WorldWideScience

Sample records for mountain glacial basin

  1. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    Science.gov (United States)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active

  2. Changes in Glaciers and Glacial Lakes and the Identification of Dangerous Glacial Lakes in the Pumqu River Basin, Xizang (Tibet

    Directory of Open Access Journals (Sweden)

    Tao Che

    2014-01-01

    Full Text Available Latest satellite images have been utilized to update the inventories of glaciers and glacial lakes in the Pumqu river basin, Xizang (Tibet, in the study. Compared to the inventories in 1970s, the areas of glaciers are reduced by 19.05% while the areas of glacial lakes are increased by 26.76%. The magnitudes of glacier retreat rate and glacial lake increase rate during the period of 2001–2013 are more significant than those for the period of the 1970s–2001. The accelerated changes in areas of the glaciers and glacial lakes, as well as the increasing temperature and rising variability of precipitation, have resulted in an increased risk of glacial lake outburst floods (GLOFs in the Pumqu river basin. Integrated criteria were established to identify potentially dangerous glacial lakes based on a bibliometric analysis method. It is found, in total, 19 glacial lakes were identified as dangerous. Such finding suggests that there is an immediate need to conduct field surveys not only to validate the findings, but also to acquire information for further use in order to assure the welfare of the humans.

  3. Glacial lakes in the Horgos river basin and their outbreak risk assessment

    Directory of Open Access Journals (Sweden)

    A. P. Medeu

    2013-01-01

    Full Text Available The river Khorgos (in Kazakhstan – Korgas is a boundary river between Kazakhstan and China. Its basin is located in the central part of southern slope of Dzhungarskiy (Zhetysu Alatau range. According to agreement between Kazakhstan and China at the boundary transition of Khorgos in the floodplain of the river Khorgos the large Center of Frontier Cooperation is erected. Estimation of safety of the mentioned object including connection with possible glacial lakes outbursts has the importance of political-economical value. Nowadays development of glacial lakes in the overhead part of Khorgos river basin has reached apogee. As a roof we can mention the maximum of total glacial lakes area (1,7 million m² in 41 lakes and emptied kettles of former glacial lakes. Six lakes reached highly dangerous outburst stage: the volume of lakes reached some million m³, maximum depth up to 30–40 m. Focal ground filtration of the water from lakes takes place. Development of glacial lakes in Khorgos river basin will continue, and these lakes give and will give real danger for the Center of Frontier Cooperation in case of outburst of naturally dammed lake Kazankol with the similar mechanism of Issyk lake outburst, occurred in 1963 in ZailijskiyAlatau (Ile Alatau.

  4. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    A. D. Wickert

    2016-11-01

    Full Text Available Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins – the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  5. Pollen record of the penultimate glacial period in Yuchi Basin, Central Taiwan

    Science.gov (United States)

    Lai, Hsiao-Yin; Liew, Ping-Mei

    2010-05-01

    Pollen records of the penultimate glacial period are scare not only in Taiwan, but also in East Asia area. Hence, this study intends to provide a new pollen record from a site, Yuchi Basin, in central Taiwan, which may improve our knowledge of the penultimate glacial period. The sediment core, CTN6, was drilled in the northern part of Yuchi Basin. The core is 29.4 m in length and the sampling interval is 10 cm. In total, 86 samples are processed for pollen analysis. Three pollen zones (I,II and III) are determined according to the ratio of arboreal pollens (AP) and non-arboreal pollens (NAP). Because of the scarcity of dating data, pollen assemblages compared with previous pollen records at peripheral areas is utilized to estimate the ages of each pollen zone. AP dominate (60%) Zone I and III, which consist mainly of Cyclobalanopsis-Castanopsis. Thus, Zone I may mark the MIS 5 because of a Cyclobalanopsis-Castanopsis dominant condition. In Zone II, the increase in NAP and pollen of Taxodiaceae and decrease in pollens of Cyclobalanopsis-Castanopsis indicates the penultimate glacial period, i.e. MIS 6. In contrast to the evergreen broadleaved forest found there today, the herbs occupied the basin in Zone II, indicating a relatively dry climate condition than present. Furthermore, during the penultimate glacial period, the climate condition of early part is wetter, evidenced by a higher AP/NAP in Zone IIb. Finally, comparing with the last glacial period in Toushe, we suggest that the penultimate glacial period is drier due to the lower AP/NAP.

  6. Identification of the glaciers and mountain naturally dammed lakes in the Pskem, the Kashkadarya and the Surhandarya River basins, Uzbekistan, using ALOS satellite data

    Directory of Open Access Journals (Sweden)

    Eleonora Semakova

    2016-05-01

    Full Text Available The glacierized area of Uzbekistan is represented in three river basins – the Pskem, the Kashkadarya and the Surhandarya. This study considers the present state of the glaciers and high-mountain lakes distribution in this area based on the analysis and validation of advanced land observing satellite (ALOS/advanced visible and near infrared radiometer type 2 (AVNIR-2 satellite data. Between the 1960s and the 2010s, the glacierized area decreased by 23% in the Pskem River basin (including the Maydantal, by 49% in the Kashkadarya and by 40% in the Surhandarya (including the Sangardak and the Tupalang River basins. The retreat fairly slowed in the 1980s–2010s. There are 75 glacial lakes and 35 rock-dammed lakes (including landslide-dammed ones in the Pskem River basin, 45% of all the lakes covering the area less than 0.002 km2; 13 glacial lakes and 4 rock-dammed lakes in the Kashkadarya and 34 glacial lakes and 16 rock-dammed lakes in the Surhandarya River basins. The landslide rock-dammed Ikhnach Upper Lake lost 0.04 km2 in size from 1 August 2010 to 30 August 2010 because of the seepage through the rock dam and 0.10 km2 from 1 August to 18 October 2013.

  7. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    Science.gov (United States)

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  8. Potentially dangerous glacial lakes in Kyrgyzstan - Research overview of 2004-2015

    Science.gov (United States)

    Jansky, Bohumir; Yerokhin, Sergey; Sobr, Miroslav; Engel, Zbynek; Cerny, Michal; Falatkova, Kristyna; Kocum, Jan; Benes, Vojtech

    2016-04-01

    Global warming causes intensive melting and retreat of glaciers in most of high mountains all over the world. This process is also evident in the mountain regions of central Tien Shan. Glacier melt water affects changes in hydrological regime of water streams and causes overfilling of high mountain lake basins. The dams of many lakes are very unstable and can burst open. To determine the degree of such risk, it is necessary to analyse the genesis of lakes, to characterize the morphology of the lake basins and to know the particularities of their hydrological regime. According to the latest inventory within territory of Kyrgyzstan, a total of 1328 lakes have been identified as potentially dangerous, 12 lakes are considered as currently dangerous, other 25 feature high potential hazard. Since 1952 more than 70 disastrous cases of lake outburst have been registered. The hazardous alpine lakes are studied in Kyrgyzstan systematically since 1966. Since 2004, Czech-Kyrgyz research team has been operating in Kyrgyzstan in the field of dangerous glacial lakes. Projects were focused primarily on high-mountain glacial lakes risk assessment, propositions of risk mitigation measures, establishment of permanent research station near one of the studied glacier complexes, preparation of risk analysis for selected endangered valleys, evaluation of climatic and hydrological data and glacier development within observed regions. The most significant portion of data and information has been gathered during field work, complemented by satellite image analysis and surveillance flights over the monitored sites.

  9. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    Science.gov (United States)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of

  10. Paleogene Sediment Character of Mountain Front Central Sumatra Basin

    Directory of Open Access Journals (Sweden)

    P. A. Suandhi

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.164The SE-NW trending Mountain Front of Central Sumatra Basin is located in the southern part of the basin. The Mountain Front is elongated parallel to the Bukit Barisan Mountain, extending from the Regencies of North Padang Lawas (Gunung Tua in the northwest, Rokan Hulu, Kampar, Kuantan Singingi, and Inderagiri Hulu Regency in the southeast. The Palaeogene sediments also represent potential exploration objectives in Central Sumatra Basin, especially in the mountain front area. Limited detailed Palaeogene sedimentology information cause difficulties in hydrocarbon exploration in this area. Latest age information and attractive sediment characters based on recent geological fieldwork (by chaining method infer Palaeogene sediment potential of the area. The Palaeogene sedimentary rock of the mountain front is elongated from northwest to southeast. Thickness of the sedimentary unit varies between 240 - 900 m. Palynology samples collected recently indicate that the oldest sedimentary unit is Middle Eocene and the youngest one is Late Oligocene. This latest age information will certainly cause significant changes to the existing surface geological map of the mountain front area. Generally, the Palaeogene sediments of the mountain front area are syn-rift sediments. The lower part of the Palaeogene deposit consists of fluvial facies of alluvial fan and braided river facies sediments. The middle part consists of fluvial meandering facies, lacustrine delta facies, and turbidity lacustrine facies sediments. The upper part consists of fluvial braided facies and transitional marine facies sediments. Volcanism in the area is detected from the occurrence of volcanic material as lithic material and spotted bentonite layers in the middle part of the mountain front area. Late rifting phase is indicated by the presence of transitional marine facies in the upper part of the Palaeogene sediments.

  11. From the central Jura mountains to the molasse basin (France and Switzerland)

    International Nuclear Information System (INIS)

    Sommaruga, A.

    2011-01-01

    This illustrated article discusses the geology of the area covering the Swiss Jura chain of mountains and the molasse basin which is to be found to the south-east of the mountain chain. The geological setting with the Jura Mountains and the molasse basin are described, as are the rocks to be found there. Their structures and faults are discussed in detail and their origin and formation are described. The paper presents a number of geological profiles and maps. The methods used to explore these structures are noted, which also indicated the presence of permo-carboniferous troughs in the molasse basin

  12. From the central Jura mountains to the molasse basin (France and Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Sommaruga, A. [Institut de Géophysique, University of Lausanne, Bâtiment Amphipôle, Lausanne (Switzerland)

    2011-07-01

    This illustrated article discusses the geology of the area covering the Swiss Jura chain of mountains and the molasse basin which is to be found to the south-east of the mountain chain. The geological setting with the Jura Mountains and the molasse basin are described, as are the rocks to be found there. Their structures and faults are discussed in detail and their origin and formation are described. The paper presents a number of geological profiles and maps. The methods used to explore these structures are noted, which also indicated the presence of permo-carboniferous troughs in the molasse basin.

  13. Evolution of Topography in Glaciated Mountain Ranges

    Science.gov (United States)

    Brocklehurst, Simon H.

    2002-01-01

    This thesis examines the response of alpine landscapes to the onset of glaciation. The basic approach is to compare fluvial and glacial laudscapes, since it is the change from the former to the latter that accompanies climatic cooling. This allows a detailed evaluation of hypotheses relating climate change to tectonic processes in glaciated mountain belts. Fieldwork was carried out in the eastern Sierra Nevada, California, and the Sangre de Cristo Range, Colorado, alongside digital elevation model analyses in the western US, the Southern Alps of New Zealand, and the Himalaya of northwestern Pakistan. hypothesis is overstated in its appeal to glacial erosion as a major source of relief production and subsequent peak uplift. Glaciers in the eastern Sierra Nevada and the western Sangre de Cristos have redistributed relief, but have produced only modest relief by enlarging drainage basins at the expense of low-relief topography. Glaciers have lowered valley floors and ridgelines by similar amounts, limiting the amount of "missing mass' that can be generated, and causing a decrease in drainage basin relief. The principal response of glaciated landscapes to rapid rock uplift is the development of towering cirque headwalls. This represents considerable relief production, but is not caused by glacial erosion alone. Large valley glaciers can maintain their low gradient regardless of uplift rate, which supports the "glacial buzzsaw" hypothesis. However, the inability of glaciers to erode steep hillslopes as rapidly can cause mean elevations to rise. Cosmogenic isotope dating is used to show that (i) where plucking is active, the last major glaciation removed sufficient material to reset the cosmogenic clock; and (ii) former glacial valley floors now stranded near the crest of the Sierra Nevada are at varying stages of abandonment, suggesting a cycle of drainage reorganiszation and relief inversion due to glacial erosion similar to that observed in river networks. Glaciated

  14. A Chronologic Dual-Hemisphere Approach to the Last Glacial Termination from the Southern Alps of New Zealand and the Altai Mountains of Western Mongolia

    Science.gov (United States)

    Strand, P.; Putnam, A. E.; Schaefer, J. M.; Denton, G.; Barrell, D.; Putnam, D.; Schwartz, R.; Sambuu, O.; Radue, M. J.; Lindsay, B. J.; Stevens, J.

    2017-12-01

    Understanding the processes that drove the last glacial termination in the tropics and mid-latitudes is a major unresolved problem in paleoclimate. The most recent glacial to interglacial transition represents the last great global warming and the last time CO2 rose by a substantial amount before the industrial period. Determining the speed of this warming will help refine the global climate system sensitivity to CO2 and will place ongoing global warming into a paleoclimatic context. Here, we test possible drivers of the last glacial termination by comparing chronologies of mountain glaciers, which are highly sensitive to changes in atmospheric temperature, in the middle latitudes of both polar hemispheres. The dating of glacier landforms, such as moraine ridges constructed along glacier margins, affords quantitative insight into past climate conditions. We present 10Be surface-exposure chronologies and glacial geomorphologic maps of mountain glacier recession since the Last Glacial Maximum in the Southern Alps of New Zealand (44°S, 170°E) and in the Altai Mountains of western Mongolia (49°N, 88°E). On the basis of these chronologies from opposing hemispheres, we evaluate the relative roles of rising atmospheric CO2, local insolation forcing, and ocean-atmosphere reorganizations in driving the global warming that ended the last ice age.

  15. Analysis of snow-glacial historical and projected flows in Olivares river basin. Comparison between DHSVM and WEAP models.

    Science.gov (United States)

    Cepeda, Javier; Vargas, Ximena

    2017-04-01

    In the Andes Mountains, in central Chile, glaciers are a key element to both environment and economy, since they contribute highly to streamflow during the summer season. Many studies have been performed in order to understand the actual contribution of glacial-based streamflow and the expected response of glaciers to climatological alterations such as climate change. This work studies and analyses the historical and future streamflow on the Olivares river basin, located close to Chile's capital city, Santiago, under climatic change scenario RCP8.5. For this, we use two hydrological models with different topology, to have more consistency in the results, and analysing the differences because of the conceptualization of the processes and its spatial scale. DHSVM is a distributed, physically based model, while WEAP is a semi-distributed model that represents some processes conceptually and others physically based. Both models are calibrated considering streamflow and snow cover data from the period 2001-2012 at a daily scale. Additionally, comparisons between the modelled glacier area variations and LANDSAT images are performed to strengthen the calibration process. Climate change projections are obtained from five Global Circulation Models (GCM) under RCP8.5 scenario. Changes in glacier area, volume and glacial streamflow contribution to basin discharge are analysed, comparing two future time lapses, near-future period (2015-2044) and far-future (2045-2074), to a baseline period (1985-2004). The basin has an area of 543 km2, with elevations ranging from 1,528 to 6,024 m.a.s.l. and an important glacier presence. According to the National Glacier Cadastre developed by Chile Water Authority (DGA) in 2012, there are 80 uncovered glaciers within the basin, the most important being Juncal Sur, Olivares Alfa, Beta and Gamma. Glacier area represented 17% of the basin in 1985, while they made up only to 11% in 2015.The glaciers are located at altitudes ranging from 3,500 to

  16. Regional Geomorphological Conditions Related to Recent Changes of Glacial Lakes in the Issyk-Kul Basin, Northern Tien Shan

    Directory of Open Access Journals (Sweden)

    Mirlan Daiyrov

    2018-03-01

    Full Text Available To assess the current state of glacial lakes, we examine the seasonal lake-area changes of 339 glacial lakes in the Teskey and Kungoy Ranges of the Issyk-Kul Basin, Kyrgyzstan, during 2013–2016 based on optical satellite images (Landsat7/ETM+ and 8/OLI. The glacial lakes are classified into six types based on their seasonal variations in area: stable, increasing, decreasing, appearing, vanishing, and short-lived. We then track the number of each type in a given year and examine how each number changes from one year to the next. We find that many appearing, vanishing, and short-lived types occurred in both mountain ranges, having a large variability in number that is not directly related to the local short-term summer temperature anomaly, nor to precipitation or glacier recession. However, those in the Teskey Range vary significantly more than those in the Kungoy Range. To determine if the changing number and distribution of the various lake types may be due to changes in ground ice, we apply differential interferometric synthetic aperture radar (DInSAR analysis using ALOS-2/PALSAR-2 for the debris landforms behind which glacial lakes appear. In the Teskey Range, ground ice occurs in 413 out of a total of 930 debris landforms, whereas in the Kungoy Range, ground ice occurs in 71 out of 180. In zones with predominant glacier-retreat during 1971–2010 (from Corona KH-4B and ALOS/PRISM, the Teskey Range had 180 new lake depressions as potential lake-basins, whereas the Kungoy Range had just 22. Existing depressions also expanded when melting ice produced subsidence. Such subsidence, together with debris landforms containing ground ice and ice tunnels, appear to cause the observed large number variability. In particular, the deposition of ice and debris by tunnel collapse or the freezing of storage water in a debris landform may close-off an ice tunnel, causing a lake to appear. Subsequent re-opening via melting of such blockage would produce

  17. Glacial flour in lacustrine sediments: Records of alpine glaciation in the western U.S.A. during the last glacial interval

    Science.gov (United States)

    Rosenbaum, J. G.; Reynolds, R. L.

    2010-12-01

    Sediments in Bear Lake (UT/ID) and Upper Klamath Lake (OR) contain glacial flour derived during the last glacial interval from the Uinta Mountains and the southern Cascade Range, respectively. Magnetic properties provide measures of glacial-flour content and, in concert with elemental and grain-size analyses, yield high-resolution records of glacial growth and decay. Creation and preservation of such records requires that (1) properties of glacial flour contrast with those of other sedimentary components and (2) magnetic minerals are neither formed nor destroyed after deposition. In the Bear Lake watershed, glaciers were confined to a small headwater area of the Bear River underlain by hematite-rich rocks of the Uinta Mountain Group (UMG), which are not exposed elsewhere in the catchment. Because UMG detritus is abundant only in Bear Lake sediments of glacial age, hard isothermal remanent magnetization (a measure of hematite content) provides a proxy for glacial flour. In contrast, the entire Upper Klamath Lake catchment, which lies to the east of the Cascade Range in southern Oregon, is underlain largely by basalt and basaltic andesite. Magnetic properties of fresh titanomagnetite-rich rock flour from glaciers on a composite volcano contrast sharply with those of detritus from unglaciated areas in which weathering destroyed some of the titanomagnetite. Ideally, well-dated records of the flux of glacial flour can be compared to ages of glacial features (e.g., moraines). For Upper Klamath Lake, quantitative measures of rock-flour content (from magnetic properties) and excellent chronology allow accurate calculation of flux. However, ages of glacial features are lacking and mafic volcanic rocks, which weather rapidly in this environment, are not well suited for cosmogenic exposure dating. At Bear Lake, estimates of glacial-flour content are less quantitative and chronology within the glacial interval must be interpolated from radiocarbon ages above and below the

  18. Slope effects on SWAT modeling in a mountainous basin

    OpenAIRE

    Yacoub López, Cristina; Pérez Foguet, Agustí

    2013-01-01

    The soil and water assessment tool (SWAT) is a distributed basin model that includes the option of defining spatial discretization in terms of terrain slope. Influence of terrain slope in runoff results from mountain basins is a determining factor in its simulation results; however, its use as a criterion for basin discretization and for the parameter calibration has not yet been analyzed. In this study, this influence is analyzed for calibrations using two different cases. Ten discretization...

  19. Relief Evolution in Tectonically Active Mountain Ranges

    Science.gov (United States)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  20. Glacier Change, Supraglacial Debris Expansion and Glacial Lake Evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2018-06-01

    Full Text Available Himalayan glacier changes in the context of global climate change have attracted worldwide attention due to their profound cryo-hydrological ramifications. However, an integrated understanding of the debris-free and debris-covered glacier evolution and its interaction with glacial lake is still lacking. Using one case study in the Gyirong River Basin located in the central Himalayas, this paper applied archival Landsat imagery and an automated mapping method to understand how glaciers and glacial lakes interactively evolved between 1988 and 2015. Our analyses identified 467 glaciers in 1988, containing 435 debris-free and 32 debris-covered glaciers, with a total area of 614.09 ± 36.69 km2. These glaciers decreased by 16.45% in area from 1988 to 2015, with an accelerated retreat rate after 1994. Debris-free glaciers retreated faster than debris-covered glaciers. As a result of glacial downwasting, supraglacial debris coverage expanded upward by 17.79 km2 (24.44%. Concurrent with glacial retreat, glacial lakes increased in both number (+41 and area (+54.11%. Glacier-connected lakes likely accelerated the glacial retreat via thermal energy transmission and contributed to over 15% of the area loss in their connected glaciers. On the other hand, significant glacial retreats led to disconnections from their proglacial lakes, which appeared to stabilize the lake areas. Continuous expansions in the lakes connected with debris-covered glaciers, therefore, need additional attention due to their potential outbursts. In comparison with precipitation variation, temperature increase was the primary driver of such glacier and glacial lake changes. In addition, debris coverage, size, altitude, and connectivity with glacial lakes also affected the degree of glacial changes and resulted in the spatial heterogeneity of glacial wastage across the Gyirong River Basin.

  1. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  2. Late glacial vegetation and climate changes in the high mountains of Bulgaria (Southeast Europe)

    International Nuclear Information System (INIS)

    Bozilova, E.D.; Tonkov, S.B.

    2005-01-01

    Full text: The Late glacial vegetation history in the high mountains of Southern Bulgaria (Rila, Pirin, Western Rhodopes) is reconstructed by means of pollen analysis, plant macrofossils and radiocarbon dating of sediments from lakes and peat-bogs located between 1300 and 2200 m a.s.l. The vegetation response to the climate fluctuations after 13000 14 C yrs. BP in the Rila Mountains is bound for the first time to a detailed chronological framework. Two stadial and one interstadial phases are delimited analogous with the Oldest Dryas-Bolling/Allerod-Younger Dryas cycle for Western Europe. During the stadials mountain-steppe vegetation composed of Artemisia, Chenopodiaceae, Poaceae and other cold-resistant herbs dominated at high elevation with sparse stands of Pinus, Betula, and shrubland of Juniperus and Ephedra. The climate improvement in the interstadial resulted in the initial spread of deciduous and coniferous trees (Quercus, Tilia, Corylus, Carpinus, Abies, Picea) from their local refugia below 1000 m. The palaeoecological record from the climate deterioration during the Younger Dryas is documented in thin sections of the cores investigated. (author)

  3. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    Science.gov (United States)

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  4. Determining the Influence of Dust on Post-Glacial Lacustrine Sedimentation in Bald Lake, Uinta Mountains, Utah

    Science.gov (United States)

    O'Keefe, S. S.; McElroy, R.; Munroe, J. S.

    2016-12-01

    Dust is increasingly recognized as an important component of biogeochemical cycling and ecosystem function in mountain environments. Previous work has shown that delivery of dust to the Uinta Mountains of northeastern Utah has influenced pedogenesis, soil nutrient status, and surface water chemistry. An array of passive and active samplers in the alpine zone of the Uintas provides detailed information about contemporary dust fluxes, along with physical and geochemical properties of modern dust. Reconstruction of changes in the dust system over time, however, requires continuous sedimentary archives sensitive to dust inputs. A radiocarbon-dated 3.5-m core (spanning 12.7 kyr) collected from subalpine Bald Lake may provide such a record. Passive dust collectors in the vicinity of the lake constrain the geochemical properties of modern dust, whereas samples of regolith constrain properties of the local surficial material within the watershed. Together, these represent two end member sources of clastic sediment to Bald Lake basin: allochthonous dust and autochthonous regolith. Ba and Eu are found in higher abundances in the dust than in the watershed regolith. Zr and Th are found to be lower in the dust than in the watershed. Geochemical analysis of the sediment core allows the relative contribution of exotic and local material to the lake to be considered as a time series covering the post-glacial interval when indicator elements are plotted. Findings suggest Bald Lake's dust record tracks regional aridity and corresponds to low-stands of large lakes in the southwestern United States. Spatial variability of elemental abundances in the watershed suggests there are more than two input sources contributing to the lake over time.

  5. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial er...

  6. Using GRACE to constrain precipitation amount over cold mountainous basins

    Science.gov (United States)

    Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.

    2017-01-01

    Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.

  7. Deglacial history of the Pensacola Mountains, Antarctica from glacial geomorphology and cosmogenic nuclide surface exposure dating

    Science.gov (United States)

    Bentley, M. J.; Hein, A. S.; Sugden, D. E.; Whitehouse, P. L.; Shanks, R.; Xu, S.; Freeman, S. P. H. T.

    2017-02-01

    The retreat history of the Antarctic Ice Sheet is important for understanding rapid deglaciation, as well as to constrain numerical ice sheet models and ice loading models required for glacial isostatic adjustment modelling. There is particular debate about the extent of grounded ice in the Weddell Sea embayment at the Last Glacial Maximum, and its subsequent deglacial history. Here we provide a new dataset of geomorphological observations and cosmogenic nuclide surface exposure ages of erratic samples that constrain the deglacial history of the Pensacola Mountains, adjacent to the present day Foundation Ice Stream and Academy Glacier in the southern Weddell Sea embayment. We show there is evidence of at least two glaciations, the first of which was relatively old and warm-based, and a more recent cold-based glaciation. During the most recent glaciation ice thickened by at least 450 m in the Williams Hills and at least 380 m on Mt Bragg. Progressive thinning from these sites was well underway by 10 ka BP and ice reached present levels by 2.5 ka BP, and is broadly similar to the relatively modest thinning histories in the southern Ellsworth Mountains. The thinning history is consistent with, but does not mandate, a Late Holocene retreat of the grounding line to a smaller-than-present configuration, as has been recently hypothesized based on ice sheet and glacial isostatic modelling. The data also show that clasts with complex exposure histories are pervasive and that clast recycling is highly site-dependent. These new data provide constraints on a reconstruction of the retreat history of the formerly-expanded Foundation Ice Stream, derived using a numerical flowband model.

  8. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia)

    Science.gov (United States)

    Coltorti, M.; Abbazzi, L.; Ferretti, M. P.; Iacumin, P.; Rios, F. Paredes; Pellegrini, M.; Pieruccini, P.; Rustioni, M.; Tito, G.; Rook, L.

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and 14C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of 14C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2.

  9. Brushy Basin drilling project, Cedar Mountain, Emergy County, Utah

    International Nuclear Information System (INIS)

    Kiloh, K.D.; McNeil, M.; Vizcaino, H.

    1980-03-01

    A 12-hole drilling program was conducted on the northwestern flank of the San Rafael swell of eastern Utah to obtain subsurface geologic data to evaluate the uranium resource potential of the Brushy Basin Member of the Morrison Formation (Jurassic). In the Cedar Mountain-Castle Valley area, the Brushy Basin Member consists primarily of tuffaceous and carbonaceous mudstones. Known uranium mineralization is thin, spotty, very low grade, and occurs in small lenticular pods. Four of the 12 drill holes penetrated thin intervals of intermediate-grade uranium mineralization in the Brushy Basin. The study confirmed that the unit does not contain significant deposits of intermediate-grade uranium

  10. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Science.gov (United States)

    Bresciani, Etienne; Cranswick, Roger H.; Banks, Eddie W.; Batlle-Aguilar, Jordi; Cook, Peter G.; Batelaan, Okke

    2018-03-01

    Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR) or subsurface flow from the mountain (mountain-block recharge, MBR). While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC) data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream-aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC) data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  11. Using hydraulic head, chloride and electrical conductivity data to distinguish between mountain-front and mountain-block recharge to basin aquifers

    Directory of Open Access Journals (Sweden)

    E. Bresciani

    2018-03-01

    Full Text Available Numerous basin aquifers in arid and semi-arid regions of the world derive a significant portion of their recharge from adjacent mountains. Such recharge can effectively occur through either stream infiltration in the mountain-front zone (mountain-front recharge, MFR or subsurface flow from the mountain (mountain-block recharge, MBR. While a thorough understanding of recharge mechanisms is critical for conceptualizing and managing groundwater systems, distinguishing between MFR and MBR is difficult. We present an approach that uses hydraulic head, chloride and electrical conductivity (EC data to distinguish between MFR and MBR. These variables are inexpensive to measure, and may be readily available from hydrogeological databases in many cases. Hydraulic heads can provide information on groundwater flow directions and stream–aquifer interactions, while chloride concentrations and EC values can be used to distinguish between different water sources if these have a distinct signature. Such information can provide evidence for the occurrence or absence of MFR and MBR. This approach is tested through application to the Adelaide Plains basin, South Australia. The recharge mechanisms of this basin have long been debated, in part due to difficulties in understanding the hydraulic role of faults. Both hydraulic head and chloride (equivalently, EC data consistently suggest that streams are gaining in the adjacent Mount Lofty Ranges and losing when entering the basin. Moreover, the data indicate that not only the Quaternary aquifers but also the deeper Tertiary aquifers are recharged through MFR and not MBR. It is expected that this finding will have a significant impact on the management of water resources in the region. This study demonstrates the relevance of using hydraulic head, chloride and EC data to distinguish between MFR and MBR.

  12. Developmental geology of coalbed methane from shallow to deep in Rocky Mountain basins and in Cook Inlet-Matanuska Basin, Alaska, USA and Canada

    Science.gov (United States)

    Johnson, R.C.; Flores, R.M.

    1998-01-01

    The Rocky Mountain basins of western North America contain vast deposits of coal of Cretaceous through early Tertiary age. Coalbed methane is produced in Rocky Mountain basins at depths ranging from 45 m (150 ft) to 1981 m (6500 ft) from coal of lignite to low-volatile bituminous rank. Although some production has been established in almost all Rocky Mountain basins, commercial production occurs in only a few. despite more than two decades of exploration for coalbed methane in the Rocky Mountain region, it is still difficult to predict production characteristics of coalbed methane wells prior to drilling. Commonly cited problems include low permeabilities, high water production, and coals that are significantly undersaturated with respect to methane. Sources of coalbed gases can be early biogenic, formed during the early stages of coalification, thermogenic, formed during the main stages of coalification, or late stage biogenic, formed as a result of the reintroduction of methane-gnerating bacteria by groundwater after uplift and erosion. Examples of all three types of coalbed gases, and combinations of more than one type, can be found in the Rocky Mountain region. Coals in the Rocky Mountain region achieved their present ranks largely as a result of burial beneath sediments that accumulated during the Laramide orogeny (Late Cretaceous through the end of the eocene) or shortly after. Thermal events since the end of the orogeny have also locally elevated coal ranks. Coal beds in the upper part of high-volatile A bituminous rank or greater commonly occur within much more extensive basin-centered gas deposits which cover large areas of the deeper parts of most Rocky Mountain basins. Within these basin-centered deposits all lithologies, including coals, sandstones, and shales, are gas saturated, and very little water is produced. The interbedded coals and carbonaceous shales are probably the source of much of this gas. Basin-centered gas deposits become overpressured

  13. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    Science.gov (United States)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  14. Geologia e pedologia da bacia glacial no distrito de Sousas, Campinas, SP Geology and pedology of a glacial basin found in the Sousas area

    Directory of Open Access Journals (Sweden)

    Adolpho José Melfi

    1962-01-01

    Full Text Available O presente trabalho refere-se à geologia e pedología de uma bacia sedimentar glacial, situada no distrito de Sousas, Município de Campinas, em região de rochas pré-cambrianas. Os estudos geológicos constaram da elaboração de mapa geológico, baseado em fotografias aéreas, na escala média de 1:14 000 e mapa topográfico na escala de 1:5000; reconhecimento das rochas e esbôço estrutural da bacia. Quando à pedología, foram feitas caracterizações morfo-pedogenétícas dos solos por meio de perfis e determinações das classes texturais através de análise granulométrica.A glacial basin was found in the Sousas area, Campinas County, surrounded by pre-Cambrian rocks and not connected with the Paraná sedimentary basin which possesses a similar formation. Geological studies were carried out consisting of petrographie identifications, structural sketch of the basin, delimitation of its occurrence, and mapping of its geological limits. The field delimitation was done by means of aerial photographs (average scale 1:14, 000 and topographic maps (scale 1:5, 000. The pedological studies that were performed consisted in taking soil profiles for morphological and genetic characterization of the great soil groups and collection of samples for textural analysis.

  15. Groundwater and surface water interaction in a basin surrounded by steep mountains, central Japan

    Science.gov (United States)

    Ikeda, Koichi; Tsujimura, Maki; Kaeriyama, Toshiaki; Nakano, Takanori

    2015-04-01

    Mountainous headwaters and lower stream alluvial plains are important as water recharge and discharge areas from the view point of groundwater flow system. Especially, groundwater and surface water interaction is one of the most important processes to understand the total groundwater flow system from the mountain to the alluvial plain. We performed tracer approach and hydrometric investigations in a basin with an area 948 square km surrounded by steep mountains with an altitude from 250m to 2060m, collected 258 groundwater samples and 112 surface water samples along four streams flowing in the basin. Also, Stable isotopes ratios of oxygen-18 (18O) and deuterium (D) and strontium (Sr) were determined on all water samples. The 18O and D show distinctive values for each sub-basin affected by different average recharge altitudes among four sub-basins. Also, Sr isotope ratio shows the same trend as 18O and D affected by different geological covers in the recharge areas among four sub-basins. The 18O, D and Sr isotope values of groundwater along some rivers in the middle stream region of the basin show close values as the rivers, and suggesting that direct recharge from the river to the shallow groundwater is predominant in that region. Also, a decreasing trend of discharge rate of the stream along the flow supports this idea of the groundwater and surface water interaction in the basin.

  16. 20th-century glacial-marine sedimentation in Vitus Lake, Bering Glacier, Alaska, U.S.A.

    Science.gov (United States)

    Molnia, B.F.; Post, A.; Carlson, P.R.

    1996-01-01

    Vitus Lake, the ice-marginal basin at the southeastern edge of Bering Glacier, Alaska, U.S.A., is a site of modern, rapid, glacial-marine sedimentation. Rather than being a fresh-water lake, Vitus Lake is a tidally influenced, marine to brackish embayment connected to the Pacific Ocean by an inlet, the Seal River. Vitus Lake consists of five deep bedrock basins, separated by interbasinal highs. Glacial erosion has cut these basins as much as 250 m below sea level. High-resolution seismic reflection surveys conducted in 1991 and 1993 of four of Vitus Lake's basins reveal a complex, variable three-component acoustic stratigraphy. Although not fully sampled, the stratigraphy is inferred to be primarily glacial-marine units of (1) basal contorted and deformed glacial-marine and glacial sediments deposited by basal ice-contact processes and submarine mass-wasting; (2) acoustically well-stratified glacial-marine sediment, which unconformably overlies the basal unit and which grades upward into (3) acoustically transparent or nearly transparent glacial-marine sediment. Maximum thicknesses of conformable glacial-marine sediment exceed 100 m. All of the acoustically transparent and stratified deposits in Vitus Lake are modern in age, having accumulated between 1967 and 1993. The basins where these three-part sequences of "present-day" glacial-marine sediment are accumulating are themselves cut into older sequences of stratified glacial and glacial-marine deposits. These older units outcrop on the islands in Vitus Lake. In 1967, as the result of a major surge, glacier ice completely filled all five basins. Subsequent terminus retreat, which continued through August 1993, exposed these basins, providing new locations for glacial-marine sediment accumulation. A correlation of sediment thicknesses measured from seismic profiles at specific locations within the basins, with the year that each location became ice-free, shows that the sediment accumulation at some locations

  17. Observing Semi-Arid Ecoclimates across Mountain Gradients in the Great Basin, USA

    Science.gov (United States)

    Strachan, Scotty

    Observation of climate and ecohydrological variables in mountain systems is a necessary (if challenging) endeavor for modern society. Water resources are often intimately tied to mountains, and high elevation environments are frequently home to unique landscapes and biota with limited geographical distributions. This is especially true in the temperate and semi-arid mountains of the western United States, and specifically the Great Basin. Stark contrasts in annual water balance and ecological populations are visible across steep elevational gradients in the region; and yet the bulk of our historical knowledge of climate and related processes comes from lowland observations. Interpolative models that strive to estimate conditions in mountains using existing datasets are often found to be inaccurate, making future projections of mountain climate and ecosystem response suspect. This study details the results of high-resolution topographically-diverse ecohydrological monitoring, and describes the character and seasonality of basic climatic variables such as temperature and precipitation as well as their impact on soil moisture and vegetation during the 2012-2015 drought sequence. Relationships of topography (elevation/aspect) to daily and seasonal temperatures are shown. Tests of the PRISM temperature model are performed at the large watershed scale, revealing magnitudes, modes, and potential sources of bias that could dramatically affect derivative scientific conclusions. A new method of precipitation phase partitioning to detect and quantify frozen precipitation on a sub-daily basis is described. Character of precipitation from sub-daily to annual scales is quantified across all major Great Basin vegetation/elevation zones, and the relationship of elevation to precipitation phase, intensity, and amount is explored. Water-stress responses of Great Basin conifers including Pinus flexilis, Pinus longaeva, and Pinus ponderosa are directly observed, showing potential

  18. Development of Petrov glacial-lake system (Tien Shan and outburst risk assessment

    Directory of Open Access Journals (Sweden)

    I. A. Torgoev

    2013-01-01

    Full Text Available Global climate warming causes an intensive melting and retreat of glaciers in the Tien Shan mountains. Melting water of glaciers causes overfilling of high mountain lakes. The increase of the surface and volume of the Petrov Lake accompanied with the decrease of stability of the dam represents an extremely dangerous situation that can produce a natural disaster. Failure can happen due to erosion, a buildup of water pressure, an earthquake or if a large enough portion of a glacier breaks off and massively displaces the waters in a glacial lake at its base. In case of the lake dam rupture, flooding of a disposal site of highly toxic tailing from the gold mine Kumtor is a threat. If this happens, the toxic waste containing cyanides would contaminate a large area in the Naryn (Syrdarya river basin. Even if the flooding of the disposal site does not occur, the damage after lake dam fracture will be immense due to the glacial lake outburst flood may be a devastating mudslide. In order to prevent or reduce the risk of this event we recommend performing engineering surveys for the development and implementation of the project for the controlled reduction of water level in the Blue Bay of the Petrov Lake to a safe volume.

  19. Numerical investigations of subglacial hydrology as a direct and indirect driver of glacial erosion

    OpenAIRE

    Beaud, Flavien

    2017-01-01

    Glaciers shape high altitude and latitude landscapes in numerous ways. Erosion associated with glacial processes can limit the average height of mountain ranges, while creating the greatest relief on Earth and shaping the highest mountain peaks, but glaciers can also shield pre-existing topography. Glacial erosion processes, though still enigmatic, are central to the evolution of landscapes, particularly since the onset of the Pleistocene. Glacial erosion comprises three fundamental processes...

  20. Differences in Bacterial Diversity and Communities Between Glacial Snow and Glacial Soil on the Chongce Ice Cap, West Kunlun Mountains.

    Science.gov (United States)

    Yang, Guang Li; Hou, Shu Gui; Le Baoge, Ri; Li, Zhi Guo; Xu, Hao; Liu, Ya Ping; Du, Wen Tao; Liu, Yong Qin

    2016-11-04

    A detailed understanding of microbial ecology in different supraglacial habitats is important due to the unprecedented speed of glacier retreat. Differences in bacterial diversity and community structure between glacial snow and glacial soil on the Chongce Ice Cap were assessed using 454 pyrosequencing. Based on rarefaction curves, Chao1, ACE, and Shannon indices, we found that bacterial diversity in glacial snow was lower than that in glacial soil. Principal coordinate analysis (PCoA) and heatmap analysis indicated that there were major differences in bacterial communities between glacial snow and glacial soil. Most bacteria were different between the two habitats; however, there were some common bacteria shared between glacial snow and glacial soil. Some rare or functional bacterial resources were also present in the Chongce Ice Cap. These findings provide a preliminary understanding of the shifts in bacterial diversity and communities from glacial snow to glacial soil after the melting and inflow of glacial snow into glacial soil.

  1. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation

    Science.gov (United States)

    Neupane, Ram P.; White, Joseph D.; Alexander, Sara E.

    2015-06-01

    In mountain headwaters, climate and land use changes affect short and long term site water budgets with resultant impacts on landslide risk, hydropower generation, and sustainable agriculture. To project hydrologic change associated with climate and land use changes in the Himalaya Mountains, we used the Soil and Water Assessment Tool (SWAT) calibrated for the Tamor and Seti River basins located at eastern and western margins of Nepal. Future climate change was modeled using averaged temperature and precipitation for 2080 derived from Special Report on Emission Scenarios (SRES) (B1, A1B and A2) of 16 global circulation models (GCMs). Land use change was modeled spatially and included expansion of (1) agricultural land, (2) grassland, and (3) human settlement area that were produced by considering existing land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use type. From these simulations, higher annual stream discharge was found for all GCM-derived scenarios compared to a baseline simulation with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. On seasonal basis, we assessed higher precipitation during monsoon season in all scenarios that corresponded with higher stream discharge of 72 and 68% for Tamor and Seti basins, respectively. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that region. However, we projected minimal changes in stream discharge for the land use scenarios potentially due to higher water transmission to groundwater reservoirs associated with fractures of the Himalaya Mountains rather than changes in surface runoff. However, when combined the effects of climate and land use changes, discharge was moderately increased indicating counteracting mechanisms of hydrologic yield in these mountains

  2. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  3. Tectonics vs. Climate efficiency in triggering detrital input in sedimentary basins: the Po Plain-Venetian-Adriatic Foreland Basin (Northern Italy)

    Science.gov (United States)

    Amadori, Chiara; Di Giulio, Andrea; Toscani, Giovanni; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Fantoni, Roberto

    2017-04-01

    sediment input occurred since mid-Pleistocene time respect to Pliocene-Gelasian times. Even if the absolute amount of sediment arriving in the two basins is quite different, reflecting the different extension of their source regions, this increase occurred concomitantly with both the strong decrease of tectonic activity in the surrounding belts and the onset of major glaciations in the Alpine range. Therefore we argue that a cool, highly oscillating climate, causing glacial-interglacial cycles is approximately 4 times more efficient than tectonics in promoting the erosion of mountain belts and the related detrital input in the surrounding sedimentary basins.

  4. Ice flow models and glacial erosion over multiple glacial–interglacial cycles

    OpenAIRE

    Headley, R. M.; Ehlers, T. A.

    2015-01-01

    Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow ov...

  5. 78 FR 69363 - Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project

    Science.gov (United States)

    2013-11-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit, California, Heavenly Mountain Resort Epic Discovery Project AGENCY: Lake Tahoe Basin Management Unit, Forest Service, USDA...: The Epic Discovery Project is intended to enhance summer activities in response to the USDA Forest...

  6. Earth's glacial record and its tectonic setting

    Science.gov (United States)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  7. Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska

    Science.gov (United States)

    Jacobs, A. B.; Moran, T.; Hood, E. W.

    2017-12-01

    Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.

  8. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-01-01

    Full Text Available A great number of glacial lakes have appeared in many mountain regions across the world during the last half-century due to receding of glaciers and global warming. In the present study, glacial lake outburst flood (GLOF risk assessment has been carried out in the Teesta river basin located in the Sikkim state of India. First, the study focuses on accurate mapping of the glaciers and glacial lakes using multispectral satellite images of Landsat and Indian Remote Sensing satellites. For glacier mapping, normalized difference snow index (NDSI image and slope map of the area have been utilized. NDSI approach can identify glaciers covered with clean snow but debris-covered glaciers cannot be mapped using NDSI method alone. For the present study, slope map has been utilized along with the NDSI approach to delineate glaciers manually. Glacial lakes have been mapped by supervised maximum likelihood classification and normalized difference water index followed by manual editing afterwards using Google Earth images. Second, the first proper inventory of glacial lakes for Teesta basin has been compiled containing information of 143 glacial lakes. Third, analysis of these lakes has been carried out for identification of potentially dangerous lakes. Vulnerable lakes have been identified on the basis of parameters like surface area, position with respect to parent glacier, growth since 2009, slope, distance from the outlet of the basin, presence of supraglacial lakes, presence of other lakes in downstream, condition of moraine, condition of the terrain around them, etc. From these criterions, in total, 18 lakes have been identified as potentially dangerous glacial lakes. Out of these 18 lakes, further analysis has been carried out for the identification of the most vulnerable lake. Lake 140 comes out to be the most vulnerable for a GLOF event. Lastly, for this potentially dangerous lake, different dam break parameters have been generated using satellite data

  9. Flathead River Basin Hydrologic Observatory, Northern Rocky Mountains

    Science.gov (United States)

    Woessner, W. W.; Running, S. W.; Potts, D. F.; Kimball, J. S.; Deluca, T. H.; Fagre, D. B.; Makepeace, S.; Hendrix, M. S.; Lorang, M. S.; Ellis, B. K.; Lafave, J.; Harper, J.

    2004-12-01

    We are proposing the 22, 515 km2 glacially-sculpted Flathead River Basin located in Montana and British Columbia as a Hydrologic Observatory. This hydrologic landscape is diverse and includes large pristine watersheds, rapidly developing intermountain valleys, and a 95 km2 regulated reservoir and 510 km2 lake. The basin has a topographic gradient of over 2,339 m, and spans high alpine to arid climatic zones and a range of biomes. Stream flows are snow-melt dominated and underpinned by groundwater baseflow. The site headwaters contain 37 glaciers and thousands of square kilometers of watersheds in which fire and disease are the only disturbances. In contrast, the HO also contains watersheds at multiple scales that were dominated by glaciers within the last 100 years but are now glacier free, impacted by timber harvests and fires of varying ages to varying degrees, modified by water management practices including irrigation diversion and dams, and altered by development for homes, cities and agriculture. This Observatory provides a sensitive monitor of historic and future climatic shifts, air shed influences and impacts, and the consequences of land and water management practices on the hydrologic system. The HO watersheds are some of the only pristine watersheds left in the contiguous U.S.. They provide critical habitat for key species including the native threaten bull trout and lynx, and the listed western cutthroat trout, bald eagle, gray wolf and the grizzly bear. For the last several thousand years this system has been dominated by snow-melt runoff and moderated by large quantities of water stored in glacial ice. However, the timing and magnitude of droughts and summer flows have changed dramatically. With the information that can be gleaned from sediment cores and landscape records at different scales, this HO provides scientists with opportunities to establish baseline watershed conditions and data on natural hydrologic variability within the system. Such a

  10. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    Science.gov (United States)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  11. Sink detection on tilted terrain for automated identification of glacial cirques

    Science.gov (United States)

    Prasicek, Günther; Robl, Jörg; Lang, Andreas

    2016-04-01

    Glacial cirques are morphologically distinct but complex landforms and represent a vital part of high mountain topography. Their distribution, elevation and relief are expected to hold information on (1) the extent of glacial occupation, (2) the mechanism of glacial cirque erosion, and (3) how glacial in concert with periglacial processes can limit peak altitude and mountain range height. While easily detectably for the expert's eye both in nature and on various representations of topography, their complicated nature makes them a nemesis for computer algorithms. Consequently, manual mapping of glacial cirques is commonplace in many mountain landscapes worldwide, but consistent datasets of cirque distribution and objectively mapped cirques and their morphometrical attributes are lacking. Among the biggest problems for algorithm development are the complexity in shape and the great variability of cirque size. For example, glacial cirques can be rather circular or longitudinal in extent, exist as individual and composite landforms, show prominent topographic depressions or can entirely be filled with water or sediment. For these reasons, attributes like circularity, size, drainage area and topology of landform elements (e.g. a flat floor surrounded by steep walls) have only a limited potential for automated cirque detection. Here we present a novel, geomorphometric method for automated identification of glacial cirques on digital elevation models that exploits their genetic bowl-like shape. First, we differentiate between glacial and fluvial terrain employing an algorithm based on a moving window approach and multi-scale curvature, which is also capable of fitting the analysis window to valley width. We then fit a plane to the valley stretch clipped by the analysis window and rotate the terrain around the center cell until the plane is level. Doing so, we produce sinks of considerable size if the clipped terrain represents a cirque, while no or only very small sinks

  12. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Science.gov (United States)

    Narama, Chiyuki; Daiyrov, Mirlan; Duishonakunov, Murataly; Tadono, Takeo; Sato, Hayato; Kääb, Andreas; Ukita, Jinro; Abdrakhmatov, Kanatbek

    2018-04-01

    Four large drainages from glacial lakes occurred during 2006-2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000 m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary), and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth-drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i) a debris landform containing ice (ice-cored moraine complex), (ii) a depression with water supply on a debris landform as a potential lake basin, and (iii) no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2) in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s-1 at peak discharge.

  13. Scottish landform examples : The Cairngorms - a pre-glacial upland granite landscape

    OpenAIRE

    Hall, A.M.; Gillespie, M.R.; Thomas, C.W.; Ebert, K.

    2013-01-01

    The Cairngorm massif in NE Scotland (Figure 1) is an excellent example of a preglacial upland landscape formed in granite. Glacial erosion in the mountains has been largely confined to valleys and corries (Rea, 1998) and so has acted to dissect a pre-existing upland (Figure 2). Intervening areas of the massif experienced negligible glacial erosion due to protective covers of cold-based ice (Sugden, 1968) and preserve a wide range of pre-glacial and non-glacial landforms and reg...

  14. An Analytical Model for Basin-scale Glacier Erosion as a Function of Climate and Topography

    Science.gov (United States)

    Jaffrey, M.; Hallet, B.

    2017-12-01

    Knowledge about glacier erosion has advanced considerably over the last few decades with the emergence of a firm mechanistic understanding of abrasion and quarrying, the growing sophistication of complex numerical models of glacial erosion and the evolution of glacial landforms, and the increase in data from field studies of erosion rates. Interest in glacial erosion has also intensified and diversified substantially as it is increasingly recognized as a key process affecting the heights of mountains, the overall evolution of mountain belts, and the coupling of climate, erosion, and tectonics. Yet, the general controls of glacier erosion rates have not been addressed theoretically, and the large range of published basin-scale erosion rates, covering more than 3 orders of magnitude, remains poorly understood. To help gain insight into glacier erosion rates at the scale of glacier basins, the only scale for which extensive data exist, we develop analytically a simple budget of the total mechanical energy per unit time, the power, dissipated by a steady state glacier in sliding, S, and viscous deformation, V. We hypothesize that the power for the work of erosion derives solely from S and that the basin wide erosion rate scales with S averaged over the basin. We solve the power budget directly in terms of climatic and topographic parameters, showing explicitly that the source of power to drive both S and V is the gravitational power supplied by the net snow accumulation (mass balance). The budget leads to the simple metric φ=mbΔz2 for the basin average of S with Δz being the glacier basin relief and mb the gradient of the mass balance with elevation. The dependence of φ on the square of the relief arises from both the mass balance's and potential energy's linear increases with elevation. We validate φ using results from a comprehensive field study of erosion rates paired with glaciological data along a transect extending from Southern Patagonia to the Antarctic

  15. Surface Hydrological Processes of Rock Glaciated Basins in the San Juan Mountains, Colorado

    Science.gov (United States)

    Mateo, E. I.

    2017-12-01

    Glaciers in the western United States have been examined in terms of their summer meltwater contributions to regional hydrological systems. In the San Juan Mountains of Colorado where glaciers do not and cannot exist due to a rising zero-degree isotherm, rock glaciers take the place of valley glaciers during the summer runoff period. Most of the rock glaciers in Colorado are located on a northerly slope aspect, however, there are multiple in the southwest region of the state that occur on different aspects. This study asked how slope aspect and rising air temperatures influenced the hydrological processes of streams below rock glaciers in the San Juan Mountains during the 2016 summer season. This project focused on three basins, Yankee Boy basin, Blue Lakes basin, and Mill Creek basin, which are adjacent to each other and share a common peak, Gilpin Peak. Findings of this one-season study showed that air temperature significantly influenced stream discharge below each rock glacier. Discharge and air temperature patterns indicate a possible air temperature threshold during late summer when rock glacier melt increased at a greater rate. The results also suggest that slope aspect of rock glacier basins influences stream discharge, but temperature and precipitation are likely larger components of the melt regimes. The continuation of data collection during the 2017 summer season has allowed for more detailed analysis of the relationship between air temperature and rock glacier melt. This continual expansion of the original dataset is crucial for understanding the hydrological processes of surface runoff below rock glaciers.

  16. Fire, Ice and Water: Glaciologic, Paleoclimate and Anthropogenic Linkages During Past Mega-Droughts in the Uinta Mountains, Utah

    Science.gov (United States)

    Power, M. J.; Rupper, S.; Codding, B.; Schaefer, J.; Hess, M.

    2017-12-01

    Alpine glaciers provide a valuable water source during prolonged drought events. We explore whether long-term climate dynamics and associated glacier changes within mountain drainage basins and adjacent landscapes ultimately influence how prehistoric human populations choose settlement locations. The Uinta Mountains of Utah, with a steep present-day precipitation gradient from the lowlands to the alpine zone of 20-100 cm per year, has a rich glacial history related to natural and anthropogenic climate variability. Here we examine how past climate variability has impacted glaciers and ultimately the availability of water over long timescales, and how these changes affected human settlement and subsistence decisions. Through a combination of geomorphologic evidence, paleoclimate proxies, and glacier and climate modelling, we test the hypothesis that glacier-charged hydrologic systems buffer prehistoric populations during extreme drought periods, facilitating long-term landscape management with fire. Initial field surveys suggest middle- and low-elevation glacial valleys contain glacially-derived sediment from meltwater and resulted in terraced river channels and outwash plains visible today. These terraces provide estimates of river discharge during varying stages of glacier advance and retreat. Archaeological evidence from middle- and high-elevations in the Uinta Mountains suggests human populations persisted through periods of dramatic climate change, possibly linked to the persistence of glacially-derived water resources through drought periods. Paleoenvironmental records indicate a long history of fire driven by the combined interaction of climatic variation and human disturbance. This research highlights the important role of moisture variability determining human settlement patterns and landscape management throughout time, and has direct relevance to the impacts of anthropogenic precipitation and glacier changes on vulnerable populations in the coming century

  17. Tectonic uplift-influenced monsoonal changes promoted hominin occupation of the Luonan Basin: Insights from a loess-paleosol sequence, eastern Qinling Mountains, central China

    Science.gov (United States)

    Fang, Qian; Hong, Hanlie; Zhao, Lulu; Furnes, Harald; Lu, Huayu; Han, Wen; Liu, Yao; Jia, Zhuoyue; Wang, Chaowen; Yin, Ke; Algeo, Thomas J.

    2017-08-01

    Quaternary soil deposits from northern and southern China are distinctly different, reflecting variability of the East Asian monsoon north and south of the Qinling Mountains. Coeval sediments from the transitional climatic zone of central China, which are little studied to date, have the potential to improve our understanding of Quaternary monsoon changes and associated influences on hominin occupation of this region. Here, we investigate in detail a well-preserved and continuous Quaternary loess-paleosol sequence (Shangbaichuan) from the Luonan Basin, using a variety of weathering indices including major and trace element ratios, clay mineralogy, and Fe-oxide mineralogy. The whole-rock samples display similar rare earth element patterns characterized by upper continental crustal ratios: (La/Yb)N ≈ 9.5 and Eu/Eu* ≈ 0.65. Elemental data such as (La/Yb)N, La/Th and Eu/Eu* ratios show a high degree of homogeneity, suggesting that dust in the source region may have been thoroughly mixed and recycled, resulting in all samples having a uniform initial composition. Indices for pedogenic weathering such as Na/K, Ba/Sr, Rb/Sr, CIA, CIW, CPA, PIA, kaolinite/illite, (kaolinite + smectite)/illite, and hematite/(hematite + goethite) exhibit similar secular trends and reveal a four-stage accumulation history. The indices also indicate that the climate was warmer and wetter during the most recent interglacial stage, compared with coeval environments of the Chinese Loess Plateau. Secular changes in weathering intensity can be related to stepwise uplift of the Qinling Mountains and variation in East Asian monsoon intensity, both of which played significant roles in controlling climate evolution in the Luonan Basin. Furthermore, intensified aridity and winter monsoon strength in dust source areas, as evidenced by mineralogic and geochemical changes, may have been due to the mid-Pleistocene climate transition. Based on temporal correlation of warmer and wetter climatic conditions

  18. Glacial Meltwater Contirbutions to the Bow River, Alberta, Canada

    Science.gov (United States)

    Bash, E. A.; Marshall, S. J.; White, E. C.

    2009-12-01

    Assessment of glacial melt is critical for water resource management in areas which rely on glacier-fed rivers for agricultural and municipal uses. Changes in precipitation patterns coupled with current glacial retreat are altering the glacial contribution to river flow in areas such as the Andes of South America and the high ranges of Asia, as well as the Rockies of Western Canada. Alberta’s Bow River has its headwaters in the eastern slopes of the Canadian Rockies and contributes to the Nelson drainage system feeding into Hudson Bay. The Bow River basin contains several population centers, including the City of Calgary, and is heavily taxed for agricultural use. The combined effects of rapid glacial retreat in the Canadian Rockies, higher drought frequency, and increased demand are likely to heighten water stress in Southern Alberta. However, there has been little focus to date on the extent and importance of glacial meltwater in the Bow River. The Bow River contains 74.5 km2 of glacier ice, which amounts to only 0.29% of the basin. While this number is not high compared to some glacierized areas, Hopkinson and Young (1998) report that in dry years, glacier melt can provide up to 50% of late summer flows at a station in the upper reaches of the river system. We extend this work with an assessment of monthly and annual glacial contributions to the Bow River farther downstream in Calgary. Our analysis is based on mass balance, meteorological, and hydrological data that has been collected at the Haig Glacier since 2001. This data is used in conjunction with glacier coverage and hypsometric data for the remainder of the basin to estimate seasonal snow and glacial meltwater contributions to the Bow River from the glacierized fraction of the catchment. The results of this study show the percentage of total flow attributed to glacial melt to be highly variable. Glacier runoff contributes up to an order of magnitude more water to the Bow River per unit area of

  19. Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia

    Directory of Open Access Journals (Sweden)

    C. Narama

    2018-04-01

    Full Text Available Four large drainages from glacial lakes occurred during 2006–2014 in the western Teskey Range, Kyrgyzstan. These floods caused extensive damage, killing people and livestock as well as destroying property and crops. Using satellite data analysis and field surveys of this area, we find that the water volume that drained at Kashkasuu glacial lake in 2006 was 194 000  m3, at western Zyndan lake in 2008 was 437 000 m3, at Jeruy lake in 2013 was 182 000 m3, and at Karateke lake in 2014 was 123 000 m3. Due to their subsurface outlet, we refer to these short-lived glacial lakes as the tunnel-type, a type that drastically grows and drains over a few months. From spring to early summer, these lakes either appear, or in some cases, significantly expand from an existing lake (but non-stationary, and then drain during summer. Our field surveys show that the short-lived lakes form when an ice tunnel through a debris landform gets blocked. The blocking is caused either by the freezing of stored water inside the tunnel during winter or by the collapse of ice and debris around the ice tunnel. The draining then occurs through an opened ice tunnel during summer. The growth–drain cycle can repeat when the ice-tunnel closure behaves like that of typical supraglacial lakes on debris-covered glaciers. We argue here that the geomorphological characteristics under which such short-lived glacial lakes appear are (i a debris landform containing ice (ice-cored moraine complex, (ii a depression with water supply on a debris landform as a potential lake basin, and (iii no visible surface outflow channel from the depression, indicating the existence of an ice tunnel. Applying these characteristics, we examine 60 depressions (> 0.01 km2 in the study region and identify here 53 of them that may become short-lived glacial lakes, with 34 of these having a potential drainage exceeding 10 m3 s−1 at peak discharge.

  20. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  1. The dispersion of fibrous amphiboles by glacial processes in the area surrounding Libby, Montana, USA

    Science.gov (United States)

    Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.

    2011-01-01

    Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.

  2. The geology of the Valderrueda, Tejerina, Ocejo and Sabero coal basins (Cantabrian Mountains, Spain)

    NARCIS (Netherlands)

    Helmig, H.M.

    1965-01-01

    Four Upper Carboniferous limnic coal basins in the Cantabrian mountains are described. In the coal measures, which are known as the Cea formation and unconformably overlie the Older Palaeozoic, two sedimentary cycles are recognised. Accordingly, the unconformable sequence is subdivided into two

  3. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    Science.gov (United States)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export

  4. Late Miocene-Recent evolution of the Finike Basin and its linkages with the Beydağlari complex and the Anaximander Mountains, eastern Mediterranean

    Science.gov (United States)

    Aksu, A. E.; Hall, J.; Yaltırak, C.; Çınar, E.; Küçük, M.; Çifçi, G.

    2014-11-01

    Interpretation of ~ 2500 km of high-resolution multi-channel seismic reflection profiles shows that the Finike Basin evolved during the Pliocene-Quaternary as the result of dramatic subsidence associated with loading of large imbricate thrust panels that carry the western Tauride Mountains in the north in the Late Miocene. The stacked, seaward prograded Quaternary deltas presently resting at 1000-1500 m water depths corroborate the rapid subsidence of the region. The ubiquitous presence of evaporites in the 2000-2400 m-deep Antalya Basin and their absence in the 3000-3200 m deep Finike Basin suggest that the morphology of the Finike Basin and environs must have been considerably different during the Messinian and that this region must have remained above the depositional base of evaporites during this time. The transition from the Messinian to the Pliocene-Quaternary is marked by partitioning of stress into several discrete spatial domains. A dextral strike-slip fault zone developed along the western Antalya Basin, extending from the apex of the Isparta Angle southward into the Anaximander Mountains. This fault zone, referred to as the Antalya Fault zone, transected the Anaximander Mountains (sensu lato) separating the Anaxagoras Mountain from the Anaximander and Anaximenes Mountains. Hence, the Finike Basin, Sırrı Erinç Plateau and the Anaximander and Anaximenes Mountains remained part of the onland Beydağları Block and experienced ~ 20° counterclockwise rotation during the Late Miocene. We envisage the boundaries of the Beydağları Block as the Burdur-Fethiye Fault zone in the west, the newly delineated Antalya Fault zone in the east and the east-west trending sector of the Sırrı Erinç Plateau in the southwest. Kinematic evaluation of the structural elements mapped across the Finike Basin and the Sırrı Erinç Plateau suggest that two additional strike-slip zones developed during the Pliocene-Quaternary relaying the stress between the Antalya Fault

  5. Extremely low long-term erosion rates around the Gamburtsev Mountains in interior East Antarctica

    Science.gov (United States)

    Cox, S. E.; Thomson, S. N.; Reiners, P. W.; Hemming, S. R.; van de Flierdt, T.

    2010-11-01

    The high elevation and rugged relief (>3 km) of the Gamburtsev Subglacial Mountains (GSM) have long been considered enigmatic. Orogenesis normally occurs near plate boundaries, not cratonic interiors, and large-scale tectonic activity last occurred in East Antarctica during the Pan-African (480-600 Ma). We sampled detrital apatite from Eocene sands in Prydz Bay at the terminus of the Lambert Graben, which drained a large pre-glacial basin including the northern Gamburtsev Mountains. Apatite fission-track and (U-Th)/He cooling ages constrain bedrock erosion rates throughout the catchment. We double-dated apatites to resolve individual cooling histories. Erosion was very slow, averaging 0.01-0.02 km/Myr for >250 Myr, supporting the preservation of high elevation in interior East Antarctica since at least the cessation of Permian rifting. Long-term topographic preservation lends credence to postulated high-elevation mountain ice caps in East Antarctica since at least the Cretaceous and to the idea that cold-based glaciation can preserve tectonically inactive topography.

  6. Quantitative Morphometric Analysis of Terrestrial Glacial Valleys and the Application to Mars

    Science.gov (United States)

    Allred, Kory

    Although the current climate on Mars is very cold and dry, it is generally accepted that the past environments on the planet were very different. Paleo-environments may have been warm and wet with oceans and rivers. And there is abundant evidence of water ice and glaciers on the surface as well. However, much of that comes from visual interpretation of imagery and other remote sensing data. For example, some of the characteristics that have been utilized to distinguish glacial forms are the presence of landscape features that appear similar to terrestrial glacial landforms, constraining surrounding topography, evidence of flow, orientation, elevation and valley shape. The main purpose of this dissertation is to develop a model that uses quantitative variables extracted from elevation data that can accurately categorize a valley basin as either glacial or non-glacial. The application of this model will limit the inherent subjectivity of image analysis by human interpretation. The model developed uses hypsometric attributes (elevation-area relationship), a newly defined variable similar to the equilibrium line altitude for an alpine glacier, and two neighborhood search functions intended to describe the valley cross-sectional curvature, all based on a digital elevation model (DEM) of a region. The classification model uses data-mining techniques trained on several terrestrial mountain ranges in varied geologic and geographic settings. It was applied to a select set of previously catalogued locations on Mars that resemble terrestrial glaciers. The results suggest that the landforms do have a glacial origin, thus supporting much of the previous research that has identified the glacial landforms. This implies that the paleo-environment of Mars was at least episodically cold and wet, probably during a period of increased planetary obliquity. Furthermore, the results of this research and the implications thereof add to the body of knowledge for the current and past

  7. New glacial evidences at the Talacasto paleofjord (Paganzo basin, W-Argentina) and its implications for the paleogeography of the Gondwana margin

    Science.gov (United States)

    Aquino, Carolina Danielski; Milana, Juan Pablo; Faccini, Ubiratan Ferrucio

    2014-12-01

    The Talacasto paleovalley is situated in the Central Precordillera of San Juan, Argentina, where upper Carboniferous-Permian rocks (Paganzo Group) rest on Devonian sandstones of the Punta Negra Formation. This outcrop is an excellent example of a glacial valley-fill sequence that records at least two high-frequency cycles of the advance and retreat of a glacier into the valley. The paleocurrent analysis shows transport predominantly to the south, indicating that at this site the ice flow differs from the other nearby paleovalleys. Evidence of the glacial origin of this valley can be seen in the glacial striae on the valley's sides, as well as the U-shape of the valley, indicated by very steep locally overhanging valley walls. Deglaciation is indicated by a set of retransported conglomerates deposited in a shallow-water environment followed by a transgressive succession, which suggests eustatic rise due to meltwater input to the paleofjord. The complete sedimentary succession records distinct stages in the evolution of the valley-fill, represented by seven stratigraphical units. These units are identified based on facies associations and their interpreted depositional setting. Units 1 to 5 show one cycle of deglaciation and unit 6 marks the beginning of a new cycle of glacier advance which is characterized by different types of glacial deposits. All units show evidence of glacial influence such as dropstones and striated clasts, which indicates that the glaciers were always present in the valley or in adjacent areas during sedimentation. The Talacasto paleofjord provides good evidence of the Late Paleozoic Gondwana glaciation in western Argentina and examples of sedimentary successions which have been interpreted as being deposited by a confined wet-based glacier in advance and retreat cycles, with eventual release of icebergs into the basin. The outcrop is also a key for reconstructing the local glacial paleogeography, and it suggests a new interpretation that is

  8. Unraveling the Hydrology of the Glacierized Kaidu Basin by Integrating Multisource Data in the Tianshan Mountains, Northwestern China

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Brenning, Alexander

    2018-01-01

    Understanding the water balance, especially as it relates to the distribution of runoff components, is crucial for water resource management and coping with the impacts of climate change. However, hydrological processes are poorly known in mountainous regions due to data scarcity and the complex dynamics of snow and glaciers. This study aims to provide a quantitative comparison of gridded precipitation products in the Tianshan Mountains, located in Central Asia and in order to further understand the mountain hydrology and distribution of runoff components in the glacierized Kaidu Basin. We found that gridded precipitation products are affected by inconsistent biases based on a spatiotemporal comparison with the nearest weather stations and should be evaluated with caution before using them as boundary conditions in hydrological modeling. Although uncertainties remain in this data-scarce basin, driven by field survey data and bias-corrected gridded data sets (ERA-Interim and APHRODITE), the water balance and distribution of runoff components can be plausibly quantified based on the distributed hydrological model (J2000). We further examined parameter sensitivity and uncertainty with respect to both simulated streamflow and different runoff components based on an ensemble of simulations. This study demonstrated the possibility of integrating gridded products in hydrological modeling. The methodology used can be important for model applications and design in other data-scarce mountainous regions. The model-based simulation quantified the water balance and how the water resources are partitioned throughout the year in Tianshan Mountain basins, although the uncertainties present in this study result in important limitations.

  9. Geomorphological response of a landscape to long-term tectonic and glacial processes: the upper Rhône basin, Central Swiss Alps

    Science.gov (United States)

    Stutenbecker, Laura; Schlunegger, Fritz

    2015-04-01

    The Rhône River in the Central Swiss Alps drains a 5380 km2 large basin that shows a high spatial variability of bedrock lithology, exhumation rate, glacial conditioning and climate. All of these factors were recently discussed to control erosion rates in orogenic settings in general, and particularly in the Alps (e.g. Wittmann et al. 2007, Vernon et al. 2008, Norton et al. 2010a). Thanks to various and densely distributed data, the upper Rhône basin located between the Aar massif and Lake Geneva is a suitable natural laboratory to analyze the landscape's geomorphological state and controlling factors at a basin-scale. In this study, we extract geomorphological parameters along the channels of ca. 50 tributary basins of various sizes that contribute to the sediment budget of the Rhône River either through sediment supply by torrents or debris flows. Their catchments are located in either granitic basement rocks (External Massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles from DEMs and slope/area relationships show that all tributary rivers within the Rhône basin are in topographic transient state that is expressed by mainly convex or concave-convex channel shapes with several knickpoints of either tectonic-lithological or glacial origin. Furthermore, the frequency distribution of elevations (hypsometry) along the river channel allows identifying glacially inherited morphologies and the recent erosional front. The combination of those different geomorphological data yields to a categorization of the tributary rivers into three endmember groups: (1) streams with highly convex profiles, testifying to a strong glacial inheritance, (2) concave-convex channels with several knickzones and inherited morphologies of past glaciations, (3) predominantly concave, relatively steep rivers with minor knickpoints and inner gorges. Assuming that

  10. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  11. Using an Ablation Gradient Model to Characterize Annual Glacial Melt Contribution to Major Rivers in High Asia

    Science.gov (United States)

    Brodzik, M. J.; Armstrong, R. L.; Khalsa, S. J. S.; Painter, T. H.; Racoviteanu, A.; Rittger, K.

    2014-12-01

    Ice melt from mountain glaciers can represent a significant contribution to freshwater hydrological budgets, along with seasonal snow melt, rainfall and groundwater. In the rivers of High Asia, understanding the proportion of glacier ice melt is critical for water resource management of irrigation and planning for hydropower generation and human consumption. Current climate conditions are producing heterogeneous glacier responses across the Hindu Kush-Karakoram-Himalayan ranges. However, it is not yet clear how contrasting glacier patterns affect regional water resources. For example, in the Upper Indus basin, estimates of glacial contribution to runoff are often not distinguished from seasonal snow contribution, and vary widely, from as little as 15% to as much as 55%. While many studies are based on reasonable concepts, most are based on assumptions uninformed by actual snow or ice cover measurements. While straightforward temperature index models have been used to estimate glacier runoff in some Himalayan basins, application of these models in larger Himalayan basins is limited by difficulties in estimating key model parameters, particularly air temperature. Estimating glacial area from the MODIS Permanent Snow and Ice Extent (MODICE) product for the years 2000-2013, with recently released Shuttle Radar Topography Mission (SRTMGL3) elevation data, we use a simple ablation gradient approach to calculate an upper limit on the contribution of clean glacier ice melt to streamflow data. We present model results for the five major rivers with glaciated headwaters in High Asia: the Bramaputra, Ganges, Indus, Amu Darya and Syr Darya. Using GRDC historical discharge records, we characterize the annual contribution from glacier ice melt. We use MODICE interannual trends in each basin to estimate glacier ice melt uncertainties. Our results are being used in the USAID project, Contribution to High Asia Runoff from Ice and Snow (CHARIS), to inform regional-scale planning for

  12. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.

    Science.gov (United States)

    Ashraf, Arshad; Iqbal, Ayesha

    2018-04-27

    The meltwater components play an important role in the hydrological regime of the Hindu Kush, Karakorum and Himalaya (HKH) region, in terms of high demand of water for food and fiber from snow and glacial resource. The communities of Himalayan mountains are facing challenges of food security owing to lack of the resource information for meeting their water requirements. In this study, suitability index approach was adopted to assess glacier resource potential for establishing kuhl irrigation system in HKH ranges of Pakistan. The basis of indexing is glacier accessibility and water yield potential of the glacial resource for irrigation estimated in terms of number and ice reserve of the glaciers. The suitability index was found good for about 1.4% glaciers constituting about 80% of the total ice reserves of the HKH region. Medium suitability constitutes about 36.1% glaciers with 12.6% of the total ice reserves, while low suitability was assessed for about 60% glaciers containing 1.5% ice reserves only. Maximum unit glacial reserve was estimated for Shigar basin, i.e., 1.44 km 3 , and among HKH ranges, 0.46 km 3 for the Karakoram range. A regular monitoring of the glacial resource would prove helpful in assessing vulnerability of this resource to climate change in the high Himalayan region in future. Copyright © 2018. Published by Elsevier B.V.

  13. Timing of glacier advances and climate in the High Tatra Mountains (Western Carpathians) during the Last Glacial Maximum

    Science.gov (United States)

    Makos, Michał; Dzierżek, Jan; Nitychoruk, Jerzy; Zreda, Marek

    2014-07-01

    During the Last Glacial Maximum (LGM), long valley glaciers developed on the northern and southern sides of the High Tatra Mountains, Poland and Slovakia. Chlorine-36 exposure dating of moraine boulders suggests two major phases of moraine stabilization, at 26-21 ka (LGM I - maximum) and at 18 ka (LGM II). The dates suggest a significantly earlier maximum advance on the southern side of the range. Reconstructing the geometry of four glaciers in the Sucha Woda, Pańszczyca, Mlynicka and Velicka valleys allowed determining their equilibrium-line altitudes (ELAs) at 1460, 1460, 1650 and 1700 m asl, respectively. Based on a positive degree-day model, the mass balance and climatic parameter anomaly (temperature and precipitation) has been constrained for LGM I advance. Modeling results indicate slightly different conditions between northern and southern slopes. The N-S ELA gradient finds confirmation in slightly higher temperature (at least 1 °C) or lower precipitation (15%) on the south-facing glaciers during LGM I. The precipitation distribution over the High Tatra Mountains indicates potentially different LGM atmospheric circulation than at the present day, with reduced northwesterly inflow and increased southerly and westerly inflows of moist air masses.

  14. Advances in Holocene mountain geomorphology inspired by sediment budget methodology

    Science.gov (United States)

    Slaymaker, Olav; Souch, Catherine; Menounos, Brian; Filippelli, Gabriel

    2003-09-01

    The sediment budget, which links sediment sources to sediment sinks with hydroclimatic and weathering processes mediating the response, is applied to the analysis of sediments in three alpine lakes in British Columbia. We provide two ways of using the sediment budget as an integrating device in the interpretation of mountain geomorphology. These approaches differ in their resolution and ability to budget the major components of the fine-sediment cascade in glaciated environments. Taken together, they provide an integrated index of landscape change over the Holocene. The first example compares the hydroclimatic controls of lake sedimentation for the last 600 years (A.D. 1370-1998) preserved in varved sediments from two of the lake basins. This hydroclimatological approach incorporates contemporary monitoring, air photo analysis, and detailed stratigraphy of sedimentation events within a single varve to infer the timing, sources, and preferred pathways of fine-grained sediments reaching the lake basins. The results indicate that glaciers, hillslope, and channel instability within the major subbasins are the principal sediment sources to the lake basins. Transitory sediment storage of glacially derived sediments within the channels is believed to modulate the episodic and more frequent delivery of sediments from adjacent hillslope and fluvial storage sites and direct routing of glacial rock flour during years of prolonged glacial melt. The second example, relying on the phosphorus geochemistry of sediments in an alpine lake basin, considers the evolution of phosphorus forms (from mineral to occluded and organic fractions) as a function of the soil development, inherent slope instability, and repeated cycles of glaciation and neoglaciation over the Holocene. This geochemical approach demonstrates that both neoglaciation and full glaciation have essentially zeroed the system in such a way that a high proportion of mineral phosphorus remains in the present lake sediments

  15. Last Glacial Maximum Dated by Means of 10Be in the Maritime Alps (Italy)

    Science.gov (United States)

    Granger, D. E.; Spagnolo, M.; Federici, P.; Pappalardo, M.; Ribolini, A.; Cyr, A. J.

    2006-12-01

    Relatively few exposure dates of LGM moraines boulders are available for the European Alps, and none on the southern flank. Ponte Murato (PM) is a frontal moraine at 860 m asl in the Gesso Basin (Maritime Alps, SW European Alps). The PM moraine dams the 157 km2 Gesso della Barra Valley and it represents the lowermost frontal moraine of the entire Gesso Valley, near the outlet of the valley in the Po Plain. Its ELA, determined from the paleo- shape of the supposed Gesso della Barra glacier, is 1746 m asl. Tetti Bandito (TB) is a small and badly preserved glacial deposit, tentatively attributed to a lateral-frontal moraine, that is positioned 5 km downvalley from the PM deposit at 800 m asl. There are no other glacial deposits downvalley from the TB moraine in the Gesso Basin or farther NE in the piedmont region of the upper Po Plain. Boulders sampled on the PM and on the TB moraine crests gave a 10Be cosmogenic age of respectively 16300 ± 880 ka (average value) and 18798 ± 973 ka. This result constrains the PM frontal moraine within the LGM interval but also suggests that the maximum expansion of the Gesso Basin glacier was more downvalley at some point during the last glaciation. If the TB is a lateral-frontal moraine as supposed, the two TB and PM moraines would represent the outer and inner moraine crests of the same LGM stadial, with the outer moraine much less pronounced than the inner moraine, similarly to the maximalstand and the hochstand described in the Eastern Alps (Van Husen, 1997). Within this perspective, the PM and TB dates are consistent with a European Alps LGM corresponding to MIS 2 (Ivy-Ochs et al., 2004). This study of the Maritime Alps moraines is also in agreement with the Upper Würm climatic theory (Florineth and Schlüchter, 2000) of a stronger influence of the W and SW incoming humid airflows in the European Alps, differently from the nearby Vosges and Pyrenees mountain chains where more dry conditions were probably responsible for a very

  16. Numerical Modeling of Rocky Mountain Paleoglaciers - Insights into the Climate of the Last Glacial Maximum and the Subsequent Deglaciation

    Science.gov (United States)

    Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.

    2014-12-01

    Numerical modeling of paleoglaciers can yield information on the climatic conditions necessary to sustain those glaciers. In this study we apply a coupled 2-d mass/energy balance and flow model (Plummer and Phillips, 2003) to reconstruct local last glacial maximum (LLGM) glaciers and paleoclimate in ten study areas along the crest of the U.S. Rocky Mountains between 33°N and 49°N. In some of the areas, where timing of post-LLGM ice recession is constrained by surface exposure ages on either polished bedrock upvalley from the LLGM moraines or post-LLGM recessional moraines, we use the model to assess magnitudes and rates of climate change during deglaciation. The modeling reveals a complex pattern of LLGM climate. The magnitude of LLGM-to-modern climate change (temperature and/or precipitation change) was greater in both the northern (Montana) Rocky Mountains and southern (New Mexico) Rocky Mountains than in the middle (Wyoming and Colorado) Rocky Mountains. We use temperature depression estimates from global and regional climate models to infer LLGM precipitation from our glacier model results. Our results suggest a reduction of precipitation coupled with strongly depressed temperatures in the north, contrasted with strongly enhanced precipitation and much more modest temperature depression in the south. The middle Rocky Mountains of Colorado and Wyoming appear to have experienced a reduction in precipitation at the LLGM without the strong temperature depression of the northern Rocky Mountains. Preliminary work on modeling of deglaciation in the Sangre de Cristo Range in southern Colorado suggests that approximately half of the LLGM-to-modern climate change took place during the initial ~2400 years of deglaciation. If increasing temperature and changing solar insolation were the sole drivers of this initial deglaciation, then temperature would need to have risen by slightly more than 1°C/ky through this interval to account for the observed rate of ice recession.

  17. Global snowline and mountain topography: a contrasted view

    Science.gov (United States)

    Champagnac, Jean-Daniel; Herman, Frédéric; Valla, Pierre

    2013-04-01

    The examination of the relationship between Earth's topography and present and past climate (i.e., long-term elevation of glaciers Equilibrium Line Altitude) reveals that the elevation of mountain ranges may be limited or controlled by glaciations (e.g. Porter, 1989). This is of prime importance, because glacial condition would lead to a limit the mountain development, hence the accumulation of gravitational energy and prevent the development of further glacial conditions as well as setting the erosion in (peri)glacial environments. In this study, we examine the relationships between topography and the global Equilibrium Line Altitude of alpine glaciers around the world (~ long term snowline, i.e. the altitude where the ice mass balance is null). This analysis reinforce a global study previously published (Champagnac et al., 2012), and provide a much finer view of the climate-topography-tectonics relationships. Specifically, two main observations can be drawn: 1) The distance between the (averaged and maximum) topography, and the ELA decreases pole ward the poles, and even become reversed (mean elevation above to ELA) at high latitude. Correlatively, the elevation of very large portion of land at mid-latitude cannot be related to glaciations, simply because it was never glaciated (large distance between topography and long-term mean ELA). The maximum distance between the ELA and the topography is greater close to the equator and decreases poleward. In absence of glacial and periglacial erosion, this trend cannot have its origin in glacial and periglacial processes. Moreover, the ELA elevation shows a significant (1000~1500m) depression in the intertropical zone. This depression of the ELA is not reflected at all in the topography 2) The distribution of relief on Earth, if normalized by the mean elevation of mountain ranges (as a proxy for available space to create relief, see Champagnac et al., 2012 for details) shows a latitudinal band of greater relief between

  18. Reinterpretation of Halokinetic Features in the Ancestral Rocky Mountains Paradox Salt Basin, Utah and Colorado

    Science.gov (United States)

    Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV

    2016-12-01

    The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.

  19. The glacial record of New Zealand's Southern Alps

    Science.gov (United States)

    Schaefer, J. M.; Denton, G.; Lowell, T.; Anderson, B.; Rinterknecht, V.; Schlosser, P.; Ivy-Ochs, S.; Kubik, P.; Schluechter, C.; Chinn, T.; Barrell, D.; Lifton, N.; Jull, T.

    2004-12-01

    We present detailed mapping and surface exposure dating using in-situ Be-10 and C-14 of the moraine set of Lake Pukaki, New Zealand's Southern Alps, spanning from the penultimate glaciation, over several Last Glacial Maximum (LGM) moraines, the late glacial event to Holocene glacial advances. New Zealand, a mountain ridge in the middle of the Southern Ocean, has one of the best preserved moraine records world-wide, offering the opportunity to reconstruct amplitude and timing of climate changes from Southern mid-latitudes, an area where paleoclimate data is scarce. The extensive mapping effort by G. Denton and colleagues (http://wyvern.gns.cri.nz/website/csigg/) provides a unique background for sample selection for Surface Exposure Dating. Our extensive data set (>40 samples analyzed so far) indicate that (i) the LGM in New Zealand terminated clearly prior to the Boelling/Alleroed warming, (ii) the late glacial advance is within uncertainties consistent with the timing of the Younger Dryas cold reversal; (iii) there occurred an early Holocene glacial event of the same amplitude than the Little Ice Age. This latter event is the first Holocene glacial event from the Southern Hemisphere dated by in-situ Be-10 and C-14.

  20. Electrical resistivity tomography (ERT surveys on glacial deposits in Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Andrei ZAMOSTEANU

    2014-11-01

    Full Text Available The study presents preliminary results regarding the use of electrical resistivity surveys in the assessment of the internal structure of the glacial deposits from the Romanian Carpathians.ERT is a geophysical method used to quantify changes in electrical resistivity of the ground towards passing electric current across an array of electrodes and simultaneous measurement of the induced potential gradient. Using specific software the measurements are further processed and correlated with the topography in order to obtain bedrock resistivity features. Therefore, the method is useful to evaluate the characteristics of geological strata and is widely used for mapping shallow subsurface geological structures. In the mountain regions ERT studies have been applied in different glacial and periglacial geomorphological studies - for permafrost detection (in Romanian Carpathians - Urdea et. al., 2008; Vespremeanu-Stroe et al., 2012, slope deformation analysis, the assessment of slip surface depths, sediment thickness, groundwater levels etc. One of the most commonly 2-D array used is the Wenner electrode configuration, which is moderately sensitive to both horizontal and vertical ground structures.Due to their elevations and Pleistocene’s climatic conditions, the Romanian Carpathians have been partially affected by Quaternary glaciations. The glaciers descended to about 1050-1200 m a.s.l. (Urdea and Reurther, 2009 in the Transylvanian Alps and Rodna Mountains (Eastern Carpathians carving a large number of U-shaped valleys and glacial cirques (Mîndrescu, 2006 and forming accumulations of unconsolidated glacial debris (moraines. Our study areas are two sites located in the northern (Rodna Mts. and southern (Iezer Păpuşa Mts. part of the mountain range.

  1. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  2. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene

    Science.gov (United States)

    Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał

    2016-02-01

    Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This

  3. Lake-level increasing under the climate cryoaridization conditions during the Last Glacial Maximum

    Science.gov (United States)

    Amosov, Mikhail; Strelkov, Ivan

    2017-04-01

    A lake genesis and lake-level increasing during the Last Glacial Maximum (LGM) are the paramount issues in paleoclimatology. Investigating these problems reveals the regularities of lake development and figures out an arid territory conditions at the LGM stage. Pluvial theory is the most prevalent conception of lake formation during the LGM. This theory is based on a fact that the water bodies emerged and their level increased due to torrential rainfalls. In this study, it is paid attention to an alternative assumption of lake genesis at the LGM stage, which is called climate cryoaridization. In accordance with this hypothesis, the endorheic water basins had their level enlarged because of a simultaneous climate aridity and temperature decrease. In this research, a lake-level increasing in endorheic regions of Central Asia and South American Altiplano of the Andes is described. The lake investigation is related to its conditions during the LGM. The study also includes a lake catalogue clearly presenting the basin conditions at the LGM stage and nowadays. The data compilation partly consists of information from an earlier work of Mikhail Amosov, Lake-levels, Vegetation And Climate In Central Asia During The Last Glacial Maximum (EGU2014-3015). According to the investigation, a lake catalogue on 27 lakes showed that most of the water bodies had higher level. This feature could be mentioned for the biggest lakes of the Aral Sea, Lake Balkhash, Issyk-Kul etc. and for the small ones located in the mountains, such as Pamir, Tian-Shan and Tibet. Yet some lakes that are situated in Central Asian periphery (Lake Qinghai and lakes in Inner Mongolia) used to be lower than nowadays. Also, the lake-level increasing of Altiplano turned to be a significant feature during the LGM in accordance with the data of 5 lakes, such as Titicaca, Coipasa-Uyuni, Lejia, Miscanti and Santa-Maria. Most of the current endorheic basins at the LGM stage were filled with water due to abundant

  4. Effects of glaciological and hydro-meteorological conditions on the glacial danger in Zailiyskiy Alatau

    Directory of Open Access Journals (Sweden)

    A. R. Medeu

    2017-01-01

    Full Text Available A need to estimate a hazard of a mudflow stream appearance in the glacial-nival zone of the Northern slope of Zailiyskiy Alatau (Kasakhstan is now one of the really urgent problems. The objective of this study was to inves‑ tigate influence of glacial and hydrometeorological factors on the condition of snow-glacial zone of Zailiyskiy Alatau and find out a mudflow-forming role of the mudflow centers arising due to climate warming and degra‑ dation of glaciation: periglacial lakes, intramoraine channels and reservoirs, and also talik massifs of morainic deposits. We analyzed glacial processes in the Zailiysky Alatau over a long period using meteorological data of the Almaty weather station and its close correlations with data from weather stations in the mountains. The area of glaciations was found out to be reduced after the maximum of the Little Ice Age. A combined diagram of occurrence of the mudflow manifestations and factors causing them had been constructed on the basis of sta‑ tistical data on the landslide phenomena. Glacial mudflows were the most frequent in 1960–1990, and later on activity of them became weaker. We believe, that in the next 10–20 years, the glacial mudflow hazard in Zailiys‑ kiy Alatau can sharply decrease, but at the same time, a probability of occurrence of the rainfall mudflows can increase in the mountainous zone of the ridge due the increase of areas with melted moraine and slope deposits.

  5. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  6. Hydrologic regimes of forested, mountainous, headwater basins in New Hampshire, North Carolina, Oregon, and Puerto Rico

    Science.gov (United States)

    David A. Post; Julia A. Jones

    2001-01-01

    This study characterized the hydrologic regimes at four forested, mountainous long-term ecological research (LTER) sites: H.J. Andrews (Oregon), Coweeta (North Carolina), Hubbard Brook (New Hampshire), and Luquillo (Puerto Rico). Over 600 basinyears of daily streadow records were examined from 18 basins that have not experienced human disturbances since at least the...

  7. [Fertility and reproductive behavior in Peru: Andes mountains and the Amazon basin].

    Science.gov (United States)

    Fort, A L

    1992-01-01

    "The article attempts to discuss the historical and contemporary situations of [fertility among] populations residing in the two least studied areas of Peru: the Andes mountains and the Amazon basin. The study starts with a review of the 'demographic catastrophe' that the Spanish presence meant to the people of these areas.... The harmful effects of the 'rubber boom' and, more recently, of the 'oil boom', periods are also reviewed." Fertility trends in the two areas are analyzed, with a focus on marriage, breast-feeding, and contraceptive use. (SUMMARY IN ENG) excerpt

  8. Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains

    Science.gov (United States)

    Trifonova, Tatiana

    2014-05-01

    Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since

  9. YUCCA MOUNTAIN SITE DESCRIPTION

    International Nuclear Information System (INIS)

    Simmons, A.M.

    2004-01-01

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel

  10. Mountain geomorphosites in Odle Group (Dolomites, Italy)

    Science.gov (United States)

    Coratza, Paola; Ghinoi, Alessandro; Marchetti, Mauro; Soldati, Mauro

    2016-04-01

    The area, considered in the present study, is located in the north-eastern sector of the Gardena valley, in the Odle Group, a popular destination of summer and winter tourism (more than 3000 m a.s.l.). The area has a strong hiking-tourism vocation thanks to its spectacular high-mountain landscape and a dense network of hiking tracks. The well-developed network of hiking paths and slopes for many different climbing skills offers a lot of possibilities for high-mountain excursions. Permanent dwelling-places are absent with the exceptions of a few tourist structures nearby opened during certain periods of the year. This area, as all Dolomites, which became UNESCO Word Heritage Site in 2009, represent landscape mosaics, which express the summation of landscape histories and processes offering an almost complete educational open-air laboratory due to the variety and complexity of phenomena and processes taking place during present climate conditions and during recent geological periods. These mountains, due to the aggregation of relict, recent and active landforms constitute an outstanding geoheritage, suitable for educational and tourist purposes. Landforms typical of past morphoclimatic conditions (inherited geomorphosites) share the stage with forms and processes active in the current morphoclimatic conditions (active geomorphosites); their spatial and geometrical relationships may be sufficient to trace a relative time-line of the geomorphological history of the area. Several glacial landforms testify for the presence and the activity of a glacial tongue hosted in the valley during the Lateglacial, mainly located in the northern sector of the area, where altitudes range from about 2000 m to about 2300 m a.s.l. Among these, worth of note are the well-preserved glacial cirques of Val dla Roa and those located at the southern margin of the Odle Group. Quite well preserved moraine ridges are present at a mean altitude of some 2000 m at the Alpe di Cisles as well as

  11. When did the Penglai orogeny begin on Taiwan?: Geochronological and petrographic constraints on the exhumed mountain belts and foreland-basin sequences

    Science.gov (United States)

    Chen, W. S.; Syu, S. J.; Yeh, J. J.

    2017-12-01

    Foreland basin receives large amounts of synorogenic infill that is eroded from the adjacent exhumed mountain belt, and therefore provides the important information on exhumation evolution. Furthermore, a complete stratigraphic sequence of Taiwan mountain belt consists of five units of Miocene sedimentary rocks (the Western Foothills and the uppermost sequence on the proto-Taiwan mountain belt), Oligocene argillite (the Hsuehshan Range), Eocene quartzite (the Hsuehshan Range), Eocene-Miocene slate and schist (Backbone Range), and Cretaceous schist (Backbone Range) from top to bottom. Based on the progressive unroofing history, the initiation of foreland basin received sedimentary lithic sediments from the uppermost sequence of proto-Taiwan mountain belt, afterwards, and receiving low- to medium-grade metamorphic lithic sediments in ascending order of argillite, quartzite, slate, and schist clasts. Therefore, the sedimentary lithics from mountain belt were deposited which represents the onset of the mountain uplift. In this study, the first appearance of sedimentary lithic sediments occurs in the Hengchun Peninsula at the middle Miocene (ca. 12-10 Ma). Thus, sandstone petrography of the late Miocene formation (10-5.3 Ma) shows a predominantly recycled sedimentary and low-grade metamorphic sources, including sandstone, argillite and quartzite lithic sediments of 10-25% which records erosion to slightly deeper metamorphic terrane on the mountain belt. Based on the results of previous thermogeochronological studies of the Yuli belt, it suggests that the middle Miocene occurred mountain uplift. The occurrence of low-grade metamorphic lithic sediments in the Hengchun Peninsula during late Miocene is coincident with the cooling ages of uplift and denuded Yuli schist belt at the eastern limb of Backbone Range.

  12. A simplified GIS-based model for large wood recruitment and connectivity in mountain basins

    Science.gov (United States)

    Lucía, Ana; Antonello, Andrea; Campana, Daniela; Cavalli, Marco; Crema, Stefano; Franceschi, Silvia; Marchese, Enrico; Niedrist, Martin; Schneiderbauer, Stefan; Comiti, Francesco

    2014-05-01

    The mobilization of large wood (LW) elements in mountain rivers channels during floods may increase their hazard potential, especially by clogging narrow sections such as bridges. However, the prediction of LW transport magnitude during flood events is a challenging topic. Although some models on LW transport have been recently developed, the objective of this work was to generate a simplified GIS-based model to identify along the channel network the most likely LW-related critical sections during high-magnitude flood events in forested mountain basins. Potential LW contribution generated by landsliding occurring on hillslopes is assessed using SHALSTAB stability model coupled to a GIS-based connectivity index, developed as a modification of the index proposed by Cavalli et al (2013). Connected slope-derived LW volumes are then summed at each raster cell to LW volumes generated by bank erosion along the erodibile part of river corridors, where bank erosion processes are estimated based on user-defined channel widening ratios stemming from observations following recent extreme events in mountain basins. LW volume in the channel is then routed through the stream network applying simple Boolean rules meant to capture the most important limiting transport condition in these high-energy systems at flood stage, i.e. flow width relative to log length. In addition, the role of bridges and retention check-dams in blocking floating logs is accounted for in the model, in particular bridge length and height are used to characterize their clogging susceptibility for different levels of expected LW volumes and size. The model has been tested in the Rienz and Ahr basins (about 630 km2 each), located in the Eastern Italian Alps. Sixty percent of the basin area is forested, and elevations range from 811 m a.s.l. to 3488 m a.s.l.. We used a 2.5 m resolution DTM and DSM, and their difference was used to calculate the canopy height. Data from 35 plots of the National Forest Inventory

  13. Sedimentary response to orogenic exhumation in the northern rocky mountain basin and range province, flint creek basin, west-central Montana

    Science.gov (United States)

    Portner, R.A.; Hendrix, M.S.; Stalker, J.C.; Miggins, D.P.; Sheriff, S.D.

    2011-01-01

    Middle Eocene through Upper Miocene sedimentary and volcanic rocks of the Flint Creek basin in western Montana accumulated during a period of significant paleoclimatic change and extension across the northern Rocky Mountain Basin and Range province. Gravity modelling, borehole data, and geologic mapping from the Flint Creek basin indicate that subsidence was focused along an extensionally reactivated Sevier thrust fault, which accommodated up to 800 m of basin fill while relaying stress between the dextral transtensional Lewis and Clark lineament to the north and the Anaconda core complex to the south. Northwesterly paleocurrent indicators, foliated metamorphic lithics, 64 Ma (40Ar/39Ar) muscovite grains, and 76 Ma (U-Pb) zircons in a ca. 27 Ma arkosic sandstone are consistent with Oligocene exhumation and erosion of the Anaconda core complex. The core complex and volcanic and magmatic rocks in its hangingwall created an important drainage divide during the Paleogene shedding detritus to the NNW and ESE. Following a major period of Early Miocene tectonism and erosion, regional drainage networks were reorganized such that paleoflow in the Flint Creek basin flowed east into an internally drained saline lake system. Renewed tectonism during Middle to Late Miocene time reestablished a west-directed drainage that is recorded by fluvial strata within a Late Miocene paleovalley. These tectonic reorganizations and associated drainage divide explain observed discrepancies in provenance studies across the province. Regional correlation of unconformities and lithofacies mapping in the Flint Creek basin suggest that localized tectonism and relative base level fluctuations controlled lithostratigraphic architecture.

  14. Predicting future glacial lakes in Austria using different modelling approaches

    Science.gov (United States)

    Otto, Jan-Christoph; Helfricht, Kay; Prasicek, Günther; Buckel, Johannes; Keuschnig, Markus

    2017-04-01

    Glacier retreat is one of the most apparent consequences of temperature rise in the 20th and 21th centuries in the European Alps. In Austria, more than 240 new lakes have formed in glacier forefields since the Little Ice Age. A similar signal is reported from many mountain areas worldwide. Glacial lakes can constitute important environmental and socio-economic impacts on high mountain systems including water resource management, sediment delivery, natural hazards, energy production and tourism. Their development significantly modifies the landscape configuration and visual appearance of high mountain areas. Knowledge on the location, number and extent of these future lakes can be used to assess potential impacts on high mountain geo-ecosystems and upland-lowland interactions. Information on new lakes is critical to appraise emerging threads and potentials for society. The recent development of regional ice thickness models and their combination with high resolution glacier surface data allows predicting the topography below current glaciers by subtracting ice thickness from glacier surface. Analyzing these modelled glacier bed surfaces reveals overdeepenings that represent potential locations for future lakes. In order to predict the location of future glacial lakes below recent glaciers in the Austrian Alps we apply different ice thickness models using high resolution terrain data and glacier outlines. The results are compared and validated with ice thickness data from geophysical surveys. Additionally, we run the models on three different glacier extents provided by the Austrian Glacier Inventories from 1969, 1998 and 2006. Results of this historical glacier extent modelling are compared to existing glacier lakes and discussed focusing on geomorphological impacts on lake evolution. We discuss model performance and observed differences in the results in order to assess the approach for a realistic prediction of future lake locations. The presentation delivers

  15. YUCCA MOUNTAIN SITE DESCRIPTION

    Energy Technology Data Exchange (ETDEWEB)

    A.M. Simmons

    2004-04-16

    The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

  16. Predicting Monsoonal-Driven Stream Discharge and Sediment Yield in Himalaya Mountain Basins with Changing Climate and Deforestation

    Science.gov (United States)

    Neupane, R. P.; White, J. D.

    2014-12-01

    Short and long term effects of site water availability impacts the spectrum of management outcomes including landslide risk, hydropower generation, and sustainable agriculture in mountain systems heavily influenced by climate and land use changes. Climate change and land use may predominantly affect the hydrologic cycle of mountain basins as soil precipitation interception is affected by land cover. Using the Soil and Water Assessment Tool, we estimated stream discharge and sediment yield associated with climate and land use changes for two Himalaya basins located at eastern and western margins of Nepal that included drainages of the Tamor and Seti Rivers. Future climate change was modeled using average output of temperature and precipitation changes derived from Special Report on Emission Scenarios (B1, A1B & A2) of 16 global circulation models for 2080 as meteorological inputs into SWAT. Land use change was modeled spatially and included 1) deforestation, 2) expansion of agricultural land, and 3) increased human settlement that were produced by considering current land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use types. We found higher annual stream discharge in all GCM-derived scenarios compared to the baseline with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. With 7% of original forest land removed, sediment yield for Tamor basin was estimated to be 65% higher, but increased to 124% for the SRES-B1 scenario. For the Seti basin, 4% deforestation yielded 33% more sediment for the SRES-A1B scenario. Our results indicated that combined effects of future, intensified monsoon rainfall with deforestation lead to dramatic potential for increased stream discharge and sediment yield as rainfall on steep slopes with thin exposed soils increases surface runoff and soil erosion in the Himalayas. This effect appears to

  17. Glacial erosion, rock, and peak uplift within the central Transantarctic Mountains

    International Nuclear Information System (INIS)

    Stern, T.A.; Baxter, A.K.

    2002-01-01

    About 1500 m of peak elevation can be ascribed to the isostatic response of valley incision within the central Transantarctic Mountains. This estimate, based on a 3D analysis of topography, and on rock uplift history, represents c. 33% of the maximum peak elevation within the Transantarctic Mountains. Input to the calculation includes a previoulsy published estimate for the variation of flexural rigidity across the western margin of East Antarctica, and a lithospheric free-edge at the Transantarctic Mountains Front. The rebound response is a complex function of lithospheric rigidity, wavelength or erosion, and lithospheric boundary conditions. We also calculate a maximum 4000 m of total rebound due to both valley incision and erosion of mountain tops. This represents 60% of the maximum rock uplift inferred for the mountain front on the bases of fission track data and flexure analysis. (author). 34 refs., 5 figs., 3 tabs

  18. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Tamstorf, Mikkel P.; Elberling, Bo

    2015-01-01

    .025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96 was associated...... with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 g Hg km(-2) yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred...... in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial...

  19. Quick Release of Internal Water Storage in a Glacier Leads to Underestimation of the Hazard Potential of Glacial Lake Outburst Floods From Lake Merzbacher in Central Tian Shan Mountains

    Science.gov (United States)

    Shangguan, Donghui; Ding, Yongjian; Liu, Shiyin; Xie, Zunyi; Pieczonka, Tino; Xu, Junli; Moldobekov, Bolot

    2017-10-01

    Glacial meltwater and ice calving contribute to the flood volume of glacial lakes such as Lake Merzbacher in the Tian Shan Mountains of central Asia. In this study, we simulated the lake's volume by constructing an empirical relationship between the area of Lake Merzbacher, determined from satellite images, and the lake's water storage, derived from digital elevation models. Results showed that the lake water supply rate before Glacial Lake Outburst Floods (GLOFs) generally agreed well with those during the GLOFs from 2009 to 2012 but not in 2008 and 2015. Furthermore, we found that the combination of glacial meltwater and ice calving is not enough to fully explain the supply rate during GLOFs in 1996 and 1999, suggesting other factors affect the supply rate during GLOFs as well. To examine this further, we compared the water supply rate before and during GLOF events in 1999 and 2008. We inferred that quickly released short-term and intermediate-term water storage by glaciers have likely contributed to both flood events in those years. This study highlights the need to improve our understanding of the supply component of outburst floods, such as irregularly released stored water may lead to GLOF events with generally three different types: case I (singular event-triggered englacial water release), case II (glacier melt due to temperature changes), and case III (englacial water release mixed with glacier melt).

  20. Hydrology in a Mediterranean mountain environment, the Vallcebre Research basins (North Eastern Spain). IV. Testing hydrological and erosion models

    International Nuclear Information System (INIS)

    Gallart, F.; Latron, J.; Llorens, P.; Martinez-Carreras, N.

    2009-01-01

    Three modelling exercises were carried out in the Vallcebre research basins in order to both improve the understanding of the hydrological processes and test the adequate of some models in such Mediterranean mountain conditions. These exercises consisted of i) the analysis of the hydrological role of the agricultural terraces using the TOPMODEL topographic index, ii) the parametrisation of TOPMODEL using internal basin information, and iii) a test of the erosion model KINEROS2 for simulating badlands erosion. (Author) 13 refs.

  1. Constraints on ice volume changes of the WAIS and Ross Ice Shelf since the LGM based on cosmogenic exposure ages in the Darwin-Hatherton glacial system of the Transantarctic Mountains

    Science.gov (United States)

    Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James

    2010-05-01

    Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes

  2. Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?

    Science.gov (United States)

    Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.

    2017-12-01

    A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").

  3. A numerical solution to define channel heads and hillslope parameters from digital topography of glacially conditioned catchments

    Science.gov (United States)

    Salcher, Bernhard; Baumann, Sebastian; Kober, Florian; Robl, Jörg; Heiniger, Lukas

    2016-04-01

    The analysis of the slope-area relationship in bedrock streams is a common way for discriminating the channel from the hillslope domain and associated landscape processes. Spatial variations of these domains are important indicators of landscape change. In fluvial catchments, this relationship is a function of contributing drainage area, channel slope and the threshold drainage area for fluvial erosion. The resulting pattern is related to climate, tectonic and underlying bedrock. These factors may become secondary in catchments affected by glacial erosion, as it is the case in many mid- to high-latitude mountain belts. The perturbation (i.e. the destruction) of an initial steady state fluvial bedrock morphology (where uplift is balanced by surface lowering rates) will tend to become successively larger if the repeated action of glacial processes exceeds the potential of fluvial readjustment during deglaciated periods. Topographic change is associated with a decrease and fragmentation of the channel network and an extension of the hillslope domain. In case of glacially conditioned catchments discrimination of the two domains remains problematic and a discrimination inconsistent. A definition is therefore highly needed considering that (i) a spatial shift in the domains affect the process and rate of erosion and (ii) topographic classifications of alpine catchments often base on channel and hillslope parameters (i.e.channel or hillslope relief). Here we propose a novel numerical approach to topographically define channel heads from digital topography in glacially conditioned mountain range catchments in order to discriminate the channel from the hillslope domain. We analyzed the topography of the southern European Central Alps, a region which (i) has been glaciated multiple times during the Quaternary, shows (ii) little lithological variations, is (iii) home of very low erodible rocks and is (iv) known as a region were tectonic processes have largely ceased. The

  4. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou.

    Directory of Open Access Journals (Sweden)

    Cornelya F C Klütsch

    Full Text Available Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.

  5. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    Science.gov (United States)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  6. A NEW APPROACH TO ESTIMATE WATER OUTPUT FROM THE MOUNTAIN GLACIERS IN ASIA

    Directory of Open Access Journals (Sweden)

    Vladimir G. Konovalov

    2015-01-01

    Full Text Available Regional data on climate, river runoff and inventory of glaciers within High Mountainous Asia were used as informational basis to elaborate new approach in computing components of the hydrological cycle (glaciers runoff, evaporation, precipitation. In order to improve and optimize the calculation methodology, 4 675 homogeneous groups of glaciers were identified in the largest Asian river basins, i.e., Amu Darya, Syr Darya, Indus, Ganges, Brahmaputra, Tarim, and others. As the classification criteria for 53 225 glaciers located there, the author consistently used 8 gradations of orientation (azimuth and 23 gradations of area. Calculating of the hydrological regime of glaciers was performed on the example of several Asian river basins. It has been shown that in the drainless basins in Asia, the only potential factor of the glacial influence on the changes in global Ocean level is the seasonal amount of evaporation from the melted surface of perennial ice and old firn. These results and published sources were used for re-evaluation of the previous conclusions on the influence of glacier runoff on change of the Ocean level. Comparison of measured and calculated annual river runoff, which was obtained by means of modeling the components of water-balance equation, showed good correspondence between these variables.

  7. The timing and cause of glacial activity during the last glacial in central Tibet based on 10Be surface exposure dating east of Mount Jaggang, the Xainza range

    Science.gov (United States)

    Dong, Guocheng; Zhou, Weijian; Yi, Chaolu; Fu, Yunchong; Zhang, Li; Li, Ming

    2018-04-01

    Mountain glaciers are sensitive to climate change, and can provide valuable information for inferring former climates on the Tibetan Plateau (TP). The increasing glacial chronologies indicate that the timing of the local Last Glacial Maximum (LGM) recorded across the TP is asynchronous, implying different local influences of the mid-latitude westerlies and Asian Summer Monsoon in triggering glacier advances. However, the well-dated sites are still too few, especially in the transition zone between regions controlled by the two climate systems. Here we present detailed last glacial chronologies for the Mount Jaggang area, in the Xainza range, central Tibet, with forty-three apparent 10Be exposure-ages ranging from 12.4 ± 0.8 ka to 61.9 ± 3.8 ka. These exposure-ages indicate that at least seven glacial episodes occurred during the last glacial cycle east of Mount Jaggang. These include: a local LGM that occurred at ∼61.9 ± 3.8 ka, possibly corresponding to Marine Isotope Stage 4 (MIS 4); subsequent glacial advances at ∼43.2 ± 2.6 ka and ∼35.1 ± 2.1 ka during MIS 3; one glacial re-advance/standstill at MIS3/2 transition (∼29.8 ± 1.8 ka); and three glacial re-advances/standstills that occurred following MIS 3 at ∼27.9 ± 1.7 ka, ∼21.8 ± 1.3 ka, and ∼15.1 ± 0.9 ka. The timing of these glacial activities is roughly in agreement with North Atlantic millennial-scale climate oscillations (Heinrich events), suggesting the potential correlations between these abrupt climate changes and glacial fluctuations in the Mount Jaggang area. The successively reduced glacial extent might have resulted from an overall decrease in Asian Summer Monsoon intensity over this timeframe.

  8. Geology and geologic history of the Moscow-Pullman basin, Idaho and Washington, from late Grande Ronde to late Saddle Mountains time

    Science.gov (United States)

    Bush, John H; Garwood, Dean L; Dunlap, Pamela

    2016-01-01

    The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to

  9. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    Science.gov (United States)

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  10. Postglacial development of the eastern Gulf of Finland: from Pleistocene glacial lake basins to Holocene lagoon systems

    Science.gov (United States)

    Ryabchuk, Daria; Sergeev, Alexander; Kotilainen, Aarno; Hyttinen, Outi; Grigoriev, Andrey; Gerasimov, Dmitry; Anisimov, Mikhail; Gusentsova, Tatiana; Zhamoida, Vladimir; Amantov, Aleksey; Budanov, Leonid

    2016-04-01

    Despite significant amount of data, there are still lots of debatable questions and unsolved problems concerning postglacial geological history of the Eastern Gulf of Finland, the Baltic Sea. Among these problems are: 1) locations of the end moraine and glacio-fluvial deposits; 2) time and genesis of the large accretion forms (spits, bars, dunes); 3) basinwide correlations of trangression/regression culminations with the other parts of the Baltic Sea basin; 4) study of salinity, timing, frequency and intensity of Holocene saline water inflows and their links of sedimentation processes associated with climate change. Aiming to receive new data about regional postglacial development, the GIS analyses of bottom relief and available geological and geophysical data was undertaken, the maps of preQuaternary relief, moraine and Late Pleistocene surfaces, glacial moraine and Holocene sediments thicknesses were compiled. High-resolution sediment proxy study of several cores, taken from eastern Gulf of Finland bottom, allows to study grain-size distribution and geochemical features of glacial lake and Holocene sediments, to reveal sedimentation rates and paleoenvironment features of postglacial basins. Interdisciplinary geoarcheological approaches offer new opportunities for studying the region's geological history and paleogeography. Based on proxy marine geological and coastal geoarcheological studies (e.g. off-shore acoustic survey, side-scan profiling and sediment sampling, on-shore ground-penetrating radar (GPR SIR 2000), leveling, drilling, grain-size analyses and radiocarbon dating and archeological research) detailed paleogeographical reconstruction for three micro-regions - Sestroretsky and Lahta Lowlands, Narva-Luga Klint Bay and Southern Ladoga - were compiled. As a result, new high resolution models of Holocene geological development of the Eastern Gulf of Finland were received. Model calibration and verification used results from proxy geoarcheological research

  11. Evaluating extreme flood characteristics of small mountainous basins of the Black Sea coastal area, Northern Caucasus

    Directory of Open Access Journals (Sweden)

    L. S. Lebedeva

    2015-06-01

    Full Text Available The probability of heavy rains and river floods is expected to increase with time in the Northern Caucasus region. Densely populated areas in the valleys of small mountainous watersheds already frequently suffer from catastrophic peak floods caused by intense rains at higher elevations. This study aimed at assessing the flood characteristics of several small basins in the piedmont area of the Caucasus Mountains adjacent to the Black Sea coast including ungauged Cemes River in the Novorossiysk city. The Deterministic-Stochastic Modelling System which consists of hydrological model Hydrograph and stochastic weather generator was applied to evaluate extreme rainfall and runoff characteristics of 1% exceedance probability. Rainfall intensity is shown to play more significant role than its depth in formation of extreme flows within the studied region.

  12. Movement ecology and seasonal distribution of mountain yellow-legged frogs, Rana muscosa, in a high-elevation Sierra Nevada basin.

    Science.gov (United States)

    K.L. Pope; K.R. Matthews

    2001-01-01

    Movement ecology and seasonal distribution of mountain yellow-legged frogs (Rana muscosa) in Dusy Basin (3470 m), Kings Canyon National Park, California, were characterized using passive integrated transponder (PIT) surveys and visual encounter surveys. We individually PIT-tagged 500 frogs during the summers of 1997 and 1998 and monitored these individuals during seven...

  13. Enhancing rates of erosion and uplift through glacial perturbations

    Science.gov (United States)

    Norton, Kevin; Schlunegger, Fritz; Abbühl, Luca

    2010-05-01

    Research over the past decade has shown that the pattern of modern rock uplift in the Swiss Alps correlates with both long-term (thermochronometers) and short-term (cosmogenic nuclide-derived denudation rates, sediment loads, lake fills) measures of erosion. This correlation has been attributed alternately to isostatic causes (compensation to erosion and/or glacial unloading) and tectonic forces (ongoing collision and partial delamination). Of these potential driving forces, only isostatic compensation to erosion fits all available structural, geodetic, and flexural models. We explore this uplift-erosion relationship by analyzing river channel steepness for Alpine rivers. Zones of oversteepening, and hence enhanced stream power, are associated with glacial erosion and deposition during LGM and earlier glaciations, resulting in the focusing of erosion into the inner gorges which connect hanging tributary valleys to the main glacial trunk valley. These inner gorges are transient zones in which fluvial and hillslope processes are in the process of re-adjusting this glacially perturbed landscape. Bedrock properties also play a major role in the response time of these adjustments. Glacially generated knickzones are located within 5 km of the trunk stream in the Rhone valley where resistant lithologies dominate (gneiss), whereas the knickzones have migrated as much as 10 km or further in the less resistant rocks (buendnerschists) of the Rhine valley. We suggest that the rock uplift pattern is controlled by surface denudation as set by the glacial-interglacial history of the Alps. Rapid, focused erosion results in rapid rock uplift rates in the Central Swiss Alps, where glaciers were most active. An interesting ramification of this reasoning is that in the absence of glacial perturbation, both rock uplift rates and denudation rates would be substantially lower in this isostatically compensated mountain belt.

  14. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    Science.gov (United States)

    Pederson, Gregory T.; Fagre, Daniel B.; Gray, Stephen T.; Graumlich, Lisa J.

    2004-06-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ~70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability.

  15. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    Science.gov (United States)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  16. Paleoenvironmental changes and influence on Operculodinium centrocarpum during the Quaternary in the Campos Basin, southwestern Brazil

    Science.gov (United States)

    Santos, Alessandra; de Araujo Carvalho, Marcelo; de Oliveira, Antônio Donizeti; Mendonça Filho, João Graciano

    2017-12-01

    The purpose of this paper is to document the changes observed in the Quaternary dinoflagellate assemblages from 80 core samples from the Campos Basin. The Interglacial (Subzone X1), Glacial (Subzones Y5 to Y2), Last Glacial Maximum (Subzone Y1) and Post-Glacial (Zone Z) intervals were identified. High abundance of Operculodinium centrocarpum suggests the warm, high salinity and nutrient-poor water conditions dominated the upper water column of the Campos Basin. The climate and oceanic current dynamic of the continental slope of the Campos Basin appears to has been a significant controlling factor in the distribution of dinocysts, particularly of O. centrocarpum, during the Pleistocene/Holocene transition.

  17. Polyploidisation and geographic differentiation drive diversification in a European High Mountain Plant Group (Doronicum clusii Aggregate, Asteraceae).

    Science.gov (United States)

    Pachschwöll, Clemens; Escobar García, Pedro; Winkler, Manuela; Schneeweiss, Gerald M; Schönswetter, Peter

    2015-01-01

    Range shifts (especially during the Pleistocene), polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae), whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum) are differentiated geographically, ecologically (basiphilous versus silicicolous) and/or via their ploidy levels (diploid versus tetraploid). Here, we use DNA sequences (three plastid and one nuclear spacer) and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids-whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates-and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i) silicicolous diploid D. clusii s.s. in the Alps, (ii) silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s.) and the Carpathians and (iii) the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps) and D. glaciale subsp. calcareum (northeastern Alps); each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid) of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale subsp

  18. Polyploidisation and geographic differentiation drive diversification in a European High Mountain Plant Group (Doronicum clusii Aggregate, Asteraceae.

    Directory of Open Access Journals (Sweden)

    Clemens Pachschwöll

    Full Text Available Range shifts (especially during the Pleistocene, polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae, whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum are differentiated geographically, ecologically (basiphilous versus silicicolous and/or via their ploidy levels (diploid versus tetraploid. Here, we use DNA sequences (three plastid and one nuclear spacer and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids-whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates-and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i silicicolous diploid D. clusii s.s. in the Alps, (ii silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s. and the Carpathians and (iii the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps and D. glaciale subsp. calcareum (northeastern Alps; each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale

  19. Polyploidisation and Geographic Differentiation Drive Diversification in a European High Mountain Plant Group (Doronicum clusii Aggregate, Asteraceae)

    Science.gov (United States)

    Pachschwöll, Clemens; Escobar García, Pedro; Winkler, Manuela; Schneeweiss, Gerald M.; Schönswetter, Peter

    2015-01-01

    Range shifts (especially during the Pleistocene), polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae), whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum) are differentiated geographically, ecologically (basiphilous versus silicicolous) and/or via their ploidy levels (diploid versus tetraploid). Here, we use DNA sequences (three plastid and one nuclear spacer) and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids—whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates—and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i) silicicolous diploid D. clusii s.s. in the Alps, (ii) silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s.) and the Carpathians and (iii) the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps) and D. glaciale subsp. calcareum (northeastern Alps); each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid) of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale subsp

  20. Ice Elevation Changes in the Ellsworth Mountains, Antarctica Using Multiple Cosmogenic Nuclides

    Science.gov (United States)

    Marrero, S.; Hein, A.; Sugden, D.; Woodward, J.; Dunning, S.; Reid, K.

    2014-12-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Initial surface exposure ages (10Be, 26Al, 21Ne, and 36Cl ) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to 1.1 Ma in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  1. Quantifying Heterogeneities in Soil Cover and Weathering in the Bitterroot and Sapphire Mountains, Montana: Implications for Glacial Legacies and their Morphologic Control on Soil Formation

    Science.gov (United States)

    Benjaram, S. S.; Dixon, J. L.

    2017-12-01

    To what extent is chemical weathering governed by a landscape's topography? Quantifying chemical weathering in both steep rocky landscapes and soil-mantled landscapes requires describing heterogeneity in soil and rock cover at local and landscape scales. Two neighboring mountain ranges in the northern Rockies of western Montana, USA, provide an ideal natural laboratory in which to investigate the relationship between soil chemical weathering, persistence of soil cover, and topography. We focus our work in the previously glaciated Bitterroot Mountains, which consist of steep, rock-dominated hillslopes, and the neighboring unglaciated Sapphire Mountains, which display convex, soil-mantled hillslopes. Soil thickness measurements, soil and rock geochemistry, and digital terrain analysis reveal that soils in the rock-dominated Bitterroot Mountains are only slightly less weathered than those in the Sapphire Mountains. However, these differences are magnified when adjusted for rock fragments at a local scale and bedrock cover at a landscape scale, using our newly developed metric, the rock-adjusted chemical depletion fraction (RACDF) and rock-adjusted mass transfer coefficient (RA τ). The Bitterroots overall are 30% less weathered than the Sapphires despite higher mean annual precipitation in the former, with an average rock-adjusted CDF of 0.38 in the postglacial Bitterroots catchment and 0.61 in the nonglacial Sapphire catchment, suggesting that 38% of rock mass is lost in the conversion to soil in the Bitterroots, whereas 61% of rock mass is lost in the nonglaciated Sapphires. Because the previously glaciated Bitterroots are less weathered despite being wetter, we conclude that the glacial history of this landscape exerts more influence on soil chemical weathering than does modern climate. However, while previous studies have correlated weathering intensity with topographic parameters such as slope gradient, we find little topographic indication of specific controls

  2. Glacial modification of granite tors in the Cairngorms, Scotland

    Science.gov (United States)

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important

  3. LATE GLACIAL AND HOLOCENE ENVIRONMENTAL CHANGE INFERRED FROM THE PÁRAMO OF CAJANUMA IN THE PODOCARPUS NATIONAL PARK, SOUTHERN ECUADOR

    Directory of Open Access Journals (Sweden)

    ANDREA VILLOTA

    2014-12-01

    Full Text Available To reconstruct the environmental history including vegetation, fire and climate dynamics, from the Cajanuma valley area ( 3285 m elevation in the Podocarpus National Park, southern Ecuador , we address the following major research question: (1 How did the mountain vegetation developed during the late Glacial and Holocene? (2 Did fire played an important control on the vegetation change and was it natural or of anthropogenic origin?. Palaeoenvironmental changes were investigated using multiple proxies such as pollen, spores, charcoal analyses and radiocarbon dating. Pollen data indicated that during the late Glacial and transition to the early Holocene (ca. 16 000-10 500 cal yr BP herb páramo was the main vegetation type around the study area, while subpáramo and mountain rainforest were scarcely represented. The early and mid-Holocene (ca. 10 500 to 5600 cal yr BP is marked by high abundance of páramo during the early Holocene followed by a slight expansion of mountain forest during the mid-Holocene. During the mid- to late Holocene (ca. 5600-1200 cal yr BP there is a significant presence of páramo and subpáramo while Lower Mountain Forest decreased substantially, although, Upper Mountain Forest remained relatively stable during this period. The late Holocene, from ca. 1200 cal yr BP to present, was characterized by páramo; however, mountain forest and subpáramo presented significantly abundance compared to the previous periods. Fires became frequent since the late Holocene. The marked increased local and regional fire intensity during the wetter late Holocene strongly suggests that were of anthropogenic origin. During the late Glacial and early Holocene, the upper forest line was located at low elevations; but shifted slightly upslope to higher elevations during the mid-Holocene.

  4. Glacial survival east and west of the 'Mekong-Salween Divide' in the Himalaya-Hengduan Mountains region as revealed by AFLPs and cpDNA sequence variation in Sinopodophyllum hexandrum (Berberidaceae).

    Science.gov (United States)

    Li, Yong; Zhai, Sheng-Nan; Qiu, Ying-Xiong; Guo, Yan-Ping; Ge, Xue-Jun; Comes, Hans Peter

    2011-05-01

    Molecular phylogeographic studies have recently begun to elucidate how plant species from the Qinghai-Tibetan Plateau (QTP) and adjacent regions responded to the Quaternary climatic oscillations. In this regard, however, far less attention has been paid to the southern and south-eastern declivities of the QTP, i.e. the Himalaya-Hengduan Mountains (HHM) region. Here, we report a survey of amplified fragment length polymorphisms (AFLPs) and chloroplast DNA (cpDNA) sequence variation in the HHM endemic Sinopodophyllum hexandrum, a highly selfing alpine perennial herb with mainly gravity-dispersed berries (105 individuals, 19 localities). We specifically aimed to test a vicariant evolutionary hypothesis across the 'Mekong-Salween Divide', a known biogeographic and phytogeographic boundary of north-to-south trending river valleys separating the East Himalayas and Hengduan Mts. Both cpDNA and AFLPs identified two divergent phylogroups largely congruent with these mountain ranges. There was no genetic depauperation in the more strongly glaciated East Himalayas (AFLPs: H(E)=0.031; cpDNA: h(S)=0.133) compared to the mainly ice-free Hengduan Mts. (AFLPs: H(E)=0.037; cpDNA: h(S)=0.082), while population differentiation was consistently higher in the former region (AFLPs: Φ(ST)=0.522 vs. 0.312; cpDNA: Φ(ST)=0.785 vs. 0.417). Our results suggest that East Himalayan and Hengduan populations of S. hexandrum were once fragmented, persisted in situ during glacials in both areas, and have not merged again, except for a major instance of inter-lineage chloroplast capture identified at the MSD boundary. Our coalescent time estimate for all cpDNA haplotypes (c. 0.37-0.48 mya), together with paleogeological evidence, strongly rejects paleo-drainage formation as a mechanism underlying allopatric fragmentation, whereas mountain glaciers following the ridges of the MSD during glacials (and possible interglacials) could have been responsible. This study thus indicates an important role

  5. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    B. Faybishenko

    2006-01-01

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes

  6. Glacial melting in Himalaya

    Directory of Open Access Journals (Sweden)

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  7. The glacially overdeepened trough of the Salzach Valley, Austria: Bedrock geometry and sedimentary fill of a major Alpine subglacial basin

    Science.gov (United States)

    Pomper, Johannes; Salcher, Bernhard C.; Eichkitz, Christoph; Prasicek, Günther; Lang, Andreas; Lindner, Martin; Götz, Joachim

    2017-10-01

    Overdeepened valleys are unambiguous features of glacially sculpted landscapes. They result from erosion at the bed of the glacier and their size and shape is determined by ice dynamics and the characteristics of the underlying bedrock. Major overdeepened valleys representing vertical bedrock erosion of several hundreds of meters are characteristic features of many trunk valleys in the formerly glaciated parts of the Alpine mountain belt. The thick sedimentary fill usually hinders attempts to unravel bedrock geometry, formation history and fill characteristics. Based on reflection seismic data and core-logs from multiple deep drillings we construct a detailed bedrock model of the Lower Salzach Valley trough, one of the largest overdeepened valleys in the European Alps. The analysed overdeepened structure characterized by a strongly undulating topography. Two reaches of enhanced erosion can be identified and are suggested to be related to variations in bedrock erodibility and a triple glacier confluence. The sedimentary fill shows clear characteristics of rapid infilling and subaqueous fan delta deposits indicate a strong influence of tributary streams. Associated surface lowering of the valley floor had a major impact on tributary stream incision but also on the available ice accumulation area at subsequent glaciations. The extent to which fills of earlier glaciations have been preserved from erosion during the last glacial maximum remains ambiguous and demands further exploration. To our knowledge the presented bedrock model is one of the best defined of any major overdeepened trunk valley.

  8. Growth Normal Faulting at the Western Edge of the Metropolitan Taipei Basin since the Last Glacial Maximum, Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Chih-Tung Chen

    2010-01-01

    Full Text Available Growth strata analysis is an useful tool in understanding kinematics and the evolution of active faults as well as the close relationship between sedimentation and tectonics. Here we present the Shanchiao Fault as a case study which is an active normal fault responsible for the formation of the 700-m-thick late Quaternary deposits in Taipei Basin at the northern tip of the Taiwan mountain belt. We compiled a sedimentary record, particularly the depositional facies and their dated ages, at three boreholes (SCF-1, SCF-2 and WK-1, from west to east along the Wuku Profile that traverses the Shanchiao Fault at its central segment. By incorporating the global sea level change curve, we find that thickness changes of sediments and changes of depositional environments in the Wuku area are in a good agreement with a rapid sea level rise since the Last Glacial Maximum (LGM of about 23 ka. Combining depositional facies changes and their ages with their thickness, we are able to introduce a simple back-stripping method to reconstruct the evolution of growing strata across the Shanchiao Fault since the LGM. We then estimate the vertical tectonic slip rate since 23 ka, which exhibits 2.2 mm yr-1 between SCF-2 and WK-1 and 1.1 mm yr-1 between SCF-1 and SCF-2. We also obtain the Holocene tectonic subsidence rate of 2.3 mm yr-1 at WK-1 and 0.9 mm yr-1 at SCF-2 since 8.4 ka. We thus conclude that the fault zone consists of a high-angle main fault to the east between SCF-2 and WK-1 and a western lower-angle branch fault between SCF-1 and SCF-2, resembling a tulip structure developed under sinistral transtensional tectonism. We find that a short period of 600-yr time span in 9 - 8.4 ka shows important tectonic subsidence of 7.4 and 3.3 m for the main and branch fault, respectively, consistent with possible earthquake events proposed by previous studies during that time. A correlation between geomorphology and subsurface geology in the Shanchiao Fault zone shows

  9. Extraction and development of inset models in support of groundwater age calculations for glacial aquifers

    Science.gov (United States)

    Feinstein, Daniel T.; Kauffman, Leon J.; Haserodt, Megan J.; Clark, Brian R.; Juckem, Paul F.

    2018-06-22

    The U.S. Geological Survey developed a regional model of Lake Michigan Basin (LMB). This report describes the construction of five MODFLOW inset models extracted from the LMB regional model and their application using the particle-tracking code MODPATH to simulate the groundwater age distribution of discharge to wells pumping from glacial deposits. The five study areas of the inset model correspond to 8-digit hydrologic unit code (HUC8) basins. Two of the basins are tributary to Lake Michigan from the east, two are tributary to the lake from the west, and one is just west of the western boundary of the Lake Michigan topographic basin. The inset models inherited many of the inputs to the parent LMB model, including the hydrostratigraphy and layering scheme, the hydraulic conductivity assigned to bedrock layers, recharge distribution, and water use in the form of pumping rates from glacial and bedrock wells. The construction of the inset models entailed modifying some inputs, most notably the grid spacing (reduced from cells 5,000 feet on a side in the parent LMB model to 500 feet on a side in the inset models). The refined grid spacing allowed for more precise location of pumped wells and more detailed simulation of groundwater/surface-water interactions. The glacial hydraulic conductivity values, the top bedrock surface elevation, and the surface-water network input to the inset models also were modified. The inset models are solved using the MODFLOW–NWT code, which allows for more robust handling of conditions in unconfined aquifers than previous versions of MODFLOW. Comparison of the MODFLOW inset models reveals that they incorporate a range of hydrogeologic conditions relative to the glacial part of the flow system, demonstrated by visualization and analysis of model inputs and outputs and reflected in the range of ages generated by MODPATH for existing and hypothetical glacial wells. Certain inputs and outputs are judged to be candidate predictors that, if

  10. Glacial lakes in Austria - Distribution and formation since the Little Ice Age

    Science.gov (United States)

    Buckel, J.; Otto, J. C.; Prasicek, G.; Keuschnig, M.

    2018-05-01

    Glacial lakes constitute a substantial part of the legacy of vanishing mountain glaciation and act as water storage, sediment traps and sources of both natural hazards and leisure activities. For these reasons, they receive growing attention by scientists and society. However, while the evolution of glacial lakes has been studied intensively over timescales tied to remote sensing-based approaches, the longer-term perspective has been omitted due a lack of suitable data sources. We mapped and analyzed the spatial distribution of glacial lakes in the Austrian Alps. We trace the development of number and area of glacial lakes in the Austrian Alps since the Little Ice Age (LIA) based on a unique combination of a lake inventory and an extensive record of glacier retreat. We find that bedrock-dammed lakes are the dominant lake type in the inventory. Bedrock- and moraine-dammed lakes populate the highest landscape domains located in cirques and hanging valleys. We observe lakes embedded in glacial deposits at lower locations on average below 2000 m a.s.l. In general, the distribution of glacial lakes over elevation reflects glacier erosional and depositional dynamics rather than the distribution of total area. The rate of formation of new glacial lakes (number, area) has continuously accelerated over time with present rates showing an eight-fold increase since LIA. At the same time the total glacier area decreased by two-thirds. This development coincides with a long-term trend of rising temperatures and a significant stepping up of this trend within the last 20 years in the Austrian Alps.

  11. Melo carboniferous basin

    International Nuclear Information System (INIS)

    Flossdarf, A.

    1988-01-01

    This report is about of the Melo carboniferous basin which limits are: in the South the large and high Tupambae hill, in the west the Paraiso hill and the river mountains, in the North Yaguaron river basin to Candidata in Rio Grande del Sur in Brazil.

  12. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    Science.gov (United States)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  13. Long-range Transport of Aerosol at a Mountain Site in the Western Mediterranean Basin

    Science.gov (United States)

    Roberts, Greg; Corrigan, Craig; Ritchie, John; Pont, Véronique; Claeys, Marine; Sciare, Jean; Dulac, François

    2016-04-01

    The Mediterranean Region has been identified as sensitive to changes in the hydrological cycle, which could affect the water resources for millions of people by the turn of the century. However, prior to recent observations, most climate models have not accounted for the impacts of aerosol in this region. Past airborne studies have shown that aerosol sources from Europe and Africa are often transported throughout the lower troposphere; yet, because of their complex vertical distribution, it is a challenge to capture the variability and quantify the contribution of these sources to the radiative budget and precipitation processes. The PAEROS ChArMEx Mountain Experiment (PACMEx) complemented the regional activities by collecting aerosol data from atop a mountain on the island of Corsica, France in order to assess boundary layer / free troposphere atmospheric processes. In June/July 2013, PACMEx instruments were deployed at 2000 m.asl near the center of Corsica, France to complement ground-based aerosol observations at 550 m.asl on the northern peninsula, as well as airborne measurements. Comparisons between the peninsula site and the mountain site show similar general trends in aerosol properties; yet, differences in aerosol properties reveal the myriad transport mechanisms over the Mediterranean Basin. Using aerosol physicochemical data coupled with back trajectory analysis, different sources have been identified including Saharan dust transport, residual dust mixed with sea salt, anthropogenic emissions from Western Europe, and a period of biomass burning from Eastern Europe. Each period exhibits distinct signatures in the aerosol related to transport processes above and below the boundary layer. In addition, the total aerosol concentrations at the mountain site revealed a strong diurnal cycling the between the atmospheric boundary layer and the free troposphere, which is typical of mountain-top observations. PACMEx was funded by the National Science Foundation

  14. Oxygen isotope composition as late glacial palaeoclimate indicators of groundwater recharge in the Baltic Basin

    International Nuclear Information System (INIS)

    Mokrik, R.; Mazeika, J.

    2002-01-01

    Several hypotheses were established to explain low δ 18 O values of groundwater which have been found in the Estonian Homocline. Traces of depleted groundwater were found also in other parts of the Baltic Basin near the shoreline. From data collected in this and previous studies, the δ 18 O values of groundwater in most aquifers are known to range from -7.7 to -13.9 per mille. However, the groundwater in Estonia in the Cambrian-Vendian aquifer system has significantly lower δ 18 O values, which vary mainly from -18 to -22.5 per mille. The overlying Ordovician-Cambrian aquifer is also depleted in 18 O, but, as a rule, the degree of depletion is several per mille less than in case of the Cambrian- Vendian aquifer. The thickness of the depleted water in Estonia reaches 450 m. At similar depths beneath Gotland Island (Sweden Homocline), groundwater has significantly higher δ 18 O values (from -5.7 to -6.1 per mille). A hydrogeologic model, depicting conditions during the pre Late Glacial, and accounting for hydraulic connections between the lake and river systems through taliks in permafrost, was developed to explain the observed groundwater isotope data. According to the adopted model, penetration of isotopically depleted surface waters could have reached depths of up to 500 m, with subsequent mixing between subglacial meltwater and old groundwater of Huneborg-Denekamp time. Traces of this penetration were discovered only near the shoreline, where δ 18 O values vary from -12 to -13.9 per mille and 14 C is below 4%. In the territory of the Estonian Homocline, the hydraulically close connection via the Cambrian-Vendian aquifer between talik systems of the Gulf of Riga and the Gulf of Finland existed through permafrost before the Late Glacial. This was due to subglacial recharge during the recessional Pandivere (12 ka BP) and Palivere (11.2 ka BP) phases, which is also associated with recharge of isotopically depleted groundwater. (author)

  15. Using Multiple Cosmogenic Nuclides to Investigate Ice Elevation Changes in the Ellsworth Mountains, Antarctica

    Science.gov (United States)

    Marrero, Shasta; Hein, Andy; Sugden, David; Woodward, John; Dunning, Stuart; Freeman, Stewart; Shanks, Richard

    2015-04-01

    Well-dated geologic data points provide important indicators that can be used for the reconstruction of ice sheet dynamics and as constraints in ice sheet models predicting future change. Cosmogenic nuclides, which accumulate in rocks exposed at the earth's surface, can be used to directly date the exposure age of the rock surfaces that have been created through glacial erosion or deposition. The technique requires a detailed understanding of the local geomorphology as well as awareness of the post-depositional processes that may affect the interpretation of exposure ages. Surface exposure ages (10Be, 26Al, 21Ne, and 36Cl) from local limestone bedrock and other glacially deposited exotic lithologies provide a history spanning from 0 to more than 1 million years in the Patriot, Independence, and Marble Hills in the southern Ellsworth Mountains, Antarctica. Using the new surface exposure ages combined with geomorphological mapping, we will discuss the implications for the glacial history of the southern Ellsworth Mountains.

  16. Air and Ground Surface Temperature Relations in a Mountainous Basin, Wolf Creek, Yukon Territory

    Science.gov (United States)

    Roadhouse, Emily A.

    The links between climate and permafrost are well known, but the precise nature of the relationship between air and ground temperatures remains poorly understood, particularly in complex mountain environments. Although previous studies indicate that elevation and potential incoming solar radiation (PISR) are the two leading factors contributing to the existence of permafrost at a given location, additional factors may also contribute significantly to the existence of mountain permafrost, including vegetation cover, snow accumulation and the degree to which individual mountain landscapes are prone to air temperature inversions. Current mountain permafrost models consider only elevation and aspect, and have not been able to deal with inversion effects in a systematic fashion. This thesis explores the relationship between air and ground surface temperatures and the presence of surface-based inversions at 27 sites within the Wolf Creek basin and surrounding area between 2001 and 2006, as a first step in developing an improved permafrost distribution TTOP model. The TTOP model describes the relationship between the mean annual air temperature and the temperature at the top of permafrost in terms of the surface and thermal offsets (Smith and Riseborough, 2002). Key components of this model are n-factors which relate air and ground climate by establishing the ratio between air and surface freezing (winter) and thawing (summer) degree-days, thus summarizing the surface energy balance on a seasonal basis. Here we examine (1) surface offsets and (2) freezing and thawing n-factor variability at a number of sites through altitudinal treeline in the southern Yukon. Thawing n-factors (nt) measured at individual sites remained relatively constant from one year to the next and may be related to land cover. During the winter, the insulating effect of a thick snow cover results in higher surface temperatures, while thin snow cover results in low surface temperatures more closely

  17. Hydrology and water quality in two mountain basins of the northeastern US: Assessing baseline conditions and effects of ski area development

    Science.gov (United States)

    Wemple, B.; Shanley, J.; Denner, J.; Ross, D.; Mills, K.

    2007-01-01

    Mountain regions throughout the world face intense development pressures associated with recreational and tourism uses. Despite these pressures, much of the research on bio-geophysical impacts of humans in mountain regions has focused on the effects of natural resource extraction. This paper describes findings from the first 3 years of a study examining high elevation watershed processes in a region undergoing alpine resort development. Our study is designed as a paired-watershed experiment. The Ranch Brook watershed (9.6 km2) is a relatively pristine, forested watershed and serves as the undeveloped 'control' basin. West Branch (11.7 km2) encompasses an existing alpine ski resort, with approximately 17% of the basin occupied by ski trails and impervious surfaces, and an additional 7% slated for clearing and development. Here, we report results for water years 2001-2003 of streamflow and water quality dynamics for these watersheds. Precipitation increases significantly with elevation in the watersheds, and winter precipitation represents 36-46% of annual precipitation. Artificial snowmaking from water within West Branch watershed currently augments annual precipitation by only 3-4%. Water yield in the developed basin exceeded that in the control by 18-36%. Suspended sediment yield was more than two and a half times greater and fluxes of all major solutes were higher in the developed basin. Our study is the first to document the effects of existing ski area development on hydrology and water quality in the northeastern US and will serve as an important baseline for evaluating the effects of planned resort expansion activities in this area.

  18. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  19. The George V Land Continental Margin (East Antarctica): new Insights Into Bottom Water Production and Quaternary Glacial Processes from the WEGA project

    Science.gov (United States)

    Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.

    2004-12-01

    The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary

  20. Hydrological peculiarities of high mountain basins: the case of the Spanish Pyrenees

    International Nuclear Information System (INIS)

    Ferrer Castillo, Cesar; Alonso-Muiioyerro, Justo Mora; Parra, Miguel Arenillas; Campos, Guillermo Cobos

    2004-01-01

    The exploitation of a reservoir is determined by the availability of information within which the information provided by hydrological information systems must be included. This should be complemented, especially in flood circumstances, by meteorological forecasts and the results obtained by from hydrological and hydraulic simulation and forecasting models. In mountain basins with marked influence of snow, specific hydrological modelling is necessary, permitting simulation of the phenomenon of snow runoff. In particular, the hydrology of the basin of the River Ebro (Spain) is clearly influenced by this phenomenon. This basin is affected by flood situations caused by rapid melt of the snow accumulated on its Pyrenean slopes. This has brought about the need for a specific study to be undertaken in order to facilitate greater understanding and control. Additionally, the volume of accumulated snow in the catchment areas determines the management and everyday exploitation of the reservoirs for the achievement of maximum yield from water resources. This interest in the understanding of snow phenomena has given rise to numerous studies in the Pyrenean area: field study campaigns to carry out point measurements of thickness and density, hydrological-statistical modelling for the forecasting of melts and course flows and the development and application of hydrological simulation models. In the Pyrenean slopes basin the ASTER model has been applied to the reservoir of Yesa during a period of more than five years, achieving quite satisfactory results with regard to watercourse flow forecasting and the volume of water stored in the form of snow. This has enabled appropriate management of the reservoir during flood circumstances - minimising possible damage as well as under everyday conditions. The results obtained from this period have led to the generalisation of the ASTER model to apply to all sources of the Pyrenean tributaries of the Ebro with clear snow influence and

  1. Redistribution of radioactive mine wastes by slushflows and other processes in small mountain river basin in Russian Subarctics

    Science.gov (United States)

    Garankina, Ekaterina; Belyaev, Vladimir; Ivanov, Maxim; Romanenko, Fedor; Gurinov, Artem; Tulyakov, Egor; Kuzmenkova, Natalia

    2017-04-01

    The Khibiny Mountains located in central part of the Kola Peninsula (Northern European Russia) are characterized by harsh climatic conditions and frequent occurrence of hazardous or even catastrophic processes. Most widespread of those are snow avalanches taking place every year and slushflows with average recurrence interval of about 10 years. The latter represent specific type of hyperconcentrated gravitational flow of oversaturated mixture of snow and water (20 to 70%) with relatively low sediment concentration (up to 10-15%). Most often slushflows form during spring snowmelt in small mountainous basins (in most cases up to 3-6 km2) with thick snowpacks or snow dams caused by avalanches in stream channels. Typically observed volumes vary in a range of 20000-40000 m3, while rare catastrophic events can reach 200000-500000 m3. Kinetic energy of frontal wave that can be up to several meters high and concentrates most of the largest debris is most likely lower than that of typical debris flow of similar size, mainly because of much lower slushflow density (900-1200 kg m-3). Nevertheless, rare occasional measurements of front wave velocity gave dramatic values of 20-25 m s-1 maximum. Such characteristics combined with unpredictable rapid formation make slushflows definitely hazardous processes that can cause serious damage to industrial and residential infrastructure as well as injuries or causalities to people. For example, the Khibiny Mountains have at least 200 locations where formation of slushflows was detected at least ones over the last 50 years. Widespread constructions and communications associated with intensive exploration of mineral resources as well as growing interest to the area as touristic attraction for skiing and other wintertime activities make the Khibiny Mountains an area of serious geomorphic hazards associated with slushflows. In this particular study, we considered the Hackman basin where heavy debris flows occur at least ones per several

  2. Sledovi pleistocenske poledenitve Stare Galičice, Makedonija = Remmants of Pleistocene glaciation on Stara Galičica Mountain, Macedonia

    Directory of Open Access Journals (Sweden)

    Uroš Stepišnik

    2012-01-01

    Full Text Available The Stara Galičica Mountain was highly reshaped by glacial processes during the Pleistocene.Based on the detailed morphographical mapping of glacial features, the extent ofglaciation was determined as being far larger than described in previous references. The innerpart of the massif was covered with an ice-cap from where outlet glaciers were flowingout. On the basis of morphometrical analysis of glacial features, the altitude of the glacierequilibrium line during the Last Glacial Maximum was established at 1840 m a.s.l.

  3. A Glacial Perspective on the Impact of Heinrich Stadials on North Atlantic Climate

    Science.gov (United States)

    Bromley, G. R.; Putnam, A. E.; Rademaker, K. M.; Balter, A.; Hall, B. L.

    2017-12-01

    The British Isles contain a rich geologic record of Late Pleistocene ice sheet behaviour in the NE North Atlantic basin. We are using cosmogenic 10Be surface-exposure dating, in conjunction with detailed glacial-geomorphic mapping, to reconstruct the timing and nature of cryospheric change - and thus climate variability - in northern Scotland since the Last Glacial Maximum. Our specific focus is Heinrich Stadial 1 (18,300-14,700 years ago), arguably the most significant abrupt climate event of the last glacial cycle and a major feature in global palaeoclimate records. Such constraint is needed because of currently conflicting models of how these events impact terrestrial environments and a recent hypothesis attributing this disparity to enhanced seasonality in the North Atlantic basin. To date, we have measured 10Be in > 30 samples from glacial erratics located on moraines deposited by the British Ice Sheet as it retreated from the continental shelf to its highland source regions. Our preliminary results indicate that the stadial was characterised by widespread deglaciation driven by atmospheric warming, a pattern that is suggestive of pronounced seasonality. Additionally, we report new exposure ages from moraines deposited during a subsequent phase of alpine glaciation (known locally as the Loch Lomond Readvance) that has long been attributed to the Younger Dryas stadial. With the growing focus on the full expression of stadials, and the inherent vulnerability of Europe to shifts in North Atlantic climate, developing the extant record of terrestrial glaciation and comparing these data to marine records is a critical step towards understanding the drivers of abrupt climate change.

  4. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  5. Multiple glacial culminations from the Lateglacial to the late Holocene in central and southern Peru (Invited)

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Rodbell, D. T.; Stansell, N.; Schweinsberg, A.; Finkel, R. C.; Zimmerman, S. R.

    2013-12-01

    Fluctuations in small tropical mountain glaciers serve as sensitive indicators of variations in past and present-day climate. Most of the world's modern tropical glaciers reside in the Peruvian Andes, where a growing number of well-dated glacial records have recently been developed. As additional records are documented, regional patterns of late Pleistocene to Holocene glacial activity have begun to emerge. Here we present a compilation of new and previously obtained 10Be surface exposure ages from boulders on well-preserved moraine successions in two glaciated Andean ranges: the Cordillera Vilcabamba of southern Peru (13°20'S, 72°32'W) and the Huaguruncho massif (10°32'S, 75°56'W), located in central Peru ~450 km northwest of the Vilcabamba. A high-resolution composite chronology that merges >100 10Be measurements on moraine sequences in five glaciated drainages of the Cordillera Vilcabamba reveals the occurrence of at least five discrete glacial culminations from the Lateglacial to the late Holocene. At the Huaguruncho massif, >20 10Be exposure ages obtained from moraine sequences in a south-facing cirque indicate at least three major glacial stages spanning the Lateglacial to the Little Ice Age. The moraine ages at Huaguruncho are broadly correlative with the Vilcabamba moraine chronologies, with some dated moraine belts exhibiting geomorphic expressions that closely resemble those of their coeval counterparts in the Vilcabamba. A recurring finding in both field areas is a mismatch between basal radiocarbon ages from bog and lake sediments and 10Be exposure ages on outboard moraines, which enclose the depositional basins. These age discrepancies suggest that cosmogenic 10Be production rates scaled to high altitudes in the tropics are substantially lower than previous estimates. While we anticipate that future refinements to scaled isotope production rates may significantly affect correlation of 10Be exposure ages in the high Andes with ages derived from

  6. Sensitive analysis of low-flow parameters using the hourly hydrological model for two mountainous basins in Japan

    Science.gov (United States)

    Fujimura, Kazumasa; Iseri, Yoshihiko; Kanae, Shinjiro; Murakami, Masahiro

    2014-05-01

    Accurate estimation of low flow can contribute to better water resources management and also lead to more reliable evaluation of climate change impacts on water resources. In the early study, the nonlinearity of low flow related to the storage in the basin was suggested by Horton (1937) as the exponential function of Q=KSN, where Q is the discharge, S is the storage, K is a constant and N is the exponent value. In the recent study by Ding (2011) showed the general storage-discharge equation of Q = KNSN. Since the constant K is defined as the fractional recession constant and symbolized as Au by Ando et al. (1983), in this study, we rewrite this equation as Qg=AuNSgN, where Qg is the groundwater runoff and Sg is the groundwater storage. Although this equation was applied to a short-term runoff event of less than 14 hours using the unit hydrograph method by Ding, it was not yet applied for a long-term runoff event including low flow more than 10 years. This study performed a sensitive analysis of two parameters of the constant Au and exponent value N by using the hourly hydrological model for two mountainous basins in Japan. The hourly hydrological model used in this study was presented by Fujimura et al. (2012), which comprise the Diskin-Nazimov infiltration model, groundwater recharge and groundwater runoff calculations, and a direct runoff component. The study basins are the Sameura Dam basin (SAME basin) (472 km2) located in the western Japan which has variability of rainfall, and the Shirakawa Dam basin (SIRA basin) (205km2) located in a region of heavy snowfall in the eastern Japan, that are different conditions of climate and geology. The period of available hourly data for the SAME basin is 20 years from 1 January 1991 to 31 December 2010, and for the SIRA basin is 10 years from 1 October 2003 to 30 September 2013. In the sensitive analysis, we prepared 19900 sets of the two parameters of Au and N, the Au value ranges from 0.0001 to 0.0100 in steps of 0

  7. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    Science.gov (United States)

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  8. Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data

    Science.gov (United States)

    Walker, Matt J; Stockman, Amy K; Marek, Paul E; Bond, Jason E

    2009-01-01

    Background Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups. Results The phylogeographic structure of Narceus reveals a complex evolutionary history with signatures of multiple refugia in southeastern North America followed by two major northern expansions. Evidence for refugial populations were found in the southern Appalachian Mountains and in the coastal plain. The northern expansions appear to have radiated from two separate refugia, one from the Gulf Coastal Plain area and the other from the mid-Atlantic coastal region. Distributional models of Narceus during the Last Glacial Maximum show a dramatic reduction from the current distribution, with suitable ecological zones concentrated along the Gulf and Atlantic coastal plain. We found a strong correlation between these zones of ecological suitability inferred from our paleo-model with levels of genetic diversity derived from phylogenetic and population estimates of genetic structuring. Conclusion The signature of climatic change, during and after the Pleistocene, on the distribution of the millipede genus Narceus is evident in the genetic data presented. Niche-based historical distribution modeling strengthens the

  9. Slip slidin' away: A post-glacial environmental history of the Waipaoa River basin

    Science.gov (United States)

    Gomez, Basil; Rosser, Brenda J.

    2018-04-01

    The dramatic changes that occurred to the post-glacial landscape in the headwaters of the Waipaoa River basin are a consequence of perturbations about the equilibrium that exists between the rate of tectonic uplift and fluvial incision. At times when the amount of coarse sediment delivered to channels exceeds the capacity of streams to remove it, the channel bed rises at the rate of tectonic uplift. Once bedload overcapacity is replaced by undercapacity and the alluvial cover is depleted, streams reestablish contact with bedrock and recuperate the time lost to fluvial incision. The first major perturbation occurred during the final phase of the last glaciation (ca. 33-17.5 cal. ka), when aggradation was driven by a climate-forced variation in the relative supplies of sediment and water. We suggest that the subsequent transformation of channels in the headwaters of the Waipaoa River basin, from alluvial to bedrock, occurred as the atmospheric and oceanic circulation converged on their contemporary patterns ca. 12 cal. ka. A second major perturbation that continues to the present began ca. 1910-1912 CE, when a massive increase in sediment load was accompanied by a modest increase in water discharge after the native vegetation cover in the headwaters was replaced by pasture. The processes of terrace creation and incision are inherently unsteady, and in five interim cases incision was arrested by a transient increase in the thickness of the alluvial cover that was a response to climatic forcing. Events that disrupted the native vegetation cover in the headwaters also modulated patterns of sediment dispersal and accumulation in other parts of the fluvial system and caused rapid, storm-driven infilling of the Poverty Bay Flats. Tectonic subsidence dictates the course of the Waipaoa River across Poverty Bay Flats which, because the modern rate of floodplain construction by vertical accretion is rapid relative to the amount of destruction by lateral channel migration, has

  10. Falsifying the Sikussak-Oasis Hypothesis for the Tillite Group, East Greenland: Implications for Trezona-like Carbon Isotope Excursions Beneath Neoproterozoic Glacials

    Science.gov (United States)

    Hoffman, P. F.; Domack, E. W.; Maloof, A. C.; Halverson, G. P.

    2006-05-01

    In Neoproterozoic time, East Greenland and East Svalbard (EGES) occupied landward and seaward positions, respectively, on the southern subtropical margin of Laurentia. In both areas, thick clastic-to-carbonate successions are overlain by two discrete glacial and/or periglacial formations, separated by fine basinal clastics. In Svalbard, the younger glacial has a characteristic Marinoan (basal Ediacaran) cap dolostone, but the older glacial is underlain by a 10-permil negative carbon isotope excursion that is indistinguishable from excursions observed exclusively beneath Marinoan glacials in Australia, Namibia and western Laurentia. This led us to propose (Basin Research 16, 297-324, 2004) that the paired glacials in EGES represent the onset and climax of a single, long-lived, Marinoan glaciation. The intervening fine clastics, which contain ikaite pseudomorphs, presumptively accumulated beneath permanent shorefast sea ice (sikussak), analogous to East Greenland fjords during the Younger Dryas and Little Ice Age. In this model, the top of the older glacial signals the start of Snowball Earth. We conducted a preliminary field test of the sikussak hypothesis in Strindberg Land (SL), Andrée Land (AL) and Ella O (EO), East Greenland. We confirmed the correlation of the paired glacials and the Marinoan cap dolostone (missing on EO). In SL, the older glacial (Ulveso Fm) is a thin diamictite overlain by conglomerate lag and a set of megavarves composed of alternating siltstone and ice-rafted debris. In AL and EO, the Ulveso is a sub-glacial diamictite overlain by aeolian and/or marine sandstone. In Bastion Bugt on EO, it is a transgressive shoreface sandstone. This proves that glacial recession occurred under open-water conditions and did not result from permanent sea-ice formation, as stipulated in the sikussak model. There is no evidence that the fine clastic sequence between the glacials formed under an ice cover, or for a single glacial period. This brings us back to

  11. Climate and glacier change in southwestern China during the past several decades

    International Nuclear Information System (INIS)

    Li Zongxing; He Yuanqing; An Wenling; Zhang Wei; Wang Yan; Wang Shijin; Liu Huancai; Cao Weihong; Wang Shuxin; Du Jiankuo; Song Linlin; Catto, Norm; Theakstone, Wilfred H

    2011-01-01

    Glaciers are distributed in the Nyainqntanglha Mountains, Himalayas, Tanggula Mountains, Gangdise Mountains and Hengduan Mountains in Southwestern China. Daily temperature and precipitation data from 111 stations, together with the records of glacier changes, indicate that temperature patterns during 1961–2008 were consistent with warming at a statistically significant level. Seasonal warming was greatest in autumn and winter. Temperature rise showed a significant relationship with sea surface temperature in the Western Pacific, net longwave radiation flux, altitude, sunshine hours, strengthening anticyclonic circulations in summer and anomalous cyclonic circulation in winter. The increase was more apparent in higher altitude areas than in lower ones. Precipitation variations were less marked than those of temperature, generally showing weak decreasing trends during 1961–2008. Increasing trends were apparent only in spring and winter, when regional trends of precipitation increases with altitude also were evident. The strengthening Western Pacific Subtropical Highs were related to precipitation variation. Against the background of increasing temperature, especially the increasing warming with altitude, the fronts of 32 glaciers and areas of 13 glacial basins have retreated, mass losses of 10 glaciers have been considerable, glacial lakes in six regions have expanded and melt water discharge of four basins has also increased, but these glaciers and basins in our study are only a fraction of the retreating glaciers over southwestern China.

  12. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  13. Interhemispheric correlation of late pleistocene glacial events.

    Science.gov (United States)

    Lowell, T V; Heusser, C J; Andersen, B G; Moreno, P I; Hauser, A; Heusser, L E; Schlüchter, C; Marchant, D R; Denton, G H

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.

  14. Cosmogenic 10Be and 26Al exposure ages of tors and erratics, Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion

    Science.gov (United States)

    Phillips, W.M.; Hall, A.M.; Mottram, R.; Fifield, L.K.; Sugden, D.E.

    2006-01-01

    The occurrence of tors within glaciated regions has been widely cited as evidence for the preservation of relic pre-Quaternary landscapes beneath protective covers of non-erosive dry-based ice. Here, we test for the preservation of pre-Quaternary landscapes with cosmogenic surface exposure dating of tors. Numerous granite tors are present on summit plateaus in the Cairngorm Mountains of Scotland where they were covered by local ice caps many times during the Pleistocene. Cosmogenic 10Be and 26Al data together with geomorphic relationships reveal that these landforms are more dynamic and younger than previously suspected. Many Cairngorm tors have been bulldozed and toppled along horizontal joints by ice motion, leaving event surfaces on tor remnants and erratics that can be dated with cosmogenic nuclides. As the surfaces have been subject to episodic burial by ice, an exposure model based upon ice and marine sediment core proxies for local glacial cover is necessary to interpret the cosmogenic nuclide data. Exposure ages and weathering characteristics of tors are closely correlated. Glacially modified tors and boulder erratics with slightly weathered surfaces have 10Be exposure ages of about 15 to 43 ka. Nuclide inheritance is present in many of these surfaces. Correction for inheritance indicates that the eastern Cairngorms were deglaciated at 15.6 ?? 0.9 ka. Glacially modified tors with moderate to advanced weathering features have 10Be exposure ages of 19 to 92 ka. These surfaces were only slightly modified during the last glacial cycle and gained much of their exposure during the interstadial of marine Oxygen Isotope Stage 5 or earlier. Tors lacking evidence of glacial modification and exhibiting advanced weathering have 10Be exposure ages between 52 and 297 ka. Nuclide concentrations in these surfaces are probably controlled by bedrock erosion rates instead of discrete glacial events. Maximum erosion rates estimated from 10Be range from 2.8 to 12.0 mm/ka, with

  15. The "normal" elongation of river basins

    Science.gov (United States)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  16. A 33,000-year-old incipient dog from the Altai Mountains of Siberia: evidence of the earliest domestication disrupted by the Last Glacial Maximum.

    Directory of Open Access Journals (Sweden)

    Nikolai D Ovodov

    Full Text Available BACKGROUND: Virtually all well-documented remains of early domestic dog (Canis familiaris come from the late Glacial and early Holocene periods (ca. 14,000-9000 calendar years ago, cal BP, with few putative dogs found prior to the Last Glacial Maximum (LGM, ca. 26,500-19,000 cal BP. The dearth of pre-LGM dog-like canids and incomplete state of their preservation has until now prevented an understanding of the morphological features of transitional forms between wild wolves and domesticated dogs in temporal perspective. METHODOLOGY/PRINCIPAL FINDING: We describe the well-preserved remains of a dog-like canid from the Razboinichya Cave (Altai Mountains of southern Siberia. Because of the extraordinary preservation of the material, including skull, mandibles (both sides and teeth, it was possible to conduct a complete morphological description and comparison with representative examples of pre-LGM wild wolves, modern wolves, prehistoric domesticated dogs, and early dog-like canids, using morphological criteria to distinguish between wolves and dogs. It was found that the Razboinichya Cave individual is most similar to fully domesticated dogs from Greenland (about 1000 years old, and unlike ancient and modern wolves, and putative dogs from Eliseevichi I site in central Russia. Direct AMS radiocarbon dating of the skull and mandible of the Razboinichya canid conducted in three independent laboratories resulted in highly compatible ages, with average value of ca. 33,000 cal BP. CONCLUSIONS/SIGNIFICANCE: The Razboinichya Cave specimen appears to be an incipient dog that did not give rise to late Glacial-early Holocene lineages and probably represents wolf domestication disrupted by the climatic and cultural changes associated with the LGM. The two earliest incipient dogs from Western Europe (Goyet, Belguim and Siberia (Razboinichya, separated by thousands of kilometers, show that dog domestication was multiregional, and thus had no single place of

  17. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    Science.gov (United States)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  18. ESR dating of glacial tills of Baishuihe river on the southern slope of Lenglongling in the eastern part of Qilian Mountains

    International Nuclear Information System (INIS)

    Zhao Jingdong; Zhou Shangzhe; Shi Zhengtao; Zhang Shiqiang; Cui Jianxin; Xu Liubing; Ye Yuguang

    2001-01-01

    Baishuihe River is a tributary of Datong River, located on the southern slope of Lenglongling in the eastern part of the Qilian Mountains. An integral end till remains at the entrance of the valley. There is a push moraine in the till section. Three samples were derived from this section. Two samples were collected at the front of the push moraine and another sample (near the push moraine) collected from the rear of it, ESR ages were 73.0 ka, 55.8 ka, 36.7 ka respectively. The ESR ages being consistent with the relationship of deposits. The ages before the push moraine were correlated to the deep-sea oxygen isotope stage 4 within 10% deviation. Based on them, the authors could determine the till before the push moraine were formed in the early period of Last Glaciation. Comparing the ESR age of LS-5 with the results of previous 14 C, the authors found that the ESR age was older. Through the error correction, the authors concluded: the existing push moraine distorted the till around it, mixing the super-glacial till, englacial till and subglacial till together. The authors considered: the main reason influencing the ESR age was that the englacial till and the subglacial till were not exposed completely before they deposited. Although the result of LS-5 was older than the previous 14 C, combining the ESR age and the relationship of deposit and the existing 14 C ages, the authors inferred that the rear of the push moraine was deposited in the later period of the last glaciation and was correlated to the deep-sea oxygen isotope stage 2. At the same time, the conclusion once again proved the previous scholars' conclusion. This shows the ESR technique may be applied to glacial till dating

  19. Glacier change in the Gangdise Mountains, southern Tibet, since the Little Ice Age

    Science.gov (United States)

    Zhang, Qian; Yi, Chaolu; Fu, Ping; Wu, Yubin; Liu, Jinhua; Wang, Ninglian

    2018-04-01

    Delineating glacier change during the Little Ice Age (LIA) is of great importance when attempting to understand regional climatic changes and can also help to improve the understanding of any predictions of future glacial changes. However, such knowledge is still lacking for some critical regions of the Tibetan Plateau (TP). In this study, we mapped 4188 contemporary glaciers and reconstructed 1216 LIA areas of glacial coverage in the Gangdise Mountains to the north of the Himalaya using Google Earth satellite imagery. We estimated their paleoglacial areas and equilibrium line altitudes (ELAs) based on the toe-to-headwall altitude ratio (THAR) method. Results show that most glaciers are small (ELA ranges from 5516 to 6337 m asl; the LIA ELA ranged from 5476 to 6329 m asl. Contemporary and LIA ELA values rise from southeast to northwest. As a general rule, the rise in the ELA value decreases from the eastern to the central Gangdise Mountains and then increases westward, with a mean ELA rise of 45 m. Multiple regression models suggest that 46.8% of the glacier area loss can be explained by glacier elevation, area, and slope. However, only 15.5% of the rise in ELA values can be explained by glacial geometric, topographic, or locational parameters. The spatial pattern of modern ELA values in this region appears inversely related to precipitation, which decreases from southeast to northwest, implying that precipitation is one of the key controls of ELAs. This is also consistent with results from elsewhere in High Asia. In contrast to the Gangdise Mountains' eastern and western sectors, glaciers in the central sector have undergone less change, i.e., in terms of reductions in length, area loss, and rises in ELA. Topography can of course also influence glacial change by creating shielding and/or rainshadow effects and by affecting local temperatures.

  20. Glacial hazards: communicating the science and managing the risk

    Science.gov (United States)

    Reynolds, J. M.

    2009-04-01

    The recession of glaciers worldwide has received huge media coverage over the last few years in association with the issue of climate change. Young people at schools and colleges are increasingly aware of the environmental pressures due to ‘global warming'. Yet simultaneously, there appears to be an increasing move away from studying science both at pre-university and undergraduate levels. One of the oft cited reasons is that students cannot see the application of the subjects being taught them. Glacial hazards are one of the most obvious adverse effects of climate change, with many, often poor, communities in remote mountain areas being the most affected by frequently devastating Glacial Lake Outburst Floods (GLOFs). When students are exposed to examples of these hazards and the science behind them, many become enthused by the subject and want to study it further. There has been a huge increase in the number of students selecting projects on glacial hazards as well as a large increase in the number of institutions offering to teach modules on this subject. In an effort to provide a basic visualisation, Peter Kennett has taken the principle of GLOFs and developed a cheap but highly visual demonstration of the potentially devastating effect of melting ice within a moraine leading to subsidence and subsequent dam failure. This is available on www.earthlearningidea.com as ‘Dam burst danger - modelling the collapse of a natural dam in the mountains - and the disaster that might follow'. Furthermore, the methods by which glacial hazards are assessed provide excellent applications of geophysics, geology, geography (physical and Human), engineering, mathematics, and glaciology. By exploring the potential vulnerability of communities downstream, the applications can be extended to include sociology, economics, geopolitics and even psychology. Glacial hazards have been the subject of presentations to the Earth Science Teachers Association (ESTA) in the UK to demonstrate

  1. Glacial cycles

    DEFF Research Database (Denmark)

    Kaufmann, R. K.; Juselius, Katarina

    We use a statistical model, the cointegrated vector autoregressive model, to assess the degree to which variations in Earth's orbit and endogenous climate dynamics can be used to simulate glacial cycles during the late Quaternary (390 kyr-present). To do so, we estimate models of varying complexity...... and compare the accuracy of their in-sample simulations. Results indicate that strong statistical associations between endogenous climate variables are not enough for statistical models to reproduce glacial cycles. Rather, changes in solar insolation associated with changes in Earth's orbit are needed...... to simulate glacial cycles accurately. Also, results suggest that non-linear 10 dynamics, threshold effects, and/or free oscillations may not play an overriding role in glacial cycles....

  2. Applicability of TOPMODEL in the mountainous catchments in the upper Nysa Kłodzka river basin (SW Poland)

    Science.gov (United States)

    Jeziorska, Justyna; Niedzielski, Tomasz

    2018-03-01

    River basins located in the Central Sudetes (SW Poland) demonstrate a high vulnerability to flooding. Four mountainous basins and the corresponding outlets have been chosen for modeling the streamflow dynamics using TOPMODEL, a physically based semi-distributed topohydrological model. The model has been calibrated using the Monte Carlo approach—with discharge, rainfall, and evapotranspiration data used to estimate the parameters. The overall performance of the model was judged by interpreting the efficiency measures. TOPMODEL was able to reproduce the main pattern of the hydrograph with acceptable accuracy for two of the investigated catchments. However, it failed to simulate the hydrological response in the remaining two catchments. The best performing data set obtained Nash-Sutcliffe efficiency of 0.78. This data set was chosen to conduct a detailed analysis aiming to estimate the optimal timespan of input data for which TOPMODEL performs best. The best fit was attained for the half-year time span. The model was validated and found to reveal good skills.

  3. Residual basins

    International Nuclear Information System (INIS)

    D'Elboux, C.V.; Paiva, I.B.

    1980-01-01

    Exploration for uranium carried out over a major portion of the Rio Grande do Sul Shield has revealed a number of small residual basins developed along glacially eroded channels of pre-Permian age. Mineralization of uranium occurs in two distinct sedimentary units. The lower unit consists of rhythmites overlain by a sequence of black shales, siltstones and coal seams, while the upper one is dominated by sandstones of probable fluvial origin. (Author) [pt

  4. Rocky Mountain Research Station: 2011 Annual Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2011-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  5. Rocky Mountain Research Station: 2010 Research Accomplishments

    Science.gov (United States)

    Rick Fletcher

    2010-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization ­ the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the Great Plains...

  6. Post-Glacial and Paleo-Environmental History of the West Coast of Vancouver Island

    Science.gov (United States)

    Dallimore, A.; Enkin, R. J.

    2005-12-01

    Annually laminated sediments in anoxic fjords are potentially ideal paleoclimate recorders, particularly once proxy measurements for atmospheric, oceanographic and sedimentological conditions have been calibrated. On the west coast of Canada, these sediments also record the changing environment as glaciers retreated from this area about 12 ka y BP. In Effingham Inlet, a 40 m core taken from the French ship the Marion Dufresne as part of the international IMAGES/PAGES program, gives evidence of an isolation basin at maximum glacial isostatic rebound and lowest paleo-sea level followed by eustatic sea level rise about 10 ka y BP. The Late Pleistocene record also marks dramatic changes in glacial sedimentary source and transport. Excellent chronological control is provided by complementary yet independent dating methods including radiocarbon dates on both plants and shells, identification of the Mazama Ash, varve counting and paleomagnetic, paleosecular variation correlations in the lower, pro-glacial section of the core which does not contain organic material. Paleoenvironmental evidence from this core provides information on immediate post-glacial conditions along the coast and rapid climatic changes throughout the Holocene, with implications for the possibility of early human migration routes and refugia.

  7. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA

    Science.gov (United States)

    Muhs, Daniel; Pigati, Jeffrey S.; Budahn, James R.; Skipp, Gary L.; Bettis, E. Arthur; Jensen, Britta

    2018-01-01

    Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly, loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source. The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both northern and southern sources.

  8. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia.

    Science.gov (United States)

    Godbout, Julie; Fazekas, Aron; Newton, Craig H; Yeh, Francis C; Bousquet, Jean

    2008-05-01

    The Canadian side of the Pacific Northwest was almost entirely covered by ice during the last glacial maximum, which has induced vicariance and genetic population structure for several plant and animal taxa. Lodgepole pine (Pinus contorta Dougl. ex. Loud.) has a wide latitudinal and longitudinal distribution in the Pacific Northwest. Our main objective was to identify relictual signatures of glacial vicariance in the population structure of the species and search for evidence of distinct glacial refugia in the Pacific Northwest. A maternally inherited mitochondrial DNA minisatellite-like marker was used to decipher haplotype diversity in 91 populations of lodgepole pine located across the natural range. Overall population differentiation was sizeable (G(ST) = 0.365 and R(ST) = 0.568). Four relatively homogeneous groups of populations, possibly representative of as many genetically distinct glacial populations, were identified for the two main subspecies, ssp. latifolia and ssp. contorta. For ssp. contorta, one glacial lineage is suggested to have been located at high latitudes and possibly off the coast of mainland British Columbia (BC), while the other is considered to have been located south of the ice sheet along the Pacific coast. For ssp. latifolia, two genetically distinct glacial populations probably occurred south of the ice sheet: in the area bounded by the Cascades and Rocky Mountains ranges, and on the eastern side of the Rockies. A possible fifth refugium located in the Yukon may have also been present for ssp. latifolia. Zones of contact between these ancestral lineages were also apparent in interior and northern BC. These results indicate the role of the Queen Charlotte Islands and the Alexander Archipelago as a refugial zone for some Pacific Northwest species and the vicariant role played by the Cascades and the American Rocky Mountains during glaciation.

  9. Refugial isolation and range expansions drive the genetic structure of Oxyria sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains

    Science.gov (United States)

    Meng, Lihua; Chen, Gang; Li, Zhonghu; Yang, Yongping; Wang, Zhengkun; Wang, Liuyang

    2015-01-01

    The formation of the Mekong-Salween Divide and climatic oscillations in Pleistocene were the main drivers for the contemporary diversity and genetic structure of plants in the Himalaya-Hengduan Mountains (HHM). To identify the relative roles of the two historical events in shaping population history of plants in HHM, we investigated the phylogeographic pattern of Oxyria sinensis, a perennial plant endemic to the HHM. Sixteen chloroplast haplotypes were identified and were clustered into three phylogenetic clades. The age of the major clades was estimated to be in the Pleistocene, falling into several Pleistocene glacial stages and postdating the formation of the Mekong-Salween Divide. Range expansions occurred at least twice in the early and middle Pleistocene, but the spatial genetic distribution rarely changed since the Last Glacial Maximum. Our results suggest that temporary mountain glaciers may act as barriers in promoting the lineage divergence in O. sinensis and that subsequential range expansions and secondary contacts might reshape the genetic distribution in geography and blur the boundary of population differentiation created in the earlier glacial stages. This study demonstrates that Pleistocene climatic change and mountain glaciers, rather than the Mekong-Salween Divide, play the primary role in shaping the spatial genetic structure of O. sinensis. PMID:26013161

  10. Identification of glacial flood hazards in karakorum range using remote sensing technique and risk analysis

    International Nuclear Information System (INIS)

    Ashraf, A.; Roohi, R.; Naz, R.

    2011-01-01

    Glacial Lake Outburst Floods (GLOFs) are great hazard for the downstream communities in context of changing climatic conditions in the glaciated region of Pakistan. The remote sensing data of Landsat ETM+ was utilized for the identification of glacial lakes susceptible to posing GLOF hazard in Karakoram Range. Overall, 887 glacial lakes are identified in different river-basins of Karakoram Range, out of which 16 lakes are characterized as potentially dangerous in terms of GLOF. The analysis of community's response to GLOF events of 2008 in the central Karakoram Range indicated gaps in coordination and capacity of the local communities to cope with such natural hazards. A regular monitoring of hot spots and potential GLOF lakes along with capacity- of local communities and institutions in coping future disaster situation is necessary, especially in the context of changing climatic conditions in Himalayan region. (author)

  11. DROUGHT ANALYSIS IN OZANA DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Marina IOSUB

    2016-03-01

    Full Text Available Ozana drainage basin is located at the contact between large landscape units (the Carpathian mountains, the Subcarpathian area, and the plateau region. This placement determines the existence of a complex climate in the region. Despite being small in size, and its extension on an W-E direction, differences can be observed, especially of the way extreme phenomena take place. In the case of droughts, it had different intensities in the mountains, compared to the plateau region. In order to emphasize the different distribution on the territory, several climatic indexes have been calculated, regarding dryness (De Martonne Index, Hellman criterion. The analysis of these indexes at the same monitoring stations (Pluton, Leghin and Dumbrava emphasizes the growth of the drought periods in the plateau region and the fact that they shorten in the mountain area. In the mountainous area, where the land is very well forested, the values of the De Martonne index can reach 45.4, and in the plateau regions, where the forest associations are sparse, the values dropped to 30.6. According to the Hellman criterion, several differences can be emphasized, at basin level. In the mountainous region, there is only one month that, at a multi-annual level, has stood up among the rest, as being excessively droughty, while in the median /central region of the basin, three months have been identified, that have such potential, as well as five months, at Dumbrava.

  12. Potential field studies of the central San Luis Basin and San Juan Mountains, Colorado and New Mexico, and southern and western Afghanistan

    Science.gov (United States)

    Drenth, Benjamin John

    This dissertation includes three separate chapters, each demonstrating the interpretive utility of potential field (gravity and magnetic) geophysical datasets at various scales and in various geologic environments. The locations of these studies are the central San Luis Basin of Colorado and New Mexico, the San Juan Mountains of southwestern Colorado, and southern and western Afghanistan. The San Luis Basin is the northernmost of the major basins that make up the Rio Grande rift, and interpretation of gravity and aeromagnetic data reveals patterns of rifting, rift-sediment thicknesses, distribution of pre-rift volcanic and sedimentary rocks, and distribution of syn-rift volcanic rocks. Syn-rift Santa Fe Group sediments have a maximum thickness of ˜2 km in the Sanchez graben near the eastern margin of the basin along the central Sangre de Cristo fault zone. Under the Costilla Plains, thickness of these sediments is estimated to reach ˜1.3 km. The Santa Fe Group sediments also reach a thickness of nearly 1 km within the Monte Vista graben near the western basin margin along the San Juan Mountains. A narrow, north-south-trending structural high beneath San Pedro Mesa separates the graben from the structural depression beneath the Costilla Plains. Aeromagnetic anomalies are interpreted to mainly reflect variations of remanent magnetic polarity and burial depth of the 5.3-3.7 Ma Servilleta basalt of the Taos Plateau volcanic field. Magnetic-source depth estimates indicate patterns of subsidence following eruption of the basalt and show that the Sanchez graben has been the site of maximum subsidence. One of the largest and most pronounced gravity lows in North America lies over the rugged San Juan Mountains in southwestern Colorado. A buried, low-density silicic batholith related to an Oligocene volcanic field coincident with the San Juan Mountains has been the accepted interpretation of the source of the gravity low since the 1970s. However, this interpretation was

  13. Generalized hydrogeologic framework and groundwater budget for a groundwater availability study for the glacial aquifer system of the United States

    Science.gov (United States)

    Reeves, Howard W.; Bayless, E. Randall; Dudley, Robert W.; Feinstein, Daniel T.; Fienen, Michael N.; Hoard, Christopher J.; Hodgkins, Glenn A.; Qi, Sharon L.; Roth, Jason L.; Trost, Jared J.

    2017-12-14

    The glacial aquifer system groundwater availability study seeks to quantify (1) the status of groundwater resources in the glacial aquifer system, (2) how these resources have changed over time, and (3) likely system response to future changes in anthropogenic and environmental conditions. The glacial aquifer system extends from Maine to Alaska, although the focus of this report is the part of the system in the conterminous United States east of the Rocky Mountains. The glacial sand and gravel principal aquifer is the largest source of public and self-supplied industrial supply for any principal aquifer and also is an important source for irrigation supply. Despite its importance for water supply, water levels in the glacial aquifer system are generally stable varying with climate and only locally from pumping. The hydrogeologic framework developed for this study includes the information from waterwell records and classification of material types from surficial geologic maps into likely aquifers dominated by sand and gravel deposits. Generalized groundwater budgets across the study area highlight the variation in recharge and discharge primarily driven by climate.

  14. Rocky Mountain Research Station: 2012-2013 Annual Report

    Science.gov (United States)

    Cass Cairns

    2013-01-01

    The Rocky Mountain Research Station is one of seven regional units that make up the USDA Forest Service Research and Development organization - the most extensive natural resources research organization in the world. We maintain 12 field laboratories throughout a 12-state territory encompassing the Great Basin, Southwest, Rocky Mountains, and parts of the...

  15. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be

  16. A synthesis of post-glacial diatom records from Lake Baikal

    Science.gov (United States)

    Bradbury, J. Platt; Bezrukova, E.; Chernyaeva, G.; Colman, S.M.; Khursevich, G.; King, J.W.; Likoshway, Ye. V.

    1994-01-01

    The biostratigraphy of fossil diatoms contributes important chronologic, paleolimnologic, and paleoclimatic information from Lake Baikal in southeastern Siberia. Diatoms are the dominant and best preserved microfossils in the sediments, and distinctive assemblages and species provide inter-core correlations throughout the basin at millennial to centennial scales, in both high and low sedimentation-rate environments. Distributions of unique species, once dated by radiocarbon, allow diatoms to be used as dating tools for the Holocene history of the lake.Diatom, pollen, and organic geochemical records from site 305, at the foot of the Selenga Delta, provide a history of paleolimnologic and paleoclimatic changes from the late glacial (15 ka) through the Holocene. Before 14 ka diatoms were very rare, probably because excessive turbidity from glacial meltwater entering the lake impeded productivity. Between 14 and 12 ka, lake productivity increased, perhaps as strong winds promoted deep mixing and nutrient regeneration. Pollen evidence suggests a cold shrub — steppe landscape dominated the central Baikal depression at this time. As summer insolation increased, conifers replaced steppe taxa, but diatom productivity declined between 11 and 9 ka perhaps as a result of increased summer turbidity resulting from violent storm runoff entering the lake via short, steep drainages. After 8 ka, drier, but more continental climates prevailed, and the modern diatom flora of Lake Baikal came to prominence.On Academician Ridge, a site of slow sedimentation rates, Holocene diatom assemblages at the top of 10-m cores reappear at deeper levels suggesting that such cores record at least two previous interglacial (or interstadial?) periods. Nevertheless, distinctive species that developed prior to the last glacial period indicate that the dynamics of nutrient cycling in Baikal and the responsible regional climatic environments were not entirely analogous to Holocene conditions. During

  17. Glacial History of Southernmost South America and Implications for Movement of the Westerlies and Antarctic Frontal Zone

    Science.gov (United States)

    Kaplan, M. R.; Fogwill, C. J.; Hulton, N. R.; Sugden, D. E.; Peter, K. W.

    2004-12-01

    The ~1 Myr glacial geologic record in southern South American is one of the few available terrestrial paleoclimate proxies at orbital and suborbital time scales in the middle latitudes of the Southern Hemisphere. Presently, southernmost Patagonia lies about 3\\deg north of the Antarctic frontal zone and within the middle latitude westerlies and the climate is controlled by the surrounding maritime conditions. Thus, the long-term glacial record provides insight into the history of climatic boundaries over the middle and high latitude southern ocean, including the upwind SE Pacific Ocean, tectonic-glacial evolution of the Andes, and global climate. To date, cosmogenic nuclide and 14C dating have focused on glacial fluctuations between 51 and 53\\deg S (Torres del Paine to northern Tierra del Fuego) during the last glacial cycle, including the late glacial period. At least 4 advances occurred between ca. 25 and 17 ka, with the maximum expansion of ice ca. 25-24 ka. Major deglaciation commenced after ca. 17.5 ka, which was interrupted by a major glacial-climate event ca. 14-12 ka. Modelling experiments suggest that the ice mass needed to form the glacial maximum moraines required about a 6\\deg cooling and a slight drying relative to the present. Such a fundamental temperature reduction, despite high summer isolation, strongly suggests northward movement of the westerlies and the polar front on millennial timescales. The Patagonian record also indicates that on orbital timescales equatorward movement of climate boundaries and glacial growth was in phase with major Northern Hemisphere ice volume change, despite high local summer insolation. At suborbital timescales, the picture is more complex. While major facets of the last glacial maximum appear to be in phase between the hemispheres, at least some late glacial events may be in step with Antarctic climate change. Present and future research will further constrain the timing of glacial events over the last 1 Myr and

  18. A new concept for glacial geological investigations of surges, based on High-Arctic examples (Svalbard)

    Science.gov (United States)

    Lønne, Ida

    2016-01-01

    Svalbard is a key area for the investigation of glacial surges, and almost two centuries worth of field observations exists from this region. Studies have shown that the course of a surge and the associated formation of landforms are strongly influenced by basinal factors, and that the broad range of variables involved can hamper interpretations and comparisons. Based on a review of surges in Svalbard, a new concept for glacial geological investigations has been developed that combines ice-flows, ice-front movements, and morphostratigraphy. The concept is comprised of the following four elements: 1) classification based on the configuration and characteristics of the receiving basin, 2) division of the surge cycle into six stages, 3) guidelines for morphological mapping, and 4) use of an allostratigraphic approach for interpreting ice-front movements. In this context, delineation of the active phase is critical, which include the history of terminus movements, and four main categories of receiving basins are recognized. These are (A) terrestrial basins with deformable substrates, (B) terrestrial basins with poorly deformable substrates, (C) shallow water basins, and (D) deep water basins. The ice-front movement history is reconstructed by coupling information from the proglacial moraines (syn-surge), the supraglacial moraines (post-surge), and the associated traces of meltwater to the surge stages (I-VI). This approach has revealed a critical relationship between the termination of the active phase and three morphological elements, namely, the maximum ice-front position, the maximum moraine extent and the youngest proglacial moraine, which are unique for each of the basins A-D. The concept is thus a novel and more precise approach for mapping the active phase and the active phase duration, as shown by the ∼12-year long surge of Fridtjovbreen, where stage I was 30 months (inception), stage II was 54 months (ice-front advance), stage III was 12 months (stillstand

  19. Climatic Forecasting of Net Infiltration at Yucca Mountain Using Analogue Meteorological Data

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2005-01-01

    At Yucca Mountain, NV, future changes in climatic conditions will probably alter net infiltration, drainage below the bottom of the evapotranspiration zone within the soil profile, or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this study were to: (1) develop a semiempirical model and forecast average net infiltration rates, using the limited meteorological data from analog meteorological stations, for interglacial(present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region; and (2) corroborate the computed net infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. This study approached calculations of net infiltration, aridity, and precipitation effectiveness indices using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate, following a power law relationship between net infiltration and precipitation. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. Forecasting of net infiltration for different climate states is subject to numerous uncertainties associated with selecting climate analog sites, using relatively short analog meteorological records, neglecting the effects of vegetation and surface runoff and run-on on a local scale, as well as possible anthropogenically induced climate changes

  20. Spatial distribution and temporal development of high-mountain lakes in western Austria

    Science.gov (United States)

    Merkl, Sarah; Emmer, Adam; Mergili, Martin

    2015-04-01

    Glacierized high-mountain environments are characterized by active morphodynamics, favouring the rapid appearance and disappearance of lakes. On the one hand, such lakes indicate high-mountain environmental changes such as the retreat of glaciers. On the other hand, they are sometimes susceptible to sudden drainage, leading to glacial lake outburst floods (GLOFs) putting the downstream population at risk. Whilst high-mountain lakes have been intensively studied in the Himalayas, the Pamir, the Andes or the Western Alps, this is not the case for the Eastern Alps. A particular research gap, which is attacked with the present work, concerns the western part of Austria. We consider a study area of approx. 6,140 km², covering the central Alps over most of the province of Tyrol and part of the province of Salzburg. All lakes ≥250 m² located higher than 2000 m asl are mapped from high-resolution Google Earth imagery and orthophotos. The lakes are organized into seven classes: (i) ice-dammed; near-glacial (ii) moraine-dammed and (iii) bedrock-dammed; (iv) moraine-dammed and (v) bedrock-dammed distant to the recent glaciers; (vi) landslide-dammed; (vii) anthropogenic. The temporal development of selected lakes is investigated in detail, using aerial photographs dating back to the 1950s. 1045 lakes are identified in the study area. Only eight lakes are ice-dammed (i). One third of all lakes is located in the immediate vicinity of recent glacier tongues, half of them impounded by moraine (ii), half of them by bedrock (iii). Two thirds of all lakes are impounded by features (either moraines or bedrock) shaped by LIA or Pleistocenic glaciers at some distance to the present glacier tongues (iv and v). Only one landslide-dammed lake (vi) is identified in the study area, whilst 21 lakes are of anthropogenic origin (vii). 72% of all lakes are found at 2250-2750 m asl whilst less than 2% are found above 3000 m asl. The ratio of rock-dammed lakes increases with increasing

  1. Repository site definition in basalt: Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi/sup 2/ (5180 km/sup 2/) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process.

  2. Repository site definition in basalt: Pasco Basin, Washington

    International Nuclear Information System (INIS)

    Guzowski, R.V.; Nimick, F.B.; Muller, A.B.

    1982-03-01

    Discussion of the regional setting, geology, hydrology, and geochemistry of the Pasco Basin are included in this report. Pasco basin is a structural and topographic basin of approximately 2000 mi 2 (5180 km 2 ) located within the Yakima Fold Belt Subprovince of the Columbia Plateau. The stratigraphic sequence within the basin consists of an undetermined thickness of lower Miocene and younger flood basalts with interbedded and overlying sedimentary units. This sequence rests upon a basement of probably diverse rock types that may range in age from precambrian through early Tertiary. Although a large amount of information is available on the hydrology of the unconfined aquifer system, ground-water flow within the basin is, in general, poorly understood. Recharge areas for the Mabton interbed and the Saddle Mountains Formation are the highlands surrounding the basin with the flow for these units toward Gable Butte - Gable Mountain and Lake Wallula. Gable Butte - Gable Mountain probably is a ground-water sink, although the vertical flow direction in this zone is uncertain. The amount of upward vertical leakage from the Saddle Mountains Formation into the overlying sediments or to the Columbia River is unknown. Units underlying the Mabton interbed may have a flow scheme similar to those higher units or a flow scheme dominated by interbasin flow. Upward vertical leakage either throughout the basin, dominantly to the Columbia River, or dominantly to Lake Wallula has been proposed for the discharge of the lower units. None of these proposals is verified. The lateral and vertical distribution of major and minor ions in solution, Eh and pH, and ion exchange between basalt and ground-water are not well defined for the basin. Changes in the redox potential from the level of the subsurface facility to the higher stratigraphic levels along with the numerous other factors influencing K/sub d/, result in a poor understanding of the retardation process

  3. Migration of recharge waters downgradient from the Santa Catalina Mountains into the Tucson basin aquifer, Arizona, USA

    Science.gov (United States)

    Cunningham, Erin E. B.; Long, Austin; Eastoe, Chris; Bassett, R. L.

    Aquifers in the arid alluvial basins of the southwestern U.S. are recharged predominantly by infiltration from streams and playas within the basins and by water entering along the margins of the basins. The Tucson basin of southeastern Arizona is such a basin. The Santa Catalina Mountains form the northern boundary of this basin and receive more than twice as much precipitation (ca. 700mm/year) as does the basin itself (ca. 300mm/year). In this study environmental isotopes were employed to investigate the migration of precipitation basinward through shallow joints and fractures. Water samples were obtained from springs and runoff in the Santa Catalina Mountains and from wells in the foothills of the Santa Catalina Mountains. Stable isotopes (δD and δ18O) and thermonuclear-bomb-produced tritium enabled qualitative characterization of flow paths and flow velocities. Stable-isotope measurements show no direct altitude effect. Tritium values indicate that although a few springs and wells discharge pre-bomb water, most springs discharge waters from the 1960s or later. Résumé La recharge des aquifères des bassins alluviaux arides du sud-ouest des États-Unis est assurée surtout à partir des lits des cours d'eau et des playas dans les bassins, ainsi que par l'eau entrant à la bordure de ces bassins. Le bassin du Tucson, dans le sud-est de l'Arizona, est l'un de ceux-ci. La chaîne montagneuse de Santa Catalina constitue la limite nord de ce bassin et reçoit plus de deux fois plus de précipitations (environ 700mm/an) que le bassin (environ 300mm/an). Dans cette étude, les isotopes du milieu ont été utilisés pour analyser le déplacement de l'eau de pluie vers le bassin au travers des fissures et des fractures proches de la surface. Des échantillons d'eau ont été prélevés dans les sources et dans l'écoulement de surface de la chaîne montagneuse et dans des puits au pied de la chaîne. Les isotopes stables (δD et δ18O) et le tritium d

  4. The interglacial-glacial record at the mouth of Scoresby Sund, East Greenland

    DEFF Research Database (Denmark)

    Mangerud, Jan; Funder, Svend Visby

    1994-01-01

    Brewster (facing the open ocean) and till on top of the interglacial beds at Kikiakajik show that both an outlet from the Greenland Ice Sheet, and more local glaciers reached the continental shelf during the Weichselian. This glacial event is poorly dated, but tentatively correlated with the Flakkerhuk...... interglaciation ( "" isotope substage Se) on the basis of mollusc assemblages and luminescence dates. Abundant Balal/lls Crel/atlls, and several bivalves, show that the advection of warm Atlantic water to the East Greenland coast was higher during that interglacial than during the Holocene. Glacial striae at Kap...... stade ( "" 19-15 ka BP) when, from marine geological data, it is suggested that the Scoresby Sund glacier terminated c. 30 km east of Kap Brewster. During the Milne Land stade (c. 10 ka BP) there was a resurgence of local ice caps in the mountains both north and south of the fjord mouth, but Scoresby...

  5. Constraining Glacial Runoff Contributions to Water Resources in the Cordillera Real, Bolivia using Environmental Tracers

    Science.gov (United States)

    Guido, Z.; McIntosh, J. C.; Papuga, S. A.

    2013-12-01

    Warming temperatures in recent decades have contributed to substantial reductions in glaciers in many mountain regions around the globe, including the South American Andes. Melting of these glaciers taps water resources accumulated in past climates, and the diminishing ice marks a decrease in a nonrenewable water source that begs the question: how will future water supplies be impacted by climate change. Water resource management and climate adaptation efforts can be informed by knowledge of the extent to which glaciers contribute to seasonal streamflows, but remote locations and scant monitoring often limit this quantification. In Bolivia, more than two million people draw water from watersheds fed, in part, by glaciers. The amount to which these glaciers contribute to the water supply, however, is not well constrained. We apply elemental and isotopic tracers in an end-member mixing model to quantify glacial runoff contributions to local water supplies. We present oxygen and deuterium isotopes and major anion concentrations (sulfate and chloride) of shallow groundwater, streams, reservoirs, small arroyos, and glacial runoff. Isotopic and anion mixing models suggest between 45-67% of the water measured in high altitude streams originated from within the glacial footprint during the 2011 wet season, while glacial runoff contributed about 42-53% of the water in reservoirs in the 2012 dry season. Data also show that shallow groundwater is connected to glacial-fed streams. Any future decrease in glacial runoff may contribute to a reduction in surface water supplies and lower groundwater levels downstream, perhaps below the depth of hand-dug wells common in rural communities.

  6. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J.; Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II

    1998-01-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections of the southwestern Great Basin

  7. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  8. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  9. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  10. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique

    Science.gov (United States)

    Li, Jia; Li, Zhi-wei; Wu, Li-xin; Xu, Bing; Hu, Jun; Zhou, Yu-shan; Miao, Ze-lang

    2018-04-01

    We investigated the interactions of Lake Merzbacher with the Southern Inylchek Glacier (Central Tien Shan) using the Synthetic Aperture Radar (SAR) Pixel Offset-Small Baseline Subset (PO-SBAS) to derive a time series of three-dimensional (3D) glacier motion. The measurements of 3D glacier velocity were ∼17% more precise than a previous study that did not use the SBAS estimation. The velocities of the glacier were up to 58 cm/day east, 70 cm/day north, and 113 cm/day vertically. Combining these data with Landsat images indicated that movement of the glacier is sensitive to changes of Lake Merzbacher. Specifically, the entry of more lake water into the glacier during the ablation season increased englacial ablation due to thermal erosion. Moreover, ice calving begins when the lake water gradually lifts the ice dam. Calving can cause greater loss of glacier mass than normal ablation. Trying to replenish the front mass loss, the distributary accelerates and the mass loss further intensifies. A time series of the vertical velocity indicates that the glacier tongue has a huge englacial cavity. We suggest that the lake outburst is directly related to the crack of this cavity. Bursting of the lake triggers a mini-surge at the glacier tongue. The vertical velocity at the ice dam was ∼+60 cm/day before the lake outburst, and ∼-113 cm/day afterwards. After drainage of the lake, flow velocities at the distributary, do not sharply decrease because pre-drainage mass loss needs to be replenished by fast flow. Based on comparisons with previous measurements, our results indicate that the lake had an increasing influence on the glacier from 2005 to 2009. This study demonstrates that a time series of 3D glacier motion based on the PO-SBAS technique is effective for assessing the dynamics of a mountain glacial system and interactions with its glacial lake.

  11. Limiting factors for vegetation development during the early late glacial in Denmark

    DEFF Research Database (Denmark)

    Mortensen, Morten Fischer; Odgaard, Bent Vad; Jessen, Cathrine

    Slotseng, a small basin in southern Jutland, is the first Danish site with a bio- and chronostratigraphy that unambiguously reflects the environment of the earliest late glacial, the Bølling period. Results of pollen and macrofossil analyses show that the vegetation of the Bølling and Older Dryas...... periods at Slotseng was dominated by Betula nana and Dryas octopetala and associated with many herbs of open habitats. Late-glacial pollen records are frequently interpreted only in the context of climate change. However, the forcing mechanisms of vegetational change may shift over time between e...... to climate change suggests that other factors limited vegetational development. These factors included soil instability, aridity and low soil nitrogen.. This study highlights the multitude of climatic, physical, chemical and biological interactions important for the formation of pollen records of late...

  12. Hydrogeology, geochemistry, and quality of water of The Basin and Oak Spring areas of the Chisos Mountains, Big Bend National Park, Texas

    Science.gov (United States)

    Baker, E.T.; Buszka, P.M.

    1993-01-01

    Test drilling near two sewage lagoons in The Basin area of the Chisos Mountains, Big Bend National Park, Texas, has shown that the alluvium and colluvium on which the lagoons are located is not saturated in the immediate vicinity of the lagoons. A shallow aquifer, therefore, does not exist in this critical area at and near the lagoons. Should seepage outflow from the lagoons occur, the effluent from the lagoons might eventually be incorporated into shallow ground water moving westward in the direction of Oak Spring. Under these conditions such water could reach the spring. Test borings that bottomed in bedrock below the alluvial and colluvial fill material are dry, indicating that no substantial leakage from the lagoons was detected. Therefore, no contaminant plume was identified. Fill material in The Basin does not contain water everywhere in its extensive outcropping area and supplies only a small quantity of ground water to Window Pouroff, which is the only natural surface outlet of The Basin.

  13. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    Czech Academy of Sciences Publication Activity Database

    González-Toril, E.; Amils, R.; Delmas, R.J.; Petit, J.-L.; Komárek, Jiří; Elster, Josef

    2009-01-01

    Roč. 6, č. 1 (2009), s. 33-44 ISSN 1726-4170 R&D Projects: GA MŠk ME 934; GA MŠk ME 945; GA ČR GA206/05/0253 Institutional research plan: CEZ:AV0Z60050516 Keywords : bacteria * glacial ecosytems * polar and high mountains habitats Subject RIV: EF - Botanics Impact factor: 3.246, year: 2009

  14. Ploidy race distributions since the Last Glacial Maximum in the North American desert shrub, Larrea tridentata

    Science.gov (United States)

    Hunter, K.L.; Betancourt, J.L.; Riddle, B.R.; Van Devender, T. R.; Cole, K.L.; Geoffrey, Spaulding W.

    2000-01-01

    1 A classic biogeographic pattern is the alignment of diploid, tetraploid and hexaploid races of creosote bush (Larrea tridentata) across the Chihuahuan, Sonoran and Mohave Deserts of western North America. We used statistically robust differences in guard cell size of modern plants and fossil leaves from packrat middens to map current and past distributions of these ploidy races since the Last Glacial Maximum (LGM). 2 Glacial/early Holocene (26-10 14C kyr BP or thousands of radiocarbon years before present) populations included diploids along the lower Rio Grande of west Texas, 650 km removed from sympatric diploids and tetraploids in the lower Colorado River Basin of south-eastern California/south-western Arizona. Diploids migrated slowly from lower Rio Grande refugia with expansion into the northern Chihuahuan Desert sites forestalled until after ???4.0 14C kyr BP. Tetraploids expanded from the lower Colorado River Basin into the northern limits of the Sonoran Desert in central Arizona by 6.4 14C kyr BP. Hexaploids appeared by 8.5 14C kyr BP in the lower Colorado River Basin, reaching their northernmost limits (???37??N) in the Mohave Desert between 5.6 and 3.9 14C kyr BP. 3 Modern diploid isolates may have resulted from both vicariant and dispersal events. In central Baja California and the lower Colorado River Basin, modern diploids probably originated from relict populations near glacial refugia. Founder events in the middle and late Holocene established diploid outposts on isolated limestone outcrops in areas of central and southern Arizona dominated by tetraploid populations. 4 Geographic alignment of the three ploidy races along the modern gradient of increasingly drier and hotter summers is clearly a postglacial phenomenon, but evolution of both higher ploidy races must have happened before the Holocene. The exact timing and mechanism of polyploidy evolution in creosote bush remains a matter of conjecture. ?? 2001 Blackwell Science Ltd.

  15. Sediment storage quantification and postglacial evolution of an inner-alpine sedimentary basin (Gradenmoos, Schober Mountains, Austria)

    Science.gov (United States)

    Götz, J.; Buckel, J.; Otto, J. C.; Schrott, L.

    2012-04-01

    Knickpoints in longitudinal valley profiles of alpine headwater catchments can be frequently assigned to the lithological and tectonical setting, to damming effects through large (rockfall) deposits, or to the impact of Pleistocene glaciations causing overdeepened basins. As a consequence various sedimentary sinks developed, which frequently interrupt sediment flux in alpine drainage basins. Today these locations may represent landscape archives documenting a sedimentary history of great value for the understanding of alpine landscape evolution. The glacially overdeepened Gradenmoos basin at 1920 m a.s.l. (an alpine lake mire with adjacent floodplain deposits and surrounding slope storage landforms; approx. 4.1 km2) is the most pronounced sink in the studied Gradenbach catchment (32.5 km2). The basin is completely filled up with sediments delivered by mainly fluvial processes, debris flows, and rock falls, it is assumed to be deglaciated since Egesen times and it is expected to archive a continuous stratigraphy of postglacial sedimentation. As the analysis of denudation-accumulation-systems is generally based on back-calculation of stored sediment volumes to a specific sediment delivering area, most reliable results will be consequently obtained (1) if sediment output of the system can be neglected for the investigated period of time, (2) if - due to spatial scale - sediment storage can be assessed quantitatively with a high level of accuracy, and (3) if the sediment contributing area can be clearly delimited. All three aspects are considered to be fulfilled to a high degree within the Gradenmoos basin. Sediment storage is quantified using geophysical methods, core drillings and GIS modelling whereas postglacial reconstruction is based on radiocarbon dating and palynological analyses. Subject to variable subsurface conditions, different geophysical methods were applied to detect bedrock depth. Electrical resistivity surveying (2D/3D) was used most extensively as it

  16. Nature and Properties of Some Forest Soils in the Mhite Mountains of New Hampshire

    Science.gov (United States)

    M.C. Hoyle; M.C. Hoyle

    1973-01-01

    Forested, podzol soils in the White Mountains of New Hampshire have developed in granitic, glacial material. They are coarse textured, acidic, and infertile. As a result of the latter condition, these soils can sustain a forest, but that forest is not healthy and vigorous.

  17. Hydrogeologic framework of the uppermost principal aquifer systems in the Williston and Powder River structural basins, United States and Canada

    Science.gov (United States)

    Thamke, Joanna N.; LeCain, Gary D.; Ryter, Derek W.; Sando, Roy; Long, Andrew J.

    2014-01-01

    The glacial, lower Tertiary, and Upper Cretaceous aquifer systems in the Williston and Powder River structural basins within the United States and Canada are the uppermost principal aquifer systems and most accessible sources of groundwater for these energy-producing basins. The glacial aquifer system covers the northeastern part of the Williston structural basin. The lower Tertiary and Upper Cretaceous aquifer systems are present in about 91,300 square miles (mi2) of the Williston structural basin and about 25,500 mi2 of the Powder River structural basin. Directly under these aquifer systems are 800 to more than 3,000 feet (ft) of relatively impermeable marine shale that serves as a basal confining unit. The aquifer systems in the Williston structural basin have a shallow (less than 2,900 ft deep), wide, and generally symmetrical bowl shape. The aquifer systems in the Powder River structural basin have a very deep (as much as 8,500 ft deep), narrow, and asymmetrical shape.

  18. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: hydrogeochemistry and environmental tracer indicators

    Science.gov (United States)

    Ma, Bin; Jin, Menggui; Liang, Xing; Li, Jing

    2018-02-01

    Hydrogeochemistry and environmental tracers (2H, 18O, 87Sr/86Sr) in precipitation, river and reservoir water, and groundwater have been used to determine groundwater recharge sources, and to identify mixing characteristics and mineralization processes in the Manas River Basin (MRB), which is a typical mountain-oasis-desert ecosystem in arid northwest China. The oasis component is artificial (irrigation). Groundwater with enriched stable isotope content originates from local precipitation and surface-water leakage in the piedmont alluvial-oasis plain. Groundwater with more depleted isotopes in the north oasis plain and desert is recharged by lateral flow from the adjacent mountains, for which recharge is associated with high altitude and/or paleo-water infiltrating during a period of much colder climate. Little evaporation and isotope exchange between groundwater and rock and soil minerals occurred in the mountain, piedmont and oasis plain. Groundwater δ2H and δ18O values show more homogeneous values along the groundwater flow direction and with well depths, indicating inter-aquifer mixing processes. A regional contrast of groundwater allows the 87Sr/86Sr ratios and δ18O values to be useful in a combination with Cl, Na, Mg, Ca and Sr concentrations to distinguish the groundwater mixing characteristics. Two main processes are identified: groundwater lateral-flow mixing and river leakage in the piedmont alluvial-oasis plain, and vertical mixing in the north oasis plain and the desert. The 87Sr/86Sr ratios and selected ion ratios reveal that carbonate dissolution and mixing with silicate from the southern mountain area are primarily controlling the strontium isotope hydrogeochemistry.

  19. South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon

    Science.gov (United States)

    Cook, K. H.; Vizy, E. K.

    2006-01-01

    The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.

  20. Characterization of Stream Channel Evolution Due to Extensional Tectonics Along the Western Margin of North Boulder Basin (Bull Mountain), SW Montana with the Use of Geologic Mapping and Thermochronologic (U-Th/He) Dating.

    Science.gov (United States)

    Cataldo, K.; Douglas, B. J.; Yanites, B.

    2017-12-01

    Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.

  1. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Spatial Patterns of Species Diversity and Phylogenetic Structure of Plant Communities in the Tianshan Mountains, Arid Central Asia

    Directory of Open Access Journals (Sweden)

    Hong-Xiang Zhang

    2017-12-01

    Full Text Available The Tianshan Mountains, located in arid Central Asia, have a humid climate and are biodiversity hotspots. Here, we aimed to clarify whether the pattern of species diversity and the phylogenetic structure of plant communities is affected by environmental variables and glacial refugia. In this study, plant community assemblies of 17 research sites with a total of 35 sample plots were investigated at the grassland/woodland boundaries on the Tianshan Mountains. Community phylogeny of these plant communities was constructed based on two plant DNA barcode regions. The indices of phylogenetic diversity and phylogenetic community structure were calculated for these sample plots. We first estimated the correlation coefficients between species richness (SR and environmental variables as well as the presence of glacial refugia. We then mapped the significant values of indices of community phylogeny (PD, RPD, NRI, and NTI to investigate the correlation between community phylogeny and environmental structure or macrozones in the study area. The results showed that a significantly higher value of SR was obtained for the refugial groups than for the colonizing groups (P < 0.05; presence of refugia and environmental variables were highly correlated to the pattern of variation in SR. Indices of community phylogeny were not significantly different between refugial and colonizing regions. Comparison with the humid western part showed that plant communities in the arid eastern part of the Tianshan Mountains tended to display more significant phylogenetic overdispersion. The variation tendency of the PhyloSor index showed that the increase in macro-geographical and environmental distance did not influence obvious phylogenetic dissimilarities between different sample plots. In conclusion, glacial refugia and environmental factors profoundly influenced the pattern of SR, but community phylogenetic structure was not affected by glacial refugia among different plant

  3. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    Science.gov (United States)

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  4. 348-YEAR PRECIPITATION RECONSTRUCTION FROM TREE-RINGS FOR THE NORTH SLOPE OF THE MIDDLE TIANSHAN MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    袁玉江; 李江风; 张家宝

    2001-01-01

    Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant, and the best single correlation coefficient is 0.74, with significance level of 0. 0001.Using two residual chronologies collected from west Baiyanggou and Boerqingou, precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains, its explained variance is 62%. According to much verification from independent precipitation data, historical climate records, glacier and other data, it shows that the reconstructed precipitation series of 348 years is reliable. Analysis of precipitation features indicates that there were three wet periods occurring during 1671 (?) -1692, 1716-1794 and 1825-1866 and three dry periods during 1693 - 1715, 1795- 1824 and 1867- 1969. Two wet periods, during 1716- 1794 and 1825 - 1866,correspond to the times of the second and the third glacial terminal moraine formation, which is in front of No. 1 glacier in Urumqi River source. According to computation, corresponding annual precipitation amounts are 59 mm and 30 mm more than now. The reconstructed precipitation series has a significant drying trend from 1716 to 1969, and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.

  5. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  6. A {approx}180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Anselmetti, F. S. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf (Switzerland); Drescher-Schneider, R. [Institut fuer Pflanzenwissenschaften, Karl-Fanzen-Universitaet Graz, Graz (Austria); Furrer, H. [Palaeontologisches Institut und Museum, Universitaet Zuerich, Zuerich (Switzerland); Graf, H. R. [Matousek, Baumann und Niggli AG, Baden (Switzerland); Lowick, S. E.; Preusser, F. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Riedi, M. A. [Marc A. Riedi, Susenbuehlstrasse 41, Chur (Switzerland)

    2010-11-15

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a {approx} 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between {approx} 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called {sup M}ammoth peat{sup ,} previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  7. A ∼180,000 years sedimentation history of a perialpine overdeepened glacial trough (Wehntal, N-Switzerland)

    International Nuclear Information System (INIS)

    Anselmetti, F. S.; Drescher-Schneider, R.; Furrer, H.; Graf, H. R.; Lowick, S. E.; Preusser, F.; Riedi, M. A.

    2010-01-01

    A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ∼ 180 ka old sedimentary succession that provides new insights into the timing and nature of erosion-sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ∼ 180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called M ammoth peat , previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with paleoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history. (authors)

  8. Geology of Gable Mountain-Gable Butte Area

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-09-01

    Gable Mountain and Gable Butte are two ridges which form the only extensive outcrops of the Columbia River Basalt Group in the central portion of the Pasco Basin. The Saddle Mountains Basalt and two interbedded sedimentary units of the Ellensburg Formation crop out on the ridges. These include, from oldest to youngest, the Asotin Member (oldest), Esquatzel Member, Selah Interbed, Pomona Member, Rattlesnake Ridge Interbed, and Elephant Mountain Member (youngest). A fluvial plain composed of sediments from the Ringold and Hanford (informal) formations surrounds these ridges. The structure of Gable Mountain and Gable Butte is dominated by an east-west-trending major fold and northwest-southeast-trending parasitic folds. Two faults associated with the uplift of these structures were mapped on Gable Mountain. The geomorphic expression of the Gable Mountain-Gable Butte area resulted from the comlex folding and subsequent scouring by post-basalt fluvial systems

  9. Estimating mountain basin-mean precipitation from streamflow using Bayesian inference

    Science.gov (United States)

    Henn, Brian; Clark, Martyn P.; Kavetski, Dmitri; Lundquist, Jessica D.

    2015-10-01

    Estimating basin-mean precipitation in complex terrain is difficult due to uncertainty in the topographical representativeness of precipitation gauges relative to the basin. To address this issue, we use Bayesian methodology coupled with a multimodel framework to infer basin-mean precipitation from streamflow observations, and we apply this approach to snow-dominated basins in the Sierra Nevada of California. Using streamflow observations, forcing data from lower-elevation stations, the Bayesian Total Error Analysis (BATEA) methodology and the Framework for Understanding Structural Errors (FUSE), we infer basin-mean precipitation, and compare it to basin-mean precipitation estimated using topographically informed interpolation from gauges (PRISM, the Parameter-elevation Regression on Independent Slopes Model). The BATEA-inferred spatial patterns of precipitation show agreement with PRISM in terms of the rank of basins from wet to dry but differ in absolute values. In some of the basins, these differences may reflect biases in PRISM, because some implied PRISM runoff ratios may be inconsistent with the regional climate. We also infer annual time series of basin precipitation using a two-step calibration approach. Assessment of the precision and robustness of the BATEA approach suggests that uncertainty in the BATEA-inferred precipitation is primarily related to uncertainties in hydrologic model structure. Despite these limitations, time series of inferred annual precipitation under different model and parameter assumptions are strongly correlated with one another, suggesting that this approach is capable of resolving year-to-year variability in basin-mean precipitation.

  10. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana

    Energy Technology Data Exchange (ETDEWEB)

    Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. [Drew University, Madison, NJ (USA). Dept. of Biology

    2009-03-15

    Late Cenozoic stream incision and basin excavation have strongly influenced the modern Rocky Mountain landscape, but constraints on the timing and rates of erosion are limited. The geology of the Powder River basin provides an unusually good opportunity to address spatial and temporal patterns of stream incision. Numerous coal seams in the Paleocene Fort Union and Eocene Wasatch Formations within the basin have burned during late Cenozoic incision, as coal was exposed to dry and oxygen-rich near-surface conditions. The topography of this region is dominated by hills capped with clinker, sedimentary rocks metamorphosed by burning of underlying coal beds. We use (U-Th)/He ages of clinker to determine times of relatively rapid erosion, with the assumption that coal must be near Earth's surface to burn. Ages of 55 in situ samples range from 0.007 to 1.1 Ma. Clinker preferentially formed during times in which eccentricity of the Earth's orbit was high, times that typically but not always correlate with interglacial periods. Our data therefore suggest that rates of landscape evolution in this region are affected by climate fluctuations. Because the clinker ages correlate better with eccentricity time series than with an oxygen isotope record of global ice volume, we hypothesize that variations in solar insolation modulated by eccentricity have a larger impact on rates of landscape evolution in this region than do glacial-interglacial cycles.

  11. The MIS 3 maximum of the Torres del Paine and Última Esperanza ice lobes in Patagonia and the pacing of southern mountain glaciation

    Science.gov (United States)

    García, Juan-Luis; Hein, Andrew S.; Binnie, Steven A.; Gómez, Gabriel A.; González, Mauricio A.; Dunai, Tibor J.

    2018-04-01

    The timing, structure and termination of the last southern mountain glaciation and its forcing remains unclear. Most studies have focused on the global Last Glacial Maximum (LGM; 26.5-19 ka) time period, which is just part of the extensive time-frame within the last glacial period, including Marine Isotope Stages 3 and 4. Understanding the glacial fluctuations throughout the glacial period is a prerequisite for uncovering the cause and climate mechanism driving southern glaciation and the interhemispheric linkages of climate change. Here, we present an extensive (n = 65) cosmogenic 10Be glacier chronology derived from moraine belts marking the pre-global LGM extent of the former Patagonian Ice Sheet in southernmost South America. Our results show the mountain ice sheet reached its maximum extent at 48.0 ± 1.8 ka during the local LGM, but attained just half this extent at 21.5 ± 1.8 ka during the global LGM. This finding, supported by nearby glacier chronologies, indicates that at orbital time scales, the southern mid-latitude glaciers fluctuated out-of-phase with northern hemisphere ice sheets. At millennial time-scales, our data suggest that Patagonian and New Zealand glaciers advanced in unison with cold Antarctic stadials and reductions in Southern Ocean sea surface temperatures. This implies a southern middle latitudes-wide millennial rhythm of climate change throughout the last glacial period linked to the north Atlantic by the bipolar seesaw. We suggest that winter insolation, acting alongside other drivers such as the strength and/or position of the southern westerlies, controlled the extents of major southern mountain glaciers such as those in southernmost South America.

  12. Pechora River basin integrated system management PRISM; biodiversity assessment for the Pechora River basin; Cluster B: biodiversity, land use & forestry modeling

    NARCIS (Netherlands)

    Sluis, van der T.

    2005-01-01

    This report describes the biodiversity for the Pechora River basin Integrated System Management (PRISM). The Pechora River Basin, situated just west of the Ural Mountains, Russia, consists of vast boreal forests and tundra landscapes, partly pristine and undisturbed. The concept of biodiversity is

  13. Quaternary Sedimentary Processes and Budgets in Orphan Basin, Southwestern Labrador Sea

    Science.gov (United States)

    Hiscott, Richard N.; Aksu, Ali E.

    1996-03-01

    The continental slope in Orphan Basin, northeast of Newfoundland, is underlain by several seaward-thinning debris-flow wedges alternating with acoustically stratified, regionally extensive, mainly hemipelagic sediments. δ 18O stratigraphy and volcanic ash layers in a 11.67-m core indicate that the uppermost debris-flow wedge formed during the last of several sea-level lowstands in isotopic stages 2-4. Similarly, seismic reflection correlation of dated levels at DSDP Site 111 with the Orphan Basin succession suggests that two deeper debris-flow wedges were deposited during oxygen isotopic stages 6 and 8. The oldest of the debris-flow deposits in at least three of the wedges formed well into the corresponding glacial cycle, after ice sheets had reached the edge of the continental shelf. Slower deposition by hemipelagic processes and ice rafting formed the acoustically stratified units, including Heinrich layers. The youngest three debris-flow wedges each have volumes of 1300-1650 km 3. Approximately two-thirds of this material is attributed to glacial erosion of Mesozoic and Tertiary strata beneath the Northeast Newfoundland Shelf. The remainder is believed to have been derived by glacial erosion of older bedrock that now forms the island of Newfoundland. The observed sediment volumes and the inferred basal and upper ages of the debris-flow wedges imply an average glacial denudation rate of about 0.13 mm/yr for this older bedrock, and an average of about 60 m of glacial bedrock erosion since oxygen isotope stage 22. This denudation rate is similar to estimates from the Barents Sea region off Norway.

  14. Impact of climate change on the hydrology of High Mountain Asia

    NARCIS (Netherlands)

    Lutz, A.

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly

  15. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    Science.gov (United States)

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  16. Erosion of mountain plateaus along Sognefjord, Norway, constrained by cosmogenic nuclides

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Egholm, David Lundbek; Knudsen, Mads Faurschou

    –climate–erosion) hypothesis. Journal of Geodynamics 47(2), 72-95, 2009. Steer et al. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Na- ture Geoscience 5(9), 635-639, 2012. Egholm et al. The periglacial engine of mountain erosion – Part 2: Modelling large-scale landscape evolu- tion......Norway is famous for its deeply incised, steep-sided fjords, carved out by glacial erosion. The high relief of the fjords stands in contrast to the extensive areas of relatively low relief found between the fjords. The origin and development of these low-relief areas remain debated. The classical...... instead to a significant impact of glacial and periglacial erosion processes on the long-term development of the low-relief surfaces (Egholm et al. 2015). Here, we present a large new dataset of in-situ produced cosmogenic 10Be and 26Al in bedrock and boulders from the high, flat summit surfaces along...

  17. Climate change impact on the river runoff: regional study for the Central Asian Region

    International Nuclear Information System (INIS)

    Agaitseva, Natalya

    2004-01-01

    The water resources of the Aral Sea Basin are jointly used by the Central Asian states. The river flow is concentrated in the two largest transboundary rivers: the Amudarya and Syrdarya Rivers, which run down from the mountains to the plains, cross the deserts and flow into the Aral Sea. Uzbekistan is the major water consumer in the Aral Sea Basin. In accordance with interstate agreements, on average 43-52 km 2 of water per year as allotted for use by Uzbekistan from the boundary rivers. About 90% of river flow is formed beyond Uzbekistan boundaries. Under current conditions, water resource shortages in Uzbekistan, even a small but stable reduction of these resources presents a drastic problem. The degree of impact of possible climate changes on the regime of mountain rivers of the Central Asia can be evaluated by sufficiently reliable mathematical models of the runoff formation in mountains. The basic mathematical model describes a complete cycle of the runoff formation, reflecting the main factors and processes: precipitation, dynamics of a snow cover, evaporation, contribution of melting and rain water to the catchment, glacial runoff, runoff transformation and losses in basin. The model complex consists of the model Of snow cover formation in the mountains basin, model of glacial runoff and model of snow melt and rainfall water inflow transformation in runoff. Model calculations of snow reserves in the mountains under different climatic scenarios have demonstrated their gradual decrease due to growing aridity of the climate. Contribution of the snow is expected to decrease by 15-30%1 especially for rivers, which are snow-fed. At present, the annual glacial runoff of the rivers of the Syrdarya River basin amounts to 8-15%. Under different prognoses,,, increase in this flow of up to 20% is expected. Contribution of glacial runoff to the rivers of the Amudarya River basin might grow 32-39% under the most 'severe' climatic scenarios. During the cropping season, an

  18. Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model

    Directory of Open Access Journals (Sweden)

    V Palastanga

    2013-02-01

    Full Text Available Increased transfer of particulate matter from continental shelves to the open ocean during glacials may have had a major impact on the biogeochemistry of the ocean. Here, we assess the response of the coupled oceanic cycles of oxygen, carbon, phosphorus, and iron to the input of particulate organic carbon and reactive phosphorus from shelves. We use a biogeochemical ocean model and specifically focus on the Last Glacial Maximum (LGM. When compared to an interglacial reference run, our glacial scenario with shelf input shows major increases in ocean productivity and phosphorus burial, while mean deep-water oxygen concentrations decline. There is a downward expansion of the oxygen minimum zones (OMZs in the Atlantic and Indian Ocean, while the extension of the OMZ in the Pacific is slightly reduced. Oxygen concentrations below 2000 m also decline but bottom waters do not become anoxic. The model simulations show when shelf input of particulate organic matter and particulate reactive P is considered, low oxygen areas in the glacial ocean expand, but concentrations are not low enough to generate wide scale changes in sediment biogeochemistry and sedimentary phosphorus recycling. Increased reactive phosphorus burial in the open ocean during the LGM in the model is related to dust input, notably over the southwest Atlantic and northwest Pacific, whereas input of material from shelves explains higher burial fluxes in continental slope and rise regions. Our model results are in qualitative agreement with available data and reproduce the strong spatial differences in the response of phosphorus burial to glacial-interglacial change. Our model results also highlight the need for additional sediment core records from all ocean basins to allow further insight into changes in phosphorus, carbon and oxygen dynamics in the ocean on glacial-interglacial timescales.

  19. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    Science.gov (United States)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but

  20. Preliminary description of quaternary and late pliocene surficial deposits at Yucca Mountain and vicinity, Nye County, Nevada

    International Nuclear Information System (INIS)

    Hoover, D.L.

    1989-01-01

    The Yucca Mountain area, in the south-central part of the Great Basin, is in the drainage basin of the Amargosa River. The mountain consists of several fault blocks of volcanic rocks that are typical of the Basin and Range province. Yucca Mountain is dissected by steep-sided valleys of consequent drainage systems that are tributary on the east side to Fortymile Wash and on the west side to an unnamed wash that drains Crater Flat. Most of the major washes near Yucca Mountain are not integrated with the Amargosa River, but have distributary channels on the piedmont above the river. Landforms in the Yucca Mountain area include rock pediments, ballenas, alluvial pediments, alluvial fans, stream terraces, and playas. Early Holocene and older alluvial fan deposits have been smoothed by pedimentation. The semiconical shape of alluvial fans is apparent at the junction of tributaries with major washes and where washes cross fault and terrace scarps. Playas are present in the eastern and southern ends of the Amargosa Desert. 39 refs., 9 figs., 1 tab

  1. Study of human occupation impacts in the Batedor river basin in the Mantiqueira Mountain in the municipal district of Cruzeiro, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo dos Santos Targa

    2008-04-01

    Full Text Available The study of hydrographic basins as territorial units integrating the management of hydric resources is essential to guarantee sustainable use of natural resources in these basins. The establishment of the Paraíba do Sul hydrographic basins committee, in 1994, determined the need for management planning and action integration in the Paraíba do Sul basin which incorporates a variety of industries and intense land use. The Batedor river, in the municipality of Cruzeiro, SP, flows into the Passa Vinte which is an affluent of Paraíba do Sul river. Its mouth is located at 22°31’0.63”S and 45°01’2.07”W. Its farthest water contributing source lies about 8.5 km, near the Itaguaré peak 2,308 m high, in the Mantiqueira Mountain on the border of São Paulo and Minas Gerais States. To characterize land use in the Batedor hydrographic basin, Landsat imagery and topographic charts were analyzed based on remote sensing and geoprocessing techniques. This paper describes the study of impacts related to land and water resources use in the Batedor river basin and the generation of educational environmental material. Results have shown that this basin has good water supply, has no flooding risk and has several springs running down the Mantiqueira Moutain slopes that form young creeks with few meanders. Irregular human occupation for housing and subsistence agriculture, mainly banana plantations can be seen in deep slopes and riparian areas, as well as degraded pastures that indicate inappropriate land use and no conformance to pertinent legislation. The decrease in forest vegetation cover can cause severe erosion with significant soil loss and sediment deposition in the river, thus reducing water quality and quantity during the dry season. This basin is currently responsible for 70% of the Cruzeiro, SP water supply.

  2. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  3. The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China.

    Science.gov (United States)

    Lei, Fumin; Qu, Yanhua; Song, Gang; Alström, Per; Fjeldså, Jon

    2015-03-01

    Little has been published to describe or interpret Asian biodiversity hotspots, including those in the East Himalayan Mountains of Southwest China (HMSC), thus making necessary a review of the current knowledge. The Pliocene and Pleistocene geological and glacial histories of the Asian continent differ from those of Europe and North America, suggesting different mechanisms of speciation and extinction, and, thus, different responses to climate changes during the Quaternary glaciations. This short review summarizes potential drivers in shaping and maintaining high species richness and endemism of birds in the HMSC. The geographical location at the junction of different biogeographical realms, the wide range of habitats and climates along the extensive elevational range, the complex topography and the distinct geological history of this region have probably contributed to the evolution of an exceptionally species-rich and endemic-rich, specialized montane avian fauna. The Mountain systems in the HMSC may have provided refugia where species survived during the glacial periods and barriers for preventing species dispersal after the glacial periods. More studies are required to further test this refugia hypothesis by comparing more cold-tolerent and warm-tolerent species. © 2014 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  4. The "Geomorphologic Diagonal" of Central Europe - towards a new morphotectonic interpretation of macroforms in average mountains

    Science.gov (United States)

    Zoeller, Ludwig

    2016-04-01

    Modern methods of low temperature thermochronology are able to throw light on the geomorphological development of macrorelief landforms. A rarely investigated problem concerns the orientation and morphotectonic evolution of Central European uplands (low to mid-elevation mountain ranges). A conspicuous NW-SE striking boundary takes course through Germany from the Osning and Teutoburg Forest in the NW to the Bavarian Forest in the SE. I call this line the "geomorphological diagonal". East of this line, more or less NW-SE striking morphotectonic features (e.g., Harz Mountains, Sudety) dominate the macrorelief up to the eastern border of Central Europe (Thornquist-Teysseire Lineament), with the exception of the Ohre Rift and Central Bohemia. West of this line, the macrorelief is either characterized by NNE-SSW to N-S oriented structures (e.g., Upper Rhine Rift) and, to a lesser extent, by (S)SW-(E)NE mountain ranges (southern Rhenish Slate Mountains and Ore Mountains) or by no predominance at all. In the Lower Rhine Embayment and along the Middle Rhine River, (N)NW-(S)SE directed morphotectonic features influence the low mountain ranges. In several cases geologists have proven that NW-SE morphotectonic structures are related to the Upper Cretaceous (Santonian to Campanian) "basin inversion" (e.g., von Eynatten et al. 2008). A compilation of low temperature thermochronological data (AFT, [U-Th]/He) from Central Europe clearly supports strong crustal cooling during the Upper Cretaceous and lowermost Tertiary in morphotectonically protruded crustal blocks east of the geomorphological diagonal, whereas west of it the age data available so far exhibit a much larger scatter from Upper Paleozoic to Tertiary without clear evidence of an outstanding Upper Cretaceous crustal cooling event. Based on this data I hypothesize that east of the diagonal macroforms of uplifted denudation surfaces ("peneplains" or "etchplains") may be inherited from the Cretaceous whereas west of it

  5. An Integrated Processing Strategy for Mountain Glacier Motion Monitoring Based on SAR Images

    Science.gov (United States)

    Ruan, Z.; Yan, S.; Liu, G.; LV, M.

    2017-12-01

    Mountain glacier dynamic variables are important parameters in studies of environment and climate change in High Mountain Asia. Due to the increasing events of abnormal glacier-related hazards, research of monitoring glacier movements has attracted more interest during these years. Glacier velocities are sensitive and changing fast under complex conditions of high mountain regions, which implies that analysis of glacier dynamic changes requires comprehensive and frequent observations with relatively high accuracy. Synthetic aperture radar (SAR) has been successfully exploited to detect glacier motion in a number of previous studies, usually with pixel-tracking and interferometry methods. However, the traditional algorithms applied to mountain glacier regions are constrained by the complex terrain and diverse glacial motion types. Interferometry techniques are prone to fail in mountain glaciers because of their narrow size and the steep terrain, while pixel-tracking algorithm, which is more robust in high mountain areas, is subject to accuracy loss. In order to derive glacier velocities continually and efficiently, we propose a modified strategy to exploit SAR data information for mountain glaciers. In our approach, we integrate a set of algorithms for compensating non-glacial-motion-related signals which exist in the offset values retrieved by sub-pixel cross-correlation of SAR image pairs. We exploit modified elastic deformation model to remove the offsets associated with orbit and sensor attitude, and for the topographic residual offset we utilize a set of operations including DEM-assisted compensation algorithm and wavelet-based algorithm. At the last step of the flow, an integrated algorithm combining phase and intensity information of SAR images will be used to improve regional motion results failed in cross-correlation related processing. The proposed strategy is applied to the West Kunlun Mountain and Muztagh Ata region in western China using ALOS

  6. Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains

    Science.gov (United States)

    Nanus, L.; Williams, M.W.; Campbell, D.H.; Tonnessen, K.A.; Blett, T.; Clow, D.W.

    2009-01-01

    The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acid-neutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n = 244 lakes), Grand Teton National Park (n = 106 lakes), Great Sand Dunes National Park and Preserve (n = 11 lakes), Rocky Mountain National Park (n = 114 lakes), and Yellowstone National Park (n = 294 lakes). Lakes that had a high probability of having an ANC concentration 3000 m, with 80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world.

  7. Glacial Lake Outburst Flood Risk in the Poiqu/Bhote Koshi/Sun Koshi River Basin in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Narendra Raj Khanal

    2015-11-01

    Full Text Available The Himalayas have experienced several glacial lake outburst floods (GLOFs, and the risk of GLOFs is now increasing in the context of global warming. Poiqu watershed in the Tibet Autonomous Region, China, also known as the Bhote Koshi and Sun Koshi downstream in Nepal, has been identified as highly prone to GLOFs. This study explored the distribution of and changes in glacial lakes, past GLOFs and the resulting losses, risk from potential future GLOFs, and risk reduction initiatives within the watershed. A relationship was established between lake area and volume of lake water based on data from 33 lakes surveyed within the Hindu Kush Himalayan region, and the maximum possible discharge was estimated using this and other previously developed empirical equations. We recommend different strategies to reduce GLOF risk and highlight the need for a glacial lake monitoring and early-warning system. We also recommend strong regional cooperation, especially on issues related to transboundary rivers.

  8. Glacial-interglacial atmospheric CO2 change: a possible

    Directory of Open Access Journals (Sweden)

    L. C. Skinner

    2009-09-01

    Full Text Available So far, the exploration of possible mechanisms for glacial atmospheric CO2 drawdown and marine carbon sequestration has tended to focus on dynamic or kinetic processes (i.e. variable mixing-, equilibration- or export rates. Here an attempt is made to underline instead the possible importance of changes in the standing volumes of intra-oceanic carbon reservoirs (i.e. different water-masses in influencing the total marine carbon inventory. By way of illustration, a simple mechanism is proposed for enhancing the marine carbon inventory via an increase in the volume of relatively cold and carbon-enriched deep water, analogous to modern Lower Circumpolar Deep Water (LCDW, filling the ocean basins. A set of simple box-model experiments confirm the expectation that a deep sea dominated by an expanded LCDW-like watermass holds more CO2, without any pre-imposed changes in ocean overturning rate, biological export or ocean-atmosphere exchange. The magnitude of this "standing volume effect" (which operates by boosting the solubility- and biological pumps might be as large as the contributions that have previously been attributed to carbonate compensation, terrestrial biosphere reduction or ocean fertilisation for example. By providing a means of not only enhancing but also driving changes in the efficiency of the biological- and solubility pumps, this standing volume mechanism may help to reduce the amount of glacial-interglacial CO2 change that remains to be explained by other mechanisms that are difficult to assess in the geological archive, such as reduced mass transport or mixing rates in particular. This in turn could help narrow the search for forcing conditions capable of pushing the global carbon cycle between glacial and interglacial modes.

  9. Evidence for slow late-glacial ice retreat in the upper Rangitata Valley, South Island, New Zealand

    Science.gov (United States)

    Shulmeister, J.; Fink, D.; Winkler, S.; Thackray, G. D.; Borsellino, R.; Hemmingsen, M.; Rittenour, T. M.

    2018-04-01

    A suite of cosmogenic radionuclide ages taken from boulders on lateral and latero-terminal moraines in the Rangitata Valley, eastern South Island, New Zealand demonstrates that relatively thick ice occupied valley reaches inland of the Rangitata Gorge until c. 21 ka. Thereafter ice began to thin, and by c. 17 ka it had retreated 33 km up-valley of the Rangitata Gorge to the Butler-Brabazon Downs, a structurally created basin in the upper Rangitata Valley. Despite its magnitude, this retreat represents a minor ice volume reduction from 21 ka to 17 ka, and numerous lateral moraines preserved suggest a relatively gradual retreat over that 4 ka period. In contrast to records from adjacent valleys, there is no evidence for an ice-collapse at c. 18 ka. We argue that the Rangitata record constitutes a more direct record of glacial response to deglacial climate than other records where glacial dynamics were influenced by proglacial lake development, such as the Rakaia Valley to the North and the major valleys in the Mackenzie Basin to the south-west. Our data supports the concept of a gradual warming during the early deglaciation in the South Island New Zealand.

  10. A multi-proxy record of MIS 11-12 deglaciation and glacial MIS 12 instability from the Sulmona basin (central Italy)

    Science.gov (United States)

    Regattieri, Eleonora; Giaccio, Biagio; Galli, Paolo; Nomade, Sebastien; Peronace, Edoardo; Messina, Paolo; Sposato, Andrea; Boschi, Chiara; Gemelli, Maurizio

    2016-01-01

    A multi-proxy record (lithology, XRF, CaCO3 content, carbonate δ18O and δ13C) was acquired from a sediment core drilled in the intermountain Sulmona basin (central Italy). Tephrostratigraphic analyses of three volcanic ash layers ascribe the investigated succession to the MIS 12-MIS 11 period, spanning the interval ca. 500-410 ka. Litho-pedo facies assemblage indicates predominant lacustrine deposition, interrupted by a minor sub-aerial and lake low stand episode. Variations in major and minor elements concentrations are related to changes in the clastic input to the lake. The oxygen isotopic composition of carbonate (δ18Oc) intervals is interpreted mainly as a proxy for the amount of precipitation in the high-altitude catchment of the karst recharge system. The record shows pronounced hydrological variability at orbital and millennial time-scales, which appears closely related to the Northern Hemisphere summer insolation pattern and replicates North Atlantic and west Mediterranean Sea Surface Temperature (SST) fluctuations. The MIS 12 glacial inception is marked by an abrupt reduction of precipitation, lowering of the lake level and enhanced catchment erosion. A well-defined and isotopically prominent interstadial with increased precipitation maybe related to insolation maxima-precession minima at ca. 465 ka. This interstadial ends abruptly at ca. 457 ka and it is followed by a phase of strong short-term instability. Drastic lake-level lowering and enhanced clastic flux characterized the MIS 12 glacial maximum. Lacustrine deposition restarted about 440 ka ago. The MIS 12-MIS 11 transition is characterized by a rapid increase in the precipitation, lake-level rise and reduction in the clastic input, interrupted by a short and abrupt return to drier conditions. Comparison with marine records from the Iberian margin and western Mediterranean suggests that major events of ice rafted debris deposition, related to southward migrations of the polar front, match the

  11. Miocene block uplift and basin formation in the Patagonian foreland: The Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, A.; D'Elia, L.; Franzese, J. R.; Veiga, G. D.; Hernández, M.

    2013-08-01

    The intraplate fault-block mountains and intermontane deposits of the Gastre Basin, which are recorded more than 550 km east of the Andean trench in central Patagonia, Argentina, are analyzed. The Gastre Basin is one of the largest Patagonian intermontane basins, limited by uplifted blocks strongly oblique to the Andean chain. It was originated by reverse faulting and inversion of pre-existing normal faults associated with a Mesozoic rift basin and defined by older crustal heterogeneities. The deformational event occurred during the middle Miocene, related to a short contractional episode (16.1-14.86 Ma), probably in response to an eastward migration of the Andean fold and thrust belt. During Pliocene to Quaternary times, neither younger fault-block uplifts nor reconfigurations of the basin occurred. Similarities between the study area and other parts of the Patagonian foreland - such as the presence of Miocene reverse or inversion tectonics, as well as the accommodation of the Miocene sedimentary successions - suggest that the Gastre Basin is part of a major late early to middle Miocene broken foreland system (i.e. the Patagonian broken foreland) that exhumed discrete fault-block mountains and generated contemporary basins along more than 950 km parallel to the Andean trench (i.e. between 40°00' and 48°00' south latitude). Based on recent studies on the southern Andean Margin, this continental-scale contractional episode may be the result of a flat-slab subduction segment. Nevertheless, such a hypothesis is very difficult to support when analyzing such a large flat subduction segment along the entire Patagonian trench. This suggests the need to consider alternative flat-slab trigger mechanisms or other factors in the generation of broken foreland systems.

  12. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes

    Science.gov (United States)

    Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.

    2018-05-01

    Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.

  13. Contrasting neogene denudation histories of different structural regions in the transantarctic mountains rift flank constrained by cosmogenic isotope measurements

    NARCIS (Netherlands)

    Wateren, F.M. van der; Dunai, T.J.; Balen, R.T. van; Klas, W.; Verbers, A.L.L.M.; Passchier, S.; Herpers, U.

    1999-01-01

    Separate regions within the Transantarctic Mountains, the uplifted flank of the West Antarctic rift system, appear to have distinct Neogene histories of glaciation and valley downcutting. Incision of deep glacial outlet valleys occurred at different times throughout central and northern Victoria

  14. A simplified gis-based model for large wood recruitment and connectivity in mountain basins

    Science.gov (United States)

    Franceschi, Silvia; Antonello, Andrea; Vela, Ana Lucia; Cavalli, Marco; Crema, Stefano; Comiti, Francesco; Tonon, Giustino

    2015-04-01

    During the last 50 years in the Alps the decline of the rural and forest economy and at the depopulation of the mountain areas caused the progressive abandon of the land in general and in particular of the riparian zones and the consequent increment of the vegetation extension. On one hand the wood increases the availability of organic matter and has positive effects on mountain river systems. However, during flooding events large woods that reach the stream cause the clogging of bridges with an increase of flood hazard. The approach to the evaluation of the availability of large wood during flooding events is still a challenge. There are models that simulate the propagation of the logs downstream, but the evaluation of the trees that can reach the stream is still done using simplified GIS procedures. These procedures are the base for our research which will include LiDAR derived information on vegetation to evaluate large wood recruitment extreme events. Within the last Google Summer of Code (2014) we developed a set of tools to evaluate large wood recruitment and propagation along the channel network based on a simplified methodology for monitoring and modeling large wood recruitment and transport in mountain basins implemented by Lucía et 2014. These tools are integrated in the JGrassTools project as a dedicated section in the Hydro-Geomorphology library. The section LWRecruitment contains 10 simple modules that allow the user to start from very simple information related to geomorphology, flooding areas and vegetation cover and obtain a map of the most probable critical sections on the streams. The tools cover the two main aspects related to the iteration of large wood with the rivers: the recruitment mechanisms and the propagation downstream. While the propagation tool is very simple and does not consider the hydrodynamic of the problem, the recruitment algorithms are more specific and consider the influence of hillslopes stability and the flooding extension

  15. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs

  16. Repository site data report for unsaturated tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Tien, P.L.; Updegraff, C.D.; Siegel, M.D.; Wahi, K.K.; Guzowski, R.V.

    1985-11-01

    The US Department of Energy is currently considering the thick sequences of unsaturated, fractured tuff at Yucca Mountain, on the southwestern boundary of the Nevada Test Site, as a possible candidate host rock for a nuclear-waste repository. Yucca Mountain is in one of the most arid areas in the United States. The site is within the south-central part of the Great Basin section of the Basin and Range physiographic province and is located near a number of silicic calderas of Tertiary age. Although localized zones of seismic activity are common throughout the province, and faults are present at Yucca Mountain, the site itself is basically aseismic. No data are available on the composition of ground water in the unsaturated zone at Yucca Mountain. It has been suggested that the composition is bounded by the compositions of water from wells USW-H3, UE25p-1, J-13, and snow or rain. There are relatively few data available from Yucca Mountain on the moisture content and saturation, hydraulic conductivity, and characteristic curves of the unsaturated zone. The available literature on thermomechanical properties of tuff does not always distinguish between data from the saturated zone and data from the unsaturated zone. Geochemical, hydrologic, and thermomechanical data available on the unsaturated tuffs of Yucca Mountain are tabulated in this report. Where the data are very sparse, they have been supplemented by data from the saturated zone or from areas other than Yucca Mountain. 316 refs., 58 figs., 37 tabs.

  17. Comparing Terrestrial Organic Carbon Cycle Dynamics in Interglacial and Glacial Climates in the South American Tropics

    Science.gov (United States)

    Fornace, K. L.; Galy, V.; Hughen, K. A.

    2014-12-01

    The application of compound-specific radiocarbon dating to molecular biomarkers has allowed for tracking of specific organic carbon pools as they move through the environment, providing insight into complex processes within the global carbon cycle. Here we use this technique to investigate links between glacial-interglacial climate change and terrestrial organic carbon cycling in the catchments of Cariaco Basin and Lake Titicaca, two tropical South American sites with well-characterized climate histories since the last glacial period. By comparing radiocarbon ages of terrestrial biomarkers (leaf wax compounds) with deposition ages in late glacial and Holocene sediments, we are able to gauge the storage time of these compounds in the catchments in soils, floodplains, etc. before transport to marine or lacustrine sediments. We are also able to probe the effects of temperature and hydrologic change individually by taking advantage of opposite hydrologic trends at the two sites: while both were colder during the last glacial period, precipitation at Titicaca decreased from the last glacial period to the Holocene, but the late glacial was marked by drier conditions at Cariaco. Preliminary data from both sites show a wide range of apparent ages of long-chain n-fatty acids (within error of 0 to >10,000 years older than sediment), with the majority showing ages on the order of several millennia at time of deposition and age generally increasing with chain length. While late glacial leaf waxes appear to be older relative to sediment than those deposited in the Holocene at both sites, at Cariaco we find a ~2-3 times larger glacial-interglacial age difference than at Titicaca. We hypothesize that at Titicaca the competing influences of wetter and colder conditions during the last glacial period, which respectively tend to increase and decrease the rate of organic carbon turnover on land, served to minimize the contrast between glacial and interglacial leaf wax storage time

  18. Analysis of photo linear elements, Laramie Mountains, Wyoming

    Science.gov (United States)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  19. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    X. Fang

    2013-04-01

    Full Text Available One of the purposes of the Cold Regions Hydrological Modelling platform (CRHM is to diagnose inadequacies in the understanding of the hydrological cycle and its simulation. A physically based hydrological model including a full suite of snow and cold regions hydrology processes as well as warm season, hillslope and groundwater hydrology was developed in CRHM for application in the Marmot Creek Research Basin (~ 9.4 km2, located in the Front Ranges of the Canadian Rocky Mountains. Parameters were selected from digital elevation model, forest, soil, and geological maps, and from the results of many cold regions hydrology studies in the region and elsewhere. Non-calibrated simulations were conducted for six hydrological years during the period 2005–2011 and were compared with detailed field observations of several hydrological cycle components. The results showed good model performance for snow accumulation and snowmelt compared to the field observations for four seasons during the period 2007–2011, with a small bias and normalised root mean square difference (NRMSD ranging from 40 to 42% for the subalpine conifer forests and from 31 to 67% for the alpine tundra and treeline larch forest environments. Overestimation or underestimation of the peak SWE ranged from 1.6 to 29%. Simulations matched well with the observed unfrozen moisture fluctuation in the top soil layer at a lodgepole pine site during the period 2006–2011, with a NRMSD ranging from 17 to 39%, but with consistent overestimation of 7 to 34%. Evaluations of seasonal streamflow during the period 2006–2011 revealed that the model generally predicted well compared to observations at the basin scale, with a NRMSD of 60% and small model bias (1%, while at the sub-basin scale NRMSDs were larger, ranging from 72 to 76%, though overestimation or underestimation for the cumulative seasonal discharge was within 29%. Timing of discharge was better predicted at the Marmot Creek basin outlet

  20. Dataset of Phenology of Mediterranean high-mountain meadows flora (Sierra Nevada, Spain)

    OpenAIRE

    Antonio Jesús Pérez-Luque; Cristina Patricia Sánchez-Rojas; Regino Zamora; Ramón Pérez-Pérez; Francisco Javier Bonet

    2015-01-01

    Abstract Sierra Nevada mountain range (southern Spain) hosts a high number of endemic plant species, being one of the most important biodiversity hotspots in the Mediterranean basin. The high-mountain meadow ecosystems (borreguiles) harbour a large number of endemic and threatened plant species. In this data paper, we describe a dataset of the flora inhabiting this threatened ecosystem in this Mediterranean mountain. The dataset includes occurrence data for flora collected in those ecosystems...

  1. Partitioning of the water budget in the main river basins in High Mountain Asia with GRACE, model output, and other observations.

    Science.gov (United States)

    Velicogna, I.; Ciraci, E.; Grogan, D. S.; Lammers, R. B.

    2017-12-01

    Access to freshwater is important as world populations grow, especially in High Mountain Asia, where glaciers are a significant component of the freshwater resources, particularly in summer. Glaciers are sensitive to climate perturbations and affected by climate change. Our understanding of the contribution of glacier runoff to specific watersheds, and projections of glacier runoff in a warming climate, are critical to inform decisions, management and policy development. Here, we quantify changes in glacier mass balance in HMA using GRACE data and determine their contribution to river basin hydrology. We use GRACE data to estimate the HMA glacier mass mas balance and compare the results with changes in total water storage (TWS) for the major watersheds in the HMA regions. We designed ad-hoc mascon configurations to calculate the upstream glacier change in mass balance and contribution to major river basins water supply, determined appropriate corrections and uncertainties for the signal and evaluated the results via comparison with the Water Balance Model (WBM) output and other data (re-analysis data and satellite-derived precipitation and evapotranspiration). Most of the glacier loss is from the Himalaya region (Himalaya, Hengduan Shan S and E Tibet), whereas the western sectors (E and W Tien Shan; and Hindu Kush, Karakoram, W Kunlun, Pamir, Hissar Alay) experienced smaller losses but with larger interannual variability driven by changes in the westerly-driven winter precipitation. For the Indus basin, to evaluate the glacier contribution to the total water budget, we examine the contribution of the upper basin to the lower basin TWS change. Over the Upper Indus basin, we find that the seasonal decline in total water storage between May and September averages 88 Gt during 2002-2012. TRMM cumulative precipitation amounts to 119 Gt, leaving a runoff and evapotranspiration component of 207 Gt. This estimate compares well with an estimate for the WBM modeled runoff of

  2. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina

    Science.gov (United States)

    Hoke, Gregory D.; Giambiagi, Laura B.; Garzione, Carmala N.; Mahoney, J. Brian; Strecker, Manfred R.

    2014-11-01

    The topographic growth of mountain ranges at convergent margins results from the complex interaction between the motion of lithospheric plates, crustal shortening, rock uplift and exhumation. Constraints on the timing and magnitude of elevation change gleaned from isotopic archives preserved in sedimentary sequences provide insight into how these processes interact over different timescales to create topography and potentially decipher the impact of topography on atmospheric circulation and superposed exhumation. This study uses stable isotope data from pedogenic carbonates collected from seven different stratigraphic sections spanning different tectonic and topographic positions in the range today, to examine the middle to late Miocene history of elevation change in the central Andes thrust belt, which is located immediately to the south of the Altiplano-Puna Plateau, the world's second largest orogenic plateau. Paleoelevations are calculated using previously published local isotope-elevation gradients observed in modern rainfall and carbonate-formation temperatures determined from clumped isotope studies in modern soils. Calculated Neogene basin paleoelevations are between 1 km and 1.9 km for basins that today are located between 1500 and 3400 m elevation. Considering the modern elevation and δ18O values of precipitation at the sampling sites, three of the intermontane basins experienced surface uplift between the end of deposition during the late Miocene and present. The timing of elevation change cannot be linked to any documented episodes of large-magnitude crustal shortening. Paradoxically, the maximum inferred surface uplift in the core of the range is greatest where the crust is thinnest. The spatial pattern of surface uplift is best explained by eastward migration of a crustal root via ductile deformation in the lower crust and is not related to flat-slab subduction.

  3. Late Quaternary glaciation history of monsoon-dominated Dingad basin, central Himalaya, India

    Science.gov (United States)

    Shukla, Tanuj; Mehta, Manish; Jaiswal, Manoj K.; Srivastava, Pradeep; Dobhal, D. P.; Nainwal, H. C.; Singh, Atul K.

    2018-02-01

    The study presents the Late Quaternary glaciation history of monsoon-dominated Dokriani Glacier valley, Dingad basin, central Himalaya, India. The basin is tested for the mechanism of landforms preservation in high relief and abundant precipitation regimes of the Higher Himalaya. Field geomorphology and remote sensing data, supported by Optical Stimulated Luminescence (OSL) dating enabled identification of five major glacial events of decreasing magnitude. The oldest glacial stage, Dokriani Glacial Stage I (DGS-I), extended down to ∼8 km (2883 m asl) from present-day snout (3965 m asl) followed by other four glaciations events viz. DGS-II, DGS-III, DGS-IV and DGS-V terminating at ∼3211, 3445, 3648 and ∼3733 m asl respectively. The DGS-I glaciation (∼25-∼22 ka BP) occurred during early Marine Isotope Stage (MIS) -2, characterized as Last Glacial Maximum (LGM) extension of the valley. Similarly, DGS-II stage (∼14-∼11 ka BP) represents the global cool and dry Older Dryas and Younger Dryas event glaciation. The DGS-III glaciation (∼8 ka BP) coincides with early Holocene 8.2 ka cooling event, the DGS-IV glaciations (∼4-3.7 ka BP) corresponds to 4.2 ka cool and drier event, DGS-V (∼2.7-∼1 ka BP) represents the cool and moist late Holocene glacial advancement of the valley. This study suggests that the Dokriani Glacier valley responded to the global lowering of temperature and variable precipitation conditions. This study also highlights the close correlation between the monsoon-dominated valley glaciations and Northern Hemisphere cooling events influenced by North Atlantic climate.

  4. Hydrochemical simulation of a mountain basin under hydrological variability

    Science.gov (United States)

    Montserrat, S.; Trewhela, T. A.; Navarro, L.; Navarrete, A.; Lagos Zuniga, M. A.; Garcia, A.; Caraballo, M.; Niño, Y.; McPhee, J. P.

    2016-12-01

    Water quality and the comprehension of hydrochemical phenomena in natural basins should be of complete relevance under hydrological uncertainties. The importance of identifying the main variables that are controlling a natural system and finding a way to predict their behavior under variable scenarios is mandatory to preserve these natural basins. This work presents an interdisciplinary model for the Yerba Loca watershed, a natural reserve basin in the Chilean central Andes. Based on different data sets, provided by public and private campaigns, a natural hydrochemical regime was identified. Yerba Loca is a natural reserve, characterized by the presence of several glaciers and wide sediment deposits crossed by a small low-slope creek in the upper part of the basin that leads to a high-slope narrow channel with less sediment depositions. Most relevant is the geological context around the glaciers, considering that most of them cover hydrothermal zones rich in both sulfides and sulfates, a situation commonly found in the Andes due to volcanic activity. Low pH (around 3), calcium-sulfate water with high concentrations of Iron, Copper and Zinc are found in the upper part of the basin in summer. These values can be attributed to the glaciers melting down and draining of the mentioned country rocks, which provide most of the creek flow in the upper basin. The latter clearly contrasts with the creek outlet, located 18 km downstream, showing near to neutral pH values and lower concentrations of the elements already mentioned. The scope of the present research is to account for the sources of the different hydrological inlets (e.g., rainfall, snow and/or glacier melting) that, depending on their location, may interact with a variety of reactive minerals and generate acid rock drainage (ARD). The inlet water is modeled along the creek using the softwares HEC-RAS and PHREEQC coupled, in order to characterize the water quality and to detect preferred sedimentation sections

  5. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    Science.gov (United States)

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  6. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    Science.gov (United States)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  7. Late- and post-glacial vegetation dynamics in Western Rhodopes (Bulgaria) based on pollen analysis and radiocarbon dating

    International Nuclear Information System (INIS)

    Filipovitch, L.; Lazarova, M.

    2002-01-01

    This study offers a reconstruction of Quaternary vegetation in the region of Shiroka Polyana (Western Rhodopes mountains) on the basis of pollen analysis and 14 C dating. It helps to trace out the trends in vegetation dynamics. The palaeosuccession cycle providing valuable floristic and coenotic information about the Late Glacial (13000 BP) and the entire Holocene throughout several major stages is recreated: grassy communities, thermophilus deciduous forests, fir-hornbeam-beech forests, spruce-pine forests, pine-spruce forests. (authors)

  8. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  9. Quaternary tectonics of recent basins in northwestern Armenia

    Science.gov (United States)

    Trifonov, V. G.; Shalaeva, E. A.; Saakyan, L. Kh.; Bachmanov, D. M.; Lebedev, V. A.; Trikhunkov, Ya. I.; Simakova, A. N.; Avagyan, A. V.; Tesakov, A. S.; Frolov, P. D.; Lyubin, V. P.; Belyaeva, E. V.; Latyshev, A. V.; Ozherelyev, D. V.; Kolesnichenko, A. A.

    2017-09-01

    New data on the stratigraphy, faults, and formation history of lower to middle Pleistocene rocks in Late Cenozoic basins of northwestern Armenia are presented. It has been established that the low-mountain topography created by tectonic movements and volcanic activity existed in the region by the onset of the Pleistocene. The manifestations of two geodynamic structure-forming factors became clear in Pleistocene: (i) collisional interaction of plates due to near-meridional compression and (ii) deep tectogenesis and magma formation expressed in the distribution of vertical movements and volcanism. The general uplift of the territory, which was also related to deep processes, reached 350-500 m in basins and 600-800 m in mountain ranges over the last 0.5 Ma. The early Pleistocene ( 1.8 Ma) low- and medium-mountain topography has been reconstructed by subtraction of the latest deformations and uplift of the territory. Ancient human ancestry appeared at that time.

  10. A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics

    Science.gov (United States)

    Zhang, Yongqian; Teng, Jiwen; Wang, Qianshen; Lü, Qingtian; Si, Xiang; Xu, Tao; Badal, José; Yan, Jiayong; Hao, Zhaobing

    2017-10-01

    In order to investigate the structure of the crust beneath the Middle Qinling Mountains (MQL) and neighboring areas in the North China Block and South China Block, a north-south gravity profile from Yuquan in the Sichuan Basin to Yulin in the Ordos Basin was conducted in 2011. The Bouguer gravity anomaly is determined from a high-quality gravity dataset collected between 31°N and 36°N of latitude, and varies between -200 and -110 mGal in the study region. Using accredited velocity density relationships, an initial crust-mantle density model is constructed for MQL and adjacent areas, which is later refined interactively to simulate the observed gravity anomaly. The present study reveals the features of the density and Bouguer gravity with respect to the tectonic units sampled by the profile. The lithosphere density model shows typical density values that depict a layered structure and allow differentiate the blocks that extend along the reference profile. The gravity field calculated by forward modeling from the final density distribution model correlates well with the measured gravity field within a standard deviation of 1.26 mGal. The density in the crystalline crust increases with depth from 2.65 g/cm3 up to the highest value of 2.95 g/cm3 near the bottom of the crust. The Conrad interface is identified as a density jump of about 0.05 g/cm3. The average density of the crust in MQL is clearly lower than the density in the formations on both sides. Starting from a combined Airy-Pratt isostatic compensation model, a partly compensated crust is found below MQL, suggesting future growth of the crust, unlike the Ordos and Sichuan basins that will remain stable. On the basis of the density and isostatic state of the crust and additional seismological research, such as the P-wave velocity model and Poisson's ratio, it is concluded that the lower crust delamination is a reasonable interpretation for the geophysical characteristics below the Qinling Orogen.

  11. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground

  12. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery

    Directory of Open Access Journals (Sweden)

    T. Bolch

    2008-12-01

    Full Text Available Failures of glacial lake dams can cause outburst floods and represents a serious hazard. The potential danger of outburst floods depends on various factors like the lake's area and volume, glacier change, morphometry of the glacier and its surrounding moraines and valley, and glacier velocity. Remote sensing offers an efficient tool for displacement calculations and risk assessment of the identification of potentially dangerous glacial lakes (PDGLs and is especially helpful for remote mountainous areas. Not all important parameters can, however, be obtained using spaceborne imagery. Additional interpretation by an expert is required. ASTER data has a suitable accuracy to calculate surface velocity. Ikonos data offers more detail but requires more effort for rectification. All investigated debris-covered glacier tongues show areas with no or very slow movement rates. From 1962 to 2003 the number and area of glacial lakes increased, dominated by the occurrence and almost linear areal expansion of the moraine-dammed lakes, like the Imja Lake. Although the Imja Lake will probably still grow in the near future, the risk of an outburst flood (GLOF is considered not higher than for other glacial lakes in the area. Potentially dangerous lakes and areas of lake development are identified. There is a high probability of further lake development at Khumbu Glacier, but a low one at Lhotse Glacier.

  13. Gigantic landslides versus glacial deposits: on origin of large hummock deposits in Alai Valley, Northern Pamir

    Science.gov (United States)

    Reznichenko, Natalya

    2015-04-01

    As glaciers are sensitive to local climate, their moraines position and ages are used to infer past climates and glacier dynamics. These chronologies are only valid if all dated moraines are formed as the result of climatically driven advance and subsequent retreat. Hence, any accurate palaeoenvironmental reconstruction requires thorough identification of the landform genesis by complex approach including geomorphological, sedimentological and structural landform investigation. Here are presented the implication of such approach for the reconstruction of the mega-hummocky deposits formation both of glacial and landslide origin in the glaciated Alai Valley of the Northern Pamir with further discussion on these and similar deposits validity for palaeoclimatic reconstructions. The Tibetan Plateau valleys are the largest glaciated regions beyond the ice sheets with high potential to provide the best geological record of glacial chronologies and, however, with higher probabilities of the numerous rock avalanche deposits including those that were initially considered of glacial origin (Hewitt, 1999). The Alai Valley is the largest intermountain depression in the upper reaches of the Amudarja River basin that has captured numerous unidentified extensive hummocky deposits descending from the Zaalai Range of Northern Pamir, covering area in more than 800 km2. Such vast hummocky deposits are usually could be formed either: 1) glacially by rapid glacial retreat due to the climate signal or triggered a-climatically glacial changes, such as glacial surge or landslide impact, or 2) during the landslide emplacement. Combination of sediment tests on agglomerates forming only in rock avalanche material (Reznichenko et al., 2012) and detailed geomorphological and sedimentological descriptions of these deposits allowed reconstructing the glacial deposition in the Koman and Lenin glacial catchments with identification of two gigantic rock avalanches and their relation to this glacial

  14. Barbus meridionalis Risso, 1827 populations status in the Vişeu River basin (Maramureş Mountains Nature Park

    Directory of Open Access Journals (Sweden)

    Bănăduc Doru

    2017-06-01

    Full Text Available The ecological state of lotic ecosystems occupied naturally by Barbus meridionalis, in the Vişeu Basin within the Maramureş Mountains Natural Park, vary among good to reduced. The inventoried human activities which negatively influence the ecologic state of the Barbus meridionalis species habitats and populations are the organic and mining pollution, and poaching. The habitats with low and inadequate conditions created a reduced status of the Barbus meridionalis populations; the status of Barbus meridionalis populations is not so much affected in the cases of habitats of average to good condition. Barbus meridionalis is considered a relatively common fish species in the researched watershed despite the fact that its populations ecological status has decreased from 2007-2015, but the restoration potential in the area for improving this species status is high.

  15. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    Science.gov (United States)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  16. Geologic map of the Ute Mountain 7.5' quadrangle, Taos County, New Mexico, and Conejos and Costilla Counties, Colorado

    Science.gov (United States)

    Thompson, Ren A.; Turner, Kenzie J.; Shroba, Ralph R.; Cosca, Michael A.; Ruleman, Chester A.; Lee, John P.; Brandt, Theodore R.

    2014-01-01

    The Ute Mountain 7.5' quadrangle is located in the south-central part of the San Luis Basin of northern New Mexico, in the Rio Grande del Norte National Monument, and contains deposits that record volcanic, tectonic, and associated alluvial and colluvial processes over the past four million years. Ute Mountain has the distinction of being one of the largest intermediate composition eruptive centers of the Taos Plateau, a largely volcanic tableland occupying the southern portion of the San Luis Basin. Ute Mountain rises to an elevation in excess of 3,000 m, nearly 700 m above the basaltic plateau at its base, and is characterized by three distinct phases of Pliocene eruptive activity recorded in the stratigraphy exposed on the flanks of the mountain and in the Rio Grande gorge. Unconformably overlain by largely flat-lying lava flows of Servilleta Basalt, the area surrounding Ute Mountain records a westward thickening of basin-fill volcanic deposits interstratified in the subsurface with Pliocene basin-fill sedimentary deposits derived from older Tertiary and Precambrian sources to the east. Superimposed on this volcanic stratigraphy are alluvial and colluvial deposits derived from the flanks of Ute Mountain and more distally-derived alluvium from the uplifted Sangre de Cristo Mountains to the east, that record a complex temporal and stratigraphic succession of Quaternary basin deposition and erosion. Pliocene and younger basin deposition was accommodated along predominantly north-trending fault-bounded grabens. These poorly exposed fault scarps cutting lava flows of Ute Mountain volcano. The Servilleta Basalt and younger surficial deposits record largely down-to-east basinward displacement. Faults are identified with varying confidence levels in the map area. Recognizing and mapping faults developed near the surface in young, brittle volcanic rocks is difficult because: (1) they tend to form fractured zones tens of meters wide rather than discrete fault planes, (2

  17. Rapid middle Miocene extension and unroofing of the southern Ruby Mountains, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Howard, Keith A.; Fleck, Robert J.; Wooden, Joseph L.

    2010-01-01

    Paleozoic rocks in the northern Ruby Mountains were metamorphosed during Mesozoic crustal shortening and Cenozoic magmatism, but equivalent strata in the southern Ruby Mountains were never buried deeper than stratigraphic depths prior to exhumation in the footwall of a west dipping brittle normal fault. In the southern Ruby Mountains, Miocene sedimentary rocks in the hanging wall of this fault date from 15.2 to 11.6 Ma and contain abundant detritus from the Paleozoic section. Apatite fission track and (U-Th)/He samples of the Eocene Harrison Pass pluton record rapid cooling that peaked ca. 17–15 Ma, while apatite fission track data from Jurassic plutons east and west of the southern Ruby Mountains indicate near-surface temperatures (pluton to be partially reset rather than to directly record fault slip. Our new data, together with published data on the distribution and composition of Miocene basin fill, suggest that rapid middle Miocene slip took place on the west dipping brittle detachment that bounds the Ruby Mountains and East Humboldt Range for 150 km along strike. This fault was thus active during a period of rapid extension (ca. 17–15 to 12–10 Ma) documented widely across the northern Basin and Range Province.

  18. Oligocene paleogeography of the northern Great Plains and adjacent mountains

    International Nuclear Information System (INIS)

    Seeland, D.

    1985-01-01

    Early Oligocene paleogeography of the northern Great Plains and adjacent mountains is inferred in part from published surface and subsurface studies of the pre-Oligocene surface. These studies are combined with published and unpublished information on clast provenance, crossbedding orientation, and Eocene paleogeography. The Oligocene Arctic Ocean-Gulf of Mexico continental divide extended from the southern Absaroka Mountains east along the Owl Creek Mountains, across the southern Powder River Basin, through the northern Black Hills, and eastward across South Dakota. Streams north of the divide flowed northeastward. The Olligocene White River Group contains 50 to 90 percent airfall pyroclastic debris from a northern Great Basin source. Most of the uranium deposits of the region in pre-Oligocene rocks can be related to a uranium source in the volcanic ash of the White River; in many places the pre-Oligocene deposits can be related to specific Oligocene channels. Uranium deposits in sandstones of major Oligocene rivers are an important new type of deposit. The Oligocene channel sandstones also contain small quantities of gold, molybdenum, gas, and oil

  19. Late Proterozoic glacially controlled shelf sequences in western Mali (west Africa)

    Science.gov (United States)

    Deynoux, M.; Prousti, J. N.; Simon, B.

    The Late Proterozoic deposits of the Bakoye Group (500 m) in western Mali constitute a remarkable example of a glacially influenced sedimentary record on an epicratonic platform. They are composed of alternating marine and continental formations which represent accumulation in a basin located in the vicinity of upland areas covered by ice sheets. One of these formations (the Ba4 Formation), which is the focus of this study, is composed of three major units. The basal Unit 1 is made up of carbonaceous coarse to fine grained sandstones which are organized in fining upward sequences and which comprise lenticular diamictite intercalations. This Unit is considered to represent the fore slope gravity flows of a subaqueous ice-cootact fan fed by meltwater streams (≪glacioturbidites≫). Unit 2 is made up of coarse to fine grained sandstones in a highly variable association of facies. This Unit is characterized by the abundance of wave ripples associated with convolute beddings. planar or wavy beddings and tabular or hummocky crossbeddings in a general shallowing upward trend. It also comprises evidence of gravity processes including debris flows and large slumped sandstone bodies. Unit 2 represents the progressive filling of the Ba4 basin and reflects the combined effect of glacially induced eustatism and isostacy during a phase of glacial retreat. The basal part of Unit 3 is made up of a succession (a few meters thick) of conglomerates, diamictites, sandstones, siltstones or carbonates lying on an erosional unconformity marked by periglacial frost wedges. The upper part of Unit 3 is thicker (100-150 m) and onlaps on these basal facies with a succession of sandstone bars exhibiting swaley and hummocky crossbeddings, large cut and fill structures, and planar laminations. Unit 3 is strongly transgressive, the lower shoreface and backshore deposits include algal mats and are onlapped by sand ridges emplaced in a high energy upper to middle shoreface environment. Overall

  20. Fog water collection and reforestation at mountain locations in a western Mediterranean basin region

    Science.gov (United States)

    Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.

    2010-07-01

    Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds

  1. Diachronous seawater retreat from the southwestern margin of the Tarim Basin in the late Eocene

    NARCIS (Netherlands)

    Sun, Jimin; Windley, Brian F.; Zhang, Zhiliang; Fu, Bihong; Li, Shihu|info:eu-repo/dai/nl/411296248

    In contrast to the present hyper-arid inland basin surrounded by the high mountains of Central Asia, the western Tarim Basin was once connected with the Tajik Basin at least in the late Eocene, when an epicontinental sea extended from the western Tarim Basin to Europe. Western Tarim is a key site

  2. A continuous record of glacial-interglacial cycles spanning more than 500 kyr from Lake Junín, Perú

    Science.gov (United States)

    Rodbell, D. T.; Abbott, M. B.; McGee, D.; Chen, C. Y.; Stoner, J. S.; Hatfield, R. G.; Tapia, P. M.; Bush, M. B.; Weidhaas, N.; Woods, A.; Valero-Garces, B. L.; Lehmann, S. B.; Bustamante, M. G.; Larsen, D. J.

    2017-12-01

    Lake Junín (11.0°S, 76.2°W) is a shallow (zmax 12 m), intermontane, high-elevation (4080 masl) lake in the inner-tropics of the Southern Hemisphere that spans 300 km2. It is dammed by coalescing alluvial fans that are >250 ka that emanate from glacial valleys. Lake Junín has not been overrun by glacial ice in several hundred thousand years and is ideally located to receive glacigenic sediment. The Junín basin is underlain by carbonate rocks that have provided a source of Ca and HCO3 ions; precipitation of CaCO3 in the western margin of the lake during the present interglacial period has occurred at 1mm yr-1. An airgun seismic survey revealed a strong reflector at 105 meters depth, which marks the base of the lacustrine section. Drilling focused on three sites. Site 1, located near the depocenter and most distal to glacial sources, yielded a composite sediment thickness of 95m; Site 2, proximal to glacial outwash fans, yielded a composite thickness of 28 m; Site 3, located at an intermediate distance yielded a sediment thickness of 55m. The stratigraphy of Site 1 is marked by 8 glacial/interglacial cycles; the latter are characterized by low bulk density and magnetic susceptibility (MS) and high CaCO3. These units are intercalated with glacigenic sediment that has high density and MS, and low CaCO3. The age model for Site 1 is based on AMS radiocarbon dates on terrestrial macrofossils and dozens of U/Th ages on authigenic CaCO3. Strong and protracted interglacial periods appear to be associated with intervals of reduced variability of solar insolation in the Southern Hemisphere tropics. During these intervals there is strong covariation (r2>0.9) between the δ13C and δ18O of authigenic calcium carbonate, and δ18O values are relatively enriched (-12 to -2‰); examples include interglacial periods correlative with marine isotope stages (MIS) 1, 13, and 15. The magnitude of tropical glaciation appears to have been greater during glacial cycles prior to the LGM

  3. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    Science.gov (United States)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  4. Water resources in the Blackstone River basin, Massachusetts

    Science.gov (United States)

    Walker, Eugene H.; Krejmas, Bruce E.

    1983-01-01

    The Blackstone River heads in brooks 6 miles northwest of Worcester and drains about 330 square miles of central Massachusetts before crossing into Rhode Island at Woonsocket. The primary source of the Worcester water supply is reservoirs, but for the remaining 23 communities in the basin, the primary source is wells. Bedrock consists of granitic and metamorphic rocks. Till mantles the uplands and extends beneath stratified drift in the valleys. Stratified glacial drift, consisting of clay, silt, and fine sand deposited in lakes and coarse-textured sand and gravel deposited by streams, is found in lowlands and valleys. The bedrock aquifer is capable of sustaining rural domestic supplies throughout the Blackstone River basin. Bedrock wells yield an average of 10 gallons per minute, but some wells, especially those in lowlands where bedrock probably contains more fractures and receives more recharge than in the upland areas, yield as much as 100 gallons per minute. Glacial sand and gravel is the principal aquifer. It is capable of sustaining municipal supplies. Average daily pumpage from this aquifer in the Blackstone River basin was 10.4 million gallons per day in 1978. The median yield of large-diameter wells in the aquifer is 325 gallons per minute. The range of yields from these wells is 45 to 3,300 gallons per minute. The median specific capacity is about 30 gallons per minute per foot of drawdown.

  5. Neotectonic Studies of the Lake Ohrid Basin (FYROM/Albania)

    Science.gov (United States)

    Nadine, H.; Liermann, A.; Glasmacher, U. A.; Reicherter, K. R.

    2010-12-01

    The Lake Ohrid Basin located on 693 m a.s.l. at the south-western border of Macedonia (FYROM) with Albania is a suitable location for neotectonic studies. The lake is set in an extensional basin-and-range-like situation, which is influenced by the roll-back and detachment of the subducted slab of the Northern Hellenic Trench. The seismicity record of the area lists frequent shallow earthquakes with magnitudes of up to 6.6, which classifies the region as one of the highest risk areas for Macedonia and Albania. A multidisciplinary approach was chosen to reveal the stress history of the region. Tectonic morphology, paleostress analysis, remote sensing and geophysical investigations have been taken out to trace the landscape evolution. Furthermore, apatite fission-track (A-FT) analysis and t-T-path modelling was performed to constrain the thermal history and the exhumation rates. The deformation history of the basin can be divided in three major phases. This idea is also supported by paleostress data collected around the lake: 1. NW-SE shortening from Late Cretaceous to Miocene with compression, thrusting and uplift; 2. Uplift and diminishing compression in Late Miocene causing strike-slip and normal faulting; 3. Vertical uplift and E-W extension from Pliocene to present associated with local subsidence and (half-) graben formation. The initiation of the Ohrid Basin can be dated to Late Miocene to Pliocene. The morphology of the basin itself shows features, which characterize the area as an active seismogenic landscape. The elongated NS-trending basin is limited by the steep flanks of Galicica and Mokra Mountains to the E and W, which are tectonically controlled by normal faulting. This is expressed in linear step-like fault scarps on land with heights between 2 and 35 m. The faults have lengths between 10 and 20 km and consist of several segments. Post-glacial bedrock fault scarps at Lake Ohrid are long-lived expressions of repeated surface faulting in tectonically

  6. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  7. Andean glacial lakes and climate variability since the last glacial maximum

    Directory of Open Access Journals (Sweden)

    1995-01-01

    Full Text Available LES LACS GLACIAIRES ET LA VARIABILITÉ CLIMATIQUE DANS LES ANDES DEPUIS LE DERNIER MAXIMUM GLACIAIRE. Des carottages réalisés dans des lacs glaciaires des Andes tropicales et subtropicales ont fourni des registres paléoclimatiques continus couvrant le Dernier Maximum Glaciaire et l’Holocène. Des datations 14C sur sédiments lacustres et sur tourbes indiquent que le maximum de la dernière glaciation s’est produit antérieurement au Dernier Maximum Glaciaire Global (18 ka BP. La plupart des lacs ont un âge inférieur à 13 ka BP, ce qui signifie que l’avancée des glaciers correspondant au Pleistocène terminal aurait culminé aux alentours de 14 ka BP. Des avancées durant le Tardi-glaciaire sont enregistrées dans plusieurs sites lacustres. À partir de 10 ka BP, les glaciers ont reculé au-delà de leurs limites actuelles. La sécheresse de l’Holocène moyen est repérée dans la stratigraphie de nombre de lacs, y compris le lac Titicaca. Cette phase d’aridité est suivie par une remontée des niveaux lacustres et une réavancée des glaciers à la fin de l’Holocène. LAGOS GLACIARES ANDINOS Y VARIABILIDAD CLIMÁTICA DESDE EL ÚLTIMO MÁXIMO GLACIAL. Testigos de sedimentos de los lagos glaciares en los Andes tropicales/subtropicales proporcionan registros continuos de los paleoclimas del último glacial superior y del Holoceno. Dataciones del radiocarbón de los sedimentos profundos en los lagos y de las turberas indican que el máximo del último glacial fue antes del máximo glacial global con una fecha de 18 14C ka BP. La mayoría de los lagos tienen una antigüedad menor de 13 14C ka BP, lo que significa que hubo una fase de glaciación del Pleistoceno superior culminada alrededor de 14 14C ka BP. Los avances durante el glacial superior son indicados en varios testigos de sedimentos de los lagos y, después de 10 14C ka BP, los glaciares quedaron dentro de sus límites actuales. Una sequía durante el Holoceno medio est

  8. New exposure ages for the Last Glacial Cycle in the Sanabria Lake region (northwestern Spain)

    Science.gov (United States)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María Jose; Rinterknecht, Vincent; Pallàs, Raimon; Braucher, Régis; Bourlès, Didier; Valero-Garcés, Blas

    2013-04-01

    The Sanabria Lake region is located in the Trevinca Massif, a mid-latitude mountain area up to 2128 m asl in the northwest corner of the Iberian Peninsula (42oN 6oW). An ice cap glaciation took place during the Last Glacial Cycle in this massif, with an equilibrium line altitude of 1687 m for the Tera glacial outlet at its local maximum (Cowton et al., 2009). A well preserved glacial sequence occurs on an area of 45 km2 around the present Sanabria Lake (1000 m asl) and is composed by lateral and end moraines in close relationship with glaciolacustrine deposits. This sequence shows the ice snout oscillations of the former Tera glacier during the Last Glacial Cycle and offers a good opportunity to compare radiocarbon and OSL- based chronological models with new cosmogenic isotope dates. The new dataset of 10Be exposure ages presented here for the Sanabria Lake moraines is based on measurements conducted on 23 boulders and is compared with previous radiocarbon and OSL data conducted on ice related deposits (Pérez-Alberti et al., 2011; Rodríguez-Rodríguez et al., 2011). Our results are coherent with the available deglaciation radiocarbon chronology, and support a last deglaciation origin for the whole set of end moraines that are downstream the Sanabria Lake (19.2 - 15.7 10Be ka). Discrepancies between results of the different dating methods concern the timing of the local glacial maximum, with the cosmogenic exposure method always yielding the youngest minimum ages. As proposed to explain similar observations made elsewhere (Palacios et al., 2012), reconciling the ages from different dating methods would imply the occurrence of two glacial advances close enough in extent to generate an overlapping polygenic moraine. Cowton, T., Hughes, P.D., Gibbard, P.L., 2009. Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108, 282-291. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rico, M.T., Valero-Garcés, B

  9. Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95

    Science.gov (United States)

    Cowdery, T.K.

    1998-01-01

    Surveys of water quality in surficial, buried glacial, and Cretaceous aquifers in the Red River of the North Basin during 1991-95 showed that some major-ion, nutrient, pesticide, and radioactive-element concentrations differed by physiographic area and differed among these aquifer types. Waters in surficial aquifers in the Drift Prairie (west) and Lake Plain (central) physiographic areas were similar to each other but significantly higher than those in the Moraine (east) area in dissolved solids, sodium, potassium, sulfate, fluoride, silica, and uranium concentrations. Radium, iron, nitrate, and nitrite concentrations were also significantly different among these areas. Pesticides were detected in 12 percent of waters in surficial aquifers in the Drift Prairie area, 20 percent of those in the Lake Plain area, and 52 percent of those in the Moraine area. Triazines and bentazon accounted for 98 percent of summed pesticide concentrations in waters in surficial aquifers. Waters in buried glacial aquifers in the central one-third of the basin had significantly higher concentrations of dissolved solids, sodium, potassium, chloride, fluoride, and iron than did waters in surficial aquifers. No pesticides were detected in five samples from buried glacial aquifers or six samples from Cretaceous aquifers. Waters in all sampled aquifers had a calcium-magnesium ratio of about 1.75 ± 0.75 across the basin regardless of anionic composition.

  10. Relative timing of last glacial maximum and late-glacial events in the central tropical Andes

    Science.gov (United States)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Winckler, Gisela; Hall, Brenda L.; Todd, Claire E.; Rademaker, Kurt M.

    2009-11-01

    Whether or not tropical climate fluctuated in synchrony with global events during the Late Pleistocene is a key problem in climate research. However, the timing of past climate changes in the tropics remains controversial, with a number of recent studies reporting that tropical ice age climate is out of phase with global events. Here, we present geomorphic evidence and an in-situ cosmogenic 3He surface-exposure chronology from Nevado Coropuna, southern Peru, showing that glaciers underwent at least two significant advances during the Late Pleistocene prior to Holocene warming. Comparison of our glacial-geomorphic map at Nevado Coropuna to mid-latitude reconstructions yields a striking similarity between Last Glacial Maximum (LGM) and Late-Glacial sequences in tropical and temperate regions. Exposure ages constraining the maximum and end of the older advance at Nevado Coropuna range between 24.5 and 25.3 ka, and between 16.7 and 21.1 ka, respectively, depending on the cosmogenic production rate scaling model used. Similarly, the mean age of the younger event ranges from 10 to 13 ka. This implies that (1) the LGM and the onset of deglaciation in southern Peru occurred no earlier than at higher latitudes and (2) that a significant Late-Glacial event occurred, most likely prior to the Holocene, coherent with the glacial record from mid and high latitudes. The time elapsed between the end of the LGM and the Late-Glacial event at Nevado Coropuna is independent of scaling model and matches the period between the LGM termination and Late-Glacial reversal in classic mid-latitude records, suggesting that these events in both tropical and temperate regions were in phase.

  11. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-07-01

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  12. Tectonic Implications of Changes in the Paleogene Paleodrainage Network in the West-Central Part of the San Luis Basin, Northern Rio Grande Rift, New Mexico and Colorado, USA

    Science.gov (United States)

    Thompson, R. A.; Turner, K. J.; Cosca, M. A.; Drenth, B.

    2016-12-01

    The San Luis Basin is the largest of extensional basins in the northern Rio Grande rift (>11,400 km2). The modern basin configuration is the result of Neogene deformation that has been the focus of numerous studies. In contrast, Paleogene extensional deformation is relatively little studied owing to a fragmentary or poorly exposed stratigraphic record in most areas. However, volcanic and volcaniclastic deposits exposed along the western margin of the basin provide the spatial and temporal framework for interpretation of paleodrainage patterns that changed in direct response to Oligocene basin subsidence and the migration of centers of Tertiary volcanism. The early Oligocene (34 to 30 Ma) drainage pattern that originated in the volcanic highlands of the San Juan Mountains flowed south into the northern Tusas Mountains. A structural and topographic high composed of Proterozoic rocks in the Tusas Mountains directed flow to the southeast at least as late as 29 Ma, as ash-flow tuffs sourced in the southeast San Juan Mountains are restricted to the north side of the paleohigh. Construction of volcanic highlands in the San Luis Hills between 30 and 28.5 Ma provided an abundant source of volcanic debris that combined with volcanic detritus sourced in the southeast San Juan Mountains and was deposited (Los Pinos Formation) throughout the northern Tusas Mountains progressively onlapping the paleotopographic high. By 29 Ma, subsidence of the Las Mesitas graben, a structural sub-basin, between the San Luis Hills and the southeast San Juan and northern Tusas Mountains is reflected by thick deposits of Los Pinos Formation beneath 26.5 Ma basalts. Regional tectonism responsible for the formation of the graben may have also lowered the topographic and structural high in the Tusas Mountains, which allowed development of a southwest-flowing paleodrainage that likely flowed onto the Colorado Plateau. Tholeiitic basalt flows erupted in the San Luis Hills at 25.8 Ma, that presently cap

  13. Alaska Harbor Seal Glacial Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Floating glacial ice serves as a haul-out substrate for a significant number (10-15%) of Alaskan harbor seals, and thus surveying tidewater glacial fjords is an...

  14. Vertical axis rotation (or lack thereof) of the eastern Mongolian Altay Mountains: Implications for far-field transpressional mountain building

    Science.gov (United States)

    Gregory, Laura C.; Mac Niocaill, Conall; Walker, Richard T.; Bayasgalan, Gantulga; Craig, Tim J.

    2018-06-01

    The Altay Mountains of Western Mongolia accommodate 10-20% of the current shortening of the India-Asia collision in a transpressive regime. Kinematic models of the Altay require faults to rotate anticlockwise about a vertical axis in order to accommodate compressional deformation on the major strike slip faults that cross the region. Such rotations should be detectable by palaeomagnetic data. Previous estimates from the one existing palaeomagnetic study from the Altay, on Oligocene and younger sediments from the Chuya Basin in the Siberian Altay, indicate that at least some parts of the Altay have experienced up to 39 ± 8° of anticlockwise rotation. Here, we present new palaeomagnetic results from samples collected in Cretaceous and younger sediments in the Zereg Basin along the Har-Us-Nuur fault in the eastern Altay Mountains, Mongolia. Our new palaeomagnetic results from the Zereg Basin provide reliable declinations, with palaeomagnetic directions from 10 sites that pass a fold test and include magnetic reversals. The declinations are not significantly rotated with respect to the directions expected from Cretaceous and younger virtual geomagnetic poles, suggesting that faults in the eastern Altay have not experienced a large degree of vertical axis rotation and cannot have rotated >7° in the past 5 m.y. The lack of rotation along the Har-Us-Nuur fault combined with a large amount of rotation in the northern Altay fits with a kinematic model for transpressional deformation in which faults in the Altay have rotated to an orientation that favours the development of flower structures and building of mountainous topography, while at the same time the range widens at the edges as strain is transferred to better oriented structures. Thus the Har-Us-Nuur fault is a relatively young fault in the Altay, and has not yet accommodated significant rotation.

  15. Groundwater dynamics in mountain peatlands with contrasting climate, vegetation, and hydrogeological setting

    Science.gov (United States)

    Millar, David J.; Cooper, David J.; Ronayne, Michael J.

    2018-06-01

    Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.

  16. The paleohydrology of unsaturated and saturated zones at Yucca Mountain, Nevada, and vicinity

    Science.gov (United States)

    Paces, James B.; Whelan, Joseph F.; Stuckless, John S.

    2012-01-01

    caused by climate shifts between the Miocene and Pleistocene and between Pleistocene glacial-interglacial cycles. Secondary mineral distribution and δ18O profiles indicate that evaporation in the shallower welded tuffs reduces infiltration fluxes. Several near-surface and subsurface processes likely are responsible for diverting or dampening infiltration and percolation, resulting in buffering of percolation fluxes to the deeper unsaturated zone. Cooler and wetter Pleistocene climates resulted in increased recharge in upland areas and higher water tables at Yucca Mountain and throughout the region. Discharge deposits in the Amargosa Desert were active during glacial periods, but only in areas where the modern water table is within 7–30 m of the surface. Published groundwater models simulate water-table rises beneath Yucca Mountain of as much as 150 m during glacial climates. However, most evidence from Fortymile Canyon up gradient from Yucca Mountain limits water-table rises to 30 m or less, which is consistent with evidence from discharge sites in the Amargosa Desert. The isotopic compositions of uranium in tuffs spanning the water table in two Yucca Mountain boreholes indicate that Pleistocene water-table rises likely were restricted to 25–50 m above modern positions and are in approximate agreement with water-table rises estimated from zeolitic-to-vitric transitions in the Yucca Mountain tuffs (less than 60 m in the last 11.6 m.y.).

  17. The amount of glacial erosion of the bedrock

    International Nuclear Information System (INIS)

    Paasse, Tore

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m

  18. The amount of glacial erosion of the bedrock

    Energy Technology Data Exchange (ETDEWEB)

    Paasse, Tore [Geological Survey of Sweden, Uppsala (Sweden)

    2004-11-01

    The purpose of this study is to estimate an upper bound for the average erosion of fresh bedrock that can reasonably be expected during a glacial period or a single glaciation. The study is based on the assumption that classic sediments, formed by Scandinavian ice erosion during the Quaternary period, still exist within the formerly glaciated area or its periphery. The volume of these sediments thus constitutes the maximum average glacial erosion of bedrock within this area. This volume is calculated by estimating the thickness of the minerogenic Quaternary from well data in Sweden and Denmark and from seismic measurements in adjacent sea areas. The average thickness of the Quaternary deposits and other reogolith in the investigated area was estimated to 16 m. Assuming that the whole volume is the result of glacial erosion of fresh bedrock this corresponds to 12 m depth. However, a great part of the sediments may consist of glacially redistributed Tertiary regolith. As the amount of Tertiary regolith is uncertain the estimated maximum average glacial erosion rate in fresh bedrock is uncertain, and assuming that the total sediment volume is the result of glacial erosion leads to an overestimation of the glacial erosion depth. Considering this, the average glacial erosion during a full glacial period has been estimated to between 0.2 m and 4 m. If the extremes in the made assumptions are excluded the glacial erosion during a glacial cycle can be estimated to about 1 m.

  19. Assessment of geomorphological and hydrological changes produced by Pleistocene glaciations in a Patagonian basin

    Science.gov (United States)

    Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.

    2018-04-01

    This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.

  20. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    Science.gov (United States)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  1. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  2. Ground-water availability in the central part of Lake Ontario basin, New York

    Science.gov (United States)

    Miller, Todd S.; Krebs, Martha M.

    1988-01-01

    A set of three maps showing surficial geology, distribution of glacial aquifers, and potential well yield in the 708 sq mi central part of the Lake Ontario basin are presented at a scale of 1:125,000. The basin is parallel to Lake Ontario and extends from Rochester in the west to Oswego in the east. Aquifers consisting primarily of sand and gravel formed where meltwaters from glaciers deposited kame and outwash sand and gravel and where wave action along shores of glacial lakes eroded, reworked , and deposited beaches. Thick deposits of well-sorted sand and gravel yield relatively large quantities of water - typically more than 100 gal/min. Aquifers consisting of thin beds of sand and (or) gravel or thick gravel that contain a large proportion of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug and driven wells that tap fine to medium sand deposits typically yield 1 to 10 gal/min. (USGS)

  3. Hydrology in a mediterranean mountain environment. The Vallcebre research catchment (north eastern Spain) I. 20 years of investigations of hydrological dynamics

    International Nuclear Information System (INIS)

    Latron, J.; Llorens, P.; Solar, M.; Poyatos, R.; Rubio, C.; Muzylo, A.; Martinez-Carreras, N.; Delgado, J.; Regues, D.; Catari, G.; Nord, G.; Gallart, F.

    2009-01-01

    Investigations started 20 years ago in the Vallcebre research basins with the objectives of better understanding the hydrological functioning of Mediterranean mountains basins. The Vallcebre basins (0.15-4.17 km 2 ) are located in a Mediterranean mountain area of the Pyrenean ranges (1300 m.a.s.l., North Eastern Spain) Average annual precipitations 862± 260 mm and potential evapotranspiration is 823±26mm. Climate is highly seasonal leading to periods with water deficit in summer, and eventually in winter. Hydrological investigations to periods with water deficit in summer, and eventually in winter. Hydrological investigations in the basins are related to rainfall interception, evapotranspiration, soil moisture spatio-temporal dynamics, runoff response and runoff processes, suspended sediment dynamics and model application both at the plot and basin scales. (Author) 15 refs.

  4. Late Glacial and Holocene gravity deposits in the Gulf of Lions deep basin, Western Mediterranean

    Science.gov (United States)

    Dennielou, B.; Bonnel, C.; Sultan, N.; Voisset, M.; Berné, S.; Beaudouin, C.; Guichard, F.; Melki, T.; Méar, Y.; Droz, L.

    2003-04-01

    Recent investigations in the Gulf of Lions have shown that complex gravity processes and deposits occurred in the deep basin since the last Glacial period. Besides the largest western Mediterranean turbiditic system, Petit-Rhône deep-sea fan (PRDSF), whose built-up started at the end of Pliocene, several sedimentary bodies can be distinguished: (1) The turbiditic Pyreneo-Languedocian ridge (PLR), at the outlet of the Sète canyon network, whose activity is strongly connected to the sea level and the connection of the canyons with the rivers. It surface shows long wave-length sediment waves, probably in relation with the turbiditic overspill. (2) An acoustically chaotic unit, filling the topographic low between the PRDSF and the PLR, the Lower Interlobe Unit. Possible source areas are the Sète canyon and/or the Marti Canyon. (3) An acoustically transparent unit, below the neofan, filling the same topographic low, the Western Transparent Unit, interpreted as a debris-flow. Recent sediment cores have shown that this sedimentary is composed of folded, laminated mud, both in its northern and southern fringes. (4) The Petit-Rhône neofan, a channelized turbiditic lobe resulting from the last avulsion of the Petit-Rhône turbiditic channel and composed of two units. The lower, acoustically chaotic facies unit, corresponding to an initial stage of the avulsion, similar to the HARP facies found on the Amazon fan. The upper, transparent, slightly bedded, channel-levee shaped unit, corresponding to the channelized stage of the avulsion. (5) Up to ten, Deglacial to Holocene, thin, fine sand layers, probably originating from shelf-break sand accumulations, through the Sète canyon network. (6) Giant scours, in the southern, distal part of the neofan, possibly linked to turbiditic overflow from the neo-channel, probably corresponding to channel-lobe transition zone features (Wynn et al. 2002). Recent investigations have shown no evidence of bottom current features.

  5. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

    2001-05-08

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  6. Landscape-based discretization for modeling of hydrological processes in the semi-arid Andes Cordillera: a case study in Morales Basin

    Science.gov (United States)

    Videla Giering, Y. A., III; McPhee, J. P.; Pomeroy, J. W.

    2017-12-01

    Improved understanding of cryosphere processes in the Subtropical Andes is essencial to secure water supply in Central Chile. An ongoing challenge is to identify the main controls on snow accumulation and ablation at multiple scales. In this study, we use the Cold Regions hydrological model (CRHM) to simulate the evolution of seasonal snow cover in the basin of the Estero Morales between the period 2000-2016. The model was forced with radiation, temperature, humidity, wind and precipitation data obtained from downscaled Era-Interim outputs. The basin was disaggregated spatially through representative hydrological processes and and geomorphological into HRU's. 22% of snow in the basin is subject to reallocation by topographic effects, while net short wave radiation would explain major changes in snowmelt. 80% of summer runoff comes from glacial melting, while temperature and soil properties are key factors controlling infiltration and contribution to the runoff at all times of the year. The model results indicate that 78.2% of precipitation corresponds to snow while 21.8% to rain. The flow rates of snowmelting are the main component in the water balance, accounting for approximately 62.8% of the total rainfall. It is important to point out that during the total period of modeling (2010-2016), it was noted that the 23.08% of the total annual flow corresponds to glacial melting, however for the period 2010 - 2015 this percentage increases to 45.3%, in spite of this were not observed variations in the volume of subsurface and groundwater flow. This suggests first: that systems such as analyzed in this article, have a great importance because they are fragile in terms of response and the ground due to its topographic features (such as slope and conductivity) is not able to store large percentages of resources until the end of the summer season; and second, to understand that mountain systems with presence of glaciers, naturally are regulated compared to sudden changes

  7. Comparison of Geochemical, Grain-Size, and Magnetic Proxies for Rock Flour and Ice- Rafted Debris in the Late Pleistocene Mono Basin, CA

    Science.gov (United States)

    Zimmerman, S. H.; Hemming, S. R.; Kent, D. V.

    2008-12-01

    Advance and retreat of mountain glaciers are important indicators of climate variability, but the most direct proxy record, mapping and dating of moraines, is by nature discontinous. The Sierra Nevada form the western boundary of the Mono Lake basin, and the proximity of the large Pleistocene lake to the glacial canyons of the Sierra presents a rare opportunity to examine glacial variability in a continuous, well-dated lacustrine sequence. We have applied a geochemical proxy for rock flour to the glacial silts of the late Pleistocene Wilson Creek Formation, but because it is time- and sample-intensive, another method is required for a high-resolution record. Previous microscopic examination, thermomagnetic measurements, XRD analysis, and new isothermal remnant magnetization (IRM) acquisition curves show that the magnetic mineralogy is dominated by fine-grained, unaltered magnetite. Bulk measurements show strong susceptibility (mean ~ 16 x 10- 6 m3/kg) and remanent magnetization (mean IRM ~ 10-2 Am2/kg) compared to diluting components (carbonate, smectite, rhyolitic ash). The Wilson Creek type section sediments also contain a coarse lithic fraction, quantified by counting the >2cm clasts in outcrop and the >425 μm fraction in the bulk sediment. Susceptibility, IRM, and ARM (anhysteretic remnant magnetization) are quite similar throughout the type section, with the abundance of coarse lithic fraction correlative to the ratio k/IRM. Because the magnetic fraction of the rock flour is fine-grained magnetite, IRM should capture the changes in concentration of flour through time, and the major features of the (low-resolution) geochemical flour proxy record are identifiable in the IRM record. Flux-correction of the IRM results in a rock flour proxy record with major peaks between 36 and 48 ka, similar to a rock flour record from neighboring Owens Lake. This regional glacial signal contrasts with peaks in coarse lithics between 58 and 68 ka in the Wilson Creek record

  8. Observed changes and future trends in vulnerability to natural hazards for mountain communities

    Science.gov (United States)

    Puissant, A.; Gazo, A.; Débonnaire, N.; Moravek, A.; Aguejdad, R.; -P., Malet J.; B., Martin

    2015-04-01

    Since 50 years, mountain areas are affected by important landcover and landuse changes characterized by the decrease of pastoral activities, reforestation or urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to analyse landcover/use changes and to model future changes to assess the impacts of such change and to analyse trajectory of the vulnerability of mountain communities. For this research, an experiment is performed for two mountain areas of the French Alps (Barcelonnette Basin, Vars Basin). Changes in landcover and landuse are characterized over the period 1956-2010 for the two communities at two spatial scales (catchment, municipality). Four scenarios of landcover and landuse development (based on the Prelude European Project) are proposed for the period 2050 and 2100. Based on these scenarios, the evolution of vulnerability is estimated by using the Potential Damage Index method proposed by Puissant et al. (2013).

  9. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history

    Science.gov (United States)

    Fielding, C.R.; Whittaker, J.; Henrys, S.A.; Wilson, T.J.; Nash, T.R.

    2007-01-01

    A new stratigraphic model is presented for the evolution of the Cenozoic Victoria Land Basin of the West Antarctic Rift, based on integration of seismic reflection and drilling data. The Early Rift phase (?latest Eocene to Early Oligocene) comprises wedges of strata confined by early extensional faults, and which contain seismic facies consistent with drainage via coarse-grained fans and deltas into discrete, actively subsiding grabens and half-grabens. The Main Rift phase (Early Oligocene to Early Miocene) comprises a lens of strata that thickens symmetrically from the basin margins into a central depocenter, and in which stratal events pass continuously over the top of the Early Rift extensional topography. Internal seismic facies and lithofacies indicate a more organized, cyclical shallow marine succession, influenced increasingly upward by cycles of glacial advance and retreat into the basin. The Passive Thermal Subsidence phase (Early Miocene to ?) comprises an evenly distributed sheet of strata that does not thicken appreciably into the depocentre, with more evidence for clinoform sets and large channels. These patterns are interpreted to record accumulation under similar environmental conditions but in a regime of slower subsidence. The Renewed Rifting phase (? to Recent, largely unsampled by coring thus far) has been further divided into 1, a lower interval, in which the section thickens passively towards a central depocentre, and 2. an upper interval, in which more dramatic thickening patterns are complicated by magmatic activity. The youngest part of the stratigraphy was accumulated under the influence of flexural loading imposed by the construction of large volcanic edifices, and involved minimal sediment supply from the western basin margin, suggesting a change in environmental (glacial) conditions at possibly c. 2 Ma.

  10. Great Basin paleoenvironmental studies project

    International Nuclear Information System (INIS)

    1993-01-01

    Project goals, project tasks, progress on tasks, and problems encountered are described and discussed for each of the studies that make up the Great Basin Paleoenvironmental Studies Project for Yucca Mountain. These studies are: Paleobotany, Paleofauna, Geomorphology, and Transportation. Budget summaries are also given for each of the studies and for the overall project

  11. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  12. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records

    Science.gov (United States)

    Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.

    2016-01-01

    We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.

  13. Combination of lumped hydrological and remote-sensing models to evaluate water resources in a semi-arid high altitude ungauged watershed of Sierra Nevada (Southern Spain).

    Science.gov (United States)

    Jódar, J; Carpintero, E; Martos-Rosillo, S; Ruiz-Constán, A; Marín-Lechado, C; Cabrera-Arrabal, J A; Navarrete-Mazariegos, E; González-Ramón, A; Lambán, L J; Herrera, C; González-Dugo, M P

    2018-06-01

    Assessing water resources in high mountain semi-arid zones is essential to be able to manage and plan the use of these resources downstream where they are used. However, it is not easy to manage an unknown resource, a situation that is common in the vast majority of high mountain hydrological basins. In the present work, the discharge flow in an ungauged basin is estimated using the hydrological parameters of an HBV (Hydrologiska Byråns Vattenbalansavdelning) model calibrated in a "neighboring gauged basin". The results of the hydrological simulation obtained in terms of average annual discharge are validated using the VI-ETo model. This model relates a simple hydrological balance to the discharge of the basin with the evaporation of the vegetal cover of the soil, and this to the SAVI index, which is obtained remotely by means of satellite images. The results of the modeling for both basins underscore the role of the underground discharge in the total discharge of the hydrological system. This is the result of the deglaciation process suffered by the high mountain areas of the Mediterranean arc. This process increases the infiltration capacity of the terrain, the recharge and therefore the discharge of the aquifers that make up the glacial and periglacial sediments that remain exposed on the surface as witnesses of what was the last glaciation. Copyright © 2017. Published by Elsevier B.V.

  14. Advancements in understanding the aeromagnetic expressions of basin-margin faults—An example from San Luis Basin, Colorado

    Science.gov (United States)

    Grauch, V. J.; Bedrosian, Paul A.; Drenth, Benjamin J.

    2013-01-01

    Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets. Advancements in aeromagnetic acquisition technology over the past few decades have led to greater resolution of shallow geologic sources with low magnetization, such as intrasedimentary faults and paleochannels. Detection and mapping of intrasedimentary faults in particular can be important for understanding the overall structural setting of an area, even if exploration targets are much deeper. Aeromagnetic methods are especially useful for mapping structures in mountain-piedmont areas at the margins of structural basins, where mineral exploration and seismic-hazard studies may be focused, and where logistical or data-quality issues encumber seismic methods. Understanding if the sources of aeromagnetic anomalies in this context originate from sedimentary units or bedrock is important for evaluating basin structure and/or depth to shallow exploration targets.

  15. Holocene glacial fluctuations in southern South America

    Science.gov (United States)

    Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.

    2016-12-01

    Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.

  16. Studies of geology and hydrology in the Basin and Range Province, Southwestern United States, for isolation of high-level radioactive waste - Basis of characterization and evaluation

    Science.gov (United States)

    Bedinger, M.S.; Sargent, K.A.; Langer, William H.; Sherman, Frank B.; Reed, J.E.; Brady, B.T.

    1989-01-01

    crystalline rock tends to be normally distributed; porosity of fractured crystalline rock probably follows a log-normal distribution.The tectonic setting needs to prevent an increase in radionuclides to the accessible environment. Data on historic seismicity and heat flow, Quaternary faults, volcanism, and uplift were used to assess the tectonic conditions. Long-term late Cenozoic rates of vertical crustal movement in the Basin and Range province range from less than 2 meters per 104 years to greater than 20 meters per 104 years. Shortterm rates of vertical movement may be more than an order of magnitude greater, based on geodetic leveling. Changes in tectonic and climatic processes may potentially cause changes in hydrologic conditions and geomorphology that could affect the integrity of a deep, mined repository either adversely or beneficially.The transition from a full-glacial climate to the current interglacial condition has occurred within the past 15,000 years. Reconstructions of the last full-glacial climate indicate that, at that time, there was greater water availability for runoff and vegetation growth than there is now. Based on the increased water availability and depending on seasonal distribution of precipitation, on soil characteristics, on topography, and on other characteristics, ground-water recharge during the full-glacial climate is estimated to have been possibly 2 to 10 or more times the modern rate. During the full-glacial climate, more than 100 lakes occupied closed basins in the province. Any increase in ground-water recharge and refilling of Pleistocene lakes will tend to decrease the distance of ground-water flow and its time of travel. The unsaturated zone this zone is considered a potential host medium where the thickness is greater than 150 m will be decreased by these changes. In contrast, incision of streams and other geomorphic, tectonic, or climatically induced changes that lower the ground-water discharge level will tend to increase the

  17. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    Science.gov (United States)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our

  18. Increased risk of glacial mudflows origin in Kabardino-Balkaria in the recent period

    Directory of Open Access Journals (Sweden)

    I. V. Malneva

    2013-01-01

    Full Text Available The paper deals with probability of glacial mudflow formation during the nearest years in the highland of Central Caucasus where the most mudflow-hazardous rivers are concentrated: Gerhozhansu, Adylsu, Adyrsu and others. It is established on the basis of calculated multi-year air temperatures during summer period that in June–August of 2012–2013 considerable increase and can intensify the activity of glacial mudflows. We estimate the tendency in mudflow activity using the analysis of multi-year regime of atmospheric circulation, the types of which determine mudflow-hazardous weather on a given territory (e.g. 12a, 13s, etc. according to the classification of B.L. Dzerdzeevsky. The duration of these types is presently sufficiently long and will remain the same during the nearest years. Due to the above-mentioned weather situation and availability of sufficient amounts of loose-clastic rock material on the territory of Kabardino-Balkaria, an increase of mudflow hazard is possible. So, in 2011 the glacial-flash mudflows happened in the basins of the rivers Cherek Balkarsky, Chegem, Baksan. In all these cases the weather corresponded to the type of ECM 13s. In 2013 the increase in duration of the above-mentioned ECM and mudflow activity can be connected with maximum of the solar cycle. During the previous maximum in 2000 the catastrophic mudflow happened on the river Gerhonzhansu; the town Tyrnyauz have been highly destructed.

  19. On the water hazards in the trans-boundary Kosi River basin

    Science.gov (United States)

    Chen, N. Sh.; Hu, G. Sh.; Deng, W.; Khanal, N.; Zhu, Y. H.; Han, D.

    2013-03-01

    The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin, based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socio-economics. Glacial lake outbursts are a huge threat to the local population in the region and they usually further trigger landslides and debris flows. Floods are usually a result of interaction between man-made hydraulic structures and the natural environment. Debris flows are widespread and occur in clusters. Droughts tend to last over long periods and affect vast areas. Rapid population increase, the decline of ecosystems and climate change could further exacerbate various hazards in the region. The paper has proposed a set of mitigating strategies and measures. It is an arduous challenge to implement them in practice. More investigations are needed to fill in the knowledge gaps.

  20. Late Holocene expansion of Ponderosa pine (Pinus ponderosa) in the Central Rocky Mountains, USA

    Science.gov (United States)

    Norris, Jodi R; Betancourt, Julio L.; Jackson, Stephen T.

    2016-01-01

    "Aim: Ponderosa pine (Pinus ponderosa) experienced one of the most extensive and rapid post-glacial plant migrations in western North America. We used plant macrofossils from woodrat (Neotoma) middens to reconstruct its spread in the Central Rocky Mountains, identify other vegetation changes coinciding with P. ponderosa expansion at the same sites, and relate P. ponderosa migrational history to both its modern phylogeography and to a parallel expansion by Utah juniper (Juniperus osteosperma).

  1. Native plant development and restoration program for the Great Basin, USA

    Science.gov (United States)

    N. L. Shaw; M. Pellant; P. Olweli; S. L. Jensen; E. D. McArthur

    2008-01-01

    The Great Basin Native Plant Selection and Increase Project, organized by the USDA Bureau of Land Management, Great Basin Restoration Initiative and the USDA Forest Service, Rocky Mountain Research Station in 2000 as a multi-agency collaborative program (http://www.fs.fed.us/rm/boise/research/shrub/greatbasin.shtml), has the objective of improving the availability of...

  2. Hydrology of surface waters and thermohaline circulation during the last glacial period

    International Nuclear Information System (INIS)

    Vidal, L.

    1996-01-01

    Sedimentological studies on oceanic cores from the north Atlantic have revealed, over the last glacial period, abrupt climatic changes with a periodicity of several thousand years which contrasts strongly with the glacial-interglacial periodicity (several tens of thousand years). These periods of abrupt climate changes correspond to massive icebergs discharges into the north Atlantic. The aim of this work was to study the evolution of the thermohaline circulation in relation to these episodic iceberg discharges which punctuated the last 60 ka. To reconstruct the oceanic circulation in the past, we have analysed oxygen and carbon stable isotopes on benthic foraminifera from north Atlantic deep-sea cores. First of all, the higher temporal resolution of sedimentary records has enabled us to establish a precise chrono-stratigraphy for the different cores. Then, we have shown the close linkage between surface water hydrology and deep circulation, giving evidence of the sensibility of thermohaline circulation to melt water input in the north Atlantic ocean. Indeed, changes in deep circulation are synchronous from those identified in surface waters and are recorded on a period which lasted ∼ 1500 years. Deep circulation reconstructions, before and during a typical iceberg discharge reveal several modes of circulation linked to different convection sites at the high latitudes of the Atlantic basin. Moreover, the study of the last glacial period gives the opportunity to differentiate circulation changes due to the external forcing (variations of the orbital parameters) and those linked to a more local forcing (icebergs discharges). 105 refs., 50 figs., 14 tabs., 4 appends

  3. Glacial origin for cave rhythmite during MIS 5d-c in a glaciokarst landscape, Picos de Europa (Spain)

    Science.gov (United States)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; DeFelipe, Irene; García-Sansegundo, Joaquín

    2017-06-01

    Laminated slackwater deposits have been identified in many karst caves related to fluvial and lacustrine sedimentation. However, sedimentological evidence rarely supports a glacial origin for these deposits, which was proposed by previous studies. The Torca La Texa shaft is located in a glaciokarst area that comprises numerous slackwater-type deposits, piled up in fining-upward sequences. A basal sandy erosive layer and millimeter-sized laminated rhythmite with interbedded flowstone characterize these sequences. Fining-upward layers of carbonate silt, clay, and minor quartz sand deposited in flooded conduits define the rhythmite lamination. The presence of allochthonous minerals indicates that the rhythmite sediment comes from the glacial erosion of nearby carbonate mountains. Two 234U/230Th radiometric ages dated the rhythmite deposits around 109 and 95 ka, coinciding with relative cold periods included in the MIS 5d-c. These cold periods were marked by a high annual seasonality, immediately after the glacial local maximum extension, in agreement with a varve-type deposit. The combination of these sedimentological mineralogical, geomorphological and paleoclimate information indicates that the rhythmite should be introduced into the studied cave during the summer melting of the glaciers, which produced the recharge of the karst aquifer, triggering cave floods. In addition, punctual glacier collapses would also have their imprint in the slackwater sequences with thicker, coarser and erosive sand deposits and the spring blocking by glaciers may have promoted floods inside the cave. Therefore, the studied rhythmite can be interpreted as glacial varves decanted during the relatively cold climate conditions.

  4. Late glacial multiproxy evidence of vegetation development and environmental change at Solova, southeastern Estonia

    Directory of Open Access Journals (Sweden)

    Amon, Leeli

    2010-06-01

    Full Text Available Reinvestigation of the late glacial Solova (Remmeski basin, based on plant macro­fossil and diatom record, AMS 14C chronology and sediment composition (loss-on-ignition and magnetic susceptibility data, provided information on vegetation history and palaeoenvironmental and palaeoclimatic changes since the time of the deglaciation of the area around 14 000 cal yr BP. The chronology of the sequence is based on seven AMS dates on terrestrial macrofossils, providing evidence of rapid sedimentation in between 14 000 and 13 500 cal yr BP. Loss-on-ignition data show a clear short-lived warming episode centred to 13 800 cal yr BP, tentatively correlated with the GI-1c warming of the event stratigraphy of the Last Termination in the North Atlantic region, which suggests that at least parts of the Haanja Heights were ice-free by 14 000 cal yr BP. Macrofossil evidence indicates Betula nana–Dryas octopetala-dominated open tundra communities with Saxifraga on dry ground, and Carex sp. and Juncus on wet ground at that time. The first evidence of the postglacial presence of tree birch (Betula pendula in Estonia is dated back to 13 500 cal yr BP. However, conifer remains were not found in the late glacial sediment sequence of Solova Bog. The late-Allerød (GI-1a organic deposits, which are quite typical of other parts of Estonia and indicate general warming, are missing at Solova, most probably due to a hiatus in sedimentation in this very small and shallow upland basin.

  5. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    International Nuclear Information System (INIS)

    Inyo County

    2006-01-01

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA

  6. Late cenozoic evolution of Fortymile Wash: Major change in drainage pattern in the Yucca Mountain, Nevada region during late miocene volcanism

    International Nuclear Information System (INIS)

    Lundstrom, S.C.; Warren, R.G.

    1994-01-01

    The site characterization of Yucca Mountain, NV as a potential high level nuclear waste repository includes study of the surficial deposits as a record of the paleoenvironmental history of the Yucca Mountain region. An important aspect of this history is an understanding of the evolution of paleogeography leading to establishment of the present drainage pattern. Establishment of drainage basin evolution is needed before geomorphic response to paleoclimate and tectonics can be assessed, because a major change in drainage basin geometry can predominantly affect the sedimentary record. Because alluvial aquifers are significant to regional hydrology, a major change in surface drainage resulting in buried alluvium could have hydrogeologic significance. In this paper, we report on geologic evidence for a major modification in surface drainage pattern in the Yucca Mountain region, resulting in the probable establishment of the Fortymile Wash drainage basin by latest Miocene time

  7. An integrated geological and geophysical study of the Uinta Mountains, Utah, Colorado and a geophysical study on Tamarix in the Rio Grande River basin, West Texas

    Science.gov (United States)

    Khatun, Salma

    2008-07-01

    This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a

  8. Ultra-high resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles

    Directory of Open Access Journals (Sweden)

    M. H. M. Groot

    2011-03-01

    Full Text Available Here we developed a composite pollen-based record of altitudinal vegetation changes from Lake Fúquene (5° N in Colombia at 2540 m elevation. We quantitatively calibrated Arboreal Pollen percentages (AP% into mean annual temperature (MAT changes with an unprecedented ~60-year resolution over the past 284 000 years. An age model for the AP% record was constructed using frequency analysis in the depth domain and tuning of the distinct obliquity-related variations to the latest marine oxygen isotope stacked record. The reconstructed MAT record largely concurs with the ~100 and 41-kyr (obliquity paced glacial cycles and is superimposed by extreme changes of up to 7 to 10° Celsius within a few hundred years at the major glacial terminations and during marine isotope stage 3, suggesting an unprecedented North Atlantic – equatorial link. Using intermediate complexity transient climate modelling experiments, we demonstrate that ice volume and greenhouse gasses are the major forcing agents causing the orbital-related MAT changes, while direct precession-induced insolation changes had no significant impact on the high mountain vegetation during the last two glacial cycles.

  9. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    Science.gov (United States)

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  10. Late glacial ice advances in the Strait of Magellan, Southern Chile

    Science.gov (United States)

    Mcculloch, Robert D.; Bentley, Michael J.

    During the last glacial cycle low gradient glaciers repeatedly drained north-eastward into the Strait of Magellan and dammed extensive proglacial lakes in the central section of the strait. This paper focuses on the two most recent glacial advances in the strait, culminating over 150 and 80 km from the present ice limits. The timing of the first of the two advances has, up to now, been ambiguous and depended on the interpretation of anomously older dates of 16,590-15,800 yr BP for deglaciation at Puerto del Hambre. Here, we show there is evidence from seismic data and truncated shorelines that the Puerto del Hambre basin has been tectonically displaced and that the dates do not represent minimums for deglaciation. Several other dates show that the advance occurred sometime before 14,260 yr BP. The timing of the second advance has been investigated using a refined tephrochronology for the region, which has also enabled a palaeoshoreline and glaciolacustrine sediments to be linked to a moraine limit. 14C dating of peat and a key tephra layer, above and below the glaciolacustrine deposits, respectively suggest that the advance culminated in the Strait of Magellan between 12,010 and 10,050 yr BP.

  11. 3-D basin modelling of the Paris Basin: diagenetic and hydrogeologic implications

    International Nuclear Information System (INIS)

    Violette, S.; Goncalves, J.; Jost, A.; Marsily, G. de

    2004-01-01

    A 3-D basin model of the Paris basin is presented in order to simulate through geological times fluid, heat and solute fluxes. This study emphasizes: i) the contribution of basin models to the quantitative hydrodynamic understanding of behaviour of the basin over geological times; ii) the additional use of Atmospheric General Circulation model (AGCM) to provide palaeo-climatic boundaries for a coupled flow and mass transfer modelling, constrained by geochemical and isotopic tracers and; iii) the integration of different types of data (qualitative and quantitative) to better constrain the simulations. Firstly, in a genetic way, basin model is used to reproduce geological, physical and chemical processes occurring in the course of the 248 My evolution of the Paris basin that ought to explain the present-day hydraulic properties at the regional scale. As basin codes try to reproduce some of these phenomena, they should be able to give a plausible idea of the regional-scale permeability distribution of the multi-layered system, of the pre-industrial hydrodynamic conditions within the aquifers and of the diagenesis timing and type of hydrodynamic processes involved. Secondly, climate records archived in the Paris basin groundwater suggest that climate and morphological features have an impact on the hydrogeological processes, particularly during the last 5 My. An Atmospheric General Circulation model is used with a refined spatial resolution centred on the Paris basin to reproduce the climate for the present, the Last Glacial Maximum (21 ky) and the middle Pliocene (3 My). These climates will be prescribed, through forcing functions to the hydrological code with the main objective of understanding the way aquifers and aquitards react under different climate conditions, the period and the duration of these effects. Finally, the Paris basin has been studied for a number of years by different scientific communities, thus a large amount of data has been collected. By

  12. Low-flow characteristics of streams in the Puget Sound region, Washington

    Science.gov (United States)

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by

  13. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    Science.gov (United States)

    ten Brink, Uri S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  14. Promise and Pitfalls of Using Grain Size Analysis to Identify Glacial Sediments in Alpine Lake Cores.

    Science.gov (United States)

    Clark, D. H.

    2011-12-01

    Lakes fed by glacier outwash should have a clastic particle-size record distinct from non-glacial lakes in the same area, but do they? The unique turquoise color of alpine glacial lakes reflects the flux of suspended clastic glacial rock flour to those lakes; conversely, lakes not fed by outwash are generally clear with sediments dominated by organics or slope-wash from nearby hillslopes. This contrast in sediment types and sources should produce a distinct and measureable different in grain sizes between the two settings. Results from a variety of lakes suggest the actual situation is often more subtle and complex. I compare grain size results to other proxies to assess the value of grain size analysis for paleoglacier studies. Over the past 10 years, my colleagues and I have collected and analyzed sediment cores from a wide variety of lakes below small alpine glaciers in an attempt to constrain the timing and magnitude of alpine glaciation in those basins. The basic concept is that these lakes act as continuous catchments for any rock flour produced upstream by glacier abrasion; as a glacier grows, the flux of rock flour to the lake will also increase. If the glacier disappears entirely, rock flour deposition will also cease in short order. We have focused our research in basins with simple sedimentologic settings: mostly small, high-altitude, stripped granitic or metamorphic cirques in which the cirque glaciers are the primary source of clastic sediments. In most cases, the lakes are fed by meltwater from a modern glacier, but were ice free during the earlier Holocene. In such cases, the lake cores should record formation of and changes in activity of the glacier upstream. We used a Malvern Mastersizer 2000 laser particle size analyzer for our grain size analyses, as well as recording magnetic susceptibility, color, and organics for the same cores. The results indicate that although lakes often experience increases in silt and clay-size (<0.63 mm) clastic

  15. Glacial rebound and crustal stress in Finland

    International Nuclear Information System (INIS)

    Lambeck, K.; Purcell, A.

    2003-11-01

    rebound and sea-level change within the Baltic Basin. (iv) The magnitude and orientation of the regional stress field in the crust since the time of the last glaciation, including the present-day residual stress field. The current models have reached a state where realistic regional stress patterns can be predicted that provide the background data for developing high-resolution local numerical models. This study is confined to the regional stress field only. We use as a measure of the significance of the incremental stress the change in Fault Stability Margin (FSM) resulting from the changes in ice (and ocean) load with time. While ice is present, the crust is stabilized except outside the area of loading, but when the ice retreats the crust becomes less stable and faults that are close to failure may be reactivated. For much of central Finland the deviatoric FSM reach their maximum values at about 10 ka BP but the magnitudes relax with time and at present they represent about 20% of their original values. Thus any failure within the crust triggered by glacial loading and unloading will have occurred preferentially when the region first became ice-free and the potential for reactivating faults today by this process must be considered as negligibly. (orig.)

  16. Mapping critical loads of nitrogen deposition for aquatic ecosystems in the Rocky Mountains, USA

    International Nuclear Information System (INIS)

    Nanus, Leora; Clow, David W.; Saros, Jasmine E.; Stephens, Verlin C.; Campbell, Donald H.

    2012-01-01

    Spatially explicit estimates of critical loads of nitrogen (N) deposition (CL Ndep ) for nutrient enrichment in aquatic ecosystems were developed for the Rocky Mountains, USA, using a geostatistical approach. The lowest CL Ndep estimates ( −1 yr −1 ) occurred in high-elevation basins with steep slopes, sparse vegetation, and abundance of exposed bedrock and talus. These areas often correspond with areas of high N deposition (>3 kg N ha −1 yr −1 ), resulting in CL Ndep exceedances ≥1.5 ± 1 kg N ha −1 yr −1 . CL Ndep and CL Ndep exceedances exhibit substantial spatial variability related to basin characteristics and are highly sensitive to the NO 3 − threshold at which ecological effects are thought to occur. Based on an NO 3 − threshold of 0.5 μmol L −1 , N deposition exceeds CL Ndep in 21 ± 8% of the study area; thus, broad areas of the Rocky Mountains may be impacted by excess N deposition, with greatest impacts at high elevations. - Highlights: ► Critical loads maps for nutrient enrichment effects of nitrogen deposition. ► Critical load estimates show spatial variability related to basin characteristics. ► Critical loads are sensitive to the nitrate threshold value for ecological effects. ► Broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition. - Critical loads maps for nutrient enrichment effects of nitrogen deposition show that broad areas of the Rocky Mountains may be impacted by excess nitrogen deposition.

  17. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    International Nuclear Information System (INIS)

    Zelazny, Miroslaw; Astel, Aleksander; Wolanin, Anna; Malek, Stanislaw

    2011-01-01

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: → We use SOM approach to explore physiochemical data for mountain waters. → Geologic structure and hydrological events impact water chemistry. → Limited leaching, typical of crystalline core, reflects in low water mineralization. → Sedimentary rocks are susceptible for leaching. → Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  18. Groundwater quality in the Klamath Mountains, California

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Klamath Mountains constitute one of the study units being evaluated.

  19. Summary of Hydrologic Data for the Tuscarawas River Basin, Ohio, with an Annotated Bibliography

    Science.gov (United States)

    Haefner, Ralph J.; Simonson, Laura A.

    2010-01-01

    The Tuscarawas River Basin drains approximately 2,600 square miles in eastern Ohio and is home to 600,000 residents that rely on the water resources of the basin. This report summarizes the hydrologic conditions in the basin, describes over 400 publications related to the many factors that affect the groundwater and surface-water resources, and presents new water-quality information and a new water-level map designed to provide decisionmakers with information to assist in future data-collection efforts and land-use decisions. The Tuscarawas River is 130 miles long, and the drainage basin includes four major tributary basins and seven man-made reservoirs designed primarily for flood control. The basin lies within two physiographic provinces-the Glaciated Appalachian Plateaus to the north and the unglaciated Allegheny Plateaus to the south. Topography, soil types, surficial geology, and the overall hydrology of the basin were strongly affected by glaciation, which covered the northern one-third of the basin over 10,000 years ago. Within the glaciated region, unconsolidated glacial deposits, which are predominantly clay-rich till, overlie gently sloping Pennsylvanian-age sandstone, limestone, coal, and shale bedrock. Stream valleys throughout the basin are filled with sands and gravels derived from glacial outwash and alluvial processes. The southern two-thirds of the basin is characterized by similar bedrock units; however, till is absent and topographic relief is greater. The primary aquifers are sand- and gravel-filled valleys and sandstone bedrock. These sands and gravels are part of a complex system of aquifers that may exceed 400 feet in thickness and fill glacially incised valleys. Sand and gravel aquifers in this basin are capable of supporting sustained well yields exceeding 1,000 gallons per minute. Underlying sandstones within 300 feet of the surface also provide substantial quantities of water, with typical well yields of up to 100 gallons per minute

  20. Glacial evolution of the upper Gallego Valley (Panticosa mountains and Ribera de Biescas, Aragonese Pyrenees, Spain

    Directory of Open Access Journals (Sweden)

    Serrano-Cañadas, Enrique

    1991-12-01

    Full Text Available Glacial evolution in the upper Gallego Valley has been established by studying erosional and depositional land forms. Ten pulsations, related to five phases are described: Premaximal (F. G. 0, attributed to Middle Pleistocene; Peniglacier, with three expanding pulsations (F.G. 1, 2 y 3, is attributed to the Upper Pleistocene; Finipleniglacial with two phases of dynamic (F.G. 4 y 5' and climatic (F.G. 5 equilibrium associated with the Pleistocene deglaciation; high mountain phase (F.G. 6 y 7, with two morphogenetic episodes; and the Holocene pulses from the Little Ice Age.

    [es] Evolución glaciar del Alto Gallego (Montañas de Panticosa y Ribera de Biescas, Pirineo aragonés. Se reconstruye la evolución glaciar del Alto Gallego a partir del estudio de las formas de erosión y acumulación glaciar. Se describen diez pulsaciones, correspondientes a cinco fases mayores: Premáximo (F.G.O., atribuido al Pleistoceno medio; Pleniglaciar, con tres pulsaciones de expansión (F.G. 1,2 y 3, del Pleistoceno reciente; el Finipleniglaciar,con fases de equilibrio dinámico (F.G. 4y 5'y climático (F.G.S, ligadas a la deglaciación pleistocena; las fases de alta montaña, con dos pulsaciones (F.G. 6 y 7, atribuidas al Tardiglaciar; y las fases holocenas, de la Pequeña Edad del Hielo.
    [fr] Évolution glaciaire de Haut Gallego (montagnes de Panticosa et Rivage de Biescas, Pyrénées aragonaises. On étudie l'évolution glaciaire du Haut Gallego à partir de l'étude des formes d'érosion et accumulation glaciaire. On décrit dix pulsations, correspondant à cinq phases majeures: le Prémaximun (F.G. 0, attribué au Pléistocène moyen; le Pléniglaciaire avec trois pulsations d'expansion (F.G. 1, 2 et 3 attribuée au Pleistocene récent; le Pini-pléniglaciaire avec des phases d'équilibre dynamique (F.G. 4 et 5 et climatique (F.G. 5, liées à la déglaciation pléistocène; les phases de haute montagne, avec deux pulsations (F.G. 6 et 7 attribu

  1. Tectonic isolation from regional sediment sourcing of the Paradox Basin

    Science.gov (United States)

    Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.

    2017-12-01

    The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common

  2. Timing of last deglaciation in the Cantabrian Mountains (Iberian Peninsula; North Atlantic Region) based on in situ-produced 10Be exposure dating

    Science.gov (United States)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María José; Rinterknecht, Vincent; Pallàs, Raimon; Aumaître, Georges; Bourlès, Didier L.; Keddadouche, Karim; Aster Team

    2017-09-01

    The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used 10Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km2) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant 10Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1-16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bølling/Allerød period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the

  3. Glacial lakes of the Central and Patagonian Andes

    Science.gov (United States)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  4. Great Basin Research and Management Project: Restoring and maintaining riparian ecosystem integrity

    Science.gov (United States)

    Jeanne C. Chambers

    2000-01-01

    The Great Basin Research and Management Project was initiated in 1994 by the USDA Forest Service, Rocky Mountain Research Station’s Ecology, Paleoecology, and Restoration of Great Basin Watersheds Project to address the problems of stream incision and riparian ecosystem degradation in central Nevada. It is a highly interdisciplinary project that is being conducted in...

  5. The mountain Cer: Potentials for tourism development

    Directory of Open Access Journals (Sweden)

    Grčić Mirko D.

    2003-01-01

    Full Text Available In northwest of Serbia in the meridians directions an elongated mountain range of Cer with Iverak and Vlašić stretches itself. On the north it goes down to Mačva and Posavina, on the west to Podrinje, on the east to the valley of Kolubara, on the south to the basins and valleys of Jadar and upper Kolubara, which separate it from the mountains of Valjevo and Podrinje area. Cer mountain offers extremely good condition for development of eco-tourism. The variety of relief with gorgeous see-sites, natural rarities, convenient bio-climatic conditions, significant water resources, forest complexes, medieval fortresses, cultural-historic monuments, richness of flora and fauna, preserved rural environment, traditions and customs of local population, were all neglected as strategic factors in the development of tourism. This mountain’s potentials are quite satisfactory for the needs of eco-tourism, similar to the National Park of Fruška Gora, but it has lacked an adequate ecotourist strategy so far. This study aims to pointing to the potential and possibilities of ecotourist valorization of this mountain.

  6. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies

  7. Rainfall and net infiltration probabilities for future climate conditions at Yucca Mountain

    International Nuclear Information System (INIS)

    Long, A.; Childs, S.W.

    1993-01-01

    Performance assessment of repository integrity is a task rendered difficult because it requires predicting the future. This challenge has occupied many scientists who realize that the best assessments are required to maximize the probability of successful repository sitting and design. As part of a performance assessment effort directed by the EPRI, the authors have used probabilistic methods to assess the magnitude and timing of net infiltration at Yucca Mountain. A mathematical model for net infiltration previously published incorporated a probabilistic treatment of climate, surface hydrologic processes and a mathematical model of the infiltration process. In this paper, we present the details of the climatological analysis. The precipitation model is event-based, simulating characteristics of modern rainfall near Yucca Mountain, then extending the model to most likely values for different degrees of pluvial climates. Next the precipitation event model is fed into a process-based infiltration model that considers spatial variability in parameters relevant to net infiltration of Yucca Mountain. The model predicts that average annual net infiltration at Yucca Mountain will range from a mean of about 1 mm under present climatic conditions to a mean of at least 2.4 mm under full glacial (pluvial) conditions. Considerable variations about these means are expected to occur from year-to-year

  8. Considerations on the extreme flood produced in Ral Mare Basin (Retezat Mountains, Romania)

    International Nuclear Information System (INIS)

    Barbuc, Mihai

    2004-01-01

    The aim of this paper is to illustrate the major impact of an extreme flood on the landscape, on the upper basin of Raul Mare, from Retezat Mountains, Romania, and what means 'hazardous phenomenon'. Romania is one of the European countries most severely affected by natural hazards, which have a big social and economic impact. Between them, floods are the very frequent and have one of the most important effects on settlements, agriculture and communications. Raul mare has three main sources: Lapusnicul Mare, Lapusnicul Mic and Raul Ses. Its springs from glacier lakes, at high altitude, over 2000 m, and have torrential and narrow valleys. In present, their conflence, at Gura Apelor, is covered by an anthropic lake, formed behind of a great dam, 173 m high. This dam had a major role to attenuate and to fail to control the extreme flood from July 1990 and, at the same time, to reduce significantly, the damages in Hateg depression, a low area with many settlements and economic objectives. Behind of the Gura Apelor kake, the Lapusnicul Mare and Mic valleys, the flush flood covered the whole channel, the effects on the landscape-devastating, and the flood probability, between 0,1 -0,1 %. The maps, graphics and pictures presented in this paper will emphasize the situation before and after the event. Furthermore, some standard forms used to be filled in by authorities for immediate and unitary recording of extreme phenomena are presented.(Author)

  9. Emerging Glacial Lakes in the Cordillera Blanca, Peru: A Case Study at Arteson Glacier

    Science.gov (United States)

    Chisolm, R. E.; Mckinney, D. C.; Gomez, J.; Voss, K.

    2012-12-01

    Tropical glaciers are an essential component of the water resources systems in the mountainous regions where they are located, and a warming climate has resulted in the accelerated retreat of Andean glaciers in recent decades. The shrinkage of Andean glaciers influences the flood risk for communities living downstream as new glacial lakes have begun to form at the termini of some glaciers. As these lakes continue to grow in area and volume, they pose an increasing risk of glacial lake outburst floods (GLOFs). Ice thickness measurements have been a key missing link in studying the tropical glaciers in Peru and how climate change is likely to impact glacial melt and the growth of glacial lakes. Ground penetrating radar (GPR) has rarely been applied to glaciers in Peru to measure ice thickness, and these measurements can tell us a lot about how a warming climate will affect glacier mass balance. This study presents GPR data taken in July 2012 at the Arteson glacier in the Cordillera Blanca, Peru. A new lake has begun to form at the terminus of the Arteson glacier, and this lake has key features, including overhanging ice and loose rock likely to create landslides, that could trigger a catastrophic GLOF if the lake continues to grow. This new lake is part of a series of three lakes that have formed below the Arteson glacier. The two lower lakes, Artesonraju and Paron, are much larger so that if there were an avalanche or landslide into the new lake below Arteson glacier, the impact could potentially be more catastrophic than a GLOF from one single lake. Estimates of how the lake mass balance is likely to evolve due to the retreating glacier are key to assessing the flood risk from this dynamic three-lake system. Because the glacier mass balance and lake mass balance are closely linked, the ice thickness measurements and measurements of the bed slope of the Arteson glacier and underlying bedrock give us a clue to how the lake is likely to evolve. GPR measurements of

  10. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

    International Nuclear Information System (INIS)

    Dutton, Shirley

    1999-01-01

    The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two main phases. The original objectives of the reservoir-characterization phase of the project were (1) to provide a detailed understanding of the architecture and heterogeneity of two representative fields of the Delaware Mountain Group, Geraldine Ford and Ford West, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, (2) to chose a demonstration area in one of the fields, and (3) to simulate a CO 2 flood in the demonstration area

  11. Meteorological, stream-discharge, and water-quality data for water year 1992 from two basins in Central Nevada

    International Nuclear Information System (INIS)

    McKinley, P.W.; Oliver, T.A.

    1995-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is studying Yucca Mountain, Nevada, as a potential repository for high level nuclear waste. As part of the Yucca Mountain Site Project, the analog recharge study is providing data for the evaluation of recharge to the Yucca Mountain ground-water system given a cooler and wetter climate than currently exists. The current and climatic conditions are favorable to the isolation of radioactive waste. Because waste isolation from the accessible environment for 10,000 years is necessary, climatic change and the potential for increased ground-water recharge need to be considered as part of the characterization of the potential repository. Therefore, two small basins, measuring less than 2 square miles, were studied to determine the volume of precipitation available for recharge to ground water. The semiarid 3-Springs Basin is located to the east of Kawich Peak in the Kawich Range east of Tonopah, Nevada. Stewart Basin is a subalpine drainage basin north of Arc Dome in the Toiyabe Range north of Tonopah, Nevada. The purpose of this publication is to make available the meteorological, stream-discharge, and water-quality data collected during the study. Meteorological data collected include air temperature, soil temperature, solar radiation, and relative humidity. Stream-discharge data were collected from the surface-water outlet of each basin. Water-quality data are chemical analyses of water samples collected from surface- and ground-water sources. Each basin has a meteorological station located in the lower and upper reaches of the basin. Hydrologic records include stream-discharge and water-quality data from the lower meteorological site and water-quality data from springs within the basins

  12. Mid-latitude trans-Pacific reconstructions and comparisons of coupled glacial/interglacial climate cycles based on soil stratigraphy of cover-beds

    Science.gov (United States)

    Alloway, B. V.; Almond, P. C.; Moreno, P. I.; Sagredo, E.; Kaplan, M. R.; Kubik, P. W.; Tonkin, P. J.

    2018-06-01

    South Westland, New Zealand, and southern Chile, are two narrow continental corridors effectively confined between the Pacific Ocean in the west and high mountain ranges in the east which impart significant influence over regional climate, vegetation and soils. In both these southern mid-latitude regions, evidence for extensive and repeated glaciations during cold phases of the Quaternary is manifested by arrays of successively older glacial drift deposits with corresponding outwash plain remnants. In South Westland, these variably aged glacial landforms are mantled by layered (multisequal) soils characterised by slow loess accretion and pedogenesis in an extreme leaching and weathering environment. These cover-bed successions have undergone repeated coupled phases of topdown and upbuilding soil formation that have been related to fluctuating cycles of interglacial/warm and glacial/cold climate during the Quaternary. In this study, we recognise multisequal soils overlying glacial landforms in southern continental Chile but, unlike the spodic (podzolic) soil sequences of South Westland, these are of dominantly volcanigenic (andic) provenance and are very similar to multisequal soils of andic provenance that predominate in, and adjacent to, areas of rhyolitic to andesitic volcanism in North Island, New Zealand. Here we develop a soil-stratigraphic model to explain the observed occurrence of multisequal soils mantling dominantly glacial landforms of southern continental Chile. Based on proxy data from southern Chile, we propose that persistent vegetation cover and high precipitation on the western side of the Andes, during colder-than-present episodes tended to suppress the widespread production of glacially-derived loessial materials despite the pervasive occurrence of glacial and glacio-fluvial deposits that have frequently inundated large tracts of this landscape during the Quaternary. Given the lack of loess cover-beds that have traditionally assisted in the

  13. The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep

    Directory of Open Access Journals (Sweden)

    J. L. Andersen

    2015-10-01

    Full Text Available With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.

  14. Timing of lake-level changes for a deep last-glacial Lake Missoula: optical dating of the Garden Gulch area, Montana, USA

    DEFF Research Database (Denmark)

    Smith, Larry N.; Sohbati, Reza; Buylaert, Jan-Pieter

    2018-01-01

    Glaciolacustrine sediments in the Clark Fork River valley at Garden Gulch, near Drummond, Montana, USA record highstand positions of the ice-dammed glacial Lake Missoula and repeated subaerial exposure. During these highstands the lake was at greater than 65% of its recognized maximum capacity......-level fluctuation, occurred over time scales of decades to ∼2 ka. Bioturbated sandy slopewash dated at 10.6 ± 0.9 ka and 11.9 ± 1.2 ka unconformably overlies the upper glaciolacustrine deposits. The uppermost sediments, above the glaciolacustrine section, are younger than the Glacier Peak tephra (13.7-13.4 cal ka B...... the lake's highstand position due to ice-dam failure likely led to scour in the downstream portions of the glacial Lake Missoula basin and megafloods in the Channeled Scabland....

  15. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    Science.gov (United States)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  16. Glacial Features (Point) - Quad 168 (EPPING, NH)

    Data.gov (United States)

    University of New Hampshire — The Glacial Features (Point) layer describes point features associated with surficial geology. These glacial features include, but are not limited to, delta forsets,...

  17. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains

    Science.gov (United States)

    Shen, Yan-Jun; Shen, Yanjun; Fink, Manfred; Kralisch, Sven; Chen, Yaning; Brenning, Alexander

    2018-02-01

    Streamflow and snowmelt runoff timing of mountain rivers are susceptible to climate change. Trends and variability in streamflow and snowmelt runoff timing in four mountain basins in the southern Tianshan were analyzed in this study. Streamflow trends were detected by Mann-Kendall tests and changes in snowmelt runoff timing were analyzed based on the winter/spring snowmelt runoff center time (WSCT). Pearson's correlation coefficient was further calculated to analyze the relationships between climate variables, streamflow and WSCT. Annual streamflow increased significantly in past decades in the southern Tianshan, especially in spring and winter months. However, the relations between streamflow and temperature/precipitation depend on the different streamflow generation processes. Annual precipitation plays a vital role in controlling recharge in the Toxkon basin, while the Kaidu and Huangshuigou basins are governed by both precipitation and temperature. Seasonally, temperature has a strong effect on streamflow in autumn and winter, while summer streamflow appears more sensitive to changes in precipitation. However, temperature is the dominant factor for streamflow in the glacierized Kunmalik basin at annual and seasonal scales. An uptrend in streamflow begins in the 1990s at both annual and seasonal scales, which is generally consistent with temperature and precipitation fluctuations. Average WSCT dates in the Kaidu and Huangshuigou basins are earlier than in the Toxkon and Kunmalik basins, and shifted towards earlier dates since the mid-1980s in all the basins. It is plausible that WSCT dates are more sensitive to warmer temperature in spring period compared to precipitation, except for the Huangshuigou basin. Taken together, these findings are useful for applications in flood risk regulation, future hydropower projects and integrated water resources management.

  18. An overview of the Yucca Mountain Global/Regional Climate Modeling Program

    International Nuclear Information System (INIS)

    Sandoval, R.P.; Behl, Y.K.; Thompson, S.L.

    1992-01-01

    The US Department of Energy (DOE) has developed a site characterization plan (SCP) to collect detailed information on geology, geohydrology, geochemistry, geoengineering, hydrology, climate, and meteorology (collectively referred to as ''geologic information'') of the Yucca Mountain site. This information will be used to determine if a mined geologic disposal system (MGDS) capable of isolating high-level radioactive waste without adverse effects to public health and safety over 10,000 years, as required by regulations 40 CFR Part 191 and 10 CFR Part 60, could be constructed at the Yucca Mountain site. Forecasts of future climates conditions for the Yucca Mountain area will be based on both empirical and numerical techniques. The empirical modeling is based on the assumption that future climate change will follow past patterns. In this approach, paleclimate records will be analyzed to estimate the nature, timing, and probability of occurrence of certain climate states such as glacials and interglacials over the next 10,000 years. For a given state, key climate parameters such as precipitation and temperature will be assumed to be the same as determined from the paleoclimate data. The numerical approach, which is the primary focus of this paper, involves the numerical solution of basic equations associated with atmospheric motions. This paper describes these equations and the strategy for solving them to predict future climate conditions around Yucca Mountain

  19. GEOMORPHOLOGY AND SEDIMENTOLOGY OF UNION GLACIER AREA, ELLSWORTH MOUNTAINS, OCCIDENTAL ANTARCTICA

    Directory of Open Access Journals (Sweden)

    Vanessa do Couto Silva Costa

    2017-08-01

    Full Text Available The work aims to investigate the geomorphological and sedimentological aspects of Union Glacier area (79°45’00’’S; 82°30’00’’W, southern sector of Ellsworth Mountains. Geomorphological cartography based on 15 m ASTER (2010 satellite imagery and field works were carried out during the Brazilian expedition (2011/2012 enabled the identification of morainic formations: ice-cored hummock moraines, supraglacial moraines, and recession moraines in the interior of the valleys. With the exception of the latter one, all types of moraines have been developed on the blue-ice areas. The evidence for paleo wet-based glacial conditions is reconstructed from a range of geomorphological record, including exposed abrasion marks, striations and glaciotectonic deformation. This type of deformation is represented by lee sides of oversteepening bedrock promontories which follow the tributaries of glaciers ice flow. Glacial sediments were collected from the moraines for granulometric and morphometric analyses. They show the prevalence of sandy gravel and sand texture, low quantity of fine fractions, and absence of attributes such as striated and faceted clasts, which indicate, on the other side, low-sediment transport capacity from the ice sheet bottom. It is inferred that the moraine debris are originated from local sources. Weathering action and constant katabatic winds are possibly the major agents of transport and alteration of the exposed sediments. The geomorphological features reveal an ancient thicker ice sheet, and sedimentary characteristics of the morainic formations reveal a latter thinner ice sheet in this sector of Ellsworth Mountains.

  20. Records of millennial-scale climate change from the Great Basin of the Western United States

    Science.gov (United States)

    Benson, Larry

    High-resolution (decadal) records of climate change from the Owens, Mono, and Pyramid Lake basins of California and Nevada indicate that millennialscale oscillations in climate of the Great Basin occurred between 52.6 and 9.2 14C ka. Climate records from the Owens and Pyramid Lake basins indicate that most, but not all, glacier advances (stades) between 52.6 and ˜15.0 14C ka occurred during relatively dry times. During the last alpine glacial period (˜60.0 to ˜14.0 14C ka), stadial/interstadial oscillations were recorded in Owens and Pyramid Lake sediments by the negative response of phytoplankton productivity to the influx of glacially derived silicates. During glacier advances, rock flour diluted the TOC fraction of lake sediments and introduction of glacially derived suspended sediment also increased the turbidity of lake water, decreasing light penetration and photosynthetic production of organic carbon. It is not possible to correlate objectively peaks in the Owens and Pyramid Lake TOC records (interstades) with Dansgaard-Oeschger interstades in the GISP2 ice-core δ18O record given uncertainties in age control and difference in the shapes of the OL90, PLC92 and GISP2 records. In the North Atlantic region, some climate records have clearly defined variability/cyclicity with periodicities of 102 to 103 yr; these records are correlatable over several thousand km. In the Great Basin, climate proxies also have clearly defined variability with similar time constants, but the distance over which this variability can be correlated remains unknown. Globally, there may be minimal spatial scales (domains) within which climate varies coherently on centennial and millennial scales, but it is likely that the sizes of these domains vary with geographic setting and time. A more comprehensive understanding of the mechanisms of climate forcing and the physical linkages between climate forcing and system response is needed in order to predict the spatial scale(s) over which

  1. Typical land use pattern in high-mountain landscape - part of the Vysoke Tatry Mts. and the Podtatranska kotlina Basin; map fragment

    International Nuclear Information System (INIS)

    Hrnciarova, T.; Kubicek, F.; Ruzickova, H.; Berkova, A.; Simonovic, V.

    2002-01-01

    The territory of the Vysoke Tatry (High Tatras) Mts. and the Podtatranska kotlina Basin documents the human impact even in the highest situated parts of Slovakia. The human impact was obvious the same in the past (lowering of the upper timberline and the dwarf pine scrub by grazing) as in the present time (recreation, tourism, and sport). The most frequent wood species of the Tatras forests is the spruce tree. Fir occurs up to the altitude of 1,250 m above sea level. The wood species accompanying the spruce in higher positions are larch, cembra pine, and mountain ash where they form the upper timberline. The mountain dwarf pine scrub creates an independent tier above the upper timber line in the altitude oscillating between 1,550 m and 1,850 m and gradually transits into alpine meadows with rare flora and fauna. The foothill landscape is intensively agriculturally used. The present species composition of the meadows and pastures, as well as their landscape scenery was decisively determined by intensification of farming (adjustments of the terrain, draining of waterlogged areas and spring areas, removal of woody vegetation, creation of disproportionately large fields, sowing of introduced grass species, and the like). It has not only caused the change of the original nature of meadows and pastures, but it has also changed the whole sub-Tatras landscape. (authors)

  2. THE DRAINAGE EFFICIENCY INDEX (DEI) AS AN MORPHOLOGIAL INDICATOR OF LANDSLIDE SPATIAL OCCURRENCE IN MOUNTAINOUS CATCHMENTS. A case of study applied in the mountainous region of Brazilian Southeastern.

    Science.gov (United States)

    Henrique Muniz Lima, Pedro; Luiza Coelho Netto, Ana; do Couto Fernandes, Manoel

    2016-04-01

    Morphometric parameters, acquired notoriety mainly after the Drainage Density proposition (Horton 1932, 1945) and after they were applied by geomorphologists on the perspective to understand landscape functionalities, quantifying their characteristics through parameters and indexes. After the drainage density, many other parameters which describe the basin characteristics, behavior and dynamics have been proposed. Among them, for example, the DEI was proposed by Coelho Netto and contributors during the 80's, while they were seek to understand the hydrological and erosive dynamics on Bananal river basin (Brazilian Southeastern). Through this investigations the DEI was created, revealing the importance of parameters as hollow and drainage density, conjugated to the topographic gradient (Meis et al. 1982) who prosecute controls on the water flow efficiency along the hollows in order to activate the regressive erosion of the main channel. Later on this index was applied on the basin scale in several works developed in mountainous regions, showing a remarkable correlation with the occurrence of landslides such as showed by Coelho Netto et al. (2007); that posteriorly use this index as one of the components of the landslide susceptibility map for the Tijuca Massif, located in Rio de Janeiro Municipality. This work aims to establish patterns of the DEI index values (applied to mountainous low order basins) and the relationship on the occurrence of Debriflows or shallow translational slides. For this, the DEI index was applied on 4 different study areas located on the Southeastern mountainous region of Brazil to address deeply the connection between the index and the occurrence of landslides of different types applied for first and second order basins. The major study area is the Córrego Dantas Basin, situated in Nova Friburgo municipality (RJ), which is a 53 km² basin was affected by 327 landslides caused by a heavy rainfall on January 2011; Coelho Netto et al. (in

  3. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic.

    Science.gov (United States)

    Dancer, S J; Shears, P; Platt, D J

    1997-05-01

    Ellesmere Island is the northern most member of the Canadian Arctic Archipelago with over one-third of the land mass covered by ice. A joint services expedition to the island's Blue Mountains offered a unique opportunity for microbiological studies of resident bacteria in an environment uninhabited by man. Over 100 samples of water and ice were collected from stream, lake and glacier and the filtrate cultured under canvas. Bacterial growth was harvested onto swabs for transport back to the UK and 50 coliforms chosen at random for identification and antibiotic susceptibility testing. Most of the glacial strains were capsulated, pigmented and some over 2000 years old. Genera such as Serratia, Enterobacter, Klebsiella and Yersinia were found; speciation was inconclusive and some organisms remain unidentified. Ampicillin resistance was evident in 80% of water isolates as opposed to 30% of the glacial organisms, but the isolates were generally exquisitely susceptible to antibiotics. The facility for ampicillin resistance did not appear to be transferable. Plasmid DNA was found in 33% of the glacial organisms and over 50% of the water isolates. Similar profiles were identified within and apparently between species and required plasmid restriction analysis to help establish identity. Plasmid-free Serratia spp. were subjected to genomic fingerprinting. Indistinguishable patterns were found within sets of isolates both widely spaced by distance and collection date and it was postulated that coliforms able to survive an Arctic environment had spread extensively throughout the expedition area. In conclusion, this study contributes towards knowledge of naturally occurring antibiotic resistance, confirms the presence of plasmids and genotypic data provided evidence that potentially ancient organisms from glaciers can be cultured from water samples significantly distant.

  4. Mechanisms controlling the impact of multi-year drought on mountain hydrology.

    Science.gov (United States)

    Bales, Roger C; Goulden, Michael L; Hunsaker, Carolyn T; Conklin, Martha H; Hartsough, Peter C; O'Geen, Anthony T; Hopmans, Jan W; Safeeq, Mohammad

    2018-01-12

    Mountain runoff ultimately reflects the difference between precipitation (P) and evapotranspiration (ET), as modulated by biogeophysical mechanisms that intensify or alleviate drought impacts. These modulating mechanisms are seldom measured and not fully understood. The impact of the warm 2012-15 California drought on the heavily instrumented Kings River basin provides an extraordinary opportunity to enumerate four mechanisms that controlled the impact of drought on mountain hydrology. Two mechanisms intensified the impact: (i) evaporative processes have first access to local precipitation, which decreased the fractional allocation of P to runoff in 2012-15 and reduced P-ET by 30% relative to previous years, and (ii) 2012-15 was 1 °C warmer than the previous decade, which increased ET relative to previous years and reduced P-ET by 5%. The other two mechanisms alleviated the impact: (iii) spatial heterogeneity and the continuing supply of runoff from higher elevations increased 2012-15 P-ET by 10% relative to that expected for a homogenous basin, and iv) drought-associated dieback and wildfire thinned the forest and decreased ET, which increased 2016 P-ET by 15%. These mechanisms are all important and may offset each other; analyses that neglect one or more will over or underestimate the impact of drought and warming on mountain runoff.

  5. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    Science.gov (United States)

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  6. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    Science.gov (United States)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  7. AN GEOLOGICAL OVERVIEW OF GLACIAL ACCUMULATION AND EROSIONAL OCCURRENCES AT THE VELEBIT AND THE BIOKOVO MTS., CROATIA

    Directory of Open Access Journals (Sweden)

    Josipa Velić

    2017-01-01

    Full Text Available Numerous accumulation and erosional forms originating from the activity of small valley glaciers or cirque glaciers occur in the highest mountains in Croatia: Velebit (1757 m and Biokovo (1762 m. They were produced during the Upper Pleistocene, in the Würm glacial stage of the Alpine classification. Accumulation forms comprise ground, terminal and recessional moraines, drumlins, eskers, glacial erratics and glaciofluvial and glaciolacustrine sediments. Single ridge eskers are often associated with areas of kame and kettle topography. Among erosional occurrences roche moutonnée (sheepback rocks, U-shaped valleys ranging in size from meso-macro, arêtes, hanging valleys, meso-sized cirques, kettles, and striations were noted. In Croatian Dinarides such forms in most cases occur between 900 and 1400 meters altitude. During the early to middle Würm glacial maximum, the snow line was above 900 m, perhaps even above 1000 m altitude, and sea levels were 120 meters lower than at present day. Considering the features of the present relief, ice cover was probably 200 to 300 m thick. Features of drumlins, eskers and kettles point to warm-based glaciers. The drumlins are small – up to 100 meters long and 50 meters wide, with the most common long axis ranging orientation from 130o – 310o. The near total absence of platy clasts, as well as their stratigraphic affiliation, largely reflects features of source rocks.

  8. From coseismic offsets to fault-block mountains

    Science.gov (United States)

    Thompson, George A.; Parsons, Tom

    2017-09-01

    In the Basin and Range extensional province of the western United States, coseismic offsets, under the influence of gravity, display predominantly subsidence of the basin side (fault hanging wall), with comparatively little or no uplift of the mountainside (fault footwall). A few decades later, geodetic measurements [GPS and interferometric synthetic aperture radar (InSAR)] show broad (˜100 km) aseismic uplift symmetrically spanning the fault zone. Finally, after millions of years and hundreds of fault offsets, the mountain blocks display large uplift and tilting over a breadth of only about 10 km. These sparse but robust observations pose a problem in that the coesismic uplifts of the footwall are small and inadequate to raise the mountain blocks. To address this paradox we develop finite-element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift, which is predicted to take place within one to two decades after each large earthquake. Thus, the best-preserved topographic signature of earthquakes is expected to occur early in the postseismic period.

  9. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.D.; Yount, J.C. (eds.)

    1988-12-31

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

  10. Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Yount, J.C.

    1988-01-01

    Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation's first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey's continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base

  11. Glacially induced faulting along the NW segment of the Sorgenfrei-Tornquist Zone, northern Denmark: Implications for neotectonics and Lateglacial fault-bound basin formation

    Science.gov (United States)

    Brandes, Christian; Steffen, Holger; Sandersen, Peter B. E.; Wu, Patrick; Winsemann, Jutta

    2018-06-01

    stress build-up additionally support that this neotectonic activity occurred between ∼14.5 and 12 ka and was controlled by stress changes that were induced by the decay of the Scandinavian ice sheet. In the Holocene, the stress field in the study area thus changed from GIA-controlled to a stress field that is determined by plate tectonic forces. Comparable observations were described from the central STZ in the Kattegat area and the southeastern end of the STZ near Bornholm. We therefore interpret the entire STZ as a structure where glacially induced faulting very likely occurred in Lateglacial times. The fault reactivation was associated with the formation of small fault-bound basins that provided accommodation space for Lateglacial to Holocene marine and freshwater sediments.

  12. Concurrent and opposed environmental trends during the last glacial cycle between the Carpathian Basin and the Black Sea coast: evidence from high resolution enviromagnetic loess records

    Science.gov (United States)

    Hambach, Ulrich; Zeeden, Christian; Veres, Daniel; Obreht, Igor; Bösken, Janina; Marković, Slobodan B.; Eckmeier, Eileen; Fischer, Peter; Lehmkuhl, Frank

    2015-04-01

    Danube Basin near to the Black Sea (Urluia quarry, Dobrogea, Romania). In order to investigate the potential of Danubian loess in recording millennial-scale palaeoclimate variability, a 22 m deep drill-core from the Titel loess plateau and a more than 15 metres thick LPSS from the Urluia quarry were contiguously sampled. Both sides provide improved insight into past climate evolution of the regions down to MIS 6. The presentation will focus on the down-core/down-section variability of χ and χfd as environmental proxy parameters. Based on these mineral magnetic proxies we can already draw the following conclusions: 1) The dust accumulation rates in both regions were relatively constant over the past c. 130 kyrs, even during full interglacial conditions. 2) In the studied sections, the pedo-complex S1 represents ± the Eemian and not the entire MIS 5, as previously assumed. 3) There are a lot of similarities between the mineral magnetic records of the Titel-Plateau (Vojvodina, South Carpathian Basin) and the Urluia quarry (Dobrogea, Lower Danube Basin) and also between these records and those from the Chinese Loess Plateau, but also fundamental differences. 4) During the early glacial (end of MIS5) we find no evidence for soil formation in the South Carpathian Basin whereas in the Dobrogea near to the Black Sea coast embryonic soils developed. On the contrary, during the younger part of MIS 3 (≤ 40 ka) near to the Black Sea coast soil humidity sharply decreased towards the LGM whereas in the South Carpathian Basin the mineral magnetic proxies indicate a relative maximum in pedogenesis/soil humidity. Sedimentological, geochemical, geochronological and palaeomagnetic investigations are in progress. They will provide further high quality data sets leading to an improved understanding of the Late Pleistocene environmental evolution in the Danube Basin.

  13. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  14. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Flynn, T.; Buchanan, P.; Trexler, D.

    1995-12-01

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste

  15. Environmental assessment overview, Yucca Mountain site, Nevada Research and Development Area, Nevada

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Yucca Mountain site in Nevada as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Great Basin, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Yucca Mountain site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendations of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Yucca Mountain site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Yucca Mountain site as one of five sites suitable for characterization. 3 figs

  16. How hard were the Jura mountains pushed?

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D

    2008-09-15

    The mechanical twinning of calcite is believed to record past differential stress values, but validating results in the context of past tectonic situations has been rarely attempted. Using assumptions of linear gradients of stress components with depth, a stress gradient based on twinning palaeopiezometry is derived for the Swiss Molasse Basin, the indenter region to the Jura fold and thrust belt. When integrated into a model of the retrodeformed Jura-Molasse system, allowing horizontal stress concentration and conservation along the original taper geometry, the stress profile proves consistent with the position of the Jura-Molasse (ftb-indenter) transition. The model demonstrates mechanically why the Plateau Molasse portion of the Molasse Basin remained relatively undeformed when transmitting tectonic forces applied to the Jura mountains. (author)

  17. How hard were the Jura mountains pushed?

    International Nuclear Information System (INIS)

    Hindle, D.

    2008-01-01

    The mechanical twinning of calcite is believed to record past differential stress values, but validating results in the context of past tectonic situations has been rarely attempted. Using assumptions of linear gradients of stress components with depth, a stress gradient based on twinning palaeopiezometry is derived for the Swiss Molasse Basin, the indenter region to the Jura fold and thrust belt. When integrated into a model of the retrodeformed Jura-Molasse system, allowing horizontal stress concentration and conservation along the original taper geometry, the stress profile proves consistent with the position of the Jura-Molasse (ftb-indenter) transition. The model demonstrates mechanically why the Plateau Molasse portion of the Molasse Basin remained relatively undeformed when transmitting tectonic forces applied to the Jura mountains. (author)

  18. Mountain big sagebrush age distribution and relationships on the northern Yellowstone Winter Range

    Science.gov (United States)

    Carl L. Wambolt; Trista L. Hoffman

    2001-01-01

    This study was conducted within the Gardiner Basin, an especially critical wintering area for native ungulates utilizing the Northern Yellowstone Winter Range. Mountain big sagebrush plants on 33 sites were classified as large (≥22 cm canopy cover), small (

  19. The influence of the geomorphological factors on the relief modelling within Eselnita hydrographic basin (Danube catchment/Romania

    Directory of Open Access Journals (Sweden)

    DANIELA VLAD

    2012-08-01

    Full Text Available Developed on the south-eastern side of Almãjului Mountains, Eşelniţa drainage basin neighbours upon the following basins: upon S – SV with Mala, upon SV - V with Mraconia, upon V – NV with Berzasca, upon NV - NNE with Nera and on the NNE – SE direction with Cerna. The basin has a surface of 77 km2 and present a 5th degree hydrographic network according to Horton-Strahler ranking system, tributary to Danube by means of Eşelniţa main collector. Developed in a mountain landscape, the basin presents different levels held between minimum altitude of 64 m at the confluence with the Danube and maximum altitude of 1107 m, thus presenting a difference of 1043 m. Geological formations within the basin belong predominant to the Danubian Domain, so in central and upper courses, these are represented by a crystalline foundation and by magmatic rocks of intrusive nature covered by very small areas of sediment located in the northwest (belong to the Lower Jurassic and in the south-eastern (belongs to the Upper Cretaceous of the basin. But in the lower course, there are both crystalline and the sedimentary formations, last being integrated to Orşova depression and whose presence is related to the evolution of the Danube. Morphometric indices of Eşelniţa basin allows the distinction of a higher sector, mountainous terrain with high energy under a relatively increased fragmentation and depression sector with low relief energy and also with an intense fragmentation of the existing sedimentary rocks wich favors erosion manifestation in the context of deforestation action.

  20. Millennial-scale variability during the last glacial in vegetation records from North America

    Science.gov (United States)

    Jiménez-Moreno, Gonzalo; Anderson, R. Scott; Desprat, S.; Grigg, L.D.; Grimm, E.C.; Heusser, L.E.; Jacobs, Brian F.; Lopez-Martinez, C.; Whitlock, C.L.; Willard, D.A.

    2010-01-01

    High-resolution pollen records from North America show that terrestrial environments were affected by Dansgaard-Oeschger (D-O) and Heinrich climate variability during the last glacial. In the western, more mountainous regions, these climate changes are generally observed in the pollen records as altitudinal movements of climate-sensitive plant species, whereas in the southeast, they are recorded as latitudinal shifts in vegetation. Heinrich (HS) and Greenland (GS) stadials are generally correlated with cold and dry climate and Greenland interstadials (GI) with warm-wet phases. The pollen records from North America confirm that vegetation responds rapidly to millennial-scale climate variability, although the difficulties in establishing independent age models for the pollen records make determination of the absolute phasing of the records to surface temperatures in Greenland somewhat uncertain. ?? 2009 Elsevier Ltd.

  1. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  2. Glacial reduction and millennial-scale variations in Drake Passage throughflow.

    Science.gov (United States)

    Lamy, Frank; Arz, Helge W; Kilian, Rolf; Lange, Carina B; Lembke-Jene, Lester; Wengler, Marc; Kaiser, Jérôme; Baeza-Urrea, Oscar; Hall, Ian R; Harada, Naomi; Tiedemann, Ralf

    2015-11-03

    The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ∼ 40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.

  3. Detailed measured sections, cross sections, and paleogeographic reconstructions of the upper cretaceous and lower tertiary nonmarine interval, Wind River Basin, Wyoming: Chapter 10 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    Science.gov (United States)

    Johnson, Ronald C.

    2007-01-01

    Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the

  4. Alboran Basin, southern Spain - Part I: Geomorphology

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A. [Secretaria General de Pesca Maritima, Corazon de Maria, 8, 28002 Madrid (Spain); Ballesteros, M.; Rivera, J.; Acosta, J. [Instituto Espanol de Oceanografia, Corazon de Maria, 8, 28002 Madrid (Spain); Montoya, I. [Universidad Juan Carlos I, Campus de Mostoles, Madrid (Spain); Uchupi, E. [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2008-01-15

    Bathymetric, 3D relief and shaded relief maps created from multibeam echo-sounding data image the morphology of the Alboran Basin, a structural low along the east-west-trending Eurasian-African plates boundary. Topographic features in the basin are the consequence of volcanism associated with Miocene rifting, rift and post-rift sedimentation, and recent faulting resulting from the convergence of the African-Eurasian plates. Pleistiocene glacially induced regressions/transgressions when the sea level dropped to about 150 m below its present level gas seeps and bottom currents. Recent faulting and the Pleistocene transgressions/regressions led to mass-wasting, formation of turbidity currents and canyon erosion on the basin's slopes. Recent fault traces at the base of the northern basin slope have also served as passageways for thermogenic methane, the oxidation of which by bacteria led to the formation of carbonate mounds along the fault intercepts on the sea floor. Expulsion of thermogenic or biogenic gas has led to the formation of pockmarks; erosion by bottom currents has resulted in the formation of moats around seamounts and erosion of the seafloor of the Alboran Ridge and kept the southern edge of the 36 10'N high sediment free. (author)

  5. Causes of strong ocean heating during glacial periods

    Science.gov (United States)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  6. Geodesy and contemporary strain in the Yucca Mountain region, Nevada

    International Nuclear Information System (INIS)

    Keefer, W.R.; Coe, J.A.; Pezzopane, S.K.; Hunter, W.C.

    1997-01-01

    Geodetic surveys provide important information for estimating recent ground movement in support of seismotectonic investigations of the potential nuclear-waste storage site at Yucca Mountain, Nevada. Resurveys of established level lines document up to 22 millimeters of local subsidence related to the 1992 Little Skull Mountain earthquake, which is consistent with seismic data that show normal-slip rupture and with data from a regional trilateration network. Comparison of more recent surveys with a level line first established in 1907 suggests 3 to 13 centimeters of subsidence in the Crater Flat-Yucca Mountain structural depression that coincides with the Bare Mountain fault; small uplifts also were recorded near normal faults at Yucca Mountain. No significant deformation was recorded by a trilateration network over a 10-year period, except for coseismic deformation associated with the Little Skull Mountain earthquake, but meaningful results are limited by the short temporal period of that data set and the small rate of movement. Very long baseline interferometry that is capable of measuring direction and rates of deformation is likewise limited by a short history of observation, but rates of deformation between 8 and 13 millimeters per year across the basin and Range province are indicated by the available data

  7. Classification of Prairie basins by their hysteretic connected functions

    Science.gov (United States)

    Shook, K.; Pomeroy, J. W.

    2017-12-01

    Diagnosing climate change impacts in the post-glacial landscapes of the North American Prairies through hydrological modelling is made difficult by drainage basin physiography. The region is cold, dry and flat with poorly developed stream networks, and so the basin area that is hydrologically connected to the stream outlet varies with basin depressional storage. The connected area controls the contributing area for runoff reaching the stream outlet. As depressional storage fills, ponds spill from one to another; the chain of spilling ponds allows water to flow over the landscape and increases the connected area of the basin. As depressional storage decreases, the connected fraction drops dramatically. Detailed, fine-scale models and remote sensing have shown that the relationship between connected area and the depressional storage is hysteretic in Prairie basins and that the nature of hysteresis varies with basin physiography. This hysteresis needs to be represented in hydrological models to calculate contributing area, and therefore streamflow hydrographs. Parameterisations of the hysteresis are needed for large-scale models used for climate change diagnosis. However, use of parameterisations of hysteresis requires guidance on how to represent them for a particular basin. This study shows that it is possible to relate the shape of hysteretic functions as determined by detailed models to the overall physiography of the basin, such as the fraction of the basin below the outlet, and remote sensing estimates of depressional storage, using the size distribution and location of maximum ponded water areas. By classifying basin physiography, the hysteresis of connected area - storage relationships can be estimated for basins that do not have high-resolution topographic data, and without computationally-expensive high-resolution modelling.

  8. Glacial conditions in the Red Sea

    Science.gov (United States)

    Rohling, Eelco J.

    1994-10-01

    In this paper, results from previous studies on planktonic foraminifera, δ18O, and global sea level are combined to discuss climatic conditions in the Red Sea during the last glacial maximum (18,000 B.P.). First, the influence of 120-m sea level lowering on the exchange transport through the strait of Bab-el-Mandab is considered. This strait is the only natural connection of the Red Sea to the open ocean. Next, glacial Red Sea outflow salinity is estimated (about 48 parts per thousand) from the foraminiferal record. Combined, these results yield an estimate of the glacial net water deficit, which appears to have been quite similar to the present (about 2 m yr-1). Finally, budget calculation of δ18O fluxes suggests that the glacial δ18O value of evaporation was about 50% of the present value. This is considered to have resulted from substantially increased mean wind speeds over the glacial Red Sea, which would have caused a rapid drop in the kinematic fractionation factor for 18O. The sensitivity of the calculated values for water deficit and isotopic fractionation to the various assumptions and estimates is evaluated in the discussion. Improvents are to be expected especially through research on the glacial salinity contrast between the Red Sea and Gulf of Aden. It is argued, however, that such future improvement will likely result in a worsening of the isotopic discrepancy, thus increasing the need for an additional mechanism that influenced fractionation (such as mean wind speed). This study demonstrates the need for caution when calculating paleosalinities from δ18O records under the assumption that the modern S∶δ18O relation has remained constant through time. Previously overlooked factors, such as mean wind speed, may have significantly altered that relation in the past.

  9. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS IN THE CENTRAL GREAT BASIN

    Science.gov (United States)

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows comprise a very small percentage of the total landscape of the mountain ranges in the central Great Basin however, they represent important ecological environments. We have used s...

  10. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Science.gov (United States)

    Swarnkar, Somil; Malini, Anshu; Tripathi, Shivam; Sinha, Rajiv

    2018-04-01

    High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE) and the sediment delivery ratio (SDR) equations are used to estimate the spatial pattern of soil erosion (SE) and sediment yield (SY) in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha-1 yr-1) with higher values in the upper mountainous region (92 ± 15.2 t ha-1 yr-1) compared to the lower alluvial plains (19.3 ± 4 t ha-1 yr-1). Furthermore, the topographic steepness (LS) and crop practice (CP) factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin - Nanak Sagar Dam (NSD) for the period 1962-2008 and Husepur gauging station (HGS) for 1987-2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2 × 105 t yr-1 and 6.7 ± 1.4 × 106 t yr-1, respectively, and the estimated 90 % interval contains the observed values of 6.4 × 105 t yr-1 and 7.2 × 106 t yr-1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and SY estimates at ungauged basins.

  11. Hydrochemical Regions of the Glacial Aquifer System, Northern United States, and Their Environmental and Water-Quality Characteristics

    Science.gov (United States)

    Arnold, Terri L.; Warner, Kelly L.; Groschen, George E.; Caldwell, James P.; Kalkhoff, Stephen J.

    2008-01-01

    characteristics of the clusters. The result of the Maximum Likelihood Classification is a map showing five hydrochemical regions of the glacial aquifer system. Statistical analysis of ion concentrations (calcium, chloride, fluoride, magnesium, sodium, potassium, sulfate, and bicarbonate) in samples collected from wells completed in the glacial aquifer system illustrates that variations in water quality can be explained, in part, by related environmental characteristics that control the movement of ground water through the aquifer system. A comparison of median concentrations of chemical constituents in ground water among the five hydrochemical regions indicates that ground water in the Midwestern Agricultural Region, the Urban-Influenced Region, and the Western Agriculture and Grassland Region has the highest concentrations of major and minor ions, whereas ground water in the Northern and Great Lakes Forested Region and the Mountain and Coastal Forested Region has the lowest concentrations of these ions. Median concentrations of barium, arsenic, lithium, boron, strontium, and nitrite plus nitrate as nitrogen also are significantly different among the hydrochemical regions.

  12. Geographic, geologic, and hydrologic summaries of intermontane basins of the northern Rocky Mountains, Montana

    Science.gov (United States)

    Kendy, Eloise; Tresch, R.E.

    1996-01-01

    This report combines a literature review with new information to provide summaries of the geography, geology, and hydrology of each of 32 intermontane basins in western Montana. The summary of each intermontane basin includes concise descriptions of topography, areal extent, altitude, climate, 1990 population, land and water use, geology, surface water, aquifer hydraulic characteristics, ground-water flow, and ground-water quality. If present, geothermal features are described. Average annual and monthly temperature and precipitation are reported from one National Weather Service station in each basin. Streamflow data, including the drainage area, period of record, and average, minimum, and maximum historical streamflow, are reported for all active and discontinued USGS streamflow-gaging stations in each basin. Monitoring-well data, including the well depth, aquifer, period of record, and minimum and maximum historical water levels, are reported for all long-term USGS monitoring wells in each basin. Brief descriptions of geologic, geophysical, and potentiometric- surface maps available for each basin also are included. The summary for each basin also includes a bibliography of hydrogeologic literature. When used alone or in conjunction with regional RASA reports, this report provides a practical starting point for site-specific hydrogeologic investigations.

  13. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Science.gov (United States)

    Malinverno, A.; Cook, A.; Daigle, H.; Oryan, B.

    2017-12-01

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  14. Methane Hydrate Formation from Enhanced Organic Carbon Burial During Glacial Lowstands: Examples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh; Oryan, Bar

    2017-12-15

    Methane hydrates in fine-grained marine sediments are often found within veins and fractures occupying discrete depth intervals that are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the methane hydrate stability zone (MHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. We investigate here the hypothesis that these hydrate deposits form in sediments that were deposited during glacial lowstands and contain higher amounts of labile particulate organic carbon (POC), leading to enhanced microbial methanogenesis. During Pleistocene lowstands, river loads are deposited near the steep top of the continental slope and turbidity currents transport organic-rich, fine-grained sediments to deep waters. Faster sedimentation rates during glacial periods result in better preservation of POC because of decreased exposure times to oxic conditions. The net result is that more labile POC enters the methanogenic zone and more methane is generated in these sediments. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent deposition of labile POC at the seafloor controlled by glacioeustatic sea level variations in the last 250 kyr. The model is run for parameters estimated at three sites drilled by the 2009 Gulf of Mexico Joint Industry Project: Walker Ridge in the Terrebonne Basin (WR313-G and WR313-H) and Green Canyon near the canyon embayment into the Sigsbee Escarpment (GC955-H). In the model, gas hydrate forms in sediments with higher labile POC content deposited during the glacial cycle between 230 and 130 kyr (marine isotope stages 6 and 7). The corresponding depth intervals in the three sites contain hydrates, as shown by high bulk electrical resistivities and resistive subvertical fracture fills. This match supports the hypothesis that enhanced POC burial during glacial lowstands can result in hydrate formation from in situ

  15. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    International Nuclear Information System (INIS)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years

  16. Evolution of the Great Tehuelche Paleolake in the Torres del Paine National Park of Chilean Patagonia during the Last Glacial Maximum and Holocene Evolución del Gran Paleolago Tehuelche en el Parque Nacional Torres del Paine de la Patagonia chilena durante el Último Máximo Glacial y Holoceno

    Directory of Open Access Journals (Sweden)

    Marcelo A Solari

    2012-01-01

    Full Text Available A number of glacial moraines are distributed from the eastern margin of the Torres del Paine drainage basin to near the present margin of the Patagonian Ice Fields, together with a set of regionally continuous lacustrine terraces related to glacial fluctuations. The geomorphology, supported by lake sediment evidence, indicates the existence of a single proglacial paleolake in this area, here referred to as the Great Tehuelche Paleolake. This concept helps to clarify the chronology of glacial events and leads to a better understanding of the evolution of the hydrologic system in the Torres del Paine area. Glacial advances previously referred to as A, B and C occurred during the Last Glacial Maximum and fed the Great Tehuelche Paleolake with meltwater, allowing it to reach its maximum extension. The discovery of thrombolites at Laguna Amarga suggests that the drainage of the paleolake towards the Última Esperanza Fjord took place at 7,113 Cal. yr BP, after the melting of an ice barrier that existed during the earlier glacial advance. This gave rise to the development of a complex fluvio-lacustrine hydrologic system that persists to the present day.Un grupo de morrenas glaciales están distribuidas desde el margen este de la cuenca de drenaje de Torres del Paine hacia el margen actual de los Campos de Hielo Patagónicos. Las morrenas se observan en conjunto con un grupo de terrazas lacustres regionales, las cuales están vinculadas a las fluctuaciones glaciales. La geomorfología y evidencias de sedimentos lacustres indican la existencia de un único lago proglacial, referido en este estudio como Gran Paleolago Tehuelche. Este concepto ayuda a clarificar la cronología de los eventos glaciales y permite una mejor comprensión de la evolución del sistema hidrológico del sector de Torres del Paine. Los eventos glaciales, previamente referidos como Avance A, B y C, ocurrieron durante el Último Máximo Glacial y alimentaron con aguas de fusión al

  17. Structural Evolution of central part of the Tuzgolu (Salt Lake) Basin, Central Anatolia, Turkey

    Science.gov (United States)

    Ada, M.; Cemen, I.; Çaptuğ, A.; Demirci, M.; Engin, C.

    2017-12-01

    The Tuzgolu Basin in Central Anatolia, Turkey, covers low-relief areas located between the Pontide Mountains to the North and Tauride Mountains to the South. The basin started to form as a rift basin during the Late Maastrichtian. The main Tuzgolu-Aksaray fault zone on the eastern margin of the basin and the northwest trending Yeniceoba and Cihanbeyli fault zones on the western margin of the basin were probably developed during that time. The basin has also experienced westward extension in response to westward escape of the Anatolian plate since Late Miocene. Several geologic studies have been conducted in the Tuz Gölü (Salt Lake) Basin and surrounding areas to determine structural and tectono-stratigraphic development of the basin. However, there are still many questions regarding the structural evolution of the basin. The main purpose of this study is to investigate the structural evolution of the central Tuzgolu Basin based on the structural interpretation of available 2-D seismic reflection profiles, well log analysis and construction of structural cross sections. The cross-sections will be based on depth converted seismic lines to determine structural geometry of the faults and folds. A preliminary Petrel project has been prepared using available seismic profiles. Our preliminary structural interpretations suggest that a well-developed rollover anticline was developed with respect to the westward extension in Central Anatolia. The rollover anticline is faulted in its crest area by both down-to-the west and down-to-the east normal faults. The geometry of the main boundary fault at depth still remains in question. We anticipate that this question will be resolved based on depth converted structural cross-sections and their restoration.

  18. Snow hydrology in Mediterranean mountain regions: A review

    Science.gov (United States)

    Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard

    2017-08-01

    Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that

  19. Debris flows of the mountain massif of Hjorthfjellet and Adventtoppen, Svalbard: Implications for gullies on mountains in the Argyre basin, Mars

    Science.gov (United States)

    Reiss, D.; Hiesinger, H.; Zanetti, M.; Hauber, E.; Johnsson, A.; Carlsson, E.; Raack, J.; Olvmo, M.; Johansson, H. A. B.; Johansson, L.; Fredriksson, S.; Schmidt, H. T.; McDaniel, S.; Heldmann, J. L.; McKay, C. P.

    2008-09-01

    will focus on the regional distribution of gullies on the Hjorthfjellet and Adventtoppen mountain massif (Fig. 1, inset and Fig. 2), and detailed local studies of individual gullies on the same mountain massif are carried out as described by [8] and [9]. The Hjorthfjellet and Adventtoppen mountain massif consists of four stratigraphic units of sandstone and shales from the Tertiary and Mesozoic [10]. Several studies concerning talus slopes and debris flows on Svalbard have been performed in the last decades [e.g., 11, 12, 13, 14]. Regional studies of [14] using airborne imagery revealed that there are differences in the frequency and activity of debris flows on Svalbard between east- and west-facing slopes. Åkerman [14] suggested that differences in the solar radiation, the depth of the active layer and the amount of precipitation cause variances in the morphology and morphometry of the debris slopes as well as variances in the frequency and age of debris flows between east- and west-facing slopes. Studies and direct observations imply that debris flows on Svalbard are triggered by high intensity rainfall [e.g., 14, 15]. Gullies on mountains in Argyre basin, Mars For a comparative study on Mars we chose the Argyre region. Several isolated mountain massifs occur in the Nereidum and Charitum Montes (Fig. 3) with similar morphologies as the studied massif in Svalbard. A first data analysis with High Resolution Stereo Camera (HRSC) data revealed that gullies occur on the mountain slopes only at specific orientations. Fig. 4 shows an example of an isolated mountain, on which gullies only occur on west-facing slopes. Project Description The formation of gullies on Earth depends on several parameters, including rainfall and/or melting of snow, the presence of steep slopes, and sufficient amounts of fines/debris [e.g., 16]. As on Earth, the differences of slope angles and variabilities in bedrock and grain sizes influence the regional occurrence of gullies [17]. The main

  20. Regional contributions of ocean iron fertilization to atmospheric CO2 changes during the last glacial termination

    Science.gov (United States)

    Opazo, N. E.; Lambert, F.

    2017-12-01

    Mineral dust aerosols affect climate directly by changing the radiative balance of the Earth, and indirectly by acting as cloud condensation nuclei and by affecting biogeochemical cycles. The impact on marine biogeochemical cycles is primarily through the supply of micronutrients such as iron to nutrient-limited regions of the oceans. Iron fertilization of High Nutrient Low Chlorophyll (HNLC) regions of the oceans is thought to have significantly affected the carbon cycle on glacial-interglacial scales and contributed about one fourth of the 80-100 ppm lowering of glacial atmospheric CO2 concentrations.In this study, we quantify the effect of global dust fluxes on atmospheric CO2 using the cGENIE model, an Earth System Model of Intermediate Complexity with emphasis on the carbon cycle. Global Holocene and Last Glacial Maximum (LGM) dust flux fields were obtained from both dust model simulations and reconstructions based on observational data. The analysis was performed in two stages. In the first instance, we produced 8 global intermediate dust flux fields between Holocene and LGM and simulated the atmospheric CO2 drawdown due to these 10 dust levels. In the second stage, we only changed dust flux levels in specific HNLC regions to isolate the effect of these ocean basins. We thus quantify the contribution of the South Atlantic, the South Pacific, the North Pacific, and the Central Pacific HNLC regions to the total atmospheric CO2 difference due to iron fertilization of the Earth's oceans.

  1. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  2. Phylogeographic insights into cryptic glacial refugia.

    Science.gov (United States)

    Provan, Jim; Bennett, K D

    2008-10-01

    The glacial episodes of the Quaternary (2.6 million years ago-present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.

  3. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate.

    Science.gov (United States)

    Hotaling, Scott; Hood, Eran; Hamilton, Trinity L

    2017-08-01

    Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Late Glacial to Early Holocene socio-ecological responses to climatic instability within the Mediterranean basin

    Science.gov (United States)

    Fernández-López de Pablo, Javier; Jones, Samantha E.; Burjachs, Francesc

    2018-03-01

    The period spanning the Late Glacial and the Early Holocene (≈19-8.2 ka) witnessed a dramatic sequence of climate and palaeoenvironmental changes (Rasmussen et al., 2014). Interestingly, some of the most significant transformations ever documented in human Prehistory took place during this period such as the intensification of hunter-gatherer economic systems, the domestication process of wild plants and animals, and the spread of farming across Eurasia. Understanding the role of climate and environmental dynamics on long-term cultural and economic trajectories, as well as specific human responses to episodes of rapid climate change, still remains as one of the main challenges of archaeological research (Kintigh et al., 2014).

  5. Reconnaissance-level application of physical habitat simulation in the evaluation of physical habitat limits in the Animas Basin, Colorado

    Science.gov (United States)

    Milhous, Robert T.

    2003-01-01

    The Animas River is in southwestern Colorado and flows mostly to the south to join the San Juan River at Farmington, New Mexico (Figure 1). The Upper Animas River watershed is in San Juan County, Colorado and is located in the San Juan Mountains. The lower river is in the Colorado Plateau country. The winters are cold with considerable snowfall and little snowmelt in the mountains in the upper part of the basin. The lower basin has less snow but the winters are still cold. The streamflows during the winter are low and reasonably stable.

  6. A review on late Paleozoic ice-related erosional landforms in the Paraná Basin: origin and paleogeographical implications

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Menozzo da Rosa

    Full Text Available ABSTRACT: The Late Paleozoic Ice Age is recorded in the Paraná Basin as glacial deposits, deformational features and ice-related erosional landforms of the Itararé Group. Erosional landforms are often employed to build paleogeographic models that depict the location of ice masses and paleo ice-flow directions. This paper provides a review of the literature and new data on micro- to meso-scale ice-related, erosional landforms of the Paraná Basin. Examined landforms can be placed into four broad categories based on their mode of origin. Subglacial landforms on rigid substrates occur on the Precambrian basement or on older units in the Paraná Basin. They include streamlined landforms and striated pavements formed by abrasion and/or plucking beneath advancing glaciers. Subglacial landforms on soft beds are intraformational surfaces generated by erosion and deformation of unconsolidated deposits when overridden by glaciers. Ice-keel scour marks are soft-sediment striated/grooved landforms developed by the scouring of free-floating ice masses on underlying sediments. Striated clast pavements are horizons containing aligned clasts that are abraded subglacially due to the advance of glaciers on unconsolidated deposits. Only those erosional landforms formed subglacially can be used as reliable paleo ice-flow indicators. Based on these data, the paleogeography of the Paraná Basin during the Late Paleozoic Ice Age fits into a model of several glacial lobes derived from topographically-controlled ice spreading centers located around the basin instead of a single continental ice sheet.

  7. A chronology for glacial Lake Agassiz shorelines along Upham's namesake transect

    Science.gov (United States)

    Lepper, Kenneth; Buell, Alex W.; Fisher, Timothy G.; Lowell, Thomas V.

    2013-07-01

    Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880-1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.

  8. Sediment provenance in the Laxmi Basin of the Arabian Sea during the last 800 kyrs

    Science.gov (United States)

    Khim, B. K.; Horikawa, K.; Asahara, Y.; Kim, J. E.; Ikehara, M.; Lee, J.

    2017-12-01

    International Ocean Discovery Program Expedition 355 conducted to drill 1109.4 m penetration at Site U1456 in the Laxmi Basin of the Arabian Sea. Four lithologic units are defined onboard at Site U1456 (Pandey et al., 2016). Unit I is 121 m long, consisting mostly of pelagic carbonates (nannofossil ooze and/or foraminifera-rich nannofossil ooze) interbedded with thin terrigenous (clay, silt, and sand) turbidite layers. The age model of Unit I was determined by the correlation of δ18O fluctuations of planktonic foraminifera (Globigerinoides ruber) to LR04 stacks, estimating 1.2 Ma. A total of 60 samples, collected in the context of magnetic susceptibility (MS) changes at a discrete interval from a composite section (Holes U1456A and U1456C) of Unit I, were analyzed to measure Nd and Sr isotopes of detrital fraction. Based on Nd and Sr isotopes, the sediment provenance in the Laxmi Basin during the last 800 kyrs was traced in response to the monsoon activity between the interglacial and glacial periods. ɛNd and 87Sr/86Sr vary in a range from -12.4 to -8.0 and from 0.712 to 0.727, respectively. The correlation between ɛNd and 87Sr/86Sr is quite linear, indicating that the sediments were provided mainly by two dominant sources. Considering the ɛNd and 87Sr/86Sr end-members of sediment sources (i.e., river sediments), the Tapi River and Narmada River are the main contributors of sediments to Site U1456 with a little influence by the modern Indus River. However, the glacial sediments from the Indus River and the Mahi River may supply an additional fraction, leading to less ɛNd and more 87Sr/86Sr at Site U1456. Judged by the sediment sources, the sediments in the Laxmi Basin are characterized by the mixture of different provenances. In addition, it should be noted that the low ɛNd and high 87Sr/86Sr values coincide largely with high MS and vice versa, irrespectively of the glacial-interglacial change. Thus, rather than the sediment provenances, ɛNd and 87Sr/86Sr

  9. Remote assessment of reserve capacity of outburst alpine lakes

    Directory of Open Access Journals (Sweden)

    V. G. Konovalov

    2016-01-01

    Full Text Available Results of distant satellite sounding (the TERRA satellite of high-mountainous areas and digital models SRTM 4.1 and ASTER DEM G2 of the same relief were used to calculate the following parameters of high-mountain dammed glacial lakes: area, depth, the water volume, excess of the dam above the water level. It is important for estimation of the water volume that can be dangerous for a break-through of a dammed lake. Formulas deduced to calculate the depth and volume of a lake for several sections of its area were tested and proposed. It is demonstrated that the regression equation V = Hmax × F, where Hmax is maximum depth of the lake, can be used as the parameterization of the formula «lake volume V equals the product of the area F on average depth D». More precise values of the coefficients a and b in the formula V = aFb were also obtained. Parameters and the water volumes of lakes were estimated for the river Gunt (right tributary of Pyanj River basin. According to [28], there are 428 high-mountain lakes in this region with their total area ≥ 2500 m2. For basin Inflow of melted snow and glacier water caused by the rise of mean summer air temperatures in 1931–2015 was estimated for the lake Rivankul basin (the Pamir Mountains.

  10. The hydrological response of baseflow in fractured mountain areas

    Directory of Open Access Journals (Sweden)

    M. A. Losada

    2009-07-01

    Full Text Available The study of baseflow in mountainous areas of basin headwaters, where the characteristics of the often fractured materials are very different to the standard issues concerning porous material applied in conventional hydrogeology, is an essential element in the characterization and quantification of water system resources. Their analysis through recession fragments provides information on the type of response of the sub-surface and subterranean systems and on the average relation between the storage and discharge of aquifers, starting from the joining of these fragments into a single curve, the Master Recession Curve (MRC. This paper presents the generation of the downward MRC over fragments selected after a preliminary analysis of the recession curves, using a hydrological model as the methodology for the identification and the characterization of quick sub-surface flows flowing through fractured materials. The hydrological calculation has identified recession fragments through surface runoff or snowmelt and those periods of intense evapotranspiration. The proposed methodology has been applied to three sub-basins belonging to a high altitude mountain basin in the Mediterranean area, with snow present every year, and their results were compared with those for the upward concatenation of the recession fragments. The results show the existence of two different responses, one quick (at the sub-surface, through the fractured material and the other slow, with linear behaviour which takes place in periods of 10 and 17 days respectively and which is linked to the dimensions of the sub-basin. In addition, recesses belonging to the dry season have been selected in order to compare and validate the results corresponding to the study of recession fragments. The comparison, using these two methodologies, which differ in the time period selected, has allowed us to validate the results obtained for the slow flow.

  11. Changes in precipitating snow chemistry with seasonality in the remote Laohugou glacier basin, western Qilian Mountains.

    Science.gov (United States)

    Dong, Zhiwen; Qin, Dahe; Qin, Xiang; Cui, Jianyong; Kang, Shichang

    2017-04-01

    Trace elements in the atmosphere could provide information about regional atmospheric pollution. This study presented a whole year of precipitation observation data regarding the concentrations of trace metals (e.g., Cr, Ni, Cu, Mn, Cd, Mo, Pb, Sb, Ti, and Zn), and a TEM-EDX (transmission electron microscope-energy dispersive X-ray spectrometer) analysis from June 2014 to September 2015 at a remote alpine glacier basin in Northwest China, the Laohugou (LHG) basin (4200 m a.s.l.), to determine the regional scale of atmospheric conditions and chemical processing in the free troposphere in the region. The results of the concentrations of trace metals showed that, although the concentrations generally were lower compared with that of surrounding rural areas (and cities), they showed an obviously higher concentration and higher EFs in winter (DJF) and a relatively lower concentration and lower EFs in summer (JJA) and autumn (SON), implying clearly enhanced winter pollution of the regional atmosphere in Northwest China. The TEM observed residue in precipitation that was mainly composed of types of dust, salt-dust, BC-fly ash-soot, and organic particles in precipitation, which also showed remarked seasonal change, showing an especially high ratio of BC-soot-fly ash particles in winter precipitation compared with that of other seasons (while organic particles were higher in the summer), indicating significant increased anthropogenic particles in the winter atmosphere. The source of increased winter anthropogenic pollutants mainly originated from emissions from coal combustion, e.g., the regional winter heating supply for residents and cement factories in urban and rural regions of Northwest China. Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric optical depth (AOD) also showed a significant influence of regional atmospheric pollutant emissions over the region in winter. In total, this work indicated that the atmospheric environment in western Qilian

  12. The Mountain Passes of Atlatlahuca: a 15th and 16th Century Strategic Space

    Directory of Open Access Journals (Sweden)

    Gustavo Garza Merodio

    2016-11-01

    Full Text Available The environmental characteristics of the upper Lerma river basin and the accessibility to the Balsas midelevation basin from its southern margins facilitated the settlement of different human groups since the early history of Mesoamerica. The mountain passes of Atlatlahuca were one of the most strategic ancient routes that communicated these basins, , since no steep slopes had to be walked to descend or climb up over 700 meters, from the pre-Hispanic village of Atlatlahuca to the valley of Tenancingo. So far, the relevance of these mountain passes has not been recognized by the studies focused on the territorial evolution of the upper Lerma basin and neighboring regions. The fifteenth and sixteenth centuries were the time when the strategic quality of these mountain passes reached its peak, first under the rule of the Matlatzinca federation, and later by the Aztecs and their allies. Historical approaches to the territorial evolution of the upper Lerma basin have focused on the lacustrine area that used to cover the lowlands; in our view, this approach is insufficient to explain the territorial evolution of this basin. An approach beyond watersheds or contemporary administrative limits, encompassing broader temporal and spatial scales, has revealed the strategic character of these mountain passes. Understanding these territorial priorities also requires to acknowledge the changes in landscape of the main historical settlements that controlled the access to these mountain passes: Tenango and Atlatlahuca. Our goal is not to outline a definitive version of this territorial structure; instead, we want to set the grounds for a discussion from a geographical viewpoint ranging several historic stages. Our explanation is based on the principles of contemporary Cultural Geography and their application to areas of Mesoamerican tradition, and was derived from a continuous temporal analysis encompassing the Mesoamerican Post-Classic period and most of the 16

  13. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  14. Waves in the Red Sea: Response to monsoonal and mountain gap winds

    KAUST Repository

    Ralston, David K.

    2013-08-01

    An unstructured grid, phase-averaged wave model forced with winds from a high resolution atmospheric model is used to evaluate wind wave conditions in the Red Sea over an approximately 2-year period. The Red Sea lies in a narrow rift valley, and the steep topography surrounding the basin steers the dominant wind patterns and consequently the wave climate. At large scales, the model results indicated that the primary seasonal variability in waves was due to the monsoonal wind reversal. During the winter, monsoon winds from the southeast generated waves with mean significant wave heights in excess of 2. m and mean periods of 8. s in the southern Red Sea, while in the northern part of the basin waves were smaller, shorter period, and from northwest. The zone of convergence of winds and waves typically occurred around 19-20°N, but the location varied between 15 and 21.5°N. During the summer, waves were generally smaller and from the northwest over most of the basin. While the seasonal winds oriented along the axis of the Red Sea drove much of the variability in the waves, the maximum wave heights in the simulations were not due to the monsoonal winds but instead were generated by localized mountain wind jets oriented across the basin (roughly east-west). During the summer, a mountain wind jet from the Tokar Gap enhanced the waves in the region of 18 and 20°N, with monthly mean wave heights exceeding 2. m and maximum wave heights of 14. m during a period when the rest of the Red Sea was relatively calm. Smaller mountain gap wind jets along the northeast coast created large waves during the fall and winter, with a series of jets providing a dominant source of wave energy during these periods. Evaluation of the wave model results against observations from a buoy and satellites found that the spatial resolution of the wind model significantly affected the quality of the wave model results. Wind forcing from a 10-km grid produced higher skills for waves than winds from a

  15. Geology of the Saddle Mountains between Sentinel Gap and 119030' longitude

    International Nuclear Information System (INIS)

    Reidel, S.P.

    1978-09-01

    Members and flows of the Grande Ronde, Wanapum, and Saddle Mountains basalts of the Columbia River Basalt Group were mapped in the Saddle Mountains between Sentinel Gap and the eastern edge of Smyrna Bench. The Grande Ronde Basalt consists of the Schwana (low-MgO) and Sentinel Bluffs (high-MgO) members (informal names). The Wanapum Basalt consists of the aphyric and phyric units of the Frenchman Springs Member, the Roza-Like Member, and the Priest Rapids Member. The Saddle Mountains Basalt consists of the Wahluke, Huntzinger, Pomona, Mattawa, and Elephant Mountain basalts. The Wanapum and Saddle Mountains basalts are unevenly distributed across the Saddle Mountains. The Wanapum Basalt thins from south to north and across a northwest-southeast-trending axis at the west end of Smyrna Bench. The Priest Rapids, Roza-Like, and aphyric Frenchman Springs units are locally missing across this zone. The Saddle Mountains basalt has a more irregular distribution and, within an area between Sentinel Gap and Smyrna Bench, is devoid of the basalt. The Wahluke, Huntzinger, and Mattawa flows are locally present, but the Pomona is restricted to the southern flank west of Smyrna Bench, and the Elephant Mountain Basalt only occurs on the flanks and in three structurally controlled basins on the northwest side. The structure of the Saddle Mountains is dominated by an east-west trend and, to a lesser degree, controlled by a northwest-southeast and northeast-southwest trend. The geomorphological expression of the Saddle Mountains results from the east-west fold set and the Saddle Mountains fault along the north side. The oldest structures follow the northwest-southeast trend. The distribution of the flows, combined with the structural features, indicates a complex geologic history for the Saddel Mountains

  16. Assessment of glacial lake development and prospects of outburst susceptibility: Chamlang South Glacier, eastern Nepal Himalaya

    Directory of Open Access Journals (Sweden)

    Damodar Lamsal

    2016-01-01

    Full Text Available Chamlang South Tsho has been identified as one of the six high-priority glacial lakes in terms of glacial lake outburst flood (GLOF danger in Nepal Himalaya, despite the fact that no detailed investigations of the lake had been hitherto undertaken. We conducted detailed mapping of the lake and its surroundings along with field surveys in October 2009 to determine the developmental history of Chamlang South Tsho and to assess its potential for GLOF. The lake expanded rapidly between 1964 (0.04 km2 and 2000 (0.86 km2 and has been stable ever since. Future lake expansion is improbable as its sides are confined by relatively stable landforms. The lake is 87-m deep with a water volume of approximately 34.9–35.6 × 106 m3. Hanging glaciers on the steep surrounding mountain slopes and prominent seepage water in the terminal moraine dam could be potential triggers for a future outburst flood. Additionally, the debris-covered dead-ice dam, which is higher than the lake water level, is narrow and low; therefore, it could be overtopped easily by surge waves. Furthermore, the pronounced difference in elevation between the lake and the base of the terminal moraine dam makes the lake susceptible for a large flood.

  17. Relationship between plants in Europe and surface temperatures of the Atlantic Ocean during the glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Van Campo, M

    1984-01-01

    In Europe and North America, the deciduous forest, whether or not mixed with conifers, prevails within boundaries which coincide with the 12 and 18/sup 0/C isotherms of Ocean surface temperatures in August; within Europe this forest points to the limit of the Atlantic influence and bevels out as it is squeezed between coniferous forest to the NE (thermic boundary) and steppe to the SE (hydric boundary). During the glacial age this forest disappeared from its main European area and remained only in mountain refuges. Thus, the temperature of the eastern Atlantic surface waters, off Europe, control the nature of its vegetation. Variations in the pollen curve of pines, birches, Artemisia, Chenopodiaceae and Ephedra are accounted for by the climatic variations in southern Europe before 13,000 yr BP. It is seen that a very arid climate culminated at about 15,000 yr BP. It corresponds to the most active iceberg calving which considerably lowered the Ocean surface temperature far to the south. In spite of the increasing summer temperatures, this temperature remained as cold as it was during the glacial maximum. The result is the lowest evaporation from the Ocean hence a minimum of clouds and a minimum of rain. The end of the first phase of the deglaciation at +/- 13,000 yr BP corresponds to a warming up of the Ocean surface bringing about increased evaporation, hence rains over the continent. The evolution of the vegetation in Europe at the end of the glacial times from south of the ice sheet down to the Mediterranean, depends as much, if not more, on rains than on temperatures.

  18. Geological characteristics and prospecting potential of sandstone-type uranium deposits in the north margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei

    2012-01-01

    The north margin of Qaidam Basin is composed with rift trough and Oulongbuluke landmass which is clamped by Qilian Mountain and Qaidam block Suture zone. The two activities provide a rich source of uranium for the basin area. The coal-bearing rocks as stratums of medium and lower Jurassic, is the main exploration target zones of sandstone-type uranium ore. Through geological survey and drilling, we think that the interlayer oxidation zone. being primary factors of sandstone-type uranium, can be divided into ancient type and modern type. The ancient interlayer oxidation zone type uranium deposit is the main prospecting types in the north margin of Qaidam Basin. Combined with analysis on geological conditions of sandstone-type uranium mineralization, we propose that eastern edge of Yuqia, southern edge of Lucao Mountain, Beidatan and northwest edge of Ulan depression are good prospects. (authors)

  19. Volcanic CO2 Emissions and Glacial Cycles: Coupled Oscillations

    Science.gov (United States)

    Burley, J. M.; Huybers, P. J.; Katz, R. F.

    2016-12-01

    Following the mid-Pleistocene transition, the dominant period of glacial cycles changed from 40 ka to 100 ka. It is broadly accepted that the 40 ka glacial cycles were driven by cyclical changes in obliquity. However, this forcing does not explain the 100 ka glacial cycles. Mechanisms proposed for 100 ka cycles include isostatic bed depression and proglacial lakes destabilising the Laurentide ice sheet, non-linear responses to orbital eccentricity, and Antarctic ice sheets influencing deep-ocean stratification. None of these are universally accepted. Here we investigate the hypothesis that variations in volcanic CO2 emissions can cause 100 ka glacial cycles. Any proposed mechanism for 100 ka glacial cycles must give the Earth's climate system a memory of 10^4 - 10^5years. This timescale is difficult to achieve for surface processes, however it is possible for the solid Earth. Recent work suggests volcanic CO2 emissions change in response to glacial cycles [1] and that there could be a 50 ka delay in that response [2]. Such a lagged response could drive glacial cycles from 40 ka cycles to an integer multiple of the forcing period. Under what conditions could the climate system admit such a response? To address this, we use a simplified climate model modified from Huybers and Tziperman [3]. Our version comprises three component models for energy balance, ice sheet growth and atmospheric CO2 concentration. The model is driven by insolation alone with other components varying according to a system of coupled, differential equations. The model is run for 500 ka to produce several glacial cycles and the resulting changes in global ice volume and atmospheric CO2 concentration.We obtain a switch from 40 ka to 100 ka cycles as the volcanic CO2 response to glacial cycles is increased. These 100 ka cycles are phase-locked to obliquity, lasting 80 or 120 ka. Whilst the MOR response required (in this model) is larger than plausible estimates based on [2], it illustrates the

  20. 36Chlorine exposure dating of a terminal moraine in the Galicica Mountains, Macedonia

    Science.gov (United States)

    Gromig, R.; Mechernich, S.; Ribolini, A.; Dunai, T. J.; Wagner, B.

    2015-12-01

    The glaciation history of the Balkan Peninsula is subject of research since the late 19th century. To date, only a few moraines on the Balkan Peninsula are dated, mainly using 10Be exposure dating applied on quartz bearing rocks. Since large parts of the Balkan Peninsula mountains are composed of carbonatic rocks, absolute age dating is restricted to 36Cl exposure dating, which, to date, was not conducted in this region yet. So far, an absolute chronological control in limestone-dominated areas is limited to U-series minimum ages of calcitic cements. In order to obtain more information about the timing of the glaciation history on the Balkan Peninsula, we investigated a terminal moraine in a NNE-facing cirque in the Galicica Mountains (40°56´N, 20°49´E) in the Former Yugoslav Republic of Macedonia. The cirque comprises a series of nested moraine ridges at the base of the cirque wall, with the largest one being sampled. Samples from five limestone boulders in crest position (≈ 2050 m a.s.l.) were taken and pre-treated for AMS measurement at the University of Cologne. Three preliminary ages point to a moraine formation in the course of a late Pleistocene glaciation, either Last Glacial Maximum or Younger Dryas. The data were discussed concerning corrections for topographic shielding, snow cover, inheritance, and erosion. However, five AMS re-measurements are currently in progress in order to refine the correlation of the moraine formation to a specific glacial period. The resulting ages will be compared to sediments of the adjacent Lakes Ohrid and Prespa, which represent valuable climatic and environmental archives. Several studies on these sediments were carried out in order to reconstruct relative changes in temperature and moisture availability. Moreover, the inferred moraine formation ages will be compared to glaciation reconstructions of other mountainous regions on the Balkan Peninsula to improve the knowledge on past climatic conditions.

  1. Formation and deformation of the Pannonian Basin: constraints from observational data

    NARCIS (Netherlands)

    Horvath, F.; Bada, G.; Szafian, P.; Tari, G.; Adam, A.; Cloetingh, S.A.P.L.

    2006-01-01

    The past decade has witnessed spectacular progress in the collection of observational data and their interpretation in the Pannonian Basin and the surrounding Alpine, Carpathian and Dinaric mountain belts. A major driving force behind this progress was the PANCARDI project of the EUROPROBE

  2. Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns

    Science.gov (United States)

    Curry, W. B.; Lohmann, G. P.

    1982-09-01

    Oxygen- and carbon-isotopic analyses have been performed on the benthic foraminifer Planulina wuellerstorfi in seven Late Quaternary cores from the Vema Channel-Rio Grande Rise region. The cores are distributed over the water-depth interval of 2340 to 3939 m, which includes the present transition from North Atlantic Deep Water (NADW) to Antarctic Bottom Water (AABW). The carbon-isotopic records in the cores vary as a function of water depth. The shallowest and deepest cores show no significant glacial-interglacial difference in δ 13C. Four of the five cores presently located in the NADW have benthic foraminiferal δ 13C that is lower during glacial isotopic stages. Based on bathymetric gradients in δ 13C, we conclude that, like today, there were two water masses present in the Vema Channel during glacial intervals: a water mass enriched in 13C overlying another water mass depleted in 13C. The largest gradient of change of δ 13C with depth, however, occurred at 2.7 km, ˜ 1 km shallower than the present position of this gradient. On the basis of paleontologic and sedimentologic evidence, we consider it unlikely that the NADW:AABW transition shallowed to this level. Reduced carbon-isotopic gradients between the deep basins of the North Atlantic and Pacific Oceans during the last glaciation suggest that production of NADW was reduced. Lower production of NADW may have modified the local abyssal circulation pattern in the Vema Channel region.

  3. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Science.gov (United States)

    Wu, Jing; Liu, Qiang; Wang, Luo; Chu, Guo-qiang; Liu, Jia-qi

    2016-01-01

    The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM) and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP) and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM) to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  4. Vegetation and Climate Change during the Last Deglaciation in the Great Khingan Mountain, Northeastern China.

    Directory of Open Access Journals (Sweden)

    Jing Wu

    Full Text Available The Great Khingan Mountain range, Northeast China, is located on the northern limit of modern East Asian Summer Monsoon (EASM and thus highly sensitive to the extension of the EASM from glacial to interglacial modes. Here, we present a high-resolution pollen record covering the last glacial maximum and the early Holocene from a closed crater Lake Moon to reconstruct vegetation history during the glacial-interglacial transition and thus register the evolution of the EASM during the last deglaciation. The vegetation history has gone through distinct changes from subalpine meadow in the last glacial maximum to dry steppe dominated by Artemisia from 20.3 to 17.4 ka BP, subalpine meadow dominated by Cyperaceae and Artemisia between 17.4 and 14.4 ka BP, and forest steppe dominated by Betula and Artemisia after 14.4 ka BP. The pollen-based temperature index demonstrates a gradual warming trend started at around 20.3 ka BP with interruptions of several brief events. Two cold conditions occurred around at 17.2-16.6 ka BP and 12.8-11.8 ka BP, temporally correlating to the Henrich 1 and the Younger Dryas events respectively, 1and abrupt warming events occurred around at 14.4 ka BP and 11.8 ka BP, probably relevant to the beginning of the Bølling-Allerød stages and the Holocene. The pollen-based moisture proxy shows distinct drought condition during the last glacial maximum (20.3-18.0 ka BP and the Younger Dryas. The climate history based on pollen record of Lake Moon suggests that the regional temperature variability was coherent with the classical climate in the North Atlantic, implying the dominance of the high latitude processes on the EASM evolution from the Last Glacial Maximum (LGM to early Holocene. The local humidity variability was influenced by the EASM limitedly before the Bølling-Allerød warming, which is mainly controlled by the summer rainfall due to the EASM front covering the Northeast China after that.

  5. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    Science.gov (United States)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  6. Two sides of the same coin? Exploring the relationship between Petén-Itzá and Cariaco Basin pollen records

    Science.gov (United States)

    Gonzalez, C.; Correa-Metrio, A.

    2013-05-01

    Millennial time-scale climate changes from the high latitudes seem to have had a profound effect on Neotropical terrestrial and marine biota during the last glacial cycle. By comparing high resolution palynological data from the Yucatán Peninsula (Lake Petén-Itzá) and Cariaco Basin off Venezuelan coast during the last 70,000 years, we Intend to gain insight into the climatic linkages that existed between both regions. Specifically, we examine the role of atmospheric linking mechanisms like the ITCZ in driving synchronous changes in both palynological records. At millennial time-scales striking similarities appear between the dynamics of drought-indicative taxa (e.g. Poaceae) in Yucatán and riverine input-indicative taxa (Spiniferites) in Cariaco Basin suggesting that both systems responded to the same forcing almost simultaneously. At orbital time-scales, we explore the profound ecological changes that occurred in both sites at ca. 60 kyr that might be related to the shift from glacial to interglacial climatic conditions.

  7. Vietnamese sedimentary basins: geological evolution and petroleum potential

    Energy Technology Data Exchange (ETDEWEB)

    Fyhn, M.B.W.; Petersen, Henrik I.; Mathiesen, A.; Nielsen, Lars H.; Pedersen, Stig A.S.; Lindstroem, S.; Bojesen-Koefoed, J.A.; Abatzis, I.; Boldreel, L.O.

    2010-07-15

    The Geological Survey of Denmark and Greenland has worked in Vietnam since 1995 to assess the geology and petroleum potential of the Vietnamese basins. Since 2002 the work has been carried out in cooperation with the Department of Geography and Geology, University of Copenhagen, as part of the ENRECA project (Enhancement of Research Capacity in Developing Countries). The ENRECA project has already completed two phases and a third and final phase has recently started. The initial phase focused on the Phu Khanh and the Song Hong Basins located in the South China Sea offshore north and central Vietnam and the smaller onshore Song Ba Trough. During the second ENRECA phase, completed in 2009, attention shifted towards the Malay - Tho Chu and Phu Quoc basins located in the Gulf of Thailand, SSW of Vietnam. The Phu Quoc Basin continues onshore to the north to form part of the mountainous area between Vietnam and Cambodia. In the recently started third phase of the project, the focus remains on the Phu Quoc Basin in addition to a revisit to the Song Hong Basin on the north Vietnamese margin and onshore beneath the Song Hong (Red River) delta. (LN)

  8. Mountain Permafrost in the Yukon Territory, Canada: Mapping and Modelling

    Science.gov (United States)

    Lewkowicz, A. G.; Bonnaventure, P.; Schultz, E.; Etzelmuller, B.

    2006-12-01

    The distribution and characteristics of mountain permafrost in North America are poorly known compared to lowland permafrost, and predictions of climatic change impacts are therefore subject to a higher degree of uncertainty. Recent DC resistivity soundings in association with borehole temperature information in the Yukon Territory, show the wide range of permafrost conditions that can exist at sites separated by short distances. To provide baseline information for future modelling, efforts are underway to produce a detailed map of permafrost probability in the mountains of the southern half of the Yukon Territory (60-65°N), an area greater than 200 x 103km2. The methodology is based on the Basal Temperature of Snow (BTS) technique, first developed in the European Alps. Ground surface temperatures measured at the base of snow > 80 cm thick in late winter are an indicator of permafrost presence or absence. We have used this method successfully in three study areas of about 200 km2: first, Wolf Creek basin near Whitehorse (Lewkowicz and Ednie, 2004) and now the western side of the Ruby Range adjacent to Kluane Lake, and the Haines Summit area in northwestern British Columbia. In each area, (1) we installed miniature temperature loggers at the ground surface and in the air to check on the timing of the BTS measurements; (2) we measured BTS values in the elevation zone across which permafrost was expected to become widespread; (3) we modelled the BTS spatial field using elevation (from a 30 m DEM) and potential incoming solar radiation (PISR) as the independent variables; and (4) we used logistic regression to compare the modelled BTS values with pit observations made in late-summer of the presence or absence of frozen ground. Both elevation and PISR were significant in the Wolf Creek and Ruby Range sites which have relatively continental climates and fall within the Upper Yukon-Stikine Basin climatic region (Wahl et al., 1987). For the Haines Summit area, however

  9. Precise chronologies of Holocene glacial culminations in the Cordillera Vilcabamba of southern Peru

    Science.gov (United States)

    Licciardi, J. M.; Schaefer, J. M.; Schweinsberg, A. D.

    2012-12-01

    Records of past fluctuations in climatically sensitive tropical mountain glaciers are among the best indicators of regional paleoclimatic trends and controls. The majority of the world's present-day tropical glaciers are found in the Peruvian Andes, but accurate and precise chronologies of past glacial activity in this region remain relatively scarce, particularly during the Holocene. Here we present ~50 new 10Be exposure ages derived from boulders on well-preserved moraine successions in several glaciated drainages in the Cordillera Vilcabamba of southern Peru (13°20'S latitude). The new results suggest that prominent moraines in these valleys are correlative with previously published moraine ages near Nevado Salcantay in this range (Licciardi et al., 2009), but also expand on the initial surface exposure chronologies to reveal additional periods of glacier stabilization not found in previous work. A provisional composite chronology that merges the new and previously obtained moraine ages indicates at least five discrete glacial culminations from the Lateglacial to the late Holocene. Forthcoming 10Be ages from an additional ~50 samples collected from moraine boulders will increase the precision and completeness of the Vilcabamba moraine chronologies. Basal radiocarbon ages are being developed from bog and lake sediments in stratigraphic contact with the 10Be-dated moraines. These new 14C age data will help constrain the local cosmogenic 10Be production rate, thereby increasing the accuracy of the 10Be chronologies.

  10. Developing a postglacial rockfall chronology in the mountainous fjord landscape of western Norway

    Science.gov (United States)

    Laute, Katja; Beylich, Achim A.; Winkler, Stefan

    2015-04-01

    Large areas of glacially sculpted mountain landscapes worldwide exhibit a high spatial density of postglacial rockfalls and rock-slope failures. However, the temporal patterns of rock-slope failure frequencies after Deglaciation are still fairly unknown. The mountainous fjord landscape in western Norway represents a suitable study area as it exhibits a high number of rockfalls and rock-slope failures within a region with a well known Deglaciation history. Two steep, parabolic-shaped and glacier-connected neighbouring drainage basins, Erdalen (79.5 km2) and Bødalen (60.1 km2), located on the western side of the Jostedalsbreen ice cap in western Norway are selected as study areas. The focus of this study is on (i) the temporal reconstruction of rockfalls and rock-slope failures within the two defined and nearly lithologically homogenous study areas and (ii) the identification and explanation of possible triggering and controlling factors of the investigated rock-slope failures. First investigations have started by applying Schmidt-hammer exposure-age dating (SHD) at seven larger rockfall deposits as well as at five moraines of known age within both study areas. During the sampling 50 to 100 impacts using a mechanical Proceq N-type instrument were taken from the surface of 5 to 50 single rockfall boulders located at the outer margin of the rockfall deposits. In order to avoid sampling of more recent rockfalls or redistributed debris material the sampling strategy selected preferred a larger number of individual boulders sampled with few impacts over sampling just a small number of boulders with a high number of multiple impacts. First results show that the mean rebound (R-) values measured at the seven rockfall deposits fall into recognizably different age categories. Based on the SHD measurements obtained from the moraines of known age, the determined rockfall age categories are situated between the Preboral and Little Ice Age period. The chronology and possible

  11. Tritium dating of underground water from the Jian River valley and Houjialiang loess platform in the basin side-band of the East-Mountain Region of Taiyuan

    International Nuclear Information System (INIS)

    Yu Songsheng; Wu Qinghua

    1991-01-01

    The tritium content is measured in underground water from the basin side-band of the East-Mountain Region of Taiyuan, Shanxi Province, and hence the age, i.e. resident time, of underground water is estimated. The region belongs to deep water-poor zone in a long loess ridge situated in a loess hill plateau. The level of underground water is 40-80 m deep hidden. In the runway and the scouring channel the aqueous bed is of river pebble and cobble, with a level of 2-10 m in depth. The age of underground water from different wells were determined to be 23a, 14a, 25a, 41a and 53a respectively

  12. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  13. CLIMATIC FORECASTING OF NET INFILTRATION AT YUCCA MOUNTAIN, USING ANALOGUE METEOROLOGICAL DATA

    International Nuclear Information System (INIS)

    B. Faybishenko

    2005-01-01

    Net infiltration is a key hydrologic parameter that controls the rate of deep percolation through the unsaturated zone, the groundwater recharge, radionuclide transport, and seepage into the underground tunnels. Because net infiltration is largely affected by climatic conditions, future changes in climatic conditions will potentially alter net infiltration. The objectives of this presentation are to: (1) Present a conceptual model and a semi-empirical approach for regional, climatic forecasting of net infiltration, based on the precipitation and temperature data from analogue meteorological stations, and (2) Demonstrate the results of forecasting net infiltration for future climates--interglacial, monsoon and glacial--over the Yucca Mountain region for the period of 500,000 years. Calculations of the net infiltration were performed using a modified Budyko's water-balance model, for which potential evapotranspiration was evaluated from the temperature-based Thornthwaite formula. (Both Budyko's and Thornthwaite's formulae have been used broadly in hydrological studies.) The results of calculations were used for ranking net infiltration, along with the aridity and precipitation-effectiveness (P-E) indexes, for future climatic scenarios. Using this approach, we determined a general trend of increasing net infiltration from the present-day (interglacial) climate to monsoon, intermediate (glacial transition), and then to the glacial climate. Ranking of the aridity and P-E indexes is practically the same as that of net infiltration. The validation of the computed net infiltration rates yielded a good match with other field and modeling study results of groundwater recharge and net infiltration evaluation

  14. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    Science.gov (United States)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest deposition on top of, or interbedding with, snow that later melted away. Identification of features in mafic tephra that suggest interactions with glacial ice or snow has significant implications for regional volcanic hazard assessments. Specifically, the unique hazards posed by Eyjafjallajökull, especially hazards to air travel caused by unusually fine-grained tephra, could be repeated in the Cascades. Although glacial ice is presently limited to elevations above ~2300 m in the central Oregon Cascades, winter snowpack can exceed 5 m at elevations of ~1800 m and above. If a cinder cone eruption were to occur during winter months, interaction with snow could generate phreatomagmatic activity and

  15. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  16. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: an application to the Garra River basin, India

    Directory of Open Access Journals (Sweden)

    S. Swarnkar

    2018-04-01

    Full Text Available High soil erosion and excessive sediment load are serious problems in several Himalayan river basins. To apply mitigation procedures, precise estimation of soil erosion and sediment yield with associated uncertainties are needed. Here, the revised universal soil loss equation (RUSLE and the sediment delivery ratio (SDR equations are used to estimate the spatial pattern of soil erosion (SE and sediment yield (SY in the Garra River basin, a small Himalayan tributary of the River Ganga. A methodology is proposed for quantifying and propagating uncertainties in SE, SDR and SY estimates. Expressions for uncertainty propagation are derived by first-order uncertainty analysis, making the method viable even for large river basins. The methodology is applied to investigate the relative importance of different RUSLE factors in estimating the magnitude and uncertainties in SE over two distinct morphoclimatic regimes of the Garra River basin, namely the upper mountainous region and the lower alluvial plains. Our results suggest that average SE in the basin is very high (23 ± 4.7 t ha−1 yr−1 with higher values in the upper mountainous region (92 ± 15.2 t ha−1 yr−1 compared to the lower alluvial plains (19.3 ± 4 t ha−1 yr−1. Furthermore, the topographic steepness (LS and crop practice (CP factors exhibit higher uncertainties than other RUSLE factors. The annual average SY is estimated at two locations in the basin – Nanak Sagar Dam (NSD for the period 1962–2008 and Husepur gauging station (HGS for 1987–2002. The SY at NSD and HGS are estimated to be 6.9 ± 1.2  ×  105 t yr−1 and 6.7 ± 1.4  ×  106 t yr−1, respectively, and the estimated 90 % interval contains the observed values of 6.4  ×  105 t yr−1 and 7.2  ×  106 t yr−1, respectively. The study demonstrated the usefulness of the proposed methodology for quantifying uncertainty in SE and

  17. Assessment of the importance of mixing in the Yucca Mountain hydrogeological system

    International Nuclear Information System (INIS)

    Gomez, Javier B.; Auque, Luis F.; Gimeno, Maria; Acero, Patricia; Peterman, Zell; Oliver, Thomas A.; Gascoyne, Mel; Laaksoharju, Marcus

    2011-02-01

    The main objective of this work is to assess the importance of mixing on the hydrochemistry of waters in and around Yucca Mountain, most importantly in those waters south of Yucca Mountain. Due to the general north-south gradient of groundwater flow in the Yucca Mountain area, leakage from the proposed high-level radioactive waste repository would have the greatest consequences in the saturated zone waters south of Yucca Mountain. In this area (Amargosa River, Amargosa Flat and Ash Meadows), three main aquifers interact: the Regional Palaeozoic Carbonate Aquifer (RCA), the Tertiary Tuffs Aquifer (TTA) and the Quaternary Basin-fill Aquifer (QBfA). One consequence of upward leakage from the Palaeozoic Carbonate Aquifer would be to dilute the contaminant plume should one develop from the radioactive waste repository at Yucca Mountain. The reverse, downward leakage from the Tertiary Tuffs Aquifer or the Quaternary Basin-fill Aquifer into the Palaeozoic Carbonate Aquifer would contaminate a major aquifer system. It is clearly of the utmost importance to explore the links between theses aquifer systems and to assess the degree of mixing between the groundwaters. To attain this general objective, the following specific objectives have been either defined in advance or decided as being important during the development of the project: 1. Compile a dataset of water samples from the Yucca Mountain area. This dataset should contain samples from all the potential water types that contribute to the chemistry of the groundwaters in the aquifer systems in the area. 2. Perform a careful total-system exploratory analysis on the initial (raw) dataset in order to identify trends and outliers. 3. Perform a detailed exploratory analysis of each individual hydrofacies with the aim of identifying and eliminating from the raw dataset all the samples heavily affected by processes other than mixing (e.g. water-rock interaction, evaporation, cation exchange). PHREEQC simulations were