have similar relations to lithophysal and nonlithophysal rocks; however, tunnel-based values are typically smaller than those measured in core resulting from increased lithophysae and fracturing effects. Variations in seismic properties such as V s data from small-scale samples (typical and ''flawed'' core) to larger scale traverses in the tunnels provide a basis for merging our understanding of the distributions of lithostratigraphic features (and zones) with a method to scale seismic properties

  17. Magnetism and magnetic mineralogy of ash flow tuffs from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schlinger, C.M.; Veblen, D.R.; Rosenbaum, J.G.

    1991-01-01

    The magnetic susceptibility χ and remanent magnetization of an ash flow sheet are profoundly influenced by cooling history after emplacement. Maxima and minima in χ measured along profiles at Yucca Mountain, Nevada, identify persistent magnetic marker horizons within vitric portions of the Tiva Canyon and underlying Topopah Spring Members of the Paintbrush Tuff. The observed stratigraphic changes in magnetic properties reflect variations in amounts and mineralogy of Fe-Ti oxide phenocrysts, and the presence, shape, size, and mineralogy of magnetic Fe-oxide microcrystals that precipitated at high temperature after emplacement of each sheet. The size variations of the precipitated Fe-oxides, which were established using transmission electron microscopy (TEM) and petrographic observation, are consistent both with variations in magnetic susceptibility measured at the outcrop and with variations in the intensity of remanent magnetization. Several interpretations of the shape anisotropy of the precipitated Fe-oxide are possible, including growth by a dislocation mechanism. Additionally, the observed elongation of precipitated microcrystals is consistent with theoretical predictions for growth in a uniaxial stress field. Susceptibility variations as established at the outcrop, as well as in the borehole, offer a potentially useful tool for stratigraphic correlation of ash flow sheets

  18. Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    George, James T.; Sobolik, Steven R.; Lee, Moo Y.; Park, Byoung; Costin, Laurence

    2018-05-01

    The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range of temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.

  19. Measurements of matric and water potentials in unsaturated tuff at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thamir, F.; McBride, C.M.

    1985-01-01

    Two types of instruments were installed in a borehole in order to monitor matric and water potentials of various hydrogeologic units consisting of tuff. The borehole was drilled as part of a study to provide information to the US Department of Energy for their use in evaluating Yucca Mountain, Nevada, for a repository for high-level radioactive waste. Heat-dissipation probes were used to monitor matric potentials and thermocouple psychrometers were used to monitor water potentials. Two major concerns regarding the use of these instruments in deep boreholes are: (1) the effect of length of the lead wires, and (2) the inability to recalibrate the instruments after installation. The length of the lead wire contributes to the source resistance and lead capacitance, which affects the signal settling time. Both instruments tested proved to be insensitive to lead-wire length, except when connected to smaller input-impedance data loggers. Thermocouple wires were more sensitive than heat-dissipation probe wires because of their greater resistance and quality of voltmeters used. Two thermocouple psychrometers were installed at every instrument station for backup and verification of data, because the instruments could not be recalibrated in situ. Multiple scanning rather than single-point scanning of the evaporation curve of a thermocouple psychrometer could give more reliable data, especially in differentiating between very wet and very dry environments. An isolated power supply needs to be used for each heat dissipation probe rather than a single power supply for a group of probes to avoid losing data from all probes when one probe malfunctions. This type of system is particularly desirable if the site is unattended by an operator for as long as a month. 20 refs., 13 figs., 2 tabs

  20. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Peterman, Z.E.

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 parts per million (ppM) in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppM in the older tuffs. Zr concentrations are about 100 ppM in the Topopah Spring Member and also increase with depth to about 150 ppM in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87 Sr/ 86 Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87 Sr/ 86 Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx or Sr from water derived from a Paleozoic carbonate aquifer. 23 refs., 4 figs., 1 tab

  1. Stonewall Mountain Volcanic Center, southern Nevada: Stratigraphic, structural, and facies relations of outflow sheets, near-vent tuffs, and intracaldera units

    Science.gov (United States)

    Weiss, Steven I.; Noble, Donald C.

    1989-05-01

    Directly south and southeast of Stonewall Mountain, Nevada, a depression and north facing caldera scarp were formed during and(or) after eruption of the Spearhead Member of the late Miocene Stonewall Flat Tuff. Abundant large lithic and juvenile blocks are present in the Spearhead Member within 0.5 km of this topographic margin but absent elsewhere in the ash-flow sheet, consistent with eruption from vents in the Stonewall Mountain area. Within about 100,000 years, comendite tuff of the overlying Civet Cat Canyon Member of the Stonewall Flat Tuff buried the depression and associated scarp. The Civet Cat Canyon Member is traceable continuously to the north from an outflow sheet capping northwestern Pahute Mesa, into near-vent tuff on the southeastern flank of Stonewall Mountain. Proximal outflow-sheet tuff locally exhibits strong rheomorphic disruption and is overlain without a cooling break by surge, flow, and fall deposits of trachytic composition. Much of Stonewall Mountain is composed of welded tuff and megabreccia interpreted as intracaldera tuff of the Civet Cat Canyon Member, strongly suggesting that the vent area of the member was largely within Stonewall Mountain. Welded tuff of trachytic composition comprises an important part of the intracaldera Civet Cat Canyon Member, which was intruded by dikes and plugs of trachyte and rhyolite. Juvenile inclusions of basalt dispersed in near-vent facies trachyte tuff provide direct evidence for the high-level involvement of basaltic magma in the evolution of the highly potassic Stonewall Mountain center. Complex discordant compaction foliations and the widespread presence of megabreccia within the intracaldera tuff suggest, following Foley (1978), cauldron subsidence by piecemeal collapse during eruption of the Civet Cat Canyon Member. The elevation of intracaldera tuff and intrusions in Stonewall Mountain above the surrounding ashflow sheet suggests a significant amount of magmatic uplift, perhaps involving the

  2. Triaxial-compression extraction of pore water from unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Turner, A.K.; Sayre, T.M.; Montazer, P.

    1988-01-01

    The purpose of this experiment was to design and validate methods for extracting uncontaminated pore water from nonwelded parts of this tuff. Pore water is needed for chemical analysis to help characterize the local hydrologic system. A standard Hoek-Franklin triaxial cell was modified to create a chemically inert pore-water-extraction system. Experimentation was designed to determine the optimum stress and duration of triaxial compression for efficient extraction of uncontaminated pore water. Experimental stress paths consisted of a series of increasing stress levels. Trial axial stress levels ranged from 41 to 190 megapascals with lateral confining stresses of 34 to 69 megapascals. The duration of compression at any given stress level lasted from 10 minutes to 15 hours. A total of 40 experimental extraction trials were made. Tuff samples used in these tests were collected from drill-hole core from the Paintbrush nonwelded unit at Yucca Mountain. Pore water was extracted from tuff samples that had a water content greater than 13 percent by weight. Two stress paths have been determined to be applicable for future pore-water extraction from nonwelded tuff at Yucca Mountain. The initial water content of a sample affects the selection of an appropriate period of compression. 39 refs., 55 figs

  3. Development of the data base for tuffs at Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Lappin, A.R.

    1981-11-01

    The purposes of the data-base development described here are: (1) to provide sufficient input for the modeling and analysis required to support a horizon-selection decision in December, 1982; and (2) to support follow-on detailed horizon evaluation. Initial data collection must, therefore, be complete by August, 1982. Data will include; (1) thermal conductivity; (2) thermal expansion; (3) matrix and fracture mechanical properties; (4) bulk properties; and (5) functional thermomechanical stratigraphy of the tuffs at Yucca Mountain

  4. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  5. SNL Yucca Mountain Project data report: Density and porosity data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.

    1990-02-01

    Yucca Mountain, located on and adjacent to the Nevada Test Site in southern Nevada, is being evaluated as a potential site for underground disposal of nuclear wastes. At present, the physical, thermal, and mechanical properties of tuffaceous rocks from Yucca Mountain are being determined as part of the Yucca Mountain Project. This report documents experiment data, which have been obtained by Sandia National Laboratories or its contractors, for the density and porosity of tuffaceous rocks that lie above the water table at Yucca Mountain. 7 refs., 2 figs., 3 tabs

  6. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.; Flint, L.E.

    1996-01-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections

  7. Stratigraphic relations and hydrologic properties of the Paintbrush Tuff (PTn) hydrologic unit, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Golden, CO (United States); Flint, L.E. [U.S. Geological Survey, Yucca Mountain Project, Mercury, NV (United States)

    1996-08-01

    Yucca Mountain is being investigated as a potential site for a high- level nuclear waste repository. The intent of this study was to clarify stratigraphic relations within the Paintbrush Tuff (PTn) unit at Yucca Mountain in order to better understand vertical and lateral variations in hydrologic properties as they relate to the lithologic character of these rocks. This report defines informal stratigraphic units within the PTn interval, demonstrates their lateral continuity in the Yucca Mountain region, describes later and vertical variations within them, and characterizes their hydrologic properties and importance to numerical flow and transport models. We present tables summarizing the depth to stratigraphic contacts in cored borehole studies, and unit descriptions and correlations in 10 measured sections.

  8. Manganese-oxide minerals in fractures of the Crater Flat Tuff in drill core USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1990-07-01

    The Crater Flat Tuff is almost entirely below the water table in drill hole USW G-4 at Yucca Mountain, Nevada. Manganese-oxide minerals from the Crater Flat Tuff in USW G-4 were studied using optical, scanning electron microscopic, electron microprobe, and x-ray powder diffraction methods to determine their distribution, mineralogy, and chemistry. Manganese-oxide minerals coat fractures in all three members of the Crater Flat Tuff (Prow Pass, Bullfrog, and Tram), but they are most abundant in fractures in the densely welded devitrified intervals of these members. The coatings are mostly of the cryptomelane/hollandite mineral group, but the chemistry of these coatings varies considerably. Some of the chemical variations, particularly the presence of calcium, sodium, and strontium, can be explained by admixture with todorokite, seen in some x-ray powder diffraction patterns. Other chemical variations, particularly between Ba and Pb, demonstrate that considerable substitution of Pb for Ba occurs in hollandite. Manganese-oxide coatings are common in the 10-m interval that produced 75% of the water pumped from USW G-4 in a flow survey in 1983. Their presence in water-producing zones suggests that manganese oxides may exert a significant chemical effect on groundwater beneath Yucca Mountain. In particular, the ability of the manganese oxides found at Yucca Mountain to be easily reduced suggests that they may affect the redox conditions of the groundwater and may oxidize dissolved or suspended species. Although the Mn oxides at Yucca Mountain have low exchange capacities, these minerals may retard the migration of some radionuclides, particularly the actinides, through scavenging and coprecipitation. 23 refs., 21 figs., 2 tabs

  9. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  10. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring

  11. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring.

  12. Geologic evaluation of six nonwelded tuff sites in the vicinity of Yucca Mountain, Nevada for a surface-based test facility for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Broxton, D.E.; Chipera, S.J.; Byers, F.M. Jr.; Rautman, C.A.

    1993-10-01

    Outcrops of nonwelded tuff at six locations in the vicinity of Yucca Mountain, Nevada, were examined to determine their suitability for hosting a surface-based test facility for the Yucca Mountain Project. Investigators will use this facility to test equipment and procedures for the Exploratory Studies Facility and to conduct site characterization field experiments. The outcrops investigated contain rocks that include or are similar to the tuffaceous beds of Calico Hills, an important geologic and hydrologic barrier between the potential repository and the water table. The tuffaceous beds of Calico Hills at the site of the potential repository consist of both vitric and zeolitic tuffs, thus three of the outcrops examined are vitric tuffs and three are zeolitic tuffs. New data were collected to determine the lithology, chemistry, mineralogy, and modal petrography of the outcrops. Some preliminary data on hydrologic properties are also presented. Evaluation of suitability of the six sites is based on a comparison of their geologic characteristics to those found in the tuffaceous beds of Calico Hills within the exploration block

  13. Occurrence of fracture-lining manganese minerals in silicic tuffs, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Carlos, B.A.

    1986-01-01

    Yucca Mountain, in southern Nevada, is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project as a potential site for an underground high-level nuclear waste repository. The site is within Miocene volcanic rocks that are 1.5 to 4 km thick and range in age from 12.5 to 14 MY. Several holes have been drilled in Yucca Mountain for geologic and hydrologic studies. Drill hole USW G-4, the most recently cored hole within the potential repository block, was chosen for detailed study of fracture-filling minerals because it is closest to the planned NNWSI exploratory shaft. Drill hole USW G-4 was drilled to 914.7 m (3001 ft) and continuously cored from 6.7 m (22 ft) to total depth (TD). The drilling history, lithology of the core, and geophysical logs of the well were published earlier. Because manganese oxides in fractures may act as a natural barrier to radionuclide migration, it is important to determine exactly which manganese minerals are present, in what intervals they occur, and how extensive these fracture coatings are

  14. Geochemical and Pb, Sr, and O isotopic study of the Tiva Canyon Tuff and Topopah Spring Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Neymark, L.A.; Marshall, B.D.; Kwak, L.M.; Futa, Kiyoto; Mahan, S.A.

    1995-01-01

    Yucca Mountain is currently being studied as a potential site for an underground repository for high-level radioactive waste. One aspect of the site characterization studies is an evaluation o the resource potential at Yucca Mountain. Geochemical and isotopic signatures of past alteration of the welded tuffs that underlie Yucca Mountain provide a means of assessing the probability of hydrothermal ore deposits being present within Yucca Mountain. In this preliminary report, geochemical and isotopic measurements of altered Tiva Canyon Tuff and Topopah Spring Tuff collected from fault zones exposed on the east flank of Yucca Mountain and from one drill core are compared to their unaltered equivalents sampled both in outcrop and drill core. The geochemistry and isotopic compositions of unaltered Tiva Canyon Tuff and Topopah Spring Tuff (high-silica rhyolite portions) are fairly uniform; these data provide a good baseline for comparisons with the altered samples. Geochemical analyses indicate that the brecciated tuffs are characterized by addition of calcium carbonate and opaline silica; this resulted in additions of calcium and strontium,increases in oxygen-18 content, and some redistribution of trace elements. After leaching the samples to remove authigenic carbonate, no differences in strontium or lead isotope compositions between altered and unaltered sections were observed. These data show that although localized alteration of the tuffs has occurred and affected their geochemistry, there is no indication of additions of exotic components. The lack of evidence for exotic strontium and lead in the most severely altered tuff samples at Yucca Mountain strongly implies a similar lack of exotic base or precious metals

  15. Linear thermal expansion data for tuffs from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schwartz, B.M.; Chocas, C.S.

    1992-07-01

    Experiment results are presented for linear thermal expansion measurements on tuffaceous rocks from the unsaturated < one at Yucca Mountain, Nevada. Data were obtained both with and without confining pressure. The accuracy of the unconfined data collected between 50 and 250 degrees C is better than 1.8 percent, with the precision better than 4.5;percent. The accuracy of the unconfined data collected between ambient temperature and 50 degrees C and is approximately 11 percent deviation from the true value, with a precision of 12 percent of the mean value. Because of experiment design and the lack of information related calibrations, the accuracy and precision of the confined thermal expansion measurements could not be determined

  16. Isotopic and trace element variability in altered and unaltered tuffs at Yucca Mountain, Nevada

    Science.gov (United States)

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1993-01-01

    Reference stratigraphic sections near Yucca Mountain, Nevada were established and sampled in outcrop areas where the volcanic rocks have been minimally altered. Isotopic and trace element analyses obtained for these reference sections are baseline data for assessing the degree and extent of element mobility attendant with past zonal alteration of the rock mass. In agreement with earlier studies, zeolitization is shown to have occurred under wholesale open-system conditions. Calcium was increased by two three times the baseline values and strontium up to twenty times. In contrast, barium displays less variability, and the high-field strength elements zirconium and titanium were the least mobile during zeolitization. The data reported here establish the usefulness of reference sections of assessing past elements mobility. The information gained will be helpful in predicting possible future element mobility induced by thermally activated fluids in the near field of a potential repository.

  17. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at fourth depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid ratios: most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at open-quotes 100 degrees Cclose quotes. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  18. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    International Nuclear Information System (INIS)

    Roedder, E.; Whelan, J.F.; Vaniman, D.T.

    1994-01-01

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at 2 vapor phase at ''<100 degrees C''. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface

  19. Vacuum drilling of unsaturated tuffs at a potential radioactive-waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.

    1985-01-01

    A vacuum reverse-air circulation drilling method was used to drill two 17-1/2-inch (44.5-centimeter) diameter test holes to depths of 1269 feet (387 meters) and 1887 feet (575 meters) at Yucca Mountain near the Nevada Test Site. The site is being considered by the US Department of Energy for construction of a high-level radioactive-waste repository. One of these two test holes (USW UZ-1) has been equipped with instrumentation to obtain a long-term record of pressure and moisture potential data; the other test hole (USW UZ-6) will be similarly instrumented in the near future. These investigations are being conducted as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. The test holes were drilled using a 5-1/2-inch (14-centimeter) by 8-5/8-inch (22-centimeter) dual-string reverse-vacuum assembly. A vacuum, induced at the land surface, removed the drill cuttings through the inner string. Compressed air was injected into the dual-string annulus to cool the bit and to keep the bit and inner string clean. A tracer gas, sulfur hexafluoride (SF 6 ), was added to the compressed air for a later determination of atmospheric contamination that might have occurred during the drilling. After reaching the surface, the drill cuttings were routed to a dry separator for sample collection. Then return air and dust from the cuttings were routed to a wet separator where the dust was removed by a water spray, and the remaining air was exhausted through the vacuum unit (blower) to the atmosphere. 6 refs., 4 figs

  20. Fluid inclusion studies of calcite veins from Yucca Mountain, Nevada, Tuffs: Environment of formation

    Energy Technology Data Exchange (ETDEWEB)

    Roedder, E. [Harvard Univ., Cambridge, MA (United States); Whelan, J.F. [Geological Survey, Denver, CO (United States); Vaniman, D.T. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Calcite vein and vug fillings at four depths (130-314m), all above the present water table in USW G-1 bore hole at Yucca Mountain, Nevada, contain primary fluid inclusions with variable vapor/liquid raitos: Most of these inclusions are either full of liquid or full of vapor. The liquid-filled inclusions show that most of the host calcite crystallized from fluids at <100{degrees}C. The vapor-filled inclusions provide evidence that a separate vapor phase was present in the fluid during crystallization. Studies of these vapor-filled inclusions on the microscope crushing stage were interpreted in an earlier paper as indicating trapping of an air-water-CO{sub 2} vapor phase at ``<100{degrees}C``. Our new studies reveal the additional presence of major methane in the vapor-filled inclusion, indicating even lower temperatures of trapping, perhaps at near-surface temperatures. They also show that the host calcite crystals grew from a flowing film of water on the walls of fractures open to the atmosphere, the vapor-filled inclusions representing bubbles that exsolved from this film onto the crystal surface.

  1. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  2. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, Brian D.; Futa, Kiyoto

    2001-01-01

    Pore water in the Topopah Spring Tuff has a narrow range of (delta) 87 Sr values that can be calculated from the (delta) 87 Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of (delta) 87 Sr in the pore water through time; this approximates the variation of (delta) 87 Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model

  3. Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-1, G-2, and G-3

    International Nuclear Information System (INIS)

    Bish, D.L.

    1989-03-01

    The tuffs at Yucca Mountain in south-central Nevada are being studied by the Yucca Mountain Project (YMP) to determine their suitability for a high-level radioactive waste repository. For predictive purposes, it is important to understand the alteration history of Yucca Mountain and to know how the minerals in Yucca Mountain tuffs respond to changing conditions such as elevated temperatures. The clay mineralogy of these tuffs has been examined using x-ray powder diffraction, and approximation temperatures of alteration have been determined using available clay mineral data and fluid inclusion analyses. Also, several illites from drill holes USW G-1 and G-2 have been dated using K/Ar techniques, yielding ages of about 11 Myr. The clay mineral in Yucca Mountain tuffs are predominantly interstratified illite/smectites, with minor amounts of chloride, kaolinite, and interstratified chlorite/smectite at depth in USW G-1 and G-2. The reactions observed for these illite/smectites are similar to those observed in pelitic rocks. With depths, the illite/smectites transform from random interstratifications (R = 0) through ordered intermediates (R = 1) to illite in USW G-2 and to Kalkberg (R ≥ 3) interstratifications in USW G-1. The illite/smectites in USW G-3 have not significantly transformed. It appears that the illites in deeper rock results from hydrothermal and diagenetic reactions of earlier-formed smectites. These data demonstrate that the rocks at depth in the northern end of Yucca Mountain were significantly altered about 11 Myr ago. Both clay mineralogy and fluid inclusions suggest that the rocks at depth in USW G-2 have been subjected to postdepositional temperatures of at least 275/degree/C, those in USW G-1 have reached 200/degree/C, and USW G-3 rocks probably have not exceeded 100/degree/C. 64 refs., 9 figs., 3 tabs

  4. Numerical simulation of air- and water-flow experiments in a block of variably saturated, fractured tuff from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kwicklis, E.M.; Healy, R.W.; Thamir, F.; Hampson, D.

    1998-01-01

    Numerical models of water movement through variably saturated, fractured tuff have undergone little testing against experimental data collected from relatively well-controlled and characterized experiments. This report used the results of a multistage experiment on a block of variably saturated, fractured, welded tuff and associated core samples to investigate if those results could be explained using models and concepts currently used to simulate water movement in variably saturated, fractured tuff at Yucca Mountain, Nevada, the potential location of a high-level nuclear-waste repository. Aspects of the experiment were modeled with varying degrees of success. Imbibition experiments performed on cores of various lengths and diameters were adequately described by models using independently measured permeabilities and moisture-characteristic curves, provided that permeability reductions resulting from the presence of entrapped air were considered. Entrapped gas limited maximum water saturations during imbibition to approximately 0.70 to 0,80 of the fillable porosity values determined by vacuum saturation. A numerical simulator developed for application to fluid flow problems in fracture networks was used to analyze the results of air-injection tests conducted within the tuff block through 1.25-cm-diameter boreholes. These analyses produced estimates of transmissivity for selected fractures within the block. Transmissivities of other fractures were assigned on the basis of visual similarity to one of the tested fractures. The calibrated model explained 53% of the observed pressure variance at the monitoring boreholes (with the results for six outliers omitted) and 97% of the overall pressure variance (including monitoring and injection boreholes) in the subset of air-injection tests examined

  5. Status of image analysis methods to delineate stratigraphic position in the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.; Broxton, D.E.; Spaw, J.

    1989-10-01

    The Topopah Spring Member of the Paintbrush Tuff is an ash-flow cooling unit that is the candidate host rock for a potential high-level nuclear waste repository at Yucca Mountain, Nevada. The repository workings will be mostly confined to the member's rhyolitic portion, which is chemically homogenous but texturally variable. This report describes the status of work to develop a useful internal stratigraphy for the rhyolitic portion of the member; our approach is to use an image analysis technique to map textural variations within the member as a function of stratigraphic height. Fifteen petrographic thin sections of Topopah Spring rhyolitic tuff were studied in each of two drill holes (USW GU-3 and USW G-4). Digital color images were collected in transmitted light for two scenes 1 cm on a side for each thin section. Objects within a scene were classified by color, and measurements of area, elongation, and roughness were determined for each object. Summary statistics were compiled for all measurements for each color component within a scene, and each variable was statistically examined for correlations with stratigraphic position. Our initial studies using image analysis have not yet produced a useful method for determining stratigraphic position within the Topopah Spring Member. Simplifications made in this preliminary application of image analysis may be largely responsible for these negative results. The technique deserves further investigation, and more detailed analysis of existing data is recommended. 9 refs., 11 figs., 4 tabs

  6. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  7. Assessment of hydrologic impact of extending exploratory shafts into the Calico Hills nonwelded tuff unit at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nichols, W.E.; Freshley, M.D.; Rockhold, M.L.

    1991-03-01

    The US Department of Energy (DOE) is performing analyses to address an objection by the US Nuclear Regulatory Commission to plans in the Consultation Draft of the Site Characterization Plan for direct excavation of the Calico Hills nonwelded (CHn) unit within the repository exploration block at Yucca Mountain, Nevada. The excavation was planned as part of site characterization activities for the potential high-level nuclear waste repository at Yucca Mountain. This characterization activities for the potential high-level nuclear waste repository at Yucca Mountain. This characterization activity has been deferred, pending the results of a risk/benefit analysis of alternative methods for obtaining needed characterization data from CHn unit. The benefits from characterizing the CHn unit are generally related to obtaining information leading to improved confidence in predictions of site performance. The risks are generally associated with potential adverse impacts to site performance that result from excavation or other intrusion into the CHn unit. The purpose of the risk/benefit analysis is to produce a recommendation to the Director, Regulatory and Site Evaluation Division. DOE/Yucca Mountain Site Characterization Project Office for a strategy for characterizing the CHn unit. The recommendation will describe characterization activities that are expected to provide the needed information while limiting adverse impacts to site performance to the extent practical. The risk/benefit analysis was supported with scoping calculations to provide a quantitative evaluation of the impacts associated with different strategies. The working group responsible for the risk/benefit analysis requested that these scoping calculations to be supported with more detailed performance assessments for evaluating impacts of different characterization activities. This report summarizes the results of these performance assessment analyses. 9 refs., 30 figs., 1 tab

  8. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moyer, T.C.; Geslin, J.K.

    1995-01-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff

  9. Lithostratigraphy of the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, T.C.; Geslin, J.K. [Science Applications International Corp., Las Vegas, NV (United States)

    1995-07-01

    Lithostratigraphic relations within the Calico Hills Formation and Prow Pass Tuff (Crater Flat Group) were reconstructed from analysis of core samples and observation of outcrop exposures. The Calico Hills Formation is composed of five nonwelded pyroclastic units (each formed of one or more pyroclastic-flow deposits) that overlie an interval of bedded tuff and a basal volcaniclastic sandstone unit. The Prow Pass Tuff is divided into four pyroclastic units and an underlying interval of bedded tuff. The pyroclastic units of the Prow Pass Tuff are distinguished by the sizes and amounts of their pumice and lithic clasts and their degree of welding. Pyroclastic units of the Prow Pass Tuff are distinguished from those of the Calico Hills Formation by their phenocryst assemblage, chemical composition, and ubiquitous siltstone lithic clasts. Downhole resistivity tends to mirror the content of authigenic minerals, primarily zeolites, in both for-mations and may be useful for recognizing the vitric-zeolite boundary in the study area. Maps of zeolite distribution illustrate that the bedded tuff and basal sandstone units of the Calico Hills Formation are altered over a wider area than the pyroclastic units of both the Calico Hills Formation and the upper Prow Pass Tuff.

  10. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Karasaki, K.; Galloway, D.

    1990-10-01

    Field experimental and analytical methods development is underway to define the hydraulic and transport properties of a thick saturated zone that underlies the planned high-level nuclear waste repository at Yucca Mountain, Nevada. The characterization strategy for the highly heterogeneous hydrology is that of hypothesis testing and confidence building. Three test wells, the UE-25c-holes, have been drilled and preliminary data have been collected. Hydro-mechanical analyses indicate formation fluid at depth is hydraulically connected to the water table. Preliminary hydraulic tests indicate highly localized, fracture-controlled transmissivity. Cross-hole seismic tomography is planned to assess the inter-borehole structure of fractures and faults. Multi-level cross-hole hydraulic interference and tracer tests are planned using up to 5 packed-off zones in each of the c-holes to assess the hydraulic conductivity and transport structure in a crude tomographic fashion. An equivalent discontinuum model conditioned with the observed hydraulic measurements will be applied to interpret the hydraulic test responses. As an approach to the scale problem the tests will be designed and analyzed to examine the hypothesis that the flow system may be represented by fractal geometry. 12 refs., 4 figs

  11. Sorption-desorption studies on tuff III. A continuation of studies with samples from Jackass Flats and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wolfsberg, K.; Aguilar, R.D.; Bayhurst, B.P.

    1981-05-01

    This report is the third in a series of reports describing studies of sorption and migration of radionuclides in tuff. The investigations were extended to lithologies of tuff not previously studied. Continuing experiments with uranium, plutonium, and americium are described. The dependence of sorption on the concentration of the sorbing element and on the solution-to-solid ratio was investigated for a number of nuclides and two lithologies. A circulating system was designed for measuring sorption ratios. Values obtained from this system, batch measurements, and column elutions are compared. Progress on measuring and controlling Eh is described

  12. Thermal conductivity, bulk properties, and thermal stratigraphy of silicic tuffs from the upper portion of hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lappin, A.R.; VanBuskirk, R.G.; Enniss, D.O.; Buters, S.W.; Prater, F.M.; Muller, C.B.; Bergosh, J.L.

    1982-03-01

    Thermal-conductivity and bulk-property measurements were made on welded and nonwelded silicic tuffs from the upper portion of Hole USW-G1, located near the southwestern margin of the Nevada Test Site. Bulk-property measurements were made by standard techniques. Thermal conductivities were measured at temperatures as high as 280 0 C, confining pressures to 10 MPa, and pore pressures to 1.5 MPa. Extrapolation of measured saturated conductivities to zero porosity suggests that matrix conductivity of both zeolitized and devitrified tuffs is independent of stratigraphic position, depth, and probably location. This fact allows development of a thermal-conductivity stratigraphy for the upper portion of Hole G1. Estimates of saturated conductivities of zeolitized nonwelded tuffs and devitrified tuffs below the water table appear most reliable. Estimated conductivities of saturated densely welded devitrified tuffs above the water table are less reliable, due to both internal complexity and limited data presently available. Estimation of conductivity of dewatered tuffs requires use of different air thermal conductivities in devitrified and zeolitized samples. Estimated effects of in-situ fracturing generally appear negligible

  13. Calculation of experiment uncertainty in laboratory determination of several geoengineering properties of tuffs from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nimick, F.B.; Schwartz, B.M.; Price, R.H.

    1991-11-01

    A method for estimating the precision and accuracy of measured parameters is described. Examples of application of the estimating method are presented for density, porosity, compressive strength, Young's modulus, Poisson's ratio, and thermal expansion. With the exception of the coefficient of linear thermal expansion, all laboratory data for these properties for tuff samples appear to have reasonable experiment uncertainties. Uncertainties in the thermal-expansion coefficients may be as high as 39% of the values, although most uncertainties for the coefficients are probably ≤2%. 4 refs., 1 fig., 15 tabs

  14. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests and potentially large-scale laboratory demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs. 3 refs., 2 tabs

  15. Mechanical excavator performance in Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Ozdemir, L.; Hansen, F.D.

    1991-01-01

    A research effort of four phases is in progress at the Colorado School of Mines. The overall program will evaluate the cutability of welded tuff and other lithologies likely to be excavated at Yucca Mountain in the site characterization process. Several mechanical systems are considered with emphasis given to the tunnel boring machine. The research comprises laboratory testing, linear drag bit and disc cutter tests, and potentially large-scale lab. demonstrations to support potential use of a tunnel boring machine in welded tuff. Preliminary estimates of mechanical excavator performance in Yucca Mountain tuff are presented here. As phases of the research project are completed, well-quantified estimates will be made of performance of mechanical excavators in the Yucca Mountain tuffs

  16. Cavity-based secondary mineralization in volcanic tuffs of Yucca Mountain, Nevada: a new type of the polymineral vadose speleothem, or a hydrothermal deposit?

    Directory of Open Access Journals (Sweden)

    Dublyansky Yuri V.

    2005-07-01

    Full Text Available Secondary minerals (calcite, chalcedony, quartz, opal, fluorite, heulandite, strontianite residing in open cavities in the Miocenerhyolite tuffs of Yucca Mountain, Nevada have been interpreted by some researchers as "speleothemic" formations, deposited as aresult of downward infiltration of meteoric waters (DOE, 2001, Whelan et al., 2002. The major mineral of the paragenesis, calcite,shows spectacular trend of the textural and crystal morphology change: from anhedral granular occurrences, through (optionalplatelet, bladed and scepter varieties, to euhedral blocky morphologies. The trend is consistent with the overall decrease in thesupesaturation of the mineral forming solution. Stable isotope properties of calcite evolve from 13C-enriched (δ13C = +4 to +9 ‰ PDBat early stages of growth to 13C-depleted (-5 to -10 ‰ at late stages. The non-cyclic character of the isotope record and extremevariations of isotopic values argue against the meteoric origin of mineral forming fluids. The δ13C >4 ‰ PDB require isotope partitioningbetween dissolved CO2 and CH4, which is only possible in reducing anoxic environment, but not in aerated vadose zone.Fluid inclusions studied in calcite, quartz and fluorite revealed that the minerals were deposited from thermal solutions. Thetemperatures were higher at early stages of mineral growth (60 to 85oC and declined with time. Most late-stage calcites containonly all-liquid inclusions, suggesting temperatures less than ca. 35-50oC. Minerals collected close to the major fault show the highesttemperatures. Gases trapped in fluid inclusions are dominated by CO2 and CH4; Raman spectrometry results suggest the presenceof aromatic/cyclic hydrocarbon gases. The gas chemistry, thus, also indicates reduced (anoxic character of the mineral formingfluids.Secondary minerals at Yucca Mountain have likely formed during the short-term invasion(s of the deep-seated aqueous fluidsinto the vadose zone. Following the invasion

  17. Transport of neptunium through Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Triay, I.R.; Robinson, B.A.; Mitchell, A.J.; Overly, C.M.; Lopez, R.M.

    1993-01-01

    Neptunium has a high solubility in groundwaters from Yucca Mountain [1]. Uranium in nuclear reactors produces 237 Np which has a half-life of 2.1 4 x 10 6 years. Consequently, the transport of 237 Np through tuffs is of major importance in assessing the performance of a high-level nuclear waste repository at Yucca Mountain. The objective of this work is to determine the amount of Np retardation that is provided by the minerals in Yucca Mountain tuffs as a function of groundwater chemistry

  18. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-01-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site

  19. Calculation of experiment uncertainty in laboratory determination of several geoengineering properties of tuffs from Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Nimick, F.B.; Schwartz, B.M.; Price, R.H.

    1991-11-01

    A method for estimating the precision and accuracy of measured parameters is described. Examples of application of the estimating method are presented for density, porosity, compressive strength, Young`s modulus, Poisson`s ratio, and thermal expansion. With the exception of the coefficient of linear thermal expansion, all laboratory data for these properties for tuff samples appear to have reasonable experiment uncertainties. Uncertainties in the thermal-expansion coefficients may be as high as 39% of the values, although most uncertainties for the coefficients are probably {le}2%. 4 refs., 1 fig., 15 tabs.

  20. Further description of the petrology of the Topopah Spring member of the paintbrush tuff in drill holes UE25A-1 and USW-G1 and of the lithic-rich tuff in USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Carroll, P.I.; Caporuscio, F.A.; Bish, D.L.

    1981-11-01

    The Topopah Spring Member of the Paintbrush Tuff and the Lithic-rich tuff and two Tertiary volcanic units that occur in cores from drill holes UE25a-1 and USW-G1 at Yucca Mountain, Nevada. Recently they have been suggested as possibly suitable for the permanent storage of high-level radioactive waste. Earlier petrologic characterization of these units is augmented here. The Topopah Spring Member (approximately 350 m thick) has two compound cooling units. The upper, thinner unit is densely welded to vitrophyric. The lower unit ranges from nonwelded to vitrophyric, and its nonwelded base is extensively zeolitized to clinoptilolite and mordenite. Heulandite occurs as fracture fill in the overlying vitrophyric part, but zeolites are absent above that vitrophyre. Here primary devitrification plus vapor-phase crystallization dominate the mineralogy. Vapor-phase effects are especially prominent between the two vitrophyres in both cores and include numerous large lithophysal cavities throughout most of this moderately to densely welded tuff. The Lithic-rich tuff extends from 1203 to 1506 m in the USW-G1 drill core. It is nonwelded to partly welded but is well indurated due to pervasive intergrowths of authigenic minerals. These phases are analcime, albite, alkali feldspar, sericite, chlorite and quartz. The transition from analcime to secondary albite corresponds to Iijima's zeolite Zone IV boundary, and this boundary appears in USW-G1 at 1326 m. However, analcime remains as a prominent phase through most of the Lithic-rich tuff. Further work is necessary to assess the suitability of either of these horizons for a waste repository. In the Topopah Spring Member, both mechanical and hydrologic properties of thick lithophysal zone must be studied, as well as the complete sequence of fracture fill. For both units, zeolite and clay mineral stabilities need to be investigated

  1. Use of thermal data to estimate infiltration, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    LeCain, Gary D.; Kurzmack, Mark

    2001-01-01

    Temperature and pressure monitoring in a vertical borehole in Pagany Wash, Yucca Mountain, Nevada, measured disruptions of the natural gradients associated with the February, 1998, El Nino precipitation events. The temperature and pressure disruptions indicated infiltration and percolation through the 12.1 m of Pagany Wash alluvium and deep percolation to greater than 35.2 m into the Yucca Mountain Tuff

  2. Mineralogy, petrology and whole-rock chemistry data compilation for selected samples of Yucca Mountain tuffs

    International Nuclear Information System (INIS)

    Connolly, J.R.

    1991-12-01

    Petrologic, bulk chemical, and mineralogic data are presented for 49 samples of tuffaceous rocks from core holes USW G-1 and UE-25a number-sign 1 at Yucca Mountain, Nevada. Included, in descending stratigraphic order, are 11 samples from the Topopah Spring Member of the Paintbrush Tuff, 12 samples from the Tuffaceous Beds of Calico Hills, 3 samples from the Prow Pass Member of the Crater Flat Tuff, 20 samples from the Bullfrog Member of the Crater Flat Tuff and 3 samples from the Tram Member of the Crater Flat Tuff. The suite of samples contains a wide variety of petrologic types, including zeolitized, glassy, and devitrified tuffs. Data vary considerably between groups of samples, and include thin section descriptions (some with modal analyses for which uncertainties are estimated), electron microprobe analyses of mineral phases and matrix, mineral identifications by X-ray diffraction, and major element analyses with uncertainty estimates

  3. Excavation effects on tuff - recent findings and plans for investigations at Yucca Mountain

    International Nuclear Information System (INIS)

    Blejwas, T.E.; Zimmerman, R.M.; Shephard, L.E.

    1989-01-01

    Plans for site-characterization testing and constructing an exploratory shaft facility (ESF) at Yucca Mountain, Nevada, have been influenced by the construction and monitoring of stable openings in G-Tunnel on the Nevada Test Site. G-Tunnel provides access for testing in a thin bed of unsaturated welded tuff that is similar to that at Yucca Mountain. The data from the experiments in the ESF will be used to validate analytical methods for predicting the response of underground openings to the excavation process and to the heat generated by the waste

  4. Microstructural Analyses of Topopah Spring Tuff from the Large Block Test at Fran Ridge, Nevada

    International Nuclear Information System (INIS)

    Roberts, J.J.

    2000-01-01

    Microstructural information (e.g., porosity, pore size distribution, and surface area) of porous media is critical to understanding water transport mechanisms and physical properties and their bearing on geophysical measurements. We report microstructural data obtained by mercury injection porosimetry (MIP) on 33 samples of densely welded Topopah Spring tuff from Fran Ridge, Yucca Mountain, Nevada Test Site (NTS), Nevada. The characterization of these samples is also important for the interpretation and analysis of the Large Block Test (LBT) performed in support of the Yucca Mountain Project (YMP). This report includes previously published data on samples from the same location (Roberts and Lin, 1996). We also present information from the Yucca Mountain Site Characterization Project/Lawrence Livermore National Laboratory (YMSCP/LLNL) Large Block Test Engineering Plan (Wilder, 1995) to allow correlation of our data directly to various planes within the Large Block

  5. Geochemistry of core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG number-sign 3, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Futa, K.

    1996-01-01

    The Tiva Canyon Tuff of Miocene age is composed of crystal-poor, high-silica rhyolite overlain by a crystal-rich zone that is gradational in composition from high-silica rhyolite to quartz latite. Each of these zones is divided into subzones that have distinctive physical, mineralogical, and geochemical features.Accurate identification of these subzones and their contacts is essential for detailed mapping and correlation both at the surface and in the subsurface in drill holes and in the exploratory studies facility (ESF). This report presents analyses of potassium (K), calcium (Ca), titanium (Ti), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), barium (Ba), lanthanum (La), and cerium (Ce) in core samples of the Tiva Canyon Tuff from drill hole UE-25 NRG number-sign 3. The concentrations of most of these elements are remarkably constant throughout the high-silica rhyolite, but at its upper contact with the crystal-rich zone, Ti, Zr, Ba, Ca, Sr, La, Ce, and K begin to increase progressively through the crystal-rich zone. In contrast, Rb and Nb decrease, and Y remains essentially constant. Initial 87 Sr/ 86 Sr ratios are relatively uniform in the high-silica rhyolite with a mean value of 0.7117, whereas initial 87 Sr/ 86 Sr ratios decrease upward in the quartz latite to values as low as 0.7090

  6. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    International Nuclear Information System (INIS)

    Sanchez, R.; Myers, W.; Hayes, D.

    1997-01-01

    The nuclear criticality characteristics of mixtures of plutonium, silicon dioxide, and water (Part A) or plutonium, silicon dioxide, Nevada Yucca Mountain tuff, and water (Part B) have become of interest because of the appearance of recent papers on the subject. These papers postulate that if excess weapons plutonium is vitrified into a silicate log and buried underground, a self-sustaining neutron chain reaction may develop given sufficient time and interaction with the burial medium. Moreover, given specific geologic actions resulting in postulated configurations, the referenced papers state that nuclear explosions could occur with multi-kiloton yields or yields equivalent to hundreds of tons of TNT

  7. Petrology of tuff units from the J-13 drill site, Jackass Flats, Nevada

    International Nuclear Information System (INIS)

    Heiken, G.H.; Bevier, M.L.

    1979-01-01

    The J-13 drill hole, located in Jackass Flats, Nevada Test Site, has penetrated 125 m of alluvium and 932 m of tuff. Most of the tuff deposits consist of welded tuffs; glass phases in the tuffs have been replaced by authigenic minerals, mainly K-feldspar, silica, and zeolites. The zonation of authigenic minerals, with depth, indictes that alteration of glass phases and filling of vugs occurred during welding and compaction of tuff units soon after deposition and by interaction with groundwater. Zonation of authigenic minerals in tuff deposits at Jackass Flats is similar to mineral zonation in tuffs elsewhere at the Nevada Test Site and in tuff deposits of west Texas. All appear to have been developed by leaching of glass phases and deposition of authigenic minerals in open hydrologic systems. 10 figures, 38 tables

  8. Update report on fracture flow in saturated tuff: Dynamic transport task for the Nevada Nuclear Waste Investigations

    International Nuclear Information System (INIS)

    Janecky, D.R.; Rundberg, R.S.; Ott, M.; Mitchell, A.

    1990-11-01

    This report summarizes the results of continuing experiments on the behavior of tracers during fracture flow in saturated, welded tuff. These experiments were completed during the past year as part of the Dynamic Transport Task of geochemical investigations for the Yucca Mountain Project sponsored by the US Department of Energy. These experiments are designed to investigate the effects of fluid movement in fractures when coupled with matrix diffusion and sorption but isolated from the effects of capillary suction and two-phase flow characteristic of unsaturated conditions. The experiments reported here are continuations of experimental efforts reported previously. The behavior of three tracers [HTO (tritiated water), TcO 4 - (pertechnetate), and sulforhodamine B dye] have been investigated during flow through a saturated column of densely welded tuff from the Topopah Spring Member of the Paintbrush Tuff, Yucca Mountain, Nye County, southern Nevada. 31 refs., 26 figs., 2 tabs

  9. Slingram survey at Yucca Mountain on the Nevada Test Site

    International Nuclear Information System (INIS)

    Flanigan, V.J.

    1981-01-01

    Electromagnetic (EM) data presented in this report is part of study by the US Geological Survey aimed at evaluating the Miocene and Pliocene Yucca Mountain Member of various units of the Paintbrush Tuff in the vicinity of Yucca Mountain as a possible repository for nuclear wastes. The survey area is located about 97 km northwest of Las Vegas, Nevada on the Nevada Test Site. Data contained in this report were taken along the eastern edge of Yucca Mountain. The specific purpose of this survey was to determine with EM methods, whether or not northwest-trending valleys in the Yucca Mountain area were fault controlled. Fault and fracture zones in the tuff units were expected to have a somewhat higher conductivity than the unfractured tuff. This is due to the greater porosity, clay and moisture content expected in the fault zones than in unfaulted rock. Depending upon a number of factors, such as the conductivity contrast between fault zones and unfaulted rock, and the depth and conductivity of the overburden, it may be possible to recognize fault zones from surface EM measurements. Several EM methods were tested to determine which one gave the best results in this environment. The methods tried included slingram, Turam and VLF (very low frequency). Slingram data proved to be most diagnostic in delineating a mapped fault on the east edge of Yucca Mountain, and hence was used in the survey traverses crossing the northwest valleys cutting into Yucca Mountain

  10. Petrology and geochemistry of the Grouse Canyon Member of the Belted Range Tuff, Rock-Mechanics Drift, U12g Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Connolly, J.R.; Mansker, W.L.; Hicks, R.; Allen, C.C.; Husler, J.; Keil, K.; Lappin, A.R.

    1983-04-01

    G-Tunnel at Nevada Test Site (NTS) is the site of thermal and thermomechanical experiments examining the feasibility of emplacing heat-producing nuclear wastes in silicic tuffs. This report describes the general stratigraphy, mineralogy, and bulk chemistry of welded portions of the Grouse Canyon Member of the Belted Range Tuff, the unit in which most of these experiments will be performed. The geologic characteristics of the Grouse Canyon Member are compared with those of the Topopah Spring Member of the Paintbrush Tuff, presently the preferred horizon for an actual waste repository at Yucca Mountain, near the southwest boundary of Nevada Test Site. This comparison suggests that test results obtained in welded tuff from G-Tunnel are applicable, with limitations, to evaluation of the Topopah Spring Member at Yucca Mountain

  11. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    R.P. Dickerson

    2000-01-01

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  12. Fracture-lining minerals in the lower Topopah Spring Tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Carlos, B.A.; Bish, D.L.; Chipera, S.J.

    1991-01-01

    Fracture-lining minerals in the lower Topopah Spring Member of the Paintbrush Tuff at Yucca Mountain, Nevada, are being examined to characterize potential flow paths within and away from the candidate repository horizon. Fracture coatings within this interval can be divided into five categories based on rock matrix and type of fracture. Fracture coatings in the densely welded tuff above the basal vitrophyre, near the candidate repository horizon, include (1) those related to lithophysal cavities; (2) mordenite and manganese oxides on nearly planar fractures; (3) later fracture coatings consisting of zeolites, smectite, and calcite. Fracture-coating minerals in the vitrophyre are fine-grained and consist of smectite and a variety of zeolites. The non- to partially-welded vitric and/or zeolitic stuff below the vitrophyre contains fractures mostly lined by cristobalite and clinoptilolite. 13 refs., 2 figs., 1 tab

  13. Magmatism, ash-flow tuffs, and calderas of the ignimbrite flareup in the western Nevada volcanic field, Great Basin, USA

    Science.gov (United States)

    Christopher D. Henry,; John, David A.

    2013-01-01

    Sierra Nevada, which was not a barrier to westward flow of ash flows at that time. At least three tuffs flowed eastward across a north-south paleodivide through central Nevada. That tuffs could flow significant distances apparently uphill raises questions about the absolute elevation of the region and the elevation, relief, and location of the paleodivide.Calderas are equant to slightly elongate, at least 12 km in diameter, and as much as 35 km in longest dimension. Exceptional exposure of two caldera complexes that resulted from extensional faulting and tilting show that calderas subsided as much as 5 km as large piston-like blocks; caldera walls were vertical to steeply inward dipping to depths ≥4–5 km, and topographic walls formed by slumping of wall rock into the caldera were only slightly outboard (≤1 km) of structural margins.Most calderas show abundant post-collapse magmatism expressed as resurgent intrusions, ring-fracture intrusions, or intracaldera lavas that are closely related temporally (∼0–0.5 Ma younger) to caldera formation. Granitoid intrusions, which were emplaced at paleodepths ranging from Mountain epithermal gold deposit, few known caldera-related hydrothermal systems are strongly mineralized. Major middle Cenozoic precious and base metal mineral deposits in and along the margins of the western Nevada volcanic field are mostly related to intrusive rocks that preceded caldera-forming eruptions.

  14. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  15. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  16. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  17. A Systematic Comparison of the Anisotropy of Magnetic Susceptibility (AMS) and Anisotropy of Remanence (ARM) Fabrics of Ignimbrites: Examples from the Quaternary Bandelier Tuff, Jemez Mountains, New Mexico and Miocene Ignimbrites Near Gold Point, Nevada

    Science.gov (United States)

    Lycka, Ranyah

    Anisotropy of magnetic susceptibility (AMS) has been widely used to define petrofabrics in silicic, elevated-temperature pyroclastic deposits (i.e., ignimbrites) and these fabrics have been successfully utilized to infer pyroclastic emplacement, or transport, directions in many cases. Selected exposures of the Quaternary Bandelier Tuff, exposed in the Jemez Mountains, New Mexico, have been studied to systematically compare anisotropy of remanence (mainly anhysteretic remanent magnetization, AARM) with AMS data from the same sites. In addition, as part of a broad study to understand the Neogene history of deformation associated with a displacement transfer system in the western Great Basin, paleomagnetic and magnetic fabric data have been collected from ignimbrites that originated from the Timber Mountain Caldera complex, active from about 14 to 11.5 Ma. Here, AMS and AARM are compared for 21 (9-12 samples per site) sites in the Quaternary Bandelier Tuff, and 15 (9-10 samples per site) sites in Timber Mountain ignimbrites, with each chosen to examine the effects of varying degrees of welding and crystal content on the fabrics obtained. The relationships between AARM and AMS fabrics for the selected sites are not uniform, and include normal, intermediate, reverse, and oblique fabrics. The differences may be controlled by the degree of welding and/or crystal content, which requires further explanation. Ultimately, the fabrics identified in both suites of rocks are compared with anisotropy of isothermal remanent magnetization (AIRM) data, along with other rock magnetic data, to more fully evaluate the domain state control on the fabrics.

  18. Quasi-linear analysis of water flow in the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Ross, B.

    1990-01-01

    Philip's method of quasi-linear approximation, applied to the fractured welded tuffs at Yucca Mountain, Nevada, USA, yields simple relations describing groundwater movement in the unsaturated zone. These relations suggest that water flux through the Topopah Spring welded tuff unit, in which a proposed high-level radioactive waste repository would be built, may be fixed at a value close to the saturated hydraulic conductivity of the unit's porous matrix by a capillary barrier at the unit's upper contact. Quasi-linear methods may also be useful for predicting whether free water will enter tunnels excavated in the tuff

  19. The effect of saturation of the mechanical properties of tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Karakouzian, M.; Hudyma, N.

    1996-01-01

    This study investigates the effect of saturation on the mechanical properties, namely compressive strength and Young's Modulus, of Tiva Canyon welded tuff and Topopah Spring welded tuff from the Nevada Test Site. Unconfined compression tests on air dried and saturated specimens show that saturation lowers both the average compressive strength and the average Young's Modulus of Topopah Spring and Tiva Canyon tuff specimens. Saturation increases the variability of the mechanical properties of Topopah Spring tuff and the variability of the compressive strength of Tiva Canyon tuff

  20. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 {times} 10{sup 5} seconds and for as long as 1.8 {times} 10{sup 6} seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress.

  1. Creep in Topopah Spring Member welded tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-06-01

    A laboratory investigation has been carried out to determine the effects of elevated temperature and stress on the creep deformation of welded tuffs recovered from Busted Butte in the vicinity of Yucca Mountain, Nevada. Water saturated specimens of tuff from thermal/mechanical unit TSw2 were tested in creep at a confining pressure of 5.0 MPa, a pore pressure of 4.5 MPa, and temperatures of 25 and 250 C. At each stress level the load was held constant for a minimum of 2.5 x 10 5 seconds and for as long as 1.8 x 10 6 seconds. One specimen was tested at a single stress of 80 MPa and a temperature of 250 C. The sample failed after a short time. Subsequent experiments were initiated with an initial differential stress of 50 or 60 MPa; the stress was then increased in 10 MPa increments until failure. The data showed that creep deformation occurred in the form of time-dependent axial and radial strains, particularly beyond 90% of the unconfined, quasi-static fracture strength. There was little dilatancy associated with the deformation of the welded tuff at stresses below 90% of the fracture strength. Insufficient data have been collected in this preliminary study to determine the relationship between temperature, stress, creep deformation to failure, and total failure time at a fixed creep stress

  2. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  3. Estimation of hydraulic conductivities of Yucca Mountain tuffs from sorptivity and water retention measurements

    International Nuclear Information System (INIS)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1995-06-01

    The hydraulic conductivity functions of the matrix rocks at Yucca Mountain, Nevada, are among the most important data needed as input for the site-scale hydrological model of the unsaturated zone. The difficult and time-consuming nature of hydraulic conductivity measurements renders it infeasible to directly measure this property on large numbers of cores. Water retention and sorptivity measurements, however, can be made relatively rapidly. The sorptivity is, in principle, a unique functional of the conductivity and water retention functions. It therefore should be possible to invert sorptivity and water retention measurements in order to estimate the conductivity; the porosity is the only other parameter that is required for this inversion. In this report two methods of carrying out this inversion are presented, and are tested against a limited data set that has been collected by Flint et al. at the USGS on a set of Yucca Mountain tuffs. The absolute permeability is usually predicted by both methods to within an average error of about 0.5 - 1.0 orders of magnitude. The discrepancy appears to be due to the fact that the water retention curves have only been measured during drainage, whereas the imbibition water retention curve is the one that is relevant to sorptivity measurements. Although the inversion methods also yield predictions of the relative permeability function, there are yet no unsaturated hydraulic conductivity data against which to test these predictions

  4. Hydrologic modeling and field testing at Yucca mountain, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1991-01-01

    Yucca Mountain, Nevada, is being evaluated as a possible site for a mined geologic repository for the disposal of high-level nuclear waste. The repository is proposed to be constructed in fractured, densely welded tuff within the thick (500 to 750 meters) unsaturated zone at the site. Characterization of the site unsaturated-zone hydrogeologic system requires quantitative specification of the existing state of the system and the development of numerical hydrologic models to predict probable evolution of the hydrogeologic system over the lifetime of the repository. To support development of hydrologic models for the system, a testing program has been designed to characterize the existing state of the system, to measure hydrologic properties for the system and to identify and quantify those processes that control system dynamics. 12 refs

  5. Preliminary survey of tuff distribution in Esmeralda, Nye, and Lincoln Counties, Nevada

    International Nuclear Information System (INIS)

    Smith, G.V.; Pink, T.S.; Lawrence, J.R.; Woodward, L.A.; Keil, K.; Lappin, A.R.

    1981-02-01

    This report inventories the surface distribution of silicic tuffs in Nye, Esmeralda, and Lincoln Counties, NV, based on a review of available literature. The inventory was taken to provide a data base in evaluating tuff sites for the disposal of high-level nuclear waste. Silicic ash-flow tuffs that are about 11 to 34 million years (my) old are widespread in these counties. These rocks are locally deformed by right-lateral movement along Walker Lane and the Las Vegas Shear Zone, and left-lateral movement along a zone from near the Nevada Test Site (NTS) to the Utah border, and are commonly offset by steeply dipping normal faults. The normal faults that bound horsts, grabens, and tilted-fault blocks of the Basin-and-Range Province began to form 30 my ago; some are still active. Tuff distribution is discussed on a regional basis. Tuff thicknesses and alterations, structural complexity, and proximity to recent faulting, recent volcanism, and mineral resources are discussed for each area. Although the literature on which it is based is often incomplete and sketchy, this report is intended to serve as a basis for future, more detailed work that includes initial field inspection, detailed field and laboratory studies, and extrapolations to the subsurface

  6. K/AR dating of clinoptilolite, mordenite, and associated clays from Yucca Mountains, Nevada

    International Nuclear Information System (INIS)

    WoldeGabriel, G.

    1993-01-01

    Zeolites are abundant in the geologic record in both continental and marine environments. The purpose of the present study is to evaluate the utility of K-bearing zeolites for dating by the K/Ar method to determine the time of zeolite diagenesis at Yucca Mountain, Nevada (Fig. 1). At Yucca Mountain, K-rich clinoptilolite and possibly mordenite are the only potentially K/Ar dateable secondary minerals present in the zeolite-rich tuffs except for some illite/smectites (≥10% illite layers) associated with these minerals. Direct dating of K-rich clinoptilolite, the most abundant zeolite in the altered tuffs, is important to delineate zeolite chronology as part of the site characterization of Yucca Mountain

  7. Paleomagnetism and Anisotropy of Magnetic Susceptibility study of the Miocene Jack Springs Tuff (Nevada, USA)

    Science.gov (United States)

    Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.

    2014-12-01

    The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and

  8. TBM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    This paper discusses performance prediction which were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah String welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. The result show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The result also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  9. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    Energy Technology Data Exchange (ETDEWEB)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-05-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group.

  10. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, August 1993 to February 1994

    International Nuclear Information System (INIS)

    Geslin, J.K.; Moyer, T.C.; Buesch, D.C.

    1995-01-01

    Yucca Mountain, Nevada, is being investigated as a potential site for a high-level radioactive waste repository. This report summarizes the lithologic logging of new and existing boreholes at Yucca Mountain that was done from August 1993 to February 1994 by the Rock Characteristics Section, Yucca Mountain Project Branch, US Geological Survey (USGS). Units encountered during logging include Quaternary-Tertiary alluvium/colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, Tertiary Calico Hills Formation and Tertiary Prow Pass Tuff. We present criteria used for recognition of stratigraphic contacts, logging results as tables of contact depths for core from neutron (UZN) boreholes and graphical lithologic logs for core from non-UZN boreholes, and descriptions of several distinctive nonwelded tuffs recognized in the PTn hydrogeologic unit of the Paintbrush Group

  11. Criticality characteristics of mixtures of plutonium, silicon dioxide, Nevada tuff, and water

    International Nuclear Information System (INIS)

    Sanchez, R.G.; Myers, W.; Stratton, W.

    1996-01-01

    The major objective of this study has been to examine the possibility of a nuclear explosion should 50 to 100 kg of plutonium be mixed with SiO 2 , vitrified, placed within a heavy steel container, and buried in the material known as Nevada tuff. To accomplish this objective, the authors have created a survey of critical states or configurations of mixtures of plutonium, SiO 2 , tuff, and water and examined these data to determine those configurations that might be unstable or autocatalytic. They have identified regions of criticality instability with the possibility of autocatalytic power behavior. Autocatalytic behavior is possible but improbable, for a very limited range of wet systems

  12. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  13. Detailed petrographic descriptions and microprobe data for drill holes USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.; Vaniman, D.; Caporuscio, F.; Arney, B.; Heiken, G.

    1982-10-01

    Drill holes USW-G2 and UE25b-1H at Yucca Mountain, Nevada penetrate a thick sequence of volcanic rocks consisting of voluminous ash-flow tuffs, intercalated with thin bedded tuffs and minor lavas. This report provides detailed petrologic descriptions that were summarized in an earlier report. Microprobe analyses of feldspars and mafic phenocrysts as well as secondary feldspars are tabulated for these drill holes for the first time in this report

  14. Preliminary results of gravity investigations at Yucca Mountain and vicinity, Southern Nye County, Nevada

    International Nuclear Information System (INIS)

    Snyder, D.B.; Carr, W.J.

    1982-01-01

    Exploration for a high-level-nuclear-waste-repository site in the Yucca Mountain area, Nevada, resulted in the addition of 423 new gravity stations during the past 2 years to the 934 existing stations to form the data base of this study. About 100 surface-rock samples, three borehole gamma-gamma logs, and one borehole gravity study provide excellent density control. A linear increase in density of 0.26 g/cm 3 per km is indicated in the tuff sequences makes the density contrast across the basal contact of the tuff the only strong source of gravity fluctuations. Isostatic and 2.0g/cm 3 Bouguer corrections were applied to the observed gravity values to remove deep-crust-related regional gradients and topographic effects, respectively. The resulting residual-gravity plot shows significant gravity anomalies that correlate closely with the structures inferred from drill-hole and surface geologic studies. Gravity highs over the three Paleozoic rock outcrops within the study area - Bare Mountain, the Calico Hills, and the Striped Hills - served as reference points for the gravity models. At least 3000 m of tuff fills a large steep-sided depression in the prevolcanic rocks beneath Yucca Mountain and Crater Flat. The gravity low and thick tuff section probably lie within a large collapse area comprising the Crater Flat-Timber Mountain-Silent Canyon caldera complexes. Gravity lows in Crater Flat itself are thought to coincide with the source areas of the Prow Pass Member, the Bullfrog Member, and the unnamed member of the Crater Flat Tuff. Southward extension of the broad gravity low associated with Crater Flat into the Amargosa Desert is evidence for sector graben-type collapse segments related to the Timber Mountain caldera and superimposed on the other structures within Crater Flat. 13 figures, 4 tables

  15. Modeling studies of mountain-scale radionuclide transport in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Moridis, George J.; Seol, Yongkoo; Wu, Yu-Shu

    2003-01-01

    We investigate radionuclide transport from a high-level nuclear waste repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. Several radioactive solutes (that cover the range of sorption behavior) and colloids of various sizes are studied. The results of the study indicate the importance of the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The effects of the climatic conditions, diffusion, and sorption (for solutes) or infiltration (for colloids) onto the matrix are discussed. The influence of the colloid size on transport is also investigated

  16. CONTACT ANGLE OF YUCCA MOUNTAIN WELDED TUFF WITH WATER AND BRINES

    International Nuclear Information System (INIS)

    H. Kalia

    2006-01-01

    A number of tests were performed to acquire contact angles between Yucca Mountain welded tuff from Topopah Springs Lower Lithophysal geologic unit and various brine solutions. The tests were performed on core disks received from Sample Management Facility (SMF), oven dried to a constant weight and the core disks vacuum saturated in: distilled water, J-13 water, calcium chloride brine and sodium chloride brine to constant weight. The contact angles were acquired from eight points on the surface of the core disks, four on rough surface, and four on polished surface. The contact angle was measured by placing a droplet of the test fluid, distilled water, J-13 water, calcium chloride brine and sodium chloride brine on the core disks. The objective of this test was to acquire contact angles as a potential input to estimating capillary forces in accumulated dust on the waste packages and drip shields slated for the proposed High-Level Radioactive Waste Repository at Yucca Mountain, Nevada. It was noted that once the droplet contacts the test surface, it continues to spread hence the contact angle continues to decrease with elapsed time. The maximum observed angle was at time 0 or when the drop contacted the rock surface. The measured contact angle, in all cases has significant scatter. In general, the time zero contact angles for core disks saturated in sodium chloride brine were smaller than those saturated in calcium chloride brine, distilled water, and J-13 water. The contact angles for samples saturated in distilled water, J-13 water and calcium chloride brine at time zero were similar. There was slight difference between the observed contact angles for smooth and rough surface of the test samples. The contact angles for smooth surfaces were smaller than for the rough surfaces

  17. Geoengineering properties of potential repository units at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Tillerson, J.R.; Nimick, F.B.

    1984-12-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project is currently evaluating volcanic tuffs at the Yucca Mountain site, located on and adjacent to the Nevada Test Site, for possible use as a host rock for a radioactive waste repository. The behavior of tuff as an engineering material must be understood to design, license, construct, and operate a repository. Geoengineering evaluations and measurements are being made to develop confidence in both the analysis techniques for thermal, mechanical, and hydrothermal effects and the supporting data base of rock properties. The analysis techniques and the data base are currently used for repository design, waste package design, and performance assessment analyses. This report documents the data base of geoengineering properties used in the analyses that aided the selection of the waste emplacement horizon and in analyses synopsized in the Environmental Assessment Report prepared for the Yucca Mountain site. The strategy used for the development of the data base relies primarily on data obtained in laboratory tests that are then confirmed in field tests. Average thermal and mechanical properties (and their anticipated variations) are presented. Based upon these data, analyses completed to date, and previous excavation experience in tuff, it is anticipated that existing mining technology can be used to develop stable underground openings and that repository operations can be carried out safely

  18. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2004-01-01

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached

  19. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2004-10-04

    The purpose of this scientific analysis report, ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', is to present information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a repository at Yucca Mountain. This scientific analysis report provides information to four other reports: ''Number of Waste Packages Hit by Igneous Intrusion'', (BSC 2004 [DIRS 170001]); ''Atmospheric Dispersal and Deposition of Tephra from Potential Volcanic Eruption at Yucca Mountain, Nevada'' (BSC 2004 [DIRS 170026]); ''Dike/Drift Interactions'' (BSC 2004 [DIRS 170028]); ''Development of Earthquake Ground Motion Input for Preclosure Seismic Design and Postclosure Performance Assessment of a Geologic Repository at Yucca Mountain, NV'' (BSC 2004 [DIRS 170027], Section 6.5). This report is organized into seven major sections. This section addresses the purpose of this document. Section 2 addresses quality assurance, Section 3 the use of software, Section 4 identifies the requirements that constrain this work, and Section 5 lists assumptions and their rationale. Section 6 presents the details of the scientific analysis and Section 7 summarizes the conclusions reached.

  20. Hydrogeology of the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Montazer, P.; Wilson, W.E.

    1985-01-01

    The unsaturated volcanic tuff beneath Yucca Mountain, Nevada, is being evaluated by the US Department of Energy as a host rock for a potential mined geologic repository for high-level radioactive waste. Assessment of site suitability needs an efficient and focused investigative program. A conceptual hydrogeologic model that simulates the flow of fluids through the unsaturated zone at Yucca Mountain was developed to guide the program and to provide a basis for preliminary assessment of site suitability. The study was made as part of the Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy. Thickness of the unsaturated zone is about 1640 to 2460 feet (500 to 750 meters). Based on physical properties, the rocks in the unsaturated zone are grouped for the purpose of this paper into five informal hydrogeologic units. From top to bottom these units are: Tiva Canyon welded unit, Paintbrush nonwelded unit. Topopah Spring welded unit, Calico Hills nonwelded unit, and Crater Flat unit. Welded units have a mean fracture density of 8 to 40 fractures per unit cubic meter, mean matrix porosities of 12 to 23%, matrix hydraulic conductivities with geometric means ranging from 6.5 x 10 -6 to 9.8 x 10 -6 foot per day (2 x 10 -6 to 3 x 10 -6 meter per day), and bulk hydraulic conductivities of 0.33 to 33 feet per day (0.1 to 10 meters per day). The nonwelded units have a mean fracture density of 1 to 3 fractures per unit cubic meter, mean matrix porosities of 31 to 46%, and saturated hydraulic conductivities with geometric means ranging from 2.6 x 10 -5 to 2.9 x 10 -2 foot per day (8 x 10 -6 to 9 x 10 -3 meter per day). 15 refs., 4 figs., 1 tab

  1. Petrologic studies of drill cores USW-G2 and UE25b-1H, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.; Vaniman, D.; Bish, D.; Broxton, D.; Arney, B.; Heiken, G.; Byers, F.; Gooley, R.; Semarge, E.

    1982-07-01

    The tuffs of the Nevada Test Site are currently under investigation as a possible deep geologic site for high-level radioactive waste disposal. This report characterizes tuff retrieved in core from two drill holes, USW-G2 and UE25b-1H, at the Yucca Mountain block. The USW-G2 drill core is from the northernmost extent of the block, whereas UE25b-1H is adjacent to an earlier drill hole, UE25a-1. The drill cores USW-G2 and UE25b-1H bottomed at 6000 and 4200 ft, respectively. Petrographic and x-ray diffraction studies of the two drill cores are presented in this report and indicate that tuffs (composed primarily of variably welded ash flows) are partially recrystallized to secondary minerals. Correlations of stratigraphy are also made with previous drill cores from Yucca Mountain

  2. Theoretical and experimental determination of matrix diffusion and related solute transport properties of fractured tuffs from the Nevada Test Site

    International Nuclear Information System (INIS)

    Walter, G.R.

    1982-10-01

    Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G-Tunnel and Yucca Mountain at the Nevada Test Site (NTS). A variety of groundwater tracers, which may be useful in field tests at the NTS, have also been developed and tested. Although a number of physical/chemical processes may cause nonconvective transport of dissolved species from fractures into the tuff matrix, molecular diffusion seems to be the most important process. Molecular diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The porosities of the samples studied ranged from about 0.1 to 0.4. The constrictivity-tortuosity parameter ranged from 0.1 and 0.3 and effective matrix-diffusion coefficients were measured to be between 2 to 17. x 10 -7 c, 2 /s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity-tortuosity factor was found to have a fair correlation (r = 0.75) with the median pore diameters measured by mercury intrusion. Measurements of bulk-rock electrical impedance changes with frequency indicate that the constrictivity factor has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. Computation of the full diffusion-coefficient matrix for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. These effects are being incorporated into a numerical model of multicomponent-matrix diffusion

  3. Analysis of gaseous-phase stable and radioactive isotopes in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Haas, H.H.; Weeks, E.P.; Thorstenson, D.C.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project of the US Department of Energy provides that agency with data for evaluating volcanic tuff beneath Yucca Mountain, Nevada, to determine its suitability for a potential repository of high-level radioactive waste. Thickness of the unsaturated zone, which consists of fractured, welded and nonwelded tuff, is about 1640 to 2460 feet (500 to 750 meters). One question to be resolved is an estimate of minimum ground-water traveltime from the disturbed zone of the potentail repository to the accessible environment. Another issue is the potential for diffusive or convective gaseous transport of radionuclides from an underground facility in the unsaturated zone to the accessible environment. Gas samples were collected at intervals to a depth of 1200 feet from the unsaturated zone at Yucca Mountain, Nevada. Samples were analyzed for major atmospheric gases; carbon dioxide in the samples was analyzed for carbon-14 activity and for delta 13 C; water vapor in the samples was analyzed for deuterium and oxygen-18. These data could provide insight into the nature of unsaturated zone transport processes. 15 refs., 4 figs., 4 tabs

  4. Detailed petrographic descriptions and microprobe data for tertiary silicic volcanic rocks in drill hole USW G-1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Caporuscio, F.A.; Warren, R.G.; Broxton, D.E.

    1985-12-01

    This report contains detailed petrographic descriptions of 74 thin sections from drill hole USW G-1 at Yucca Mountain, Nevada. These descriptions are keyed to the distinctions between devitrified, vitrophyre, vitric, and zeolitized intervals below the Topopah Spring Member repository horizon. The petrographic features of the zeolitized intervals down through the Crater Flat tuff, as well as the sorption properties determined from these intervals, suggest that these zeolite occurrences may each have comparable sorptive capability.

  5. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, March 1994 to June 1994

    International Nuclear Information System (INIS)

    Geslin, J.K.; Moyer, T.C.

    1995-01-01

    This report summarizes lithologic logging of core from boreholes at Yucca Mountain, Nevada, conducted from March 1994 to June 1994. Units encountered during logging include Quaternary-Tertiary alluvium and colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, and Tertiary Calico Hills Formation. Logging results are presented in a table of contact depths for core from unsaturated zone neutron (UZN) boreholes and graphic lithologic logs for core from north ramp geology (NRG) boreholes

  6. A lineament analysis of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, J.J.

    1988-01-01

    The Nuclear Waste Policy Act of 1982 was signed into law on January 7, 1983. It specifies procedures for the Department of Energy in the selection of a high level nuclear waste repository. Federal Environmental Protection Agency standards require adequate isolation of waste from the biosphere for 10,000 years. The law considers such geologic factors as tectonic stability, igneous activity, hydrologic conditions and natural resources to be of primary concern. Yucca Mountain in southern Nevada is one of three sites selected for further consideration in the site characterization process. The Nuclear Waste Project Office (NWPO) within the Agency for Nuclear Projects of the State of Nevada is conducting an independent scientific assessment of the proposed site. The remote sensing technical assessment is one of seven task groups conducting review and research into the suitability of Yucca Mountain. The study undertaken by the Remote Sensing Group was that of a lineament analysis with regard to the site's structural relationship within a regional tectonic framework. Lineaments mapped from synoptic imagery may prove to represent structural zones of weakness. These zones may provide pathways for the infiltration of groundwater, conduits for the extrusion of magma or be reactivated as stress conditions change. This paper describes the methodology for a lineament analysis of the Yucca Mountain area

  7. Ground magnetic studies along a regional seismic-reflection profile across Bare Mountain, Crater Flat and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Langenheim, V.E.; Ponce, D.A.

    1995-01-01

    Ground magnetic data were collected along a 26-km-long regional seismic-reflection profile in southwest Nevada that starts in the Amargosa Desert, crosses Bare Mountain, Crater Flat and Yucca Mountain, and ends in Midway Valley. Parallel ground magnetic profiles were also collected about 100 m to either side of the western half of the seismic-reflection line. The magnetic data indicate that the eastern half of Crater Flat is characterized by closely-spaced faulting (1--2 km) in contrast to the western half of Crater Flat. Modeling of the data indicates that the Topopah Spring Tuff is offset about 250 m on the Solitario Canyon fault and about 50 m on the Ghost Dance fault. These estimates of fault offset are consistent with seismic-reflection data and geologic mapping. A broad magnetic high of about 500--600 nT is centered over Crater Flat. Modeling of the magnetic data indicates that the source of this high is not thickening and doming of the Bullfrog Tuff, but more likely lies below the Bullfrog Tuff. Possible source lithologies for this magnetic high include altered argillite of the Eleana Formation, Cretaceous or Tertiary intrusions, and mafic sills

  8. Mineralogy of drill hole UE-25pnumber1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1988-05-01

    Drill hole UE-25p/number sign/1 is located east of the candidate repository block at Yucca Mountain, Nevada, and as such provides information on the geology of the accessible environment. The hole was drilled to a depth of 1807 m (5923 ft) and is unique in that it penetrates tuffs that are older than any volcanic units previously encountered in drill holes at Yucca Mountain. In addition, it is the only hole drilled to date that penetrates the base of the tuff sequence and enters the underlying Paleozoic dolomite basement. We have examined the mineralogy of drill cuttings, core, and sidewall samples from drill hole UE-25p/number sign/1 is similar to that in the other drill holes examined at Yucca Mountain. The only significant differences in mineralogy from other drill holes include the presence of dolomite in the Paleozoic carbonate rocks and the occurrence of up to 3% laumontite, a Ca-zeolite, in four samples of the Lithic Ridge Tuff. 15 refs., 5 figs., 4 tabs

  9. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.; Schimschal, U.

    1993-01-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone)

  10. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Waters, A.C.; Carroll, P.R.

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima's zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff

  11. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  12. ELECTRICAL IMAGING AT THE LARGE BLOCK TEST YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Ramirez, A.

    2000-01-01

    A monolithic block of densely welded tuff was excavated from a site on Fran Ridge near Yucca Mountain, Nevada so that coupled thermohydrological processes could be studied in a controlled, in situ experiment. A series of heaters were placed in a horizontal plane about 3 m from the top of the 3 m by 3 m by 4.5 m high block. Temperatures were measured at many points within and on the block surface and a suite of other measurements were taken to define the thermal and hydrologic response. Electrical resistance tomography (ERT) was used to map 2 dimensional images of moisture content changes along four planes in the block. The ERT images clearly delineate the drying and wetting of the rockmass during the 13 months of heating and subsequent six months of cool down. The main feature is a prominent dry zone that forms around the heaters then gradually disappears as the rock cools down. Other features include linear anomalies of decreasing moisture content which are fractures dehydrating as the block heats up. There are also examples of compact anomalies of wetting. Some of these appear to be water accumulation in fractures which are draining condensate from the block. Others may be rain water entering a fracture at the top of the block. During cooldown a general rewetting is observed although this is less certain because of poor data quality during this stage of the experiment

  13. Frictional sliding and fracture behavior of some Nevada test site tuffs

    International Nuclear Information System (INIS)

    Morrow, C.; Byerlee, J.

    1984-01-01

    Deformation studies were performed on tuffaceous rocks from Yucca Mountain, Nevada Test Site to determine the strengths and coefficients of friction under confining pressures from 10 to 50 MPa at room temperature. Frictional strengths of 30 0 sawcut samples increased with pressure and reached values of around 150 MPa at the higher confining pressures. However, the failure strengths of the intact samples were quite unpredictable. The coefficients of friction ranged between 0.7 and 0.9 for all specimens. These data can be used in conjunction with in situ stress measurements at Yucca Mountain, to evaluate the potential for earthquake activity in the region. 1 ref., 7 figs

  14. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  15. Sources of Fe in eolian and soil detritus at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Vaniman, D.; Chipera, S.; Bish, D.

    1997-01-01

    Eolian deposits and adjacent soil horizons at Exile Hill near Yucca Mountain, Nevada, provide a desert environment where the origins of exotic eolian materials can be discerned. Petrographic, chemical, X-ray diffraction, and electron microprobe data allow an assessment of Fe mineral sources. Fe-rich minerals in local rhyolitic tuff bedrock consist of distinctive biotite and amphibole phenocrysts and groundmass Mn-hematites. Although the local tuffs contain only 1% FeO, detrital components of eolian and soil deposits have ∼3% FeO. Exotic minerals from distant sources provide most of the excess Fe in the surficial deposits. The exotic Fe sources are principally smectite, low-Mn hematite, low-F biotite, and high-Fe amphibole not found in local tuffs. Iron contents and the exotic Fe fraction increase with decreasing grain size, such that the clay fractions have ∼5--6% FeO, almost all of which is in exotic smectites. The distant origin of these smectites is evident in their high Fe content and distinct Sc/FeO enrichment trends, which differ from the strong local Sc/FeO control defined by coarser soil detritus. Approximate crustal average lanthanide composition in soil and eolian smectites rule out any significant contribution of local smectite derived from tuff alteration. The eolian and soil smectites instead inherit their high Fe content from eolian biotite

  16. TRM performance prediction in Yucca Mountain welded tuff from linear cutter tests

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.; Gertsch, L.

    1992-01-01

    Performance predictions were developed for tunnel boring machines operating in welded tuff for the construction of the experimental study facility and the potential nuclear waste repository at Yucca Mountain. The predictions were based on test data obtained from an extensive series of linear cutting tests performed on samples of Topopah Spring welded tuff from the Yucca Mountain Project site. Using the cutter force, spacing, and penetration data from the experimental program, the thrust, torque, power, and rate of penetration were estimated for a 25 ft diameter tunnel boring machine (TBM) operating in welded tuff. Guidelines were developed for the optimal design of the TBM cutterhead to achieve high production rates at the lowest possible excavation costs. The results show that the Topopah Spring welded tuff (TSw2) can be excavated at relatively high rates of advance with state-of-the-art TBMs. The results also show, however, that the TBM torque and power requirements will be higher than estimated based on rock physical properties and past tunneling experience in rock formations of similar strength

  17. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  18. Natural sorptive barriers in Yucca Mountain, Nevada, for long-term isolation of high-level waste

    International Nuclear Information System (INIS)

    Bish, D.L.; Vaniman, D.T.; Rundberg, R.S.; Wolfsberg, K.; Daniels, W.R.; Broxton, D.E.

    1984-01-01

    There are several sorptive phases occurring naturally in the silicic tuffs at Yucca Mountain, Nevada, that can aid in the long-term isolation of high-level wastes. These phases include hydrated volcanic glasses, smectites and zeolites. Los Alamos has a continuing programme to investigate the mineralogy and stratigraphy of the tuffs at Yucca Mountain. In addition, extensive data have been obtained on the sorptive behaviour of technetium, strontium, caesium, barium, cerium, europium, uranium, neptunium, plutonium and americium on the minerals in tuffs. Sorption of elements by ion-exchange processes is high in tuffs containing smectite and the zeolites clinoptilolite-heulandite and mordenite. Moreover, sorption correlates with abundances of these minerals. Sorption is not as high for the zeolite analcime and for volcanic glass. Elements that may not sorb by ion exchange, e.g. plutonium, also tend to be sorbed when the zeolite abundance is high, but the correlations are less clearly defined. Because of the correlation between sorptive capacity and mineralogy, an accurate knowledge of mineral distribution and stratigraphy is essential. The distribution of hydrated glasses is stratigraphically controlled, and the glasses occur in narrow unaltered horizons as vitrophyres and as vitric tuff. Although glasses are of minor importance as sorptive phases, they are very reactive and can alter to other minerals if heated in the presence of water. Smectite clays are reversibly expandable and are widespread in tuffs, but their beneficial properties can be modified by prolonged exposure to elevated temperatures. The zeolites clinoptilolite-heulandite and mordenite occur in high concentrations in silicic tuffs, mostly as secondary alterations of non-welded and poorly welded tuffs; their distribution is therefore stratigraphically controlled

  19. Bulk and mechanical properties of the Paintbrush tuff recovered from borehole USW NRG-7/7A: Data report. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Martin, R.J.; Boyd, P.J.; Noel, J.S.; Price, R.H.

    1995-05-01

    An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada, involves prediction of the in situ rheology for the design and construction of the facility and the emplacement of canisters containing radioactive waste. The data used to model the thermal and mechanical behavior of the repository and surrounding lithologies include dry and saturated bulk densities, average grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensional fracture strengths. In this study, a suite of experiments was performed on cores recovered from the USW NRG-717A borehole drilled in support of the Exploratory Studies Facility (ESF) at Yucca Mountain. USW NRG-7/7A was drilled to a depth of 1,513.4 feet through five thermal/mechanical units of Paintbrush tuff and terminating in the tuffaceous beds of the Calico IEUS. The thermal/mechanical stratigraphy was defined by Orfiz et al. to group rock horizons of similar properties for the purpose of simplifying modeling efforts. The relationship between the geologic stratigraphy and the thermal/mechanical stratigraphy is presented. The tuff samples in this study have a wide range of welding characteristics, and a smaller range of mineralogy and petrology characteristics. Generally, the samples are silicic, ash-fall tuffs that exhibit large variability in their elastic and strength properties

  20. Investigations of hydro-tectonic hazards at the proposed Yucca Mountain high-level nuclear waste repository. Annual report - Nevada

    International Nuclear Information System (INIS)

    Livingston, D.E.

    1994-01-01

    This document includes several reports describing scientific studies of the origin of near surface calcite/silica deposits at Yucca Mountain, Nevada. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  1. BIOSPHERE MODELING AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    NING LIU; JEFFERY, J.; TAPPEN, DE WU; CHAO-HSIUNG TUNG

    1998-01-01

    The objectives of the biosphere modeling efforts are to assess how radionuclides potentially released from the proposed repository could be transported through a variety of environmental media. The study of these transport mechanisms, referred to as pathways, is critical in calculating the potential radiation dose to man. Since most of the existing and pending regulations applicable to the Project are radiation dose based standards, the biosphere modeling effort will provide crucial technical input to support the Viability Assessment (VA), the Working Draft of License Application (WDLA), and the Environmental Impact Statement (EIS). In 1982, the Nuclear Waste Policy Act (NWPA) was enacted into law. This federal law, which was amended in 1987, addresses the national issue of geologic disposal of high-level nuclear waste generated by commercial nuclear power plants, as well as defense programs during the past few decades. As required by the law, the Department of Energy (DOE) is conducting a site characterization project at Yucca Mountain, Nevada, approximately 100 miles northwest of Las Vegas, Nevada, to determine if the site is suitable for the nation's first high-level nuclear waste repository

  2. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    McCord, John

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the

  3. Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Craig, R.W.; Reed, R.L.

    1991-01-01

    Test well USW H-6 is one of several wells drilled in the Yucca Mountain area near the southwestern part of the Nevada Test Site for investigations related to isolation of high-level nuclear waste. This well was drilled to a depth of 1,220 meters. Rocks penetrated are predominantly ash-flow tuffs of Tertiary age, with the principal exception of dacitic(?) lave penetrated at a depth from 877 to 1,126 meters. The composite static water level was about 526 meters below the land surface; the hydraulic head increased slightly with depth. Most permeability in the saturated zone is in two fractured intervals in Crater Flat Tuff. Based on well-test data using the transitional part of a dual-porosity solution, an interval of about 15 meters in the middle part of the Bullfrog Member of the Crater Flat Tuff has a calculated transmissivity of about 140 meters squared per day, and an interval of about 11 meters in the middle part of the Tram Member of the Crater Flat Tuff has a calculated transmissivity of about 75 meters squared per day. The upper part of the Bullfrog Member has a transmissivity of about 20 meters squared per day. The maximum likely transmissivity of any rocks penetrated by the test well is about 480 meters squared per day, based on a recharge-boundary model. The remainder of the open hole had no detectable production. Matrix hydraulic conductivity ranges from less than 5 x 10 -5 to 1 x 10 -3 meter per day. Ground water is a sodium bicarbonate type that is typical of water from tuffaceous rock of southern Nevada. The apparent age of the water is about 14,6000 years. 29 refs., 26 figs., 5 tabs

  4. Natural gels in the Yucca Mountain Area, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    Relict gels at Yucca Mountain include pore- and fracture-fillings of silica and zeolite related to diagenetic and hydrothermal alternation of vitric tuffs. Water-rich free gels in fractures at Rainier Mesa consist of smectite with or without silica-rich gel fragments. Gels are being studied for their potential role in transport of radionuclides from a nuclear-waste repository

  5. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  6. Chlorine-36 validation Study at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J. Paces

    2006-01-01

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ( 36 Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of 36 Cl to total chloride ( 36 Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse 36 Cl (i.e., 36 Cl/Cl ratios greater than 1250 x 10 -15 resulting from 36 Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the 36 Cl/Cl data with an independent validation study. DOE asked the USGS to design and implement a validation

  7. Chlorine-36 alidation Study at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Paces

    2006-08-28

    The amount, spatial distribution, and velocity of water percolating through the unsaturated zone (UZ) at Yucca Mountain, Nevada, are important issues for assessing the performance of the proposed deep geologic repository for spent nuclear fuel and high-level radioactive waste. To help characterize the nature and history of UZ flow, isotopic studies were initiated in 1995, using rock samples collected from the Miocene ash-flow tuffs in the Exploratory Studies Facility (ESF), an 8-km-long tunnel constructed along the north-south extent of the repository block, and the Enhanced Characterization of the Repository Block (ECRB) Cross Drift, a 2.5-km-long tunnel constructed across the repository block (Figure 1-1, Sources: Modified from DOE 2002 [Figure 1-14] and USBR 1996). Scientists from Los Alamos National Laboratory (LANL) analyzed for chlorine-36 ({sup 36}Cl) in salts leached from whole-rock samples collected from tunnel walls and subsurface boreholes, and scientists from the U.S. Geological Survey (USGS) analyzed for isotopes of oxygen, carbon, uranium, lead, thorium, and strontium in secondary minerals collected from subsurface fractures and lithophysal cavities. Elevated values for ratios of {sup 36}Cl to total chloride ({sup 36}Cl/CL) at the level of the proposed repository indicated that small amounts of water carrying bomb-pulse {sup 36}Cl (i.e., {sup 36}Cl/Cl ratios greater than 1250 x 10{sup -15} resulting from {sup 36}Cl produced by atmospheric testing of nuclear devices during the 1950s and early 1960s) had percolated through welded and nonwelded tuffs to depths of 200 to 300 meters (m) beneath the land surface over the past 50 years. Because of the implications of short travel times to the performance of the proposed repository, the U.S. Department of Energy (DOE)/Office of Civilian Radioactive Waste Management (OCRWM), Office of Repository Development (ORD), decided to verify the {sup 36}Cl/Cl data with an independent validation study. DOE asked the USGS

  8. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1985-01-01

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  9. Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Guthrie, G.D. Jr.; Bish, D.L.; Chipera, S.J.; Raymond, R. Jr.

    1995-05-01

    Drilling, trenching, excavation of the Exploratory Studies Facility, and other surface and underground-distributing activities have the potential to release minerals into the environment from tuffs at Yucca Mountain, Nevada. Some of these minerals may be potential respiratory health hazards. Therefore, an understanding of the distribution of the minerals that may potentially be liberated during site-characterization and operation of the potential repository is crucial to ensuring worker and public safety. Analysis of previously reported mineralogy of Yucca Mountain tuffs using data and criteria from the International Agency for Research on Cancer (IARC) suggests that the following minerals are of potential concern: quartz, cristobalite, tridymite, opal-CT, erionite, mordenite, and palygorskite. The authors have re-evaluated the three-dimensional mineral distribution at Yucca Mountain above the static water level both in bulk-rock samples and in fractures, using quantitative X-ray powder diffraction analysis. Erionite, mordenite, and palygorskite occur primarily in fractures; the crystalline-silica minerals, quartz, cristobalite, and tridymite are major bulk-rock phases. Erionite occurs in the altered zone just above the lower Topopah Spring Member vitrophyre, and an occurrence below the vitrophyre but above the Calico Hills has recently been identified. In this latter occurrence, erionite is present in the matrix at levels up to 35 wt%. Mordenite and palygorskite occur throughout the vadose zone nearly to the surface. Opal-CT is limited to zeolitic horizons

  10. Preliminary report on the geology and geophysics of drill hole UE25a-1, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Spengler, R.W.; Muller, D.C.; Livermore, R.B.

    1979-01-01

    A subsurface geologic study in connection with the Nevada Nuclear Waste Storage Investigations has furnished detailed stratigraphic and structural information about tuffs underlying northeastern Yucca Mountain on the Nevada Test Site. Drill hole UE25a-1 penetrated thick sequences of nonwelded to densely welded ash-flow and bedded tuffs of Tertiary age. Stratigraphic units that were identified from the drill-hole data include the Tiva Canyon and Topopah Spring Members of the Paintbrush Tuff, tuffaceous beds of Calico Hills, and the Prow Pass and Bullfrog Members of the Crater Flat Tuff. Structural analysis of the core indicated densely welded zones to be highly fractured. Many fractures show near-vertical inclinations and are commonly coated with secondary silica, manganese and iron oxides, and calcite. Five falt zones were recognized, most of which occurred in the Topopah Spring Member. Shear fractures commonly show oblique-slip movement and some suggest a sizable component of lateral compression. Graphic logs are included that show the correlation of lithology, structural properties, and geophysical logs. Many rock units have characteristic log responses but highly fractured zones, occurring principally in the Tiva Canyon and Topopah Spring Members restricted log coverage to the lower half of the drill hole

  11. Laboratory determined suction potential of Topopah Spring tuff at high temperatures

    International Nuclear Information System (INIS)

    Daily, W.; Lin, Wunan.

    1991-01-01

    The purpose of this work is to experimentally determine the capillary suction potential of Topopah Spring tuff from Yucca Mountain, Nye County, Nevada. This data can be used to help characterize the unsaturated hydraulic properties of the densely welded tuff at this site. 7 refs., 4 figs., 1 tab

  12. Major-element geochemistry of the Silent Canyon--Black Mountain peralkaline volcanic centers, northwestern Nevada Test Site: applications to an assessment of renewed volcanism

    International Nuclear Information System (INIS)

    Crowe, B.M.; Sargent, K.A.

    1979-01-01

    The Silent Canyon and Black Mountain volcanic centers are located in the northern part of the Nevada Test Site. The Silent Canyon volcanic center is a buried cauldron complex of Miocene age (13 to 15 m.y.). Black Mountain volcanic center is an elliptical-shaped cauldron complex of late Miocene age. The lavas and tuffs of the two centers comprise a subalkaline-peralkaline association. Rock types range from quartz normative subalkaline trachyte and rhyolite to peralkaline commendite. The Gold Flat Member of the Thirsty Canyon Tuff (Black Mountain) is a pantellerite. The major-element geochemistry of the Black Mountain--Silent Canyon volcanic centers differ in the total range and distribution of SiO 2 , contents, the degree of peralkalinity (molecular Na 2 O + K 2 O > Al 2 O 3 ) and in the values of total iron and alumina through the range of rock types. These differences indicate that the suites were unrelated and evolved from differing magma bodies. The Black Mountain volcanic cycle represents a renewed phase of volcanism following cessation of the Timber Mountain--Silent Canyon volcanic cycles. Consequently, there is a small but numerically incalculable probability of recurrence of Black Mountain-type volcanism within the Nevada Test Site region. This represents a potential risk with respect to deep geologic storage of high-level radioactive waste at the Nevada Test Site

  13. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  14. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  15. Stratigraphic and structural framework of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Fox, K.F. Jr.

    1988-01-01

    Yucca Mountain is located within the southwestern Nevada volcanic field, ∼140 km northwest of Las Vegas, Nevada, and 50 km northeast of Death Valley, California. The mountain consist of a series of long, linear, north-trending volcanic ridges that approach an 1800-m maximum elevation near The Prow. The broad intermontane alluviated valleys of Crater Flat, the Amargosa Desert, and Jackass Flats, averaging 800 to 1100 m in elevation, form the western, southern, and eastern margins of Yucca Mountain, respectively. North of The Prow, Yucca Mountain merges with other volcanic highlands that flank the southern rim of the Timber Mountain-Oasis Valley caldera complex. The stratigraphy and structure of the area are discussed. Future geologic studies will attempt to determine if faults extend beneath Yucca Mountain, and, if present, their potential effects on the hydrologic and tectonic regimes

  16. Experimental and numerical simulation of dissolution and precipitation: implications for fracture sealing at Yucca Mountain, Nevada

    Science.gov (United States)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Sonnenthal, Eric L.; Spycher, Nicolas; Apps, John A.

    2003-05-01

    Plugging of flow paths caused by mineral precipitation in fractures above the potential repository at Yucca Mountain, Nevada could reduce the probability of water seeping into the repository. As part of an ongoing effort to evaluate thermal-hydrological-chemical (THC) effects on flow in fractured media, we performed a laboratory experiment and numerical simulations to investigate mineral dissolution and precipitation under anticipated temperature and pressure conditions in the repository. To replicate mineral dissolution by vapor condensate in fractured tuff, water was flowed through crushed Yucca Mountain tuff at 94 °C. The resulting steady-state fluid composition had a total dissolved solids content of about 140 mg/l; silica was the dominant dissolved constituent. A portion of the steady-state mineralized water was flowed into a vertically oriented planar fracture in a block of welded Topopah Spring Tuff that was maintained at 80 °C at the top and 130 °C at the bottom. The fracture began to seal with amorphous silica within 5 days. A 1-D plug-flow numerical model was used to simulate mineral dissolution, and a similar model was developed to simulate the flow of mineralized water through a planar fracture, where boiling conditions led to mineral precipitation. Predicted concentrations of the major dissolved constituents for the tuff dissolution were within a factor of 2 of the measured average steady-state compositions. The mineral precipitation simulations predicted the precipitation of amorphous silica at the base of the boiling front, leading to a greater than 50-fold decrease in fracture permeability in 5 days, consistent with the laboratory experiment. These results help validate the use of a numerical model to simulate THC processes at Yucca Mountain. The experiment and simulations indicated that boiling and concomitant precipitation of amorphous silica could cause significant reductions in fracture porosity and permeability on a local scale. However

  17. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  18. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe 3+ -bearing phases) exclusively. Estimates of Fe 2+ -bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn 4+ ), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12 tabs

  19. Geologic framework and Cenozoic evolution of the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Fox, K.F. Jr.; Spengler, R.W.; Myers, W.B.

    1990-01-01

    Yucca Mountain, Nevada, has been proposed as the site of a high-level nuclear waste repository. The purpose of this paper is to outline aspects of the geology and tectonics of the area which bear on its suitability as a waste repository. The repository is to be excavated from a non-lithophysal zone within the lower part of the Paintbrush Tuff. Revised estimates of the thickness of this zone indicate that the lower, down-dip extremity of the planned repository could be raised by as much as 130 m, thus reducing the grade within the repository and increasing the distance to the water table below. We note that because of the closely spaced fracturing and low in-situ stresses within the repository block, lateral support of fractured rock is likely to be poor. 30 refs., 5 figs

  20. Distribution of lithostratigraphic units within the central block of Yucca Mountain, Nevada: A three-dimensional computer-based model, Version YMP.R2.0

    International Nuclear Information System (INIS)

    Buesch, D.C.; Nelson, J.E.; Dickerson, R.P.; Drake, R.M. II; San Juan, C.A.; Spengler, R.W.; Geslin, J.K.; Moyer, T.C.

    1996-01-01

    Yucca Mountain, Nevada is underlain by 14.0 to 11.6 Ma volcanic rocks tilted eastward 3 degree to 20 degree and cut by faults that were primarily active between 12.7 and 11.6 Ma. A three-dimensional computer-based model of the central block of the mountain consists of seven structural subblocks composed of six formations and the interstratified-bedded tuffaceous deposits. Rocks from the 12.7 Ma Tiva Canyon Tuff, which forms most of the exposed rocks on the mountain, to the 13.1 Ma Prow Pass Tuff are modeled with 13 surfaces. Modeled units represent single formations such as the Pah Canyon Tuff, grouped units such as the combination of the Yucca Mountain Tuff with the superjacent bedded tuff, and divisions of the Topopah Spring Tuff such as the crystal-poor vitrophyre interval. The model is based on data from 75 boreholes from which a structure contour map at the base of the Tiva Canyon Tuff and isochore maps for each unit are constructed to serve as primary input. Modeling consists of an iterative cycle that begins with the primary structure-contour map from which isochore values of the subjacent model unit are subtracted to produce the structure contour map on the base of the unit. This new structure contour map forms the input for another cycle of isochore subtraction to produce the next structure contour map. In this method of solids modeling, the model units are presented by surfaces (structure contour maps), and all surfaces are stored in the model. Surfaces can be converted to form volumes of model units with additional effort. This lithostratigraphic and structural model can be used for (1) storing data from, and planning future, site characterization activities, (2) preliminary geometry of units for design of Exploratory Studies Facility and potential repository, and (3) performance assessment evaluations

  1. Final report on feasibility of real-time geochemical analysis at Yucca Mountain, Nevada, using LIBS technology

    International Nuclear Information System (INIS)

    Blacic, J.D.; Pettit, D.R.; Cremers, D.A.

    1996-12-01

    Laser-induced breakdown spectroscopy (LIBS) is an analytic method whereby an intense laser pulse is used to vaporize and excite a small volume of material into atomic emission. Calibrated spectral analysis of the laser spark light provides detection and quantification of the elemental composition of the target material. We performed laboratory and field tests to assess the feasibility of developing field-portable LIBS-based instruments for real-time analyses of Yucca Mountain rocks in conjunction with Yucca Mountain Project drilling, coring, sampling, and characterization tasks. We developed one prototype instrument designed to analyze air core drilling dust and another prototype instrument designed to analyze rock and fracture surfaces. In realistic field tests at the Exploratory Studies Facility at Yucca Mountain, Nevada, we demonstrated that the LIBS prototypes are capable of measuring major, minor, and some trace elements in real time. Laboratory LIBS analyses show that we can identify characteristic element ratios in a range of manganese oxide minerals present at Yucca Mountain as fracture surface coatings and matrix grains. Preliminary LIBS analyses also indicate that the U/Na ratio may distinguish tuffs containing the hazardous zeolite mineral erionite from non-erionite bearing tuffs, and that a LIBS-based instrument may be useful to detect in real time the probable presence of erionite encountered in core drilling and other operations at Yucca Mountain

  2. Potentially disruptive hydrologic features, events and processes at the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    Hoxie, D.T.

    1995-01-01

    Yucca Mountain, Nevada, has been selected by the United States to be evaluated as a potential site for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the site is determined to be suitable for repository development and construction is authorized, the repository at the Yucca Mountain site is planned to be constructed in unsaturated tuff at a depth of about 250 meters below land surface and at a distance of about 250 meters above the water table. The intent of locating a repository in a thick unsaturated-zone geohydrologic setting, such as occurs at Yucca Mountain under the arid to semi-arid climatic conditions that currently prevail in the region, is to provide a natural setting for the repository system in which little ground water will be available to contact emplaced waste or to transport radioactive material from the repository to the biosphere. In principle, an unsaturated-zone repository will be vulnerable to water entry from both above and below. Consequently, a major effort within the site-characterization program at the Yucca Mountain site is concerned with identifying and evaluating those features, events, and processes, such as increased net infiltration or water-table rise, whose presence or future occurrence could introduce water into a potential repository at the site in quantities sufficient to compromise the waste-isolation capability of the repository system

  3. A revised Lithostratigraphic Framework for the Southern Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    R.W. Spengler; F.M. Byers; R.P. Dickerson

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits and intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain

  4. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  5. Genetic sampling of Palmer's chipmunks in the Spring Mountains, Nevada

    Science.gov (United States)

    Kevin S. McKelvey; Jennifer E. Ramirez; Kristine L. Pilgrim; Samuel A. Cushman; Michael K. Schwartz

    2013-01-01

    Palmer's chipmunk (Neotamias palmeri) is a medium-sized chipmunk whose range is limited to the higher-elevation areas of the Spring Mountain Range, Nevada. A second chipmunk species, the Panamint chipmunk (Neotamias panamintinus), is more broadly distributed and lives in lower-elevation, primarily pinyon-juniper (Pinus monophylla-Juniperus osteosperma) habitat...

  6. Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

    2000-01-01

    This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults

  7. Evidence for an unsaturated-zone origin of secondary minerals in Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Roedder, Edwin; Paces, James B.

    2001-01-01

    The unsaturated zone (UZ) in Miocene-age welded tuffs at Yucca Mountain, Nevada, is under consideration as a potential site for the construction of a high-level radioactive waste repository. Secondary calcite and silica minerals deposited on fractures and in cavities in the UZ tuffs are texturally, isotopically, and geochemically consistent with UZ deposition from meteoric water infiltrating at the surface and percolating through the UZ along fractures. Nonetheless, two-phase fluid inclusions with small and consistent vapor to liquid (V:L) ratios that yield consistent temperatures within samples and which range from about 35 to about 80 C between samples have led some to attribute these deposits to formation from upwelling hydrothermal waters. Geochronologic studies have shown that calcite and silica minerals began forming at least 10 Ma and continued to form into the Holocene. If their deposition were really from upwelling water flooding the UZ, it would draw into question the suitability of the site as a waste repository

  8. Uranium-Series Constraints on Subrepository Water Flow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    L.A. Neymark; J.B. Paces; S.J. Chipera; D.T. Vaniman

    2006-01-01

    Mineral abundances and whole-rock chemical and uranium-series isotopic compositions were measured in unfractured and rubble core samples from borehole USWSD-9 in the same layers of variably zeolitized tuffs that underlie the proposed nuclear waste repository at Yucca Mountain, Nevada. Uranium concentrations and isotopic compositions also were measured in pore water from core samples from the same rock units and rock leachates representing loosely bound U adsorbed on mineral surfaces or contained in readily soluble secondary minerals. The chemical and isotopic data were used to evaluate differences in water-rock interaction between fractured and unfractured rock and between fracture surfaces and rock matrix. Samples of unfractured and rubble fragments (about 1 centimeter) core and material from fracture surfaces show similar amounts of uranium-series disequilibrium, recording a complex history of sorption and loss of uranium over the past 1 million years. The data indicate that fractures in zeolitized tuffs may not have had greater amounts of water-rock interaction than the rock matrix. The data also show that rock matrix from subrepository units is capable of scavenging uranium with elevated uranium-234/uranium-238 from percolating water and that retardation of radionuclides and dose reduction may be greater than currently credited to this aspect of the natural barrier. Uranium concentrations of pore water and the rock leachates are used to estimate long-term in situ uranium partition coefficient values greater than 7 milliliters per gram

  9. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence

    International Nuclear Information System (INIS)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole

  10. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1990-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive-waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  11. Mineralogic alteration history and paleohydrology at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.

    1991-01-01

    The importance of paleohydrology to the Yucca Mountain Site Characterization Project derives from the role water will play in radioactive waste repository performance. Changes in hydrologic conditions during the lifetime of the repository may be estimated by investigating past hydrologic variations, including changes in the static water-level position. Based on the distribution of vitric and zeolitized tuffs and the structural history of the site, the highest water levels were reached and receded downward 11.6 to 12.8 myr ago. Since that time, the water level at central Yucca Mountain has probably not risen more than about 60 m above its present position. The history of the high potentiometric gradient running through northern Yucca Mountain may be partly elucidated by the study of tridymite distribution in rocks that have experienced saturated conditions for varying periods of time

  12. Natural language solution to a Tuff problem

    International Nuclear Information System (INIS)

    Langkopf, B.S.; Mallory, L.H.

    1984-01-01

    A scientific data base, the Tuff Data Base, is being created at Sandia National Laboratories on the Cyber 170/855, using System 2000. It is being developed for use by scientists and engineers investigating the feasibility of locating a high-level radioactive waste repository in tuff (a type of volcanic rock) at Yucca Mountain on and adjacent to the Nevada Test Site. This project, the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, is managed by the Nevada Operations Office of the US Department of Energy. A user-friendly interface, PRIMER, was developed that uses the Self-Contained Facility (SCF) command SUBMIT and System 2000 Natural Language functions and parametric strings that are schema resident. The interface was designed to: (1) allow users, with or without computer experience or keyboard skill, to sporadically access data in the Tuff Data Base; (2) produce retrieval capabilities for the user quickly; and (3) acquaint the users with the data in the Tuff Data Base. This paper gives a brief description of the Tuff Data Base Schema and the interface, PRIMER, which is written in Fortran V. 3 figures

  13. Two-phase unsaturated flow at Yucca Mountain, Nevada - A Report on Current Understanding

    International Nuclear Information System (INIS)

    Pruess, K.

    1998-01-01

    The U.S. civilian nuclear waste program is unique in its focus on disposal of high-level wastes in the unsaturated zone (UZ), above the water table. The potential repository site currently under investigation is located in a semi-arid region of the southwestern U.S. at Yucca Mountain, Nevada. The geology of the site consists of layered sequences of faulted, fractured, and bedded tuffs. The groundwater table is approximately 600 m beneath the land surface, while the proposed repository horizon is at a nominal depth of approximately 375 m. In this kind of environment, two-phase flow is not just a localized perturbation to natural conditions, as in the saturated zone, but is the predominant mode of water and gas flow. The purpose of this report is to review the current understanding of gas and water flow, and mass transport, in the unique hydrogeologic environment of Yucca Mountain. Characteristics of the Yucca Mountain site are examined, and concepts and mathematical modeling approaches are described for variably saturated flow in thick unsaturated zones of fractured rock. The paper includes a brief summary of the disposal concept and repository design, as developed by a team of engineering contractors to the U.S. Department of Energy (DOE), with strong participation from the DOE National Laboratories

  14. A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain

    International Nuclear Information System (INIS)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

    2003-01-01

    This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed

  15. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Cloke, P.L.

    2000-01-01

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO 2 , 76.29; Al 2 O 3 , 12.55; FeO, 0.14; Fe 2 O 3 , 0.97; MgO, 0.13; CaO, 0.50; Na 2 O, 3.52; K 2 O, 4.83; TiO 2 , 0.11; and MnO, 0.07

  16. Alteration history studies in the Exploratory Studies Facility, Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Levy, S.S.; Chipera, S.J.; Norman, D.I.

    1996-01-01

    By mid-1995, the Exploratory Studies Facility (ESF) extended about 1. 1 km from Exile Hill westward toward Yucca Mountain, mostly within densely welded, devitrfied Tiva Canyon Tuff. Secondary mineral occurrences in this unit include breccia cements of mordenite, a fibrous zeolite, and vapor-phase deposits of silica, alkali feldspar, apatite, hollandite, amphibole, and zircon. Calcite is also a common secondary mineral in faults and fractures. Studies of water and gas contents in fluid inclusions in calcites from a fault in nonwelded tuff and a fracture in densely welded tuff suggest mineral deposition under transient locally saturated conditions. Calcite in the nonwelded tuff incorporated air from the unsaturated tuff adjacent to the fault. A highly altered interval within pre-Pah Canyon tuffs just above the top of the Topopah Spring Tuff may be a fossil fumarole or other hydrothermal feature associated with cooling pyroclastic deposits, overprinted by later zeolitic alteration. The observed quartz, cristobalite, opal-CT, and fluorite have been widely identified as products of syngenetic devitrification and vapor-phase alteration in and above the Topopah Spring Tuff. Smectite, also an abundant secondary mineral at the ESF site, has been observed elsewhere at this stratigraphic level. Zeolitic alteration of nonwelded tuffs above the Topopah Spring Tuff, as seen in the ESF, has also been noted in drill core and outcrop at northeastern Yucca Mountain. The hydrologic and geochemical conditions that favored zeolitization only in certain areas of this stratigraphic interval have yet to be determined

  17. Ash-flow tuff distribution and fault patterns as indicators of rotation of late-tertiary regional extension, Nevada test site

    International Nuclear Information System (INIS)

    Ander, H.D.

    1983-01-01

    Isopach and structure contour maps generated for Yucca Flat as well as fault pattern analyses of the Nevada Test Site (NTS) can aid in more efficient site selection and site characterization necessary for containment. Furthermore, these geologic studies indicate that most of the alluvial deposition in Yucca Flat was controlled by north-trending faults responding to a regional extension direction oriented approximately 20 0 to 30 0 west of the N50 0 W direction observed today. The Yucca Flat basin-forming Carpetbag and Yucca fault systems seem to be deflected at their southern ends into the northeast-trending Cane Spring and Mine Mountain fault systems. Left-lateral strike-slip displacement of approx. 1.4 km found on these northeasterly faults requires that most of the displacement on the combined fault systems occurred in an extension field oriented approximately N80 0 W. Fault movement in this extensional field postdates the Ammonia Tanks tuff (approx. 11 My) and was strongly active during deposition of some 1100 meters of alluvium in Yucca Flat. Time of rotation of regional extension to the presently active N50 0 W direction is unknown; however, it occurred so recently that it has not greatly modified fault displacement patterns extant at the NTS

  18. Chemical changes associated with zeolitization of the tuffaceous beds of Calico Hills at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Broxton, D.E.

    1992-01-01

    The chemistry of the tuffaceous beds of Calico Hills was examined in samples collected over a 100 2 km area south of the Timber Mountain-Oasis Valley caldera complex to determine regional geochemical patterns during zeolitization. Samples of 58 vitric and zeolitic tuffs were analyzed for 48 elements by a combination of x-ray fluorescence, atomic absorption spectrophotometry, and neutron activation analysis. Major and trace element concentrations for zeolitic tuffs vary significantly from those for vitric tuffs. Complex, geographically-controlled patterns of elemental enrichment and depletion in the zeolitic tuffs are found for Na, K, Ca, Mg, U, Rb, Sr, Ba and Cs. Vitric and zeolitic tuffs generally have the same SiO 2 contents on an anhydrous basis, but minor net silica gain or loss has occurred in some samples. Zeolitic tuffs from the northern part of the study area, adjacent to the caldera complex, are notably K-rich and Na- and U-poor compared to zeolitic tuffs to the south. The compositions of the K-rich zeolitic tuffs are similar to those found in other areas of the western US where volcanic rocks are affected by potassium metasomatism. Alteration of vitric tuffs took place in an open chemical system and geographic control of major element compositions probably reflects regional variations in groundwater chemistry during alteration. The K-rich zeolitic tuffs in the northern part of the study area were probably altered by hydrothermal fluids whereas tuffs further south were altered by lower-temperature groundwaters

  19. A Natural Analogue for Thermal-Hydrological-Chemical Coupled Processes at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bill Carey; Gordon Keating; Peter C. Lichtner

    1999-01-01

    Dike and sill complexes that intruded tuffaceous host rocks above the water table are suggested as natural analogues for thermal-hydrologic-chemical (THC) processes at the proposed nuclear waste repository at Yucca Mountain, Nevada. Scoping thermal-hydrologic calculations of temperature and saturation profiles surrounding a 30-50 m wide intrusion suggest that boiling conditions could be sustained at distances of tens of meters from the intrusion for several thousand years. This time scale for persistence of boiling is similar to that expected for the Yucca Mountain repository with moderate heat loading. By studying the hydrothermal alteration of the tuff host rocks surrounding the intrusions, insight and relevant data can be obtained that apply directly to the Yucca Mountain repository and can shed light on the extent and type of alteration that should be expected. Such data are needed to bound and constrain model parameters used in THC simulations of the effect of heat produced by the waste on the host rock and to provide a firm foundation for assessing overall repository performance. One example of a possible natural analogue for the repository is the Paiute Ridge intrusive complex located on the northeastern boundary of the Nevada Test Site, Nye County, Nevada. The complex consists of dikes and sills intruded into a partially saturated tuffaceous host rock that has stratigraphic sequences that correlate with those found at Yucca Mountain. The intrusions were emplaced at a depth of several hundred meters below the surface, similar to the depth of the proposed repository. The tuffaceous host rock surrounding the intrusions is hydrothermally altered to varying extents depending on the distance from the intrusions. The Paiute Ridge intrusive complex thus appears to be an ideal natural analogue of THC coupled processes associated with the Yucca Mountain repository. It could provide much needed physical and chemical data for understanding the influence of heat

  20. Radionuclide sorption in Yucca Mountain tuffs with J-13 well water: Neptunium, uranium, and plutonium. Yucca Mountain site characterization program milestone 3338

    International Nuclear Information System (INIS)

    Triay, I.R.; Cotter, C.R.; Kraus, S.M.; Huddleston, M.H.

    1996-08-01

    We studied the retardation of actinides (neptunium, uranium, and plutonium) by sorption as a function of radionuclide concentration in water from Well J-13 and of tuffs from Yucca Mountain. Three major tuff types were examined: devitrified, vitric, and zeolitic. To identify the sorbing minerals in the tuffs, we conducted batch sorption experiments with pure mineral separates. These experiments were performed with water from Well J-13 (a sodium bicarbonate groundwater) under oxidizing conditions in the pH range from 7 to 8.5. The results indicate that all actinides studied sorb strongly to synthetic hematite and also that Np(V) and U(VI) do not sorb appreciably to devitrified or vitric tuffs, albite, or quartz. The sorption of neptunium onto clinoptilolite-rich tuffs and pure clinoptilolite can be fitted with a sorption distribution coefficient in the concentration range from 1 X 10 -7 to 3 X 10 -5 M. The sorption of uranium onto clinoptilolite-rich tuffs and pure clinoptilolite is not linear in the concentration range from 8 X 10 -8 to 1 X 10 -4 M, and it can be fitted with nonlinear isotherm models (such as the Langmuir or the Freundlich Isotherms). The sorption of neptunium and uranium onto clinoptilolite in J-13 well water increases with decreasing pH in the range from 7 to 8.5. The sorption of plutonium (initially in the Pu(V) oxidation state) onto tuffs and pure mineral separates in J-13 well water at pH 7 is significant. Plutonium sorption decreases as a function of tuff type in the order: zeolitic > vitric > devitrified; and as a function of mineralogy in the order: hematite > clinoptilolite > albite > quartz

  1. Stratigraphy and structure of volcanic rocks in drill hole USW-G1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Spengler, R.W.; Byers, F.M. Jr.; Warner, J.B.

    1981-01-01

    Detailed subsurface studies in connection with the Nevada Nuclear Waste Storage Investigations program are being conducted to investigate the stratigraphic and structural features of volcanic rocks underlying Yucca Mountain, a volcanic highland situated along the western boundary of the Nevada Test Site in southern Nevada. As part of this continuing effort, drill hole USW-G1 was cored from 292 ft to a depth of 6000 ft from March to August 1980. The stratigraphic section is composed of thick sequences of ash-flow tuff and volcanic breccia interbedded with subordinate amounts of fine- to coarse-grained volcaniclastic rocks. All rocks are of Tertiary age and vary in composition from rhyolite to dacite. The 3005-ft level in the drill hole represents a significant demarcation between unaltered and altered volcanic rocks. For the most part, tuff units above 3005 ft appear devitrified and show little secondary alteration except within tuffaceous beds of Calico Hills, where the rock contains 60 to 80% zeolites. Below 3005 ft, most rocks show intermittent to pervasive alteration to clay minerals and zeolites. Examination of core for structural features revealed the presence of 61 shear fractures, 528 joints, and 4 conspicuous fault zones. Shear fractures mainly occurred in the Topopah Spring Member of the Paintbrush Tuff, flow breccia, and near fault zones. Nearly 88% of shear and joint surfaces show evidence of coatings. Approximately 40% of the fractures were categorized as completely healed. Rock quality characteristics as defined by the core index indicate that greater amounts of broken and lost core are commonly associated with (1) the densely welded zone of the Topopah Spring, (2) highly silicified zones, and (3) fault zones

  2. Investigations of natural groundwater hazards at the proposed Yucca Mountain high level nuclear waste repository. Part A: Geology at Yucca Mountain. Part B: Modeling of hydro-tectonic phenomena relevant to Yucca Mountain. Annual report - Nevada

    International Nuclear Information System (INIS)

    Szymanski, J.S.; Schluter, C.M.; Livingston, D.E.

    1993-05-01

    This document is an annual report describing investigations of natural groundwater hazards at the proposed Yucca Mountain, Nevada High-Level Nuclear Waste Repository.This document describes research studies of the origin of near surface calcite/silica deposits at Yucca Mountain. The origin of these deposits is controversial and the authors have extended and strengthened the basis of their arguments for epigenetic, metasomatic alteration of the tuffs at Yucca Mountain. This report includes stratigraphic, mineralogical, and geochronological information along with geochemical data to support the conclusions described by Livingston and Szymanski, and others. As part of their first annual report, they take this opportunity to clarify the technical basis of their concerns and summarize the critical geological field evidence and related information. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  3. Effects of mineralogy on sorption of strontium and cesium onto Calico Hills Tuff

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.; O'Kelley, G.D.; Land, J.F.

    1990-04-01

    The sorption properties of tuff formations at the proposed site for the high-level nuclear waste repository at Yucca Mountain, Nevada, have been extensively studied. Sorption and desorption measurements were made of strontium and cesium onto clinoptilolite and Calico Hills Tuff. The object was to see whether there was a correlation between sorption of strontium and cesium onto Calico Hills Tuff and the sorption of strontium and cesium onto clinoptilolite based on the content of clinoptilolite in the Calico Hills Tuff. 13 refs., 10 figs., 6 tabs

  4. The influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, A.L.; Hevesi, J.A.; Flint, L.E.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18 O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18 O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 18 O. Assuming the rock properties, lithologies, and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface ( 250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded tuff Members, do not appear to act as a capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop

  5. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  6. Preliminary gravity and magnetic models across Midway Valley and Yucca Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1994-01-01

    Detailed gravity and ground magnetic data collected along ten traverses across Midway Valley and Yucca Wash on the eastern flank of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley. Gravity and magnetic data across the northwest trending Yucca Wash and the inferred Yucca Wash fault indicate no major vertical offsets greater than 100 m using a density contrast of 0.2 to 0.3 g/cm 3 along the proposed Yucca Wash fault. In addition, a broad magnetic high coincides with the approximate location of the hydrologic gradient and probably reflects moderately magnetic Topopah Spring Tuff or lavas in the Calico Hills Formation

  7. Studies of the mobility of uranium and thorium in Nevada Test Site tuff

    Energy Technology Data Exchange (ETDEWEB)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U was mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.

  8. Preliminary safety assessment study for the conceptual design of a repository in tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Jackson, J.L.; Gram, H.F.; Hong, K.J.; Ng, H.S.; Pendergrass, A.M.

    1984-12-01

    Preliminary estimates of the upper bounds on postulated worst-case radiological releases resulting from possible accidents during the operating period of a prospective repository in tuff at Yucca Mountain are presented. Possible disrupting events are screened to identify the accidents of greatest potential consequence. The radiological dose commitments for the general public and repository personnel are estimated for postulated releases caused by natural phenomena, man-made events, and operational accidents. All postulated worst-case releases result in doses to the public that are lower than the 0.5-rem, whole-body dose-per-accident limit set by the Nuclear Regulatory Commission (NRC) in 10 CFR 60. Doses to repository personnel are within the NRC's 5.0-rem/yr occupational exposure limit set in 10 CFR 20 for normal operations. Doses are within this limit for all accidents except the transportation accident and fire in a drift. A preliminary risk assessment has also been performed. Based on this preliminary safety study, the proposed site boundaries and design criteria routinely used in constructing nuclear facilities appear to be adequate to protect the safety of the general public during the operating phase of the repository

  9. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  10. Native American plant resources in the Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B.

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs

  11. Native American plant resources in the Yucca Mountain Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Stoffle, R.W.; Evans, M.J.; Halmo, D.B. [Michigan Univ., Ann Arbor, MI (USA). Inst. for Social Research; Niles, W.E.; O`Farrell, J.T. [EG and G Energy Measurements, Inc., Goleta, CA (USA)

    1989-11-01

    This report presents Native American interpretations of and concerns for plant resources on or near Yucca Mountain, Nevada. This one of three research reports regarding Native American cultural resources that may be affected by site characterization activities related to the Yucca Mountain high-level radioactive waste disposal facility. Representatives of the sixteen involved American Indian tribes identified and interpreted plant resources as part of a consultation relationship between themselves and the US Department of Energy (DOE). Participants in the ethnobotany studies included botanists who have conducted, and continue to conduct, botanical studies for the Yucca Mountain Project. This report is to be used to review research procedures and findings regarding the process of consulting with the sixteen tribes, interviews with tribal plant specialists and elders, and findings from the ethnobotanical visits with representatives of the sixteen tribes. An annual report will include a chapter that summarizes the key findings from this plant resources study. 23 refs., 75 figs., 39 tabs.

  12. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    Science.gov (United States)

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    Surface, unsaturated-zone, and saturated-zone hydrologic conditions at Yucca Mountain responded to past climate variations and are at least partly preserved by sediment, fossil, and mineral records. Characterizing past hydrologic conditions in surface and subsurface environments helps to constrain hydrologic responses expected under future climate conditions and improve predictions of repository performance. Furthermore, these records provide a better understanding of hydrologic processes that operate at time scales not readily measured by other means. Pleistocene climates in southern Nevada were predominantly wetter and colder than the current interglacial period. Cyclic episodes of aggradation and incision in Fortymile Wash, which drains the eastern slope of Yucca Mountain, are closely linked to Pleistocene climate cycles. Formation of pedogenic cement is favored under wetter Pleistocene climates, consistent with increased soil moisture and vegetation, higher chemical solubility, and greater evapotranspiration relative to Holocene soil conditions. The distribution and geochemistry of secondary minerals in subsurface fractures and cavities reflect unsaturated-zone hydrologic conditions and the response of the hydrogeologic system to changes in temperature and percolation flux over the last 12.8 m.y. Physical and fluid-inclusion evidence indicates that secondary calcite and opal formed in air-filled cavities from fluids percolating downward through connected fracture pathways in the unsaturated zone. Oxygen, strontium, and carbon isotope data from calcite are consistent with a descending meteoric water source but also indicate that water compositions and temperatures evolved through time. Geochronological data indicate that secondary mineral growth rates are less than 1–5 mm/m.y., and have remained approximately uniform over the last 10 m.y. or longer. These data are interpreted as evidence for hydrological stability despite large differences in surface moisture

  13. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  14. Magma Dynamics at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Krier

    2005-01-01

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event

  15. Magma Dynamics at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. Krier

    2005-08-29

    Small-volume basaltic volcanic activity at Yucca Mountain has been identified as one of the potential events that could lead to release of radioactive material from the U.S. Department of Energy (DOE) designated nuclear waste repository at Yucca Mountain. Release of material could occur indirectly as a result of magmatic dike intrusion into the repository (with no associated surface eruption) by changing groundwater flow paths, or as a result of an eruption (dike intrusion of the repository drifts, followed by surface eruption of contaminated ash) or volcanic ejection of material onto the Earth's surface and the redistribution of contaminated volcanic tephra. Either release method includes interaction between emplacement drifts and a magmatic dike or conduit, and natural (geologic) processes that might interrupt or halt igneous activity. This analysis provides summary information on two approaches to evaluate effects of disruption at the repository by basaltic igneous activity: (1) descriptions of the physical geometry of ascending basaltic dikes and their interaction with silicic host rocks similar in composition to the repository host rocks; and (2) a summary of calculations developed to quantify the response of emplacement drifts that have been flooded with magma and repressurized following blockage of an eruptive conduit. The purpose of these analyses is to explore the potential consequences that could occur during the full duration of an igneous event.

  16. Three-dimensional model of reference thermal/mechanical and hydrological stratigraphy at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Ortiz, T.S.; Williams, R.L.; Nimick, F.B.; Whittet, B.C.; South, D.L.

    1985-10-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is currently examining the feasibility of constructing a nuclear waste repository in the tuffs beneath Yucca Mountain. A three-dimensional model of the thermal/mechanical and hydrological reference stratigraphy at Yucca Mountain has been developed for use in performance assessment and repository design studies involving material properties data. The reference stratigraphy defines units with distinct thermal, physical, mechanical, and hydrological properties. The model is a collection of surface representations, each surface representing the base of a particular unit. The reliability of the model was evaluated by comparing the generated surfaces, existing geologic maps and cross sections, drill hole data, and geologic interpolation. Interpolation of surfaces between drill holes by the model closely matches the existing information. The top of a zone containing prevalent zeolite is defined and superimposed on the reference stratigraphy. Interpretation of the geometric relations between the zeolitic and thermal/mechanical and hydrological surfaces indicates that the zeolitic zone was established before the major portion of local fault displacement took place; however, faulting and zeolitization may have been partly concurrent. The thickness of the proposed repository host rock, the devitrified, relatively lithophysal-poor, moderately to densely welded portion of the Topopah Spring Member of the Paintbrush Tuff, was evaluated and varies from 400 to 800 ft in the repository area. The distance from the repository to groundwater level was estimated to vary from 700 to 1400 ft. 13 figs., 1 tab

  17. Nuclear-waste-package program for high-level isolation in Nevada tuff

    International Nuclear Information System (INIS)

    Rothman, A.J.

    1982-01-01

    The objective of the waste package program is to insure that a package is designed suitable for a repository in tuff that meets performance requirements of the NRC. In brief, the current (draft) regulation requires that the radionuclides be contained in the engineered system for 1000 years, and that, thereafter, no more than one part in 10 5 of the nuclides per year leave the boundary of the system. Studies completed as of this writing are thermal modeling of waste packages in a tuff repository and analysis of sodium bentonite as a potential backfill material. Both studies will be presented. Thermal calculations coupled with analysis of the geochemical literature on bentonite indicate that extensive chemical and physical alteration of bentonite would result at the high power densities proposed (ca. 2 kW/package and an area density of 25 W/m 2 ), in part due to compacted bentonite's relatively low thermal conductivity when dehydrated (approx. 0.6 +- 0.2 W/m 0 C). Because our groundwater contains K + , an upper hydrothermal temperature limit appears to be 120 to 150 0 C. At much lower power densities (less than 1 kW per package and an areal density of 12 W/m 2 ), bentonite may be suitable

  18. The occurrence and distribution of erionite at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    We have conducted an investigation to determine the occurrence and distribution of erionite, a potential carcinogen, at Yucca Mountain, Nevada. Using x-ray powder diffraction techniques yielding detection limits to below 0.05 wt %, we positively identified erionite in only 3 out of 76 bulk and 12 fracture samples investigated. The three erionite-bearing samples (J12-620/630, UE-25aNo.1-1296.2, and USW G4-1314) all occur above the static water level in clay/zeolite-rich horizons near the top of vitrophyres. Erionite occurs as trace amounts of less than 1 wt % in the whole rock, although it may occur locally in significant amounts as fracture fillings (e.g., UE-25aNo.1-1296.2 where it comprises approximately 45 wt % of the fracture filling material). All three occurrences appear to be extremely isolated cases since erionite was not detected in neighboring samples. Erionite at Yucca Mountain apparently formed only in localized microenvironments, possibly restricted to fractures. Since erionite occurs in trace amounts only in extremely isolated instances, it should pose little or no health hazard to workers in the potential repository at Yucca Mountain or to the public. The amounts of erionite liberated to the biosphere should be negligible, particularly when compared with the amounts of erionite occurring naturally at the surface in Nevada and surrounding states. 24 refs., 7 figs., 2 tabs

  19. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, B.; Moscati, R.

    2000-01-01

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from ∼ 40 to ∼ 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits

  20. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  1. Environmental exposures to agrochemicals in the Sierra Nevada mountain range

    Science.gov (United States)

    LeNoir, J.; Aston, L.; Data, S.; Fellers, G.; McConnell, L.; Sieber, J.

    2000-01-01

    The release of pesticides into the environment may impact human and environmental health. Despite the need for environmental exposure data, few studies quantify exposures in urban areas and even fewer determine exposures to wildlife in remote areas. Although it is expected that concentrations in remote regions will be low, recent studies suggest that even low concentrations may have deleterious effects on wildlife. Many pesticides are known to interfere with the endocrine systems of humans and wildlife, adversely affecting growth, development, and behavior. This chapter reviews the fate and transport of pesticides applied in the Central Valley of California and quantifies their subsequent deposition into the relatively pristine Sierra Nevada Mountain Range.

  2. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.; Page, W.R.; Howard, T.M.

    1993-01-01

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  3. Development of the Performance Confirmation Program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G.D. LeCain; D. Barr; D. Weaver; R. Snell; S.W. Goodin; F.D. Hansen

    2006-01-01

    The Yucca Mountain Performance Confirmation program consists of tests, monitoring activities, experiments, and analyses to evaluate the adequacy of assumptions, data, and analyses that form the basis of the conceptual and numerical models of flow and transport associated with a proposed radioactive waste repository at Yucca Mountain, Nevada. The Performance Confirmation program uses an eight-stage risk-informed, performance-based approach. Selection of the Performance Confirmation activities (a parameter and a test method) for inclusion in the Performance Confirmation program was done using a risk-informed performance-based decision analysis. The result of this analysis and review was a Performance Confirmation base portfolio that consists of 20 activities. The 20 Performance Confirmation activities include geologic, hydrologic, and construction/engineering testing. Several of the activities were initiated during site characterization and are ongoing. Others activities will commence during construction and/or post emplacement and will continue until repository closure

  4. CAPILLARY BARRIERS IN UNSATURATED FRACTURED ROCKS OF YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Wu, Y.S.; Zhang, W.; Pan, L.; Hinds, J.; Bodvarsson, G.

    2000-01-01

    This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow

  5. A performance assessment review tool for the proposed radioactive waste repository at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Mohanty, Sitakanta; Codell, Richard

    2000-01-01

    The U.S. Nuclear Regulatory Commission (NRC), with the assistance of the Center for Nuclear Waste Regulatory Analyses, has developed a Total-system Performance Assessment (TPA) Code to assist in evaluating the performance of the Yucca Mountain (YM) High-Level Waste Repository in Nevada, proposed by the U.S. Department of Energy (DOE). The proposed YM repository would be built in a thick sequence of partially saturated volcanic tuff above the water table. Among the unique challenges of this environment are (1) the transport of radionuclides would take place partially through highly heterogeneous unsaturated rock; (2) the waste packages (WPs) would be generally exposed to oxidizing conditions, and (3) water either infiltrating from the surface or recirculating because of decay heat may drip onto the WPs. Tools such as the TPA code and embedded techniques for evaluating YM performance are aimed at (1) determining the parameters and key parts of the repository system that have the most influence on repository performance; (2) performing alternative conceptual models studies, especially with bounding models; (3) estimating the relative importance of the physical phenomena that lead to human exposure to radionuclides; and (4) improving NRC staff capabilities in performance assessment and associated license application reviews. This paper presents an overview of the NRC conceptual framework, approach to conducting system-level sensitivity analyses for determining influential parameters, and alternative conceptual model studies to investigate the effect of model uncertainties. (author)

  6. Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada: proceedings

    International Nuclear Information System (INIS)

    Barton, C.C.; Larsen, E.

    1985-01-01

    Fracture traces exposed on three 214- to 260-m 2 pavements in the same Miocene ash-flow tuff at Yucca Mountain, southwestern Nevada, have been mapped at a scale of 1:50. The maps are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.20 m were mapped. The distribution of fracture-trace lengths is log-normal. The fractures do not exhibit well-defined sets based on orientation. Since fractal characterization of such complex fracture-trace networks may prove useful for modeling fracture flow and mechanical responses of fractured rock, an analysis of each of the three maps was done to test whether such networks are fractal. These networks proved to be fractal and the fractal dimensions (D) are tightly clustered (1.12, 1.14, 1.16) for three laterally separated pavements, even though visually the fracture networks appear quite different. The fractal analysis also indicates that the network patterns are scale independent over two orders of magnitude for trace lengths ranging from 0.20 to 25 m. 7 refs., 7 figs

  7. Gravity and magnetic data across the Ghost Dance Fault in WT-2 Wash, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Sikora, R.F.

    1994-01-01

    Detailed gravity and ground magnetic data were obtained in September 1993 along a 4,650 ft-long profile across the Ghost Dance Fault system in WT-2 Wash. Gravity stations were established every 150 feet along the profile. Total-field magnetic measurements made initially every 50 ft along the profile, then remade every 20 ft through the fault zone. These new data are part of a geologic and geophysical study of the Ghost Dance Fault (GDF) which includes detailed geologic mapping, seismic reflection, and some drilling including geologic and geophysical logging. The Ghost Dance Fault is the only through-going fault that has been identified within the potential repository for high-level radioactive waste at Yucca Mountain, Nevada. Preliminary gravity results show a distinct decrease of 0.1 to 0.2 mGal over a 600-ft-wide zone to the east of and including the mapped fault. The gravity decrease probably marks a zone of brecciation. Another fault-offset located about 2,000 ft to the east of the GDF was detected by seismic reflection data and is also marked by a distinct gravity low. The ground magnetic data show a 200-ft-wide magnetic low of about 400 nT centered about 100 ft east of the Ghost Dance Fault. The magnetic low probably marks a zone of brecciation within the normally polarized Topopah Spring Tuff, the top of which is about 170 ft below the surface, and which is known from drilling to extend to a depth of about 1,700 ft. Three-component magnetometer logging in drill hole WT-2 located about 2,700 ft east of the Ghost Dance Fault shows that the Topopah Spring Tuff is strongly polarized magnetically in this area, so that fault brecciation of a vertical zone within the Tuff could provide an average negative magnetic contrast of the 4 Am -1 needed to produce the 400 nT low observed at the surface

  8. 1983 biotic studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1984-04-01

    A 27.5-square-mile portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a potential location for a national high-level radioactive waste repository. Preliminary geologic and environmental characterization studies have been supported and more extensive studies are planned. Goals of the biotic surveys were to identify species of concern, describe major floral and faunal associations, and assess possible impacts of characterization and operational activities. Floral associations observed were characteristic of either the Mojave or Transition deserts that are widely distributed in southern Nevada. Diversity, in terms of total number of perennial species represented, was higher in Transition Desert associations than in Mojave Desert associations. Canopy coverage of associations fell within the range of reported values, but tended to be more homogeneous than expected. Annual vegetation was found to be diverse only where the frequency of Bromus rubens was low. Ground cover of winter annuals, especially annual grasses, was observed to be very dense in 1983. The threat of range fires on Yucca Mountain was high because of the increased amount of dead litter and the decreased amount of bare ground. Significant variability was observed in the distribution and relative abundance of several small mammal species between 1982 and 1983. Desert tortoise were found in low densities comparable with those observed in 1982. Evidence of recent activity, which included sighting of two live tortoises, was found in five areas on Yucca Mountain. Two of these areas have a high probability of sustaining significant impacts if a repository is constructed. Regeneration of aboveground shrub parts from root crowns was observed in areas damaged in 1982 by seismic testing with Vibroseis machines. These areas, which had been cleared to bare dirt by passage of the machines, also supported lush stands of winter annuals

  9. Measuring and modeling water imbibition into tuff

    International Nuclear Information System (INIS)

    Peters, R.R.; Klavetter, E.A.; George, J.T.; Gauthier, J.H.

    1986-01-01

    Yucca Mountain (Nevada) is being investigated as a potential site for a high-level-radioactive-waste repository. The site combines a partially saturated hydrologic system and a stratigraphy of fractured, welded and nonwelded tuffs. The long time scale for site hydrologic phenomena makes their direct measurement prohibitive. Also, modeling is difficult because the tuffs exhibit widely varying, and often highly nonlinear hydrologic properties. To increase a basic understanding of both the hydrologic properties of tuffs and the modeling of flow in partially saturated regimes, the following tasks were performed, and the results are reported: (1) Laboratory Experiment: Water imbibition into a cylinder of tuff (taken from Yucca Mountain drill core) was measured by immersing one end of a dry sample in water and noting its weight at various times. The flow of water was approximately one-dimensional, filling the sample from bottom to top. (2) Computer Simulation: The experiment was modeled using TOSPAC (a one-dimensional, finite-difference computer program for simulating water flow in partially saturated, fractured, layered media) with data currently considered for use in site-scale modeling of a repository in Yucca Mountain. The measurements and the results of the modeling are compared. Conclusions are drawn with respect to the accuracy of modeling transient flow in a partially saturated, porous medium using a one-dimensional model and currently available hydrologic-property data

  10. Mineralogic Zonation Within the Tuff Confining Unit, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Lance Prothro

    2005-01-01

    Recently acquired mineralogic data from drill hole samples in Yucca Flat show that the tuff confining unit (TCU) can be subdivided into three mineralogic zones based on the relative abundances of primary and secondary mineral assemblages. These zones are (1) an upper zone characterized by the abundance of the zeolite mineral clinoptilolite with lesser amounts of felsic and clay minerals; (2) a middle zone with felsic minerals dominant over clinoptilolite and clay minerals; and (3) a basal argillic zone where clay minerals are dominant over felsic minerals and clinoptilolite. Interpretation of the mineralogic data, along with lithologic, stratigraphic, and geophysical data from approximately 500 drill holes, reveals a three-layer mineralogic model for the TCU that shows all three zones are extensive beneath Yucca Flat. The mineralogic model will be used to subdivide the TCU in the Yucca Flat hydrostratigraphic framework model, resulting in a more accurate and versatile framework model. In addition, the identification of the type, quantity, and distribution of minerals within each TCU layer will permit modelers to better predict the spatial distribution and extent of contaminant transport from underground tests in Yucca Flat, at both the level of the hydrologic source term and the corrective action unit

  11. Evidence for large-magnitude, post-Eocene extension in the northern Shoshone Range, Nevada, and its implications for Carlin-type gold deposits in the lower plate of the Roberts Mountains allochthon

    Science.gov (United States)

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2014-01-01

    The northern Shoshone and Toiyabe Ranges in north-central Nevada expose numerous areas of mineralized Paleozoic rock, including major Carlin-type gold deposits at Pipeline and Cortez. Paleozoic rocks in these areas were previously interpreted to have undergone negligible postmineralization extension and tilting, but here we present new data that suggest major post-Eocene extension along west-dipping normal faults. Tertiary rocks in the northern Shoshone Range crop out in two W-NW–trending belts that locally overlie and intrude highly deformed Lower Paleozoic rocks of the Roberts Mountains allochthon. Tertiary exposures in the more extensive, northern belt were interpreted as subvertical breccia pipes (intrusions), but new field data indicate that these “pipes” consist of a 35.8 Ma densely welded dacitic ash flow tuff (informally named the tuff of Mount Lewis) interbedded with sandstones and coarse volcaniclastic deposits. Both tuff and sedimentary rocks strike N-S and dip 30° to 70° E; the steeply dipping compaction foliation in the tuffs was interpreted as subvertical flow foliation in breccia pipes. The southern belt along Mill Creek, previously mapped as undivided welded tuff, includes the tuff of Cove mine (34.4 Ma) and unit B of the Bates Mountain Tuff (30.6 Ma). These tuffs dip 30° to 50° east, suggesting that their west-dipping contacts with underlying Paleozoic rocks (previously mapped as depositional) are normal faults. Tertiary rocks in both belts were deposited on Paleozoic basement and none appear to be breccia pipes. We infer that their present east tilt is due to extension on west-dipping normal faults. Some of these faults may be the northern strands of middle Miocene (ca. 16 Ma) faults that cut and tilted the 34.0 Ma Caetano caldera ~40° east in the central Shoshone Range (

  12. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 9, Index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules.

  13. Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology -- Status of investigations: June 1996

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Allerton, S.B.M.; Marshall, B.D.

    1998-01-01

    Tunneling of the Exploratory Studies Facility has offered the opportunity to sample and examine occurrences of secondary mineralization found in the unsaturated-zone tuffs of Yucca Mountain, nevada. Petrographic and paragenetic analyses, calcite and silica-phase stable isotopic analyses, and preliminary strontium tracer isotope and radiocarbon age analyses of these samples indicate that (1) an early stage of secondary mineralization consisting largely of chalcedony and quartz, but possibly with or slightly preceded by calcite, probably formed at warmer than ambient temperatures; (2) later secondary mineralization consisting of calcite and opal appears completely consistent with formation from percolation of surface infiltration whose solute load and carbon isotopic compositions reflect passage through the overlying soils; (3) based on textural studies, all unsaturated-zone secondary mineral occurrences exposed within the Exploratory Studies Facility tunnel, with the exception of the vapor-phase assemblages that formed at high temperatures during cooling of the tuffs, probably formed in unsaturated settings; and (4) calcite radiocarbon ages, based on preliminary results, have not been compromised by post-depositional exchange with carbon-bearing water and gases in the unsaturated zone

  14. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-09-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data.

  15. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-01-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data

  16. Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology -- Status of investigations: June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, J.F.; Moscati, R.J.; Allerton, S.B.M.; Marshall, B.D.

    1998-11-01

    Tunneling of the Exploratory Studies Facility has offered the opportunity to sample and examine occurrences of secondary mineralization found in the unsaturated-zone tuffs of Yucca Mountain, nevada. Petrographic and paragenetic analyses, calcite and silica-phase stable isotopic analyses, and preliminary strontium tracer isotope and radiocarbon age analyses of these samples indicate that (1) an early stage of secondary mineralization consisting largely of chalcedony and quartz, but possibly with or slightly preceded by calcite, probably formed at warmer than ambient temperatures; (2) later secondary mineralization consisting of calcite and opal appears completely consistent with formation from percolation of surface infiltration whose solute load and carbon isotopic compositions reflect passage through the overlying soils; (3) based on textural studies, all unsaturated-zone secondary mineral occurrences exposed within the Exploratory Studies Facility tunnel, with the exception of the vapor-phase assemblages that formed at high temperatures during cooling of the tuffs, probably formed in unsaturated settings; and (4) calcite radiocarbon ages, based on preliminary results, have not been compromised by post-depositional exchange with carbon-bearing water and gases in the unsaturated zone.

  17. Water levels in the Yucca Mountain area, Nevada, 1993

    International Nuclear Information System (INIS)

    Tucci, P.; Goemaat, R.L.; Burkhardt, D.J.

    1996-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1993. Seventeen wells were monitored periodically, generally on a monthly basis, and 11 wells representing 18 intervals were monitored hourly. All wells monitor water levels in Tertiary volcanic rocks, except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes and pressure transducers; steel-tape measurements were corrected for mechanical stretch, thermal expansion, and borehole deviation to obtain precise water-level altitudes. Water-level altitudes in the Tertiary volcanic rocks ranged from about 728 meters above sea level east of Yucca Mountain to about 1,034 meters above sea level north of Yucca Mountain. Water-level altitudes in the well monitoring the Paleozoic carbonate rocks varied between 752 and 753 meters above sea level during 1993. Water levels were an average of about 0.04 meter lower than 1992 water levels. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  18. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  19. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization.

  20. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization.

  1. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  2. Environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guideline for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EA), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as of five sites suitable for characterization

  3. Environmental assessment: Yucca Mountain Site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization

  4. Mineralogy and clinoptilolite K/Ar results from Yucca Mountain, Nevada, USA: A potential high-level radioactive waste repository site

    International Nuclear Information System (INIS)

    WoldeGabriel, G.; Broxton, D.E.; Bish, D.L.; Chipera, S.J.

    1993-11-01

    The Yucca Mountain Site Characterization Project is investigating Yucca Mountain, Nevada, as a potential site for a high-level nuclear waste repository. An important aspect of this evaluation is to understand the geologic history of the site including the diagenetic processes that are largely responsible for the present-day chemical and physical properties of the altered tuffs. This study evaluates the use of K/Ar geochronology in determining the alteration history of the zeolitized portions of Miocene tuffs at Yucca Mountain. Clinoptilolite is not generally regarded as suitable for dating because of its open structure and large ion-exchange capacity. However, it is the most abundant zeolite at Yucca Mountain and was selected for this study to assess the feasibility of dating the zeolitization process and/or subsequent processes that may have affected the zeolites. In this study we examine the ability of this mineral to retain all or part of its K and radiogenic Ar during diagenesis and evaluate the usefulness of the clinoptilolite K/Ar dates for determining the history of alteration

  5. Measurement of unsaturated hydraulic conductivity and chemical transport in Yucca Mountain Tuff: Milestone Report 3044-WBS1.2.3.4.1.4.1

    International Nuclear Information System (INIS)

    Conca, J.L.

    1993-12-01

    Hydraulic conductivities, K, were experimentally determined as a function of volumetric water content, θ, in tuff from the Yucca Mountain site. In addition, the retardation factor, R f , in Yucca Mountain tuff with respect to selenium, as the selenite species, was measured under unsaturated conditions. These data were used to determine the feasibility of applying a new unsaturated flow technology (UFA) to further hydrologic studies at Yucca Mountain. The UFA directly measures K(θ) rapidly in Yucca Mountain tuff and is shown to agree well with traditional methods. Hysteresis does not appear important during this testing. Hydraulic steady-state is achieved fastest during desaturation from a saturated state. Imbibition into dry tuff requires a long time for steady-state to occur because of slow filling of the diffusion porosity which can take a few weeks. The existing UFA is a prototype, and a new design of the next generation UFA is completed that eliminates some of the earlier problems. These preliminary investigations demonstrates that the UFA is a useful investigate technique that should be used to compliment existing techniques for hydrogeochemical characterization at Yucca Mountain and other arid sites

  6. Performance prediction of mechanical excavators from linear cutter tests on Yucca Mountain welded tuffs

    International Nuclear Information System (INIS)

    Gertsch, R.; Ozdemir, L.

    1992-09-01

    The performances of mechanical excavators are predicted for excavations in welded tuff. Emphasis is given to tunnel boring machine evaluations based on linear cutting machine test data obtained on samples of Topopah Spring welded tuff. The tests involve measurement of forces as cutters are applied to the rock surface at certain spacing and penetrations. Two disc and two point-attack cutters representing currently available technology are thus evaluated. The performance predictions based on these direct experimental measurements are believed to be more accurate than any previous values for mechanical excavation of welded tuff. The calculations of performance are predicated on minimizing the amount of energy required to excavate the welded tuff. Specific energy decreases with increasing spacing and penetration, and reaches its lowest at the widest spacing and deepest penetration used in this test program. Using the force, spacing, and penetration data from this experimental program, the thrust, torque, power, and rate of penetration are calculated for several types of mechanical excavators. The results of this study show that the candidate excavators will require higher torque and power than heretofore estimated

  7. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Science.gov (United States)

    Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.; Rousseau, Joseph P.; Kwicklis, Edward M.; Gillies, Daniel C.

    1999-01-01

    Yucca Mountain, in southern Nevada, is being investigated by the U.S. Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the U.S. Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Multiple lines of evidence indicate that gas flow and liquid flow within the welded tuffs of the unsaturated zone occur primarily through fractures. Fracture densities are highest in the Tiva Canyon welded (TCw) and Topopah Spring welded (TSw) hydrogeologic units. Although fracture density is much lower in the intervening nonwelded and bedded tuffs of the Paintbrush nonwelded hydrogeologic unit (PTn), pneumatic and aqueous-phase isotopic evidence indicates that substantial secondary permeability is present locally in the PTn, especially in the vicinity of faults. Borehole air-injection tests indicate that bulk air-permeability ranges from 3.5x10-14 to 5.4x10-11 square meters for the welded tuffs and from 1.2x10-13 to 3.0x10-12 square meters for the non welded and bedded tuffs of the PTn. Analyses of in-situ pneumatic-pressure data from monitored boreholes produced estimates of bulk permeability that were comparable to those determined from the air-injection tests. In many cases, both sets of estimates are two to three orders of magnitude larger than estimates based on laboratory analyses of unfractured core samples. The in-situ pneumatic-pressure records also indicate that the unsaturated-zone pneumatic system consists of four subsystems that coincide with the four major hydrogeologic units of the unsaturated zone at Yucca Mountain. In

  8. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Schimschal, U.; Nelson, P.H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. The authors show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available

  9. Infiltration at Yucca Mountain, Nevada, traced by 36Cl

    International Nuclear Information System (INIS)

    Norris, A.E.; Wolfsberg, K.; Gifford, S.K.; Bentley, H.W.; Elmore, D.

    1987-04-01

    Measurements of chloride and 36 Cl in soils from two locations near Yucca Mountain, Nevada, have been used to trace the infiltration of precipitation in this arid region. The results show that the 36 Cl fallout from nuclear weapons testing formed a well-defined peak at one location, with a maximum 0.5m below the surface. The structure of the 36 Cl bomb pulse at the other location was much more complex, and quantity of 36 Cl in the bomb pulse was 12 atoms 36 Cl/m 2 in the bomb pulse at the first location. The data indicate hydrologic activity subsequent to the 36 Cl bomb pulse fallout at one location, but none at the other location. 11 refs

  10. Topography, stresses, and stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Swolfs, H.S.; Savage, W.Z.

    1985-01-01

    Plane-strain solutions are used to analyze the influence of topography on the state of stress at Yucca Mountain, Nye County, Nevada. The results are in good agreement with the measured stress components obtained in drill holes by the hydraulic-fracturing technique, particularly those measured directly beneath the crest of the ridge, and indicate that these stresses are gravitationally induced. A separate analysis takes advantage of the fact that a well-developed set of vertical faults and fractures, subparallel to the ridge trend, imparts a vertical transverse isotropy to the rock and that, as a consequence of gravitational loading, unequal horizontal stresses are induced in directions perpendicular and parallel to the anisotropy

  11. Preliminary postclosure risk assessment: Yucca Mountain, Nevada, candidate repository site

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Elwood, D.M.; Freshley, M.D.; Reimus, P.W.; Tanner, J.E.; Doctor, P.G.; Engel, D.W.; Liebetrau, A.M.; Strenge, D.L.; Van Luik, A.E.

    1989-10-01

    A study was conducted by the Pacific Northwest Laboratory for the US Department of Energy, Office of Civilian Radioactive Waste Management, to estimate the postclosure risk, in terms of population health effects, of a proposed high-level nuclear waste repository at Yucca Mountain, Nevada. The risk estimates cover a time span of 1 million years following repository closure. Representative disruptive and intrusive events were selected and evaluated in addition to expected conditions. The estimates were generated assuming spent fuel as the waste form and included all important nuclides from inventory, half-life and dose perspectives. The base case results yield an estimate of 36 health effects over the first million years of repository operation. The doses attributed to the repository corresponds to about 0.1 percent of the doses received from natural background radiation. 16 refs., 1 fig

  12. Fran Ridge horizontal coring summary report hole UE-25h No. 1, Yucca Mountain Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Norris, A.E.; Byers, F.M. Jr.; Merson, T.J.

    1986-10-01

    Hole UE-25h No. 1 was core drilled during December 1982 and January 1983 within several degrees of due west, 400 ft horizontally into the southeast slope of Fran Ridge at an altitude of 3409 ft. The purpose of the hole was to obtain data pertinent for radionuclide transport studies in the Topopah Spring Member of the Paintbrush Tuff. This unit had been selected previously as the host rock for the potential underground nuclear waste repository at Yucca Mountain, adjacent to the southwestern part of the Nevada Test Site. The hole was core drilled first with air, then with air mist, and finally with air, soap, and water. Many problems were encountered, including sloughing of tuff into the uncased hole, vibration of the drill rods, high rates of bit wear, and lost circulation of drilling fluids. On the basis of experience gained in drilling this hole, ways to improve horizontal coring with air are suggested in this report. All of the recovered core, except those pieces that were wrapped and waxed, were examined for lithophysal content, for fractures, and for fracture-fill mineralization. The results of this examination are given in this report. Core recovery greater than 80% at between 209 and 388 ft permitted a fracture frequency analysis. The results are similar to the fracture frequencies observed in densely welded nonlithophysal tuff from holes USW GU-3 and USW G-4. The fractures in core from UE-25h No. 1 were found to be smooth and nonmineralized or coated with calcite, silica, or manganese oxide. Open fractures with caliche (porous, nonsparry calcite) were not observed beyond 83.5 ft, which corresponds to an overburden depth of 30 ft

  13. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  14. Hydrological flow analysis at Yucca Mountain, Nevada. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    This final report, prepared by Hydro Geo Chem staff for Los Alamos National Laboratory, summarizes work conducted by the company under Subcontract 52OHHOOI 5-3G, which was terminated by LANL effective 7 February 1995 for practical reasons, in that responsibilities for all tasks in the Statement of Work had been transitioned to LANL employees. The ultimate objective of this work is to characterize the movement of subsurface water in the vicinity of Yucca Mountain, Nevada. Data produced under this contract is to be used by the U.S. Department of Energy in its Yucca Mountain Site Characterization Project (YMP) to help determine hydrologic flows that may affect the performance of a potential nuclear waste,, repository. The data may be used in the licensing proceedings, and certain quality assurance procedures have thus been required. The work has focused on measuring the distribution of environmental tracers- chlorine-36, chlorine, and bromine-and on evaluating the depth to which these conservative solutes have percolated in the unsaturated zone at Yucca Mountain. The period of performance for the original Subcontract was I October 1994 to 31 December 1996. Obviously, we have not completed, nor are we expected to complete, all of the scope of work in the Subcontract. The following discussion summarizes progress made on the tasks outlined in the Statement of Work for this Subcontract Details of this work and all data acquired by Hydro Geo Chem for this Subcontract have, been systematically organized in logbooks and - laboratory notebooks (Appendices A and B). These documents have been structured to make it easy to trace the analytical history of a sample, from time of receipt to the final analytical results. The current status of this work and its relevance for the Yucca Mountain Project are described in a LANL report co-authored by Hydro Geo Chem staff

  15. Results and interpretation of preliminary aquifer tests in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Geldon, A.L.

    1996-01-01

    Pumping and injection tests conducted in 1983 and 1984 in boreholes UE-25c number-sign 1, UE-25c number-sign 2, and UE-25c number-sign 3 (the c-holes) at Yucca Mountain, Nevada, were analyzed with respect to information obtained from lithologic and borehole geophysical logs, core permeameter tests, and borehole flow surveys. The three closely spaced c-holes, each of which is about 3,000 feet deep, are completed mainly in nonwelded to densely welded, ash-flow tuff of the tuffs and lavas of Calico Hills and the Crater Flat Tuff of Miocene age. Below the water table, tectonic and cooling fractures pervade the tuffaceous rocks but are distributed mainly in 11 transmissive intervals, many of which also have matrix permeability. Information contained in this report is presented as part of ongoing investigations by the US Geological Survey (USGS) regarding the hydrologic and geologic suitability of Yucca Mountain, Nevada, as a potential site for the storage of high-level nuclear waste in an underground mined geologic repository. This investigation was conducted in cooperation with the US Department of Energy under Interagency Agreement DE-AI08-78ET44802, as part of the Yucca Mountain Site Characterization Project

  16. Testing the Concept of Drift Shadow at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.B. Paces; L.A. Neymark; T. Ghezzehei; P.F. Dobson

    2006-01-01

    If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain. To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238 U- 234 U- 230 Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All samples show 234 U depletion relative to parent 238 U, indicating varying degrees of water-rock interaction over the past million years. Variations in 234 U/ 238 U activity ratios indicate that depletion of 234 U relative to 238 U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234 U/ 238 U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors

  17. Site characterization plan: Public Handbook, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    The Yucca Mountain site in Nevada has been designated by the Nuclear Waste Policy Act of 1982, as amended, for detailed study as the candidate site for the first US geologic repository for spent nuclear fuel and high-level radioactive waste. The detailed study --- called ''site characterization'' --- will be conducted by the Department of Energy (DOE) to determine the suitability of the site for a repository and, if the site is suitable, to obtain from the Nuclear Regulatory Commission authorization to construct the repository. As part of the site characterization study, DOE has prepared a Site Characterization Plan (SCP) for the Yucca Mountain site. The Site Characterization Plan is a nine-volume document, approximately 6300 pages in length, which describes the activities that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. Part 1 of this Handbook explains what site characterization is and how the Site Characterization Plan (Plan) relates to it. Part 2 tells how to locate subjects covered in the Plan. Another major purpose of this Handbook is to identify opportunities for public involement in the review of the Site Characterization Plan. DOE wants to be sure that the public has adequate opportunities to learn about the Plan and review the results of the subsequent technical studies. 14 refs

  18. US strategy for evaluating the Yucca Mountain, Nevada site

    International Nuclear Information System (INIS)

    Gertz, C.

    1988-01-01

    The principal role of a disposal system at Yucca Mountain, Nevada is to isolate waste for a long period into the future. Therefore, the general objective for the entire system is to limit any radionuclide releases to the accessible environment. This objective will be achieved by selecting a site that contains natural barriers against radionuclide releases and by providing an appropriate system of engineered barriers. To provide additional insurance that the system at Yucca Mountain will perform adequately, individual objectives have also been defined for the engineered and natural barriers to radionuclide release and for the design of the disposal system. The general objective for the engineered barriers is that they should limit the release of radionuclides to the natural barriers. The general objective for the natural barriers is that the time of radionuclide travel to the accessible environment through these barriers should be very long. In particular, since groundwater may transport radionuclides, the groundwater travel time should be very long. The general objectives for the design of the disposal system are that its operation should be safe and that its construction should not compromise its ability to meet the other general objectives

  19. Version I of the users manual for the Tuff Data Base Interface

    International Nuclear Information System (INIS)

    Langkopf, B.S.; Satter, B.J.; Welch, E.P.

    1985-04-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project, managed by the Nevada Operations Office of the US Department of Energy, is investigating the feasibility of locating a repository at Yucca Mountain on and adjacent to the Nevada Test Site (NTS) in southern Nevada. A part of this investigation includes obtaining physical properties from laboratory tests on samples from Yucca Mountain and field tests of the in situ tuffs at Yucca Mountain. A computerized data base has been developed to store this data in a centralized location. The data base is stored on the Cyber 170/855 computer at Sandia using the System 2000 Data Base Management software. A user-friendly interface, the Tuff Data Base Interface, is being developed to allow NNWSI participants to retrieve information from the Tuff Data Base directly. The Interface gives NNWSI users a great deal of flexibility in retrieving portions of the Data Base. This report is an interim users manual for the Tuff Data Base Interface, as of August 1984. It gives basic instructions on accessing the Sandia computing system and explains the Interface on a question-by-question basis

  20. Water levels in the Yucca Mountain Area, Nevada, 1996

    International Nuclear Information System (INIS)

    Graves, R.P.

    1998-01-01

    Water levels were monitored in 24 wells in the Yucca Mountain area, Nevada, during 1996. Twenty-two wells representing 28 depth intervals were monitored periodically, generally on a monthly basis, and 2 wells representing 3 depth intervals were monitored both hourly and periodically. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in paleozoic carbonate rocks. Water levels were measured using either calibrated steel tapes or a pressure sensor. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 727.86 to about 1,034.58 meters above sea level during 1996. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 752.57 meters above sea level during 1996. Mean water-level altitudes for 1996 were an average of about 0.06 meter lower than 1995 mean water-level altitudes and 0.03 meter lower than 1985--95 mean water-level altitudes. During 1996, water levels in the Yucca Mountain area could have been affected by long-term pumping at the C-hole complex that began on May 8, 1996. Through December 31, 1996, approximately 196 million liters were pumped from well UE-25 c number-sign 3 at the C-hole complex. Other ground-water pumpage in the Yucca Mountain area includes annual pumpage from water-supply wells UE-25 J-12 and UE-25 J-13 of approximately 163 and 105 million liters, respectively, and pumpage from well USW G-2 for hydraulic testing during February and April 1996 of approximately 6 million liters

  1. 1984 Biotic Studies of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Collins, E.; O'Farrell, T.P.

    1985-02-01

    A portion of Yucca Mountain on and adjacent to the US Department of Energy's Nevada Test Site, Nye County, Nevada, is being considered as a possible location for a national high-level radioactive waste repository. The geologic and environmental characteristics of the site are being investigated to determine its suitability for further characterization. Goals of biotic studies were to identify species of concern, describe major floral and faunal associations, determine exposure levels of external background radiation, and assess possible impacts of characterization and operational activities. The species composition of dominant small mammals inhabiting major vegetation associations in 1984 varied little compared with results of similar surveys conducted in 1982 and 1983. Total captures were lower and reproduction was apparently curtailed. Merriam's kangaroo rat and the long tailed pocket mouse continued to be the most abundant species. Diversity of resident species did not differ significantly between the trapping lines. The composition and relative abundance of associated species was more variable. Western harvest mice were trapped for the first time, but pinyon mice, which were present in prior years, were not trapped. Five desert tortoises were observed during surveys of possible sites for repository surface facilities. 25 refs., 4 figs., 5 tabs

  2. Uniaxial compression test series on Bullfrog Tuff

    International Nuclear Information System (INIS)

    Price, R.H.; Jones, A.K.; Nimick, K.G.

    1982-04-01

    Nineteen uniaxial compressive experiments were performed on samples of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole USW-G1 at Yucca Mountain on the Nevada Test Site. The water saturated samples were deformed at a nominal strain rate of 10 -5 sec -1 , atmospheric pressure and room temperature. Resultant unconfined compressive strengths, axial strains to failure, Young's moduli and Poisson's ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16, respectively

  3. Preliminary analysis of geophysical logs from drill hole UE-25p No. 1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Muller, D.C.; Kibler, J.E.

    1984-01-01

    Geophysical logs from drill hole UE-25p No. 1 correlate well with logs through the same geologic units from other drill holes at Yucca Mountain, Nevada. The in-situ physical properties of the rocks as determined from well logs are consistent with laboratory-measured physical properties of core from other drill holes. The density, neutron and caliper logs are very spiky through most of the Topopah Spring Member. This spikiness occurs on the same logs in cored holes where the Topopah Spring Member is highly fractured and lithophysal. The uranium channel of the spectral gamma-ray log through the Topopah Spring Member correlates with uranium logs from cored holes where most of the fractures have not been healed or filled with materials that concentrate uranium. Therefore, fracture porosity and permeability of the Topopah Spring Member are expected to be high and consistent with fracture analysis from other drill holes on Yucca Mountain, and hydrologic tests from well J-13. The Paleozoic dolomites which underlie the Tertiary tuffs are intensely brecciated, and the uranium count rate is much higher than normal for dolomites because uranium has been concentrated in the recementing material. 19 references, 1 figure, 2 tables

  4. The spatial distribution and chemical heterogeneity of clinoptilolite at Yucca Mountain, Nye County, Nevada: Evidence for polygenetic hypogene alteration

    International Nuclear Information System (INIS)

    Livingston, D.E.; Szymanski, J.S.

    1994-01-01

    This part of TRAC's Annual Report for 1993 summarizes the finding of previous reports on the major element geochemistry of zeolitic alteration of the tuffs at Yucca Mountain and updates the status of work. In this report we examine the spatial distribution of zeolites by stratigraphic units and boreholes and the various types of chemical alteration of clinoptilolite indicated by the data reported in Broxton et al. and Bish and Chipera. The purpose is to evaluate the extent of the metasomatic alteration and to test the hypogene hypothesis of Szymanski. In this regard, it is of prime importance to evaluate whether the metasomatic alteration at Yucca Mountain is due to supergene or hypogene processes. In this report, the term open-quotes supergeneclose quotes denotes alteration and mineralization produced by fluids derived directly from atmospheric precipitation and infiltration through the vadose zone, and the term open-quotes hypogeneclose quotes denotes alteration and mineralization produced by fluids from the phreatic zone regardless of their former location or residence time in the Earth's crust. This report begins with a review of previous work on the genesis of zeolites of the Nevada Test Site

  5. Hydrologic investigations to evaluate a potential site for a nuclear-waste repository, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Wilson, W.E.

    1985-01-01

    Yucca Mountain, Nevada Test Site, is being evaluated by the U.S. Department of Energy for its suitability as a site for a mined geologic respository for high-level nuclear wastes. The repository facility would be constructed in densely welded tuffs in the unsaturated zone. In support of the evaluation, the U.S. Geological Survey is conducting hydrologic investigations of both the saturated and unsaturated zones, as well as paleohydrologic studies. Investigation in saturated-zone hydrology will help define one component of ground-water flow paths and travel times to the accessible environment. A two-dimensional, steady-state, finite-element model was developed to describe the regional hydrogeologic framework. The unsaturated zone is 450 to 700 meters thick at Yucca Mountain; precipitation averages about 150 millimeters per year. A conceptual hydrologic model of the unsaturated zone incorporates the following features: minimal net infiltration, variable distribution of flux, lateral flow, potential for perched-water zones, fracture and matrix flow, and flow along faults. The conceptual model is being tested primarily by specialized test drilling; plans also are being developed for in-situ testing in a proposed exploratory shaft. Quaternary climatic and hydrologic conditions are being evaluated to develop estimates of the hydrologic effects of potential climatic changes during the next 10,000 years. Evaluation approaches include analysis of plant macrofossils in packrat middens, evaluation of lake and playa sediments, infiltration tests, and modeling effects of potential increased recharge on the potentiometric surface

  6. Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bish, D.L.; Chipera, S.J.

    1986-09-01

    The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes

  7. Geology of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    International Nuclear Information System (INIS)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-01-01

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor ( 10 Be and 36 Cl cosmogenic dating methods to determine the length of time bedrock outcrops and hillslope boulder deposits were exposed to cosmic rays, which then served as a basis for calculating long-term erosion rates. The results indicate rates ranging from 0.04 to 0.27 cm/k.y., which represent the maximum downcutting along the summit of Yucca Mountain under all climatic conditions that existed there during most of Quaternary time. Associated studies include the stratigraphy of surficial deposits in Fortymile Wash, the major drainage course in the area, which record a complex history of four to five cut-and-fill cycles within the channel during middle to late Quaternary time. The last 2 to 4 m of incision probably occurred during the last pluvial climatic period, 22 to 18 ka, followed by aggradation to the present time

  8. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    McCord, John; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of

  9. Potential Future Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cline, M.; Perry, F.; Valentine, G.; Smistad, E.

    2005-01-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10 -8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10 -8 be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  10. Observation of time dependent dispersion in laboratory scale experiments with intact tuff

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Triay, I.R.; Ott, M.A.; Mitchell, A.J.

    1989-01-01

    The migration of radionuclides through intact tuff was studied using tuff from Yucca Mountain, Nevada. The tuff samples were both highly zeolitized ash-fall tuff from the Calico Hills and densely welded devitrified tuff from the Topopah Springs member of the Paintbrush tuff. Tritiated water and pertechnetate were used as conservative tracers. The sorbing tracers 85 Sr, 137 Cs, and 133 Ba were used with the devitrified tuff only. Greater tailing in the elution curves of the densely welded tuff samples was observed that could be fit by adjusting the dispersion coefficient in the conventional Advection Dispersion Equation, ADE. The curves could be fit using time dependent dispersion as was previously observed for sediments and alluvium by Dieulin, Matheron, and de Marsily. The peak of strontium concentration was expected to arrive after 1.5 years based on the conventional ADE and assuming a linear K d of 26 ml/g. The observed elution had significant strontium in the first sample taken at 2 weeks after injection. The peak in the strontium elution occurred at 5 weeks. The correct arrival time for the strontium peak was achieved using a one dimensional analytic solution with time dependent dispersion. The dispersion coefficient as a function of time used to fit the conservative tracers was found to predict the peak arrival of the sorbing tracers. The K d used was the K d determined by the batch method on crushed tuff. 23 refs., 9 figs., 2 tabs

  11. Estimating recharge at yucca mountain, nevada, usa: comparison of methods

    International Nuclear Information System (INIS)

    Flint, A. L.; Flint, L. E.; Kwicklis, E. M.; Fabryka-Martin, J. T.; Bodvarsson, G. S.

    2001-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for and environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 nun/year near Yucca Crest. Site-scale recharge estimates range from less than I to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface. [References: 57

  12. Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods

    Science.gov (United States)

    Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.

    2002-01-01

    Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.

  13. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    Science.gov (United States)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the

  14. Impact of Quaternary Climate on Seepage at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J.F. Whelan; J.B. Paces; L.A. Neymark; A.K. Schmitt; M. Grove

    2006-01-01

    Uranium-series ages, oxygen-isotopic compositions, and uranium contents were determined in outer growth layers of opal and calcite from 0.5- to 3-centimeter-thick mineral coatings hosted by lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a permanent repository for high-level radioactive waste. Micrometer-scale growth layering in the minerals was imaged using a cathodoluminescence detector on a scanning electron microscope. Determinations of the chemistry, ages, and delta oxygen-18 values of the growth layers were conducted by electron microprobe analysis and secondary ion mass spectrometry techniques at spatial resolutions of 1 to about 20 micrometers ((micro)m) and 25 to 40 micrometers, respectively. Growth rates for the last 300 thousand years (k.y.) calculated from about 300 new high-resolution uranium-series ages range from approximately 0.5 to 1.5 (micro)m/k.y. for 1- to 3-centimeter-thick coatings, whereas coatings less than about I-centimeter-thick have growth rates less than 0.5 (micro)m/k.y. At the depth of the proposed repository, correlations of uranium concentration and delta oxygen-18 values with regional climate records indicate that unsaturated zone percolation and seepage water chemistries have responded to changes in climate during the last several hundred thousand years

  15. Shallow infiltration processes in arid watersheds at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L. Hevesi, J.A.

    1994-01-01

    A conceptual model of shallow infiltration processes at Yucca Mountain, Nevada, was developed for use in hydrologic flow models to characterize net infiltration (the penetration of the wetting front below the zone influenced by evapotranspiration). The model categorizes the surface of the site into four infiltration zones. These zones were identified as ridgetops, sideslopes, terraces, and active channels on the basis of water-content changes with depth and time. The maximum depth of measured water-content change at a specific site is a function of surface storage capacity, the timing and magnitude of precipitation, evapotranspiration, and the degree of saturation of surficial materials overlying fractured bedrock. Measured water-content profiles for the four zones indicated that the potential for net infiltration is higher when evapotranspiration is low (i.e winter, cloudy periods), where surface concentration of water is likely to occur (i.e. depressions, channels), where surface storage capacity is low, and where fractured bedrock is close to the surface

  16. Water levels in the Yucca Mountain area, Nevada, 1995

    International Nuclear Information System (INIS)

    Graves, R.P.; Goemaat, R.L.

    1998-01-01

    Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT number-sign 12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data

  17. U-Pb Ages of Secondary Silica at Yucca Mountain, Nevada: Implications for the Paleohydrology of the Unsaturated Zone

    International Nuclear Information System (INIS)

    L.A. Neymark; Y. Amelin; J.B. Paces; Z.E. Peterman

    2001-01-01

    U, Th, and Pb isotopes were analyzed in layers of opal and chalcedony from individual millimeter- to centimeter-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206 Pb/ 204 Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotopes in opal samples at Yucca Mountain are complicated by the incorporation of excess 234 U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207 Pb/ 235 U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207 Pb/ 235 U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234 U and 230 Th in most silica layers deeper in the coatings are in secular equilibrium with 238 U, which is consistent with their old age and closed system behavior during the past 0.5 m.y. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average depositional rates of 1 to 5 mm/m.y. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long

  18. Nevada

    International Nuclear Information System (INIS)

    Noble, D.C.; Plouff, D.; Close, T.J.; Bergquist, J.R.; Neumann, T.R.

    1987-01-01

    The part of the High Rock Late Wilderness Study Area, requested for mineral surveys by the Bureau of Land Management, encompasses 14,000 acres in the northern part of the Calico Mountains, Northwest Nevada. No resources were identified in the study area; however, there is low potential throughout the study area for volcanic-hosted deposits of mercury, uranium, and disseminated gold. The northern part of the study area has low potential for geothermal energy

  19. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    OpenAIRE

    Antonio Jesús Pérez-Luque; Cristina Patricia Sánchez-Rojas; Regino Zamora; Ramón Pérez-Pérez; Francisco Javier Bonet

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems...

  20. Geomechanics investigations in support of the large block test at Fran Ridge, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.; Kansa, E.; Lin, Wunan; Roberts, J.

    1994-01-01

    The Yucca Mountain Site Characterization Project is investigating the Topopah Spring Tuff at Yucca Mountain, Nevada for its suitability as a host rock for the disposal of high level nuclear wastes. The Lawrence Livermore National Laboratory is planning a large block test (LBT) to investigate coupled thermal-mechanical-hydrological and geochemical processes that may occur in the repository near-field environment

  1. Evaluations of Yucca Mountain survey findings about the attitudes, opinions, and evaluations of nuclear waste disposal and Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flynn, J.H.; Slovic, P.; Mertz, C.K.; Toma, J.

    1990-09-01

    This report provides findings from three surveys conducted during the Fall 1989 as part of the socioeconomic research program sponsored by the Nevada Agency for Nuclear Projects. The US Congress passed the Nuclear Waste Policy Act (NWPA) in 1982 and defined specific oversight responsibilities, including studies of socioeconomic effects and impacts, to the states in which potential high-level nuclear waste repositories might be located. The NWPA was amended in 1987 and Yucca Mountain, Nevada was designated as the only site to be characterized (studied in detail) as a location for the nation's first repository. These surveys were conducted so they could provide information to the state of Nevada in its evaluation of the Yucca Mountain project. This report presents information from these surveys on two major areas. First, respondent evaluations of environmental hazards, especially nuclear waste facilities are reported. Second, an analysis is made of the Nevada State Survey to examine the public response to the positions taken by the officials and institutions of Nevada in regard to the Yucca Mountain project. The survey data support a finding that the respondents from all three surveys are seriously concerned about the environmental effects of technological facilities and hazards. The evaluations of a nuclear waste repository especially is viewed as likely to produce adverse events and impacts in every aspect of its implementation, operation or long-term existence. When compared to other industrial or technological activities, a high-level nuclear waste repository is seen as the most feared and least acceptable. 36 tabs

  2. Geology, physical properties, and surface effects at Discus Thrower Site, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Carr, W.J.; Miller, C.H.; Dodge, H.W. Jr.

    1975-01-01

    Geologic studies in connection with Project Discus Thrower have furnished detailed stratigraphic and structural information about northwestern Yucca Flat, Nevada Test Site. The Paleozoic rocks consist of a lower carbonate sequence, argillite of the Eleana Formation, and an upper carbonate sequence. The distribution of these rocks suggests that both top and bottom of the Eleana are structural contacts, probably thrusts or reverse faults. The overlying tuff includes several units recognized in the subsurface, such as the Fraction Tuff and tuff of Redrock Valley. Other units recognized include bedded tuff associated with the Grouse Canyon Member of Belted Range Tuff, and the Rainier Mesa and Ammonia Tanks Members of the Timber Mountain Tuff. The Timber Mountain and Grouse Canyon are extensively altered to montmorillonite (a swelling clay), possibly as a result of ponding of alkaline water. The overlying alluvium locally contains at the base a clayey, tuffaceous sandstone

  3. Geologyy of the Yucca Mountain Site Area, Southwestern Nevada, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1)

    Energy Technology Data Exchange (ETDEWEB)

    W.R. Keefer; J.W. Whitney; D.C. Buesch

    2006-09-25

    Yucca Mountain in southwestern Nevada is a prominent, irregularly shaped upland formed by a thick apron of Miocene pyroclastic-flow and fallout tephra deposits, with minor lava flows, that was segmented by through-going, large-displacement normal faults into a series of north-trending, eastwardly tilted structural blocks. The principal volcanic-rock units are the Tiva Canyon and Topopah Spring Tuffs of the Paintbrush Group, which consist of volumetrically large eruptive sequences derived from compositionally distinct magma bodies in the nearby southwestern Nevada volcanic field, and are classic examples of a magmatic zonation characterized by an upper crystal-rich (> 10% crystal fragments) member, a more voluminous lower crystal-poor (< 5% crystal fragments) member, and an intervening thin transition zone. Rocks within the crystal-poor member of the Topopah Spring Tuff, lying some 280 m below the crest of Yucca Mountain, constitute the proposed host rock to be excavated for the storage of high-level radioactive wastes. Separation of the tuffaceous rock formations into subunits that allow for detailed mapping and structural interpretations is based on macroscopic features, most importantly the relative abundance of lithophysae and the degree of welding. The latter feature, varying from nonwelded through partly and moderately welded to densely welded, exerts a strong control on matrix porosities and other rock properties that provide essential criteria for distinguishing hydrogeologic and thermal-mechanical units, which are of major interest in evaluating the suitability of Yucca Mountain to host a safe and permanent geologic repository for waste storage. A thick and varied sequence of surficial deposits mantle large parts of the Yucca Mountain site area. Mapping of these deposits and associated soils in exposures and in the walls of trenches excavated across buried faults provides evidence for multiple surface-rupturing events along all of the major faults during

  4. 1982 biotic survey of Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    O'Farrell, T.P.; Collins, E.

    1983-02-01

    In 1981 an extensive literature review was conducted to determine the current state of knowledge about the ecological characteristics of the Yucca Mountain study area and to identify what site-specific information was lacking. Based on the findings of the review a field study was initiated in 1982 to gather site-specific information on the ecological characteristics of the project area. The biota observed were representative of either the Mojave or Transition deserts that are widely distributed in southern Nevada and the arid Southwest. No unusual vegetation associations or assemblages of animals were observed. Based on observations of tracks and scats it was concluded that low numbers of both mule deer and feral burros used the area seasonally, and that neither species should be severely threatened by the proposed activities. The Mojave fishhook cactus and desert tortoise, both under consideration for federal protection as threatened species, were found to occur in the study area. The former was distributed in notable densities on the rocky ridgelines of Yucca Mountain in areas that should not be greatly disturbed by site characterization or future repository activities. Evidence of desert tortoise was observed throughout the project area to elevations of 5240 ft; however, relative densities were estimated to be low (less than 20 per square mile). Physical destruction of soils and native vegetation was determined to be the most significant negative effect associated with current and proposed characterization activities. Solution holes in exposed flat rock on ridgelines that served as passive collectors of precipitation and runoff were the only sources of free water observed. While these water supplies were not adequate to support riparian vegetation, there was evidence that they served as an important ephemeral source of water for wildlife

  5. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Perry, F.; Youngs, B.

    2000-01-01

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M and O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M and O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M and O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M and O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M and O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M and O 2000b). The calculations for both footprints are presented in this AMR. In

  6. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both

  7. Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Flint, L.E.

    1998-01-01

    Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relationships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally

  8. Significance of geochemical characterization to performance at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Simmons, A.M.

    1993-01-01

    The U.S. concept for permanent disposal of high-level radioactive waste resembles those of other countries in that it relies upon burial in a deep geologic medium. This concept relies upon multiple barriers to retard transport of radionuclides to the accessible environment; those barriers consist of the waste form, waste container, engineered barrier system (including possible backfill) and retardant properties of the host rock. Because mobilization of radionuclides is fundamentally a geochemical problem, an understanding of past, present, and future geochemical processes is a requisite part of site characterization studies conducted by the U.S. Department of Energy at Yucca Mountain, Nevada. Geochemical information is needed for evaluating three favorable conditions (the rates of geochemical processes, conditions that promote precipitation or sorption of radionuclides or prohibit formation of colloids, and stable mineral assemblages) and four potentially adverse conditions of the site (groundwater conditions that could increase the chemical reactivity of the engineered barried system or reduce sorption, potential for gaseous radionuclide movement, and oxidizing groundwaters) for key issues of radionuclide release, groundwater quality, and stability of the geochemical environment. Preliminary results of long-term heating experiments indicate that although zeolites can be modified by long-term, low temperature reactions, their beneficial sorptive properties will not be adversely affected. Mineral reactions will be controlled by the aqueous activity of silica in groundwater with which the minerals are in contact. Geochemical barriers alone may satisfy release requirements to the accessible environment for many radionuclides; however, additional site specific geochemical and mineralogical data are needed to test existing and future radionuclide transport models

  9. Permeability and fluid chemistry studies of the Topopah Spring Member of the Paintbrush Tuff, Nevada Test Site: Part II

    International Nuclear Information System (INIS)

    Moore, D.E.; Morrow, C.A.; Byerlee, J.D.

    1985-03-01

    The Topopah Spring Member of the Paintbrush Tuff is being considered as a possible emplacement horizon for the disposal of nuclear waste. The permeability and pore-fluid chemistry of the Topopah Spring Member have been investigated experimentally. The work reported here represents a continuation of previous permeability studies on the Topopah Spring Member. Three experiments were run, to test the effect of pore pressure, sample orientation, and flow direction on permeability and pore fluid chemistry. In the experiments, water flowed either up or down a temperature gradient established across the tuff sample in response to a small pore pressure gradient. The maximum temperature of the gradient was 150 0 C, and the minimum was 43 to 45 0 C. The confining pressure was 100 bars, corresponding to a disposal depth of 400 meters. J13 water was the starting pore fluid. The heated tuff samples showed few changes in permeability from their initial, room-temperature values. In addition, the fluids discharged from both the low and high-temperature sides of the tuff samples were dilute, nearly neutral solutions whose compositions did not differ greatly from the starting J13 compositions. 16 refs., 14 figs., 4 tabs

  10. Hydrologic mechanisms governing fluid flow in partially saturated, fractured, porous tuff at Yucca Mountain

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Narasimhan, T.N.

    1984-10-01

    In contrast to the saturated zone where fluid moves rapidly along fractures, the fractures (with apertures large relative to the size of matrix pores) will desaturate first during drainage process and the bulk of fluid flow would be through interconnected pores in the matrix. Within a partially drained fracture, the presence of a relatively continuous air phase will produce practically an infinite resistance to liquid flow in the direction parallel to the fracture. The residual liquid will be held by capillary force in regions around fracture contact areas where the apertures are small. Normal to the fracture surfaces, the drained portion of the fractures will reduce the effective area for liquid flow from one matrix block to another matrix block. A general statistical theory is constructed for flow along the fracture and for flow between the matrix blocks to the fractures under partially saturated conditions. Results are obtained from an aperture distribution model for fracture saturation, hydraulic conductivity, and effective matrix-fracture flow areas as functions of pressure. Drainage from a fractured tuff column is simulated. The parameters for the simulations are deduced from fracture surface characteristics, spacings and orientations based on core analyses, and from matrix characteristics curve based on laboratory measurements. From the cases simulated for the fractured, porous column with discrete vertical and horizontal fractures and porous matrix blocks explicitly taken into account, it is observed that the highly transient changes from fully saturated conditions to partially saturated conditions are extremely sensitive to the fracture properties. However, the quasi-steady changes of the fluid flow of a partially saturated, fractured, porous system could be approximately simulated without taking the fractures into account. 22 references, 16 figures

  11. Time scales for dissolution of calcite fracture fillings and implications for saturated zone radionuclide transport at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winterle, J.R.; Murphy, W.M.

    1999-01-01

    An analysis was performed to estimate time scales for dissolution of calcite fracture fillings in the fractured tuff aquifer that underlies Yucca Mountain (YM), Nevada, where groundwater is chemically undersaturated with respect to calcite. The impetus for this analysis originates from speculation that undissolved calcite in the saturated zone is evidence for limited diffusive exchange between fracture and matrix waters. Assuming that matrix diffusion is the rate-limiting process, the time scale for dissolution of calcite fracture fillings depends on the amount of calcite initially deposited, the distance between flowing fractures, the degree of chemical disequilibrium, and the rate of diffusion. Assuming geochemistry of J-13 well water in free-flowing fractures, estimated time scales for complete dissolution of matrix-entrapped calcite range from about 10 4 yr for a 2 mm-thick deposit located 1 m from a flowing fracture, to over 10 7 yr for a 2 cm-thick deposit located 100 m from a flowing fracture. The authors conclude that, given the geochemical and hydrologic characteristics observed at YM, the persistence of calcite minerals over geologic time scales in aquifers where flowing water is under-saturated with calcite does not necessarily preclude matrix diffusion as a dilution mechanism. However, the model suggests that the effective spacing between flowing fractures may be large enough to diminish the overall benefit of matrix diffusion to proposed high-level waste repository performance

  12. Evaluation of the post-emplacement environment of high level radioactive waste packages at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Glassley, W.

    1989-01-01

    Evaluation of the post-emplacement environment around high-level radioactive waste containers is required by federal regulations. The information derived from this evaluation will be used to determine the service performance of the waste containers, the chemical and hydrological conditions that may influence radionuclide release and transport if containers are breached, and retrievability of the waste containers prior to closure of the repository. Laboratory studies, numerical simulations, and field experiments and tests are used to provide data necessary for this evaluation. Results obtained to date demonstrate that the post-emplacement environment in the welded tuff at Yucca Mountain, Nevada maintains relatively benign chemical features (i.e., near neutral pH, low concentrations of dissolved species) for most scenarios. The hydrological environment appears to be one of low flow volume and rates for the expected condition of an unsaturated medium. Emplacement borehole stability will be a function of fracture density and orientation, which may be influenced by microcrack development. Field studies and numerical simulations are in progress that will extend the results of laboratory studies to long time periods. The extent to which chemical, hydrological and mechanical processes can be adequately coupled through numerical simulations remains a matter of concern

  13. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada

    International Nuclear Information System (INIS)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M.; Gibson, J.D.

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work

  14. Characterization of infiltration into fractured, welded tuff using small borehole data collection technique: State of Nevada, agency for nuclear projects/nuclear waste project office

    International Nuclear Information System (INIS)

    Linderfelt, W.

    1986-10-01

    Knowledge of all aspects of the hydrologic cycle is required for consideration of Yucca mountain as a high level radioactive waste site. Surface processes are especially important in controlling the quantity and quality of water infiltrating into the unsaturated zone, available for recharging the aquifer. The investigation reported herein uses small bore drill holes to access the near surface fractured rock environment. The study was conducted in northern Nevada at the north end of the Pah Rah range, east of Pyramid Lake as an analog to Yucca Mountain. The results of this study will be used to better understand the chemistry and flow of the near surface flow regime of Yucca Mountain and to evaluate proposed techniques for use in future investigations. 7 refs., 6 figs., 3 tabs

  15. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    Science.gov (United States)

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  16. Carbon and nutrient contents in soils from the Kings River Experimental Watersheds, Sierra Nevada Mountains, California

    Science.gov (United States)

    D.W. Johnson; C.T. Hunsaker; D.W. Glass; B.M. Rau; B.A. Roath

    2011-01-01

    Soil C and nutrient contents were estimated for eight watersheds in two sites (one high elevation, Bull, and one low elevation, Providence) in the Kings River Experimental Watersheds in the western Sierra Nevada Mountains of California. Eighty-seven quantitative pits were dug to measure soil bulk density and total rock content, while three replicate surface samples...

  17. From Typology to Topography in Clarence King's "Mountaineering in the Sierra Nevada."

    Science.gov (United States)

    Hoekzema, Loren

    The book "Mountaineering in the Sierra Nevada" by Clarence King, a late-ninteenth-century American geologist, writer, art critic, and romantic, is discussed in this paper. In the writing and revision of this book, King was attempting a metamorphosis of landscape description into popular reading as he moved from being a symbolic writer to…

  18. Hydrologeologic characteristics of faults at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, Robert P.

    2001-01-01

    Yucca Mountain is under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located

  19. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  20. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  1. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  2. Analogues to features and processes of a high-level radioactive waste repository proposed for Yucca Mountain, Nevada

    Science.gov (United States)

    Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy

    2010-01-01

    Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.

  3. Field trip report: Observations made at Yucca Mountain, Nye County, Nevada. Special report No. 2

    International Nuclear Information System (INIS)

    Hill, C.A.

    1993-03-01

    A field trip was made to the Yucca Mountain area on December 5-9, 1992 by Jerry Frazier, Don Livingston, Christine Schluter, Russell Harmon, and Carol Hill. Forty-three separate stops were made and 275 lbs. of rocks were collected during the five days of the field trip. Key localities visited were the Bare Mountains, Yucca Mountain, Calico Hills, Busted Butte, Harper Valley, Red Cliff Gulch, Wahmonie Hills, Crater Flat, and Lathrop Wells Cone. This report only describes field observations made by Carol Hill. Drawings are used rather than photographs because cameras were not permitted on the Nevada Test Site during this trip

  4. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1220 ± 150 m, an estimate that was subsequently confirmed by drilling to be 1244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3000 m. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978--1979 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide inforamtion on the extent and continuity of these faults. 31 refs., 3 figs

  5. Geology of the ECRB Cross Drift-Exploratory Studies Facility, Yucca Mountain Project, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    DOE

    1999-01-01

    The Enhanced Characterization of the Repository Block Cross Drift (Cross Drift) excavated at Yucca Mountain is being studied to determine its suitability as a permanent high-level nuclear waste repository. This report presents a summary of data collected by the U.S. Bureau of Reclamation (USBR) personnel on behalf of the U.S. Geological Survey (USGS) for the Department of Energy in the Cross Drift from Sta. 00+00 to 26+64. This report includes descriptions of lithostratigraphic units, an analysis of data from full-periphery geologic maps (FPGM) and detailed line survey (DLS) data, a detailed description of the Solitario Canyon Fault zone (SCFZ), and an analysis of geotechnical and engineering characteristics. The Cross Drift is excavated entirely within the Topopah Spring Tuff formation of the Paintbrush Group. Units exposed in the crystal-poor member of the Topopah Spring Tuff, include the Topopah Spring crystal-poor upper lithophysal zone (Tptpul) (Sta. 0+00 to 10+15), the Topopah Spring crystal-poor middle nonlithophysal zone (Tptpmn) (Sta. 10+15 to 14+44), the Topopah Spring crystal-poor lower lithophysal zone (Tptpll) (Sta. 14+44 to 23+26), and the Topopah Spring crystal-poor lower nonlithophysal zone (Tptpln) (Sta. 23+26 to 25+85). The lower portion of the Topopah Spring crystal-rich lithophysal transition subzone (Tptrl1) is exposed on the west side of the Solitario Canyon fault from Sta. 26+57.5 to 26+64. Lithologically, the units exposed in the Cross Drift are similar in comparable stratigraphic intervals of the Exploratory Studies Facility (ESF), particularly in terms of welding, secondary crystallization, fracturing, and type, size, color, and abundance of pumice and lithic clasts. The most notable difference is the lack of the intensely fractured zone (IFZ) in the Cross Drift. The as-built cross section and the pre-construction cross section compare favorably. Lithostratigraphic contacts and structures on the pre-construction cross section were

  6. Summary report on the geochemistry of Yucca Mountain and environs

    International Nuclear Information System (INIS)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling

  7. Mineralogic studies of tuff for high-level waste disposal

    International Nuclear Information System (INIS)

    Vaniman, D.; Bish, D.; Broxton, D.; Byers, F.; Carlos, B.; Levy, S.

    1986-01-01

    The volcanic rocks at Yucca Mountain, Nevada, consist predominantly of tuff that originated 12 to 14 million years ago as flows and airfalls of hot volcanic particulates. On cooling these units formed two major rock types: crystallized zones formed mostly of feldspar and silica minerals, and zones of glass. Alteration of glass to zeolite minerals occurred largely during structural tilting of Yucca Mountain in the ∼1-3 million years following the major eruptions. The compositions of zeolites formed from glasses strongly indicate open-system chemical exchange. Superimposed on this general alteration of glasses are areas of local high-temperature alteration. High-temperature alteration ended by 11 million years ago. Zeolites such as clinoptilolite persisted during high-temperature alteration at temperatures up to 100 degree C, suggesting that clinoptilolite at Yucca Mountain close to the thermally disturbed zone around a repository may also survive heating to temperatures at least this high. The mineralogic data from tuff at Yucca Mountain will ultimately be used by the Department of Energy Nevada Nuclear Waste storage Investigations for (1) defining the mineralogic component in estimating waste element travel times away from the repository and (2) determining the past history of alteration and the anticipated stability of minerals near the repository

  8. Evaluation of tuff as a medium for a nucolear waste repository: interim status report on the properties of tuff

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Wolfsberg, K.

    1980-07-01

    This report is the second in a series of summary briefings to the National Academy of Science's (NAS) Committee on Radioactive Waste Management dealing with feasibility of disposal of heat-producing radioactive waste in silicic tuff. The interim status of studies of tuff properties determined on samples obtained from Yucca Mountain and Rainier Mesa (G-tunnel) located on the Nevada Test Site (NTS) are discussed. In particular, progress is described on resolving issues identified during the first briefing to the NAS which include behavior of water in tuff when heated, the effect of the presence or absence of water and joints on the thermal/physical properties of tuff and the detailed/complex sorptive properties of highly altered and unaltered tuff. Initial correlations of thermal/physical and sorptive properties with the highly variable porosity and mineralogy are described. Three in-situ, at-depth field experiments, one nearly completed and two just getting underway are described. In particular, the current status of mineralogy and petrology, geochemistry, thermal and mechanical, radiation effects and water behavior studies are described. The goals and initial results of a Mine Design Working Group are discussed. Regional factors such as seismicity, volcanism and hydrology are not discussed

  9. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  10. Probing the volcanic-plutonic connection and the genesis of crystal-rich rhyolite in a deeply dissected supervolcano in the Nevada Great Basin: Source of the late Eocene Caetano Tuff

    Science.gov (United States)

    Watts, Kathryn E.; John, David A.; Colgan, Joseph P.; Henry, Christopher D.; Bindeman, Ilya N.; Schmitt, Axel K.

    2016-01-01

    Late Cenozoic faulting and large-magnitude extension in the Great Basin of the western USA has created locally deep windows into the upper crust, permitting direct study of volcanic and plutonic rocks within individual calderas. The Caetano caldera in north–central Nevada, formed during the mid-Tertiary ignimbrite flare-up, offers one of the best exposed and most complete records of caldera magmatism. Integrating whole-rock geochemistry, mineral chemistry, isotope geochemistry and geochronology with field studies and geologic mapping, we define the petrologic evolution of the magmatic system that sourced the >1100 km3Caetano Tuff. The intra-caldera Caetano Tuff is up to ∼5 km thick, composed of crystal-rich (30–45 vol. %), high-silica rhyolite, overlain by a smaller volume of comparably crystal-rich, low-silica rhyolite. It defies classification as either a monotonous intermediate or crystal-poor zoned rhyolite, as commonly ascribed to ignimbrite eruptions. Crystallization modeling based on the observed mineralogy and major and trace element geochemistry demonstrates that the compositional zonation can be explained by liquid–cumulate evolution in the Caetano Tuff magma chamber, with the more evolved lower Caetano Tuff consisting of extracted liquids that continued to crystallize and mix in the upper part of the chamber following segregation from a cumulate-rich, and more heterogeneous, source mush. The latter is represented in the caldera stratigraphy by the less evolved upper Caetano Tuff. Whole-rock major, trace and rare earth element geochemistry, modal mineralogy and mineral chemistry, O, Sr, Nd and Pb isotope geochemistry, sanidine Ar–Ar geochronology, and zircon U–Pb geochronology and trace element geochemistry provide robust evidence that the voluminous caldera intrusions (Carico Lake pluton and Redrock Canyon porphyry) are genetically equivalent to the least evolved Caetano Tuff and formed from magma that remained in the lower chamber after

  11. Relative Abundances of Calcite and Silica in Fracture Coatings as a Possible Indicator of Evaporation in a Thick Unsaturated Zone, Yucca Mountain, Nevada

    Science.gov (United States)

    Marshall, B. D.; Moscati, R. J.

    2005-12-01

    Yucca Mountain, a ridge of shallowly dipping, Miocene-age volcanic rocks in southwest Nevada, is the proposed site for a nuclear waste repository to be constructed in the 500- to 700-m-thick unsaturated zone (UZ). At the proposed repository, the 300-m-thick Topopah Spring Tuff welded unit (TSw) is overlain by approximately 30 m of nonwelded tuffs (PTn); the Tiva Canyon Tuff welded unit (TCw) overlies the PTn with a range in thickness from 0 to approximately 130 m at the site. The amount of water percolation through the UZ is low and difficult to measure directly, but local seepage into mined tunnels has been observed in the TCw. Past water seepage in the welded tuffs is recorded by widespread, thin (0.3 cm) coatings of calcite and silica on fracture surfaces and within cavities. Abundances of calcite and silica in the coatings were determined by X-ray microfluorescence mapping and subsequent multispectral image analysis of over 200 samples. The images were classified into constituent phases including opal-chalcedony-quartz (secondary silica) and calcite. In the TCw samples, the median calcite/silica ratio is 8; in the TSw samples within 35 m below the PTn, median calcite/silica falls to 2, perhaps reflecting an increase in soluble silica from the presence of glass in the nonwelded tuffs. In the deeper parts of the TSw, median calcite/silica reaches 100 and many samples contain no detectable secondary silica phase. Evaporation and changing pCO2 control precipitation of calcite from water percolating downward in the UZ, but precipitation of opal requires only evaporation. Calcite/silica ratios, therefore, can constrain the relative importance of evaporation in the UZ. Although calcite/silica values scatter widely within the TSw, reflecting the spatial variability of gas and water flow, average calcite/silica ratios increase with stratigraphic depth, indicating less evaporation at the deeper levels of the UZ. Coupled with the much smaller calcite/silica ratios

  12. Measuring geomechanical properties of Topopah Spring Tuff at the 1-meter scale

    International Nuclear Information System (INIS)

    Blair, S.C.; Berge, P.A.

    1994-11-01

    The Yucca Mountain Site Characterization Project is studying physical and chemical properties of Topopah Spring tuff and coupled thermal, mechanical, hydrological, and geochemical processes expected in the near-field environment of the potential waste repository at Yucca Mountain, Nevada. Investigating the suitability of Topopah Spring tuff as a host rock for radioactive waste disposal includes measuring mechanical properties. Since heterogeneities vary with scale, from vugs and cracks at the hand-sample scale to fractures and vertical variations in degree of welding at the outcrop scale, mechanical properties of the tuff depend on scale. The Lawrence Livermore National Laboratory has planned a Large Block Test (LBT) to investigate rock mass properties and coupled processes at elevated temperatures in Topopah Spring tuff at the scale of a few meters. This paper describes planned laboratory experiments in support of the LBT, to measure elastic properties and mechanical behavior of Topopah Spring tuff at the scale of a few cm to 1 m. The laboratory experiments will include measurement of stress-strain behavior, acoustic emissions during heating, and elastic wave velocities in small blocks of tuff

  13. Drilling and coring methods that minimize the disturbance of cuttings, core, and rock formation in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Blout, D.O.; McDaniel, J.C.

    1985-01-01

    A drilling-and-casing method (Odex 115 system) utilizing air as a drilling fluid was used successfully to drill through various rock types within the unsaturated zone at Yucca Mountain, Nevada. This paper describes this method and the equipment used to rapidly penetrate bouldery alluvial-colluvial deposits, poorly consolidated bedded and nonwelded tuff, and fractured, densely welded tuff to depths of about 130 meters. A comparison of water-content and water-potential data from drill cuttings with similar measurements on rock cores indicates that drill cuttings were only slightly disturbed for several of the rock types penetrated. Coring, sampling, and handling methods were devised to obtain minimally disturbed drive core from bouldery alluvial-colluvial deposits. Bulk-density values obtained from bulk samples dug from nearby trenches were compared to bulk-density values obtained from drive core to determine the effects of drive coring on the porosity of the core. Rotary coring methods utilizing a triple-tube core barrel and air as the drilling fluid were used to obtain core from welded and nonwelded tuff. Results indicate that the disturbance of the water content of the core was minimal. Water-content distributions in alluvium-colluvium were determined before drilling occurred by drive-core methods. After drilling, water-content distributions were determined by nuclear-logging methods. A comparison of the water-content distributions made before and after drilling indicates that Odex 115 drilling minimally disturbs the water content of the formation rock. 10 refs., 12 figs., 4 tabs

  14. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Whelan, Joseph F.; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D.; Roedder, Edwin

    2008-01-01

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T h ) up to ∼80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite δ 18 O values, and depositional timing is constrained by the 207 Pb/ 235 U ages of chalcedony or opal in the deposits. Fluid inclusion T h from 50 samples of calcite and four samples of fluorite range from ∼35 to ∼90 deg. C. Calcite δ 18 O values range from ∼0 to ∼22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T h and the lowest δ 18 O values are found in the older calcite. Calcite T h and δ 18 O values indicate that most calcite precipitated from water with δ 18 O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two 207 Pb/ 235 U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from ∼9.5 to 1.9 Ma. New and published 207 Pb/ 235 U and 230 Th/Uages coupled with the T h values and estimates of temperature from calcite δ 18 O values indicate that maximum unsaturated zone temperatures probably predate ∼10 Ma and that the unsaturated zone had cooled to near-present-day temperatures

  15. Thermal history of the unsaturated zone at Yucca Mountain, Nevada, USA

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, Joseph F. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States)], E-mail: jfwhelan@usgs.gov; Neymark, Leonid A.; Moscati, Richard J.; Marshall, Brian D. [U.S. Geological Survey, Box 25046, M.S. 963, Denver Federal Center, Denver, CO 80225 (United States); Roedder, Edwin [Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 (United States)

    2008-05-15

    Secondary calcite, silica and minor amounts of fluorite deposited in fractures and cavities record the chemistry, temperatures, and timing of past fluid movement in the unsaturated zone at Yucca Mountain, Nevada, the proposed site of a high-level radioactive waste repository. The distribution and geochemistry of these deposits are consistent with low-temperature precipitation from meteoric waters that infiltrated at the surface and percolated down through the unsaturated zone. However, the discovery of fluid inclusions in calcite with homogenization temperatures (T{sub h}) up to {approx}80 deg. C was construed by some scientists as strong evidence for hydrothermal deposition. This paper reports the results of investigations to test the hypothesis of hydrothermal deposition and to determine the temperature and timing of secondary mineral deposition. Mineral precipitation temperatures in the unsaturated zone are estimated from calcite- and fluorite-hosted fluid inclusions and calcite {delta}{sup 18}O values, and depositional timing is constrained by the {sup 207}Pb/{sup 235}U ages of chalcedony or opal in the deposits. Fluid inclusion T{sub h} from 50 samples of calcite and four samples of fluorite range from {approx}35 to {approx}90 deg. C. Calcite {delta}{sup 18}O values range from {approx}0 to {approx}22 per mille (SMOW) but most fall between 12 and 20 per mille . The highest T{sub h} and the lowest {delta}{sup 18}O values are found in the older calcite. Calcite T{sub h} and {delta}{sup 18}O values indicate that most calcite precipitated from water with {delta}{sup 18}O values between -13 and -7 per mille , similar to modern meteoric waters. Twenty-two {sup 207}Pb/{sup 235}U ages of chalcedony or opal that generally postdate elevated depositional temperatures range from {approx}9.5 to 1.9 Ma. New and published {sup 207}Pb/{sup 235}U and {sup 230}Th/Uages coupled with the T{sub h} values and estimates of temperature from calcite {delta}{sup 18}O values indicate

  16. Geohydrologic data for test well USW H-5, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Bentley, C.B.; Robison, J.H.; Spengler, R.W.

    1983-01-01

    This report presents data on drilling operations, lithology, borehold geophysics, water-level monitoring, core analysis, ground-water chemistry, pumping tests, and packer-injection tests for test well USW H-5. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the US Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Test well USW H-5 was drilled to a total depth of 1219 meters through volcanic rocks consisting mostly of ash-flow tuff. Depth to water in the well ranged between 703.8 and 707.2 meters below land surface, at an approximate altitude of 704 meters above sea level. Drawdown in the well exceeded 6 meters after test pumping more than 3000 minutes at a rate of 10 liters per second. Borehole-flow surveys showed that about 90 percent of the water in the well is contributed by the zone between 707 and about 820 meters below land surface. Two composite water samples collected after well completion contained 206 and 220 milligrams per liter of dissolved solids. Sodium and bicarbonate were the predominant dissolved anion and cation. The concentration of dissolved silica was 48 milligrams per liter in both samples, which is a relatively large concentration for most natural waters. 6 references, 19 figures, 6 tables

  17. Geohydrologic data for test well USW G-4, Yucca Mountain area, Nye County, Nevada

    Science.gov (United States)

    Bentley, C.B.

    1984-01-01

    Data are presented on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, water chemistry, pumping tests, and packer-injection tests for test well USW G-4. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for underground storage of high-level radioactive wastes. Test well USW G-4 was drilled to a total depth of 915 meters through volcanic rocks, consisting mostly of ash-flow tuff. Depth of water in the well during and after drilling and testing ranged from 538 to 544 meters below land surface, at approximate altitude of 728 meters above sea level. Drawdown in the well was about 3 meters after test pumping more than 5,000 minutes at a rate of 16 liters per second. A borehold-flow survey indicated that almost all water withdrawn from the well was contributed by the zone between a depth of about 865 and 915 meters below land surface. Analysis of a composite water sample collected after well completion showed the water to contain 216 milligrams per liter of dissolved solids, with relatively large concentrations of silica, sodium, and bicarbonate. (USGS)

  18. Geohydrologic data for test well USW H-5, Yucca Mountain area, Nye County, Nevada

    Science.gov (United States)

    Bentley, C.B.; Robison, J.H.; Spengler, R.W.

    1983-01-01

    This report presents data on drilling operations, lithology, borehole geophysics, water-level monitoring, core analysis, ground-water chemistry, pumping tests, and packer-injection tests for test well USW H-5. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Test well USW H-5 was drilled to a total depth of 1,219 meters through volcanic rocks consisting mostly of ash-flow tuff. Depth to water in the well ranged between 703.8 and 707.2 meters below land surface, at an approximate altitude of 704 meters above sea level. Drawdown in the well exceeded 6 meters after test pumping more than 3,000 minutes at a rate of 10 liters per second. Borehole-flow surveys showed that about 90 percent of the water in the well is contributed by the zone between 707 and about 820 meters below land surface. Two composite water samples collected after well completion contained 206 and 220 milligrams per liter of dissolved solids. Sodium and bicarbonate were the predominant dissolved anion and cation. The concentration of dissolved silica was 48 milligrams per liter in both samples, which is a relatively large concentration for most natural waters.

  19. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs

  20. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs

  1. Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 3, Part A: Chapters 6 and 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 218 figs., 50 tabs.

  2. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 1, Part A: Chapters 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 750 refs., 123 figs., 42 tabs.

  3. Investigative study of the underground excavations for a nuclear waste repository in tuff: Nevada Nuclear Waste Storage Investigations Project

    International Nuclear Information System (INIS)

    St John, C.M.

    1987-07-01

    Numerical studies were conducted on the behavior of a tuff rock mass within which emplacement drifts for a nuclear waste repository are excavated. The first study evaluated the effects of rockbolting and excavation-induced damage on the behavior of the rock mass round typical drifts. The second study provided a simple means of assessing the significance of drift shape, drift size, and in-situ state of stress on the deformation and stress in the vicinity of drifts for vertical and horizontal emplacement of waste. Neither study considered the effect of heating of the rock mass after emplacement of the waste so the conclusions pertain only to the conditions immediately after excavation of the underground openings. The results of analyses of the rockbolted excavations indicated that rockbolts do not have a significant influence on the states of deformation or stress within the rock mass, and that the rockbolts are subjected to acceptable levels of stress even if installed as close to the face of the excavation as possible. Accordingly, rockbolts were not considered in the study of drift shape, drift size, and the in-situ state of stress. That study indicated that stable openings of the dimensions investigated can be constructed within a tuff rock mass with the properties assumed. Of the parameters investigated, the in-situ state of stress appeared to be most important. Potentially adverse conditions were predicted if the in-situ horizontal stress is very low, but current indications are that it lies within a range which is consistent with good conditions and a stable roof. 28 refs., 49 figs., 11 tabs

  4. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  5. Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain)

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Barea-Azcón, José Miguel; Álvarez-Ruiz, Lola; Bonet-García, Francisco Javier; Zamora, Regino

    2016-01-01

    Abstract In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:26865820

  6. Dataset of Passerine bird communities in a Mediterranean high mountain (Sierra Nevada, Spain).

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Barea-Azcón, José Miguel; Álvarez-Ruiz, Lola; Bonet-García, Francisco Javier; Zamora, Regino

    2016-01-01

    In this data paper, a dataset of passerine bird communities is described in Sierra Nevada, a Mediterranean high mountain located in southern Spain. The dataset includes occurrence data from bird surveys conducted in four representative ecosystem types of Sierra Nevada from 2008 to 2015. For each visit, bird species numbers as well as distance to the transect line were recorded. A total of 27847 occurrence records were compiled with accompanying measurements on distance to the transect and animal counts. All records are of species in the order Passeriformes. Records of 16 different families and 44 genera were collected. Some of the taxa in the dataset are included in the European Red List. This dataset belongs to the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

  7. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  8. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  9. Nutrient limitation and microbially mediated chemistry: studies using tuff inoculum obtained from the Exploratory Studies Facility, Yucca Mountain

    International Nuclear Information System (INIS)

    Chen, C. I.; Chuu, Y. J.; Meike, A.; Ringelberg, D.; Sawvel, A.

    1998-01-01

    Flow-through bioreactors are used to investigate the relationship between the supply (and limitation) of major nutrients required by microorganisms (C, N, P, S) and effluent chemistry to obtain data that can be useful to develop models of microbially mediated aqueous chemistry. The bioreactors were inoculated with crushed tuff from Yucca Mountain. Six of the 14 bioreactor experiments currently in operation have shown growth, which occurred in as few as 5 days and as much as a few months after initiation of the experiment. All of the bioreactors exhibiting growth contained glucose as a carbon source, but other nutritional components varied. Chemical signatures of each bioreactor were compared to each other and selected results were compared to computer simulations of the equivalent abiotic chemical reactions. At 21 C, the richest medium formulation produced a microbial community that lowered the effluent pH from 6.4 to as low as 3.9. The same medium formulation at 50 C produced no significant change in pH but caused a significant increase in Cl after a period of 200 days. Variations in concentrations of other elements, some of which appear to be periodic (Ca, Mg, etc.) also occur. Bioreactors fed with low C, N, P, S media showed growth, but had stabilized at lower cell densities. The room temperature bioreactor in this group exhibited a phospholipid fatty acid (PLFA) signature of sulfur- or iron-reducing bacteria, which produced a significant chemical signature in the effluent from that bioreactor. Growth had not been observed yet in the alkaline bioreactors, even in those containing glucose. The value of combining detailed chemical and community (e.g., ester-linked PLFA) analyses, long-duration experiments, and abiotic chemical models to distinguish chemical patterns is evident. Although all of the bioreactors contain the same initial microorganisms and mineral constituents, PLFA analysis demonstrates that both input chemistry and temperature determine the

  10. Decreasing Slip Rates From 12.8 Ma to Present on the Solitario Canyon Fault at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Buesch

    2006-01-01

    The Solitario Canyon fault, which bounds the west side of Yucca Mountain, Nevada, is the closest fault with Quaternary offset adjacent to the proposed spent nuclear fuel and high-level radioactive waste repository. Dip-slip offset between 12.8 and 10.7 Ma is determined from lithostratigraphic displacement in boreholes USW H-3 and USW WT-7, drilled in the footwall and hanging wall, respectively. The base of the 12.8-Ma Topopah Spring Tuff is interpreted to have 463.3 m of separation across the fault, an average dip slip rate of 0.036 mm/yr. Previous researchers identified a geothermal system active from 11.5 to 10.0 Ma with peak activity at 10.7 Ma that resulted in pervasive alteration of vitric rock to zeolitic minerals where the rocks were in the ground-water saturated zone. The contact between vitric (V) and pervasively zeolitic (Z) rocks cuts across the lithostratigraphic section and offset of this V-Z boundary can be used to measure slip rates between 12.8 and 10.7 Ma. In H-3, the V-Z boundary is 138.4 m below the base of the vitric, densely welded subzone of the Topopah Spring Tuff (Tptpv3). In WT-7, although the V-Z boundary is identified at the base of the Tptpv3, borehole video, cuttings, and geophysical log data indicate the Tptpv3 has well-developed zeolitic alteration along fractures, and this implies 19.5 m of the total thickness of Tptpv3 (and probably additional overlying crystallized rocks) also were in the saturated zone by 10.7 Ma. The V-Z relations across the Solitario Canyon fault in H-3 and WT-7 indicate a minimum of 157.9 m of separation before 10.7 Ma, which is 34.1 percent of the total slip of the Topopah Spring Tuff, and a minimum dip slip rate of 0.075 mm/yr from 12.8 to 10.7 Ma. These data are consistent with the broader structural history of the area near Yucca Mountain. Previous workers used angular unconformities, tilting of structural blocks, and paleomagnetic data to constrain the main period of extensional faulting between 12.7 and 8

  11. State of Nevada comments on the US Department of Energy Site Characterization Plan, Yucca Mountain site, Nevada

    International Nuclear Information System (INIS)

    1989-09-01

    One of the most important systems to understand is the hydrologic system at Yucca Mountain. This system probably contains the most likely pathways for radionuclide escape from the repository to the accessible environment. The hydrology of the unsaturated highly-fractured tuffs, in which the proposed repository would be constructed, is poorly understood because very little scientific study of this type of hydrogeologic system had been made prior to the selection of Yucca Mountain as a potential repository. The major concerns are of: (1) the time limitations for conducting the necessary investigations; (2) the great uncertainty regarding the hydrologic processes, especially fracture flow, in the unsaturated zone; (3) the inadequate consideration of various hydrogeologic and hydrologic factors, including coupled flow processes, recharge and discharge, and perched water zones; (4) the inadequate conceptual and numerical models of the saturated and unsaturated zones, and development of scenarios; (5) the flaws in the design and monitoring of observation wells; (6) the uncertainties in estimating infiltration, ground water travel time, the extent of the disturbed zone, and waste package integrity; and (7) the overall biased approach of the SCP. This report consists of a summary of these concerns, followed by specific comments on portions of Chapters 3 and 8 of the SCP

  12. Draft environmental assessment: Yucca Mountain site, Nevada research and development area, Nevada. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The Yucca Mountain site is located in the Great Basin, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Yucca Mountain site as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the Yucca Mountain site is one of three sites preferred for site characterization

  13. Gravity and magnetic investigations of the Ghost Dance and Solitario Canyon faults, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.

    1995-01-01

    Ground magnetic and gravity data collected along traverses across the Ghost Dance and Solitario Canyon faults on the eastern and western flanks, respectively, of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Gravity and magnetic data and models along traverses across the Ghost Dance and Solitario Canyon faults show prominent anomalies associated with known faults and reveal a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by several small amplitude anomalies that probably reflect small scale faulting

  14. Ecology, ethics, and professional environmental practice: The Yucca Mountain, Nevada, project as a case study

    International Nuclear Information System (INIS)

    Malone, C.R.

    1995-01-01

    The US Department of Energy (DOE) is proposing to develop a geologic repository for disposing of high-level nuclear waste at Yucca Mountain, Nevada. In this commentary, the ecology program for the DOE's Yucca Mountain Project is discussed from the perspective of state-of-the-art ecosystem analysis, environmental ethics, and standards of professional practice. Specifically at issue is the need by the Yucca Mountain ecology program to adopt an ecosystem approach that encompasses the current strategy based on population biology and community ecology alone. The premise here is that an ecosystem approach is essential for assessing the long-term potential environmental impacts at Yucca Mountain in light of the thermal effects expected to be associated with heat from radioactive decay

  15. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  16. Applications of in situ cosmogenic nuclides in the geologic site characterization of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Gosse, J.C.; Harrington, C.D.

    1995-01-01

    The gradual buildup of rare isotopes from interactions between cosmic rays and atoms in an exposed rock provides a new method of directly determining the exposure age of rock surfaces. The cosmogenic nuclide method can also provide constraints on erosion rates and the length of time surface exposure was interrupted by burial. Numerous successful applications of the technique have been imperative to the complete surface geologic characterization of Yucca Mountain, Nevada, a potential high level nuclear waste repository. In this short paper, we summarize the cosmogenic nuclide method and describe with examples some the utility of the technique in geologic site characterization. We report preliminary results from our ongoing work at Yucca Mountain

  17. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    International Nuclear Information System (INIS)

    R.A. Levich; J.S. Stuckless

    2006-01-01

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation

  18. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  19. Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Finley, R.E.; George, J.T.; Riggins, M.

    1999-01-01

    A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data

  20. Environmental program planning for the proposed high-level nuclear waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    1987-08-01

    This report was prepared to illustrate the policy and actions that the State of Nevada believe are required to assure that the quality of the environment is adequately considered during the course of the DOE work at the proposed high-level nuclear waste repository at Yucca Mountain. The report describes the DOE environmental program and the studies planned by NWPO to reflect the State's position toward environmental protection. 41 refs., 2 figs., 11 tabs

  1. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  2. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; San Juan, C.A.

    1998-01-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here

  3. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  4. Geohydrology of test well USW H-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Rush, F.E.; Thordarson, W.; Pyles, D.G.

    1984-01-01

    This report contains the results of hydraulic testing, hydrologic monitoring, and geophysical logging of test well USW H-1, one of several wells drilled in the southwestern part of the Nevada Test Site in cooperation with the US Department of Energy for investigations related to the isolation of high-level radioactive wastes. All rocks penetrated by the well to a total depth of 1829 meters were of volcanic origin and of Tertiary age. Hydraulic head in the zone 688 to 741 meters below land surface was 730 meters above sea level and at a depth of 572 meters below land surface. Deeper zones had hydraulic heads of 781 meters above sea level or higher, indicating an upward component of ground-water flow at the site. The most transmissive zone, with an apparent transmissivity of about 150 meters squared per day, is in the Prow Pass Member of the Crater Flat Tuff in the depth range from 572 to 688 meters below land surface. The remainder of the penetrated rocks in the saturated zone, 688 to 1829 meters, has an apparent transmissivity of about 1 meter squared per day. The most transmissive part of the lower depth range is in the Bullfrog Member of the Crater Flat Tuff in the depth interval from 736 to 741 meters. The apparent hydraulic conductivity of the rocks in this lower depth interval from 688 to 1829 meters commonly ranges between 10 -4 and 10 -7 meter per day. Water chemistry is typical of tuffaceous rocks of southern Nevada. The water is a sodium bicarbonate type and has an apparent age of 12,000 to 13,000 years before present, as determined by carbon-14 dating

  5. Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2002-01-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degree C of the measured mean temperatures through the first two years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13 percent of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes

  6. Version II of the users manual for the Tuff Data Base Interface

    International Nuclear Information System (INIS)

    Welch, E.P.; Satter, B.J.; Langkopf, B.S.; Zeuch, D.H.

    1987-05-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) Project, managed by the Nevada Operations Office of the US Department of Energy, is investigating the feasibility of locating a repository at Yucca Mountain on and adjacent to the Nevada Test Site (NTS) in southern Nevada. A part of this investigation includes obtaining physical properties from laboratory tests on samples from Yucca Mountain and from field tests at Yucca Mountain. A computerized data base has been developed to store this data in a centralized location. The data base is stored on the Cyber 170/855 computer at Sandia using the System 2000 Data Base Management software. A user-friendly interface, the Tuff Data Base Interface (the Interface), allows NNWSI participants to retrieve data from the Tuff Data Base. The Interface gives users flexibility to retrieve portions of the Data Base related to their interests. This report gives basic instructions on accessing the Sandia computing system and explains how to use the Interface. 18 figs., 5 tabs

  7. Low temperature spent fuel oxidation under tuff repository conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations Project is studying the suitability of tuffaceous rocks at Yucca Mountain, Nye County, Nevada, for high level waste disposal. The oxidation state of LWR spent fuel in a tuff repository may be a significant factor in determining its ability to inhibit radionuclide migration. Long term exposure at low temperatures to the moist air expected in a tuff repository is expected to increase the oxidation state of the fuel. A program is underway to determine the spent fuel oxidation mechanisms which might be active in a tuff repository. Initial work involves a series of TGA experiments to determine the effectiveness of the technique and to obtain preliminary oxidation data. Tests were run at 200 0 C and 225 0 C for as long as 720 hours. Grain boundary diffusion appears to open up a greater surface area for oxidation prior to onset of bulk diffusion. Temperature strongly influences the oxidation rates. The effect of moisture is small but readily measurable. 25 refs., 7 figs., 4 tabs

  8. Fracture coatings in Topopah Spring Tuff along drill hole wash

    International Nuclear Information System (INIS)

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.

    1994-01-01

    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a number-sign l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a number-sign 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a number-sign l

  9. Major results of gravity and magnetic studies at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Oliver, H.W.; Ponce, D.A.; Sikora, R.F.

    1991-01-01

    About 4,000 gravity stations have been obtained at Yucca Mountain and vicinity since the beginning of radioactive-waste studies there in 1978. These data have been integrated with data from about 29,000 stations previously obtained in the surrounding region to produce a series of Bouguer and isostatic-residual-gravity maps of the Nevada Test Site and southeastern Nevada. Yucca Mountain is characterized by a WNW-dipping gravity gradient whereby residual values of -10 mGal along the east edge of Yucca Mountain decrease to about -38 mGal over Crater Flat. Using these gravity data, two-dimensional modeling predicted the depth to pre-Cenozoic rocks near the proposed repository to be about 1,220±150 m, an estimate that was subsequently confirmed by drilling to be 1,244 m. Three-dimensional modeling of the gravity low over Crater Flat indicates the thickness of Cenozoic volcanic rocks and alluvial cover to be about 3,000 m. Gravity interpretations also identified the Silent Canyon caldera before geologic mapping of Pahute Mesa and provided an estimate of the thickness of the volcanic section there of nearly 5 km. Considerable aeromagnetic coverage of southwestern Nevada was obtained in 1978-79 to help characterize Yucca Mountain and vicinity. One significant result is the discovery of a series of circular magnetic anomalies in Crater Flat and the northern Amargosa Desert that suggest the presence of buried volcanic centers there. If this interpretation is confirmed by drilling, the magnetic data can be used to help estimate the total volume of buried volcanic rocks, which, along with radiometric dating, could help provide a better prediction of future volcanism. Elongate magnetic highs and associated lows over Yucca Mountain correlate with mapped faults, some of which are only partially exposed. Thus, the data provide information on the extent and continuity of these faults

  10. Use of Thermal Data to Estimate Infiltration in Pagany Wash Associated with the winter of 1997-1998 El Nino Precipitation, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    LeCain, G.D.; Lu, N.; Kurzmack, M.

    2000-01-01

    Temperature and air-pressure monitoring in a vertical borehole located in Pagany Wash, a normally dry stream-carved channel northeast of Yucca Mountain, Nevada, indicated that the annual temperature wave was measurable to a depth of 11.1 m. Temperature depressions were measured at depths of 3.1, 6.1, 9.2, and 11.1 m below ground surface. The temperature depressions were interpreted to be the result of infiltration associated with the 1997-1998 El Nino precipitation. A pressure differential, of approximately 2 kiloPascals, between stations located 11.1 and 24.5 m below ground surface was interpreted to be the result of compressed air ahead of the wetting front. The pressure differences between stations indicated that the wetting front migrated deeper than 35.2 m and that the Yucca Mountain Tuff retarded the downward movement of the wetting front. An analytical method indicated that the infiltration flux through the Pagany Wash alluvium due to the 1997-1998 El Nino precipitation was approximately 940 mm. A one-dimensional numerical model indicated that the infiltration flux was approximately 1000 mm. Sensitivity analysis indicated that the potential temperature decrease due to conduction was minimal and that cooler surface temperatures could not account for the measured subsurface temperature depressions

  11. Earthquake-induced water-level fluctuations at Yucca Mountain, Nevada, June 1992

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1993-01-01

    This report presents earthquake-induced water-level and fluid-pressure data for wells in the Yucca Mountain area, Nevada, during June 1992. Three earthquakes occurred which caused significant water-level and fluid-pressure responses in wells. Wells USW H-5 and USW H-6 are continuously monitored to detect short-term responses caused by earthquakes. Two wells, monitored hourly, had significant, longer-term responses in water level following the earthquakes. On June 28, 1992, a 7.5-magnitude earthquake occurred near Landers, California causing an estimated maximum water-level change of 90 centimeters in well USW H-5. Three hours later a 6.6-magnitude earthquake occurred near Big Bear Lake, California; the maximum water-level fluctuation was 20 centimeters in well USW H-5. A 5.6-magnitude earthquake occurred at Little Skull Mountain, Nevada, on June 29, approximately 23 kilometers from Yucca Mountain. The maximum estimated short-term water-level fluctuation from the Little Skull Mountain earthquake was 40 centimeters in well USW H-5. The water level in well UE-25p number-sign 1, monitored hourly, decreased approximately 50 centimeters over 3 days following the Little Skull Mountain earthquake. The water level in UE-25p number-sign 1 returned to pre-earthquake levels in approximately 6 months. The water level in the lower interval of well USW H-3 increased 28 centimeters following the Little Skull Mountain earthquake. The Landers and Little Skull Mountain earthquakes caused responses in 17 intervals of 14 hourly monitored wells, however, most responses were small and of short duration. For several days following the major earthquakes, many smaller magnitude aftershocks occurred causing measurable responses in the continuously monitored wells

  12. Evidence for a welded tuff in the Rhyolite of Calico Hills

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Hunter, W.C.

    1994-01-01

    A welded pyroclastic deposit has been identified in the Rhyolite of Calico Hills near Yucca Mountain, Nevada, where only lava flows and nonwelded pyroclastic deposits were previously described. Field data from Fortymile Wash show that nonwelded, bedded tuff grades upward into partially welded massive ruff, and thence into densely welded vitrophyre. Petrographic data show a progressive decrease in inter- and intragranular porosity and amount of vapor-phase minerals, with increasing welding. Pumice fragments are first deformed, then develop diffuse boundaries which become increasingly obscure with progressive welding. The most densely welded rock is a perlitic vitrophyre. The origin of this welded tuff is not clear, as it could represent an ignimbrite or a tuff fused beneath a thick lava flow

  13. Vertical Variability in Saturated Zone Hydrochemistry Near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Patterson; P. Striffler

    2007-01-01

    The differences in the saturated zone hydrochemistry with depth at borehole NC-EWDP-22PC reflect the addition of recharge along Fortymile Wash. The differences in water chemistry with depth at borehole NC-EWDP-19PB appear to indicate that other processes are involved. Water from the lower part of NC-EWDP-19PB possesses chemical characteristics that clearly indicate that it has undergone cation exchange that resulted in the removal of calcium and magnesium and the addition of sodium. This water is very similar to water from the Western Yucca Mountain facies that has previously been thought to flow west of NC-EWDP-19PB. Water from the lower zone in NC-EWDP-19PB also could represent water from the Eastern Yucca Mountain facies that has moved through clay-bearing or zeolitized aquifer material resulting in the altered chemistry. Water chemistry from the upper part of the saturated zone at NC-EWDP-19PB, both zones at NC-EWDP-22PC, and wells in the Fortymile Wash facies appears to be the result of recharge through the alluvium south of Yucca Mountain and within the Fortymile Wash channel

  14. Development of stochastic indicator models of lithology, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; Robey, T.H.

    1994-01-01

    Indicator geostatistical techniques have been used to produce a number of fully three-dimensional stochastic simulations of large-scale lithologic categories at the Yucca Mountain site. Each realization reproduces the available drill hole data used to condition the simulation. Information is propagated away from each point of observation in accordance with a mathematical model of spatial continuity inferred through soft data taken from published geologic cross sections. Variations among the simulated models collectively represent uncertainty in the lithology at unsampled locations. These stochastic models succeed in capturing many major features of welded-nonwelded lithologic framework of Yucca Mountain. However, contacts between welded and nonwelded rock types for individual simulations appear more complex than suggested by field observation, and a number of probable numerical artifacts exist in these models. Many of the apparent discrepancies between the simulated models and the general geology of Yucca Mountain represent characterization uncertainty, and can be traced to the sparse site data used to condition the simulations. Several vertical stratigraphic columns have been extracted from the three-dimensional stochastic models for use in simplified total-system performance assessment exercises. Simple, manual adjustments are required to eliminate the more obvious simulation artifacts and to impose a secondary set of deterministic geologic features on the overall stratigraphic framework provided by the indictor models

  15. Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada

    International Nuclear Information System (INIS)

    Sweeney, Robin L.; Lechel, David J.

    2003-01-01

    In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada

  16. Interpretive geophysical fault map across the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.

    1996-01-01

    Geophysical data collected along 29 traverses across the central block of Yucca Mountain in southwest Nevada reveal anomalies associated with known fault sand indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. Geophysical interpretations indicate that Midway Valley is characterized by several known and previously unknown faults, that the existence of the Yucca Wash fault is equivocal, and that the central part of the eastern flank of Yucca Mountain is characterized by numerous low-amplitude anomalies that probably reflect numerous small-scale faults. Gravity and magnetic data also reveal several large-amplitude anomalies that reflect larger-scale faulting along the margins of the central block

  17. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    International Nuclear Information System (INIS)

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies

  18. Simulating the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    B.D. Marshal; J.F. Whelan

    2001-01-01

    Heat transfer within Earth's upper crust is primarily by conduction, and conductive thermal models adequately explain the cooling history of deep, batholith-scale intrusions and surrounding wall rocks, as confirmed by numerous thermochronometric studies. However, caldera magmatic systems require consideration of the small and localized component of hydrothermal convection and numerical models to simulate additional boundary conditions, irregular magma chamber shapes, and complex intrusive histories. At Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository, simulating the detailed thermal history at any location in the unsaturated zone requires knowledge of the shape of the magma chamber and its proximity to Yucca Mountain (the southern margin of the Timber Mountain caldera complex is approximately 8 km north of the potential repository site), the temporal and spatial extent of hydrothermal convection, the erosional history of the area, and past levels of the water table

  19. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1992--March 31, 1993, No. 8

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-08-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1992, through March 31, 1993. This report is the eighth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  20. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1993--September 30, 1993, No. 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-02-01

    In accordance with requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982, as amended, and 10 CFR 60.18(g), the U.S. Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1, 1993, through September 30, 1993. This report is the ninth in a series issued at intervals of approximately six months during site characterization of Yucca Mountain as a possible site for a geologic repository for the permanent disposal of high-level radioactive waste. Also included in this report are activities such as public outreach and international programs that are not formally part of the site characterization process. Information on these activities is provided to report on all aspects of the Yucca Mountain studies.

  1. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.; Futa, K.

    2004-01-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ∼500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ( 87 Sr/ 86 Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (∼2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios ( 87 Sr/ 86 Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87 Sr/ 86 Sr < 0.709. These low Sr ratios indicate penetration of construction water to depths of ∼20 m below the tunnels within three years after construction, a transport velocity of ∼7 m per year. These studies show that

  2. Seismicity in the Vicinity of Yucca Mountain, Nevada, for the Period October 1, 2004 to September 30, 2006

    International Nuclear Information System (INIS)

    Smith, Ken

    2007-01-01

    This report describes earthquake activity within approximately 65 km of Yucca Mountain site during the October 1, 2004 to September 30, 2006 time period (FY05-06). The FY05-06 earthquake activity will be compared with the historical and more recent period of seismic activity in the Yucca Mountain region. The relationship between the distribution of seismicity and active faults, historical patterns of activity, and rates of earthquakes (number of events and their magnitudes) are important components in the assessment of the seismic hazard for the Yucca Mountain site. Since October 1992 the University of Nevada has compiled a catalog of earthquakes in the Yucca Mountain area. Seismicity reports have identified notable earthquake activity, provided interpretations of the seismotectonics of the region, and documented changes in the character of earthquake activity based on nearly 30 years of site-characterization monitoring. Data from stations in the seismic network in the vicinity of Yucca Mountain is collected and managed at the Nevada Seismological Laboratory (NSL) at the University of Nevada Reno (UNR). Earthquake events are systematically identified and cataloged under Implementing Procedures developed in compliance with the Nevada System of Higher Education (NSHE) Quality Assurance Program. The earthquake catalog for FY05-06 in the Yucca Mountain region submitted to the Yucca Mountain Technical Data Management System (TDMS) forms the basis of this report

  3. Yucca Mountain socioeconomic project: An interim report on the State of Nevada socioeconomic studies

    International Nuclear Information System (INIS)

    1989-06-01

    The State of Nevada formally initiated a study of the socioeconomic impacts of a proposed high-level nuclear waste repository at Yucca Mountain in southern Nevada in 1986 after the Nevada site had been chosen as a potential waste disposal site. The State and affected local governments that participated in the development of the study recognized that the effort would need to go well beyond what is traditionally considered adequate for socioeconomic impact assessment because of the unique nature of the repository project. This Interim Report is a report on work in progress and presents findings from the research to date on the potential consequences of a repository for the citizens of Nevada. The research and findings in the Report have been subjected to rigorous peer review as part of the state's effort to insure independent, objective analysis that meets the highest professional standards. The basic research effort will continue through June 1990 and will enable the state to refine and clarify the findings presented in this Interim Report

  4. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Wu, D.W.; Wasiolek, M.A.; Tappen, J.J.; Rautenstrauch, K.R.; Smith, A.J.

    2002-01-01

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater

  5. ERMYN: Environmental Radiation Model for the Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Wu; M.A. Wasiolek; J.J. Tappen; K.R. Rautenstrauch; A.J. Smith

    2002-11-18

    This paper briefly describes a new biosphere model, ERMYN, that was developed to characterize biosphere processes for radionuclides released from the proposed high-level radioactive waste geologic repository at Yucca Mountain (YM). Biosphere modeling for YM is conducted independently for two radionuclide release modes and resulting exposure scenarios, groundwater release and volcanic release. This paper focuses on the model for groundwater release. The groundwater release exposure scenario addresses the case in which the geosphere-biosphere interface is well extraction of contaminated groundwater.

  6. Anaerobic bacterial quantitation of Yucca Mountain, Nevada DOE site samples

    International Nuclear Information System (INIS)

    Clarkson, W.W.; Krumholz, L.R.; Suflita, J.M.

    1996-01-01

    Anaerobic bacteria were studied from samples of excavated rock material as one phase of the overall Yucca Mountain site characterization effort. An indication of the abundance of important groups of anaerobic bacteria would enable inferences to be made regarding the natural history of the site and allow for more complete risk evaluation of the site as a nuclear repository. Six bacterial groups were investigated including anaerobic heterotrophs, acetogens, methanogens, sulfate-, nitrate-, and iron-reducing bacteria. The purpose of this portion of the study was to detect and quantify the aforementioned bacterial groups

  7. The treatment of conceptual model uncertainty for Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Boak, J.M.; Flint, A.; Dockery, H.A.

    1995-01-01

    A reasonable risk assessment of radioactive waste disposals faces three main problems : 1) the ability of the conceptual model to account for the effective repository process ; 2) the boundary conditions ; 3) the parameters values that model the particular site. Yucca mountain Site Characterization Project deals with these problems through two major approaches that are described here : 1) the evolution of models for the recurrence rate of volcanism ; 2) the nominal hydrologic performance for the site. These two approaches are expected to lead to a reasonable demonstration of the suitability of the site. (D.L.). 13 refs., 2 figs

  8. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  9. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  10. Isotopic discontinuities in ground water beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stuckless, J.S.; Whelan, J.F.; Steinkampf, W.C.

    1991-01-01

    Analytical data for stable isotopes in ground water from beneath Yucca Mountain, when examined in map view, show areal patterns of heterogeneity that can be interpreted in terms of mixing of at least three end members. One end member must be isotopically heavy in terms of hydrogen and oxygen and have a young apparent 14 C age such as water found at the north end of Yucca Mountain beneath Fortymile Wash. A second end member must contain isotopically heavy carbon and have an old apparent 14 C age such as water from the Paleozoic aquifer. The third end member cannot be tightly defined. It must be isotopically lighter than the first with respect of hydrogen and oxygen and be intermediate to the first and second end members with respect to both apparent 14 C age and δ 13 C. The variable isotopic compositions of hydrogen and oxygen indicate that two of the end members are waters, but the variable carbon isotopic composition could represent either a third water end member or reaction of water with a carbon-bearing solids such as calcite. 15 refs., 4 figs., 1 tab

  11. 1989 vegetation studies at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    1990-02-01

    The overall purpose of the 1989 vegetation ecology studies was to describe the existing vegetation and baseline ecological conditions of the Yucca Mountain study area, before further disturbances due to site characterization occur. Extensive disturbances have already occurred due to preliminary studies associated with the waste repository. If the site is determined to be unsuitable for a waste repository, then reclamation of disturbed sites will be required. Biotic conditions are described within both regional and local contexts because the intensity of local disturbances may result in impacts to outlying areas. The most detailed data collection was conducted in the Focused Baseline Study Area where site characterization activities will be concentrated. Less detailed information was obtained for adjacent areas in the Core Study Area and Cumulative Assessment Study Area. The major tasks of this study were as follows: describe and map the vegetation of the Yucca Mountain study area; identify important relationships between the biotic and physical elements of the ecosystem; identify unique or sensitive resources; preliminary assessment of the baseline ecological conditions of the area

  12. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1995-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium's electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 375 specific and intraspecific taxa within the area these allocated to 179 genera and 54 families. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this study

  13. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1995-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 375 specific and intraspecific taxa within the area these allocated to 179 genera and 54 families. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this study.

  14. State of Nevada comments on the US Department of Energy site characterization plan, Yucca Mountain site, Nevada

    International Nuclear Information System (INIS)

    1989-09-01

    The following document comprises a critical evaluation of the DOE's Site Characterization Plan (SCP). The comments address a number of issues related to the scientific methods involved in the proposed procedures of site characterization, the suitability and integration of the methods, and the validity of the approach taken by the DOE in the context of the NRC regulations. The SCP contains many improvements of the Draft Environmental Assessment (DEA) and the Environmental Assessment (EA), and fewer improvements of the SCP Consultation Draft. An obvious attempt has been made to address topics that were regarded in these previous reviews as deficiencies in the study program. For example, the activity and seismogenic potential of the Quaternary faults at Yucca Mountain are treated much more realistically than orignally proposed by the DOE, even though published data has not increased significantly since the DEA and EA were released. Water is now recognized as a resource, and faults and fault breccias are recognized as potential hosts for epithermal mineralization. There has, in addition, been considerable effort to incorporate a number of alternative conceptual models (involving both cross sections of Yucca Mountain and regional tectonic models) into the realm of tectonic hypotheses. There is a little doubt that the SCP proposes an exhaustive and wide-ranging scope of investigations for the purpose of site characterization, and that many of these investigations have been included by the DOE in response to critical reviews by external groups (such as the NRC and various State of Nevada agencies)

  15. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs.

  16. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 2

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. Chapter 3 summarizes present knowledge of the regional and site hydrologic systems. The purpose of the information presented is to (1) describe the hydrology based on available literature and preliminary site-exploration activities that have been or are being performed and (2) provide information to be used to develop the hydrologic aspects of the planned site characterization program. Chapter 4 contains geochemical information about the Yucca Mountain site. The chapter references plan for continued collection of geochemical data as a part of the site characterization program. Chapter 4 describes and evaluates data on the existing climate and site meterology, and outlines the suggested procedures to be used in developing and validating methods to predict future climatic variation. 534 refs., 100 figs., 72 tabs

  17. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Sánchez-Rojas, Cristina Patricia; Zamora, Regino; Pérez-Pérez, Ramón; Bonet, Francisco Javier

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988–1990 and 2009–2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area. PMID:25878552

  18. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain).

    Science.gov (United States)

    Pérez-Luque, Antonio Jesús; Sánchez-Rojas, Cristina Patricia; Zamora, Regino; Pérez-Pérez, Ramón; Bonet, Francisco Javier

    2015-01-01

    Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems in two periods: 1988-1990 and 2009-2013. A total of 11002 records of occurrences belonging to 19 orders, 28 families 52 genera were collected. 73 taxa were recorded with 29 threatened taxa. We also included data of cover-abundance and phenology attributes for the records. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this area.

  19. Fumio Matsumura--accomplishments at the University of California, Davis, and in the Sierra Nevada Mountains.

    Science.gov (United States)

    Seiber, James N

    2015-05-01

    Fumio Matsumura joined the University of California, Davis, faculty in 1987 where he served as founding director of the Center for Environmental Health Sciences, associate director of the U.C. Toxic Substances Research and Teaching Program, and chair of the Department of Environmental Toxicology. He was an active affiliate with the NIEHS-funded Superfund Basic Research Program and the NIH Comprehensive Cancer Center. He was in many instances a primary driver or otherwise involved in most activities related to environmental toxicology at Davis, including the education of students in environmental biochemistry and ecotoxicology. A significant part of his broad research program was focused on the long range transport of chemicals such as toxaphene, PCBs and related contaminants used or released in California to the Sierra Nevada mountains, downwind of the urban and agricultural regions of the state. He hypothesized that these chemical residues adversely affected fish and wildlife, and particularly the declining populations of amphibians in Sierra Nevada streams and lakes. Fumio and his students and colleagues found residues of toxaphene and PCBs at higher elevations, an apparent result of atmospheric drift and deposition in the mountains. Fumio and his wife Teruko had personal interests in, and a love of the mountains, as avid skiers, hikers, and outdoor enthusiasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    Science.gov (United States)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a

  1. Water-rock interactions and the pH stability of groundwater from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ebinger, M.H.

    1992-01-01

    Titrations of acidic solutions in waters from the tuff and carbonate aquifers at Yucca Mountain were simulated using the geochemical codes PHREEQE and EQ3/6. The simulations tested pH stability of the waters in the presence of different minerals and in their absence. Two acidic solutions, 10 -4 HCl and 10 -4 M UO 2 (NO 3 ) 2 , were titrated in to the water. Little pH and/or compositional change resulted in the groundwater when the HCl solution was titrated, but significant pH and CO 2 fugacity changes were observed when UO 2 (NO 3 ) 2 was titrated. Water interactions with alkali feldspar, quartz or cristobalite, and Ca-smectite buffered the pH and compositional changes in the carbonate water and decreased the magnitude of pH and compositional changes when small volumes of UO 2 (NO 3 ) 2 added to the tuffaceous waters

  2. A first look at roadheader construction and estimating techniques for site characterization at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Neil, D.M.; Taylor, D.L.

    1991-01-01

    The Yucca Mountain site characterization program will be based on mechanical excavation techniques for the mined repository construction and development. Tunnel Boring Machines (TBM's), Mobile Miners (MM), Raiseborers (RB), Blind Hole Shaft Boring Machines (BHSB), and Roadheaders (RH) have been selected as the mechanical excavation machines most suited to mine the densely welded and non-welded tuffs of the Topopah Springs and Calico Hills members. Heavy duty RH in the 70 to 100 ton class with 300 Kw cutter motors have been evaluated and formulas developed to predict machine performance based on the rock physical properties and the results of Linear Cutting Machine (LCM) tests done at the Colorado School of Mines (CSM) for Sandia National Labs. (SNL)

  3. Yucca Mountain Socioeconomic Project: The 1991 Nevada State telephone survey: Key findings

    International Nuclear Information System (INIS)

    Flynn, J.H.; Mertz, C.K.; Slovic, P.

    1991-05-01

    The 1991 Nevada State Telephone Survey was implemented by Decision Research on behalf of the State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) as part of an ongoing socioeconomic impact assessment study. The scope of this survey was considerably smaller than a previous survey conducted in 1989 and focused more upon public evaluations of the Yucca Mountain repository program and the trust Nevadans currently addressing the siting issues. In order to provide place in key public officials who are Longitudinal data on the repository program, the 1991 questionnaire consisted of questions that were used in the 1989 NWPO survey which was conducted by Mountain West Research. As a result, the findings from this survey are compared with analogous items from the 1989 survey, and with the results from a survey commissioned by the Las Vegas Review-Journal and reported in their issue of October 21, 1990. The Review-Journal survey was conducted by Bruce Merri11 of the Arizona State University Media Research Center. A more complete comparison of the 1989 and 1991 surveys sponsored by NWPO is possible since the researchers at Decision Research had access to both these databases. The only source of information for the Review-Journal findings was the articles published in the Fall, 1990. The findings of the 1991 survey show that Nevadans oppose the federal government attempts to locate a high-level radioactive waste repository at Yucca Mountain. They support a policy of opposition on the part of Nevada officials. They believe that Nevadans should have the final say in whether to accept the repository or not, and they reject the proposition that benefits from the repository program will outweigh the harms. These findings are very similar to survey results from 1989 and 1990 and once again demonstrate very widespread public opposition by Nevadans to the current federal repository program

  4. Effects of Faulted Stratigraphy on Saturated Zone Flow Beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cohen, Andrew J.B.; Oldenburg, Curtis M.

    1999-01-01

    The S 4 Z Model (''sub-site-scale saturated zone'') is a 3-D TOUGH2 model that was developed to study the saturated zone (SZ) at Yucca Mountain, Nevada, and to aid in the design and analysis of hydrologic tests. Yucca Mountain is the proposed site for a nuclear waste repository for the United States. The model covers an area of approximately 100 km 2 around Yucca Mountain, as shown in Figure 1. The proposed repository is located in the unsaturated zone, immediately above the area of equidimensional gridblocks east of Solitario Canyon fault, which defines the crest of Yucca Mountain. The finely discretized region near the center of the domain corresponds to the area near a cluster of boreholes used for hydraulic and tracer testing. This discretization facilitates simulation of tests conducted there. The hydrogeologic structure beneath the mountain is comprised of dipping geologic units of variable thickness which are offset by faults. One of the primary objectives of the S 4 Z modeling effort is to study the potential effects of the faulted structure on flow. Therefore, replication of the geologic structure in the model mesh is necessary. This paper summarizes (1) the mesh discretization used to capture the faulted geologic structure, and (2) a model simulation that illustrates the significance of the geologic structure on SZ flow and the resulting macrodispersion

  5. Site characterization progress report: Yucca Mountain, Nevada, April 1, 1990--September 30, 1990, Number 3

    International Nuclear Information System (INIS)

    1991-03-01

    In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (NWPA), as amended, the US Department of Energy has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period April 1 through September 30, 1990. This report is the third of a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of new initiatives to improve the effectiveness of the site characterization program and covers continued efforts related to preparatory activities, study plans, and performance assessment. 85 refs., 2 figs., 3 tabs

  6. Data on snow chemistry of the Cascade-Sierra Nevada Mountains

    Science.gov (United States)

    Laird, L.B.; Taylor, Howard E.; Lombard, R.E.

    1986-01-01

    Snow chemistry data were measured for solutes found in snow core samples collected from the Cascade-Sierra Nevada Mountains from late February to mid-March 1983. The data are part of a study to assess geographic variations in atmospheric deposition in Washington, Oregon, and California. The constituents and properties include pH and concentrations of hydrogen ion, calcium, magnesium, sodium, potassium, chloride, sulfate, nitrate, fluoride, phosphate, ammonium, iron, aluminum, manganese, copper, cadmium, lead, and dissolved organic carbon. Concentrations of arsenic and bromide were below the detection limit. (USGS)

  7. Simulated effects of potential withdrawals from wells near Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tucce, Patrick; Faunt, Claudia C.

    1999-01-01

    The effects of potential future withdrawals from wells J-12, J-13, and UE-25c number 3 on the ground-water flow system in the area surrounding Yucca Mountain, Nevada, were simulated by using an existing (1997) three-dimensional regional ground-water flow model. The 1997 regional model was modified only to include changes at the pumped wells. Two steady-state simulations (baseline and predictive) were conducted to estimate changes in water level and changes in ground-water outflow from Jackass Flats, where the pumped wells are located, south to the Amargosa Desert

  8. Site characterization progress report: Yucca Mountain, Nevada, October 1, 1990--March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    In accordance with the requirements of Section 113 (b) (3) of the Nuclear Waste Policy Act of 1982, as amended (NWPA), the US Department of Energy (DOE) has prepared this report on the progress of site characterization activities at Yucca Mountain, Nevada, for the period October 1, 1990, through March 31, 1991. This report is the fourth in a series of reports that are issued at intervals of approximately six months during site characterization. The report covers a number of initiatives to improve the effectiveness of the site characterization program, and covers continued efforts related to preparatory activities, Study Plans, and performance assessment

  9. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Tucci, P.; Burkhardt, D.J.

    1995-01-01

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend

  10. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    Energy Technology Data Exchange (ETDEWEB)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M. [and others

    1996-12-31

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data.

  11. Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada, as of 1995

    International Nuclear Information System (INIS)

    Luckey, R.R.; Tucci, P.; Faunt, C.C.; Ervin, E.M.

    1996-01-01

    Yucca Mountain, which is being studied extensively because it is a potential site for a high-level radioactive-waste repository, consists of a thick sequence of volcanic rocks of Tertiary age that are underlain, at least to the southeast, by carbonate rocks of Paleozoic age. Stratigraphic units important to the hydrology of the area include the alluvium, pyroclastic rocks of Miocene age (the Timber Mountain Group; the Paintbrush Group; the Calico Hills Formation; the Crater Flat Group; the Lithic Ridge Tuff; and older tuffs, flows, and lavas beneath the Lithic Ridge Tuff), and sedimentary rocks of Paleozoic age. The saturated zone generally occurs in the Calico Hills Formation and stratigraphically lower units. The saturated zone is divided into three aquifers and two confining units. The flow system at Yucca Mountain is part of the Alkali Flat-Furnace Creek subbasin of the Death Valley groundwater basin. Variations in the gradients of the potentiometric surface provided the basis for subdividing the Yucca Mountain area into zones of: (1) large hydraulic gradient where potentiometric levels change at least 300 meters in a few kilometers; (2) moderate hydraulic gradient where potentiometric levels change about 45 meters in a few kilometers; and (3) small hydraulic gradient where potentiometric levels change only about 2 meters in several kilometers. Vertical hydraulic gradients were measured in only a few boreholes around Yucca Mountain; most boreholes had little change in potentiometric levels with depth. Limited hydraulic testing of boreholes in the Yucca Mountain area indicated that the range in transmissivity was more than 2 to 3 orders of magnitude in a particular hydrogeologic unit, and that the average values for the individual hydrogeologic units generally differed by about 1 order of magnitude. The upper volcanic aquifer seems to be the most permeable hydrogeologic unit, but this conclusion was based on exceedingly limited data

  12. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  13. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    F. Perry; R. Youngs

    2004-01-01

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M and O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance

  14. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented

  15. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  16. Reactive Transport Modeling of the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    G. Bodvarsson

    2004-01-01

    The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts

  17. Parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

    2001-01-01

    This paper presents the application of parallel computing techniques to large-scale modeling of fluid flow in the unsaturated zone (UZ) at Yucca Mountain, Nevada. In this study, parallel computing techniques, as implemented into the TOUGH2 code, are applied in large-scale numerical simulations on a distributed-memory parallel computer. The modeling study has been conducted using an over-one-million-cell three-dimensional numerical model, which incorporates a wide variety of field data for the highly heterogeneous fractured formation at Yucca Mountain. The objective of this study is to analyze the impact of various surface infiltration scenarios (under current and possible future climates) on flow through the UZ system, using various hydrogeological conceptual models with refined grids. The results indicate that the one-million-cell models produce better resolution results and reveal some flow patterns that cannot be obtained using coarse-grid modeling models

  18. Three-dimensional hydrological and thermal property models of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Rautman, C.A.; McKenna, S.A.

    1997-11-01

    This report describes the creation of three-dimensional numerical models of selected rock-matrix properties for the region of the potential high-level nuclear waste repository site at Yucca Mountain, which is located in southern Nevada. The models have been generated for a majority of the unsaturated and shallow saturated zone within an area referred to within the Yucca Mountain Site Characterization project as the site area. They comprise a number of material properties of importance both to detailed process-level modeling activities and to more summary-style performance assessment modeling. The material properties within these models are both spatially variable (heterogeneous) and spatially correlated, as the rocks are understood from data obtained from site-characterization drill holes widely scattered across the site area

  19. Fabrication and closure development of nuclear waste containers for storage at the Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Russell, E.W.; Nelson, T.A.; Domian, H.A.; LaCount, D.F.; Robitz, E.S.; Stein, K.O.

    1989-04-01

    US Congress and the President have determined that the Yucca Mountain site in Nevada is to be characterized to determine its suitability for construction of the first US high-level nuclear waste repository. Work in connection with this site is carried out within the Yucca Mountain Project (YMP). Lawrence Livermore National Laboratory (LLNL) has the responsibility for designing, developing, and projecting the performance of the waste package for the permanent storage of high-level nuclear waste. Babcock ampersand Wilcox (B ampersand W) is involved with the YMP as a subcontractor to LLNL. B ampersand W's role is to recommend and demonstrate a method for fabricating the metallic waste container and a method for performing the final closure of the container after it has been filled with waste. Various fabrication and closure methods are under consideration for the production of containers. This paper presents progress to date in identifying and evaluating the candidate manufacturing processes. 2 refs., 1 fig., 7 tabs

  20. Physical and chemical characteristics of topographically affected airflow in an open borehole at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Thorstenson, D.C.; Woodward, J.C.; Weeks, E.P.; Haas, H.

    1989-01-01

    Borehole UZ6S, on the crest of Yucca Mountain, Nevada Test Site, has exhaled approximately 10 6 m 3 of gas annually during winter months for three successive years. The flow arises from thermal-topographic effects. The average composition of the exhausted gas is: N 2 = 78%, O 2 = 21%, Ar = 0.94%, CO 2 = 0.125%, and CH 4 = 0.2 ppMv. The CO 2 has the following isotopic signature: 14 C = 108.5 percent modern carbon (pmc), and δ 13 C = 17.1 permil. In the thirty-month observation period, there has been a net flux to the atmosphere of approximately 40 m 3 of liquid water and 1150 kg of carbon. The gas flowing from UZ6S appears to originate in the soil and/or shallow unsaturated zone at Yucca Mountain crest. 25 refs., 6 figs., 4 tabs

  1. Geochemistry of outcrop samples from the Raven Canyon and Paintbrush Canyon reference sections, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Peterman, Z.E.; Spengler, R.W.; Singer, F.R.; Dickerson, R.P.

    1996-01-01

    The Yucca Mountain area in southern Nevada is being evaluated for its suitability as a potential site for the construction of an underground, high-level nuclear waste repository. With support from the Department of Energy, the US Geological Survey is conducting detailed petrographic, geochemical, and isotopic analyses of samples collected from drill cores and from outcrops. The geochemical and isotopic compositions of the volcanic rocks of Yucca Mountain derive from those of their parental magmas, from changes resulting from the eruptive processes and from post-depositional alteration. In this study, geochemical and isotopic data were acquired on samples from reference sections selected in areas where the effects of the post-depositional alteration has been minimal. These data will be used as baseline information for delineating and correlating zonal features in the volcanic rock alteration that may occur in the thermal aureole of the potential repository after it has been loaded with nuclear waste

  2. Site characterization plan overview: Yucca Mountain site, Nevada Research and Development Area, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs.

  3. Site characterization plan overview: Yucca Mountain site, Nevada Reserch and Development Area, Nevada

    International Nuclear Information System (INIS)

    1988-12-01

    To help the public better understand both the SCP and the site characterization program, the DOE has prepared this overview and the SCP Public Handbook. The overview presents summaries of selected topics covered in the SCP; it is not a substitute for the SCP. The organization of the overview is similar to that of the SCP itself, with brief descriptions of the Yucca Mountain site, the repository, and the containers in which the waste would be packaged, followed by a discussion of the characterization program to be carried out at the Yucca Mountain site. This overview is intended primarily for those persons who want to understand the general scope and basis of the site-characterization program, the activities to be conducted, and the facilities to be constructed without spending the time necessary to become familiar with all of the technical details presented in the SCP. For the readers of the SCP, the overview will be useful as a general guide to the plan. The SCP Public Handbook is a short document that contains brief descriptions of the SCP process and the contents of the SCP. It also explains how the public can submit comments on the SCP and lists the libraries and reading rooms at which the SCP is available. 9 refs., 18 tabs

  4. Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix

    International Nuclear Information System (INIS)

    1995-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report

  5. Independent management and financial review, Yucca Mountain Project, Nevada. Final report, Appendix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425), as amended by Public Law 100-203, December 22, 1987, established the Office of Civilian Radioactive Waste Management (OCRWM) within the Department of Energy (DOE), and directed the Office to investigate a site at Yucca Mountain, Nevada, to determine if this site is suitable for the construction of a repository for the disposal of high level nuclear waste. Work on site characterization has been under way for several years. Thus far, about $1.47 billion have been spent on Yucca Mountain programs. This work has been funded by Congressional appropriations from a Nuclear Waste Fund to which contributions have been made by electric utility ratepayers through electric utilities generating power from nuclear power stations. The Secretary of Energy and the Governor of the State of Nevada have appointed one person each to a panel to oversee an objective, independent financial and management evaluation of the Yucca Mountain Project. The Requirements for the work will include an analysis of (1) the Yucca Mountain financial and, contract management techniques and controls; (2) Project schedules and credibility of the proposed milestones; (3) Project organizational effectiveness and internal planning processes, and (4) adequacy of funding levels and funding priorities, including the cost of infrastructure and scientific studies. The recipient will provide monthly progress report and the following reports/documents will be presented as deliverables under the contract: (1) Financial and Contract Management Preliminary Report; (2) Project Scheduling Preliminary Report; (3)Project Organizational Effectiveness Preliminary Report; (4) Project Funding Levels and Funding Priorities Preliminary Report; and (5) Final Report.

  6. Borehole-calibration methods used in cased and uncased test holes to determine moisture profiles in the unsaturated zone, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hammermeister, D.P.; Kneiblher, C.R.; Klenke, J.

    1985-01-01

    The use of drilling and coring methods that minimize the disturbance of formation rock and core has permitted field calibration of neutron-moisture tools in relatively large diameter cased and uncased boreholes at Yucca Mountain, Nevada. For 5.5-inch diameter cased holes, there was reasonable agreement between a field calibration in alluvium-colluvium and a laboratory calibration in a chamber containing silica sand. There was little difference between moisture-content profiles obtained in a neutron-access hole with a hand-held neutron-moisture meter and an automated borehole-logging tool using laboratory-generated calibration curves. Field calibrations utilizing linear regression analyses and as many as 119 data pairs show a good correlation between neutron-moisture counts and volumetric water content for sections of uncased 6-inch diameter boreholes in nonwelded and bedded tuff. Regression coefficients ranged from 0.80 to 0.94. There were only small differences between calibration curves in 4.25- and 6-inch uncased sections of boreholes. Results of analyzing field calibration data to determine the effects of formation density on calibration curves were inconclusive. Further experimental and theoretical work is outlined

  7. Drilling and geohydrologic data for test hole USW UZ-1, Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S.; Thordarson, W.; Hammermeister, D.P.; Warner, J.B.

    1990-01-01

    This report presents data collected to determine the hydrologic characteristics of tuffaceous rocks penetrated in test hole USW UZ-1. The borehole is the first of two deep, large-diameter, unsaturated-zone test holes dry drilled using the vacuum/reverse-air-circulation method. This test hole was drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Yucca Mountain Project (formerly the Nevada Nuclear Waste Storage Investigations) to identify a potentially suitable site for the storage of high-level radioactive wastes. Data are presented for bit and casing configurations, coring methods, sample collection, drilling rate, borehole deviation, and out-of-gage borehole. Geologic data for this borehole include geophysical logs, a lithologic log of drill-bit cuttings, and strike and distribution of fractures. Hydrologic data include water-content and water-potential measurements of drill-bit cuttings, water-level measurements, and physical and chemical analyses of water. Laboratory measurements of moisture content and matric properties from the larger drill-bit cutting fragments were considered to be representative of in-situ conditions. 3 refs., 5 figs., 10 tabs

  8. Interpretation of chemical and isotopic data from boreholes in the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Yu, P.

    1996-01-01

    Analyses of pore water from boreholes at Yucca Mountain indicate that unsaturated-zone pore water has significantly larger concentrations of chloride and dissolved solids than the saturated-zone water or perched-water bodies. Chemical compositions are of the calcium sulfate or calcium chloride types in the Paintbrush Group (Tiva Canyon, Yucca Mountain, Pah Canyon, and bedded tuffs), and sodium carbonate or bicarbonate type water in the Calico Hills Formation. Tritium profiles from boreholes at Yucca Mountain indicate tritium-concentration inversions (larger tritium concentrations are located below the smaller tritium concentration in a vertical profile) occur in many places. These inversions indicate preferential flow through fractures. Rock-gas compositions are similar to that of atmospheric air except that carbon dioxide concentrations are generally larger than those in the air. The delta carbon-13 values of gas are fairly constant from surface to 365.8 meters, indicating little interaction between the gas CO 2 and caliche in the soil. Model calculations indicate that the gas transport in the unsaturated zone at Yucca Mountain agrees well with the gas-diffusion process. Tritium-modeling results indicate that the high tritium value of about 100 tritium units in the Calico Hills Formation of UZ-16 is within limits of a piston-flow model with a water residence time of 32 to 35 years. The large variations in tritium concentrations with narrow peaks imply piston flow or preferential fracture flow rather than matrix flow. In reality, the aqueous-phase flow in the unsaturated zone is between piston and well-mixed flows but is closer to a piston flow

  9. Bulk and thermal properties of the functional Tuffaceous Beds in holes USW G-1, UE-25 No. 1, and USW G-2, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Lappin, A.R.; Nimick, F.B.

    1985-04-01

    One emplacement horizon considered for a nuclear-waste repository at Yucca Mountain, Nevada, adjacent to the Nevada Test Site, consists of a zeolitized section. This section is defined here as an informal functional unit called the Tuffaceous Beds. This report describes the logic, data, and uncertainties involved in picking the boundaries of the functional unit in exploratory Holes USW G-1, UE-25a No. 1, and USW G-2. It also includes frequency profiles for grain density and porosity within the unit in the three exploratory holes. Results indicate that the functional Tuffaceous Beds range from 143 to 312 m in total thickness in the three holes studied. Unit-wide average grain densities and porosities of nonwelded ash-flows are 2.39 g/cm 3 and 0.33, respectively. The average matrix thermal conductivity of heavily zeolitized tuffs is constant at 1.95 W/m.K. This value leads to average estimated conductivities of saturated and dehydrated nonwelded ashflows within the functional Tuffaceous Beds of 1.3 and 0.9 W/m.K, respectively. Available confined measurements indicate an average predehydration linear-expansion coefficient of 6.7 x 10 -6 K -1 ; individual values range from 2.8 to 13.2 x 10 -6 K -1 . Transdehydration expansion behavior is variable, with average coefficients ranging from -56 to -29 x 10 -6 K -1 , depending on relative zeolite and (quartz + feldspar) contents. Postdehydration behavior is also sensitive to mineralogy, with average unconfined coefficients ranging from -4.5 to +7.8 x 10 -6 K -1 for the different subunits within the functional Tuffaceous Beds. For the nonwelded ashflows dominant within the unit, pre-, trans-, and postdehydration expansion coefficients of +6.7, -56, and -4.5 x 10 -6 K -1 are most representative. 21 refs, 7 figs., 12 tabs

  10. Ground-water travel time calculations for the potential nuclear repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Wilson, W.E.; Sinnock, S.

    1986-01-01

    In support of the US Department of Energy Nevada Nuclear Waste Storage Investigations Project, ground-water travel times were calculated for flow paths in both the saturated and unsaturated zones at Yucca Mountain, a potential site for a high-level radioactive waste repository in southern Nevada. The calculations were made through a combined effort by Science Applications International Corporation, Sandia National Laboratories, and the US Geological Survey. Travel times in the unsaturated zone were estimated by dividing the flow path length by the ground-water velocity, where velocities were obtained by dividing the vertical flux by the effective porosity of the rock types along assumed vertical flow paths. Saturated zone velocities were obtained by dividing the product of the bulk hydraulic conductivity and hydraulic gradient by the effective porosity. Total travel time over an EPA-established 5-km flow path was then calculated to be the sum of the travel times in the two parts of the flow path. Estimates of ground water fluxes and travel times are critical for evaluating the favorability of the Yucca Mountain site because they provide the basis for estimating the potential for radionuclides to reach the accessible environment within certain time limits

  11. Vertical Distribution of Ozone and Nitric Acid Vapor on the Mammoth Mountain, Eastern Sierra Nevada, California

    Directory of Open Access Journals (Sweden)

    Andrzej Bytnerowicz

    2002-01-01

    Full Text Available In August and September 1999 and 2000, concentrations of ozone (O3 and nitric acid vapor (HNO3 were monitored at an elevation gradient (2184–3325 m on the Mammoth Mountain, eastern Sierra Nevada, California. Passive samplers were used for monitoring exposure to tropospheric O3 and HNO3 vapor. The 2-week average O3 concentrations ranged between 45 and 72 ppb, while HNO3 concentrations ranged between 0.06 and 0.52 μg/m3. Similar ranges of O3 and HNO3 were determined for 2 years of the study. No clear effects of elevation on concentrations of the two pollutants were detected. Concentrations of HNO3 were low and at the background levels expected for the eastern Sierra Nevada, while the measured concentrations of O3 were elevated. High concentrations of ozone in the study area were confirmed with an active UV absorption O3 monitor placed at the Mammoth Mountain Peak (September 5–14, 2000, average 24-h concentration of 56 ppb.

  12. Peak Ground Velocities for Seismic Events at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    K. Coppersmith; R. Quittmeyer

    2005-01-01

    This report describes a scientific analysis to bound credible horizontal peak ground velocities (PGV) for the repository waste emplacement level at Yucca Mountain. Results are presented as a probability distribution for horizontal PGV to represent uncertainties in the analysis. The analysis also combines the bound to horizontal PGV with results of ground motion site-response modeling (BSC 2004 [DIRS 170027]) to develop a composite hazard curve for horizontal PGV at the waste emplacement level. This result provides input to an abstraction of seismic consequences (BSC 2004 [DIRS 169183]). The seismic consequence abstraction, in turn, defines the input data and computational algorithms for the seismic scenario class of the total system performance assessment (TSPA). Planning for the analysis is documented in Technical Work Plan TWP-MGR-GS-000001 (BSC 2004 [DIRS 171850]). The bound on horizontal PGV at the repository waste emplacement level developed in this analysis complements ground motions developed on the basis of PSHA results. In the PSHA, ground motion experts characterized the epistemic uncertainty and aleatory variability in their ground motion interpretations. To characterize the aleatory variability they used unbounded lognormal distributions. As a consequence of these characterizations, as seismic hazard calculations are extended to lower and lower annual frequencies of being exceeded, the ground motion level increases without bound, eventually reaching levels that are not credible (Corradini 2003 [DIRS 171191]). To provide credible seismic inputs for TSPA, in accordance with 10 Code of Federal Regulations (CFR) 63.102(j) [DIRS 156605], this complementary analysis is carried out to determine reasonable bounding values of horizontal PGV at the waste emplacement level for annual frequencies of exceedance as low as 10 -8 . For each realization of the TSPA seismic scenario, the results of this analysis provide a constraint on the values sampled from the

  13. Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Chipera, S.J.; Bish, D.L.; Carlos, B.A.

    1993-01-01

    Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K + ) 2 /Ca ++ ) versus log a((Na + ) 2 /Ca ++ ) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions

  14. State of Nevada comments on the US Department of Energy site characterization plan, Yucca Mountain site, Nevada

    International Nuclear Information System (INIS)

    1989-01-01

    We find the Site Characterization Plan: Yucca Mountain Site, Nevada Research and Development Area (DOE/RW-0160) seriously deficient, in terms of establishing an investigative program to confidently characterize hydrogeologic and closely-related aspects of the proposed repository, in the vadose zone at Yucca Mountain. Most hydrogeological licensing criteria indirectly measure waste isolation provided by the geologic environment during pre- and post-closure conditions. We believe the Site Characterization Plan (SCP) generally fails to establish scientifically sound and feasible programs of investigation that will, in a timely and confident manner, resolve most of the hydrogeologic and geochemical licensing issues that have been recognized since the vadose-zone repository was first proposed at this location in 1982. The SCP generally fails in its responsibility because it does not objectively set aside the DOE conceptual model of a ''dry'' repository environment with extremely slow flow of water confined to the rock matrix. In the SCP, the DOE fails to establish a scientifically sound investigative program that seriously tests for hydrogeologic conditions based on the range of existing data and general knowledge. Rather, the DOE builds a probabilistic program upon a preconceived conceptual model, without designing a field-data collection program with the power to test the validity of the conceptual model. This is unacceptable in that the DOE program, as described in the SCP, plans to build numerical model after numerical model upon untested conceptual models, in attempts to ''resolve'' the fundamental licensing issues of waste isolation by the geologic barrier. If executed as planned, these analyses will have only a series of assumptions of their foundation and, therefore, can not resolve licensing issues. 12 refs., 3 figs

  15. Nye County Nevada local perspective of the yucca mountain project (YMP)

    International Nuclear Information System (INIS)

    Swanson, D.

    2008-01-01

    Nye County, Nevada, is host of the proposed Yucca Mountain nuclear waste repository. The Department of Energy (DOE) Nevada Test Site (NTS) and the Department of Defense Nevada Test and Training Range occupy a large portion of Nye County. The NTS has been the site of numerous nuclear device detonations; hosts two low-level nuclear waste landfills; and was (and is) the site of various nuclear physics experiments and tests that have resulted in the distribution of radionuclides into the environment. The Nuclear Waste Policy Act Amendments of 1987 designated Yucca Mountain as the only site, of the three sites approved for characterisation, to be evaluated as a repository. The Act includes provisions for local involvement in program oversight. Nye County and each county surrounding Nye is designated an affected unit of local government (AULG). Nye, being the situs county, also is provided the opportunity to have an on-site representative. This function is a day-to-day opportunity to interact with DOE staff and be actively involved in the DOE decision-making process. DOE has recognised Nye County unique status and special needs and has provided additional funding for various studies via co-operative agreements. The most notable program is the County Independent Science Investigation Program (ISIP). This unique program allows Nye County to contract with subject matter experts, primarily hydrological and geotechnical experts, to conduct studies and advise the county regarding their results and the technical results of DOE investigations. Through the ISIP, Nye has developed a co-operative and credible relationship with numerous research facilities including the national laboratories, government agencies, and universities. Nye County has no viable means to reject the YMP. Hence, current County policy is of a pragmatic nature in that our objectives are to assure that public health, safety and the environment are adequately protected, that the YMP is a success in every way

  16. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Marshall, B.D.; Futa, K.; Peterman, Z.E.

    1997-01-01

    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the 87 Rb parent is billions of years, the 87 Sr/ 86 Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water

  17. Calcite/opal deposits at Yucca Mountain, Nevada: Pedogenic or hypogene?

    International Nuclear Information System (INIS)

    Hill, C.A.; Schluter, C.M.; Harmon, R.S.

    1994-01-01

    This study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. The purpose of this paper is to consider all of the geological and geochemical data available for the calcite/opal deposits at Yucca Mountain and to ascertain whether this data favors a pedogenic or hyogene origin for these deposits. Far from being of esoteric concern, this subject is of paramount importance to the debate which rages around the suitability of Yucca Mountain as a high-level radioactive waste repository site. It is also the purpose of this paper to serve as a foundation for a lengthy feature article to be submitted for publication in 1994. In addition, a stand has been taken by the National Research Council of the National Academy of Sciences against the upwelling-water model (a vote of 17 to 0 against), and this same panel report has concluded that open-quotes there is no compelling evidence for the repetitive flooding of the environment by expulsion of groundwaterclose quotes and that open-quotes instead, the evidence strongly supports the idea that the near-surface mineral deposits resulted from percolating rainwater, which carried soil minerals down into rock fracturesclose quotes. Based on such information the Department of Energy has stated that it open-quotes finds no basis to continue to study the origin of these specific depositsclose quotes. This study, based upon many different independent lines of evidence, reaches the opposite conclusion and instead favors a hypogene spring-travertine origin for the controversial calcite/opal deposits at Yucca Mountain. This study recognizes a pedogenic carbonate component at Yucca Mountain, but argues that this component is distinct from, and sometimes intermixed with, the calcite/opal deposits

  18. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    International Nuclear Information System (INIS)

    1995-01-01

    The Yucca Mountain Project is one part of the Department of Energy's Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program's goal is to site the nation's first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it

  19. Independent management and financial review, Yucca Mountain Project, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-15

    The Yucca Mountain Project is one part of the Department of Energy`s Office of Civilian Radioactive Waste Management Program (the Program) which was established by the Nuclear Waste Policy Act of 1982, and as amended in 1987. The Program`s goal is to site the nation`s first geologic repository for the permanent disposal of high-level nuclear waste, in the form of spent fuel rod assemblies, generated by the nuclear power industry and a smaller quantity of Government radioactive waste. The Program, which also encompasses the transportation system and the multipurpose canister system was not the subject of this Report. The subject of this Review was only the Yucca Mountain Project in Nevada. While the Review was directed toward the Yucca Mountain Project rather than the Program as a whole, there are certain elements of the Project which cannot be addressed except through discussion of some Program issues. An example is the Total System Life Cycle Cost addressed in Section 7 of this report. Where Program issues are discussed in this Report, the reader is reminded of the scope limitations of the National Association of Regulatory Utility Commissioners (NARUC) contract to review only the Yucca Mountain Project. The primary scope of the Review was to respond to the specific criteria contained in the NARUC scope of work. In responding to these criteria, the Review Team understood that some interested parties have expressed concern over the requirements of the Nuclear Waste Policy Act relative to the Yucca Mountain Project and the nature of activities currently being carried out by the Department of Energy at the Yucca Mountain Project site. The Review Team has attempted to analyze relevant portions of the Nuclear Waste Policy Act as Amended, but has not conducted a thorough analysis of this legislation that could lead to any specific legal conclusions about all aspects of it.

  20. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed

  1. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed

  2. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  3. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in accordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site; to describe the conceptual designs for the repository and the waste package; and to present the plans for obtaining the geologic information necessary to demonstate the suitability of the site for a repository, to desin the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next; it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed.

  4. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended by the Secretary of Energy and approved by the President for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared by the US Department of Energy (DOE) in accordance with the requirements of the Nulcear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package;and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and developing a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing principles, and organization of the site characterization plan are oulined, and compliance with applicable regulations is discussed.

  5. Site characterization plan: Yucca Mountain site, Nevada research and development area, Nevada: Consultation draft, Nuclear Waste Policy Act: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-01-01

    The Yucca Mountain site in Nevada is one of three candidate sites for the first geologic repository for radioactive waste. On May 28, 1986, it was recommended for detailed study in a program of site characterization. This site characterization plan (SCP) has been prepared in acordance with the requirements of the Nuclear Waste Policy Act to summarize the information collected to date about the geologic conditions at the site;to describe the conceptual designs for the repository and the waste package and to present the plans for obtaining the geologic information necessary to demonstrate the suitability of the site for a repository, to design the repository and the waste package, to prepare an environmental impact statement, and to obtain from the US Nuclear Regulatory Commission (NRC) an authorization to construct the repository. This introduction begins with a brief section on the process for siting and eveloping a repository, followed by a discussion of the pertinent legislation and regulations. A description of site characterization is presented next;it describes the facilities to be constructed for the site characterization program and explains the principal activities to be conducted during the program. Finally, the purpose, content, organizing prinicples, and organization of this site characterization plan are outlined, and compliance with applicable regulations is discussed. 880 refs., 130 figs., 25 tabs.

  6. Transport of Radon Gas into a Tunnel at Yucca Mountain-Estimating Large-Scale Fractured Tuff Hydraulic Properties and Implications for the Operation of the Ventilation System

    International Nuclear Information System (INIS)

    Unger, A.; Finsterle, S.; Bodvarsson, G.

    2003-01-01

    Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of l x 10 -11 m 2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level

  7. Site characterization plan overview: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Consultation Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The consultation draft of the site characterization plan is a lengthy document that describes in considerable detail the program that will be conducted to characterize the geologic, hydrologic, and other conditions relevant to the suitability of the site for a repository. The overview presented here consists of brief summaries of important topics covered in the consultation draft of the site-characterization plan; it is not a substitute for the site-characterization plan. The arrangement of the overview is similar to that of the plan itself, with brief descriptions of the disposal system -- the site, the repository, and the waste package -- preceding the discussion of the characterization program to be carried out at the Yucca Mountain site. It is intended primarily for the management staff of organizations involved in the DOE's repository program -- staff who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization. 22 figs., 1 tab

  8. Unit evaluation at Yucca Mountain, Nevada Test Site: summary report and recommendation

    International Nuclear Information System (INIS)

    Johnstone, J.K.; Peters, R.R.; Gnirk, P.F.

    1984-06-01

    Of the four potential repository units, identified at Yucca Mountain, two potential units the welded, devitrified portions of the Bullfrog and Tram Members of the Crater Flat Tuff are below the water table. The welded, devitrified Topopah Spring Member of the Paintbrush Tuff and the nonwelded, zeolitized Tuffaceous Beds of Calico Hills are above the water table. The results of a study of the four potential repository units are to provide a technical basis for selecting a single target repository unit for future test and evaluation. The unit evaluation studies compared the units rather than provided and absolute assessment. The four ranking evaluation criteria used were: radionuclide isolation time; allowable repository gross thermal loading; excavation stability; and relative economics. Considered the most important of the criteria as well as the most difficult, radionuclide isolation times were estimated using the limited existing data. The allowable repository gross thermal loadings determined from near-field calculations, were nearly the same for all four units. The gross thermal loading supported other criteria by providing the heat source for succeeding thermally related evaluation studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations studies. A large number of studies evaluated excavation stability, including near-field mechanical and thermomechanical finite element code calculations, rock matrix property evaluation, and rock mass classification. Relative economics, a minor criterion, did not play an explicit role in the final ranking. Based on all of the analyses, the final recommendation was that the Topopah Springs be selected as the target unit, followed, in order, by the Calico Hills, Bullfrog, and Tram

  9. Analysis of the magnetic susceptibility well log in drill hole UE25a-5, Yucca Mountain, Nevada Test Site

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Daniels, J.J.; Scott, J.H.

    1980-01-01

    Magnetic susceptibility measurements have been shown to be dependent upon the magnetite content of rocks with variations in rock susceptibility arising from changes in the shape, size, composition, and quantity of the contained magnetite grains. The present study was undertaken to determine the factor(s) responsible for the variation in magnetic susceptibility measurements from borehole UE25a-5 on the Nevada Test Site (NTS). The well logs and sample analyses presented in this paper form part of a larger geophysical well-logging project studying the physical properties of welded tuffs at NTS. The ash-flow sheets at NTS appear to be the products of single compositionally zoned magmas that tend, within a cooling unit, to erupt hotter, more mafic, and more crystal-rich with time. These factors, however, have little effect on the degree to which the tuffs become welded. Furthermore, zones of crystallization and alteration are superimposed upon the welded units. X-ray data show poor correspondence between the relative abundance of magnetite in a sample and the borehole magnetic susceptibility measurement associated with it. Curie balance experiments demonstrate no change in the magnetic mineralogy that could account for the susceptibility variation. Thin-section observations corroborate the x-ray data, but indicate a proportional relationship between the borehole susceptibility measurements and the grain-size distribution of magnetite. The association of magnetic susceptibility anomalies with the crystal-rich zones of the welded tuffs will aid in the identification and correlation of the eruptive sequences at NTS

  10. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  11. Geohydrologic and drill-hole data for test well USW H-4, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Whitfield, M.S.; Thordarson, William; Eshom, E.P.

    1984-01-01

    Data are presented on drilling operations, lithology, geophysical well logs, sidewall-core samples, water-level monitoring, pumping tests, injection tests, radioactive-tracer borehole flow survey, and water chemistry for test well USW H-4. The well is one of a series of test wells drilled in the southwestern part of the Nevada Test Site, Nye County, Nevada, in cooperation with the U.S. Department of Energy. These test wells are part of the Nevada Nuclear Waste Storage Investigations to identify sites for storage of high-level radioactive wastes. Test well USW H-4 was drilled in ash-flow tuff to a total depth of 1,219 meters. Depth to water below land surface was 519 meters or at an altitude of 730 meters above sea level. After test pumping at a rate of 17.4 liters per second for approximately 9 days, the drawdown was 4.85 meters. A radioactive borehole-flow survey indicated that the Bullfrog Member was the most productive geologic unit, producing 36.5 percent of the water in the well. The second most productive geologic unit was the Tram Member, which produced 32 percent of the water. The water in test well USW H-4 is predominantly a soft, sodium bicarbonate type of water typical of water produced in tuffaceous rocks in southern Nevada. (USGS)

  12. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  13. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  14. Magnetic investigations along selected high-resolution seismic traverses in the central block of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Sikora, R.F.; Roberts, C.W.; Morin, R.L.; Halvorson, P.F.

    1995-01-01

    Ground magnetic data collected along several traverses across the central block of Yucca Mountain in southwest Nevada are interpreted. These data were collected as part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain. Magnetic data and models along traverses across the central block of Yucca Mountain reveal anomalies associated with known faults and indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. The central part of the eastern flank of Yucca Mountain is characterized by numerous small-amplitude anomalies that probably reflect small-scale faulting. Magnetic modeling of the terrain along the eastern flank of Yucca Mountain indicates that terrain induced magnetic anomalies of about 100 to 150 nT are present along some profiles where steep terrain exists above the magnetometer

  15. Measuring and Modeling Flow in Welded Fractured Tuffs

    International Nuclear Information System (INIS)

    R. Salve; C. Doughty; J.S. Wang

    2001-01-01

    We have carried out a series of in situ liquid-release experiments in conjunction with a numerical modeling study to examine the effect of the rock matrix on liquid flow and transport occurring primarily through the fracture network. Field experiments were conducted in the highly fractured Topopah Spring welded tuff at a site accessed from the Exploratory Studies Facility (ESFS), an underground laboratory in the unsaturated zone at Yucca Mountain, Nevada. During the experiment, wetting-front movement, flow-field evolution, and drainage of fracture flow paths were evaluated. Modeling was used to aid in experimental design, predict experimental results, and study the physical processes accompanying liquid flow through unsaturated fractured welded tuff. Field experiments and modeling suggest that it may not be sufficient to conceptualize the fractured tuff as consisting of a single network of high-permeability fractures embedded in a low-permeability matrix. The need to include a secondary fracture network is demonstrated by comparison to the liquid flow observed in the field

  16. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  17. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  18. Shallow infiltration processes at Yucca Mountain, Nevada: Neutron logging data 1984--1993

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L.

    1995-01-01

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridgetops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration

  19. Shallow infiltration processes at Yucca Mountain, Nevada - neutron logging data 1984-93

    International Nuclear Information System (INIS)

    Flint, L.E.; Flint, A.L.

    1995-01-01

    To determine site suitability of Yucca Mountain, Nevada, as a potential high-level radioactive waste repository, a study was devised to characterize net infiltration. This study involves a detailed data set produced from 99 neutron boreholes that consisted of volumetric water-content readings with depth from 1984 through 1993 at Yucca Mountain. Boreholes were drilled with minimal disturbance to the surrounding soil or rock in order to best represent field conditions. Boreholes were located in topographic positions representing infiltration zones identified as ridge-tops, sideslopes, terraces, and active channels. Through careful field calibration, neutron moisture logs, collected on a monthly basis and representing most of the areal locations at Yucca Mountain, illustrated that the depth of penetration of seasonal moisture, important for escaping loss to evapotranspiration, was influenced by several factors. It was increased (1) by thin soil cover, especially in locations where thin soil is underlain by fractured bedrock; (2) on ridgetops; and (3) during the winter when evapotranspiration is low and runoff is less frequent. This data set helps to provide a seasonal and areal distribution of changes in volumetric water content with which to assess hydrologic processes contributing to net infiltration

  20. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  1. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-10-01

    Full Text Available A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to −50 to + 50 W m−2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to −40 g m−2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between −12~12 W m−2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the

  2. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    International Nuclear Information System (INIS)

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-01-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed

  3. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    J. Stuckless

    2006-01-01

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface

  4. Water levels in wells J-11 and J-12, 1989-91, Yucca Mountain Area, Nevada

    International Nuclear Information System (INIS)

    Boucher, M.S.

    1994-01-01

    Water levels have been measured in the Yucca Mountain area, Nevada, since 1981 in order to gain a better understanding of the ground-water flow system in the area. Water levels in wells J-11 and J-12 have been periodically measured using calibrated reeled steel tapes since 1989, however, calculation of water-level altitude was not possible prior to 1993 due to missing reference elevations. These elevations were determined in 1993 by the U.S. Geological Survey. During 1989-91, water-level altitudes for well J-11 ranged from 732.09 to 732.40 meters and the mean water-level altitude was 732.19 meters. During 1989-91, water-level altitudes for well J-12 ranged from 727.84 to 728.03 meters, and the mean water-level altitude was 727.95 meters

  5. Natural Analoges as a Check of Predicted Drift Stability at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Stuckless

    2006-03-10

    Calculations made by the U.S. Department of Energy's Yucca Mountain Project as part of the licensing of a proposed geologic repository (in southwestern Nevada) for the disposal of high-level radioactive waste, predict that emplacement tunnels will remain open with little collapse long after ground support has disintegrated. This conclusion includes the effects of anticipated seismic events. Natural analogues cannot provide a quantitative test of this conclusion, but they can provide a reasonableness test by examining the natural and anthropogenic examples of stability of subterranean openings. Available data from a variety of sources, combined with limited observations by the author, show that natural underground openings tend to resist collapse for millions of years and that anthropogenic subterranean openings have remained open from before recorded history through today. This stability is true even in seismically active areas. In fact, the archaeological record is heavily skewed toward preservation of underground structures relative to those found at the surface.

  6. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1994-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium's electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 325 specific and intraspecific taxa within the area, these allocated to 162 genera and 53 families. Owing to drought conditions prevalent throughout the area, the annual floristic component was largely absent during the period of study, and it is likely much under-represented in the tabulation of results. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this survey

  7. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1994-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 325 specific and intraspecific taxa within the area, these allocated to 162 genera and 53 families. Owing to drought conditions prevalent throughout the area, the annual floristic component was largely absent during the period of study, and it is likely much under-represented in the tabulation of results. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this survey.

  8. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    Science.gov (United States)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  9. Mechanical tunnel excavation in welded tuff

    International Nuclear Information System (INIS)

    Sperry, P.E.

    1991-01-01

    The Technical Review Board for the US high-level radioactive waste facility at Yucca Mountain has recommended maximum use of open-quotes the most modern mechanical excavation techniques...in order to reduce disturbance to the rock walls and to achieve greater economy of time and cost.close quotes Tunnels for the waste repository at Yucca Mountain can be economically constructed with mechanical excavation equipment. This paper presents the results of mechanical excavation of a tunnel in welded tuff, similar to the tuffs of Yucca Mountain. These results are projected to excavation of emplacement drifts in Yucca Mountain using a current state-of-the-art tunnel boring machine (TBM)

  10. Preliminary calculations of release rates from spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Apted, M.J.; O'Connell, W.J.; Lee, K.H.; MacIntyre, A.T.; Ueng, T.S.; Pigford, T.H.; Lee, W.W.L.

    1991-01-01

    Time-dependent release rates of Tc-99, I-129, Cs-135, and Np-237 have been calculated for wet-drip and moist-continuous release modes from the engineered barrier system of a potential nuclear waste repository in unsaturated tuff, representative of a possible repository at Yucca Mountain in southern Nevada. We describe the modes of water contact and of release of dissolved radionuclides to the surrounding intact rock, and the corresponding calculational models. We list the parameter values adopted, and then present numerical results, conclusions, and recommendations. 21 refs., 5 figs., 2 tabs

  11. Chlorine-36 investigations of groundwater infiltration in the Exploratory Studies Facility at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Levy, S.S.; Fabryka-Martin, J.T.; Dixon, P.R.; Liu, B.; Turin, H.J.; Wolfsberg, A.V.

    1997-01-01

    Chlorine-36, including the natural cosmogenic component and the component produced during atmospheric nuclear testing in the 1950's and 1960's (bomb pulse), is being used as an isotopic tracer for groundwater infiltration studies at Yucca Mountain, a potential nuclear waste repository. Rock samples have been collected systematically in the Exploratory Studies Facility (ESF), and samples were also collected from fractures, faults, and breccia zones. Isotopic ratios indicative of bomb-pulse components in the water ( 36 Cl/Cl values > 1,250 x 10 -15 ), signifying less than 40-yr travel times from the surface, have been detected at a few locations within the Topopah Spring Tuff, the candidate host rock for the repository. The specific features associated with the high 36 Cl/Cl values are predominantly cooling joints and syngenetic breccias, but most of the sites are in the general vicinity of faults. The non-bomb pulse samples have 36 Cl/Cl values interpreted to indicate groundwater travel times of at least a few thousand to possibly several hundred thousand years. Preliminary numerical solute-travel experiments using the FEHM (Finite Element Heat and Mass transfer) code demonstrate consistency between these interpreted ages and the observed 36 Cl/Cl values but do not validate the interpretations

  12. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Krier, D.J.; Perry, F.V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10 -8 per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone (∼80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume, eruption

  13. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    Science.gov (United States)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high

  14. Microautoradiography in studies of Pu(V) sorption by trace and fracture minerals in tuff

    International Nuclear Information System (INIS)

    Vaniman, D.; Furlano, A.; Chipera, S.; Thompson, J.; Triay, I.

    1996-01-01

    Microautoradiography was used to evaluate the mineralogic basis of Pu(V) retention by tuffs from Yucca Mountain, Nevada. Altered orthopyroxenes and oxide minerals are associated with high Pu retention but are limited to specific stratigraphic horizons. A weaker but more general association of Pu with smectite occurs in most samples. Thin-sections that cross fractures allow comparative studies of Pu retention by fracture-lining versus matrix minerals. Using Ag metal in emulsions as a measure of underlying Pu concentration, electron-microprobe analysis can quantify Pu retention along fracture walls and provide mineral/mineral Pu retention factors. For smectite-lined microfractures in zeolitized tuff, the smectite/clinoptilolite Pu retention factor is >80

  15. Volcanic harzards studies tailored to future populations and facilities: Yucca Mountain, Nevada, USA

    International Nuclear Information System (INIS)

    Keating, Gordon N.; Perry, Frank V.; Harrington, Charles; Krier, Don; Valentine, Greg A.; Gaffney, Edward; Cline, Mike

    2004-01-01

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. These studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ((le) 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra

  16. Inventory of past DOE land disturbance, Yucca Mountain, Nevada, and estimated general reclamation costs

    International Nuclear Information System (INIS)

    1989-04-01

    Since 1976, DOE preliminary investigations for a high level nuclear waste repository at Yucca Mountain, Nevada, have caused widespread disturbances of the landscape. This report addresses the areal extent of those disturbances that have accrued up to June 1988, and identifies expected associated reclamation costs. It was first necessary to identify disturbances, next to classify them for reclamation purposes, and, then, to assign general reclamation costs. The purposes of the analysis were: (1) to establish the amount of disturbance that already exists in the area of Yucca Mountain in order to identify alterations of the landscape that comprise the existing baseline conditions; (2) to identify estimated general reclamation costs for repair of the disturbances; (3) to provide information needed to establish disturbance models, and eventually environmental impact models, that can be applied to future DOE activities during Site Characterization and later phases of repository development, if they occur, and (4) to provide indicators of the needs for reclamation of future disturbances created by DOE's Site Characterization program. Disturbances were estimated using measurements from June 1988, large scale color aerial photography. Two reconnaissance site visits were also conducted. The identified disturbance totals by type are displayed in tabular form in the appendices. 84 refs., 2 figs., 9 tabs

  17. Hydrogeology of the unsaturated zone, North Ramp area of the Exploratory Studies Facility, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, J.P.; Kwicklis, E.M.; Gillies, D.C. [eds.

    1999-03-01

    Yucca Mountain, in southern Nevada, is being investigated by the US Department of Energy as a potential site for a repository for high-level radioactive waste. This report documents the results of surface-based geologic, pneumatic, hydrologic, and geochemical studies conducted during 1992 to 1996 by the US Geological Survey in the vicinity of the North Ramp of the Exploratory Studies Facility (ESF) that are pertinent to understanding multiphase fluid flow within the deep unsaturated zone. Detailed stratigraphic and structural characteristics of the study area provided the hydrogeologic framework for these investigations. Shallow infiltration is not discussed in detail in this report because the focus in on three major aspects of the deep unsaturated-zone system: geologic framework, the gaseous-phase system, and the aqueous-phase system. However, because the relation between shallow infiltration and deep percolation is important to an overall understanding of the unsaturated-zone flow system, a summary of infiltration studies conducted to date at Yucca Mountain is provided in the section titled Shallow Infiltration. This report describes results of several Site Characterization Plan studies that were ongoing at the time excavation of the ESF North Ramp began and that continued as excavation proceeded.

  18. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s -1 . An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm 3 . This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s -1 ), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model

  19. A preliminary comparison of mineral deposits in faults near Yucca Mountain, Nevada, with possible analogs

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Bish, D.L.; Chipera, S.

    1988-05-01

    Several faults near Yucca Mountain, Nevada, contain abundant calcite and opal-CT, with lesser amounts of opal-A and sepiolite or smectite. These secondary minerals are being studied to determine the directions, amounts, and timing of transport involved in their formation. Such information is important for evaluating the future performances of a potential high-level nuclear waste repository beneath Yucca Mountain. This report is a preliminary assessment of how those minerals were formed. Possible analog deposits from known hydrothermal veins, warm springs, cold springs or seeps, soils, and aeolian sands were studied by petrographic and x-ray diffraction methods for comparison with the minerals deposited in the faults; there are major mineralogic differences in all of these environments except in the aeolian sands and in some cold seeps. Preliminary conclusions are that the deposits in the faults and in the sand ramps are closely related, and that the process of deposition did not require upward transport from depth. 35 refs., 25 figs

  20. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C.; Ballou, L.B.; Revelli, M.A.; Ducharme, A.R.; Shephard, L.E.; Dudley, W.W.; Hoxie, D.T.; Herbst, R.J.; Patera, E.A.; Judd, B.R.; Docka, J.A.; Rickertsen, L.D.

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE's Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ''current information'' or ''available evidence.''

  1. Thermoluminescence dating of soils in a semi-arid environment, Yucca Mountain area, Southern Nevada, USA

    International Nuclear Information System (INIS)

    Mahan, S.A.; Paces, J.B.; Peterman, Z.E.

    1995-01-01

    Yucca Mountain, Nevada, is currently being investigated as a potential nuclear waste repository. Because radionuclides must be isolated over a ten to several hundred thousand year time span, an assessment of the performance depends in part on accurate reconstruction of the Quaternary geologic and hydrologic history of the mountain. Reliable geochronology in an oxidizing environment dominated by coarse-grained, clastic surficial deposits has become a central issue for several studies including paleoseismic reconstruction, determination of rates of erosion and deposition, and the history of regional water-table fluctuations documented by ground-water discharge deposits. Thermoluminescence (TL) dating of polymineralic silt fractions in a variety of surface deposits has become an important component of the Quaternary dating strategy, along with uranium-series disequilibrium dating of secondary carbonate and opaline silica, and to a lesser extent, radiocarbon dating of carbonate components. Although the complex mineralogy of these materials contributes to greater amounts of scatter in their TL response relative to typical quartzofeldspathic loess and dune deposits, the derived ages are reproducible, consistent with internal stratigraphy, and generally concordant with other available geochronology

  2. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  3. Quaternary allostratigraphy of surficial deposit map units at Yucca Mountain, Nevada: A progress report

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Wesling, J.R.; Swan, F.H.; Taylor, E.M.; Whitney, J.W.

    1993-01-01

    Surficial geologic mapping at Yucca Mountain, Nevada, is relevant to site characterization studies of paleoclimate, tectonics, erosion, flood hazards, and water infiltration. Alluvial, colluvial, and eolian allostratigraphic map units are defined on the basis of age-related surface characteristics and soil development, as well as lithology and sedimentology indicative of provenance and depositional mode. In gravelly alluvial units, which include interbedded debris flows, the authors observe a useful qualitative correlation between surface and soil properties. Map units of estimated middle Pleistocene age typically have a well-developed, varnished desert pavement, and minimal erosional and preserved depositional microrelief, associated with a soil with a reddened Bt horizon and stage 3 carbonate and silica morphology. Older units have greater erosional relief, an eroded argillic horizon and stage 4 carbonate morphology, whereas younger units have greater preservation of depositional morphology, but lack well-developed pavements, rock varnish, and Bt and Kqm soil horizons. Trench and gully-wall exposures show that alluvial, colluvial and eolian dominated surface units are underlain by multiple buried soils separating sedimentologically similar deposits; this stratigraphy increases the potential for understanding the long-term Quaternary paleoenvironmental history of Yucca Mountain. Age estimates for allostratigraphic units, presently based on uranium-trend dating and regional correlation using soil development, will be further constrained by ongoing dating studies that include tephra identification, uranium-series disequilibrium, and thermoluminescence methods

  4. Geometric analysis of alternative models of faulting at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Young, S.R.; Stirewalt, G.L.; Morris, A.P.

    1993-01-01

    Realistic cross section tectonic models must be retrodeformable to geologically reasonable pre-deformation states. Furthermore, it must be shown that geologic structures depicted on cross section tectonic models can have formed by kinematically viable deformation mechanisms. Simple shear (i.e., listric fault models) is consistent with extensional geologic structures and fault patterns described at Yucca Mountain, Nevada. Flexural slip models yield results similar to oblique simple shear mechanisms, although there is no strong geological evidence for flexural slip deformation. Slip-line deformation is shown to generate fault block geometrics that are a close approximation to observed fault block structures. However, slip-line deformation implies a degree of general ductility for which there is no direct geological evidence. Simple and hybrid 'domino' (i.e., planar fault) models do not adequately explain observed variations of fault block dip or the development of 'rollover' folds adjacent to major bounding faults. Overall tectonic extension may be underestimated because of syn-tectonic deposition (growth faulting) of the Tertiary pyroclastic rocks that comprise Yucca Mountain. A strong diagnostic test of the applicability of the domino model may be provided by improved knowledge of Tertiary volcanic stratigraphy

  5. A preliminary characterization of the spatial variability of precipitation at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Ambos, D.S.

    1994-01-01

    Isohyetal maps of precipitation and numerical models for simulating precipitation are needed to help characterize natural infiltration at Yucca Mountain, Nevada. A geostatistical analysis of measured precipitation accumulated from storm periods. Precipitation was measured during a 3.8 year period from January 1990 to October, 1993 using a network of precipitation gages. A total of 34 winter-type storms and 12 summer-type storm, categorized using synoptic weather records, were analyzed using the 1st and 2nd statistical moments and sample variograms. Average standardized variograms indicated good spatial correlation for both storm types with only slight differences in the general spatial structure. Coefficients of variation and average relative variograms indicated that summer storms are characterized by greater variability as compared to winter storms. Models were fitted to the average summer and winter standarized variograms for each storm using the mean storm depth and the coefficient of variation as scaling parameters. Isohyetal maps of 4 representative storms were created using the standarized models. Results indicate that standarized models can be used to simulate the spatial distribution of precipitation depth, provided that the 1st and 2nd moments are known or can be estimated, and that identifiable deterministic trends can be included in the models. A single, fixed model representing the spatial variability of precipitation at Yucca Mountain is not recommended

  6. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  7. Native American interpretation of cultural resources in the area of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Stoffle, R.W.; Evans, M.J.; Harshbarger, C.L.

    1989-03-01

    This report presents the location and interpretation of Native American cultural resources on or near Yucca Mountain, Nevada. This work builds on the archaeological reconnaissance and identifications of cultural resources by the Desert Research Institute (for a summary, see Pippin and Zerga, 1983; Pippin, 1984). Interpretations provided by Native American Indian people are not intended to refute other scientific studies, such as botanical, wildlife, and archaeological studies. Rather, they provide additional hypotheses for future studies, and they provide a more complete cultural understanding of the Yucca Mountain area. Representatives of sixteen American Indian tribes identified the cultural value of these resources as part of a consultation relationship with the US Department of Energy (DOE). This interim report is to be used to review research procedures and findings regarding initial consultation with the sixteen tribes, in-depth interviews with tribal elders, and findings from the first on-site visit with representatives of the sixteen tribes. As additional information is collected, it will be reviewed separately. An annual report will integrate all findings. 44 refs., 58 figs., 2 tabs

  8. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  9. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  10. An evaluation of environmental effects of the DOE HLW repository siting and characterization program at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Winsor, M.F.; Ulland, L.M.

    1989-01-01

    This paper presents highlights of the Nevada Nuclear Waste Project Office (NWPO) environmental investigations in progress on the environmental effects of past and proposed activities of the Department of Energy (DOE) at the Yucca Mountain repository. The environmental investigations refer to those studies specifically related to resource evaluation, impact assessment and mitigation planning for the repository program; it is defined to exclude consideration of technical suitability determinations, socioeconomics and transportation. This paper addresses the question of what are the disturbances created by past and proposed DOE activities related to repository siting and characterization at Yucca Mountain. It discusses considerations in linking disturbance to the potential for significant adverse environmental impacts

  11. Computed distributions of residual shaft drilling and construction water in the exploratory facilities at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Eaton, R.R.; Peterson, A.C.

    1989-01-01

    The Yucca Mountain Project is studying the feasibility of constructing a high-level nuclear waste repository at Yucca Mountain in southwest Nevada. One activity of site characterization is the construction of two exploratory shafts. This paper contains the results of engineering analytical calculations of the potential distribution of residual construction water in the exploratory shafts and drifts and numerical calculations of the movement of the residual water and how the movement is affected by drift ventilation. In all cases the increase in rock saturation resulting from the construction water was extremely small. 11 refs., 15 figs., 1 tab

  12. Factors limiting microbial growth and activity at a proposed high-level nuclear repository, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Kieft, T.L.; Kovacik, W.P. Jr.; Ringelberg, D.B.; White, D.C.; Haldeman, D.L.; Amy, P.S.; Hersman, L.E.

    1997-01-01

    As part of the characterization of Yucca Mountain, Nev., as a potential repository for high-level nuclear waste, volcanic tuff was analyzed for microbial abundance and activity. Tuff was collected aseptically from nine sites along a tunnel in Yucca Mountain. Microbial abundance was generally low: direct microscopic cell counts were near detection limits at all sites (3.2 X 10(1) to 2.0 X 10(5) cells g-1 [dry weight]); plate counts of aerobic heterotrophs ranged from 1.0 X 10(1) to 3.2 X 10(3) CFU g-1 (dry weight). Phospholipid fatty acid concentrations (0.1 to 3.7 pmol g-1) also indicated low microbial biomasses: diglyceride fatty acid concentrations, indicative of dead cells, were in a similar range (0.2 to 2.3 pmol g-1). Potential microbial activity was quantified as 14CO2 production in microcosms containing radiolabeled substrates (glucose, acetate, and glutamic acid); amendments with water and nutrient solutions (N and P) were used to test factors potentially limiting this activity. Similarly, the potential for microbial growth and the factors limiting growth were determined by performing plate counts before and after incubating volcanic tuff samples for 24 h under various conditions: ambient moisture, water-amended, and amended with various nutrient solutions (N, P, and organic C). A high potential for microbial activity was demonstrated by high rates of substrate mineralization (as much as 70% of added organic C in 3 weeks). Water was the major limiting factor to growth and microbial activity, while amendments with N and P resulted in little further stimulation. Organic C amendments stimulated growth more than water alone

  13. Consideration of Nuclear Criticality When Directly Disposing Highly Enriched Spent Nuclear Fuel in Unsaturated Tuff - I: Nuclear Criticality Constraints

    International Nuclear Information System (INIS)

    Rechard, Rob P.; Sanchez, Lawrence C.; Trellue, Holly R.

    2003-01-01

    This paper presents the mass, concentration, and volume required for a critical event to occur in homogeneous mixtures of fissile material and various other geologic materials. The fissile material considered is primarily highly enriched uranium spent fuel; however, 239 Pu is considered in some cases. The non-fissile materials examined are those found in the proposed repository area at Yucca Mountain, Nevada: volcanic tuff, iron rust, concrete, and naturally occurring water. For 235 U, the minimum critical solid concentration for tuff was 5 kg/m 3 (similar to sandstone), and in goethite, 45 kg/m 3 . The critical mass of uranium was sensitive to a number of factors, such as moisture content and fissile enrichment, but had a minimum, assuming almost 100% saturation and >20% enrichment, of 18 kg in tuff as Soddyite (or 9.5 kg as UO 2 ) and 7 kg in goethite. For 239 Pu, the minimum critical solid concentration for tuff was 3 kg/m 3 (similar to sandstone); in goethite, 20 kg/m 3 . The critical mass of plutonium was also sensitive to a number of factors, but had a minimum, assuming 100% saturation and 80-90% enrichment, of 5 kg in tuff and 6 kg in goethite

  14. Hydraulic fracturing stress measurements at Yucca Mountain, Nevada, and relationship to the regional stress field

    International Nuclear Information System (INIS)

    Stock, J.M.; Healy, J.H.; Hickman, S.H.; Zoback, M.D.

    1985-01-01

    Hydraulic fracturing stress measurements and acoustic borehole televiewer logs were run in holes USW G-1 and USW G-2 at Yucca Mountain as part of the Nevada Nuclear Waste Storage Investigations for the U. S. Department of Energy. Eight tests in the saturated zone, at depths from 646 to 1288 m, yielded values of the least horizontal stress S/sub h/ that are considerably lower than the vertical principal stress S/sub v/. In tests for which the greatest horizontal principal stress S/sub H/ could be determined, it was found to be less than S/sub v/, indicating a normal faulting stress regime. The borehole televiewer logs showed the presence of long (in excess of 10 m), vertical, drilling-induced fractures in the first 300 m below the water table. These are believed to form by the propagation of small preexisting cracks under the excess downhole fluid pressures (up to 5.2 MPa) applied during drilling. The presence of these drilling-induced hydrofractures provides further confirmation of the low value of the least horizontal stresses. A least horizontal principal stress direction of N60 0 W--N65 0 W is indicated by the orientation of the drilling-induced hydrofractures (N25 0 E--N30 0 E), and the orientation of stress-induced well bore breakouts in the lower part of USW G-2 (N65 0 W). This direction is in good agreement with indicators of stress direction from elsewhere at the Nevada Test Site. The observed stress magnitudes and directions were examined for the possibility of slip on preexisting faults. Using these data, the Coulomb criterion for frictional sliding suggests that for coefficients of friction close to 0.6, movement on favorably oriented faults could be expected

  15. Magnetic properties and emplacement of the Bishop tuff, California

    Science.gov (United States)

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence

  16. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  17. An experimental program for testing the validity of flow and transport models in unsaturated tuff: The Yucca Mountain Project

    International Nuclear Information System (INIS)

    Shephard, L.E.; Glass, R.J.; Siegel, M.D.; Tidwell, V.C.

    1990-01-01

    Groundwater flow and contaminant transport through the unsaturated zone are receiving increased attention as options for waste disposal in saturated media continue to be considered as a potential means for resolving the nation's waste management concerns. An experimental program is being developed to test the validity of conceptual flow and transport models that are being formulated to predict the long-term performance at Yucca Mountain. This program is in the developmental stage and will continue to evolve as information is acquired and knowledge is improved with reference to flow and transport in unsaturated fractured media. The general approach for directing the validation effort entails identifying those processes which may cause the site to fail relative to imposed regulatory requirements, evaluating the key assumptions underlying the conceptual models used or developed to describe these processes, and developing new conceptual models as needed. Emphasis is currently being placed in four general areas: flow and transport in unsaturated fractures; fracture-matrix interactions; infiltration flow instability; and evaluation of scale effects in heterogeneous fractured media. Preliminary results and plans or each of these areas for both the laboratory and field investigation components will be presented in the manuscript. 1 ref

  18. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, J.D.; Burger, P.A. [Colorado School of Mines, Golden, CO (United States); Yang, L.C. [Geological Survey, Denver, CO (United States)

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  19. Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1998-01-01

    Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data

  20. FORMATION OF CALCITE AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    Paces, J.B.; Whelan, J.F.; Peterman, Z.E.; Marshall, B.D.

    2000-01-01

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings

  1. Development of waste packages for tuff

    International Nuclear Information System (INIS)

    Rothman, A.J.

    1982-01-01

    The objective of this program is to develop nuclear waste packages that meet the Nuclear Regulatory Commission's requirements for a licensed repository in tuff at the Nevada Test Site. Selected accomplishments for FY82 are: (1) Selection, collection of rock, and characterization of suitable outcrops (for lab experiments); (2) Rock-water interactions (Bullfrog Tuff); (3) Corrosion tests of ferrous metals; (4) Thermal modeling of waste package in host rock; (5) Preliminary fabrication tests of alternate backfills (crushed tuff); (6) Reviewed Westinghouse conceptual waste package designs for tuff and began modification for unsaturated zone; and (7) Waste Package Codes (BARIER and WAPPA) now running on our computer. Brief discussions are presented for rock-water interactions, corrosion tests of ferrous metals, and thermal and radionuclide migration modelling

  2. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs.

  3. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 4, Part B: Chapter 8, Sections 8.0 through 8.3.1.4

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1-5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE`s Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 74 figs., 32 tabs.

  4. Site characterization plan: Yucca Mountain Site, Nevada Research and Development Area, Nevada: Volume 2, Part A: Chapters 3, 4, and 5

    International Nuclear Information System (INIS)

    1988-12-01

    This site characterization plan (SCP) has been developed for the candidate repository site at Yucca Mountain in the State of Nevada. The SCP includes a description of the Yucca Mountain site (Chapters 1--5), a conceptual design for the repository (Chapter 6), a description of the packaging to be used for the waste to be emplaced in the repository (Chapter 7), and a description of the planned site characterization activities (Chapter 8). The schedules and milestones presented in Sections 8.3 and 8.5 of the SCP were developed to be consistent with the June 1988 draft Amendment to the DOE's Mission Plan for the Civilian Radioactive Waste Management Program. The five month delay in the scheduled start of exploratory shaft construction that was announced recently is not reflected in these schedules. 575 refs., 84 figs., 68 tabs

  5. Greater sage-grouse nest predators in the Virginia Mountains of northwestern Nevada

    Science.gov (United States)

    Lockyer, Zachary B.; Coates, Peter S.; Casazza, Michael L.; Espinosa, Shawn; Delehanty, David J.

    2013-01-01

    Greater sage-grouse Centrocercus urophasianus, hereafter sage-grouse, populations have declined across their range due to the loss, degradation, and fragmentation of habitat. Habitat alterations can lead not only to vegetative changes but also to shifts in animal behavior and predator composition that may influence population vital rates, such as nest success. For example, common ravens Corvus corax are sage-grouse nest predators, and common raven abundance is positively associated with human-caused habitat alterations. Because nest success is a central component to sage-grouse population persistence, research that identifies factors influencing nest success will better inform conservation efforts. We used videography to unequivocally identify sage-grouse nest predators within the Virginia Mountains of northwestern Nevada, USA, from 2009 to 2011 and used maximum likelihood to calculate daily probability of nest survival. In the Virginia Mountains, fires, energy exploration, and other anthropogenic activities have altered historic sage-grouse habitat. We monitored 71 sage-grouse nests during the study, placing video cameras at 39 nests. Cumulative nest survival for all nests was 22.4% (95% CI, 13.0–33.4%), a survival rate that was significantly lower than other published results for sage-grouse in the Great Basin. Depredation was the primary cause for nest failure in our study (82.5%), and common ravens were the most frequent sage-grouse nest predator, accounting for 46.7% of nest depredations. We also successfully documented a suite of mammalian and reptilian species depredating sage-grouse nests, including some predators never previously confirmed in the literature to be sage-grouse nest predators (i.e., bobcats Lynx rufus and long-tailed weasels Mephitis frenata). Within the high elevation, disturbed habitat of the Virginia Mountains, low sage-grouse nest success may be limiting sage-grouse population growth. These results suggest that management actions that

  6. Geohydrologic data collected from shallow neutron-access boreholes and resultant-preliminary geohydrologic evaluations, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Blout, D.O.; Hammermeister, D.P.; Loskot, C.L.; Chornack, M.P.

    1994-01-01

    In cooperation with the US Department of Energy, 74 neutron-access boreholes were drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada. Drilling, coring, sample collection and handling, and lithologic and preliminary geohydrologic data are presented in this report. The boreholes were drilled in a combination of alluvium/colluvium, ash-flow tuff, ash-fall tuff, or bedded tuff to depths of 4.6 to 36.6 meters. Air was used as a drilling medium to minimize disturbance of the water content and water potential of drill cuttings, core, and formation rock. Drill cuttings were collected at approximately 0.6-meter intervals. Core was taken at selected intervals from the alluvium/colluvium using drive-coring methods and from tuff using rotary-coring methods. Nonwelded and bedded tuffs were continuously cored using rotary-coring methods. Gravimetric water-content and water-potential values of core generally were greater than those of corresponding drill cuttings. Gravimetric water-content, porosity, and water-potential values of samples generally decreased, and bulk density values increased, as the degree of welding increased. Grain-density values remained fairly constant with changes in the degree of welding. A high degree of spatial variability in water-content and water-potential profiles was noted in closely spaced boreholes that penetrate similar lithologic subunits and was also noted in adjacent boreholes located in different topographic positions. Variability within a thick lithologic unit usually was small. 18 refs., 21 figs., 17 tabs

  7. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada: hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  8. Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada--hydrology and geochemistry

    Science.gov (United States)

    Stuckless, John S.; Levich, Robert A.

    2012-01-01

    This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U.S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U.S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a

  9. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  10. Hydrochemical investigations in characterizing the unsaturated zone at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Yang, I.C.; Rattray, G.W.; Ferarese, J.S.; Yu, P.; Ryan, J.N.

    1998-01-01

    Hydrochemical and isotopic investigations of ground water at Yucca Mountain, Nevada, site of a potential permanent national nuclear-waste repository, demonstrate that younger rocks are dominated by calcium-sulfate or calcium-chloride water and that older rocks contain sodium-carbonate or sodium-bicarbonate water. Furthermore, unsaturated-zone pore water has significantly larger concentrations of major ions and dissolved solids than does the saturated-zone water. Recharge of perched or saturated-zone water, therefore, requires rapid flow through fractures or permeable regions in the unsaturated zone to avoid mixing with the chemically concentrated water in the unsaturated zone. This conceptual model is consistent with observations of rapidly moved post-bomb (post-1954) tritium and chlorine-36 in the deep unsaturated zone at Yucca Mountain. Presence of post-bomb tritium in matrix water away from fracture zones further indicates that parts of the fast-flow water that moves through fractures have been diverted laterally into nonwelded units. Experimental data show that different lithologic units require specific water-extraction methods for stable-isotope analyses of hydrogen and oxygen to ensure accurate characterization. Vacuum-distillation and compression-extraction methods both can yield accurate data but must be used with specific lithologies. Column experiments demonstrate that percolating water can exchange with pore water of the core as well as water held in zeolite minerals in the core. Exchange rates range from days to months. Pore-water samples from core, therefore, reflect the most recently infiltrated water but do not reflect percolating water of the distant past

  11. Structural Discordance Between Neogene Detachments and Frontal Sevier Thrusts, Central Mormon Mountains, Southern Nevada

    Science.gov (United States)

    Wernicke, Brian; Walker, J. Douglas; Beaufait, Mark S.

    1985-02-01

    Detailed geologic mapping in the Mormon Mountains of southern Nevada provides significant insight into processes of extensional tectonics developed within older compressional orogens. A newly discovered, WSW-directed low-angle normal fault, the Mormon Peak detachment, juxtaposes the highest levels of the frontal most part of the east-vergent, Mesozoic Sevier thrust belt with autochthonous crystalline basement. Palinspastic analysis suggests that the detachment initially dipped 20-25° to the west and cut discordantly across thrust faults. Nearly complete lateral removal of the hanging wall from the area has exposed a 5 km thick longitudinal cross-section through the thrust belt in the footwall, while highly attenuated remnants of the hanging wall (nowhere more than a few hundred meters thick) structurally veneer the range. The present arched configuration of the detachment resulted in part from progressive "domino-style" rotation of a few degrees while it was active, but is largely due to rotation on younger, structurally lower, basement-penetrating normal faults that initiated at high-angle. The geometry and kinematics of normal faulting in the Mormon Mountains suggest that pre-existing thrust planes are not required for the initiation of low-angle normal faults, and even where closely overlapped by extensional tectonism, need not function as a primary control of detachment geometry. Caution must thus be exercised in interpreting low-angle normal faults of uncertain tectonic heritage such as those seen in the COCORP west-central Utah and BIRP's MOIST deep-reflection profiles. Although thrust fault reactivation has reasonably been shown to be the origin of a very few low-angle normal faults, our results indicate that it may not be as fundamental a component of orogenic architecture as it is now widely perceived to be. We conclude that while in many instances thrust fault reactivation may be both a plausible and attractive hypothesis, it may never be assumed.

  12. Computation of porosity and water content from geophysical logs, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Nelson, P.H.

    1996-01-01

    Neutron and density logs acquired in boreholes at Yucca Mountain, Nevada are used to determine porosity and water content as a function of depth. Computation of porosity requires an estimate of grain density, which is provided by core data, mineralogical data, or is inferred from rock type where neither core nor mineralogy are available. The porosity estimate is merged with mineralogical data acquired by X-ray diffraction to compute the volumetric fractions of major mineral groups. The resulting depth-based portrayal of bulk rock composition is equivalent to a whole rock analysis of mineralogy and porosity. Water content is computed from epithermal and thermal neutron logs. In the unsaturated zone, the density log is required along with a neutron log. Water content can also be computed from dielectric logs, which were acquired in only a fraction of the boreholes, whereas neutron logs were acquired in all boreholes. Mineralogical data are used to compute a structural (or bound) water estimate, which is subtracted from the total water estimate from the neutron-density combination. Structural water can be subtracted only from intervals where mineralogical analyses are available; otherwise only total water can be reported. The algorithms and procedures are applied to logs acquired during 1979 to 1984 at Yucca Mountain. Examples illustrate the results. Comparison between computed porosity and core measurements shows systematic differences ranging from 0.005 to 0.04. These values are consistent with a sensitivity analysis using uncertainty parameters for good logging conditions. Water content from core measurements is available in only one borehole, yielding a difference between computed and core-based water content of 0.006

  13. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.

    1995-01-01

    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10 4 to 10 5 years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures varies among the faults; they appear younger on the Stagecoach Road Fault (∼5-20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults (∼30-100 ka)

  14. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-01-01

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45 0 , an error of 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs

  15. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  16. Triggered seismicity and deformation between the Landers, California, and Little Skull Mountain, Nevada, earthquakes

    Science.gov (United States)

    Bodin, Paul; Gomberg, Joan

    1994-01-01

    This article presents evidence for the channeling of strain energy released by the Ms = 7.4 Landers, California, earthquake within the eastern California shear zone (ECSZ). We document an increase in seismicity levels during the 22-hr period starting with the Landers earthquake and culminating 22 hr later with the Ms = 5.4 Little Skull Mountain (LSM), Nevada, earthquake. We evaluate the completeness of regional seismicity catalogs during this period and find that the continuity of post-Landers strain release within the ECSZ is even more pronounced than is evident from the catalog data. We hypothesize that regional-scale connectivity of faults within the ECSZ and LSM region is a critical ingredient in the unprecedented scale and distribution of remotely triggered earthquakes and geodetically manifest strain changes that followed the Landers earthquake. The viability of static strain changes as triggering agents is tested using numerical models. Modeling results illustrate that regional-scale fault connectivity can increase the static strain changes by approximately an order of magnitude at distances of at least 280 km, the distance between the Landers and LSM epicenters. This is possible for models that include both a network of connected faults that slip “sympathetically” and realistic levels of tectonic prestrain. Alternatively, if dynamic strains are a more significant triggering agent than static strains, ECSZ structure may still be important in determining the distribution of triggered seismic and aseismic deformation.

  17. Smectite dehydration and stability: Applications to radioactive waste isolation at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bish, D.L.

    1988-03-01

    Montmorillonite-beidellite smectites are present in amounts up to 50% in the rocks directly underlying the potential high-level radioactive waste repository horizon at Yucca Mountain, Nevada. The thermal reactions of concern include reversible collapse/expansion of the smectite layers due to loss/gain of interlayer water;irreversible collapse due to loss of interlayer water and migration of interlayer cations into the 2:1 silicate layers;irreversible reduction of the osmotic swelling ability through reaction in a steam atmosphere;and inhomogeneous transformation of the smectite into an interstratified illite/smectite. Reversible collapse should be of minor importance because any thermally driven collapse will be reversed when water is introduced and temperatures go down. The amounts of smectite in the potential repository horizon itself are probably insufficient to give rise to rock strength problems due to reversible collapse. The irreversible reduction of somotic selling capacity in a steam environment may be significant in the rocks near the repository horizon. This effect on naturally occurring Na-rich smectites would probably increase permeabilitie shut would also provide for increased cation exchange by the smectite. 60 refs., 9 figs

  18. Sensitivity studies of unsaturated groundwater flow modeling for groundwater travel time calculations at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Altman, S.J.; Ho, C.K.; Arnold, B.W.; McKenna, S.A.

    1995-01-01

    Unsaturated flow has been modeled through four cross-sections at Yucca Mountain, Nevada, for the purpose of determining groundwater particle travel times from the potential repository to the water table. This work will be combined with the results of flow modeling in the saturated zone for the purpose of evaluating the suitability of the potential repository under the criteria of 10CFR960. One criterion states, in part, that the groundwater travel time (GWTT) from the repository to the accessible environment must exceed 1,000 years along the fastest path of likely and significant radionuclide travel. Sensitivity analyses have been conducted for one geostatistical realization of one cross-section for the purpose of (1) evaluating the importance of hydrological parameters having some uncertainty and (2) examining conceptual models of flow by altering the numerical implementation of the conceptual model (dual permeability (DK) and the equivalent continuum model (ECM). Results of comparisons of the ECM and DK model are also presented in Ho et al

  19. Geology of the USW SD-9 drill hole, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Engstrom, D.A.; Rautman, C.A.

    1996-10-01

    Drill hole USW SD-9 is one of several holes drilled under Site Characterization Plan Study as part of the characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-9 drill hole is located in the northern part of the potential repository area. Quantitative and semiquantitative data are included in this report for cover recovery, rock-quality designation (RQD), lithophysal cavity abundance, and fracturing. These data are spatially variable, both within and among the major formational-level stratigraphic units. Nonwelded intervals in general exhibit higher recoveries and more intact (higher) RQD values than welded intervals. The most intact, highest-RQD materials encountered within the Topopah Spring belong to the lower 33.3 ft of the middle nonlithophysal zone. This report includes quantitative data for the framework material properties of porosity, bulk and particle density, and saturated hydraulic conductivity. Graphical analysis of variations in these laboratory hydrologic properties indicates first-order control of material properties by the degree of welding and the presence of zeolite minerals. Many major lithostratigraphic contacts are not well expressed in the material-property profiles; contacts of material-property units are related more to changes in the intensity of welding. Approximate in-situ saturation data of samples preserved immediately upon recovery from the hole are included in the data tabulation

  20. Preliminary analysis of Greater Sage-grouse reproduction in the Virginia Mountains of northwestern Nevada

    Science.gov (United States)

    Coates, Peter S.; Lockyer, Zachary B.; Farinha, Melissa A.; Sweeney, Joelle M.; Johnson, Valerie M.; Meshriy, Matthew G.; Espinosa, Shawn P.; Delehanty, David J.; Casazza, Michael L.

    2011-01-01

    Relationships between habitat selection and population vital rates of greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse), recently designated as a candidate species under