WorldWideScience

Sample records for mountain cloud forest

  1. Islands in the Sky: Ecophysiological Cloud-Vegetation Linkages in Southern Appalachian Mountain Cloud Forests

    Science.gov (United States)

    Reinhardt, K.; Emanuel, R. E.; Johnson, D. M.

    2013-12-01

    Mountain cloud forest (MCF) ecosystems are characterized by a high frequency of cloud fog, with vegetation enshrouded in fog. The altitudinal boundaries of cloud-fog zones co-occur with conspicuous, sharp vegetation ecotones between MCF- and non-MCF-vegetation. This suggests linkages between cloud-fog and vegetation physiology and ecosystem functioning. However, very few studies have provided a mechanistic explanation for the sharp changes in vegetation communities, or how (if) cloud-fog and vegetation are linked. We investigated ecophysiological linkages between clouds and trees in Southern Appalachian spruce-fir MCF. These refugial forests occur in only six mountain-top, sky-island populations, and are immersed in clouds on up to 80% of all growing season days. Our fundamental research questions was: How are cloud-fog and cloud-forest trees linked? We measured microclimate and physiology of canopy tree species across a range of sky conditions (cloud immersed, partly cloudy, sunny). Measurements included: 1) sunlight intensity and spectral quality; 2) carbon gain and photosynthetic capacity at leaf (gas exchange) and ecosystem (eddy covariance) scales; and 3) relative limitations to carbon gain (biochemical, stomatal, hydraulic). RESULTS: 1) Midday sunlight intensity ranged from very dark (2500 μmol m-2 s-1), and was highly variable on minute-to-minute timescales whenever clouds were present in the sky. Clouds and cloud-fog increased the proportion of blue-light wavelengths 5-15% compared to sunny conditions, and altered blue:red and red:far red ratios, both of which have been shown to strongly affect stomatal functioning. 2) Cloud-fog resulted in ~50% decreased carbon gain at leaf and ecosystem scales, due to sunlight levels below photosynthetic light-saturation-points. However, greenhouse studies and light-response-curve analyses demonstrated that MCF tree species have low light-compensation points (can photosynthesize even at low light levels), and maximum

  2. Impacts of cloud immersion on microclimate, photosynthesis and water relations of fraser fir in a temperate mountain cloud forest

    Science.gov (United States)

    Keith Reinhardt; William K. Smith

    2010-01-01

    The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...

  3. Leaf litter copepods from a cloud forest mountain top in Honduras (Copepoda: Cyclopidae, Canthocamptidae).

    Science.gov (United States)

    Fiers, Frank; Jocque, Merlijn

    2013-01-01

    Five different species of Copepoda were extracted from a leaf litter sample collected on the top (at 2000 m a.s.l.) of a cloud forested mountain in El Cusuco National Park, Honduras. Three of them, one Cyclopidae and two Canthocamptidae are new to science, and are described herein. Olmeccyclops hondo sp. nov. is the second representative thus far known of this New World genus. Moraria catracha sp. nov. and Moraria cusuca sp. nov. are the first formally described members of the genus occurring in Central America. The concept of a "Moraria-group" is considered to be an artificial grouping and is limited here to the genera Moraria and Morariopsis only. The distributional range of this group is essentially Holarctic, with the mountainous regions in Honduras, and probably in west Nicaragua, as the southernmost limits in the New World.

  4. Potential Distribution of Mountain Cloud Forest in Michoacán, Mexico: Prioritization for Conservation in the Context of Landscape Connectivity.

    Science.gov (United States)

    Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R

    2017-07-01

    Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.

  5. Cloud forest restoration for erosion control in a Kichwa community of the Ecuadorian central Andes Mountains

    Science.gov (United States)

    Backus, L.; Giordanengo, J.; Sacatoro, I.

    2013-12-01

    The Denver Professional Chapter of Engineers Without Borders (EWB) has begun conducting erosion control projects in the Kichwa communities of Malingua Pamba in the Andes Mountains south of Quito, Ecuador. In many high elevation areas in this region, erosion of volcanic soils on steep hillsides (i.e., food crops. Following a 2011 investigation of over 75 erosion sites, the multidisciplinary Erosion Control team traveled to Malingua Pamba in October 2012 to conduct final design and project implementation at 5 sites. In partnership with the local communities, we installed woody cloud forest species, grass (sig-sig) contour hedges, erosion matting, and rock structures (toe walls, plunge pools, bank armoring, cross vanes, contour infiltration ditches, etc.) to reduce incision rates and risk of slump failures, facilitate aggradation, and hasten revegetation. In keeping with the EWB goal of project sustainability, we used primarily locally available resources. High school students of the community grew 5000 native trees and some naturalized shrubs in a nursery started by the school principal, hand weavers produced jute erosion mats, and rocks were provided by a nearby quarry. Where possible, local rock was harvested from landslide areas and other local erosion features. Based on follow up reports and photographs from the community and EWB travelers, the approach of using locally available materials installed by the community is successful; plants are growing well and erosion control structures have remained in place throughout the November to April rainy season. The community has continued planting native vegetation at several additional erosion sites. Formal monitoring will be conducted in October 2013, followed by analysis of data to determine if induced meandering and other low-maintenance erosion control techniques are working as planned. For comparison of techniques, we will consider installing check dams in comparable gullies. The October 2013 project will also

  6. Climatic Characteristics of the Subtropical Mountainous Cloud Forest at the Yuanyang Lake Long-Term Ecological Research Site, Taiwan

    Directory of Open Access Journals (Sweden)

    I-Ling Lai

    2006-12-01

    Full Text Available To better understand the climatic characteristics in a subtropical mountainous cloud forest at the Yuanyang Lake long-term ecological research site, weather data collected from January 1994 to December 2004 were analyzed in the present study. The obvious seasonal changes in climatic factors were observed at this site. The annual mean air temperature was 12.7°C. The lowest temperature was recorded in February (monthly mean 5.9°C, and the highest one was taken in July (monthly mean 18.1°C. Winter featured light rain with a prolonged occurrence of fog, resulting in a large reduction of radiation. In summer, fog occurred once in the early morning and the other time from afternoon to evening. The latter one was associated with the wind direction changes and usually accompanied with short moderate to heavy convective rain. Consequently the photosynthetic photon flux density (PPFD was high in the morning but reduced drastically in the afternoon. Typhoons occurred in the summer had contributed to 37% of the annual rainfall, usually resulting in torrential rain events and sharp increases in the water level of this lake. As a matter of fact, perhumid environment of this site was attributed to abundant rainfall (mean annual precipitation 3396 mm and high frequency (up to 40% of foggy time. Such conditions would reduce the intensity of solar radiation and PPFD. The average annual solar radiation at the site was 2475 MJ m-2, and annual PPFD was 5713 mol m-2. The average degree of reduction of PPFD under foggy condition was up to 88%. Such climatic characteristics are suggested to constrain the growth of plants and play an important role in competition among plant species in this cloud forest. It is considered that the distinct seasonal fluctuation in environmental factors, perhumid and dim light conditions are the most distinguished characteristics of this subtropical mountainous cloud forest ecosystem.

  7. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA

    Energy Technology Data Exchange (ETDEWEB)

    Reinhardt, K.; Smith, W.K. [Wake Forest Univ., Winston-Salem, NC (United States). Dept. of Biology

    2008-01-15

    Global climate change is expected to increase regional cloud ceiling levels in many mountainous forested areas of the world. This study investigated environmental influences on the gas exchange physiology of understory red spruce and Fraser fir trees at 2 sites in the Appalachian mountains. The study hypothesized that the humid, cloudy environment would influence the photosynthetic performance of the trees, and that the species would adapt to low, diffuse light. The study also predicted that leaf conductance to carbon dioxide (CO{sub 2}) would be high as a result of low leaf-to-air-vapour pressure deficit (LAVD). The study demonstrated that leaf conductance decreased exponentially as LAVD increased. Predawn leaf water potentials remained stable, while late afternoon values declined. It was concluded that leaf gas exchange was correlated with the response of leaf conductance and LAVD. The cloudy, humid environment strongly influenced tree leaf gas exchange and water relations. It was suggested that further research is needed to investigate cloud impacts on carbon gain and water relations. 72 refs., 1 tab., 8 figs.

  8. Vegetation-zonation patterns across a temperate mountain cloud forest ecotone are not explained by variation in hydraulic functioning or water relations.

    Science.gov (United States)

    Berry, Z Carter; Johnson, Daniel M; Reinhardt, Keith

    2015-09-01

    Many studies have demonstrated linkages between the occurrence of fog and ecophysiological functioning in cloud forests, but few have investigated hydraulic functioning as a determining factor that explains sharp changes in vegetation. The objective of this study was to compare the plant water status during cloud-immersed and non-immersed conditions and hydraulic vulnerability in branches and roots of species across a temperate, mountain fog ecotone. Because cloud forests are often dark, cool and very moist, we expected cloud forest species to have less drought-tolerant characteristics (i.e., lower Pe and P50-the pressures required to induce a 12 and 50% loss in hydraulic conductivity, respectively) relative to non-cloud forest species in adjacent (lower elevation) forests. Additionally, due to the ability of cloud forest species to absorb cloud-fog water, we predicted greater improvements in hydraulic functioning during fog in cloud forest species relative to non-cloud forest species. Across the cloud forest ecotone, most species measured were very resistant to losses in conductivity with branch P50 values from -4.5 to -6.0 MPa, hydraulic safety margins (Ψmin - P50) >1.5 MPa and low calculated hydraulic conductivity losses. Roots had greater vulnerabilities, with P50 values ranging from -1.4 to -2.5 MPa, leading to greater predicted losses in conductivity (∼20%). Calculated values suggested strong losses of midday leaf hydraulic conductance in three of the four species, supporting the hydraulic segmentation hypothesis. In both cloud forest and hardwood species, Ψs were greater on foggy days than sunny days, demonstrating the importance of fog periods to plant water balance across fog regimes. Thus, frequent fog did not result in systemic changes in hydraulic functioning or vulnerability to embolism across our temperate cloud forest ecotone. Finally, roots functioned with lower hydraulic conductivity than branches, suggesting that they may serve as more

  9. EDAPHIC PROPERTIES PLOTS CULTIVATED WITH MILPA USING MINIMUM TILLAGE IN THE MOUNTAINS OF OAXACA, WHERE THERE WAS MOUNTAIN CLOUD FOREST.

    Directory of Open Access Journals (Sweden)

    Irma Reyes-Jaramillo

    2016-03-01

    Full Text Available Soil fertility in the first 20 cm of six plots and a cloud forest (MCF still preserved in Sta. María Chilchotla, north of Oaxaca, where the predominant MCF and grown landraces were evaluated. The soils are on slopes are shallow, rocky and not suitable for agriculture. Yields are low, the Mazatec perform traditional cultural practices such as minimum tillage as the terrain does not allow entering tractor or oxen, farmers do not burn, and do not use chemicals. Soil sampling randomly obtaining composite samples were made​​ physical, chemical and biological properties were analyzed. The results showed that are medium textured soils, the pH of the MCF is extremely acid (4.5 and in the plots ranged from 5 to 6.9, organic carbon is high from 24 to 100 g kg -1, total nitrogen ranged from 1.4 - 8.3 g kg-1 medium and high values, available phosphorus was low with the exception of the plot three, the CEC ranged from 8.8 to 36 cmoles(+ kg-1. They have high iron content of 20.26 to 94.18 mg kg-1 on BMM standing there also high in copper, zinc and manganese. Analysis of variance (ANOVA showed a significant difference (р 0.5 between the means of soil properties and soil analyzed than sodium. The multiple comparison test of Tukey was applied. Trap pots mycorrhizal fungi were isolated from different species. It is concluded that the soils of most of the plots are fertile, are poor in phosphorus but everything indicates that they make up the AM fungi; no physical degradation was observed, its major limitation is the stoniness and steep slopes. The practice of minimum tillage, barriers of rocks that outcrop at the surface and leaving stumps of tree ferns prevent erosion. It aims to increase maize production experimenting with chemical fertilizers. To preserve the MCF recommends building their biological and ethnobotanical wealth, carbon sequestration mazatec could receive a financial benefit.

  10. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Alfredo González-Zamora

    2016-04-01

    Full Text Available Aim of the study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE and two sites of montane cloud forests, one preserved (MCF1 and other perturbed (MCF2. We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation.Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico.Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity. We used different similarity indices and a cluster analysis to show relations among sites.Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region.Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity.

  11. Mountain cloud forest and grown-shade coffee plantations: A comparison of tree biodiversity in central Veracruz, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    González-Zamora, A.; Esperón-Rodríguez, M.; Barradas, V.L.

    2016-07-01

    Aim of study: The objective of this work is to compare tree diversity and richness among one grown-shade coffee plantation (CAE) and two sites of montane cloud forests, one preserved (MCF1) and other perturbed (MCF2). We also develop an analysis of the importance of coffee plantations as a refuge of tree species, holding a potential role for conservation. Area of study: Our study area is the coffee region of Coatepec-Xico, in the state of Veracruz, Mexico. Material and methods: We compiled a list of all tree species in each site to determine tree diversity and floristic similarity (dissimilarity). We used different similarity indices and a cluster analysis to show relations among sites. Main results: 2721 individuals from 154 species were registered in the montane cloud forests as a whole. In the grown-shade coffee plantation we registered 2947 individuals from 64 species. The most similar sites were the perturbed montane cloud forest and the grown-shade coffee plantation and the least similar were the preserved montane cloud forest and the grown-shade coffee plantation. The high biodiversity found in all sites and the differences in tree composition between the two montane cloud forests supports evidence of the ecosystems richness in the region. Research highlight: Diversity differences among sites determine that the grown-shade coffee plantation is not substitute for montane cloud forest. CAE’s are developed under similar environmental conditions than the MCF; therefore, coexistence and recombination (replacement) of species make them particularly complementary. CAE’s in Veracruz have a potential role as refuge for biodiversity. (Author)

  12. VT Green Mountain National Forest - Roads

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  13. VT Green Mountain National Forest - Trails

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  14. Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests

    Science.gov (United States)

    Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.

    2010-01-01

    Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.

  15. Tourists’ perception of deadwood in mountain forests

    Directory of Open Access Journals (Sweden)

    Fabio Pastorella

    2016-12-01

    Full Text Available In the traditional forest management the non-living woody biomass in forests was perceived negatively. Generally, deadwood was removed during the silvicultural treatments to protect forests against fire, pests and insects attacks. In the last decades, the perception of forest managers regarding forest deadwood is changing. However, people’s opinions about the presence of deadwood in the forests have been few investigated. In view of this gap, the aim of the paper is to understand the tourists’ perception and opinions towards the deadwood in mountain forests. The survey was carried out in two study areas: the first one in Italy and the second one in Bosnia-Herzegovina. A structured questionnaire was administered to a random sample of visitors (n=156 in Italy; n=115 in Bosnia-Herzegovina. The tourists’ preferences were evaluated through a set of images characterized by a different amount of standing dead trees and lying deadwood. The collected data were statistically analyzed to highlight the preferred type of forests related to different forms of management of deadwood (unmanaged forests, close-to-nature forests, extensive managed forests and intensive managed forests. The results show that both components of deadwood are not perceived negatively by tourists. More than 60% of respondents prefer unmanaged forests and close-to-nature managed forests, 40% of respondents prefer intensive managed forests in which deadwood is removed during the silvicultural treatments.

  16. Wildfires in Siberian Mountain Forest

    Science.gov (United States)

    Kharuk, V.; Ponomarev, E. I.; Antamoshkina, O.

    2017-12-01

    The annual burned area in Russia was estimated as 0.55 to 20 Mha with >70% occurred in Siberia. We analyzed Siberian wildfires distribution with respect to elevation, slope steepness and exposure. In addition, wildfires temporal dynamic and latitudinal range were analyzed. We used daily thermal anomalies derived from NOAA/AVHRR and Terra/MODIS satellites (1990-2016). Fire return intervals were (FRI) calculated based on the dendrochronology analysis of samples taken from trees with burn marks. Spatial distribution of wildfires dependent on topo features: relative burned area increase with elevation increase (ca. 1100 m), switching to following decrease. The wildfires frequency exponentially decreased within lowlands - highlands transition. Burned area is increasing with slope steepness increase (up to 5-10°). Fire return intervals (FRI) on the southfacing slopes are about 30% longer than on the north facing. Wildfire re-occurrence is decreasing exponentially: 90% of burns were caused by single fires, 8.5% by double fires, 1% burned three times, and on about 0.05% territory wildfires occurred four times (observed period: 75 yr.). Wildfires area and number, as well as FRI, also dependent on latitude: relative burned area increasing exponentially in norward direction, whereas relative fire number is exponentially decreasing. FRI increases in the northward direction: from 80 years at 62°N to 200 years at the Arctic Circle, and to 300 years at the northern limit of closed forests ( 71+°N). Fire frequency, fire danger period and FRI are strongly correlated with incoming solar radiation (r = 0.81 - 0.95). In 21-s century, a positive trend of wildfires number and area observed in mountain areas in all Siberia. Thus, burned area and number of fires in Siberia are significantly increased since 1990th (R2 =0.47, R2 =0.69, respectively), and that increase correlated with air temperatures and climate aridity increases. However, wildfires are essential for supporting fire

  17. Forests of the Mountain State

    Science.gov (United States)

    Richard H. Widmann; Charles R. Dye; Gregory W. Cook

    2007-01-01

    A report on the forest inventory of West Virginia conducted in 1999-2001 by the Forest Inventory and Analysis unit of the Northeastern Research Station. Discusses the current condition and changes from previous inventories for forest area, timber volume, tree species, mortality and growth and removals. Graphics depict data at the state level and by county where...

  18. Air pollution: worldwide effects on mountain forests

    Science.gov (United States)

    Anne M. Rosenthal; Andrzej Featured: Bytnerowicz

    2004-01-01

    Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...

  19. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...

  20. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns

  1. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  2. VT Green Mountain National Forest - Long Trail and Appalachian Trail

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GMNFTRAILS contains minor Forest Service roads and all trails within the proclamation boundary of the Green Mountain National Forest and many of...

  3. Historic forests and endemic mountain pine beetle and dwarf mistletoe

    Science.gov (United States)

    Jose Negron

    2012-01-01

    Mountain pine beetle has always been a significant disturbance agent in ponderosa and lodgepole pine forests in Colorado. Most studies have examined the impacts to forest structure associated with epidemic populations of a single disturbance agent. In this paper we address the role of endemic populations of mountain pine and their interactions with dwarf mistletoe...

  4. Fogwater Inputs to a Cloud Forest in Puerto Rico

    Science.gov (United States)

    Eugster, W.; Burkard, R.; Holwerda, F.; Bruijnzeel, S.; Scatena, F. N.; Siegwolf, R.

    2002-12-01

    Fog is highly persistent at upper elevations of humid tropical mountains and is an important pathway for water and nutrient inputs to mountain forest ecosystems. Measurements of fogwater fluxes were performed in the Luquillo mountains of Puerto Rico using the eddy covariance approach and a Caltech-type active strand cloudwater collector. Rainfall and throughfall were collected between 25 June--7 August 2002. Samples of fog, rain, stemflow and throughfall were analyzed for inorganic ion and stable isotope concentrations (δ18O and δD). Initial results indicate that fog inputs can occur during periods without rain and last for up to several days. The isotope ratios in rainwater and fogwater are rather similar, indicative of the proximity of the Carribbean Sea and the close interrelation between the origins of fog and rain at our experimental site. Largest differences in isotope ratios for fog were found between daytime convective and nighttime stable conditions. Throughfall was always exceeding rainfall, indicating (a) the relevance of fogwater inputs and (b) the potentially significant undersampling of rainfall due to relatively high wind speeds (5.7 m/s mean) and the exposition of our field site close to a mountain ridge. Our size-resolved measurements of cloud droplets (40 size bins between 2 and 50 μm aerodynamic diameter) indicate that the liquid water content of fog in the Luquillo mountains is 5 times higher than previously assumed, and thus does not differ from the values reported from other mountain ranges in other climate zones. Average deposition rates are 0.88 mm and 6.5 mm per day for fog and rain, respectively.

  5. 76 FR 70955 - Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project

    Science.gov (United States)

    2011-11-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Helena Nation Forest: Dalton Mountain Forest Restoration & Fuels Reduction Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The Helena National Forest (HNF) is proposing on the Lincoln Ranger...

  6. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  7. VT Ecological Land Types - Green Mountain National Forest - lines

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The EcologicOther_ELT (Ecological Land Type) data layer was developed by the Green Mountain National Forest in the early 1980's from aerial...

  8. VT Ecological Land Types - Green Mountain National Forest - polygons

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The EcologicOther_ELT (Ecological Land Type) data layer was developed by the Green Mountain National Forest in the early 1980's from aerial...

  9. VT Green Mountain National Forest Map - Northern Section

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BasemapOther_GMNFMAPN is a cartographic map product depicting the northern half of the Green Mountain National Forest (GMNF). The paper map...

  10. VT Green Mountain National Forest Map - Southern Section

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The BasemapOther_GMNFMAPS is a cartographic map product depicting the southern half of the Green Mountain National Forest (GMNF). The paper map...

  11. VT Green Mountain National Forest National Recreation Areas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This dataset includes National Recreation Areas (NRAs) designated by Congress on the Green Mountain National Forest (GMNF) as of 2006. There are...

  12. Interactive Trunk Extraction from Forest Point Cloud

    Directory of Open Access Journals (Sweden)

    T. Mizoguchi

    2014-06-01

    Full Text Available For forest management or monitoring, it is required to constantly measure several parameters of each tree, such as height, diameter at breast height, and trunk volume. Terrestrial laser scanner has been used for this purpose instead of human workers to reduce time and cost for the measurement. In order to use point cloud captured by terrestrial laser scanner in the above applications, it is an important step to extract all trees or their trunks separately. For this purpose, we propose an interactive system in which a user can intuitively and efficiently extract each trunk by a simple editing on the distance image created from the point cloud. We demonstrate the effectiveness of our proposed system from various experiments.

  13. Geomorphic control on the δ15N of mountain forests.

    OpenAIRE

    Hilton, R. G.; Galy, A.; West, A. J.; Hovius, N.; Roberts, G.G.

    2013-01-01

    Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope) and climatic (precipitation, temperature) characteristics. The organic carbon...

  14. Floristic Composition and Structure of Yegof Mountain Forest, South ...

    African Journals Online (AJOL)

    Floristic Composition and Structure of Yegof Mountain Forest, South Wollo, Ethiopia. S Mohammed, B Abraha. Abstract. In this study, Floristic composition, diversity, population structure and regeneration status of woody plant species of Yegof Forest in South Wollo Zone, Amhara Regional State, Ethiopia were analyzed.

  15. Bat habitat use in White Mountain National Forest

    Science.gov (United States)

    Rachel A. Krusic; Mariko Yamasaki; Christopher D. Neefus; Peter J. Pekins

    1996-01-01

    In 1992 and 1993, we surveyed the foraging and feeding activity of bat species with broadband bat detectors at 2 foliage heights in 4 age classes of northern hardwood and spruce/fir forest stands in White Mountain National Forest, New Hampshire and Maine. The association of bat activity with trails and water bodies and the effect of elevation were measured. Mist nets,...

  16. Management of Giant Sequoia on Mountain Home Demonstration State Forest

    Science.gov (United States)

    Norman J. Benson

    1986-01-01

    Established in 1946, the Mountain Home Demonstration State Forest, Tulare County, California, is managed by the California Department of Forestry. It is a multiple-use forest with recreation as its primary focus, although timber management has always played an important role. Giant sequoia (Sequoiadendron giganteum [Lindl. ] Buchholz) occurs in...

  17. Forests of hope: Costa Rica. Restoring hope in the clouds.

    Science.gov (United States)

    Bowen, L

    1996-01-01

    The rapid population growth in Central America has created pressure on the largest tract of cloud forest spanning the Talamanca Mountains in Costa Rica and Panama. Of immediate concern is restoring hope in the forest and improving the standard of living among local people. Such is the goal of the Amistad Conservation and Development (AMISCONDE) project in the communities of Cerro Punta, Panama, and San Rafael in Costa Rica. Through agriculture, forestry, animal husbandry, environmental education, and community development, AMISCONDE aims to restore the degraded lands in the reserve's buffer zone and improve the income of the people. All the local people, the farmers, women and children have benefited from the project. Some of the activities carried out to meet its objectives include helping the farmers improve the productivity and marketability of their products by teaching them new technologies and giving agricultural credits to farmers, women, and youth groups. In addition, AMISCONDE conducts training courses to address the economic, social and educational needs of women and communities. It is assured that the community and the group will be prepared to continue on their own after the official AMISCONDE office is gone.

  18. Quantifying Sediment Transport in a Premontane Transitional Cloud Forest

    Science.gov (United States)

    Waring, E. R.; Brumbelow, J. K.

    2013-12-01

    Quantifying sediment transport is a difficult task in any watershed, and relatively little direct measurement has occurred in tropical, mountainous watersheds. The Howler Monkey Watershed (2.2 hectares) is located in a premontane transitional cloud forest in San Isidro de Peñas Blancas, Costa Rica. In June 2012, a V-notch stream-gaging weir was built in the catchment with a 8 ft by 6 ft by 4 ft concrete stilling basin. Sediment captured by the weir was left untouched for an 11 month time period. To collect the contents of the weir, the stream was rerouted and the weir was drained. The stilling basin contents were systematically sampled, and samples were taken to a lab and characterized using sieve and hydrometer tests. The wet volume of the remaining sediment was obtained, and dry mass was estimated. Particle size distribution of samples were obtained from lab tests, with 96% of sediment trapped by the weir being sand or coarser. The efficiency of the weir as a sediment collector was evaluated by comparing particle fall velocities to residence time of water in the weir under baseflow conditions. Under these assumptions, only two to three percent of the total mass of soil transported in the stream is thought to have been suspended in the water and lost over the V-notch. Data were compared to the Universal Soil Loss Equation (USLE), a widely accepted method for predicting soil loss in agricultural watersheds. As expected, application of the USLE to a tropical rainforest was problematic with uncertainty in parameters yielding a soil loss estimate varying by a factor of 50. Continued monitoring of sediment transport should yield data for improved methods of soil loss estimation applicable to tropical mountainous forests.

  19. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    Science.gov (United States)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable

  20. Origin, development, and impact of mountain laurel thickets on the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2016-01-01

    Throughout forests of the northern hemisphere, some species of ericaceous shrubs can form persistent understories that interfere with forest regeneration processes. In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) may interfere in the regeneration of mixed-oak (Quercus spp.) forests. To...

  1. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Science.gov (United States)

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of...: Background Information: The Grey's Mountain Ecosystem Restoration Project (Madera County, California) lies... vegetation. Currently, vegetation within the Grey's Mountain Ecosystem Restoration Project has changed from...

  2. Fusion of NASA Airborne Snow Observatory (ASO Lidar Time Series over Mountain Forest Landscapes

    Directory of Open Access Journals (Sweden)

    António Ferraz

    2018-01-01

    Full Text Available Mountain ecosystems are among the most fragile environments on Earth. The availability of timely updated information on forest 3D structure would improve our understanding of the dynamic and impact of recent disturbance and regeneration events including fire, insect damage, and drought. Airborne lidar is a critical tool for monitoring forest change at high resolution but it has been little used for this purpose due to the scarcity of long-term time-series of measurements over a common region. Here, we investigate the reliability of on-going, multi-year lidar observations from the NASA-JPL Airborne Snow Observatory (ASO to characterize forest 3D structure at a fine spatial scale. In this study, weekly ASO measurements collected at ~1 pt/m2, primarily acquired to quantify snow volume and dynamics, are coherently merged to produce high-resolution point clouds ( ~ 12 pt/m2 that better describe forest structure. The merging methodology addresses the spatial bias in multi-temporal data due to uncertainties in platform trajectory and motion by collecting tie objects from isolated tree crown apexes in the lidar data. The tie objects locations are assigned to the centroid of multi-temporal lidar points to fuse and optimize the location of multiple measurements without the need for ancillary data or GPS control points. We apply the methodology to ASO lidar acquisitions over the Tuolumne River Basin in the Sierra Nevada, California, during the 2014 snow monitoring campaign and provide assessment of the fidelity of the fused point clouds for forest mountain ecosystem studies. The availability of ASO measurements that currently span 2013–2017 enable annual forest monitoring of important vegetated ecosystems that currently face ecological threads of great significance such as the Sierra Nevada (California and Olympic National Forest (Washington.

  3. Forest development and carbon dynamics after mountain pine beetle outbreaks

    Science.gov (United States)

    E. Matthew. Hansen

    2014-01-01

    Mountain pine beetles periodically infest pine forests in western North America, killing many or most overstory pine stems. The surviving secondary stand structure, along with recruited seedlings, will form the future canopy. Thus, even-aged pine stands become multiaged and multistoried. The species composition of affected stands will depend on the presence of nonpines...

  4. Acid atmospheric deposition in a forested mountain catchment

    Czech Academy of Sciences Publication Activity Database

    Křeček, J.; Palán, L.; Stuchlík, Evžen

    2017-01-01

    Roč. 10, č. 4 (2017), s. 680-686 ISSN 1971-7458 Institutional support: RVO:60077344 Keywords : mountain water shed * spruce forests * acid atmospheric deposition * water resources recharge Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 1.623, year: 2016

  5. Mountain Norway spruce forests: Needle supply and its nutrient content

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Marcela; Vacek, S.

    2003-01-01

    Roč. 49, - (2003), s. 327-332 ISSN 1212-4834 R&D Projects: GA AV ČR KSK6005114; GA ČR GA206/99/1416 Institutional research plan: CEZ:AV0Z6005908 Keywords : Šumava Mts. * Mountain Norway spruce forest * needle mass Subject RIV: EF - Botanics

  6. Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium

    Science.gov (United States)

    Figueroa-Rangel, B. L.; Olvera Vargas, M.

    2013-05-01

    The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF

  7. Environmental impacts of forest road construction on mountainous terrain.

    Science.gov (United States)

    Caliskan, Erhan

    2013-03-15

    Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2) and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient) and very steep terrain (51-80% gradient). Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  8. Environmental Impacts of Forest Road Construction on Mountainous Terrain

    Directory of Open Access Journals (Sweden)

    Erhan Caliskan

    2013-03-01

    Full Text Available Forest roads are the base infrastructure foundation of forestry operations. These roads entail a complex engineering effort because they can cause substantial environmental damage to forests and include a high-cost construction. This study was carried out in four sample sites of Giresun, Trabzon(2 and Artvin Forest Directorate, which is in the Black Sea region of Turkey. The areas have both steep terrain (30-50% gradient and very steep terrain (51-80% gradient. Bulldozers and hydraulic excavators were determined to be the main machines for forest road construction, causing environmental damage and cross sections in mountainous areas.As a result of this study, the percent damage to forests was determined as follows: on steep terrain, 21% of trees were damaged by excavators and 33% of trees were damaged by bulldozers during forest road construction, and on very steep terrain, 27% of trees were damaged by excavators and 44% of trees were damaged by bulldozers during forest road construction. It was also determined that on steep terrain, when excavators were used, 12.23% less forest area was destroyed compared with when bulldozers were used and 16.13% less area was destroyed by excavators on very steep terrain. In order to reduce the environmental damage on the forest ecosystem, especially in steep terrains, hydraulic excavators should replace bulldozers in forest road construction activities.

  9. Water Balance and Forest Productivity in Mediterranean Mountain Environments

    Directory of Open Access Journals (Sweden)

    Giuseppe Scarascia-Mugnozza

    2010-06-01

    Full Text Available The availability of water resources is one of the major drivers affecting forest and agricultural productivity. The sensitivity of Mediterranean forest species to water shortage is becoming even more relevant in relation to climate changes, that for Southern Europe could lead to an increase in temperature of 2 to 3 °C, paralleled by a decrease of 5 to 15% of summer rainfall. It is then important to study the relationship between water balance and productivity of important forest tree species such as beech and mountain pines that represent the upper limit of forest vegetation in almost all the Apennines range. In the present paper, the measurements of water balance, evapotranspiration, carbon exchange and productivity in beech and pine forests of central-southern Italy (Abruzzo and Calabria regions are reported. The results are obtained in the course of several years of experimentation with innovative techniques and integrated at the canopy level.

  10. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    Science.gov (United States)

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  11. Geomorphic control on the δ15N of mountain forests

    Directory of Open Access Journals (Sweden)

    R. G. Hilton

    2013-03-01

    Full Text Available Mountain forests are subject to high rates of physical erosion which can export particulate nitrogen from ecosystems. However, the impact of geomorphic processes on nitrogen budgets remains poorly constrained. We have used the elemental and isotopic composition of soil and plant organic matter to investigate nitrogen cycling in the mountain forest of Taiwan, from 24 sites with distinct geomorphic (topographic slope and climatic (precipitation, temperature characteristics. The organic carbon to nitrogen ratio of soil organic matter decreased with soil 14C age, providing constraint on average rates of nitrogen loss using a mass balance model. Model predictions suggest that present day estimates of nitrogen deposition exceed contemporary and historic nitrogen losses. We found ∼6‰ variability in the stable isotopic composition (δ15N of soil and plants which was not related to soil 14C age or climatic conditions. Instead, δ15N was significantly, negatively correlated with topographic slope. Using the mass balance model, we demonstrate that the correlation can be explained by an increase in nitrogen loss by non-fractioning pathways on steeper slopes, where physical erosion most effectively removes particulate nitrogen. Published data from forests on steep slopes are consistent with the correlation. Based on our dataset and these observations, we hypothesise that variable physical erosion rates can significantly influence soil δ15N, and suggest particulate nitrogen export is a major, yet underappreciated, loss term in the nitrogen budget of mountain forests.

  12. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  13. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    Science.gov (United States)

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more

  14. Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?

    Science.gov (United States)

    Jocque, M; Vanhove, M P M; Creedy, T J; Burdekin, O; Nuñez-Miño, J M; Casteels, J

    2013-01-01

    Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in

  15. Fire, fuels, and restoration of ponderosa pine-Douglas-fir forests in the Rocky Mountains, USA

    OpenAIRE

    Baker, W. L.; Veblen, T. T.; Sherriff, R. L.

    2007-01-01

    Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low-severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low-severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and earl...

  16. Long and short term changes in the forests of the Cumberland Plateau and Mountains using large scale forest inventory data

    Science.gov (United States)

    Christopher M. Oswalt; Andrew J. Hartsell

    2012-01-01

    The Cumberland Plateau and Mountains (CPM) are a significant component of the eastern deciduous forest with biological and cultural resources strongly connected to and dependent upon the forest resources of the region. As a result, continuous inventory and monitoring is critical. The USDA Forest Service Forest Inventory and Analysis (FIA) program has been collecting...

  17. Special Forest Products on the Green Mountain and Finger Lakes National Forests: a research-based approach to management

    Science.gov (United States)

    Marla R. Emery; Clare. Ginger

    2014-01-01

    Special forest products (SFPs) are gathered from more than 200 vascular and fungal species on the Green Mountain National Forest (GMNF) and Finger Lakes National Forest (FLNF). This report documents those SFPs and proposes an approach to managing them in the context of legislation directing the U.S. Forest Service to institute a program of active SFP management. Based...

  18. Clouds, Wind and the Biogeography of Central American Cloud Forests: Remote Sensing, Atmospheric Modeling, and Walking in the Jungle

    Science.gov (United States)

    Lawton, R.; Nair, U. S.

    2011-12-01

    Cloud forests stand at the core of the complex of montane ecosystems that provide the backbone to the multinational Mesoamerican Biological Corridor, which seeks to protect a biodiversity conservation "hotspot" of global significance in an area of rapidly changing land use. Although cloud forests are generally defined by frequent and prolonged immersion in cloud, workers differ in their feelings about "frequent" and "prolonged", and quantitative assessments are rare. Here we focus on the dry season, in which the cloud and mist from orographic cloud plays a critical role in forest water relations, and discuss remote sensing of orographic clouds, and regional and atmospheric modeling at several scales to quantitatively examine the distribution of the atmospheric conditions that characterize cloud forests. Remote sensing using data from GOES reveals diurnal and longer scale patterns in the distribution of dry season orographic clouds in Central America at both regional and local scales. Data from MODIS, used to calculate the base height of orographic cloud banks, reveals not only the geographic distributon of cloud forest sites, but also striking regional variation in the frequency of montane immersion in orographic cloud. At a more local scale, wind is known to have striking effects on forest structure and species distribution in tropical montane ecosystems, both as a general mechanical stress and as the major agent of ecological disturbance. High resolution regional atmospheric modeling using CSU RAMS in the Monteverde cloud forests of Costa Rica provides quantitative information on the spatial distribution of canopy level winds, insight into the spatial structure and local dynamics of cloud forest communities. This information will be useful in not only in local conservation planning and the design of the Mesoamerican Biological Corridor, but also in assessments of the sensitivity of cloud forests to global and regional climate changes.

  19. [Life cycles of ground beetles (Coleoptera, Carabidae) from the mountain taiga and mountain forest-steppe in the Eastern Sayan].

    Science.gov (United States)

    Khobrakova, L Ts; Sharova, I Kh

    2005-01-01

    Seasonal dynamics and demographic structure was studied in 15 dominant ground beetle species in the mountain taiga and mountain forest-steppe belts of the Eastern Sayan (Okinskoe Plateau). Life cycles of the dominant ground beetle species were classified by developmental time, seasonal dynamics, and intrapopulation groups with different reproduction timing. The strategies of carabid life cycles adapted to severe mountain conditions of the Eastern Sayan were revealed.

  20. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    NARCIS (Netherlands)

    Janssen, R.; Ganzeveld, L.N.; Kabat, P.; Kulmala, M.; Nieminen, T.; Roebeling, R.A.

    2011-01-01

    Seasonal variations in cloud droplet number concentration (NCD) in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An

  1. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  2. Timber supply and demand assessment of the Green and White Mountain National Forests' market area

    Science.gov (United States)

    Chris B. LeDoux; Paul E. Sendak; William H. McWilliams; Neil Huyler; Thomas Malecek; Worthen Muzzey; Toni Jones

    2001-01-01

    This report describes a timber supply and demand assessment of the Green and White Mountain National Forests' market area using USDA Forest Service, Forest Inventory and Analysis data, production information provided by forest industry, and a stump-to-mill logging cost-prediction model. Nonavailable timberland that includes reserve and steep-terrain lands is...

  3. A history of forest entomology in the Intermountain and Rocky Mountain areas, 1901 to 1982

    Science.gov (United States)

    Malcolm M. Furniss

    2007-01-01

    This account spans the time from A.D. Hopkins' trip to the Black Hills, SD, in 1901 to my retirement in 1982. The focus is on personnel and the work of the Division of Forest Insect Investigations, USDA, and the Forest Service experiment stations in the Rocky Mountain and Intermountain areas. Information for the Intermountain and Northern Rocky Mountain station...

  4. Composition and biogeography of forest patches on the inland mountains of the southern Cape

    CSIR Research Space (South Africa)

    Geldenhuys, CJ

    1997-05-01

    Full Text Available Patterns in species richness of 23 small, isolated forests on the inland mountains of the southern Cape were studied. Species richness of woody plants and vines of the Kouga-Baviaanskloof Forests was higher than in the western mountain complexes...

  5. An evaluation of seven methods for controlling mountain laurel thickets in the mixed-oak forests of the central Appalachian Mountains, USA

    Science.gov (United States)

    Patrick H. Brose

    2017-01-01

    In the Appalachian Mountains of eastern North America, mountain laurel (Kalmia latifolia) thickets in mixed-oak (Quercus spp.) stands can lead to hazardous fuel situations, forest regeneration problems, and possible forest health concerns. Therefore, land managers need techniques to control mountain laurel thickets and limit...

  6. Turkish Children's Drawing of Nature in a Certain Way: Range of Mountains in the Back, the Sun, Couple of Clouds, a River Rising from the Mountains

    Science.gov (United States)

    Ulker, Riza

    2012-01-01

    This study reveals that Turkish kindergarten through 8th Grade (K-8) students draw nature pictures in a certain way; range of mountains in the background, a sun, a couple of clouds, a river rising from the mountains. There are similarities in the K-8 students' nature drawings in the way these nature items are organized on a drawing paper. We…

  7. Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscapes

    Directory of Open Access Journals (Sweden)

    Lukas Krejci

    2018-02-01

    Full Text Available Norway spruce dominates mountain forests in Europe. Natural variations in the mountainous coniferous forests are strongly influenced by all the main components of forest and landscape dynamics: species diversity, the structure of forest stands, nutrient cycling, carbon storage, and other ecosystem services. This paper deals with an empirical windthrow risk model based on the integration of logistic regression into GIS to assess forest vulnerability to wind-disturbance in the mountain spruce forests of Šumava National Park (Czech Republic. It is an area where forest management has been the focus of international discussions by conservationists, forest managers, and stakeholders. The authors developed the empirical windthrow risk model, which involves designing an optimized data structure containing dependent and independent variables entering logistic regression. The results from the model, visualized in the form of map outputs, outline the probability of risk to forest stands from wind in the examined territory of the national park. Such an application of the empirical windthrow risk model could be used as a decision support tool for the mountain spruce forests in a study area. Future development of these models could be useful for other protected European mountain forests dominated by Norway spruce.

  8. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    Science.gov (United States)

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  9. Natural flood retention in mountain areas by forests and forest like short rotation coppices

    Science.gov (United States)

    Reinhardt-Imjela, Christian; Schulte, Achim; Hartwich, Jens

    2017-04-01

    Natural water retention is an important element of flood risk management in flood generating headwater areas in the low mountain ranges of Central Europe. In this context forests are of particular interest because of the high infiltration capacities of the soils and to increase water retention reforestation of agricultural land would be worthwhile. However competing claims for land use in intensely cultivated regions in Central Europe impede reforestation plans so the potential for a significant increase of natural water retention in forests is strongly limited. Nevertheless the development of innovative forms of land use and crop types opens new perspectives for a combination of agricultural land use with the water retention potential of forests. Recently the increasing demand for renewable energy resources leads to the cultivation of fast growing poplar and willow hybrids on agricultural land in short rotation coppices (SRC). Harvested in cycles of three to six years the wood from the plantations can be used as wood chips for heat and electricity production in specialized power plants. With short rotation plantations a crop type is established on arable land which is similar to forests so that an improvement of water retention can be expected. To what extend SRC may contribute to flood attenuation in headwater areas is investigated for the Chemnitzbach watershed (48 km2) in the Eastern Ore Mountains (Free State of Saxony, Germany), a low mountain range which is an important source of flood runoff in the Elbe basin. The study is based on a rainfall-runoff model of flood events using the conceptual modelling system NASIM. First results reveal a significant reduction of the flood peaks after the implementation of short rotation coppices. However the effect strongly depends on two factors. The first factor is the availability of areas for the plantations. For a substantial impact on the watershed scale large areas are required and with decreasing percentages of SRC

  10. Divergent phenological response to hydroclimate variability in forested mountain watersheds.

    Science.gov (United States)

    Hwang, Taehee; Band, Lawrence E; Miniat, Chelcy F; Song, Conghe; Bolstad, Paul V; Vose, James M; Love, Jason P

    2014-08-01

    Mountain watersheds are primary sources of freshwater, carbon sequestration, and other ecosystem services. There is significant interest in the effects of climate change and variability on these processes over short to long time scales. Much of the impact of hydroclimate variability in forest ecosystems is manifested in vegetation dynamics in space and time. In steep terrain, leaf phenology responds to topoclimate in complex ways, and can produce specific and measurable shifts in landscape forest patterns. The onset of spring is usually delayed at a specific rate with increasing elevation (often called Hopkins' Law; Hopkins, 1918), reflecting the dominant controls of temperature on greenup timing. Contrary with greenup, leaf senescence shows inconsistent trends along elevation gradients. Here, we present mechanisms and an explanation for this variability and its significance for ecosystem patterns and services in response to climate. We use moderate-resolution imaging spectro-radiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data to derive landscape-induced phenological patterns over topoclimate gradients in a humid temperate broadleaf forest in southern Appalachians. These phenological patterns are validated with different sets of field observations. Our data demonstrate that divergent behavior of leaf senescence with elevation is closely related to late growing season hydroclimate variability in temperature and water balance patterns. Specifically, a drier late growing season is associated with earlier leaf senescence at low elevation than at middle elevation. The effect of drought stress on vegetation senescence timing also leads to tighter coupling between growing season length and ecosystem water use estimated from observed precipitation and runoff generation. This study indicates increased late growing season drought may be leading to divergent ecosystem response between high and low elevation forests. Landscape-induced phenological patterns

  11. Bioecological principles of maintaining stability in mountain forest ecosystems of the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    T. V. Parpan

    2016-09-01

    Full Text Available The forest cover of the Carpathians has been deeply transformed by productive activities over the past centuries. The forest cover, age and species structure of its ecosystems have been changed. Beech and fir forests were replaced by spruce monocultures. Consequently, nitrogen and mineral elements cycles changed, the genetic and population structures altered and the eco-stabilizing function of forests decreased. These negative trends make it desirable to process the bioecological principles of maintenance the stability of mountain forest ecosystems. The proposed bioecological principles of support and recovery of stability of forest ecosystems are part of the paradigm of mountain dendrology and silviculture. The strategy is based on maintaining bio-ecological and population-genetical features of the main forest forming species, evolutionary typological classification of the forests, landscape and environmental specifics of the mountain part of the Ukrainian Carpathians, features of virgin, old growth and anthropogenically disturbed forest structures, as well as performing the functional role of forest ecosystems. Support for landscape ecosystem stability involves the conservation, selective, health and gradual cutting, formation of forest stands which are close to natural conditions and focusing on natural regeneration (a basis for stable mountain forest ecosystems.

  12. Dwarf forest recovery after disturbances in the Luquillo Mountains of Puerto Rico

    Science.gov (United States)

    P.L. Weaver

    2008-01-01

    Dwarf forest in Puerto Rico’s Luquillo Mountains varies according to substrate and topography with very short, dense forest growing on exposed, rocky sites. High elevation level sites suffered considerable damage during past hurricanes whereas the trees on certain lower slopes were protected by ridges or spurs. Post-disturbance recovery of dwarf forest on two types of...

  13. Nature and Properties of Some Forest Soils in the Mhite Mountains of New Hampshire

    Science.gov (United States)

    M.C. Hoyle; M.C. Hoyle

    1973-01-01

    Forested, podzol soils in the White Mountains of New Hampshire have developed in granitic, glacial material. They are coarse textured, acidic, and infertile. As a result of the latter condition, these soils can sustain a forest, but that forest is not healthy and vigorous.

  14. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  15. Composition and biogeography of forest patches on the inland mountains of the southern Cape

    Directory of Open Access Journals (Sweden)

    C. J. Geldenhuys

    1997-10-01

    Full Text Available Patterns in species richness of 23 small, isolated forests on the inland mountains of the southern Cape were studied. Species richness of woody plants and vines of the Kouga-Baviaanskloof Forests was higher than in the western mountain complexes, where species richness in the more southern Rooiberg and Kamanassie Mountains was higher than in the Swartberg range. The Rooiberg, a dry mountain with small forests far away from the coastal source area, had more species than, and contained many species which are absent from, the larger, moister forests of the Kamanassie which are closest to the coastal source areas. Neither altitude nor distance from the source area, the forests south of the coastal mountains, nor long-distance dispersal, adequately explained the variation in species richness. The variations are best explained in terms of dispersal corridors along the Gouritz and Gamtoos River systems which connect the coastal forests with the inland mountains. The distribution patterns of four species groups in relation to the geomorphological history of the two river systems provide relative dates for the expansion and contraction of temperate forest, subtropical forest and subtropical transitional thicket in the southern Cape.

  16. Methods for registration laser scanner point clouds in forest stands

    International Nuclear Information System (INIS)

    Bienert, A.; Pech, K.; Maas, H.-G.

    2011-01-01

    Laser scanning is a fast and efficient 3-D measurement technique to capture surface points describing the geometry of a complex object in an accurate and reliable way. Besides airborne laser scanning, terrestrial laser scanning finds growing interest for forestry applications. These two different recording platforms show large differences in resolution, recording area and scan viewing direction. Using both datasets for a combined point cloud analysis may yield advantages because of their largely complementary information. In this paper, methods will be presented to automatically register airborne and terrestrial laser scanner point clouds of a forest stand. In a first step, tree detection is performed in both datasets in an automatic manner. In a second step, corresponding tree positions are determined using RANSAC. Finally, the geometric transformation is performed, divided in a coarse and fine registration. After a coarse registration, the fine registration is done in an iterative manner (ICP) using the point clouds itself. The methods are tested and validated with a dataset of a forest stand. The presented registration results provide accuracies which fulfill the forestry requirements [de

  17. Tree species distribution and forest structure along environmental gradients in the dwarf forest of the Luquillo Mountains of Puerto Rico

    Science.gov (United States)

    Peter L. Weaver

    2010-01-01

    Eleven groups of three plots stratified by aspect (windward vs. leeward) and topography (ridge, slope, and ravine) and varying in elevation from 880 to about 1,000 metres were used to sample forest structure and species composition within the dwarf forest of the Luquillo Mountains of Puerto Rico. Stem density to windward was significantly greater on slopes, andf or all...

  18. Impacts of forest age on water use in Mountain ash forests

    Science.gov (United States)

    Wood, Stephen A.; Beringer, Jason; Hutley, Lindsay B.; McGuire, A. David; Van Dijk, Albert; Kilinc, Musa

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire returning to pre-fire levels in the following centuries owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8mmday-1 with increasing forest age (an annual decrease of 657mm) the understorey ET contributed between 1.2 and 1.5mmday-1, 45% of the total ET (3mmday-1) at the old growth forest.

  19. Impacts of fire on forest age and runoff in mountain ash forests

    Science.gov (United States)

    Wood, S.A.; Beringer, J.; Hutley, L.B.; McGuire, A.D.; Van Dijk, A.; Kilinc, M.

    2008-01-01

    Runoff from mountain ash (Eucalyptus regnans F.Muell.) forested catchments has been shown to decline significantly in the few decades following fire - returning to pre-fire levels in the following centuries - owing to changes in ecosystem water use with stand age in a relationship known as Kuczera's model. We examined this relationship between catchment runoff and stand age by measuring whole-ecosystem exchanges of water using an eddy covariance system measuring forest evapotranspiration (ET) combined with sap-flow measurements of tree water use, with measurements made across a chronosequence of three sites (24, 80 and 296 years since fire). At the 296-year old site eddy covariance systems were installed above the E. regnans overstorey and above the distinct rainforest understorey. Contrary to predictions from the Kuczera curve, we found that measurements of whole-forest ET decreased by far less across stand age between 24 and 296 years. Although the overstorey tree water use declined by 1.8 mm day-1 with increasing forest age (an annual decrease of 657 mm) the understorey ET contributed between 1.2 and 1.5 mm day-1, 45% of the total ET (3 mm day-1) at the old growth forest. ?? CSIRO 2008.

  20. Mapping Forest Fire Susceptibility in Temperate Mountain Areas with Expert Knowledge. A Case Study from Iezer Mountains, Romanian Carpathians

    Science.gov (United States)

    Mihai, Bogdan; Savulescu, Ionut

    2014-05-01

    Forest fires in Romanian Carpathians became a frequent phenomenon during the last decade, although local climate and other environmental features did not create typical conditions. From 2004, forest fires affect in Romania more than 100 hectares/year of different forest types (deciduous and coniferous). Their magnitude and frequency are not known, since a historical forest fire inventory does not exist (only press papers and local witness for some selected events). Forest fires features the summer dry periods but there are dry autumns and early winter periods with events of different magnitudes. The application we propose is based on an empirical modeling of forest fire susceptibility in a typical mountain area from the Southern Carpathians, the Iezer Mountains (2462 m). The study area features almost all the altitudinal vegetation zones of the European temperate mountains, from the beech zone, to the coniferous zone, the subalpine and the alpine zones (Mihai et al., 2007). The analysis combines GIS and remote sensing models (Chuvieco et al., 2012), starting from the ideas that forest fires are featured by the ignition zones and then by the fire propagation zones. The first data layer (ignition zones) is the result of the crossing between the ignition factors: lightning - points of multitemporal occurence and anthropogenic activities (grazing, tourism and traffic) and the ignition zones (forest fuel zonation - forest stands, soil cover and topoclimatic factor zonation). This data is modelled from different sources: the MODIS imagery fire product (Hantson et al., 2012), detailed topographic maps, multitemporal orthophotos at 0.5 m resolution, Landsat multispectral imagery, forestry cadastre maps, detailed soil maps, meteorological data (the WorldClim digital database) as well as the field survey (mapping using GPS and local observation). The second data layer (fire propagation zones) is the result of the crossing between the forest fuel zonation, obtained with the

  1. Future Forests Webinar Series, Webinar Proceedings and Summary: Ongoing Research and Management Responses to the Mountain Pine Beetle Outbreak

    Science.gov (United States)

    M. Matonis; R. Hubbard; K. Gebert; B. Hahn; C. Regan

    2014-01-01

    The Future Forest Webinar Series facilitated dialogue between scientists and managers about the challenges and opportunities created by the mountain pine beetle (MPB) epidemic. The series consisted of six webinar facilitated by the USFS Rocky Mountain Research Station, the Northern and Rocky Mountain Regions, and the Colorado Forest Restoration Institute. The series...

  2. Methodological issues in implementing a sustainable forest management plan in remote mountain areas - The Karakorum (Pakistan)

    OpenAIRE

    Ferrari, Efrem

    2014-01-01

    Based on a practical case-study, the Central Karakorum National Park - Gilgit-Baltistan - Pakistan, the aim of the thesis is to present a methodological framework for promoting the sustainable forest management in mountain areas characterized by remoteness, difficulties of access and where few data are available. Forest resources of Karakorum Mountains assume an essential role for the livelihoods of local communities, heavily dependent on wood for heating, cooking and construction purposes...

  3. Understanding the role of fog in forest hydrology: Stable isotopes as tools for determining input and partitioning of cloud water in montane forests

    Science.gov (United States)

    Scholl, M.; Eugster, W.; Burkard, R.

    2011-01-01

    Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with

  4. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  5. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Science.gov (United States)

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  6. Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

    Science.gov (United States)

    Minh, Nghia Pham; Zou, Bin; Cai, Hongjun; Wang, Chengyi

    2014-01-01

    The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double- and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD.

  7. Runoff curve numbers for 10 small forested watersheds in the mountains of the eastern United States

    Science.gov (United States)

    Negussie H. Tedela; Steven C. McCutcheon; Todd C. Rasmussen; Richard H. Hawkins; Wayne T. Swank; John L. Campbell; Mary Beth Adams; C. Rhett Jackson; Ernest W. Tollner

    2012-01-01

    Engineers and hydrologists use the curve number method to estimate runoff from rainfall for different land use and soil conditions; however, large uncertainties occur for estimates from forested watersheds. This investigation evaluates the accuracy and consistency of the method using rainfall-runoff series from 10 small forested-mountainous watersheds in the eastern...

  8. New Approach for forest inventory estimation and timber harvesting planning in mountain areas: the SLOPE project

    Science.gov (United States)

    Prandi, F.; Magliocchetti, D.; Poveda, A.; De Amicis, R.; Andreolli, M.; Devigili, F.

    2016-06-01

    Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas) project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.

  9. New Approach for forest inventory estimation and timber harvesting planning in mountain areas: the SLOPE project

    Directory of Open Access Journals (Sweden)

    F. Prandi

    2016-06-01

    Full Text Available Forests represent an important economic resource for mountainous areas being for a few region and mountain communities the main form of income. However, wood chain management in these contexts differs from the traditional schemes due to the limits imposed by terrain morphology, both for the operation planning aspects and the hardware requirements. In fact, forest organizational and technical problems require a wider strategic and detailed level of planning to reach the level of productivity of forest operation techniques applied on flatlands. In particular, a perfect knowledge of forest inventories improves long-term management sustainability and efficiency allowing a better understanding of forest ecosystems. However, this knowledge is usually based on historical parcel information with only few cases of remote sensing information from satellite imageries. This is not enough to fully exploit the benefit of the mountain areas forest stocks where the economic and ecological value of each single parcel depends on singletree characteristics. The work presented in this paper, based on the results of the SLOPE (Integrated proceSsing and controL systems fOr sustainable forest Production in mountain arEas project, investigates the capability to generate, manage and visualize detailed virtual forest models using geospatial information, combining data acquired from traditional on-the-field laser scanning surveys technologies with new aerial survey through UAV systems. These models are then combined with interactive 3D virtual globes for continuous assessment of resource characteristics, harvesting planning and real-time monitoring of the whole production.

  10. Logging residues in principal forest types of the Northern Rocky Mountains

    Science.gov (United States)

    Robert E. Benson; Joyce A. Schlieter

    1980-01-01

    An estimated 466 million ft 3 of forest residue material (nonmerchantable, 3 inches diameter and larger) is generated annually in the Northern Rocky Mountains (Montana, Idaho, Wyoming). Extensive studies of residues in the major forest types show a considerable portion is suited for various products. The lodgepole pine type has the greatest potential for increased...

  11. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations' 2030 Agenda

    Directory of Open Access Journals (Sweden)

    Georg Gratzer

    2017-08-01

    Full Text Available The world is facing numerous and severe environmental, social, and economic challenges. To address these, in September 2015 the General Assembly of the United Nations adopted the resolution Transforming our World: The 2030 Agenda for Sustainable Development. The United Nations' 17 sustainable development goals (SDGs and their 169 targets are ambitious, broadly encompassing, and indivisible. They are intended to guide nations and communities toward attaining healthy and peaceful livelihoods free of poverty and hunger. Collectively the goals envision sound and safe environments, where global threats like climate change are successfully combated through both mitigation and adaptation. Agenda 2030 envisages sustainable production patterns with inclusive, effective economies and institutions. It is of specific relevance to mountain communities, where the population is predominantly rural and half of the rural inhabitants experience food insecurity and are often highly dependent on forest resources. Mountain forests also contribute to human welfare well beyond the local community: through functions such as climate and hydrological services provided at regional and global scales, and harvested commodities traded at multiple economic scales. In this introductory essay we argue that sustainable forest management in mountain areas disproportionately contributes to achieving the SDGs. We discuss (1 the potential of mountain forests to help achieve SDGs in mountainous regions and beyond, (2 the potential of the SDGs to help solve severe socioeconomic and ecological problems in forested mountain areas, and (3 challenges and opportunities associated with implementing the SDGs. We base our argumentation also on the 8 papers presented in this Focus Issue of Mountain Research and Development. Together, they establish a clear connection between sustainable use and protection of mountain forests and vital ecosystem services upon which many regions depend. We

  12. Uncertain Emission Reductions from Forest Conservation: REDD in the Bale Mountains, Ethiopia

    Directory of Open Access Journals (Sweden)

    Charlene Watson

    2013-09-01

    Full Text Available The environmental integrity of a mechanism rewarding Reduced Emissions from Deforestation and Degradation (REDD depends on appropriate accounting for emission reductions. Largely stemming from a lack of forest data in developing countries, emission reductions accounting contains substantial uncertainty as a result of forest carbon stock estimates, where the application of biome-averaged data over large forest areas is commonplace. Using a case study in the Bale Mountains in Ethiopia, we exemplify the implications of primary and secondary forest carbon stock estimates on predicted REDD project emission reductions and revenues. Primary data estimate area-weighted mean forest carbon stock of 195 tC/ha ± 81, and biome-averaged data reported by the Intergovernmental Panel on Climate Change underestimate forest carbon stock in the Bale Mountains by as much as 63% in moist forest and 58% in dry forest. Combining forest carbon stock estimates and uncertainty in voluntary carbon market prices demonstrates the financial impact of uncertainty: potential revenues over the 20-year project ranged between US$9 million and US$185 million. Estimated revenues will influence decisions to implement a project or not and may have profound implications for the level of benefit sharing that can be supported. Strong financial incentives exist to improve forest carbon stock estimates in tropical forests, as well as the environmental integrity of REDD projects.

  13. Acceleration and novelty: community restoration speeds recovery and transforms species composition in Andean cloud forest.

    Science.gov (United States)

    Wilson, Sarah Jane; Rhemtulla, Jeanine M

    2016-01-01

    Community-based tropical forest restoration projects, often promoted as a win-win solution for local communities and the environment, have increased dramatically in number in the past decade. Many such projects are underway in Andean cloud forests, which, given their extremely high biodiversity and history of extensive clearing, are understudied. This study investigates the efficacy of community-based tree-planting projects to accelerate cloud forest recovery, as compared to unassisted natural regeneration. This study takes place in northwest Andean Ecuador, where the majority of the original, highly diverse cloud forests have been cleared, in five communities that initiated tree-planting projects to restore forests in 2003. In 2011, we identified tree species along transects in planted forests (n = 5), naturally regenerating forests (n = 5), and primary forests (n = 5). We also surveyed 120 households about their restoration methods, tree preferences, and forest uses. We found that tree diversity was higher in planted than in unplanted secondary forest, but both were less diverse than primary forests. Ordination analysis showed that all three forests had distinct species compositions, although planted forests shared more species with primary forests than did unplanted forests. Planted forests also contained more animal-dispersed species in both the planted canopy and in the unplanted, regenerating understory than unplanted forests, and contained the highest proportion of species with use value for local people. While restoring forest increased biodiversity and accelerated forest recovery, restored forests may also represent novel ecosystems that are distinct from the region's previous ecosystems and, given their usefulness to people, are likely to be more common in the future.

  14. AUTECOLOGY OF INVASIVE SPECIES Cyperus rotundus L. IN FOREST EDGE OF POHEN MOUNTAIN, BATUKAHU NATURE RESERVE, BALI, INDONESIA

    OpenAIRE

    Sutomo Sutomo; Dini Fardila

    2015-01-01

    Anthropogenic-origin forest disturbance has been known to increase the risk of invasion to native habitat. Invasive species caused problems for local ecosystems and their native species. The  research on the dynamics and autecology of invasive species Cyperus rotundus was conducted on anthropogenic disturbed Pohen mountain forest in Bali, Indonesia. Results showed significant changes in microclimatic variables from forest edge to interior. C. rotundus in Pohen mountain forest can be found in ...

  15. Soils of Mountainous Forests and Their Transformation under the Impact of Fires in Baikal Region

    Science.gov (United States)

    Krasnoshchekov, Yu. N.

    2018-04-01

    Data on postpyrogenic dynamics of soils under mountainous taiga cedar ( Pinus sibirica) and pine ( Pinus sylvestris) forests and subtaiga-forest-steppe pine ( Pinus sylvestris) forests in the Baikal region are analyzed. Ground litter-humus fires predominating in this region transform the upper diagnostic organic soil horizons and lead to the formation of new pyrogenic organic horizons (Opir). Adverse effects of ground fires on the stock, fractional composition, and water-physical properties of forest litters are shown. Some quantitative parameters of the liquid and solid surface runoff in burnt areas related to the slope gradient, fire intensity, and the time passed after the fire are presented. Pyrogenic destruction of forest ecosystems inevitably induces the degradation of mountainous soils, whose restoration after fires takes tens of years. The products of soil erosion from the burnt out areas complicate the current situation with the pollution of coastal waters of Lake Baikal.

  16. Upland forest vegetation of the Ozark Mountains in Northwestern Arkansas

    Science.gov (United States)

    Steven L. Stephenson; Harold S. Adams; Cynthia D. Huebner

    2007-01-01

    Quantitative data on structure and composition of all strata of vegetation were collected from 20 study sites in the Boston Mountains Subsection of the Ozark Mountains of northwestern Arkansas in June 2004. All study sites were located at upper slope or ridgetop positions and occurred at elevations > 457 m. Oaks (Quercus spp.) were dominants in...

  17. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    Science.gov (United States)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  18. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  19. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  20. Climate and Vegetation Effects on Temperate Mountain Forest Evapotranspiration

    Science.gov (United States)

    Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use h...

  1. Stakeholders’ perception of forest management: a Portuguese mountain case study

    Energy Technology Data Exchange (ETDEWEB)

    Marta-Costa, A.; Torres-Manso, F.; Pinto, R.; Tibério, L.; Carneiro, I.

    2016-07-01

    Aim of study: The Natura 2000 Network “Montemuro Mountain” Site in Portugal. Material and methods: This study combined several consultation and citizen participation techniques. Main results: The perceptions shared by the stakeholders are some similar, others not similar and others still quite paradoxical regarding forest characteristics and the opportunities they offer. The study has shown that it is possible to implement and improve citizen participation methodologies. This can be a viable way towards more effective forest management and fire prevention as this may help blunt conflicts of interest in forest space management. However, for participation to be truly effective and representative, a policy regarding training and awareness of the importance of information is necessary. Research highlights: The stakeholder perceptions on forests and forest management are assessed; forest fires and agrarian abandonment are central for territory’s development; depopulation, old age and absenteeism emphasize degradation of forest areas; Conscious citizen participation benefit policymaking and forest management. (Author)

  2. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental Forest, Puerto Rico

    Science.gov (United States)

    Lydia P. Olander; F.N Scatena; Whendee L. Silver

    1998-01-01

    The impacts of road construction and the spread of exotic vegetation, which are common threats to upper elevation tropical forests, were evaluated in the subtropical cloud forests of Puerto Rico. The vegetation, soil and microclimate of 6-month-old road®lls, 35-year-old road®lls and mature forest with and without grass understories were compared. Recent road®lls had...

  3. Biodiversity and human activities in the Udzungwa Mountain forests ...

    African Journals Online (AJOL)

    It was established that local communities around the forest highly depend on the natural forests for forest products. Most human uses were for traditional medicine, fuelwood and building materials. Quality hardwoods Khaya anthotheca, Afzelia quanzensis, Milicia excelsa and Ocotea usambarensis were noted. To reduce ...

  4. The Luquillo Mountains: forest resources and their history

    Science.gov (United States)

    P. L. Weaver

    2012-01-01

    This report presents an overview of the El Yunque National Forest, which is also designated as Luquillo Experimental Forest, in northeastern Puerto Rico. The principal topics include the environmental setting (geology, soils, and climate), environmental gradients, arborescent flora, vertebrate fauna, and forest management (i.e., plantations, silvicultural operations,...

  5. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  6. Ecophysiology of seedling establishment in contrasting spruce-fir forests of southern Appalachian and Rocky Mountain ecotones, USA

    Science.gov (United States)

    William K. Smith; Keith N.C. Reinhardt; Daniel M. Johnson

    2010-01-01

    Fraser fir (Abies fraseri [Pursh] Poiret) and red spruce (Picea rubens Sarg.) occur as codominant trees in six relic, mountain-top populations that make up the high-elevation forests of the Southern Appalachian Mountains (SA). These two relic species of the former boreal forest have experienced a significant decline over the past...

  7. To Tree, or not to Tree: Sediment Storage in Forested and Non-forested Mountainous Hillslopes of the Bitterroot Mountains, MT

    Science.gov (United States)

    Quinn, C.; Dixon, J. L.; Wilcox, A. C.

    2017-12-01

    In steep, mountainous landscapes, interactions between soil, rock, and biotic factors combine to form complex feedbacks. Here, we explore the dynamic interplay between soil and vegetation and its influence on hillslope sediment storage and movement in the Bitterroot Range of Montana's Rocky Mountains. We focus on a set of analogous forested and non-forested hillslopes along Lost Horse Creek, where avalanche paths determine vegetative density without significant impact on other topographic variables. LiDAR, high-resolution aerial photography, and field mapping are used to determine the local and landscape variables that influence soil cover and sediment storage. We find high-resolution surface roughness is a useful remote proxy to identify bedrock and boulder outcrops, particularly beneath canopy cover. Based on this analysis and field mapping, the spatial extent of soil cover does not vary significantly between forested and non-forested regions, though soils are generally thicker under forest cover. We additionally measure fallout radiogenic nuclides (FRNs; Cs-137 and Pb-210) in soils across 40 sites to provide insight into short-term soil erosion and movement. Preliminary results show high spatial variability in FRN activities of mineral soils in both systems, which may reflect either spatially variable delivery or soil erosion. Additionally, FRN activity of surface litter and duff at the forest floor is three to four times higher than mineral soils in both the forested and non-forested sites, suggesting that FRNs may provide a novel tracer of carbon storage and export. Our results show that the coupled use of isotopic tracers and high resolution spatial data reveal quantitative insights into landscape scale hillslope soil dynamics.

  8. Evaluation of air pollution-related risks for Austrian mountain forests

    International Nuclear Information System (INIS)

    Smidt, Stefan; Herman, Friedl

    2004-01-01

    The present paper describes air pollution status and evaluation of risks related to effects of phytotoxic pollutants in the Austrian mountain forests. The results are based on Austrian networks (Forest Inventory, Forest Damage Monitoring System, Austrian Bioindicator Grid), the Austrian sample plots of the European networks of the UN-ECE (ICP Forests, Level I and Level II) and interdisciplinary research approaches. Based on the monitoring data and on modelling and mapping of Critical Thresholds, the evaluation of risk factors was possible. Cause-effect relationships between air pollution and tree responses were shown by tree-physiological measurements. Sulfur impact, proton and lead input, concentrations of nitrogen oxides, nitrogen input and ozone were evaluated. The risk was demonstrated at a regional and large-scale national level. Especially the increasing O 3 level and the accumulation of Pb with altitude present most serious risk for mountain forests. - Despite strong reduction of emissions in Europe, pollutants are still a potential stress factor, especially for sensitive mountain forest ecosystems in Austria

  9. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  10. Utilisation and Management Changes in South Kyrgyzstan's Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    Matthias Schmidt

    2005-01-01

    Using political ecology as its conceptual framework, this paper focuses on the changes in forest utilisation and management of South Kyrgyzstan's walnut-fruit forests over the last century. The aim of this study on human-environment interactions is to investigate the relationship between actors on the one side, their interests and demands, and the forests and forested lands on the other. Forest resource utilisation and management - and even the recognition of different forest products as resources - are connected with political and socio-economic conditions that change with time. The walnut-fruit forests of South Kyrgyzstan are unique, characterised by high biodiversity and a multiplicity of usable products; and they have been utilised for a long time. Centralised and formal management of the forests started with the Russian occupation and was strengthened under Soviet rule, when the region became a part of the USSR. During this era, a state forest administration that was structured from Moscow all the way down to the local level drew up detailed plans and developed procedures for utilising the different forest products. Since the collapse of the Soviet Union, the socio-political and economic frame conditions have changed significantly, which has brought not only the sweeping changes in the managing institutions, but also the access rights and interests in the forest resources. At present, the region is suffering from a high unemployment rate, which has resulted in the forests' gaining considerable importance in the livelihood strategies of the local population. Political and economic liberalization, increased communication and trans-regional exchange relations have opened the door for international companies and agents interested in the valuable forest products. Today, walnut wood and burls, walnuts, wild apples and mushrooms are all exported to various countries in the world. Scientists and members of various international organisations stress the ecological

  11. How Biotic Differentiation of Human Impacted Nutrient Poor Deciduous Forests Can Affect the Preservation Status of Mountain Forest Vegetation

    Directory of Open Access Journals (Sweden)

    Tomasz Durak

    2016-10-01

    Full Text Available A significant loss of biodiversity resulting from human activity has caused biotic homogenisation to become the dominant process shaping forest communities. In this paper, we present a rare case of biotic differentiation in European temperate deciduous forest herb layer vegetation. The process is occurring in nutrient poor oak-hornbeam forests in mountain areas (Polish Eastern Carpathians, Central Europe where non-timber use was converted into conventional forest management practice. This change contributed to increases in the nitrogen content and pH reaction of the soil that, contrary to predominant beliefs on the negative impact of habitat eutrophication on diversity, did not result in a decrease in the latter. We discuss possible reasons for this phenomenon that indicate the important role of tree stand composition (an increasing admixture of beech worsening the trophic properties of the soil. The second issue considered involves the effect of the changes in herb species composition of oak-hornbeam forest on its distinctiveness from the beech forest predominating in the Polish Eastern Carpathians. Unfortunately, despite the increase in the species compositional dissimilarity of oak-hornbeam forest, a reduction in their distinctiveness in relation to the herb species composition of beech forest was found. Such a phenomenon is an effect of the major fragmentation of oak-hornbeam forests, a spread of beech forest-type species, and forest management that gives preference to beech trees. Consequently, it can be expected that changes occurring in oak-hornbeam forest vegetation will contribute to a decrease in the forest vegetation variability at the regional scale.

  12. Ground beetle assemblages in Beijing's new mountain forests

    NARCIS (Netherlands)

    Warren-Thomas, Eleanor; Zou, Yi; Dong, Lijia; Yao, Xuenan; Yang, Mengjie; Zhang, Xiaoliang; Qin, Ya; Liu, Yunhui; Sang, Weiguo; Axmacher, Jan Christoph

    2014-01-01

    Mature forests have been almost completely destroyed in China's northern regions, but this has been followed by large-scale reforestation in the wake of environmental degradation. Although future forest plantations are expected to expand over millions of hectares, knowledge about the ecology and

  13. Variation in photosynthetic light-use efficiency in a mountainous tropical rain forest in Indonesia

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Oltchev, A.; June, T.

    2008-01-01

    in remote tropical areas. We used a 16-month continuous CO2 flux and meteorological dataset from a mountainous tropical rain forest in central Sulawesi, Indonesia to derive values of epsilon(Pg). and to investigate the relationship between P-g and Q(abs). Absorption was estimated with a 1D SVAT model from...

  14. Reptile Communities Under Diverse Forest Management in the Ouachita Mountains, Arkansas

    Science.gov (United States)

    Paul A. Shipman; Stanley F. Fox; Ronald E. Thill; Joseph P. Phelps; David M. Leslie

    2004-01-01

    Abstract - From May 1995 to March 1999, we censused reptiles in the Ouachita Mountains, Arkansas, on approximately 60 plots on each of four forested watersheds five times per year, with new plots each year. We found that the least intensively managed watershed had significantly lower per-plot reptile abundances, species richness, and diversity....

  15. Hydrologic regimes of forested, mountainous, headwater basins in New Hampshire, North Carolina, Oregon, and Puerto Rico

    Science.gov (United States)

    David A. Post; Julia A. Jones

    2001-01-01

    This study characterized the hydrologic regimes at four forested, mountainous long-term ecological research (LTER) sites: H.J. Andrews (Oregon), Coweeta (North Carolina), Hubbard Brook (New Hampshire), and Luquillo (Puerto Rico). Over 600 basinyears of daily streadow records were examined from 18 basins that have not experienced human disturbances since at least the...

  16. Nitrogen cycling following mountain pine beetle disturbance in lodgepole pine forests of Greater Yellowstone

    Science.gov (United States)

    Jacob M. Griffin; Monica G. Turner; Martin Simard

    2011-01-01

    Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in...

  17. Hyperdiversity of ectomycorrhizal fungus assemblages on oak seedlings in mixed forests in the southern Appalachian Mountains

    Science.gov (United States)

    John F. Walker; Orson K. Miller; Jonathan L. Horton

    2005-01-01

    Diversity of ectotrophic mycobionts on outplanted seedlings of two oak species (Quercus rubra and Quercus prinus) was estimated at two sites in mature mixed forests in the southern Appalachian Mountains by sequencing nuclear 5.8S rRNA genes and the flanking internal transcribed spacer regions I and II (ITS). The...

  18. 77 FR 70414 - White River National Forest; Eagle County, CO; Vail Mountain Recreation Enhancements Projects EIS

    Science.gov (United States)

    2012-11-26

    ... engage in dispersed recreational activities (i.e., hiking, biking and camping); and (2) those who seek... Flyer Rappel Activity at Adventure Ridge Expanded Hiking and Mountain Bike Trails Riparian Experience at... harmonize with, and benefit from, the natural setting of the NFS lands within Vail's existing Forest Service...

  19. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Science.gov (United States)

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  20. Fens and their rare plants in the Beartooth Mountains, Shoshone National Forest, Wyoming

    Science.gov (United States)

    Bonnie Heidel; Walter Fertig; Sabine Mellmann-Brown; Kent E. Houston; Kathleen A. Dwire

    2017-01-01

    Fens are common wetlands in the Beartooth Mountains on the Shoshone National Forest, Clarks Fork Ranger District, in Park County, Wyoming. Fens harbor plant species found in no other habitats, and some rare plants occurring in Beartooth fens are found nowhere else in Wyoming. This report summarizes the studies on Beartooth fens from 1962 to 2009, which have contributed...

  1. Changes in determinants of deforestation and forest degradation in Popa Mountain Park, Central Myanmar.

    Science.gov (United States)

    Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro

    2013-02-01

    Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.

  2. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe.

    Science.gov (United States)

    Schmitt, Thomas; Haubrich, Karola

    2008-05-01

    The distribution of the mountain coniferous forest biome in Europe throughout time is not sufficiently understood. One character species of this habitat type is the large ringlet, Erebia euryale well reflecting the extension of this biome today, and the genetic differentiation of this species among and within mountain systems may unravel the late Pleistocene history of this habitat type. We therefore analysed the allozyme pattern of 381 E. euryale individuals from 11 populations in four different European mountain systems (Pyrenees, Alps, Carpathians, Rila). All loci analysed were polymorphic. The mean F(ST) over all samples was high (20%). Furthermore, the mean genetic distance among samples was quite high (0.049). We found four different groups well supported by cluster analyses, bootstraps and hierarchical variance analyses: Pyrenees, western Alps, eastern Alps and southeastern Europe (Carpathians and Rila). The genetic diversity of the populations was highest in the southeastern European group and stepwise decreased westwards. Interestingly, the populations from Bulgaria and Romania were almost identical; therefore, we assume that they were not separated by the Danube Valley, at least during the last ice age. On the contrary, the differentiation among the three western Alps populations was considerable. For all these reasons, we assume that (i) the most important refugial area for the coniferous mountain forest biome in Europe has been located in southeastern Europe including at least parts of the Carpathians and the Bulgarian mountains; (ii) important refugial areas for this biome existed at the southeastern edge of the Alps; (iii) fragments of this habitat types survived along the southwestern Alps, but in a more scattered distribution; and (iv) relatively small relicts have persisted somewhere at the foothills of the Pyrenees.

  3. Forested communities of the pine mountain region, Georgia, USA

    Science.gov (United States)

    Robert Floyd; Robert Carter

    2013-01-01

    Seven landscape scale communities were identified in the Pine Mountain region having a mixture of Appalachian, Piedmont, and Coastal Plain species. The diagnostic environmental variables included elevation, B-horizon depth, A-horizon silt, topographic relative moisture index, and A-horizon potassium (K).

  4. Forest attributes and fuel loads of riparian vs. upland stands in mountain pine beetle infested watersheds, southern Rocky Mountains [Chapter 13

    Science.gov (United States)

    Kathleen A. Dwire; Roberto A. Bazan; Robert Hubbard

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout the Western United States, and thereby increasing the natural heterogeneity of fuel distribution. Riparian forests frequently occur as narrow linear features in the landscape mosaic and can contribute to the spatial complexity of...

  5. Dynamics of Coarse Woody Debris Characteristics in the Qinling Mountain Forests in China

    Directory of Open Access Journals (Sweden)

    Jie Yuan

    2017-10-01

    Full Text Available Coarse woody debris (CWD is an essential component in defining the structure and function of forest ecosystems. Long-term dynamics of CWD characteristics not only affect the release rates of chemical elements from CWD, but also the species diversity of inhabiting plants, animals, insects, and microorganisms as well as the overall health of ecosystems. However, few quantitative studies have been done on the long-term dynamics of CWD characteristics in forest ecosystems in China. In this study, we conducted nine tree censuses between 1996 and 2016 at the Huoditang Experimental Forest in the Qinling Mountains of China. We quantified forest biomass including CWD and CWD characteristics such as decay states and diameter classes during this period and correlated with stand, site, and climatic variables. The forest biomass was dominated by live tree biomass (88%; followed by CWD mass (6%–10%. Understory biomass contributed only a small portion (1%–4% of the overall biomass. Significant differences in average annual increment of CWD mass were found among forest stands of different species (p < 0.0001. Forest biomass, stand age, forest type, aspect, slope, stand density, annual average temperature, and precipitation were all significantly correlated with CWD mass (p < 0.05, with forest type exhibiting the strongest correlation (r2 = 0.8256. Over time, the annual mass of different CWD characteristics increased linearly from 1996–2016 across all forest types. Our study revealed that forest biomass, including CWD characteristics, varied by forest type. Stand and site characteristics (forest biomass, forest type, aspect, slope and stand density along with temperature and precipitation played a major role in the dynamics of CWD in the studied forest ecosystems.

  6. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica

    OpenAIRE

    Sosa, Victoria; Ornelas, Juan Francisco; Ram?rez-Barahona, Santiago; G?ndara, Etelvina

    2016-01-01

    Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted...

  7. Epiphytic orchids and host trees diversity at Gunung Manyutan Forest Reserve, Wilis Mountain, Ponorogo, East Java

    Directory of Open Access Journals (Sweden)

    NINA DWI YULIA

    2011-01-01

    Full Text Available Yulia ND, Budiharta S (2011 Epiphytic orchids and host trees diversity at Gunung Manyutan Forest Reserve, Wilis Mountain, Ponorogo, East Java. Biodiversitas 12: 22-27. Natural forests in Wilis Mountain have been destroyed by forest fires, landslides and illegal logging. As a consequence, biological diversity in this area is threatened by local extinctions, particularly of orchid species. This study was aimed to explore, document and analyze the diversity of epiphytic orchids at Gunung Manyutan Forest Reserve, a natural forest area in Wilis Mountain. Purposive sampling on 1 hectare (50 x 200 m2 contiguous plot was used. This plot was divided into eight subplots (25 x 50 m2. All data on orchid species were recorded including its number, host trees and zone of the host tree where the orchid attached. The results showed that there were 29 epiphytic orchid species recorded. Flickingeria angulata was the most abundant species (Relative Abundance of orchids/ %Fo = 38.74, continued by Appendicula sp. (%Fo = 10.91 and Eria hyacinthoides (%Fo = 6.57. The three most important host trees were Pinus merkusii, Schima wallichii and Engelhardia spicata. Zone 3 (bottom part of the branches was revealed as the most favorable part at the host tree (281 individuals, while Zone 1 (bottom part of the main stem was the least preferable one.

  8. Vegetation Diversity Quality in Mountainous Forest of Ranu Regulo Lake Area, Bromo Tengger Semeru National Park, East Java

    Directory of Open Access Journals (Sweden)

    Jehan Ramdani Hariyati

    2012-01-01

    Full Text Available Aim of this research was to study vegetation diversity quality in mountainous forest of Ranu Regulo Lake area in Bromo Tengger Semeru National Park (TNBTS, East Java. Field observation was carried out by vegetation analysis using sampling plots of 25x25 m2 for trees, 5x5 m2 for poles, 1x1 m2 for ground surface plants. Community structure of each lake side was determined by calculating vegetation's density, basal area, frequency, important value and stratification of species. While vegetations diversity was estimated by taxa richness, Shannon-Wiener diversity index, and rate of endemism. Each lake side forests were compared by Morisita community similarity index. Data were tabulated by Microsoft Excel 2007. The result showed that based on existed vegetation, mountainous forest surrounding Ranu Regulo Lake consisted of four ecosystems, i.e. heterogenic mountainous forest, pine forest, acacia forest and bushes. Bushes Area has two types of population, edelweiss and Eupatorium odoratum invaded area. Vegetation diversity quality in heterogenic mountainous forest of Ranu Regulo TNBTS was the highest, indicated by its multi-stratification to B stratum trees of 20-30m high. Heterogenic mountainous forest’s formation was Acer laurinum and Acmena accuminatissima for trees, Chyatea for poles. Taxa richness was found 59 species and 30 families, while the others were found below 28 species and 17 families. Diversity Index of heterogenic mountainous forest is the highest among others for trees is 2.31 and 3.24 for poles and second in bushes (H=3.10 after edelweiss ecosystem (H=3.39. Highest rate of endemism reached 100% for trees in heterogenic mountainous forest, 87% for poles in edelweiss area and 89% for bushes also in heterogenic mountainous forest. Trees, poles and herbs most similarity community showed by pine and acacia forest. Based on those five characters, vegetation diversity quality in Ranu Regulo Lake area was medium for heterogenic mountainous

  9. Management Models of Forest Resources in the Atlas Mountain ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    timber forest products are under-used. Governments are trying to improve the situation, but their efforts tend to be purely technical and fail to address the social and institutional dimensions of the problem. This project will examine ...

  10. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China.

    Science.gov (United States)

    Qi, Zhaohuan; Liu, Hongyan; Wu, Xiuchen; Hao, Qian

    2015-02-01

    Forest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration of Picea schrenkiana forest growth since 1960s in the ATE of Tianshan Mountains, northwestern China by a stand-total sampling along six altitudinal transects with three plots in each transect: one from the ATE between the treeline and the forest line, and the other two from the CFB. All the sampled P. schrenkiana forest patches show a higher growth speed after 1960 and, comparatively, forest growth in the CFB has sped up much slower than that in the ATE. The speedup of forest growth at the ATE is mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition within the CFB might have restricted forest growth there more than that within the ATE, implying biotic factors were also significant for the accelerated forest growth in the ATE, which should be excluded from simulations and predictions of warming-induced treeline dynamics. © 2014 John Wiley & Sons Ltd.

  11. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Dias Meireles

    2015-03-01

    Full Text Available The upper montane forests in the southern and southeastern regions of Brazil have an unusual and discontinuous geographic distribution at the top of the Atlantic coastal mountain ranges. To describe the floristic composition and structure of the Atlantic Forest near its upper altitudinal limit in southeastern Brazil, 30 plots with 10 × 10 m were installed in three forest sites between 2,200 and 2,300 m.a.s.l. at Serra Fina. The floristic composition and phytosociological structure of this forest were compared with other montane and upper montane forests. In total, 704 individuals were included, belonging to 24 species, 15 families, and 19 genera. Myrsinaceae, Myrtaceae, Symplocaceae, and Cunoniaceae were the most important families, and Myrsine gardneriana, Myrceugenia alpigena, Weinmannia humilis, and Symplocos corymboclados were the most important species. The three forest sites revealed differences in the abundance of species, density, canopy height, and number of stems per individual. The upper montane forests showed structural similarities, such as lower richness, diversity, and effective number of species, and they tended to have higher total densities and total dominance per hectare to montane forests. The most important species in these upper montane forests belong to Austral-Antartic genera or neotropical and pantropical genera that are typical of montane areas. The high number of species shared by these forests suggests past connections between the vegetation in southern Brazilian high-altitude areas.

  12. Comparison of riparian and upland forest stand structure and fuel loads in beetle infested watersheds, southern Rocky Mountains

    Science.gov (United States)

    Kathleen A. Dwire; Robert Hubbard; Roberto Bazan

    2015-01-01

    Extensive outbreaks of mountain pine beetle (MPB), spruce beetle (SB), and other insects are altering forest stand structure throughout western North America, and thereby contributing to the heterogeneity of fuel distribution. In forested watersheds, conifer-dominated riparian forests frequently occur as narrow linear features in the landscape mosaic and contribute to...

  13. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    Directory of Open Access Journals (Sweden)

    Q. Lin

    2017-07-01

    Full Text Available To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI coupled with a real-time single-particle aerosol mass spectrometer (SPAMS was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. , southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC, potassium-rich (K-rich, amine, dust, Pb, Fe, organic carbon (OC, sodium-rich (Na-rich and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %, followed by the K-rich type (33.9 %. Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5–4.1 % to the total cloud residues. Higher fraction of nitrate (88–89 % was found in the dust and Na-rich cloud residues relative to sulfate (41–42 % and ammonium (15–23 %. Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  14. Soc stock in different forest-related land-uses in central Stara planina mountain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Zhiyanski Miglena

    2009-01-01

    Full Text Available Forest conversions may lead to an accumulation of carbon in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Understanding these effects is important to addressing issues relevant to ecosystem function and productivity, and to global balance of carbon. The study investigated the effects of the created coniferous plantations on former beech and pasture sites on the soil organic carbon storage. The major forest-related land-uses in the high mountainous regions of central Stara Planina Mountain were investigated: mountainous pasture, coniferous plantations (planted on previous pasture and beech forests between four and five decades ago and natural beech forests. The experimental data of soil properties, conducted in 2005, 2006 and 2007, were used in determining the variations in organic carbon storage in forest litter and in mineral soil under different land-use patterns. At each site five representative soil profiles were opened and described giving a total 75 soil samples from the soil layers respectively at 0-10, 10-30 and 30-50 cm depth. A total of 55 samples from forest floor layers (Aol, Aof, Aoh and greensward were collected with 25:25 cm plastic frame. The main soil properties were determined in accordance with the standardized methods in the Laboratory of soil science at the Forest Research Institute - BAS. The IPCC Good Practice Guidance for Land Use, Land Use Change and Forestry was used to estimate the soil organic carbon stock in soil and litter. The results obtained showed that the SOC stock was quite similar among forest land-uses. The conversion of natural beech forests to coniferous plantations in studied region is related with slightly expressed decrease in soil carbon storage. The values of SOC stocks in 0-50 cm soil layer in these sites were 8.5 (±2.1 tones/ha for pine and 11.0 (±1.4 tones/ha for spruce, while under the natural beech forest it was 14.8 (±1.0 tones

  15. Impacts of cwd on understory biodiversity in forest ecosystems in the qinling mountains, china

    International Nuclear Information System (INIS)

    Yuan, J.; Wei, X.; Shang, Z.; Cheng, F.; Hu, Z.; Zheng, X.; Zhang, S.

    2015-01-01

    The stocks and characteristics of coarse woody debris (CWD) are expected to reflect forest stand features. However, despite their importance, there have been no reports of CWD stocks and characteristics in the Qinling Mountains. We measured the CWD stocks in different CWD types, decay classes and diameter classes of the five forest types in the Qinling Mountains. The highest biomass of CWD was the Pinus tabulaeformis forest (12.57 t-hm /sup -2/), occupied 5.66 percentage in the biomass of this forest, the lowest occupied 1.03 percentage in Betula albo-sinensis forest (1.82 t-hm /sup -2/). Our results revealed that there was a strong correlation between CWD and forest biomass. When the CWD biomass were 9.9 t-hm /sup -2/ and 11.6 hm /sup -2/, the biomass of Pinus armandi forest and P. tabulaeformis forest reached maximum, respectively. CWD is particularly important for biodiversity, but the importance of CWD in the control of diversity in forest systems has not been fully appreciated and certainly has not been evaluated intensively within China, especially in Qinling forests. In our research, we used species richness (S), Shannon-Wiener index (H), Simpson index (D) and Pielou evenness index (J) to assess the diversity of plant community. According to our analysis, we found 1) the effect of CWD biomass on these a diversity index was dependent on tree, shrub and herb in the five forest types, 2) the impacts of CWD biomass on understory biodiversity were more obvious, 3) With the increase of CWD biomass, the species richness (S), Shannon-Wiener index (H) and Simpson index (D) of understory increased significantly. Our results suggested that there was a relatively lower CWD biomass in the Qinling Mountains, but it had significant effects on forest biomass and diversity of plant community. Reserving CWD was important for eco-forestry, but how many and how characteristic of CWD should be retained need further research. Development of CWD reasonable strategies was

  16. Landsat-based Analysis of Mountain Forest-tundra Ecotone Response to Climate Trends in Sayan Mountains

    Science.gov (United States)

    Kharuk, Viatcheslav I.; Im, Sergey T.; Ranson, K. Jon

    2007-01-01

    observations of temperatures Siberia has shown a several degree warming over the past 30 years. It is expected that forest will respond to warming at high latitudes through increased tree growth and northward or upward slope migration. migration. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. Making repeated satellite observations over several decades provides an opportunity to track vegetation response to climate change. Based on Landsat data of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure and an upward tree-line shift in the of the forest-tundra ecotone during the last quarter of the 2oth century,. On-ground observations, supporting these results, also showed regeneration of Siberian pine in the alpine tundra, and the transformation of prostrate Siberian pine and fir into arboreal (upright) forms. During this time period sparse stands transformed into closed stands, with existing closed stands increasing in area at a rate of approx. 1 %/yr, and advancing their upper border at a vertical rate of approx. 1.0 m/yr. In addition, the vertical rate of regeneration propagation is approx. 5 m/yr. It was also found that these changes correlated positively with temperature trends

  17. Introducing two Random Forest based methods for cloud detection in remote sensing images

    Science.gov (United States)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The

  18. Assessing the impact of a mountain pine beetle infestation on stand structure of lodgepole pine forests in Colorado using the Forest Inventory and Analysis Annual forest inventory

    Science.gov (United States)

    Michael T. Thompson

    2017-01-01

    The Forest Inventory and Analysis (FIA) annual inventory system began in Colorado in 2002, which coincided with the onset of a major mountain pine beetle (Dendroctonus ponderosae) epidemic. The mortality event, coupled with 11 years of annual inventory data, provided an opportunity to assess the usefulness of the FIA annual inventory system for quantifying the effects...

  19. Measuring and modeling carbon balance in mountainous Northern Rocky mixed conifer forests

    Science.gov (United States)

    Hudiburg, T. W.; Berardi, D.; Stenzel, J.

    2016-12-01

    Drought and wildfire caused by changing precipitation patterns, increased temperatures, increased fuel loads, and decades of fire suppression are reducing forest carbon uptake from local to continental scales. This trend is especially widespread in Idaho and the intermountain west and has important implications for climate change and forest management options. Given the key role of forests in climate regulation, understanding forest response to drought and the feedbacks to the atmosphere is a key research and policy-relevant priority globally. As temperature, fire, and precipitation regimes continue to change and there is increased risk of forest mortality, measurements and modeling at temporal and spatial scales that are conducive to understanding the impacts and underlying mechanisms of carbon and nutrient cycling become critically important. Until recently, sub-daily measurements of ecosystem carbon balance have been limited in remote, mountainous terrain (e.g Northern Rocky mountain forests). Here, we combine new measurement technology and state-of-the-art ecosystem modeling to determine the impact of drought on the total carbon balance of a mature, mixed-conifer forest in Northern Idaho. Our findings indicate that drought had no impact on aboveground NPP, despite early growing season reductions in soil moisture and fine root biomass compared to non-drought years in the past. Modeled estimates of net ecosystem production (NEP) suggest that a simultaneous reduction in heterotrophic respiration increased the carbon sink for this forest. This has important implications for forest management, such as thinning where the objectives are to increase forest resilience to fire and drought, but may decrease NEP.

  20. Modelling the Effects of Temperature and Cloud Cover Change on Mountain Permafrost Distribution, Northwest Canada

    Science.gov (United States)

    Bonnaventure, P. P.; Lewkowicz, A. G.

    2008-12-01

    Spatial models of permafrost probability for three study areas in northwest Canada between 59°N and 61°N were perturbed to investigate climate change impacts. The models are empirical-statistical in nature, based on basal temperature of snow (BTS) measurements in winter, and summer ground-truthing of the presence or absence of frozen ground. Predictions of BTS values are made using independent variables of elevation and potential incoming solar radiation (PISR), both derived from a 30 m DEM. These are then transformed into the probability of the presence or absence of permafrost through logistic regression. Under present climate conditions, permafrost percentages in the study areas are 44% for Haines Summit, British Columbia, 38% for Wolf Creek, Yukon, and 69% for part of the Ruby Range, Yukon (Bonnaventure and Lewkowicz, 2008; Lewkowicz and Bonaventure, 2008). Scenarios of air temperature change from -2K (approximating Neoglacial conditions) to +5K (possible within the next century according to the IPCC) were examined for the three sites. Manipulations were carried out by lowering or raising the terrain within the DEM assuming a mean environmental lapse rate of 6.5K/km. Under a -2K scenario, permafrost extent increased by 22-43% in the three study areas. Under a +5K warming, permafrost essentially disappeared in Haines Summit and Wolf Creek, while in the Ruby Range less than 12% of the area remained perennially frozen. It should be emphasized that these model predictions are for equilibrium conditions which might not be attained for several decades or longer in areas of cold permafrost. Cloud cover changes of -10% to +10% were examined through adjusting the partitioning of direct beam and diffuse radiation in the PISR input field. Changes to permafrost extent were small, ranging from -2% to -4% for greater cloudiness with changes of the opposite magnitude for less cloud. The results show that air temperature change has a much greater potential to affect mountain

  1. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    Science.gov (United States)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water

  2. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  3. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  4. Trends in dynamics of forest upper boundary in high mountains of northern Baikal area

    Directory of Open Access Journals (Sweden)

    V. I. Voronin

    2016-08-01

    Full Text Available Studies of spatial-temporal variability of the upper boundary of the forest on the north-western coast of Lake Baikal (Baikal and Upper Angara Ridges are performed on the base of the analysis of forests renewal processes and of the dynamics of larch radial increment in the ecotone of the forest upper boundary and out of it. The presence of a large amount of well-developed uplands and circuses with considerable heights drops in the structure of mountain system favours formation of interrupted boundary between forest and subgoltsy belt. The timber stand of the upper forest boundary in the studied area is represented by Daurian larch. Three tree-ring chronologies of larch are obtained. The longest chronology is obtained for mountain taiga belt of Baikal Ridge and is as long as 460 years. Since 1980ies, a sustainable trend of increase of radial trees growth is observed. It is observed the most distinctly in trees of the upper forest boundary on the Baikal Ridge. There is advancing of trees species into subgoltsy belt and into mountain tundra, which depends, respectively, on slopes heights, exposition and tilting, on sites of growth of concrete cenoses. Modern peculiarity of the vegetation of the studied area is presence of abundant viable larch undergrowth (from 2–3 to 25 y.o. and fir in the ecotone of upper forest boundary and in subgoltsy belt, as well as appearing of single specimens of spruce. Main undergrowth mass (2/3 is presented by trees aged in average 15–25 y.o., i.e., they appeared in late 1980ies. Due to increase of snow cover thickness in winter, the trees young growth obtained great protection from freezing resulting in the increase of ability of young growth to live up to elder age.

  5. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    Science.gov (United States)

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  6. Persistence of evapotranspiration impacts from mountain pine beetle outbreaks in lodgepole pine forests, south-central Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, Melanie; Williams, Christopher

    2014-05-01

    The current extent and high severity (percent tree mortality) of mountain pine beetle outbreaks across western North America have been attributed to regional climate change, specifically warmer summer and winter temperatures and drier summers. These outbreaks are widespread and have potentially persistent impacts on forest evapotranspiration. The few data-driven studies have largely been restricted by the temporal availability of remote sensing products. This study utilized multiple mountain pine beetle outbreak location datasets, both current and historical, within lodgepole pine stands in the south-central Rocky Mountains. The full seasonal evapotranspiration impact of outbreak events for decades after outbreak (0 to 60 years) and the role of outbreak severity in determining that impact were quantified. We found a 30% reduction in evapotranspiration peaking at 14-20 years post-outbreak during the spring snowmelt period, when water was not limited, but a minimal reduction in evapotranspiration during the remainder of the growing season (June - August). We also found a significant increase in evapotranspiration, relative to non-attacked stands, in intermediate aged stands (20-40 years post-disturbance) corresponding with a peak in LAI and therefore transpiration. During the snow-cover months evapotranspiration initially increased with needle fall and snag fall and corresponding increases in albedo and shortwave transmission to the surface. We found that changes in evapotranspiration during all seasons dissipated by 60 years post-attack. MODIS evapotranspiration values responded most strongly to mountain pine beetle driven changes in net radiation or available energy, and vegetation cover (e.g. LAI, fPAR and EVI). It also appears that the post-attack response of evapotranspiration may be sensitive to precipitation patterns and thus the consequences of a disturbance event may depend on the directionality of climate change conditions.

  7. Methodology to estimate variations in solar radiation reaching densely forested slopes in mountainous terrain.

    Science.gov (United States)

    Sypka, Przemysław; Starzak, Rafał; Owsiak, Krzysztof

    2016-12-01

    Solar radiation reaching densely forested slopes is one of the main factors influencing the water balance between the atmosphere, tree stands and the soil. It also has a major impact on site productivity, spatial arrangement of vegetation structure as well as forest succession. This paper presents a methodology to estimate variations in solar radiation reaching tree stands in a small mountain valley. Measurements taken in three inter-forest meadows unambiguously showed the relationship between the amount of solar insolation and the shading effect caused mainly by the contour of surrounding tree stands. Therefore, appropriate knowledge of elevation, aspect and tilt angles of the analysed planes had to be taken into consideration during modelling. At critical times, especially in winter, the diffuse and reflected components of solar radiation only reached some of the sites studied as the beam component of solar radiation was totally blocked by the densely forested mountain slopes in the neighbourhood. The cross-section contours and elevation angles of all obstructions are estimated from a digital surface model including both digital elevation model and the height of tree stands. All the parameters in a simplified, empirical model of the solar insolation reaching a given horizontal surface within the research valley are dependent on the sky view factor (SVF). The presented simplified, empirical model and its parameterisation scheme should be easily adaptable to different complex terrains or mountain valleys characterised by diverse geometry or spatial orientation. The model was developed and validated (R 2  = 0.92 , σ = 0.54) based on measurements taken at research sites located in the Silesian Beskid Mountain Range. A thorough understanding of the factors determining the amount of solar radiation reaching woodlands ought to considerably expand the knowledge of the water exchange balance within forest complexes as well as the estimation of site

  8. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  9. Assessing the Sensitivity of Mountain Forests to Site Degradation in the Northern Limestone Alps, Europe

    Directory of Open Access Journals (Sweden)

    Birgit Reger

    2015-05-01

    Full Text Available Because of some land-use practices (such as overstocking with wild ungulates, historical clear-cuts for mining, and locally persisting forest pasture, protective forests in the montane vegetation belt of the Northern Limestone Alps are now frequently overaged and poorly structured over large areas. Windthrow and bark beetle infestations have generated disturbance areas in which forests have lost their protective functions. Where unfavorable site conditions hamper regeneration for decades, severe soil loss may ensue. To help prioritize management interventions, we developed a geographic information system-based model for assessing sensitivity to site degradation and applied it to 4 test areas in the Northern Limestone Alps of Austria and Bavaria. The model consists of (1 analysis of site conditions and forest stand structures that could increase sensitivity to degradation, (2 evaluation of the sensitivity of sites and stands, and (3 evaluation and mapping of mountain forests' sensitivity to degradation. Site conditions were modeled using regression algorithms with data on site parameters from pointwise soil and vegetation surveys as responses and areawide geodata on climate, relief, and substrate as predictors. The resulting predictor–response relationships were applied to test areas. Stand structure was detected from airborne laser scanning data. Site and stand parameters were evaluated according to their sensitivity to site degradation. Sensitivities of sites and stands were summarized in intermediate-scale sensitivity maps. High sensitivity was identified in 3 test areas with pure limestone and dolomite as the prevailing sensitivity level. Moderately sensitive forests dominate in the final test area, Grünstein, where the bedrock in some strata contains larger amounts of siliceous components (marl, mudstone, and moraines; degraded and slightly sensitive forests were rare or nonexistent in all 4 test areas. Providing a comprehensive overview

  10. Climate and Vegetation Effects on Temperate Mountain Forest ...

    Science.gov (United States)

    Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use has implications for biogenic emissions and deposition of reactive nitrogen and carbon compounds. Forest evapotranspiration (ET) can vary greatly at daily and seasonal time scales, but compared to carbon fluxes, often exhibits relatively consistent inter-annual behavior. The processes controlling ET involve the combined effects of physical and biological factors. Atmospheric conditions that promote high ET, consisting of high radiation and vapor pressure deficit (D), are often characterized by rainless periods when soil water supply to vegetation may be limiting and plant stomata may close to prevent excessive water loss. In contrast, periods of high ecosystem water availability require frequent precipitation and are characterized by low D. Thus, the combination of these contrasting conditions throughout a growing season may explain some of the consistency in ET. Additionally, vegetation composition is also an important factor in determining ET. In mixed species forests, physiological differences in water use strategies (e.g. isohydric/anisohydric species) can produce conservative water use throughout wet and dry phases of the growing season. Furthermore, transpiration by evergreen specie

  11. Managing coarse woody debris in forests of the Rocky Mountains

    Science.gov (United States)

    Russell T. Graham; Alan E. Harvey; Martin F. Jurgensen; Theresa B. Jain; Jonalea R. Tonn; Deborah S. Page-Dumroese

    1994-01-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abies lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of healthy, productive forest soils....

  12. Bagley Fire Sediment Study: Shasta-Trinity National Forest, Eastern Klamath Mountains, Northern California

    Science.gov (United States)

    Bachmann, S.; De La Fuente, J. A.; Hill, B.; Mai, C.; Mikulovsky, R. P.; Mondry, Z.; Rust, B.; Young, D.

    2013-12-01

    The US Forest Service is conducting a study of sediment mobilization, transport, and deposition on the Bagley Fire, which burned about 18,000 hectares in late summer, 2012, on the Shasta-Trinity National Forest, south of McCloud, CA. The fire area is in steep terrain of the Eastern Klamath Mountains that are underlain primarily by metasedimentary rock. The watersheds affected drain into the headwaters of Squaw Creek, along with small streams tributary to the McCloud and Pit Rivers, all of which flow into Shasta Lake Reservoir. In November and December of 2012, intense storms occurred over the fire area with estimated return intervals of 25-50 years, based on 4-day storm totals in ranging from 38 to 56 cm. The Squaw Creek storm response was unique for this area, in that it remained turbid for about 2 months following the storms. Subsequent small storms through June, 2013 have also generated prolonged turbidity. This may be attributable to the remobilization of fine particles temporarily stored in the channel network. Preliminary observations from field reconnaissance include the following: a) Erosional processes were dominated by sheet, rill, and gully erosion, and the resulting sediment delivered to channels was rich in fine particles and gravels; b) Landslides were infrequent, and as a result, a limited amount of large rock and logs were delivered to channels; c) Sediment laden flows occurred in most burned low order channels, but classic debris flows, those scouring all vegetation from channel bottoms, were very uncommon; d) Most road stream crossing culverts failed in high severity burn areas; e) Low gradient stream reaches in Squaw Creek were aggraded with fine sediment; f) Sustained high levels of turbidity occurred in the main stem of Squaw Creek. The goals of this study are to characterize relative roles of surface erosion, landslides, and debris flows in delivering sediment to streams after the fire, and if possible, to develop a rough sediment budget

  13. Xu Fengxiang—Daughter of the Mountain Forests

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    THE "goddess of the forest"has a weather-beaten face. Eighteen years spent living on the plateau of northwestern China have left Xu Fengxiang, a forest ecologist, with a complexion as ruddy as those of the Tibetan people who hold her in such high respect. Xu had long dreamed of setting up a miniature of Tibetan plateau scenery in the inland to enable more people to enjoy the special landscape of Tibet. So when some people from Beijing’s Mentougou District invited her to choose a site for Tibetan Garden, she agreed readily. She chose the highest peak, Lingshan, 2,303 meters above sea level, and quite appropriately, as it has been called as the Mount Qomolangma (Mt. Everest) of

  14. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  15. Effects of long-term use by big game and livestock in the Blue Mountains forest ecosystems.

    Science.gov (United States)

    Larry L. Irwin; John G. Cook; Robert A. Riggs; Jon M. Skovlin

    1994-01-01

    The effects on eastside forest ecosystems from long-term grazing by large mammals are assessed, because long-term herbivory can reduce or increase ecosystem productivity. The assessment emphasizes elk and cattle in the Blue Mountains of northeast Oregon and southeast Washington. Histories of populations of large mammals and their effects in the Blue Mountains are...

  16. Forest health status in the Carpahian Mountains over the period 1997-2001

    International Nuclear Information System (INIS)

    Badea, Ovidiu; Tanase, Mihai; Georgeta, Jianu; Anisoara, Lazar; Peiov, Agata; Uhlirova, Hana; Pajtik, Josef; Wawrzoniak, Jerzy; Shparyk, Yuri

    2004-01-01

    The results of forest health status assessments in the Carpathian Mountains from the monitoring networks developed by the European Union Scheme on the Protection of Forest Against Atmospheric Pollution (EU Scheme) and International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests), have led to a better understanding of the impact of air pollution and other stressors on forests at the regional scale. During the period 1997-2001, forests in the Carpathian Mountains were severely affected by air pollution and natural stresses with 29.7-34.9% of the trees included in defoliation classes 2-4. The broadleaves were slightly healthier than the conifers, and European beech (Fagus sylvatica) was the least affected species. Norway spruce (Picea abies) has poor health status, with 42.9-46.6% of the trees damaged (2-4% defoliation classes). Silver fir (Abies alba) damage was also high, with 46.0-50.9% in defoliation classes 2-4. Pines (primarily Pinus sylvestris) were the least affected of the conifers, with 24.9-33.8% in defoliation classes 2-4. The results from the transnational networks (16x16 km) show that the Carpathian forests are slightly more damaged than the average for the entire Europe. The correlative studies performed in individual European countries show the relationships between air pollution stressors with trends in defoliation and a possible effect of natural stresses at each site. More specific, effects of tree age, drought, ozone and acid deposition critical level exceedances were demonstrated to affect crown condition. - About 1/3 of the Carpathian forest trees are damaged by natural stressors and air pollution

  17. Damage to the forest ecosystem on Blue Mountain from zinc smelting

    Science.gov (United States)

    Beyer, W.N.

    1988-01-01

    Emissions from two zinc smelters in Palmerton, Pennsylvania, have caused widespread destruction of the forest on Blue Mountain. There have been striking changes in the species composition and structure of the community of vascular plants, as well as population reductions of lichens, mosses, arthropods inhabiting the letter, and amphibians. Reductions in the populations of decomposers of organic matter have led to an accumulation of litter on the forest floor. Zinc poisoning was diagnosed in a white-tailed deer, and lead poisoning was diagnosed in a shrew. White-tailed deer also contained high concentrations of cadmium.

  18. 77 FR 8895 - Public Land Order No. 7788; Withdrawal of National Forest System Land for the Red Cloud...

    Science.gov (United States)

    2012-02-15

    ... Land Order No. 7788; Withdrawal of National Forest System Land for the Red Cloud Campground; New Mexico... Cloud Campground within the Cibola National Forest, and to protect a capital investment in the... (FIRS) at 1-800-877-8339 to contact either of the above individuals during normal business hours. The...

  19. Spatial patterns with memory: tree regeneration after stand-replacing disturbance in Picea abies mountain forests

    Czech Academy of Sciences Publication Activity Database

    Wild, Jan; Kopecký, Martin; Svoboda, M.; Zenáhlíková, J.; Edwards-Jonášová, Magda; Herben, Tomáš

    2014-01-01

    Roč. 25, č. 6 (2014), s. 1327-1340 ISSN 1100-9233 R&D Projects: GA ČR GAP504/10/0843; GA MŽP SP/2D2/111/08 Institutional support: RVO:67985939 ; RVO:67179843 Keywords : bark beetle * spatial pattern * mountain spruce forest Subject RIV: EF - Botanics; EH - Ecology, Behaviour (UEK-B) Impact factor: 3.709, year: 2014

  20. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy

    Directory of Open Access Journals (Sweden)

    Isabela De Meo

    2015-04-01

    Full Text Available The analysis of the perception and preferences of local communities is a fundamental aspect to increase the social sustainability and to reduce the conflicts between forest users. The knowledge of people’s perception of forest resources is important for decision makers, when implementing management strategies and this is particularly relevant in mountainous area, characterized by a strong link between local communities and forest. The paper focuses on the analysis of people’s perception and preferences regarding the recreational value of forests. The research has been carried out by means of a case study, the Municipality of Trento, located in the Centre East sector of the Italian Alps. This area was chosen on the grounds of its geographical location and of the historical links that exist between local communities and forest resources. The sample included 1,000 randomly selected families and the method of investigation used was a structured selfreported questionnaire. The data were processed taking into account the relationship between people’s perception and the main social characteristics of respondents (gender and age; this allowed statistical differences among groups to be highlighted. Forest attractiveness has been investigated considering: (i forest accessibility, (ii forest stand characteristics, (iii visitor facilities and infrastructures. The results show that people prefer the open mixed forests with an irregular structure and some visitor facilities such as paths and refreshment points. Besides, people like to have facilities in the forests, but at the same time would like these forests to be little frequented by other visitors, in order to have a greater feeling of naturalness.

  1. The status of our scientific understanding of lodgepole pine and mountain pine beetles - a focus on forest ecology and fire behavior

    Science.gov (United States)

    Merrill R. Kaufmann; Gregory H. Aplet; Michael G. Babler; William L. Baker; Barbara Bentz; Michael Harrington; Brad C. Hawkes; Laurie Stroh Huckaby; Michael J. Jenkins; Daniel M. Kashian; Robert E. Keane; Dominik Kulakowski; Ward McCaughey; Charles McHugh; Jose Negron; John Popp; William H. Romme; Wayne Shepperd; Frederick W. Smith; Elaine Kennedy Sutherland; Daniel Tinker; Thomas T. Veblen

    2008-01-01

    Mountain pine beetle populations have reached outbreak levels in lodgepole pine forests throughout North America. The geographic focus of this report centers on the southern Rocky Mountains of Colorado and southern Wyoming. The epidemic extends much more widely, however, from the southern Rocky Mountains in Colorado in the United States to the northern Rocky Mountains...

  2. Vertical zonation of soil fungal community structure in a Korean pine forest on Changbai Mountain, China.

    Science.gov (United States)

    Ping, Yuan; Han, Dongxue; Wang, Ning; Hu, Yanbo; Mu, Liqiang; Feng, Fujuan

    2017-01-01

    Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.

  3. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    Science.gov (United States)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  4. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Christopher J. Earle

    1993-01-01

    The alpine timberline in much of western North America is characterized by a structurally complex transition from subalpine forest to alpine tundra, the forest-tundra ecotone. Trees within the ecotone are typically arrayed across the landscape within clumps or "ribbon forests," elongated strips oriented perpendicular to the prevailing winds. This study...

  5. Impact of large herbivores on mountain forest stands in the Beskydy Mountains

    Czech Academy of Sciences Publication Activity Database

    Homolka, Miloslav; Heroldová, Marta

    2003-01-01

    Roč. 181, 1-2 (2003), s. 119-129 ISSN 0378-1127. [International conference on Forest Dynamics and Ungulate Herbivory. Davos, 03.10.2001-06.10.2001] R&D Projects: GA MŽP ZZ/620/2/97; GA AV ČR IBS6093003 Institutional research plan: CEZ:AV0Z6093917 Keywords : roe deer * red deer * Sorbus aucuparia Subject RIV: EG - Zoology Impact factor: 1.207, year: 2003

  6. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  7. TRAJECTORY ANALYSIS OF FOREST CHANGES IN NORTHERN AREA OF CHANGBAI MOUNTAINS, CHINA FROM LANDSAT TM IMAGE

    Directory of Open Access Journals (Sweden)

    F. Huang

    2012-07-01

    Full Text Available Based on the information from integrated Landsat TM/ETM images and geographic information systems (GIS, using dynamic model, landscape indices and temporal trajectory analysis, spatio-temporal changes in forest in the northern area of Changbai Mountains were investigated in the past 20 years. The results showed that the forests decreased by 141461 ha at the annual decrease rate of 0.19% from 1986 to 2006. The numbers of forest patch increased, while the patch size of forest land declined. Forestland experienced the process of substantial fragmentation. Close forest showed a net reduction of 13.3×104ha. The typical trajectories of forest changes included forestland-forestland-cropland, forestland-cropland-cropland, forestland-forestland-grassland and forestland-cropland-built-up land. The total area of human-induced change is 1.7 times than that of natural change in the study area. Population, cropland area and gross domestic product increased significantly as forests decreased.

  8. Molecular characterization of soil bacterial community in a perhumid, low mountain forest.

    Science.gov (United States)

    Lin, Yu-Te; Whitman, William B; Coleman, David C; Chih-Yu, Chiu

    2011-01-01

    Forest disturbance often results in changes in soil properties and microbial communities. In the present study, we characterized a soil bacterial community subjected to disturbance using 16S rRNA gene clone libraries. The community was from a disturbed broad-leaved, low mountain forest ecosystem at Huoshaoliao (HSL) located in northern Taiwan. This locality receives more than 4,000 mm annual precipitation, one of the highest precipitations in Taiwan. Based on the Shannon diversity index, Chao1 estimator, richness and rarefaction curve analysis, the bacterial community in HSL forest soils was more diverse than those previously investigated in natural and disturbed forest soils with colder or less humid weather conditions. Analysis of molecular variance also revealed that the bacterial community in disturbed soils significantly differed from natural forest soils. Most of the abundant operational taxonomic units (OTUs) in the disturbed soil community at HSL were less abundant or absent in other soils. The disturbances influenced the composition of bacterial communities in natural and disturbed forests and increased the diversity of the disturbed forest soil community. Furthermore, the warmer and humid weather conditions could also increase community diversity in HSL soils.

  9. Mountain forest wood fuel supply chains: comparative studies between Norway and Italy

    International Nuclear Information System (INIS)

    Valente, Clara; Spinelli, Raffaele; Hillring, Bengt Gunnar; Solberg, Birger

    2014-01-01

    Case studies of mountain forest wood fuel supply chains from Norway and Italy are presented and compared. Results from previous studies in which greenhouse gas emissions and costs were evaluated using life cycle assessment and cost analysis respectively, are compared. The supply chain is more mechanized in Norway than Italy. Steeper terrain and low road density partly explain the persistence of motor-manual felling in the Italian case. Mechanized forest harvesting can increase productivity and reduce costs, but generates more greenhouse gas (GHG) emissions than motor-manual harvesting. In both cases, the main sources of GHG emissions are truck transportation and chipping. The total emissions are 22.9 kg CO 2 /m 3 s.o.b. (Norway) and 13.2 kg CO 2 /m 3 s.o.b. (Italy). The Norwegian case has higher costs than the Italian one, 64 €/m 3 s.o.b. and 41 €/m 3 s.o.b. respectively, for the overall supply chain. The study shows that mountain forests constitute an interesting source for fuel biomass in both areas, but are a rather costly source, particularly in Norway. The study also exemplifies the care needed in transferring LCA results between regions and countries, particularly where forest biomass is involved. - Highlights: • We compare two mountain forest wood fuel supply chains in Norway and in Italy. • Transportation by truck generate the highest emissions in both case studies. • The energy use of the Norwegian supply chain was approximately twice as high as the Italian one. • Changes in fuel consumption affect significantly emissions and energy use from transportation and chipping operations. • Cable yarding and transportation by truck were the most expensive phases respectively in the Italian and Norwegian supply chain

  10. Mountains

    Science.gov (United States)

    Regina M. Rochefort; Laurie L. Kurth; Tara W. Carolin; Robert R. Mierendorf; Kimberly Frappier; David L. Steenson

    2006-01-01

    This chapter concentrates on subalpine parklands and alpine meadows of southern British Columbia, Washington, Oregon, and western Montana. These areas lie on the flanks of several mountain ranges including the Olympics, the Cascades of Oregon and Washington, and the Coast Mountains in British Columbia.

  11. Biomass and carbon dynamics of a tropical mountain rain forest in China.

    Science.gov (United States)

    Chen, DeXiang; Li, YiDe; Liu, HePing; Xu, Han; Xiao, WenFa; Luo, TuShou; Zhou, Zhang; Lin, MingXian

    2010-07-01

    Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56+/-0.22) Mg C ha(-1)yr(-1), integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62+/-0.23) Mg C ha(-1)yr(-1)). The carbon density varied between (201.43+/-29.38) Mg C ha(-1) and (229.16+/-39.2) Mg C ha(-1), and averaged (214.17+/-32.42) Mg C ha(-1) for plot P9201. Plot P8302, however, varied between (223.95+/-45.92) Mg C ha(-1) and (254.85+/-48.86) Mg C ha(-1), and averaged (243.35+/-47.64) Mg C ha(-1). Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.

  12. Preliminary ethnobotanical studies of the Rwenzori Mountain forest area in Bundibugyo District, Uganda

    Directory of Open Access Journals (Sweden)

    H. Oryem-Origa

    1995-10-01

    Full Text Available Ethnobotanical studies of the Rwenzori Mountain forest area in Bundibugyo District in Uganda were carried out between May and December 1991, and covered the northern part of the Rwenzori Mountain slopes occupied by the Bakonjo people. The presence of a major footpath through the forest with numerous utility trails radiating from it showed that some forest resources are being sought by the local population. Plant biodiversity is high, as is indicated by the fact that in a study plot of only 4 250 m , a total of 115 plant species, 101 genera and 57 families were identified from a collection of 300 plant specimens. Seventy-seven plant species were found to be of some importance to the local communities. Out of the 77 useful plant species recorded:  22 species were used for medicinal purposes; 16 for firewood; 13 for construction, joinery and furniture;  12 for craftwork; 10 provided edible fruits and vegetables; and 27 were used for a variety of other purposes. These other purposes include construction of shrines, covering of granary floors, use as toilet paper, carry ing luggage, and fodder for goats, sheep and cattle. Arundinaria alpina K. Schum. (bamboo is the species that is most extensively harvested from the forest.

  13. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  14. AUTECOLOGY OF INVASIVE SPECIES Cyperus rotundus L. IN FOREST EDGE OF POHEN MOUNTAIN, BATUKAHU NATURE RESERVE, BALI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Sutomo Sutomo

    2015-11-01

    Full Text Available Anthropogenic-origin forest disturbance has been known to increase the risk of invasion to native habitat. Invasive species caused problems for local ecosystems and their native species. The  research on the dynamics and autecology of invasive species Cyperus rotundus was conducted on anthropogenic disturbed Pohen mountain forest in Bali, Indonesia. Results showed significant changes in microclimatic variables from forest edge to interior. C. rotundus in Pohen mountain forest can be found in a road edge and forest exterior where sunlight is abundant and decrease in a more shady sites and absent under thick forest canopies CCA ordination analysis showed that C. rotundus in Pohen mountain forest tends to co-occur together with Imperata cylindrica and Bidens biternata. To be able to control potentially troublesome exotic invasive species, firstly we have to understand what factors limit their growth and development. Therefore this study is has important value because the data which from  result in studying invasive species autecology will act as baseline data that will be useful to generate management program including rehabilitation and restoration program. Key words: species dynamics, autecology, Cyperus rotundus, Pohen mountain forest, Bali

  15. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    Science.gov (United States)

    Sandra E. Ryan; Erica L. Bishop; J. Michael Daniels

    2014-01-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort...

  16. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak

    Czech Academy of Sciences Publication Activity Database

    Jonášová, Magda; Prach, Karel

    2004-01-01

    Roč. 23, č. 1 (2004), s. 15-27 ISSN 0925-8574 Institutional research plan: CEZ:AV0Z6087904 Keywords : forest management * mountain spruce forest * natural regeneration Subject RIV: GK - Forestry Impact factor: 0.890, year: 2004 http://www.sciencedirect.com

  17. The Role of African Dust Particles on Cloud Chemistry and Microphysics in a Tropical Montane Cloud Forest in the Caribbean

    Science.gov (United States)

    Torres-Delgado, E.; Valle-Diaz, C. J.; Baumgardner, D.; McDowell, W. H.; Gonzalez, G.; Mayol-Bracero, O. L.

    2015-12-01

    Huge amounts of African dust travels thousands of kilometers from the Sahara and Sahel regions to the Caribbean, northern South America and southern North America. However, not much is understood about how the aging process that takes place during transport changes dust properties, and how it affects cloud's composition and microphysics. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes we had field campaigns measuring dust physical and chemical properties in summers of 2013, 2014 and 2015, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and of the Luquillo Critical Zone Observatory (LCZO). Measurements were performed at the tropical montane cloud forest (TMCF) of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both ground stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater for chemical analyses and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Summer 2015 was the first attempt to characterize microphysical properties of the summer period (June to August) at PE, where dust is in its higher concentrations of the year. Samples were classified using data from models and satellites together with CSJ measurements as low or high dust influenced. Soluble ions, insoluble trace metals, pH, conductivity, total and dissolved organic carbon and total and dissolved nitrogen were measured for cloud and rainwater. Enrichment factor analysis was used to determine sea and crustal contribution of species by sample, as well as the neutralization factor and fractional acidity. Some preliminary results show cloud water conductivity for low

  18. Clusia nubium (Clusiaceae): a new species from cloud-forests of southwestern Ecuador

    DEFF Research Database (Denmark)

    Gustafsson, Mats; Borchsenius, Finn

    2016-01-01

    Clusia nubium from southwestern Ecuador is described as a species new to science. It grows as a hemiepiphyte in lower montane cloud forest. The species belongs to Clusia sect. Retinostemon, a largely Andean group characterized by male flowers with a resin-secreting synandrium of completely fused...

  19. Characteristics of CO2 release from forest soil in the mountains near Beijing.

    Science.gov (United States)

    Sun, Xiang Yang; Gao, Cheng Da; Zhang, Lin; Li, Su Yan; Qiao, Yong

    2011-04-01

    CO2 release from forest soil is a key driver of carbon cycling between the soil and atmosphere ecosystem. The rate of CO2 released from soil was measured in three forest stands (in the mountainous region near Beijing, China) by the alkaline absorption method from 2004 to 2006. The rate of CO2 released did not differ among the three stands. The CO2 release rate ranged from - 341 to 1,193 mg m(-2) h(-1), and the mean value over all three forests and sampling times was 286 mg m(-2) h(-1). CO2 release was positively correlated with soil water content and the soil temperature. Diurnally, CO2 release was higher in the day than at night. Seasonally, CO2 release was highest in early autumn and lowest in winter; in winter, negative values of CO2 release suggested that CO2 was absorbed by soil.

  20. Using transient ERT mapping to monitor infiltration pathways in a semi-arid cloud forest in Oman

    Science.gov (United States)

    Friesen, J.; Werban, U.; Pohle, M.; Bawain, A.; Hildebrandt, A.; Attinger, S.

    2011-12-01

    In forests rainfall partitioning provides highly organized rainfall patterns caused by rainfall funneling through vegetation structure. The patterns of rainfall partitioning have already been studied in great detail at a cloud forest enclosure in Dhofar, Oman. How those organized rainfall patterns on the surface advance into the root zone and deeper is the focus of this work. Trees in the Dhofar Mountains function as excellent natural fog catchers that funnel extracted fog water through stemflow directly into the ground. Stemflow may provide a direct pathway from the stem along the roots to deeper soil water reservoirs. By doing so, trees might also contribute to groundwater recharge, and hence deforestation might have a negative effect on the aquifer. Electric resistivity tomography (ERT) has already proven useful for visualization of root water uptake in a tree orchard, by observing local increases of resistivity from soil drying. In our approach we aim at using ERT data for observing the local decrease of resistivity from soil wetting near stems. For this we will use the advantage of ERT to look into the near surface area (down to 3-4m) and deeper subsurface (10-15m). With a large number of subsequent ERT measurements we will obtain a time series of ERT data. Transient ERT data, starting before the monsoon season and ending after the monsoon season, aim at providing information about recharge patterns during and uptake patterns after monsoon. To determine the effect of vegetation we conducted field observation for two land cover types, forest and grassland. The ERT measurements are support by a network of stemflow, throughfall, and rain gage observations. Results already show a clear distinction between grassland and forested land cover.

  1. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    Science.gov (United States)

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests

  2. Long-Term Forest Dynamics and Land-Use Abandonment in the Mediterranean Mountains, Corsica, France

    Directory of Open Access Journals (Sweden)

    Almudena San Roman Sanz

    2013-06-01

    Full Text Available Human practices have had an impact on Mediterranean ecosystems for millennia, particularly through agricultural and pastoral activities. Since the mid-19th century, land-use abandonment has led to the expansion of shrubland and forest, especially in the mountainous areas of the northern Mediterranean basin. Knowledge of these factors is vital to understanding present forest patterns and predicting future forest dynamics in the Mediterranean mountains. We aimed to analyze and understand how land-use abandonment affected spatial modifications of landscapes in two study areas, 44,000 ha and 60,000 ha, located on the island of Corsica, France, representing a typical Mediterranean environment with chestnut forests. Our approach used land-cover archive documents from 1774, 1913, 1975, and 2000, and human population history, 1770 to present day, to describe landscape patterns following land-use abandonment. This research showed that dramatic changes in landscape at the two study areas were caused by the suspension of human influence and the interruption of traditional farming practices. Over the study period, both study sites showed significant reforestation of shrubland and cultivated areas marked by the presence of Quercus ilex forests (+3.40% yr-1 between 1975 and 2000 and by Pinus pinaster (+3.00% yr-1 between 1975 and 2000 at one study site that had experienced heavy rural exodus. At the same time, areas containing chestnut forests decreased by 50% between 1774 and 2000 (-0.09% yr-1 between 1774 and 1975 and -1.42% yr-1 between 1975 and 2000. Shrubland expansion remained limited at both study sites. Our study highlights the value of small-scale approaches for understanding the ecological consequences of land-use abandonment and present and future land-management decisions. Discussion concludes on the importance of working with long-term series for studies on resilience in social-ecological systems and on the consequences in terms of provision of

  3. Viable contribution of Tibetan sacred mountains in southwestern China to forest conservation.

    Science.gov (United States)

    Shen, Xiaoli; Li, Sheng; Wang, Dajun; Lu, Zhi

    2015-12-01

    The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape-scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government-established nature reserves and unmanaged open-access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974-1989, 1989-1999, and 1999-2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open-access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open-access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989-1999 (111.4 ha/year) relative to 1974-1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989-1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999-2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community-based conservation of TSMs within the

  4. The effect of the tropical cloud (fog) forest on the spatial distribution of cesium-137 in soils in the Henri Pittier National Park (Edo, Aragua, Venezuela)

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.; Cordoves, P.R.

    2002-01-01

    Soils were collected at different elevations (m.a.s.l.) near the two roadways, that pass through the Henri Pittier National Park (Edo, Aragua, Venezuela) in order to determine the distribution of the concentrations of the 137 Cs fallout and its relation to the tropical cloud forest. Duplicate samples were taken at most elevations between 2-5 cm below the soil surface to confirm that the samples were representative of the area. In many cases, it was difficult or impossible to locate areas that were undisturbed by man or nature. The 137 Cs (Bq/kg) content was determined by conventional high resolution gamma ray spectroscopy employing a standard comparison method. The background of the 137 Cs fallout in soils, below the cloud (fog) baseline was calculated to be about 5 Bq/kg on both the south (land) side and north (ocean) side for both roadways. The concentrations of 137 Cs (Bq/kg) were between 2-3 times higher at the baseline of the cloud (fog) on both sides of the mountain range. The 137 Cs values at the highest elevations (1105 and 1625 m.a.s.l.) near the roadways were about 5-6 times higher than the determined background levels. Our estimates of the baseline of the cloud (fog) are in good agreement with other visual observations. It was concluded that the distribution of 137 Cs in soils in cloud forests can be employed to estimate the baseline and the concentrations of 137 Cs fallout can be related to the relative density of the cloud (fog) when it was deposited. (author)

  5. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  6. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud

    NARCIS (Netherlands)

    Eugster, W.; Burkard, R.; Holwerda, F.; Scatena, F.N.; Bruijnzeel, L.A.

    2006-01-01

    The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes

  7. Predicting the size and elevation of future mountain forests: Scaling macroclimate to microclimate

    Science.gov (United States)

    Cory, S. T.; Smith, W. K.

    2017-12-01

    Global climate change is predicted to alter continental scale macroclimate and regional mesoclimate. Yet, it is at the microclimate scale that organisms interact with their physiochemical environments. Thus, to predict future changes in the biota such as biodiversity and distribution patterns, a quantitative coupling between macro-, meso-, and microclimatic parameters must be developed. We are evaluating the impact of climate change on the size and elevational distribution of conifer mountain forests by determining the microclimate necessary for new seedling survival at the elevational boundaries of the forest. This initial life stage, only a few centimeters away from the soil surface, appears to be the bottleneck to treeline migration and the expansion or contraction of a conifer mountain forest. For example, survival at the alpine treeline is extremely rare and appears to be limited to facilitated microsites with low sky exposure. Yet, abundant mesoclimate data from standard weather stations have rarely been scaled to the microclimate level. Our research is focusing on an empirical downscaling approach linking microclimate measurements at favorable seedling microsites to the meso- and macro-climate levels. Specifically, mesoclimate values of air temperature, relative humidity, incident sunlight, and wind speed from NOAA NCEI weather stations can be extrapolated to the microsite level that is physiologically relevant for seedling survival. Data will be presented showing a strong correlation between incident sunlight measured at 2-m and seedling microclimate, despite large differences from seedling/microsite temperatures. Our downscaling approach will ultimately enable predictions of microclimate from the much more abundant mesoclimate data available from a variety of sources. Thus, scaling from macro- to meso- to microclimate will be possible, enabling predictions of climate change models to be translated to the microsite level. This linkage between measurement

  8. Population dynamics of the epiphytic bromeliad Tillandsia butzii in cloud forest

    Science.gov (United States)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana

    2016-02-01

    Epiphytes are a major component of tropical montane cloud forests. Over-exploitation and forest loss and degradation affect remnant populations. In this study, we analysed the population dynamics of the epiphytic bromeliad Tillandsia butzii over a 2-y period in a tropical montane cloud forest fragment in southern Mexico. Matrix analysis revealed that the T. butzii population is likely to be stable at the study site. On average the λ value did not differ significantly from unity: λ (95% confidence interval) = 0.978 (0.936-1.001). λ was highly influenced by stasis, to a lesser extent by growth and only slightly by fecundity. Overall, adult plant stasis and phalanx growth habit played a fundamental role in population maintenance. T. butzii tolerance to xeric conditions may contribute to population stability in the studied region.

  9. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    Science.gov (United States)

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.

  10. [Spatial pattern of forest biomass and its influencing factors in the Great Xing'an Mountains, Heilongjiang Province, China].

    Science.gov (United States)

    Wang, Xiao-Li; Chang, Yu; Chen, Hong-Wei; Hu, Yuan-Man; Jiao, Lin-Lin; Feng, Yu-Ting; Wu, Wen; Wu, Hai-Feng

    2014-04-01

    Based on field inventory data and vegetation index EVI (enhanced vegetation index), the spatial pattern of the forest biomass in the Great Xing'an Mountains, Heilongjiang Province was quantitatively analyzed. Using the spatial analysis and statistics tools in ArcGIS software, the impacts of climatic zone, elevation, slope, aspect and vegetation type on the spatial pattern of forest biomass were explored. The results showed that the forest biomass in the Great Xing'an Mountains was 350 Tg and spatially aggregated with great increasing potentials. Forest biomass density in the cold temperate humid zone (64.02 t x hm(-2)) was higher than that in the temperate humid zone (60.26 t x hm(-2)). The biomass density of each vegetation type was in the order of mixed coniferous forest (65.13 t x hm(-2)) > spruce-fir forest (63.92 t x hm(-2)) > Pinus pumila-Larix gmelinii forest (63.79 t x hm(-2)) > Pinus sylvestris var. mongolica forest (61.97 t x hm(-2)) > Larix gmelinii forest (61.40 t x hm(-2)) > deciduous broadleaf forest (58.96 t x hm(-2)). With the increasing elevation and slope, the forest biomass density first decreased and then increased. The forest biomass density in the shady slopes was greater than that in the sunny slopes. The spatial pattern of forest biomass in the Great Xing' an Mountains exhibited a heterogeneous pattern due to the variation of climatic zone, vegetation type and topographical factor. This spatial heterogeneity needs to be accounted when evaluating forest biomass at regional scales.

  11. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest.

    Science.gov (United States)

    Vertessy, R A; Benyon, R G; O'Sullivan, S K; Gribben, P R

    1995-09-01

    We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.

  12. Giardia in mountain gorillas (Gorilla beringei beringei), forest buffalo (Syncerus caffer), and domestic cattle in Volcanoes National Park, Rwanda.

    Science.gov (United States)

    Hogan, Jennifer N; Miller, Woutrina A; Cranfield, Michael R; Ramer, Jan; Hassell, James; Noheri, Jean Bosco; Conrad, Patricia A; Gilardi, Kirsten V K

    2014-01-01

    Mountain gorillas (Gorilla beringei beringei) are critically endangered primates surviving in two isolated populations in protected areas within the Virunga Massif of Rwanda, Uganda, the Democratic Republic of Congo, and in Bwindi Impenetrable National Park in Uganda. Mountain gorillas face intense ecologic pressures due to their proximity to humans. Human communities outside the national parks, and numerous human activities within the national parks (including research, tourism, illegal hunting, and anti-poaching patrols), lead to a high degree of contact between mountain gorillas and wildlife, domestic animals, and humans. To assess the pathogen transmission potential between wildlife and livestock, feces of mountain gorillas, forest buffalo (Syncerus caffer nanus), and domestic cattle (Bos taurus) in Rwanda were examined for the parasites Giardia and Cryptosporidium. Giardia was found in 9% of mountain gorillas, 6% of cattle, and 2% of forest buffalo. Our study represents the first report of Giardia prevalence in forest buffalo. Cryptosporidium-like particles were also observed in all three species. Molecular characterization of Giardia isolates identified zoonotic genotype assemblage B in the gorilla samples and assemblage E in the cattle samples. Significant spatial clustering of Giardia-positive samples was observed in one sector of the park. Although we did not find evidence for transmission of protozoa from forest buffalo to mountain gorillas, the genotypes of Giardia samples isolated from gorillas have been reported in humans, suggesting that the importance of humans in this ecosystem should be more closely evaluated.

  13. The variations of aluminium species in mountainous forest soils and its implications to soil acidification.

    Science.gov (United States)

    Bradová, Monika; Tejnecký, Václav; Borůvka, Luboš; Němeček, Karel; Ash, Christopher; Šebek, Ondřej; Svoboda, Miroslav; Zenáhlíková, Jitka; Drábek, Ondřej

    2015-11-01

    Aluminium (Al) speciation is a characteristic that can be used as a tool for describing the soil acidification process. The question that was answered is how tree species (beech vs spruce) and type of soil horizon affect Al speciation. Our hypotesis is that spruce and beech forest vegetation are able to modify the chemical characteristics of organic horizon, hence the content of Al species. Moreover, these characteristics are seasonally dependent. To answer these questions, a detailed chromatographic speciation of Al in forest soils under contrasting tree species was performed. The Jizera Mountains area (Czech Republic) was chosen as a representative mountainous soil ecosystem. A basic forestry survey was performed on the investigated area. Soil and precipitation samples (throughfall, stemflow) were collected under both beech and spruce stands at monthly intervals from April to November during the years 2008-2011. Total aluminium content and Al speciation, pH, and dissolved organic carbon were determined in aqueous soil extracts and in precipitation samples. We found that the most important factors affecting the chemistry of soils, hence content of the Al species, are soil horizons and vegetation cover. pH strongly affects the amount of Al species under both forests. Fermentation (F) and humified (H) organic horizons contain a higher content of water extractable Al and Al(3+) compared to organo-mineral (A) and mineral horizons (B). With increasing soil profile depth, the amount of water extractable Al, Al(3+) and moisture decreases. The prevailing water-extractable species of Al in all studied soils and profiles under both spruce and beech forests were organically bound monovalent Al species. Distinct seasonal variations in organic and mineral soil horizons were found under both spruce and beech forests. Maximum concentrations of water-extractable Al and Al(3+) were determined in the summer, and the lowest in spring.

  14. Short-term effects of forest disturbances on soil nematode communities in European mountain spruce forests.

    Science.gov (United States)

    Čerevková, A; Renčo, M; Cagáň, L

    2013-09-01

    The nematode communities in spruce forests were compared with the short-term effects of forest damage, caused by windstorm, wildfire and management practices of forest soils. Soil samples were collected in June and October from 2006 to 2008 in four different sites: (1) forest unaffected by the wind (REF); (2) storm-felled forest with salvaged timber (EXT); (3) modified forest affected by timber salvage (wood removal) and forest fire (FIR); and (4) storm-felled forest where timber had been left unsalvaged (NEX). Nematode analysis showed that the dominant species in all four investigated sites were Acrobeloides nanus and Eudorylaimus silvaticus. An increase of A. nanus (35% of the total nematode abundance) in the first year in the FIR site led to the highest total abundance of nematodes compared with other sites, where nematode abundance reached the same level in the third year. In the FIR site bacterial feeders appeared to be the most representative trophic group, although in the second and third year, after disturbance, the abundance of this trophic group gradually decreased. In the NEX site, the number of nematode species, population densities and Maturity Index were similar to that recorded for the FIR site. In EXT and NEX sites, the other dominant species was the plant parasitic nematode Paratylenchus microdorus. Analyses of nematodes extracted from different forest soil samples showed that the highest number of species and diversity index for species (H'spp) were in the REF site. Differences between the nematode fauna in REF and other localities were clearly depicted by cluster analysis. The greatest Structure Index and Enrichment Index values were also in REF. In the EXT site, the number of nematode species, their abundance, H'spp and Maturity Index were not significantly different from those recorded in the reference site.

  15. Evaluation of trace elements contamination in cloud/fog water at an elevated mountain site in Northern China.

    Science.gov (United States)

    Liu, Xiao-huan; Wai, Ka-ming; Wang, Yan; Zhou, Jie; Li, Peng-hui; Guo, Jia; Xu, Peng-ju; Wang, Wen-xing

    2012-07-01

    Totally 117 cloud/fog water samples were collected at the summit of Mt. Tai (1534m a.s.l.)-the highest mountain in the Northern China Plain. The results were investigated by a combination of techniques including back trajectory model, regional air quality and dust storm models, satellite observations and Principal Component Analysis. Elemental concentrations were determined by Inductively Coupled Plasma Mass Spectrometry, with stringent quality control measures. Higher elemental concentrations were found at Mt. Tai compared with those reported by other overseas studies. The larger proportions and higher concentrations of toxic elements such as Pb and As in cloud/fog water compared with those in rainwater at Mt. Tai suggests higher potential hazards of cloud/fog water as a source of contamination in polluted areas to the ecosystem. Peak concentrations of trace elements were frequently observed during the onset of cloud/fog events when liquid water contents of cloud/fog water were usually low and large amount of pollutants were accumulated in the ambient air. Inverse relationship between elemental concentrations and liquid water contents were only found in the samples with high electrical conductivities and liquid water contents lower than 0.3gm(-3). Affected mainly by the emissions of steel industries and mining activities, air masses transported from south/southwest of Mt. Tai were frequently associated with higher elemental concentrations. The element Mn is attributed to play an important role in the acidity of cloud/fog water. The composition of cloud/fog water influenced by an Asian dust storm event was reported, which was seldom found in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Alpine forest-tundra ecotone response to temperature change,Sayan Mountains, Siberia

    Science.gov (United States)

    Ranson, K Jon; Kharuk, Vyetcheslav I.

    2007-01-01

    Models of climate change predict shifts of vegetation zones. Tree response to climate trends is most likely observable in the forest-tundra ecotone, where temperature mainly limits tree growth. There is evidence of vegetation change on the northern treeline However, observations on alpine tree line response are controversial. In this NEESPI related study we show that during the past three decades in the forest-tundra ecotone of the Sayan Mountains, Siberia, there was an increase in forest stand crown closure, regeneration propagation into the alpine tundra, and transformation of prostrate Siberian pine and fir into arboreal forms. We found that these changes occurred since the mid 1980s, and strongly correlates with positive temperature (and to a lesser extent, precipitation) trends. Improving climate for forest growth( i.e., warmer temperatures and increased precipitation) provides competitive advantages to Siberian pine in the alpine forest-tundra ecotone, as well as in areas typically dominated by larch, where it has been found to be forming a secondary canopy layer. Substitution of deciduous conifer, larch, for evergreen conifers, decreases albedo and provides positive feedback for temperature increase.

  17. Recreational potential as an indicator of accessibility control in protected mountain forest areas

    Institute of Scientific and Technical Information of China (English)

    Tomasz DUDEK

    2017-01-01

    The article presents research findings related to recreational use of forests located in protected mountainous areas with forestage of over 80%.The study was designed to identify recreational potential of the Carpathian national parks (Bieszczady National Park,Babia Góra National Park,Gorce National Park and Magura National Park;southern Poland) and to compare these findings with the actual number of visitors.The information received on the recreational potential of parks is important from the point of view of protection of natural resources and the financial situation of the parks.The calculated ratio may be an effective tool of management for park administration,that allows to reconcile statutory social and protective functions of national parks.The study determined the recreational potential of the forests with the use of recreational valorisation method designed for areas with varied terrain,and the evaluated factors included the stands of trees with their habitat and land relief.The permissible number of national park visitors,expressed as manhour/ha/year ranges from 19.31 in Bieszczady National Park (BG:19° 35′ E,49° 35′ N) to 32.06 in in Bieszczady National Park (B:22° 40′ E,49° 10′ N).In 3 out of 4 investigated parks,Magnra National Park (M:21°25′ E,49° 30′ N),Gorce National Park (G:20° 10′ E,49° 35′ N),B) recreation carrying capacity was not exceeded,whether or not the strictly protected area is taken into account.Only in BG was the recreation carrying capacity exceeded by nearly 24%,or by 85% if the strictly protected area is excluded from tourism-related exploitation.The presented procedure for monitoring access to mountain forests in national parks,from the viewpoint of natural resources conservation,can be applied in other mountainous areas covered with forests and exposed to tourist and recreational traffic,and in forests facing particular risk of recreational damage,e.g.in urban and suburban forests growing in areas

  18. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador.

    Science.gov (United States)

    Fabian, Peter; Kohlpaintner, Michael; Rollenbeck, Ruetger

    2005-09-01

    Biomass burning is a source of carbon, sulfur and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very long distances, even traversing oceans. Chemical analyses of rain and fogwater samples collected in the mountaineous rain forest of south Ecuador show frequent episodes of high sulfate and nitrate concentration, from which annual deposition rates are derived comparable to those found in polluted central Europe. As significant anthropogenic sources are lacking at the research site it is suspected that biomass burning upwind in the Amazon basin is the major source of the enhanced sulfate and nitrate imput. Regular rain and fogwater sampling along an altitude profile between 1800 and 3185 m has been carried out in the Podocarpus National Park close to the Rio SanFrancisco (3 degrees 58'S, 79 degrees 5'W) in southern Ecuador. pH values, electrical conductivity and chemical ion composition were measured at the TUM-WZW using standard methods. Results reported cover over one year from March 2002 until May 2003. Annual deposition rates of sulfate were calculated ranging between 4 and 13 kg S/ha year, almost as high as in polluted central Europe. Nitrogen deposition via ammonia (1.5-4.4 kg N/ha year) and nitrate (0.5-0.8 kg N/ha year) was found to be lower but still much higher than to be expected in such pristine natural forest environment. By means of back trajectory analyses it can be shown that most of the enhanced sulfur and nitrogen deposition is most likely due to forest fires far upwind of the ecuadorian sampling site, showing a seasonal variation, with sources predominantly found in the East/North East during January-March (Colombia, Venezuala, Northern Brazil) and East/SouthEast during July-September (Peru, Brazil). Our results show that biomass burning in the Amazon basin is the predominant source of sulfur and nitrogen compounds that fertilize the mountaineous rain forest in south Ecuador. The

  19. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    Science.gov (United States)

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  20. Forest Plant community changes during 1989-2007 in response to climate warming in the Jura Mountains (France and Switzerland)

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Gégout, J.C.; Dupouey, J.L.

    2010-01-01

    Question: How strong are climate warming-driven changes within mid-elevation forest communities? Observations of plant community change within temperate mountain forest ecosystems in response to recent warming are scarce in comparison to high-elevation alpine and nival ecosystems, perhaps...... reflecting the confounding influence of forest stand dynamics. Location: Jura Mountains (France and Switzerland). Methods: We assessed changes in plant community composition by surveying 154 Abies alba forest vegetation relevés (550-1,350 m a.s.l.) in 1989 and 2007. Over this period, temperatures increased...... while precipitation did not change. Correspondence analysis (CA) and ecological indicator values were used to measure changes in plant community composition. Relevés in even- and uneven-aged stands were analysed separately to determine the influence of forest stand dynamics. We also analysed changes...

  1. A Variable Impacts Measurement in Random Forest for Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Jae-Hee Hur

    2017-01-01

    Full Text Available Recently, the importance of mobile cloud computing has increased. Mobile devices can collect personal data from various sensors within a shorter period of time and sensor-based data consists of valuable information from users. Advanced computation power and data analysis technology based on cloud computing provide an opportunity to classify massive sensor data into given labels. Random forest algorithm is known as black box model which is hardly able to interpret the hidden process inside. In this paper, we propose a method that analyzes the variable impact in random forest algorithm to clarify which variable affects classification accuracy the most. We apply Shapley Value with random forest to analyze the variable impact. Under the assumption that every variable cooperates as players in the cooperative game situation, Shapley Value fairly distributes the payoff of variables. Our proposed method calculates the relative contributions of the variables within its classification process. In this paper, we analyze the influence of variables and list the priority of variables that affect classification accuracy result. Our proposed method proves its suitability for data interpretation in black box model like a random forest so that the algorithm is applicable in mobile cloud computing environment.

  2. TESTING FOR DIFFERENTIAL EFFECTS OF FOREST FIRES ON HIKING AND MOUNTAIN BIKING DEMAND AND BENEFITS

    OpenAIRE

    Loomis, John B.; Gonzalez-Caban, Armando; Englin, Jeffrey E.

    2001-01-01

    Surveys of visitors to National Forests in Colorado were conducted to determine whether different fire ages and presence of crown fires have different effects on hiking and mountain biking recreation visits and benefits. Actual and intended behavior data were combined using a count-data travel cost model. The intended behavior trip questions asked about changes in number of trips due to the presence of a high-intensity crown fire, prescribed fire, and a 20-year-old high-intensity fire at the ...

  3. Object-Based Coregistration of Terrestrial Photogrammetric and ALS Point Clouds in Forested Areas

    Science.gov (United States)

    Polewski, P.; Erickson, A.; Yao, W.; Coops, N.; Krzystek, P.; Stilla, U.

    2016-06-01

    Airborne Laser Scanning (ALS) and terrestrial photogrammetry are methods applicable for mapping forested environments. While ground-based techniques provide valuable information about the forest understory, the measured point clouds are normally expressed in a local coordinate system, whose transformation into a georeferenced system requires additional effort. In contrast, ALS point clouds are usually georeferenced, yet the point density near the ground may be poor under dense overstory conditions. In this work, we propose to combine the strengths of the two data sources by co-registering the respective point clouds, thus enriching the georeferenced ALS point cloud with detailed understory information in a fully automatic manner. Due to markedly different sensor characteristics, coregistration methods which expect a high geometric similarity between keypoints are not suitable in this setting. Instead, our method focuses on the object (tree stem) level. We first calculate approximate stem positions in the terrestrial and ALS point clouds and construct, for each stem, a descriptor which quantifies the 2D and vertical distances to other stem centers (at ground height). Then, the similarities between all descriptor pairs from the two point clouds are calculated, and standard graph maximum matching techniques are employed to compute corresponding stem pairs (tiepoints). Finally, the tiepoint subset yielding the optimal rigid transformation between the terrestrial and ALS coordinate systems is determined. We test our method on simulated tree positions and a plot situated in the northern interior of the Coast Range in western Oregon, USA, using ALS data (76 x 121 m2) and a photogrammetric point cloud (33 x 35 m2) derived from terrestrial photographs taken with a handheld camera. Results on both simulated and real data show that the proposed stem descriptors are discriminative enough to derive good correspondences. Specifically, for the real plot data, 24

  4. Estimation of Carbon Flux of Forest Ecosystem over Qilian Mountains by BIOME-BGC Model

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei

    2014-11-01

    The gross primary production (GPP) and net ecosystem exchange (NEE) are important indicators for carbon fluxes. This study aims at evaluating the forest GPP and NEE over the Qilian Mountains using meteorological, remotely sensed and other ancillary data at large scale. To realize this, the widely used ecological-process-based model, Biome-BGC, and remote-sensing-based model, MODIS GPP algorithm, were selected for the simulation of the forest carbon fluxes. The combination of these two models was based on calibrating the Biome-BGC by the optimized MODIS GPP algorithm. The simulated GPP and NEE values were evaluated against the eddy covariance observed GPPs and NEEs, and the well agreements have been reached, with R2=0.76, 0.67 respectively.

  5. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    Science.gov (United States)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  6. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala.

    Science.gov (United States)

    Eisermann, Knut; Schulz, Ulrich

    2005-01-01

    The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2000 and 2400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala). The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys) was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus), the Paltry Tyrannulet (Zimmerius vilissimus), the Yellowish Flycatcher (Empidonax flavescens), the Ruddy-capped Nightingale-Thrush (Catharus frantzi), and the Amethyst-throated Hummingbird (Lampornis amethystinus). Bird communities in undisturbed and disturbed forest were found to be similar (Serensen similarity index 0.85), indicating low human impact. Of all recorded species, approximately 27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson's Warbler (Wilsonia pusilla). The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia), and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring.

  7. Structure, richness and composition of arboreal plants in a cloud thinning forest of Tolima (Colombia)

    International Nuclear Information System (INIS)

    Campo Kurmen, Juan Manuel

    2010-01-01

    Structure, richness, and floristic composition of the woody elements of the selective logging forest of the Vereda Dantas, (Ibague, Tolima, Colombia), where studied in a 0.1 ha plot sampled for all individuals ≥2.5 cm dbh. the forest is characterized by scarcity of lianas and hemiepiphytic, absence of typical families of the Colombian cloud forests between 2000 and 2500 m (Araceae, Ericaceae, Myrtaceae, Meliaceae and Aquifoliaceae), and richness increment of the Sabiaceae and Euphorbiaceae. Compared to others cloud forest from the Colombian Andes and the Neotropic, it has, fewer individuals (237 individuals ≥2.5 cm dbh per 0.1 ha) and more large trees (39.7% of individuals ≥10 cm dbh per 0.1 ha). The forest has a lower woody species richness (75 species ≥2.5 cm dbh per 0.1 ha). Apparently, the effects of selective timber extraction on structure, richness, and floristic composition are decrease floristic richness and density of individuals, decrease of lianas density and richness, and more individuals of secondary species, likes: Hedyosmum goudotianum Slms-Laubach var. goudatianum, Miconia resima Naud, and Palicourea calophlebia Standl.

  8. Estimating the collapse of aggregated fine soil structure in a mountainous forested catchment.

    Science.gov (United States)

    Mouri, Goro; Shinoda, Seirou; Golosov, Valentin; Chalov, Sergey; Shiiba, Michiharu; Hori, Tomoharu; Oki, Taikan

    2014-06-01

    This paper describes the relationship of forest soil dryness and antecedent rainfall with suspended sediment (SS) yield due to extreme rainfall events and how this relationship affects the survival of forest plants. Several phenomena contribute to this relationship: increasing evaporation (amount of water vapour discharged from soil) due to increasing air temperature, decreasing moisture content in the soil, the collapse of aggregates of fine soil particles, and the resulting effects on forest plants. To clarify the relationships among climate variation, the collapse of soil particle aggregates, and rainfall-runoff processes, a numerical model was developed to reproduce such aggregate collapse in detail. The validity of the numerical model was confirmed by its application to the granitic mountainous catchment of the Nagara River basin in Japan and by comparison with observational data. The simulation suggests that important problems, such as the collapse of forest plants in response to decreases in soil moisture content and antecedent rainfall, will arise if air temperature continues to increase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Forest harvest patterns on private lands in the Cascade Mountains, Washington, USA

    Science.gov (United States)

    Soulard, Christopher E.; Walker, Jessica; Griffith, Glenn E.

    2017-01-01

    Forests in Washington State generate substantial economic revenue from commercial timber harvesting on private lands. To investigate the rates, causes, and spatial and temporal patterns of forest harvest on private tracts throughout the Cascade Mountains, we relied on a new generation of annual land-use/land-cover (LULC) products created from the application of the Continuous Change Detection and Classification (CCDC) algorithm to Landsat satellite imagery collected from 1985 to 2014. We calculated metrics of landscape pattern using patches of intact and harvested forest in each annual layer to identify changes throughout the time series. Patch dynamics revealed four distinct eras of logging trends that align with prevailing regulations and economic conditions. We used multiple logistic regression to determine the biophysical and anthropogenic factors that influence fine-scale selection of harvest stands in each time period. Results show that private lands forest cover became significantly reduced and more fragmented from 1985 to 2014. Variables linked to parameters of site conditions, location, climate, and vegetation greenness consistently distinguished harvest selection for each distinct era. This study demonstrates the utility of annual LULC data for investigating the underlying factors that influence land cover change.

  10. Forest Harvest Patterns on Private Lands in the Cascade Mountains, Washington, USA

    Directory of Open Access Journals (Sweden)

    Christopher E. Soulard

    2017-10-01

    Full Text Available Forests in Washington State generate substantial economic revenue from commercial timber harvesting on private lands. To investigate the rates, causes, and spatial and temporal patterns of forest harvest on private tracts throughout the Cascade Mountains, we relied on a new generation of annual land-use/land-cover (LULC products created from the application of the Continuous Change Detection and Classification (CCDC algorithm to Landsat satellite imagery collected from 1985 to 2014. We calculated metrics of landscape pattern using patches of intact and harvested forest in each annual layer to identify changes throughout the time series. Patch dynamics revealed four distinct eras of logging trends that align with prevailing regulations and economic conditions. We used multiple logistic regression to determine the biophysical and anthropogenic factors that influence fine-scale selection of harvest stands in each time period. Results show that private lands forest cover became significantly reduced and more fragmented from 1985 to 2014. Variables linked to parameters of site conditions, location, climate, and vegetation greenness consistently distinguished harvest selection for each distinct era. This study demonstrates the utility of annual LULC data for investigating the underlying factors that influence land cover change.

  11. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  12. Evaluating potential fire behavior in lodgepole pine-dominated forests after a mountain pine beetle epidemic in north-central Colorado

    Science.gov (United States)

    Jennifer G. Klutsch; Mike A. Battaglia; Daniel R. West; Sheryl L. Costello; Jose F. Negron

    2011-01-01

    A mountain pine beetle outbreak in Colorado lodgepole pine forests has altered stand and fuel characteristics that affect potential fire behavior. Using the Fire and Fuels Extension to the Forest Vegetation Simulator, potential fire behavior was modeled for uninfested and mountain pine beetle-affected plots 7 years after outbreak initiation and 10 and 80% projected...

  13. Influence of meteorological parameters on interception of cloud droplets in a coniferous forest

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, G; Winkler, P [Deutscher Wetterdienst, Meteorologisches Observatorium Hamburg (Germany, F.R.)

    1989-11-01

    The deposition of trace substances in a high elevated coniferous forest by interception of cloud droplets depends on numerous meteorological parameters. Sensitivity studies with a deposition model show that the variation of the vertical wind profile in the stand and the capture efficiency have a large influence on the deposition flux. Different drop size distributions with equal LWC's lead to changes of only 10% in the deposition flux. A higher ion concentration in small droplets has only a small influence on the trace substance deposition. A realistic estimate of the deposition is most likely achieved by using hourly observed meteorological parameters as model input values. The deposition of trace substances into a high elevated coniferous forest by interception of cloud droplets can be as high as the deposition via rain. (orig.).

  14. Life forms of endemic carabid beetles (Coleoptera, Carabidae in the forest eco-systems of gorgany mountains

    Directory of Open Access Journals (Sweden)

    V. S. Pushkar

    2010-09-01

    Full Text Available In the forest ecosystems of Gorgany Mountains 11 endemic carabids are found. It is about 12.2 % of all ground-beetles fauna of the investigated region. As a result of the morphometric analysis the life forms of endemic carabids are determined. The system of ground beetles’ life forms developed by I. Sharova (1981 is supplemented. All endemics we have rated among 1 class (Zoophages, 2 subclasses (Epigeobionts, Stratobionts and 5 life forms. The analysis of the carabid beetles’ life form spectrum in the forest ecosystems of Gorgany mountains attests to their broad settlement of ecological niches in the investigated region.

  15. MARKETIZATION OF GREEN FOOD RESOURCES IN FOREST REGION OF THE CHANGBAI MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    XIAO Yan

    2004-01-01

    The Changbai Mountains is rich in the resources of green food. At present, the low marketization of green food resources in the forest region of the Changbai Mountains becomes the bottleneck to restrict the benign development of its green food industry. With huge market demands at home and abroad, it is the urgent problem how to improve marketization process of green food resources and transfer the resources superiority into the market superiority in the region. According to the investigation, this paper analyzed the status quo and the cause of formation of low-marketization with the method of combining comparative research and practice research. It pointed out that necessary condition of marketization of green food resources in the forest region, such as strategy, economic environment, marketization allocation of sci-tech resources, etc. should be established. Furthermore, the concrete strategies of marketization of green food resources in the region such as market location, strategies of objective markets, combined strategy of marketing, etc. were advanced.

  16. Characteristics of soil seed bank in plantation forest in the rocky mountain region of Beijing, China

    Institute of Scientific and Technical Information of China (English)

    HU Zeng-hui; YANG Yang; LENG Ping-sheng; DOU De-quan; ZHANG Bo; HOU Bing-fei

    2013-01-01

    We investigated characteristics (scales and composition) of soil seed banks at eight study sites in the rocky mountain region of Beijing by seed identification and germination monitoring.We also surveyed the vegetation communities at the eight study sites to explore the role of soil seed banks in vegetation restoration.The storage capacity of soil seed banks at the eight sites ranked from 766.26 to 2461.92 seedsm-2.A total of 23 plant species were found in soil seed banks,of which 63-80%of seeds were herbs in various soil layers and 60% of seeds were located in the soil layer at 0-5 cm depth.Biodiversity indices indicated clear differences in species diversity of soil seed banks among different plant communities.The species composition of aboveground vegetation showed low similarity with that based on soil seed banks.In the aboveground plant community,the afforestation tree species showed high importance values.The plant species originating from soil seed banks represented natural regeneration,which also showed relatively high importance values.This study suggests that in the rocky mountain region of Beijing the soil seed banks played a key role in the transformation from pure plantation forest to near-natural forest,promoting natural ecological processes,and the role of the seed banks in vegetation restoration was important to the improvement of ecological restoration methods.

  17. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    Science.gov (United States)

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone

  18. Biology and Ecology of Alchisme grossa in a Cloud Forest of the Bolivian Yungas

    OpenAIRE

    Torrico-Bazoberry, Daniel; Caceres-Sanchez, Liliana; Saavedra-Ulloa, Daniela; Flores-Prado, Luis; Niemeyer, Hermann M.; Pinto, Carlos F.

    2014-01-01

    Treehoppers (Membracidae) exhibit different levels of sociality, from solitary to presocial. Although they are one of the best biological systems to study the evolution of maternal care in insects, information on the biology of species in this group is scarce. This work describes the biology and ecology of Alchisme grossa (Fairmaire) (Hemiptera: Membracidae) in a rain cloud forest of Bolivia. This subsocial membracid utilizes two host-plant species, Brugmansia suaveolens (Humb. & Bonpl. ex Wi...

  19. Input and output budgets of radiocesium concerning the forest floor in the mountain forest of Fukushima released from the TEPCO's Fukushima Dai-ichi nuclear power plant accident

    International Nuclear Information System (INIS)

    Niizato, Tadafumi; Abe, Hironobu; Mitachi, Katsuaki; Sasaki, Yoshito; Ishii, Yasuo; Watanabe, Takayoshi

    2016-01-01

    Estimations of radiocesium input and output concerning the forest floor within a mountain forest region have been conducted in the north and central part of the Abukuma Mountains of Fukushima, northeast Japan, after a 2–3 year period following the TEPCO Fukushima Dai-ichi nuclear power plant accident. The radiocesium input and output associated with surface washoff, throughfall, stemflow, and litterfall processes at experimental plots installed on the forest floor of evergreen Japanese cedars and deciduous Konara oaks have been monitored. Despite the high output potential in the mountainous forest of Fukushima, the results at both monitoring locations show the radiocesium input to be 4–50 times higher than the output during the summer monsoon in Fukushima. These results indicate that the radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios (0.05%–0.19%). Thus, the associated fluxes throughout the circulation process are key issues for the projecting the environmental fate of the radiocesium levels, along with the subsequent reconstruction of life emphasized within the setting. - Highlights: • Input and output budgets of radiocesium in the mountainous forest of Fukushima were investigated in 2013 and 2014. • "1"3"7Cs outputs were 4–50 times higher than the "1"3"7Cs outputs during the monsoons. • The proportion of "1"3"7Cs output to radiocesium inventories was in the range of 0.05%–0.19% during the monsoons. • Radiocesium tends to be preserved in the forest ecosystem due to extremely low output ratios. • The forest floor seems to be a sink of radiocesium contamination than a source for the other ecosystems.

  20. Use of passive UAS imaging to measure biophysical parameters in a southern Rocky Mountain subalpine forest

    Science.gov (United States)

    Caldwell, M. K.; Sloan, J.; Mladinich, C. S.; Wessman, C. A.

    2013-12-01

    Unmanned Aerial Systems (UAS) can provide detailed, fine spatial resolution imagery for ecological uses not otherwise obtainable through standard methods. The use of UAS imagery for ecology is a rapidly -evolving field, where the study of forest landscape ecology can be augmented using UAS imagery to scale and validate biophysical data from field measurements to spaceborne observations. High resolution imagery provided by UAS (30 cm2 pixels) offers detailed canopy cover and forest structure data in a time efficient and inexpensive manner. Using a GoPro Hero2 (2 mm focal length) camera mounted in the nose cone of a Raven unmanned system, we collected aerial and thermal data monthly during the summer 2013, over two subalpine forests in the Southern Rocky Mountains in Colorado. These forests are dominated by lodgepole pine (Pinus ponderosae) and have experienced insect-driven (primarily mountain pine beetle; MPB, Dendroctonus ponderosae) mortality. Objectives of this study include observations of forest health variables such as canopy water content (CWC) from thermal imagery and leaf area index (LAI), biomass and forest productivity from the Normalized Difference Vegetation Index (NDVI) from UAS imagery. Observations were, validated with ground measurements. Images were processed using a combination of AgiSoft Photoscan professional software and ENVI remote imaging software. We utilized the software Leaf Area Index Calculator (LAIC) developed by Córcoles et al. (2013) for calculating LAI from digital images and modified to conform to leaf area of needle-leaf trees as in Chen and Cihlar (1996) . LAIC uses a K-means cluster analysis to decipher the RGB levels for each pixel and distinguish between green aboveground vegetation and other materials, and project leaf area per unit of ground surface area (i.e. half total needle surface area per unit area). Preliminary LAIC UAS data shows summer average LAI was 3.8 in the most dense forest stands and 2.95 in less dense

  1. Effects of competition and facilitation on species assemblage in two types of tropical cloud forest.

    Directory of Open Access Journals (Sweden)

    Wenxing Long

    Full Text Available Competition and facilitation between tree individuals are two kinds of non-random processes influencing the structure and functioning of forest communities, but how these two plant-plant interactions change along gradient of resources or environments remains very much a matter of debate. We developed a null model to test the size-distance regression, and assessed the effects of competition and facilitation (including interspecific interactions, intraspecific interactions and overall species interactions on each adult tree species assemblage [diameter at breast height (dbh ≥5 cm] across two types of tropical cloud forest with different environmental and resource regimes. The null model test revealed that 17% to 27% tree species had positive dbh-distance correlations while 11% to 19% tree species showed negative dbh-distance correlations within these two forest types, indicating that both competition and facilitation processes existed during the community assembly. The importance of competition for heterospecific species, and the intensity of competition for both heterospecific and overall species increased from high to low resources for all the shared species spanning the two forests. The importance of facilitation for conspecific and overall species, as well as that the intensity of facilitation for both heterospecific and conspecific species increased with increasing low air temperature stress for all the shared species spanning the two forests. Our results show that both competition and facilitation processes simultaneously affect parts of species assemblage in the tropical cloud forests. Moreover, the fact that nearly 50% species assemblage is not detected with our approaches suggest that tree species in these tropical forest systems are assembled with multiple ecological processes, and that there is a need to explore the processes other than the two biotic interactions in further researches.

  2. Contributions to the phytocoenologic study in pure european beech stand forests in Codru-Moma Mountains (North-Western Romania

    Directory of Open Access Journals (Sweden)

    Călin-Gheorghe PĂŞCUŢ

    2010-05-01

    Full Text Available In the present work we present a phytocoenologic study on the associations found in pure European beech stand forests in Codru-Moma Mountains namely: Festuco drymejae-Fagetum Morariu et al. 1968, Luzulo albidae-Fagetum sylvaticae Zólyomi 1955.Characterization of the associations we studied and presentation of the tables have been made considering the selection of the most representative relevées of pure European beech forests belonging to Codru-Moma Mountains.The phytocoenoses of pure forest stands of European beech forests belonging to the two associations were analyzed in terms of floristic composition, life forms spectrum, spectrum chart of the floral elements and ecological indices.

  3. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  4. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  5. Snow sublimation in mountain environments and its sensitivity to forest disturbance and climate warming

    Science.gov (United States)

    Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.

    2018-01-01

    Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.

  6. Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan

    Science.gov (United States)

    Apurva, B.; Huang, C. Y.; Zhang, J.

    2017-12-01

    Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a

  7. [Carbon storage of forest vegetation and allocation for main forest types in the east of Da-xing'an Mountains based on additive biomass model].

    Science.gov (United States)

    Peng, Wei; Dong, Li Hu; Li, Feng Ri

    2016-12-01

    Based on the biomass investigation data of main forest types in the east of Daxing'an Mountains, the additive biomass models of 3 main tree species were developed and the changes of carbon storage and allocation of forest community of tree layer, shrub layer, herb layer and litter layer from different forest types were discussed. The results showed that the carbon storage of tree layer, shrub layer, herb layer and litter layer for Rhododendron dauricum-Larix gmelinii forest was 71.00, 0.34, 0.05 and 11.97 t·hm -2 , respectively. Similarly, the carbon storage of the four layers of Ledum palustre-L. gmelinii forest was 47.82, 0.88, 0, 5.04 t·hm -2 , 56.56, 0.44, 0.04, 8.72 t·hm -2 for R. dauricum-mixed forest of L. gmelinii-Betula platyphylla, 46.21, 0.66, 0.07, 6.16 t·hm -2 for L. palustre-mixed forest of L. gmelinii-B. platyphylla, 40.90, 1.37, 0.04, 3.67 t·hm -2 for R. dauricum-B. platyphylla forest, 36.28, 1.12, 0.18, 4.35 t·hm -2 for L. palustre-B. platyphylla forest. The carbon storage of forest community for the understory vegetation of R. dauricum was higher than that of the forest with L. palustre. In the condition of similar circumstances for the understory, the order of carbon storage for forest community was L. gmelinii forest > the mixed forest of L. gmelinii-B. platyphylla > B. platyphylla forest. The carbon storage of different forest types was different with the order of R. dauricum-L. gmelinii forest (83.36 t·hm -2 )> R. dauricum-mixed forest of L. gmelinii-B. platyphylla (65.76 t·hm -2 ) > L. palustre-L. gmelinii forest (53.74 t·hm -2 )> L. palustre-mixed forest of L. gmelinii-B. platyphylla (53.10 t·hm -2 )> R. dauricum-B. platyphylla forest (45.98 t·hm -2 ) > L. palustre-B. platyphylla forest (41.93 t·hm -2 ). The order of carbon storage for the vertical distribution in forest communities with diffe-rent forest types was the tree layer (85.2%-89.0%) > litter layer (8.0%-14.4%) > shrub layer (0.4%-2.7%) > herb layer (0-0.4%).

  8. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    Science.gov (United States)

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  9. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems.

    Science.gov (United States)

    Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter

    2017-03-15

    Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future

  10. A long-term simulation of forest carbon fluxes over the Qilian Mountains

    Science.gov (United States)

    Yan, Min; Tian, Xin; Li, Zengyuan; Chen, Erxue; Li, Chunmei; Fan, Wenwu

    2016-10-01

    In this work, we integrated a remote-sensing-based (the MODIS MOD_17 Gross Primary Productivity (GPP) model (MOD_17)) and a process-based (the Biome-BioGeochemical Cycles (Biome-BGC) model) ecological model in order to estimate long-term (from 2000 to 2012) forest carbon fluxes over the Qilian Mountains in northwest China, a cold and arid forest ecosystem. Our goal was to obtain an accurate and quantitative simulation of spatial GPP patterns using the MOD_17 model and a temporal description of forest processes using the Biome-BGC model. The original MOD_17 model was first optimized using a biome-specific parameter, observed meteorological data, and reproduced fPAR at the eddy covariance site. The optimized MOD_17 model performed much better (R2 = 0.91, RMSE = 5.19 gC/m2/8d) than the original model (R2 = 0.47, RMSE = 20.27 gC/m2/8d). The Biome-BGC model was then calibrated using GPP for 30 representative forest plots selected from the optimized MOD_17 model. The calibrated Biome-BGC model was then driven in order to estimate forest GPP, net primary productivity (NPP), and net ecosystem exchange (NEE). GPP and NEE were validated against two-year (2010 and 2011) EC measurements (R2 = 0.79, RMSE = 1.15 gC/m2/d for GPP; and R2 = 0.69, RMSE = 1.087 gC/m2/d for NEE). NPP estimates from 2000 to 2012 were then compared to dendrochronological measurements (R2 = 0.73, RMSE = 24.46 gC/m2/yr). Our results indicated that integration of the two models can be used for estimating carbon fluxes with good accuracy and a high temporal and spatial resolution. Overall, NPP displayed a downward trend, with an average rate of 0.39 gC/m2/yr, from 2000 and 2012 over the Qilian Mountains. Simulated average annual NPP yielded higher values for the southeast as compared to the northwest. The most positive correlative climatic factor to average annual NPP was downward shortwave radiation. The vapor pressure deficit, and mean temperature and precipitation yielded negative correlations to average

  11. Analysis of nitrogen saturation potential in Rocky Mountain tundra and forest: implications for aquatic systems

    Science.gov (United States)

    Baron, Jill S.; Ojima, Dennis S.; Holland, Elisabeth A.; Parton, William J.

    1994-01-01

    We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.

  12. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    Science.gov (United States)

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  13. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    Science.gov (United States)

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  14. Roost tree selection by northern myotis (Myotis septentrionalis) maternity colonies following prescribed fire in a Central Appalachian Mountains hardwood forest

    Science.gov (United States)

    Joshua B. Johnson; John W. Edwards; W. Mark Ford; J. Edward Gates

    2009-01-01

    Following decades of fire suppression in eastern forests, prescribed fire as a tool to restore or enhance oak (Quercus spp.)-dominated communities is gaining widespread acceptance in the Appalachian Mountains and elsewhere. However, the interactions of fire with biotic components such as wildlife that might be impacted by prescribed fire are poorly...

  15. Field test of foliar-spray herbicides to control mountain laurel in mature mixed-oak forests in western Maryland

    Science.gov (United States)

    Gary W. Miller; Patrick H. Brose; Jeffrey D. Kochenderfer; James N. Kochenderfer; Kurt W. Gottschalk; John R. Denning

    2016-01-01

    Successful oak (Quercus spp.) regeneration requires the presence of competitive sources of oak reproduction before parent oaks are harvested. Mountain laurel (Kalmia latifolia) in the understory of many Appalachian forests prevents new oak seedlings from receiving adequate sunlight to survive and grow into competitive size classes. This study examined the efficacy of...

  16. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Science.gov (United States)

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  17. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Science.gov (United States)

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  18. The vegetation of the pale green patches in the mountain forest on the North side of Mt. Pangerango (West Java)

    NARCIS (Netherlands)

    Steenis, van C.G.G.J.

    1986-01-01

    Everybody visiting the Cibodas Mountain Garden must have observed that on the North side of Mt. Pangerango there are roughly between 2300 and 2700 m several sizeable pale green patches visible in the dark green montane forest. They were never visited and it intrigued me to know their vegetation

  19. Effects of prescribed fire on the buried seed bank in mixed-hardwood forests of the southern Appalachian Mountains

    Science.gov (United States)

    Tara L. Keyser; Tracy L. Roof; Jacquelyne L. Adams; Dean Simon; Gordon Warburton

    2012-01-01

    This study characterizes the seed bank prior to and immediately following dormant-season prescribed fire in mature, mixed-Quercus spp. (oak) forests in the southern Appalachian Mountains. Thirty samples from the litter/duff (LD) and the top 5 cm of the mineral soil (MS) were collected from five 5-ha burn units (6 plots per experimental unit) before...

  20. Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents

    Czech Academy of Sciences Publication Activity Database

    Brůna, Josef; Wild, Jan; Svoboda, M.; Heurich, M.; Müllerová, Jana

    2013-01-01

    Roč. 2013, č. 305 (2013), s. 294-306 ISSN 0378-1127 R&D Projects: GA ČR GAP504/10/0843 Institutional support: RVO:67985939 Keywords : mountain forests * disturbance * historical range of variability Subject RIV: EF - Botanics Impact factor: 2.667, year: 2013

  1. Dynamics of Phosphorus export from small forested catchments in low mountain ranges in Germany

    Science.gov (United States)

    Julich, Stefan; Julich, Dorit; Benning, Raphael; Feger, Karl-Heinz

    2017-04-01

    Phosphorus (P) plays an important role in the nutrition of forest ecosystem. The transport of P in forest soils predominantly occurs along preferential water flow pathways bypassing large parts of the soil matrix. Therefore, rapid flow processes by preferential flow and/or during storm events may lead to significant P losses from forest soils. However only little knowledge about the dynamics, magnitude and driving processes of P exports into surface water exist. In this contribution, we present the results of two studies where two small forested catchments have been monitored for a period around 3 years. Both catchments are situated in low mountain ranges in Saxony (catchment size 21 ha) and Thuringia (catchment size 5 ha) representing medium P contents in the topsoil of 1142 mg kg-1 and 834 mg kg-1 respectively. During the regular sampling (monthly to weekly sampling frequency), the mean Total-P concentrations of 23 μg L-1(Thuringian Site) and 8 μg L-1(Saxonian Site) have been measured. However, during single storm events Total-P concentrations increased considerably with maximum concentrations of 134 μg L-1(Thuringian Site) and 203 μg L-1(Saxonian Site). Our findings indicate that during storm events, especially after longer dry periods, significant amounts of phosphorus can be exported from forest ecosystems. Comparison of discharge-concentration patterns of Total-P, Nitrogen and DOC, as well as dye tracer experiments, suggest that preferential flow along biopores and stone surfaces, and the interface between mineral soil and litter layer are main pathways of export from forests. For the site in Saxony we calculated mean annual export rates of 32.8 to 33.5 g ha-1 a-1 based on the weekly sampling with different load calculation methods (flow weighted methods up to linear regression models). If the events are included into the annual load calculation the mean annual export fluxes increase from 47.8 to 58.6 g ha-1 a-1 based on the different load calculation

  2. Climatic controls on the isotopic composition and availability of soil nitrogen in mountainous tropical forests

    Science.gov (United States)

    Weintraub, S. R.; Cole, R. J.; Schmitt, C. G.; All, J.

    2014-12-01

    Tropical forests in mountainous regions are often assumed to be nitrogen (N) limited, yet N dynamics across rugged terrain can be complex due to gradients in climate and topography. Elucidating patterns of N availability and loss across such gradients is necessary to predict and manage tropical forest response to environmental changes such as increasing N deposition and rising temperatures. However, such data is currently lacking, particularly in remote locations that are of high conservation value. To address this gap, a research expedition organized by the American Climber Science Program recently made a coast-to-coast journey across a remote region of Costa Rica, travelling over the Cordillera Talamanca and through La Amistad International Park. Numerous biological, chemical and hydrologic measurements were made en-route across montane to premontane wet tropical forests, spanning nearly 2,000 m in elevation and 200 km. Surface soil samples collected at regular intervals along this transect illuminate environmental drivers of N dynamics across the region. The dataset reveals strong links between soil natural abundance N isotopic composition (δ15N) and elevation and temperature parameters, and weaker links to precipitation and topography. This is in general agreement with global scale observations, but divergence from some previously published works is apparent and will be discussed. δ15N mass balance models suggest that N isotope patterns reflect differences in forms of N loss and the relative importance of fractionating and non-fractionating pathways. When combined with data on several other edaphic properties, especially C:N stoichiometry, the results points toward notable variation in soil N availability and N constraints across the transect. This study illustrates large, but predictable, variation in key N cycle traits across the premontane to montane wet tropical forest transition. These findings have management-relevant implications for tropical regions.

  3. Preliminary studies of bobcat activity patterns. [In mountainous forests of eastern Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Kitchings, J.T.; Story, J.D.

    1978-01-01

    Home range and activity patterns were determined for two radio-collared bobcats, one male and one female, in an eastern Tennessee hardwood forest. Home range of the male was calculated to be approximately 3076 ha while the female utilized 1416 ha. Both bobcats' ranges were larger than previously reported values for the southeast. Measurements of both average net distance traveled per day showed the male moved a statistically significant greater distance than the female. The larger home ranges may be primarily the result of relatively low prey populations in the mountainous terrain of East Tennessee as compared to upper coastal plains areas where most of the previous research on southeastern bobcats has been carried out.

  4. Vegetation structure in the mountain forest in the Turquino National Park, province of Granma

    Directory of Open Access Journals (Sweden)

    José Luis Rodríguez Sosa

    2013-12-01

    Full Text Available The research was conducted in the Jeringa site of the Turquino National Park in order to characterize the vegetation of a mountain forest fragment with Juglans jamaicensis. Floristic composition, vegetation structure, and the index value of importance were evaluated. Diameter at 1.30 m above the ground and height of all trees greater than 5 cm in diameter was measured. Data were analyzed using canonical correspondence analysis. 776 individuals of 43 species and 41 genera belonging to 30 families, reporting the Rubiaceae family as the richest in species, followed by Amigdalaceae, Araliaceae, Cyatheaceae, Euphorbiaceae, Flacourtiaceae, Meliaceae, Moraceae, Sapindaceae and Poaceae. The tree species with more IVI were the Pseudolmedia spuria, Oxandra laurifolia, Trophis racemosa, Ocotea leucoxylon, Guarea guara, Dendropanax arboreus and Juglans jamaicensis, mainly due to its abundance in the vegetation, but it was found that the main contributor to the organic weight parameter species was the relative frequency.

  5. Variability in snowpack accumulation and ablation associated with mountain pine beetle infestation in western forests

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.

    2010-12-01

    Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and

  6. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    Science.gov (United States)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in

  7. Forgotten Forests? Food Potential of Ancient Coffee Forests and Agroforestry Systems in the Southwestern Ethiopian Mountains, Seen Through a Gender Lens

    Directory of Open Access Journals (Sweden)

    Sarah Marie Nischalke

    2017-08-01

    Full Text Available Forests play an important role in the provision of food and livelihoods across the globe. Thus, forest protection contributes to a diverse set of Sustainable Development Goals. The Yayu Coffee Forest Biosphere Reserve in the southwestern Ethiopian mountains (elevation 1100–2300 m above sea level hosts an ancient coffee forest with high biodiversity and a large nutritional potential. It is managed in zones, and smallholder farmers can still use forest resources in the buffer and transitional zones in a sustainable manner. The forest is rarely used as a food source, although a large majority of the population in this area suffers from micronutrient deficiencies. This article investigates whether sustainable use of forest resources can contribute to the achievement of different Sustainable Development Goals by looking, through a gender lens, at which forest ecosystem services the community uses; traditional coffee farmers' perceptions of wild edible plants, agricultural territories, and labor divisions; and the constraining factors for forest conservation and sustainable agroforestry on private forest plots. Data for this study were collected through ethnography, transect walks, a sex-disaggregated household survey (n = 334, 32 semistructured interviews, 40 focus groups, and 13 key stakeholder interviews. One reason for neglecting the forest as a food source is that forests are considered a male territory, while vegetable raising and nutrition are female responsibilities. In addition, the collection of wild foods is perceived as a last resort during a famine and as a practice of tribal groups. Because coffee production represents the traditional livelihood source, farmers accept the need to conserve the forest, which is necessary to achieve the Sustainable Development Goals. While it may have negative implications for food security, the absence of a tradition of collecting wild plants is positive news for forest conservation.

  8. Differences in N loading affect DOM dynamics during typhoon events in a forested mountainous catchment.

    Science.gov (United States)

    Yeh, Tz-Ching; Liao, Chien-Sen; Chen, Ting-Chien; Shih, Yu-Ting; Huang, Jr-Chuan; Zehetner, Franz; Hein, Thomas

    2018-03-21

    The dissolved organic matter (DOM) and nutrient dynamics in small mountainous rivers (SMRs) strongly depend on hydrologic conditions, and especially on extreme events. Here, we investigated the quantity and quality of DOM and inorganic nutrients during base-flow and typhoon events, in a chronically N-saturated mainstream and low N-loaded tributaries of a forested small mountainous reservoir catchment in Taiwan. Our results suggest that divergent transport mechanisms were triggered in the mainstream vs. tributaries during typhoons. The mainstream DON increased from 3.4 to 34.7% of the TDN pool with a static DOC:NO 3 -N ratio and enhanced DOM freshness, signalling a N-enriched DOM transport. Conversely, DON decreased from 46 to 6% of the TDN pool in the tributaries and was coupled with a rapid increase of the DOC:NO 3 -N ratio and humified DOM signals, suggesting the DON and DOC were passively and simultaneously transported. This study confirmed hydrology and spatial dimensions being the main drivers shaping the composition and concentration of DOM and inorganic nutrients in small mountainous catchments subject to hydrologic extremes. We highlighted that the dominant flow paths largely controlled the N-saturation status and DOM composition within each sub-catchment, the effect of land-use could therefore be obscured. Furthermore, N-saturation status and DOM composition are not only a result of hydrologic dynamics, but potential agents modifying the transport mechanism of solutes export from fluvial systems. We emphasize the importance of viewing elemental dynamics from the perspective of a terrestrial-aquatic continuum; and of taking hydrologic phases and individual catchment characteristics into account in water quality management. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Genetic patterns in forest antelope populations in the Udzungwa Mountains, Tanzania, as inferred from non-invasive sampling

    DEFF Research Database (Denmark)

    Bowkett, Andrew E.; Jones, Trevor; Rovero, Francesco

    2015-01-01

    As for many tropical regions, the evolutionary and demographic status of antelope populations in the Udzungwa Mountains, Tanzania, are poorly resolved. We employed genetic information from 618 faecal samples to assess the status of forest antelope species in terms of their distribution, intraspec...... except the endangered C. spadix. Overall, our results demonstrate the value of non-invasive genetic sampling in studying the distribution and evolution of rarely observed species.......As for many tropical regions, the evolutionary and demographic status of antelope populations in the Udzungwa Mountains, Tanzania, are poorly resolved. We employed genetic information from 618 faecal samples to assess the status of forest antelope species in terms of their distribution......, intraspecific diversity and population subdivision within the Udzungwa landscape. Most species were detected in the majority of forest fragments, except for Philantomba monticola. Phylogenetic analyses were consistent with traditional taxonomy with the exception of Cephalophus harveyi which was paraphyletic...

  10. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.

    Science.gov (United States)

    Fyllas, Nikolaos M; Christopoulou, Anastasia; Galanidis, Alexandros; Michelaki, Chrysanthi Z; Dimitrakopoulos, Panayiotis G; Fulé, Peter Z; Arianoutsou, Margarita

    2017-11-15

    In this study we analysed a novel tree-growth dataset, inferred from annual ring-width measurements, of 7 forest tree species from 12 mountain regions in Greece, in order to identify tree growth - climate relationships. The tree species of interest were: Abies cephalonica, Abies borisii-regis, Picea abies, Pinus nigra, Pinus sylvestris, Fagus sylvatica and Quercus frainetto growing across a gradient of climate conditions with mean annual temperature ranging from 5.7 to 12.6°C and total annual precipitation from 500 to 950mm. In total, 344 tree cores (one per tree) were analysed across a network of 20 study sites. We found that water availability during the summer period (May-August) was a strong predictor of interannual variation in tree growth for all study species. Across species and sites, annual tree growth was positively related to summer season precipitation (P SP ). The responsiveness of annual growth to P SP was tightly related to species and site specific measurements of instantaneous photosynthetic water use efficiency (WUE), suggesting that the growth of species with efficient water use is more responsive to variations in precipitation during the dry months of the year. Our findings support the importance of water availability for the growth of mountainous Mediterranean tree species and highlight that future reductions in precipitation are likely to lead to reduced tree-growth under climate change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Simulated impacts of mountain pine beetle and wildfire disturbances on forest vegetation composition and carbon stocks in the Southern Rocky Mountains

    Science.gov (United States)

    Caldwell, Megan K.; Hawbaker, Todd J.; Briggs, Jenny S.; Cigan, P.W.; Stitt, Susan

    2013-01-01

    Forests play an important role in sequestering carbon and offsetting anthropogenic greenhouse gas emissions, but changing disturbance regimes may compromise the capability of forests to store carbon. In the Southern Rocky Mountains, a recent outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality that are unprecedented in recorded history. To evaluate the long-term impacts of both this insect outbreak and another characteristic disturbance in these forests, high-severity wildfire, we simulated potential changes in species composition and carbon stocks using the Forest Vegetation Simulator (FVS). Simulations were completed for 3 scenarios (no disturbance, actual MPB infestation, and modeled wildfire) using field data collected in 2010 at 97 plots in the lodgepole pine-dominated forests of eastern Grand County, Colorado, which were heavily impacted by MPB after 2002. Results of the simulations showed that (1) lodgepole pine remained dominant over time in all scenarios, with basal area recovering to pre-disturbance levels 70–80 yr after disturbance; (2) wildfire caused a greater magnitude of change than did MPB in both patterns of succession and distribution of carbon among biomass pools; (3) levels of standing-live carbon returned to pre-disturbance conditions after 40 vs. 50 yr following MPB vs. wildfire disturbance, respectively, but took 120 vs. 150 yr to converge with conditions in the undisturbed scenario. Lodgepole pine forests appear to be relatively resilient to both of the disturbances we modeled, although changes in climate, future disturbance regimes, and other factors may significantly affect future rates of regeneration and ecosystem response.

  12. Thirty year change in lodgepole and lodgepole/mixed conifer forest structure following 1980s mountain pine beetle outbreak in western Colorado, USA

    Science.gov (United States)

    Kristen A. Pelz; Frederick W. Smith

    2012-01-01

    Current mortality in lodgepole pine caused by mountain pine beetle (MPB) throughout much of western North America has resulted in concern about future forest structure. To better understand the long-term effects of the current mortality, and how it might differ depending on forest species composition, we measured forest vegetation and woody fuel accumulations...

  13. APPLICATION OF REMOTE SENSING DATA FOR THE ASSESSMENT OF THE UJUK MOUNTAIN BOREAL FORESTS (THE TYVA REPUBLIC, RUSSIA

    Directory of Open Access Journals (Sweden)

    Khulermaa B. Kuular

    2016-01-01

    Full Text Available This paper discusses some issues related to assessment and monitoring of forests insouthern Siberia. This study aims to evaluate the response of southern boreal forests to climate warming at local scale. Estimating the impacts of climate change on mountain boreal forests requires a more complete accounting of tree growth/climate interaction. We used both remote sensing and field data. Field measurements were made from the upper to lower timberline of dark deciduous forest in 2005 and 2012. The remote sensing datasets were generated from LANDSAT scenes of different dates (19.08.1988, 25.06.1992 and 18.08.2011. For estimation of forests changes, we used values of NDVI (Normalized Difference Vegetation Index and NBR (Normalized Burn Ratio.

  14. First experimental evidence for carbon starvation at warm temperatures in epiphytic orchids of tropical cloud forests

    Science.gov (United States)

    Hoch, Guenter; Roemer, Helena; Fioroni, Tiffany; Olmedo, Inayat; Kahmen, Ansgar

    2017-04-01

    Tropical cloud forests are among the most climate sensitive ecosystems world-wide. The lack of a strong seasonality and the additional dampening of temperature fluctuations by the omnipresence of clouds and fog produce year-round constant climatic conditions. With climate change the presence of clouds and fog is, however, predicted to be reduced. The disappearance of the cooling fog cover will have dramatic consequences for air temperatures, that are predicted to increase locally well over 5 °C by the end of the 21st century. Especially the large number of endemic epiphytic orchids in tropical cloud forests that contribute substantially to the biological diversity of these ecosystems, but are typically adapted to a very narrow climate envelope, are speculated to be very sensitive to the anticipated rise in temperature. In a phytotron experiment we investigated the effect of increasing temperatures on the carbon balance (gas-exchange and the carbon reserve household) of 10 epiphytic orchid species from the genera Dracula, native to tropical, South-American cloud forests. The orchids were exposed to three temperature treatments: i) a constant temperature treatment (23°C/13°C, day/night) simulating natural conditions, ii) a slow temperature ramp of +0.75 K every 10 days, and iii) a fast temperature ramp of +1.5 K every 10 days. CO2 leaf gas-exchanges was determined every 10 days, and concentrations of low molecular weight sugars and starch were analyses from leaf samples throughout the experiment. We found that increasing temperatures had only minor effects on day-time leaf respiration, but led to a moderate increase of respiration during night-time. In contrast to the rather minor effects of higher temperatures on respiration, there was a dramatic decline of net-photosynthesis above day-time temperatures of 29°C, and a complete stop of net-carbon uptake at 33°C in all investigated species. This high sensitivity of photosynthesis to warming was independent of the

  15. Quantifying and Modelling the Effect of Cloud Shadows on the Surface Irradiance at Tropical and Midlatitude Forests

    Science.gov (United States)

    Kivalov, Sergey N.; Fitzjarrald, David R.

    2018-02-01

    Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.

  16. Inferred effects of cloud deposition on forest floor nutrient cycling and microbial properties along a short elevation gradient

    International Nuclear Information System (INIS)

    Lavoie, M.; Bradley, R.L.

    2003-01-01

    Higher cloud cover significantly decreases forest floor pH, decrease exchangeable cations, modifies mineral-N speciation and increases physiological stress within microbial communities. - Cloud water deposition often increases with elevation, and it is widely accepted that this cloud water increases acid loading to upland forest ecosystems. A study was undertaken in south-eastern Quebec to determine if a 250 m elevation gradient (i.e. 420-665 m), along a uniform sugar-maple stand on the slope of Mount Orford, corresponded to a pH gradient in the forest floor and to predictable changes in soil nutrient availability and microbial properties. Precipitation data from a nearby study, and a photographic survey, provided presumptive evidence that this elevation gradient corresponded to a strong gradient in cloud water deposition. Forest floor temperature did not differ significantly across elevations. Forest floor moisture content was significantly higher, whereas pH and exchangeable Ca and Mg were significantly lower, at the higher elevations. Average seasonal net nitrification rates, determined by long-term laboratory incubations, did not differ significantly across elevations, whereas average seasonal net ammonification rates were significantly higher at higher elevations. Basal respiration rates and microbial biomass did not differ significantly across elevations, but metabolic quotient was significantly higher at higher elevations indicating possible environmental stress on forest floor microbial communities due to cloud water deposition. Anaerobic N mineralisation rates were significantly higher at higher elevations suggesting that N-limited microbial communities frequently exposed to cloud cover can be important short-term sinks for atmospheric N, thereby contributing to increase the active-N fraction of forest floors. We conclude that, where no significant changes in vegetation or temperature occur, elevation gradients can still be used to understand the spatial

  17. Distribution of the radionuclide 137Cs in the soils of a wet mountainous forest in Taiwan

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Lai, S.-Y.; Lin, Y.-M.; Chiang, H.-C.

    1999-01-01

    The behavior of 137 Cs was studied in the Yuanyang lake ecosystem, a wet mountainous forest in subtropical Taiwan. Soils investigated are either partially podzolic soils or nearly pure peats with a high organic matter concentration in the surface layer. Concentration of 137 Cs was highest in the organic surface layers, particularly in the Oe horizon or in the underlying A horizon. The downwards migration to the mineral horizons is limited, in spite of the high rainfall. Topography is a critical factor for the distribution of 137 Cs. It is shown that the concentration of 137 Cs is highest at the foot of the slope and lower near the summit and near the lakeshore. The variation of the concentration along the landscape has been attributed to erosion-deposition in combination with surface run-off of the undisturbed forest. The amount of 137 Cs in the site studied is significantly higher than at any other place in Taiwan. The accumulation of 137 Cs is attributed to the high rainfall, which brought large amounts of 137 Cs with the precipitation in the early 1960s. A very remarkable feature of the ecosystem is that 137 Cs is not leached to the subsoils, but is stored in the biomass. Due to permanent recycling it remains available, without being leached downward

  18. Use of medicinal plants for human health in Udzungwa Mountains Forests: a case study of New Dabaga Ulongambi Forest Reserve, Tanzania.

    Science.gov (United States)

    Kitula, Rukia A

    2007-01-26

    The dependence of local people on plant medicine from natural forests has a long tradition in Tanzania and is becoming increasingly popular among rural and urban communities due to among others increase in living costs. The study on utilization of medicinal plants for meeting heath care needs was carried out between March 2001 and March 2002 in New Dabaga Ulongambi Forest Reserve, Tanzania. The study aimed at generating necessary data for the Udzungwa Mountains Forest Management project to draft sound Joint Forest Management plans. Specific objectives of the study among others were to assess knowledge associated with utilization of medicinal plants for health care needs as well as factors associated in using plant medicines in the study area. A questionnaire survey, market survey and literature review were used to collect information. Tools used for data analysis were Statistical Packages for Social Science and content analysis. A total of 45 plant species were documented curing about 22 human diseases. Medicinal plants were readily available throughout the year and plentiful in the forest reserve. Roots and leaves were the plant parts harvested for medicinal purposes. Processing of plant medicines involved boiling, pounding, soaking in water and chewing. Distance to health facility, income level of the household and beliefs contributed to the use of plant medicines. The study concluded that medicinal plants play an important role in providing primary health care to the rural communities. It is recommended that in achieving joint forest management (JFM), villagers adjacent to the forest reserve should be sensitised on the importance of JFM through seminars, workshops, drama, school songs or video show. During the development of a joint draft management plan, villagers as an informal institution must define their priority needs of use of parts of the forest in collaboration with the Udzungwa Mountains Forest Management project.

  19. Forest decline in the Southern Appalachian Mountains. Research and observations: 1983-1989

    International Nuclear Information System (INIS)

    Bruck, R.I.; Robarge, W.P.; McDaniel, A.

    1989-01-01

    An insect and desease survey initiated in 1985 on 100 permanent plots has yielded little significant pathology or insect infestation. With the exception the balsam wooly adelgid, few signs or symptoms of disease or insect attack were noted on either Fraser fir or red spruce populations. Cultures from destructively-sampled root systems yielded few significant pathogens that could be attributed to decline symptoms. Measurements of throughfall in 1986 yielded estimates of total wet deposition for NO -3 and SO 4 -2 of 25 and 75 kg ha -1 yr -1 , respectively. Cloud and rain water was dominated by H + , NH +4 , NO -3 , and SO 4 -2 ions. Interaction with the forest canopy resulted in an enrichment of throughfall with base cations (K + , Ca +2 , and MG +2 ) and a loss of H + and NH +4 . Mean-volume-weighted pH for throughfall was 3.9. The effects of simulated acidic cloud water on the epicuticular waxes of red spruce needles were studied during the summer of 1987. The cuticle proper of both 1986 and 1987 needles did not appear to be damaged by the treatments. The wax crystals which consititute the stomatal wax plugs, however, exhibited substantial degradation by simulated treatments at or below pH 3.5. (orig./VT)

  20. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone.

    Science.gov (United States)

    Sjögersten, Sofie; Wookey, Philip A

    2009-02-01

    Changes in temperature and moisture resulting from climate change are likely to strongly modify the ecosystem carbon sequestration capacity in high-latitude areas, both through vegetation shifts and via direct warming effects on photosynthesis and decomposition. This paper offers a synthesis of research addressing the potential impacts of climate warming on soil processes and carbon fluxes at the forest-tundra ecotone in Scandinavia. Our results demonstrated higher rates of organic matter decomposition in mountain birch forest than in tundra heath soils, with markedly shallower organic matter horizons in the forest. Field and laboratory experiments suggest that increased temperatures are likely to increase CO2 efflux from both tundra and forest soil providing moisture availability does not become limiting for the decomposition process. Furthermore, colonization of tundra heath by mountain birch forest would increase rates of decomposition, and thus CO2 emissions, from the tundra heath soils, which currently store substantial amounts of potentially labile carbon. Mesic soils underlying both forest and tundra heath are currently weak sinks of atmospheric methane, but the strength of this sink could be increased with climate warming and/or drying.

  1. Do Cloud Properties in a Puerto Rican Tropical Montane Cloud Forest Depend on Occurrence of Long-Range Transported African Dust?

    Science.gov (United States)

    Spiegel, Johanna K.; Buchmann, Nina; Mayol-Bracero, Olga L.; Cuadra-Rodriguez, Luis A.; Valle Díaz, Carlos J.; Prather, Kimberly A.; Mertes, Stephan; Eugster, Werner

    2014-09-01

    We investigated cloud properties of warm clouds in a tropical montane cloud forest at Pico del Este (1,051 m a.s.l.) in the northeastern part of Puerto Rico to address the question of whether cloud properties in the Caribbean could potentially be affected by African dust transported across the Atlantic Ocean. We analyzed data collected during 12 days in July 2011. Cloud droplet size spectra were measured using the FM-100 fog droplet spectrometer that measured droplet size distributions in the range from 2 to 49 µm, primarily during fog events. The droplet size spectra revealed a bimodal structure, with the first peak ( D < 6 µm) being more pronounced in terms of droplet number concentrations, whereas the second peak (10 µm < D < 20 µm) was found to be the one relevant for total liquid water content (LWC) of the cloud. We identified three major clusters of characteristic droplet size spectra by means of hierarchical clustering. All clusters differed significantly from each other in droplet number concentration (), effective diameter (ED), and median volume diameter (MVD). For the cluster comprising the largest droplets and the lowest droplet number concentrations, we found evidence of inhomogeneous mixing in the cloud. Contrastingly, the other two clusters revealed microphysical behavior, which could be expected under homogeneous mixing conditions. For those conditions, an increase in cloud condensation nuclei—e.g., from processed African dust transported to the site—is supposed to lead to an increased droplet concentration. In fact, one of these two clusters showed a clear shift of cloud droplet size spectra towards smaller droplet diameters. Since this cluster occurred during periods with strong evidence for the presence of long-range transported African dust, we hypothesize a link between the observed dust episodes and cloud characteristics in the Caribbean at our site, which is similar to the anthropogenic aerosol indirect effect.

  2. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  3. Climate contributes to zonal forest mortality in Southern California's San Jacinto Mountains

    Science.gov (United States)

    Fellows, A.; Goulden, M.

    2010-12-01

    An estimated 4.6 million trees died over ~375,000 acres of Southern California forest in 2002-2004. This mortality punctuated a decline in forest health that has been attributed to air pollution, stem densification, or drought. Bark beetles were the proximate cause of most tree death but the underlying cause of this extensive mortality is arguably poor forest health. We investigated the contributions that climate, particularly drought, played in tree mortality and how physiological drought stress may have structured the observed patterns of mortality. Field surveys showed that conifer mortality was zonal in the San Jacinto Mountains of Southern California. The proportion of conifer mortality increased with decreasing elevation (p=0.01). Mid-elevation conifers (White Fir, Incense Cedar, Coulter Pine, Sugar Pine, Ponderosa and Jeffrey Pine) died in the lower portions of their respective ranges, which resulted in an upslope lean in species’ distribution and an upslope shift in species’ mean elevation. Long-term precipitation (P) is consistent with elevation over the conifer elevation range (p=0.43). Potential evapotranspiration (ET) estimated by Penman Monteith declines with elevation by nearly half over the same range. These trends suggest that ET, more than P, is critical in structuring the elevational trend in drought stress and may have contributed to the patterns of mortality that occurred in 2002-04. Physiological measurements in a mild drought year (2009) showed late summer declines in plant water availability with decreasing elevation (p < 0.01) and concomitant reductions in carbon assimilation and stomatal conductance with decreasing elevation. We tie these observations together with a simple water balance model.

  4. Ecological consequences of mountain pine beetle outbreaks for wildlife in western North American forests

    Science.gov (United States)

    Saab, Victoria A.; Latif, Quresh S.; Rowland, Mary M.; Johnson, Tracey N.; Chalfoun, Anna D.; Buskirk, Steven W.; Heyward, Joslin E.; Dresser, Matthew A.

    2014-01-01

    Mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreaks are increasingly prevalent in western North America, causing considerable ecological change in pine (Pinus spp.) forests with important implications for wildlife. We reviewed studies examining wildlife responses to MPB outbreaks and postoutbreak salvage logging to inform forest management and guide future research. Our review included 16 studies describing MPB outbreak relationships with 89 bird species and 6 studies describing relationships with 11 mammalian species, but no studies of reptiles or amphibians. We included studies that compared wildlife response metrics temporally (before versus after the outbreak) and spatially (across sites that varied in severity of outbreak) in relation to beetle outbreaks. Outbreaks ranged in size from 20,600 to ≥107 ha and studies occurred 1‐30 years after the peak MPB outbreak, but most studies were conducted over the short-term (i.e., ≤6 years after the peak of MPB-induced tree mortality). Birds were the only taxa studied frequently; however, high variability existed among those studies to allow many inferences, although some patterns were evident. Avian studies concluded that cavity-nesting species responded more favorably to beetle-killed forests than species with open-cup nests, and species nesting in the shrub layer favored outbreak forests compared with ground and open-cup canopy nesters that generally showed mixed relationships. Bark-drilling species as a group clearly demonstrated a positive short-term association with MPB epidemics compared with that of other foraging assemblages. Cavity-nesting birds that do not consume bark beetles (i.e., secondary cavity-nesting species and nonbark-drilling woodpeckers) also exhibited some positive responses to MPB outbreaks, although not as pronounced or consistent as those of bark-drilling woodpeckers. Mammalian responses to MPB outbreaks were mixed. Studies consistently reported negative effects of MPB

  5. Uav-Based Photogrammetric Point Clouds and Hyperspectral Imaging for Mapping Biodiversity Indicators in Boreal Forests

    Science.gov (United States)

    Saarinen, N.; Vastaranta, M.; Näsi, R.; Rosnell, T.; Hakala, T.; Honkavaara, E.; Wulder, M. A.; Luoma, V.; Tommaselli, A. M. G.; Imai, N. N.; Ribeiro, E. A. W.; Guimarães, R. B.; Holopainen, M.; Hyyppä, J.

    2017-10-01

    Biodiversity is commonly referred to as species diversity but in forest ecosystems variability in structural and functional characteristics can also be treated as measures of biodiversity. Small unmanned aerial vehicles (UAVs) provide a means for characterizing forest ecosystem with high spatial resolution, permitting measuring physical characteristics of a forest ecosystem from a viewpoint of biodiversity. The objective of this study is to examine the applicability of photogrammetric point clouds and hyperspectral imaging acquired with a small UAV helicopter in mapping biodiversity indicators, such as structural complexity as well as the amount of deciduous and dead trees at plot level in southern boreal forests. Standard deviation of tree heights within a sample plot, used as a proxy for structural complexity, was the most accurately derived biodiversity indicator resulting in a mean error of 0.5 m, with a standard deviation of 0.9 m. The volume predictions for deciduous and dead trees were underestimated by 32.4 m3/ha and 1.7 m3/ha, respectively, with standard deviation of 50.2 m3/ha for deciduous and 3.2 m3/ha for dead trees. The spectral features describing brightness (i.e. higher reflectance values) were prevailing in feature selection but several wavelengths were represented. Thus, it can be concluded that structural complexity can be predicted reliably but at the same time can be expected to be underestimated with photogrammetric point clouds obtained with a small UAV. Additionally, plot-level volume of dead trees can be predicted with small mean error whereas identifying deciduous species was more challenging at plot level.

  6. An eco-efficient and economical optimum evaluation technique for the forest road networks: the case of the mountainous forest of Metsovo, Greece.

    Science.gov (United States)

    Tampekis, Stergios; Samara, Fani; Sakellariou, Stavros; Sfougaris, Athanassios; Christopoulou, Olga

    2018-02-12

    The sustainable forest management can be achieved only through environmentally sound and economically efficient and feasible forest road networks and transportation systems that can potentially improve the multi-functional use of forest resources. However, road network planning and construction suggest long-term finance that require a capital investment (cash outflow), which would be equal to the value of the total revenue flow (cash inflow) over the whole lifecycle project. This paper emphasizes in an eco-efficient and economical optimum evaluation method for the forest road networks in the mountainous forest of Metsovo, Greece. More specifically, with the use of this technique, we evaluated the forest roads' (a) total construction costs, (b) annual maintenance cost, and (c) log skidding cost. In addition, we estimated the total economic value of forest goods and services that are lost from the forest roads' construction. Finally, we assessed the optimum eco-efficient and economical forest roads densities based on linear equations that stem from the internal rate of return method (IRR) and have been presented graphically. Data analysis and its presentation are achieved with the contribution of geographic information systems (GIS). The technique which is described in this study can be for the decision makers an attractive and useful implement in order to select the most eco-friendly and economical optimum solution to plan forest road network or to evaluate the existing forest transportation systems. Hence, with the use of this method, we can combine not only the multi-objective utilization of natural resources but also the environmental protection of forest ecosystems.

  7. Simulations show decreasing carbon stocks and potential for carbon emissions in Rocky Mountain forests over the next century.

    Science.gov (United States)

    Boisvenue, Céline; Running, Steven W

    2010-07-01

    Climate change has altered the environment in which forests grow, and climate change models predict more severe alterations to come. Forests have already responded to these changes, and the future temperature and precipitation scenarios are of foremost concern, especially in the mountainous western United States, where forests occur in the dry environments that interface with grasslands. The objective of this study was to understand the trade-offs between temperature and water controls on these forested sites in the context of available climate projections. Three temperature and precipitation scenarios from IPCC AR4 AOGCMs ranging in precipitation levels were input to the process model Biome-BGC for key forested sites in the northern U.S. Rocky Mountains. Despite the omission of natural and human-caused disturbances in our simulations, our results show consequential effects from these conservative future temperature and precipitation scenarios. According to these projections, if future precipitation and temperatures are similar to or drier than the dry scenario depicted here, high-elevation forests on both the drier and wetter sites, which have in the absence of disturbance accumulated carbon, will reduce their carbon accumulation. Under the marginally drier climate projections, most forests became carbon sources by the end of the simulation horizon (2089). Under all three scenarios, growing season lengthened, the number of days with snow on the ground decreased, peak snow occurred earlier, and water stress increased through the projection horizon (1950-2089) for all sites, which represent the temperature and precipitation spectrum of forests in this region. The quantity, form, and timing of precipitation ultimately drive the carbon accumulation trajectory of forests in this region.

  8. The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

    Science.gov (United States)

    Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René

    The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.

  9. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica.

    Science.gov (United States)

    Sosa, Victoria; Ornelas, Juan Francisco; Ramírez-Barahona, Santiago; Gándara, Etelvina

    2016-01-01

    Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from hypothesized ancestors for the most significant

  10. Production potential of photosynthesis in forest ecosystems of the low mountain Pokuttya (Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    S. Y. Milevskaya

    2016-02-01

    Full Text Available The aim of the study was testing on the example of a model region a method of estimation of the production potential of forest ecosystems and the consequences of anthropogenic changes there. The object of study is a typical Carpathian lower mountain forest in the basin of the river Lyuchka, an area of 14,806 ha. It has long undergone considerable agricultural transformations. Studies were based on cartographic modeling of modern anthropogenically transformed biogeocenotic cover using large scale satellite images. The main types of biogeocenotical cover were defined according to the altitudinal zonation of vegetation of the parts of the mountain terrain and the prevailing types of soil and hydrological conditions. For analytical procedures a database of materials describing the biometric features of the forests was created. It is possible to perform calculations of average and potential biometrical parameters of stands growing in different climatic, soil and hydrological conditions. The structure and the biological diversity of different vegetation types was determined by construction of mapping models of spatial structures of the basic types of biogeocenotic cover. The biological productivity of the main types of forest ecosystems was determined on base of the volume of timber stands. The mass of dry wood was determined taking into account its size and standard density of wood of different tree species. Calculation of the total volume of forest biomass was performed using the conversion factors of weight relative to the trunk timber volume. The mass of carbon deposited accounted for 50% of the total biomass. The average annual growth of biomass and carbon deposited was determined by dividing the volume of the stands by their average age. Calculation of phytocenosis consumed as a result of photosynthesis reaction of CO2, H2O and light energy was performed taking into account corresponding material and energy ratios. In general, in the course of

  11. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest.

    Science.gov (United States)

    Pariyar, Shyam; Chang, Shih-Chieh; Zinsmeister, Daniel; Zhou, Haiyang; Grantz, David A; Hunsche, Mauricio; Burkhardt, Juergen

    2017-07-01

    Previous flux measurements in the perhumid cloud forest of northeastern Taiwan have shown efficient photosynthesis of the endemic tree species Chamaecyparis obtusa var. formosana even under foggy conditions in which leaf surface moisture would be expected. We hypothesized this to be the result of 'xeromorphic' traits of the Chamaecyparis leaves (hydrophobicity, stomatal crypts, stomatal clustering), which could prevent coverage of stomata by precipitation, fog, and condensation, thereby maintaining CO 2 uptake. Here we studied the amount, distribution, and composition of moisture accumulated on Chamaecyparis leaf surfaces in situ in the cloud forest. We studied the effect of surface tension on gas penetration to stomata using optical O 2 microelectrodes in the laboratory. We captured the dynamics of condensation to the leaf surfaces with an environmental scanning electron microscope (ESEM). In spite of substantial surface hydrophobicity, the mean water film thickness on branchlets under foggy conditions was 80 µm (upper surface) and 40 µm (lower surface). This amount of water could cover stomata and prevent CO 2 uptake. This is avoided by the clustered arrangement of stomata within narrow clefts and the presence of Florin rings. These features keep stomatal pores free from water due to surface tension and provide efficient separation of plant and atmosphere in this perhumid environment. Air pollutants, particularly hygroscopic aerosol, may disturb this functionality by enhancing condensation and reducing the surface tension of leaf surface water.

  12. Small mammals from the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala

    Science.gov (United States)

    Matson, Jason O.; Ordóñez-Garza, Nicté; Woodman, Neal; Bulmer, Walter; Eckerlin, Ralph P.; Hanson, J. Delton

    2014-01-01

    We surveyed the small mammals of remnant mixed hardwood-coniferous cloud forest at elevations ranging from 2,100–2,300 m in the Chelemhá Cloud Forest Reserve, Alta Verapaz, Guatemala. Removal-trapping using a combination of live traps, snap traps, and pitfall traps for 6 days in January 2007 resulted in 175 captures of 15 species of marsupials, shrews, and rodents. This diversity of small mammals is the highest that we have recorded from a single locality of the 10 visited during eight field seasons in the highlands of Guatemala. Based on captures, the most abundant species in the community of small mammals is Peromyscus grandis (n = 50), followed by Handleyomys rhabdops (n = 27), Heteromys desmarestianus(n = 18), Reithrodontomys mexicanus (n = 17), Handleyomys saturatior (n = 16), Sorex veraepacis (n = 15), and Scotinomys teguina (n = 13). The remaining eight species were represented by one to five individuals.

  13. [Historic record of Gastrotheca ovifera (Anura: Hemiphractidae): decline evidence in Venezuelan coastal cloud forests].

    Science.gov (United States)

    Valera-Leal, Javier; Acevedo, Aldemar; Pérez-Sánchez, Antonio; Vega, Jorge; Manzanilla, Jesús

    2011-03-01

    G. ovifera is a marsupial frog of the cloud and riparian forest from Western and Litoral sections of the Venezuelan Cordillera de la Costa (820-2 000m). This amphibian is considered as an endangered species by the IUCN Species Red List, due to its population decline in pristine and well preserved environments. This conservation status is based on anecdotic interpretations. We collected disperse data from museum records (national and international) and explored the possible association between collection records and precipitation data available for the Henri Pittier National Park (PNHP). Likewise, we carried out a systematic population monitoring of G. ovifera in historic and additional localities among the cloud forest of Rancho Grande, PNHP. We found 106 individuals in 11 zoological collections deposited during 1929-2007. After an effort of 646 hours/person we did not detect G. ovifera individuals in the evaluated localities; as well as no statistical significant associations between the annual precipitation average and the historic records of the species during 1941-1997 period (r = -0.054, p = 0.820, n = 19). We discussed the distribution, fluctuation and population changes of this species, analyzing it conservation status.

  14. Diversity of plasmodial slime molds (myxomycetes in coastal, mountain, and community forests of Puerto Galera, Oriental Mindoro, the Philippines

    Directory of Open Access Journals (Sweden)

    Nikki Heherson A. Dagamac

    2015-12-01

    Full Text Available No profiling of diversity of myxomycetes has ever been conducted in one of the biodiversity hotspot areas in the Philippine archipelago, and this necessitates a swift survey of myxomycetes in Puerto Galera, Oriental Mindoro. An assessment of diversity of myxomycetes collected from seven collecting points of three different forest types in the study area showed a total of 926 records of myxomycetes. Of which, 42 morphospecies belonging to 16 genera are reported in this study. Species richness of myxomycetes was higher in collecting points that were found in inland lowland mountain forests, but the most taxonomically diverse species was found in coastal forests. Myxomycete species, namely, Arcyria cinerea, Diderma hemisphaericum, Physarum echinosporum, Lamproderma scintillans, and Stemonitis fusca, were found in all the collecting points. Manmade disturbances and forest structure may affect the occurrence of myxomycetes.

  15. Ecohydrological dynamics of peatlands and adjacent upland forests in the Rocky Mountains

    Science.gov (United States)

    Millar, D.; Parsekian, A.; Mercer, J.; Ewers, B. E.; Mackay, D. S.; Williams, D. G.; Cooper, D. J.; Ronayne, M. J.

    2017-12-01

    Mountain peatlands are susceptible to a changing climate via changes in the water cycle. Understanding the impacts of such changes requires knowledge of the hydrological processes within these peatlands and in the upland forests that supply them with water. We investigated hydrological processes in peatland catchments in the Rocky Mountains by developing empirical models of groundwater dynamics, and are working to improve subsurface water dynamics in a ecohydrological process model, the Terrestrial Regional Ecosystem Exchange Simulator (TREES). Results from empirical models showed major differences in water budget components between two peatlands with differing climate, vegetation, and hydrogeological settings. Several-fold higher rates of evapotranspiration from the saturated zone, and groundwater inflow were observed for a sloping fen in southern Wyoming than that of a basin fen in southwestern Colorado, where rainfall was two-fold higher due to stronger influence of the North American monsoon. We also present ongoing work coupling stable water isotope and borehole nuclear magnetic resonance analyses to test which soil water pools (bound or mobile) are used by dominant upland and peatland vegetation in two catchments in southern Wyoming. These data are being used to test whether the root hydraulic mechanisms in TREES can simulate water uptake from these two soil water pools, and sap flux measurements are being used to evaluate simulated transpiration. Preliminary results from this work suggest that upland vegetation utilize tightly-bound soil water pools, as these pools comprise the largest amount of subsurface water (> 80%) in the vadose zone long after snow melt. Conversely, it appears that herbaceous peatland hydrophytes may preferentially utilize mobile soil water pools, since their roots extend below the water table. The results of this work are expected to increase predictive understanding of hydrological processes in these important ecosystems.

  16. Looking Back to Move Forward: Collaborative Planning to Revise the Green Mountain and Finger Lakes National Forests Land and Resource Management Plans

    Directory of Open Access Journals (Sweden)

    Michael J Dockry

    2015-07-01

    Full Text Available The United States Department of Agriculture Forest Service (Forest Service manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting to incorporate innovative, collaborative public involvement strategies into the process for revising forest plans. In 2012 and 2015 the Forest Service codified new regulations for developing, revising, and amending forest plans. Collaboration and public involvement are explicit goals of the new regulations. This paper briefly reviews the literature on collaborative planning on national forests and explores a successful collaborative planning process used by the Green Mountain and Finger Lakes National Forests, located in Vermont and New York respectively, to develop their 2006 forest plans. This paper shows how the Green Mountain and Finger Lakes National Forests developed parallel public and internal collaborative processes to build trust, relationships, and partnership, and discusses the implications for process design, capacity building, and facilitating agreements. By looking back at this successful case of collaborative forest planning, key lessons can provide ideas for developing collaborative processes for future planning efforts.

  17. The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China

    Science.gov (United States)

    Zhang, Guohua; Lin, Qinhao; Peng, Long; Bi, Xinhui; Chen, Duohong; Li, Mei; Li, Lei; Brechtel, Fred J.; Chen, Jianxin; Yan, Weijun; Wang, Xinming; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-12-01

    In the present study, a ground-based counterflow virtual impactor (GCVI) was used to sample cloud droplet residual (cloud RES) particles, while a parallel PM2.5 inlet was used to sample cloud-free or cloud interstitial (cloud INT) particles. The mixing state of black carbon (BC)-containing particles and the mass concentrations of BC in the cloud-free, RES and INT particles were investigated using a single-particle aerosol mass spectrometer (SPAMS) and two aethalometers, respectively, at a mountain site (1690 m a. s. l. ) in southern China. The measured BC-containing particles were extensively internally mixed with sulfate and were scavenged into cloud droplets (with number fractions of 0.05-0.45) to a similar (or slightly lower) extent as all the measured particles (0.07-0.6) over the measured size range of 0.1-1.6 µm. The results indicate the preferential activation of larger particles and/or that the production of secondary compositions shifts the BC-containing particles towards larger sizes. BC-containing particles with an abundance of both sulfate and organics were scavenged less than those with sulfate but limited organics, implying the importance of the mixing state on the incorporation of BC-containing particles into cloud droplets. The mass scavenging efficiency of BC with an average of 33 % was similar for different cloud events independent of the air mass. This is the first time that both the mixing state and cloud scavenging of BC in China have been reported. Our results would improve the knowledge on the concentration, mixing state, and cloud scavenging of BC in the free troposphere.

  18. Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

    Directory of Open Access Journals (Sweden)

    U. Blum

    2006-12-01

    Full Text Available The importance of polar stratospheric clouds (PSC for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT particles observed at the cloud top above Esrange.

  19. Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

    Directory of Open Access Journals (Sweden)

    U. Blum

    2006-12-01

    Full Text Available The importance of polar stratospheric clouds (PSC for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT particles observed at the cloud top above Esrange.

  20. Tracking channel bed resiliency in forested mountain catchments using high temporal resolution channel bed movement

    Science.gov (United States)

    Martin, Sarah E.; Conklin, Martha H.

    2018-01-01

    This study uses continuous-recording load cell pressure sensors in four, high-elevation (1500-1800 m), Sierra Nevada headwater streams to collect high-temporal-resolution, bedload-movement data for investigating the channel bed movement patterns within these streams for water years 2012-2014. Data show an annual pattern where channel bed material in the thalweg starts to build up in early fall, peaks around peak snow melt, and scours back to baseline levels during hydrograph drawdown and base flow. This pattern is punctuated by disturbance and recovery of channel bed material associated with short-term storm events. A conceptual model, linking sediment sources at the channel margins to patterns of channel bed fill and scour in the thalweg, is proposed building on the results of Martin et al. (2014). The material in the thalweg represents a balance between sediment supply from the channel margins and sporadic, conveyor-belt-like downstream transport in the thalweg. The conceptual model highlights not only the importance of production and transport rates but also that seasonal connectedness between the margins and thalweg is a key sediment control, determining the accumulation rate of sediment stores at the margins and the redistribution of sediment from margins to thalweg that feeds the conveyor belt. Disturbance and recovery cycles are observed at multiple temporal scales; but long term, the channel beds are stable, suggesting that the beds act as short-term storage for sediment but are in equilibrium interannually. The feasibility of use for these sensors in forested mountain stream environments is tested. Despite a high failure rate (50%), load cell pressure sensors show potential for high-temporal-resolution bedload measurements, allowing for the collection of channel bed movement data to move beyond time-integrated change measurements - where many of the subtleties of bedload movement patterns may be missed - to continuous and/or real-time measurements. This

  1. Observations and Model Simulations of Orographic Mixed-Phase Clouds at Mountain Range Site

    Science.gov (United States)

    Lohmann, U.; Henneberg, O. C.; Henneberger, J.

    2014-12-01

    Aerosol-cloud interactions constitute the highest uncertainties in forcing estimation. Especially uncertainties due to mixed clouds (MPCs) have a large impact on the radiative balance and precipitation prediction. Due to Wegener-Bergeron-Findeisen-process (WBF) which describes glaciation of MPCs due to the lower saturation over ice than over water, MPCs are mostly expected as short lived clouds. In contrast to the theory of the WBF, in-situ measurements have shown that MPCs can persist over longer time. But only a small number of measurements of MPCs is available. In addition modeling studies about MPCs are difficult as their processes of the three-phase-system are on the micro scale and therefore not resolved in models. We present measurements obtained at the high-altitude research station Jungfraujoch (JFJ, 3580 m asl) in the Swiss Alps partly taken during the CLoud-Aerosol Interaction Experiments (CLACE). During the winter season, the JFJ has a high frequency of super-cooled clouds and is considered representative for being in the free troposphere. In-situ measurements of the microstructure of MPCs have been obtained with the digital imager HOLIMO, that delivers phase-resolved size distributions, concentrations, and water contents. The data set of MPCs at JFJ shows that for northerly wind cases partially-glaciated MPCs are more frequently observed than for southerly wind cases. The higher frequency of these intermediate states of MPCs suggests either higher updraft velocities, and therefore higher water-vapor supersaturations, or the absence of sufficiently high IN concentrations to quickly glaciate the MPC. Because of the limitation of in-situ information, i.e. point measurements and missing measurements of vertical velocities at JFJ, the mechanism of the long persistence of MPCs cannot be fully understood. Therefore, in addition to measurements we will investigate the JFJ region with a model study with the non-hydrostatic model COSMO-ART-M7. Combination of km

  2. Relationship between Forest Color Characteristics and Scenic Beauty: Case Study Analyzing Pictures of Mountainous Forests at Sloped Positions in Jiuzhai Valley, China

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2017-02-01

    Full Text Available Forests are important place for outdoor recreation and scenery appreciation. So in order to better meet the needs of the public, forest appreciation has received increasing attention from foresters in recent years. However, related research is still limited. Therefore, this paper seeks to examine the relationship between forest colors (measured by specific elements and spatial indices of color and Scenic Beauty Estimation values. We researched Jiuzhai Valley in China by selecting 104 pictures to determine the scenic beauty estimation values of forests in a mountainous region. Quantitative color elements were extracted by programming on Matlab, and spatial indices of color patches were extracted by ArcGIS and FRAGSTATS. A total of 23 indices were obtained to explain the color characteristics of each forest picture. The results showed that the yellow and red colors were the main mutable colors of Jiuzhai Valley in autumn, but the color patches index had no significant change over time in that season. After partial correlation analysis, principal component analysis, and cluster analysis, we found that 14 color elements, eight color patch factors and six particular indices had an effect on the SBE values, which can then be used to efficiently measure and enhance the forest color beauty of Jiuzhai Valley.

  3. Prolonged limitation of tree growth due to warmer spring in semi-arid mountain forests of Tianshan, northwest China

    International Nuclear Information System (INIS)

    Wu Xiuchen; Liu Hongyan; Wang Yufu; Deng Minghua

    2013-01-01

    Based on radial tree growth measurements in nine plots of area 625 m 2 (369 trees in total) and climate data, we explored the possibly changing effects of climate on regional tree growth in the temperate continental semi-arid mountain forests in the Tianshan Mountains in northwest China during 1933–2005. Tree growth in our study region is generally limited by the soil water content of pre- and early growing season (February–July). Remarkably, moving correlation functions identified a clear temporal change in the relationship between tree growth and mean April temperature. Tree growth showed a significant (p < 0.05) and negative relationship to mean April temperature since approximately the beginning of the 1970s, which indicated that the semi-arid mountain forests are suffering a prolonged growth limitation in recent years accompanying spring warming. This prolonged limitation of tree growth was attributed to the effects of soil water limitation in early spring (March–April) caused by the rapid spring warming. Warming-induced prolonged drought stress contributes, to a large part, to the marked reduction of regional basal area increment (BAI) in recent years and a much slower growth rate in young trees. Our results highlight that the increasing water limitation induced by spring warming on tree growth most likely aggravated the marked reduction in tree growth. This work provides a better understanding of the effects of spring warming on tree growth in temperate continental semi-arid forests. (letter)

  4. A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments

    Science.gov (United States)

    Cislaghi, Alessio; Rigon, Emanuel; Lenzi, Mario Aristide; Bischetti, Gian Battista

    2018-04-01

    Large wood (LW) plays a key role in physical, chemical, environmental, and biological processes in most natural and seminatural streams. However, it is also a source of hydraulic hazard in anthropised territories. Recruitment from fluvial processes has been the subject of many studies, whereas less attention has been given to hillslope recruitment, which is linked to episodic and spatially distributed events and requires a reliable and accurate slope stability model and a hillslope-channel transfer model. The purpose of this study is to develop an innovative LW hillslope-recruitment estimation approach that combines forest stand characteristics in a spatially distributed form, a probabilistic multidimensional slope stability model able to include the reinforcement exerted by roots, and a hillslope-channel transfer procedure. The approach was tested on a small mountain headwater catchment in the eastern Italian Alps that is prone to shallow landslide and debris flow phenomena. The slope stability model (that had not been calibrated) provided accurate performances, in terms of unstable areas identification according to the landslide inventory (AUC = 0.832) and of LW volume estimation in comparison with LW volume produced by inventoried landslides (7702 m3 corresponding to a recurrence time of about 30 years in the susceptibility curve). The results showed that most LW potentially mobilised by landslides does not reach the channel network (only about 16%), in agreement with the few data reported by other studies, as well as the data normalized for unit length of channel and unit length of channel per year (0-116 m3/km and 0-4 m3/km y-1). This study represents an important contribution to LW research. A rigorous and site-specific estimation of LW hillslope recruitment should, in fact, be an integral part of more general studies on LW dynamics, for forest planning and management, and positioning in-channel wood retention structures.

  5. Dynamics of forest populations in the mountain resort region of the North Caucasus

    Science.gov (United States)

    Chalaya, Elena; Efimenko, Natalia; Slepykh, Olga; Slepykh, Viktor; Povolotskaya, Nina

    2017-04-01

    field maple. Succession of the oak replacement in natural stand of the vegetative origin can be explained with the soil fatigue under the oak forest inhibiting its own regrowth [2]. However, you can observe the same succession of the oak replacement by other native species in the artificial planting of the oak on the virgin meadow lands. Therefore, the exogenous factors proceeding against the background of global warming during the number of decades are the reason of the succession. The nature of this process demands further studying. References 1.Kazankin A.P. Ecological role of the mountain woods of the Caucasus. Novosibirsk: Siberian Branch of the Russian Academy of Science publishing house, 2013. - 366 p. 2. Slepykh, V.V. Successions and bioclimate of oak groves in the resort region Caucasian MineralnyeVody / V.V.Slepykh, N.P.Povolotskaya// Resort medicine, № 3, 2015. - P. 18-27.

  6. Forest mapping and change analysis, using satellite imagery in Zagros mountain Iran, Islamic Republic o

    International Nuclear Information System (INIS)

    Torahi, A.A.

    2013-01-01

    A methodology to map and monitor land cover change using multi temporal Landsat Thematic Mapper (TM) and ASTER data in Zagros mountains of Iran for 1990, 1998, and 2006 was developed. Land- use/cover mapping is achieved through interpretation of Landsat TM satellite images of 1990, 1998 and TERRA-ASTER image of 2006 using ENVI 4.3. Basedon the Anderson land-use/cover classification system, land-use and land-covers are classified as forest land, range land, water bodies, agricultural land and residential land.The unsupervised image classification method was carried out prior to field visit, in order to determine strata for ground truth. Fieldwork was carried out to collect data for training and validating land use/cover interpretation from satellite image of 2006, and for qualitative description of the characteristics of each land use/cover class. The land - use/cover maps of 1990,1998 and 2006 were produced by using supervised image classification technique based on the Maximum Likelihood Classifier (MLC) and 132 training samples. Error matrices as cross-tabulations of the mapped class vs. the reference class were used to assess classification accuracy. Overall accuracy, users and produce accuracies, and the Kappa statistic were then derived from the error matrices. A multi-date post-classification comparison change detection algorithm was used to determine changes in land cover in three intervals, 1990,1998, 1998, 2006 and 1990, 2006.To evaluate the maps change for the 1990 to 2006 interval, areas classified as change and no-change were randomly sampled and checked whether they were correctly classified. The maps showed that between 1990 and 2006 the amount of forest land decreased from 67% to 38.5% of the total area, while rangelands, agriculture, settlement and surface water increased from 30.8% to 45%, 1.2% to.0%, 0.3% to 7.5% and 0.6% to 1.8%, respectively.In 1990,1998 and 2006, the area was dominated by dense forest (35.9%, 28.9%, 29.3%), open forest and

  7. Community structure, life histories and secondary production of stoneflies in two small mountain streams with different degree of forest cover

    Directory of Open Access Journals (Sweden)

    Pavel Beracko

    2015-10-01

    Full Text Available Our study examines community structure and nymphal biology (life cycles and secondary production of stoneflies in two adjacent mountain streams with different degree of forest cover in the Prosiečanka River Basin (Chočské Vrchy Mts., West Carpathians. One of the streams has non-forested catchment, converted to meadows and pastures, while the other one has catchment with 60% covered by spruce forest. Differences in forest cover and in thermal regime of the streams were reflected by the difference of stonefly communities at their structural and functional level. Species Nemoura cinerea and Leuctra aurita created stonefly assemblage in non-forested stream, whereas Nemoura cinerea also occurred in naturally forested stream together with species Leuctra armata, Leuctra nigra, Leuctra prima, Siphonoperla neglecta and Arcynopteryx dichroa. All examined species had maximally annual life cycle and in eudominant species Nemoura cinerea one month shift was found in nymphal hatching and adult emergence between streams. Total secondary production of stoneflies in undisturbed stream (126.46 mg DW m-2 y-1 was more than two times higher than the production in non-forested stream (47.39 mg DW m-2 y-1. 

  8. Smog nitrogen and the rapid acidification of forest soil, San Bernardino Mountains, southern California.

    Science.gov (United States)

    Wood, Yvonne A; Fenn, Mark; Meixner, Thomas; Shouse, Peter J; Breiner, Joan; Allen, Edith; Wu, Laosheng

    2007-03-21

    We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2) of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N) added to the soil surface (72 kg ha(-1) year(-1)) from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3) is leached early in the winter wet season is limited to within the top approximately 130 cm of soil where it accumulates and increases soil acidity.

  9. Historic Frequency and Severity of Fire in Whitebark Pine Forests of the Cascade Mountain Range, USA

    Directory of Open Access Journals (Sweden)

    Michael P. Murray

    2018-02-01

    Full Text Available Whitebark pine (Pinus albicaulis Engelm. is a foundation species of high elevation forest ecosystems in the Cascade Mountain Range of Oregon, Washington, and British Columbia. We examined fire evidence on 55 fire history sites located in the Cascade Range. To estimate dates of historic fires we analyzed 57 partial cross-sections from fire-scarred trees plus 700 increment cores. The resulting 101 fire events indicate fire has been a widespread component of Cascadian whitebark pine stands. Results are site specific and vary considerably. Whitebark pine stands appear to burn in a variety of severities and frequencies. Sites where fire intervals were detected ranged from 9 to 314 years, with a median of 49 years, and averaging 67 years. Fire intervals shortened significantly with higher latitudes. In assessing the most recent fire event at each site, overall, 56 percent burned as stand replacing events. In the 20th century, the number of fires diminished significantly. Due to conservation imperatives, re-introducing fire should be undertaken with extreme care to avoid substantial mortality of this endangered species.

  10. Genetic structure and conservation of Mountain Lions in the South-Brazilian Atlantic Rain Forest

    Directory of Open Access Journals (Sweden)

    Camila S. Castilho

    2012-01-01

    Full Text Available The Brazilian Atlantic Rain Forest, one of the most endangered ecosystems worldwide, is also among the most important hotspots as regards biodiversity. Through intensive logging, the initial area has been reduced to around 12% of its original size. In this study we investigated the genetic variability and structure of the mountain lion, Puma concolor. Using 18 microsatellite loci we analyzed evidence of allele dropout, null alleles and stuttering, calculated the number of allele/locus, PIC, observed and expected heterozygosity, linkage disequilibrium, Hardy-Weinberg equilibrium, F IS, effective population size and genetic structure (MICROCHECKER, CERVUS, GENEPOP, FSTAT, ARLEQUIN, ONESAMP, LDNe, PCAGEN, GENECLASS software,we also determine whether there was evidence of a bottleneck (HYBRIDLAB, BOTTLENECK software that might influence the future viability of the population in south Brazil. 106 alleles were identified, with the number of alleles/locus ranging from 2 to 11. Mean observed heterozygosity, mean number of alleles and polymorphism information content were 0.609, 5.89, and 0.6255, respectively. This population presented evidence of a recent bottleneck and loss of genetic variation. Persistent regional poaching constitutes an increasing in the extinction risk.

  11. Species association in tropical montane rain forest at two successional stages in Diaoluo Mountain, Hainan

    Institute of Scientific and Technical Information of China (English)

    Fude LIU; Wenjin WANG; Ming ZHANG; Jianwei ZHENG; Zhongsheng WANG; Shiting ZHANG; Wenjie YANG; Shuqing AN

    2008-01-01

    Species association is one of the basic concepts in community succession. There are different viewpoints on how species interaction changes with the progress of succession. In order to assess these relationships, we examined species associations in the tropical montane rain forest at early and late successional stages in Diaoluo Mountain, Hainan Island. Based on data from a 2 × 2 contingency table of species presence or absence, statist-ical methods including analysis of species association and χ2 tests were applied. The results show that: 1) an overall positive association was present among tree species in the communities during the two successional stages and were statistically significant at the late stage. The number of species pairs with positive and negative associations decreased throughout the process of succession, while the number with null associations was greatly increased. The same trend existed among the dominant and compan-ion species. The results indicate that the communities are developing towards a stable stage where the woody species coexist in harmony. 2) In the early-established and later invading species, all positive associations were not signifi-cant. Compared with positive and null associations, fewer negative associations were found. This implies that these species are inclined to coexist independently through por-tioning of resources. 3) Among the later invading species, positive associations were significant and no negative associations were found which suggest that these species have similar adaptive ability in the habitat and occupied overlapping niches in the community.

  12. [Heavy metals contents and Hg adsorption characteristics of mosses in virgin forest of Gongga Mountain].

    Science.gov (United States)

    Liang, Peng; Yang, Yong-Kui; He, Lei; Wang, Ding-Yong

    2008-06-01

    Seven main moss species in the Hailuogou virgin forest of Gongga Mountain were sampled to determine their heavy metals (Hg, Cr, Cd, Ni, Pb, Cu, Mn, Zn and Fe) content, and two widely distributed species, Pleurozium schreberi (Brid.) Mitt. and Racomitrium laetum Besch., were selected to study their Hg adsorption characteristics. The results showed that the heavy metals contents in the mosses were lower than the background values in Europe and America, except that the Cd had a comparable value, which indicated that the atmosphere in study area was not polluted by heavy metals and good in quality. The Hg adsorption by P. schreberi and R. laetum was an initiative and rapid process, with the equilibrium reached in about two hours, and could be well fitted by Freundlich and Langmuir equations. Based on Langmuir equation, the maximum Hg adsorption capacities of P. schreberi and R. laetum were 15.24 and 8.19 mg x g(-1), respectively, suggesting that the two mosses had a good capacity of Hg adsorption, and could be used as the bio-monitors of atmospheric Hg pollution.

  13. Smog Nitrogen and the Rapid Acidification of Forest Soil, San Bernardino Mountains, Southern California

    Directory of Open Access Journals (Sweden)

    Yvonne A. Wood

    2007-01-01

    Full Text Available We report the rapid acidification of forest soils in the San Bernardino Mountains of southern California. After 30 years, soil to a depth of 25 cm has decreased from a pH (measured in 0.01 M CaCl2 of 4.8 to 3.1. At the 50-cm depth, it has changed from a pH of 4.8 to 4.2. We attribute this rapid change in soil reactivity to very high rates of anthropogenic atmospheric nitrogen (N added to the soil surface (72 kg ha–1 year–1 from wet, dry, and fog deposition under a Mediterranean climate. Our research suggests that a soil textural discontinuity, related to a buried ancient landsurface, contributes to this rapid acidification by controlling the spatial and temporal movement of precipitation into the landsurface. As a result, the depth to which dissolved anthropogenic N as nitrate (NO3 is leached early in the winter wet season is limited to within the top ~130 cm of soil where it accumulates and increases soil acidity.

  14. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science

    Science.gov (United States)

    All flies (Diptera) collected for one year from a four-hectare (150 X 266 meter) patch of cloud forest at 1600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,348 species. These amount to more than half the number...

  15. Comparison of passive fog gauges for determining fog duration and fog interception by a Puerto Rican elfin cloud forest

    NARCIS (Netherlands)

    Holwerda, F; Bruijnzeel, L.A.; Scatena, F.N.

    2011-01-01

    Between 5 March and 10 May 2001, the performance of three types of passive fog gauges (wire harp WH, standard fog collector SC and Juvik gauge JU) was compared at a wind-exposed Puerto Rican elfin cloud forest site. The gauges were used to determine the timing and duration of fog, as well as

  16. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Science.gov (United States)

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  17. Tree age, disturbance history, and carbon stocks and fluxes in subalpine Rocky Mountain forests

    Science.gov (United States)

    J.B. Bradford; R.A. Birdsey; L.A. Joyce; M.G. Ryan

    2008-01-01

    Forest carbon stocks and fluxes vary with forest age, and relationships with forest age are often used to estimate fluxes for regional or national carbon inventories. Two methods are commonly used to estimate forest age: observed tree age or time since a known disturbance. To clarify the relationships between tree age, time since disturbance and forest carbon storage...

  18. Determining the age of CO2 Released From Mountain Birch Forest and Heath in Arctic Sweden

    Science.gov (United States)

    Hartley, I. P.; Garnett, M. H.; Hopkins, D. W.; Sommerkorn, M.; Wookey, P. A.

    2008-12-01

    Nuclear weapons testing released a large amount of 14C into the atmosphere during the mid 20th Century. This radiocarbon pulse provides a tracer that can be used to determine the age of C released from plants and soils. Such information is critical for predicting how terrestrial C storage will respond to global change. If respired CO2 is mainly modern, then respiration and photosynthesis are tightly coupled. In contrast, if older C is being mineralized then there is more potential for climate change to induce C loss. We carried out one of the first studies to measure seasonal variations in the 14C content of CO2 released from arctic ecosystems. Using molecular sieves, we trapped CO2 respired from a mountain birch forest and heath near Abisko, northern Sweden and measured 14C contents by accelerator mass spectrometry. CO2 was collected from both vegetated plots (control) and clipped and trenched plots (CT) on three occasions during the 2007 growing season. In addition, we used a new passive sampling technique to collect CO2 from the CT plots during winter 2007-2008. Assuming that the respired C was derived from post bomb sources (justifiable as the majority of each soil profile was enriched with bomb C), we estimated the age of the CO2 and how it changed during the year in response to changes in plant activity and key environmental drivers. On the heath, the mean age of the CO2 respired from the control plots increased from 4 to 6 years old during the growing season. The CO2 respired from the CT plots increased from 5 years old in early June to 11 years old by July, but then declined to 8 years old in September. The C released during winter was also 8 years old. In the Birch forest, the mean age of CO2 respired from the CT plots increased from 4 years old in late May to 8-9 years old during July and September. However, during winter, the CO2 released was >10 years old. In the control plots, the age of respired CO2 increased from being 1 year old in late May to 6

  19. Diversity and habitat differentiation of mosses and liverworts in the cloud forest of. Monteverde, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gradstein S. Rob

    2001-07-01

    Full Text Available An inventory of the understory and canopy of 4 ha oflower montane cloud forest at Monteverde, Costa Rica, yielded 190 bryophyte species: 133 hepatics, 56 mosses and 1 homwort. Thick branches of the lower canopy were by far the richest habitat in terms of number of species (99, trunks from 1m upwards had 65 species, lianas, shrubs, saplings, or living leaves in the understory had about 36-46 species each, and 16 species were found on rotten logs. The figures are illustrative of the great diversification of microhabitats of bryophytes in a tropical montane cloud forest. About 36% ofthe species, including more than half ofthe corticolous ones, occurred exclusively in the canopy. It appeared thatthe percentage ofbryophyte species restricted to the canopy may be the same in lowland and montane rain forests, in spite of the great differences in species abundance and composition in the two kinds of forest.  Ciento noventa especies de briofitas (133 hepáticas, 56 musgos, 1 antocerote fueron encontradas en un inventario hecho en 4 hectáreas del sotobosque y el dosel en el bosque nublado (1500 m de Monteverde, Costa Rica. Las ramas gruesas del dosel fueron la porción más rica en termino de numero de especies (99, en troncos había 65 especies, lianas, arbustos, árboles juveniles o hojas vivas en el sotobosque tenían entre 36-46 especies cada una, y 16 especies fueron encontradas en troncos en descomposición. Las cifras ilustran la gran diversidad de microhabitats de briofitas en el bosque nublado. Cerca de 36% de las especies, incluyendo mas de la mitad de los corticolos, se presentaron exclusivamente en el dosel. Parece que el porcentaje de especies de briofitas restringidas al dosel podría ser el mismo en bosques de tierras bajas y en bosques nublados, a pesar de la gran diferencia en abundancia y composición taxonómica de las briofitas en las dos clases de bosque.

  20. Carbohydrates and thermal properties indicate a decrease in stable aggregate carbon following forest colonization of mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Cannella, David; Leifeld, Jens

    2015-01-01

    and thermally labile C showed similar patterns in bulk soil, suggesting that thermal analysis can be used to complement chemical analysis although a straightforward relationship could not be established. Following forest expansion on abandoned grassland, ratios of microbially to plant-derived carbohydrates......In mountainous areas of Europe, the abandonment of grasslands followed by forest expansion is the dominant land-use change. Labile (i.e. easily decomposable) litter represents the major source for soil microbial products, which promote soil aggregation and long-term C stabilization. Our objective...... was to investigate changes in the content and origin of soil C components involved into aggregate stabilization (i.e. carbohydrates) following forest expansion on abandoned grassland in the Alps, where only few studies have been conducted. Changes in carbohydrates and thermally labile C were assessed along a land...

  1. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    Science.gov (United States)

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Temperature Response of a Small Mountain Stream to Thunderstorm Cloud-Cover: Application of DTS Fiber-Optic Temperature Sensing

    Science.gov (United States)

    Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.

    2014-12-01

    From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.

  3. Simulation of Forest Evapotranspiration Using Time-Series Parameterization of the Surface Energy Balance System (SEBS over the Qilian Mountains

    Directory of Open Access Journals (Sweden)

    Xin Tian

    2015-11-01

    Full Text Available We propose a long-term parameterization scheme for two critical parameters, zero-plane displacement height (d and aerodynamic roughness length (z0m, that we further use in the Surface Energy Balance System (SEBS. A sensitivity analysis of SEBS indicated that these two parameters largely impact the estimated sensible heat and latent heat fluxes. First, we calibrated regression relationships between measured forest vertical parameters (Lorey’s height and the frontal area index (FAI and forest aboveground biomass (AGB. Next, we derived the interannual Lorey’s height and FAI values from our calibrated regression models and corresponding forest AGB dynamics that were converted from interannual carbon fluxes, as simulated from two incorporated ecological models and a 2009 forest basis map These dynamic forest vertical parameters, combined with refined eight-day Global LAnd Surface Satellite (GLASS LAI products, were applied to estimate the eight-day d, z0m, and, thus, the heat roughness length (z0h. The obtained d, z0m and z0h were then used as forcing for the SEBS model in order to simulate long-term forest evapotranspiration (ET from 2000 to 2012 within the Qilian Mountains (QMs. As compared with MODIS, MOD16 products at the eddy covariance (EC site, ET estimates from the SEBS agreed much better with EC measurements (R2 = 0.80 and RMSE = 0.21 mm·day−1.

  4. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Achim Häger

    2010-12-01

    Full Text Available On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilarán mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain and temperatures were installed along a 2.5km transect ranging from 1 200m.a.s.l. on the Atlantic to 1 200m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1 500m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh ≥5cm were identified to species. Species’ distributions were explored by feeding pairwise Sørensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge. Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is

  5. Exploring the Leaf Beetle Fauna (Coleoptera: Chrysomelidae of an Ecuadorian Mountain Forest Using DNA Barcoding.

    Directory of Open Access Journals (Sweden)

    Birthe Thormann

    Full Text Available Tropical mountain forests are hotspots of biodiversity hosting a huge but little known diversity of insects that is endangered by habitat destruction and climate change. Therefore, rapid assessment approaches of insect diversity are urgently needed to complement slower traditional taxonomic approaches. We empirically compare different DNA-based species delimitation approaches for a rapid biodiversity assessment of hyperdiverse leaf beetle assemblages along an elevational gradient in southern Ecuador and explore their effect on species richness estimates.Based on a COI barcode data set of 674 leaf beetle specimens (Coleoptera: Chrysomelidae of 266 morphospecies from three sample sites in the Podocarpus National Park, we employed statistical parsimony analysis, distance-based clustering, GMYC- and PTP-modelling to delimit species-like units and compared them to morphology-based (parataxonomic species identifications. The four different approaches for DNA-based species delimitation revealed highly similar numbers of molecular operational taxonomic units (MOTUs (n = 284-289. Estimated total species richness was considerably higher than the sampled amount, 414 for morphospecies (Chao2 and 469-481 for the different MOTU types. Assemblages at different elevational levels (1000 vs. 2000 m had similar species numbers but a very distinct species composition for all delimitation methods. Most species were found only at one elevation while this turnover pattern was even more pronounced for DNA-based delimitation.Given the high congruence of DNA-based delimitation results, probably due to the sampling structure, our study suggests that when applied to species communities on a regionally limited level with high amount of rare species (i.e. ~50% singletons, the choice of species delimitation method can be of minor relevance for assessing species numbers and turnover in tropical insect communities. Therefore, DNA-based species delimitation is confirmed as a

  6. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization.

    Science.gov (United States)

    Błaszczyk, Lidia; Strakowska, Judyta; Chełkowski, Jerzy; Gąbka-Buszek, Agnieszka; Kaczmarek, Joanna

    2016-08-01

    The aim of this study was to explore the species diversity of Trichoderma obtained from samples of wood collected in the forests of the Gorce Mountains (location A), Karkonosze Mountains (location B) and Tatra Mountains (location C) in Central Europe and to examine the cellulolytic and xylanolytic activity of these species as an expression of their probable role in wood decay processes. The present study has led to the identification of the following species and species complex: Trichoderma atroviride P. Karst., Trichoderma citrinoviride Bissett, Trichoderma cremeum P. Chaverri & Samuels, Trichoderma gamsii Samuels & Druzhin., Trichoderma harzianum complex, Trichoderma koningii Oudem., Trichoderma koningiopsis Samuels, C. Suárez & H.C. Evans, Trichoderma longibrachiatum Rifai, Trichoderma longipile Bissett, Trichoderma sp. (Hypocrea parapilulifera B.S. Lu, Druzhin. & Samuels), Trichoderma viride Schumach. and Trichoderma viridescens complex. Among them, T. viride was observed as the most abundant species (53 % of all isolates) in all the investigated locations. The Shannon's biodiversity index (H), evenness (E), and the Simpson's biodiversity index (D) calculations for each location showed that the highest species diversity and evenness were recorded for location A-Gorce Mountains (H' = 1.71, E = 0.82, D = 0.79). The preliminary screening of 119 Trichoderma strains for cellulolytic and xylanolytic activity showed the real potential of all Trichoderma species originating from wood with decay symptoms to produce cellulases and xylanases-the key enzymes in plant cell wall degradation.

  7. Islands in the desert-forest vegetation of Kenya's smaller mountains ...

    African Journals Online (AJOL)

    Camphor forests (Ocotetea usambarensis) cover altitudes from 1,600-2,400 m in the southern Aberdare Range. In the submontane Imenti and Ngaia forests, and the Nyambeni Hills, between 1,200-1,600 m altitude, a variety of forest types related to the Guineo Congolian rainforest were encountered. These forests are ...

  8. Parameterized approximation of lacunarity functions derived from airborne laser scanning point clouds of forested areas

    Science.gov (United States)

    Székely, Balázs; Kania, Adam; Varga, Katalin; Heilmeier, Hermann

    2017-04-01

    Lacunarity, a measure of the spatial distribution of the empty space is found to be a useful descriptive quantity of the forest structure. Its calculation, based on laser-scanned point clouds, results in a four-dimensional data set. The evaluation of results needs sophisticated tools and visualization techniques. To simplify the evaluation, it is straightforward to use approximation functions fitted to the results. The lacunarity function L(r), being a measure of scale-independent structural properties, has a power-law character. Previous studies showed that log(log(L(r))) transformation is suitable for analysis of spatial patterns. Accordingly, transformed lacunarity functions can be approximated by appropriate functions either in the original or in the transformed domain. As input data we have used a number of laser-scanned point clouds of various forests. The lacunarity distribution has been calculated along a regular horizontal grid at various (relative) elevations. The lacunarity data cube then has been logarithm-transformed and the resulting values became the input of parameter estimation at each point (point of interest, POI). This way at each POI a parameter set is generated that is suitable for spatial analysis. The expectation is that the horizontal variation and vertical layering of the vegetation can be characterized by this procedure. The results show that the transformed L(r) functions can be typically approximated by exponentials individually, and the residual values remain low in most cases. However, (1) in most cases the residuals may vary considerably, and (2) neighbouring POIs often give rather differing estimates both in horizontal and in vertical directions, of them the vertical variation seems to be more characteristic. In the vertical sense, the distribution of estimates shows abrupt changes at places, presumably related to the vertical structure of the forest. In low relief areas horizontal similarity is more typical, in higher relief areas

  9. Composition and structure of aquatic insect assemblages of Yungas mountain cloud forest streams in NW Argentina

    Directory of Open Access Journals (Sweden)

    Natalia VON ELLENRIEDER

    2007-01-01

    Full Text Available Treinta y tres ambientes lóticos en las selvas nubladas de montaña de las Yungas del NO Argentino, fueron muestreados tanto en ambientes no modificados como alterados por actividades humanas. Insectos acuáticos de 143 taxones en 55 familias fueron colectados. El análisis de agrupamientos sugirió que la altura es una de las variables principales en la estructuración de las comunidades de insectos en estos arroyos, y la importancia de esta variable fue confirmada mediante un ordenamiento no-métrico multi-dimensional (NMS; los parámetros ambientales que mejor se correlacionaron con la ordenación fueron: altura, temperatura del agua, latitud y variables del canal (ancho, porcentaje de detritos leñosos grandes y pequeños, de bancos excavados, de piedras y grava gruesa. Procedimientos de permutación de respuestas múltiples (MRPP, mostraron que los arroyos en áreas bien conservadas difieren significativamente en su composición de los arroyos en áreas modificadas. La proporción de individuos de Elmidae y Plecoptera, y el número de taxones de Trichoptera, fueron los métricos biológicos mejor correlacionados con el gradiente de alteración ambiental local, sugiriendo que un índice ‘ElPT’ podría ser un componente útil para la evaluación del estado ecológico de estos ambientes. Los análisis de indicadores de especies, identificaron algunos indicadores potenciales de la condición de los arroyos y de los factores de alteración que los afectan.

  10. [Spatial pattern of land surface dead combustible fuel load in Huzhong forest area in Great Xing'an Mountains].

    Science.gov (United States)

    Liu, Zhi-Hua; Chang, Yu; Chen, Hong-Wei; Zhou, Rui; Jing, Guo-Zhi; Zhang, Hong-Xin; Zhang, Chang-Meng

    2008-03-01

    By using geo-statistics and based on time-lag classification standard, a comparative study was made on the land surface dead combustible fuels in Huzhong forest area in Great Xing'an Mountains. The results indicated that the first level land surface dead combustible fuel, i. e., 1 h time-lag dead fuel, presented stronger spatial auto-correlation, with an average of 762.35 g x m(-2) and contributing to 55.54% of the total load. Its determining factors were species composition and stand age. The second and third levels land surface dead combustible fuel, i. e., 10 h and 100 h time-lag dead fuels, had a sum of 610.26 g x m(-2), and presented weaker spatial auto-correlation than 1 h time-lag dead fuel. Their determining factor was the disturbance history of forest stand. The complexity and heterogeneity of the factors determining the quality and quantity of forest land surface dead combustible fuels were the main reasons for the relatively inaccurate interpolation. However, the utilization of field survey data coupled with geo-statistics could easily and accurately interpolate the spatial pattern of forest land surface dead combustible fuel loads, and indirectly provide a practical basis for forest management.

  11. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    Science.gov (United States)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  12. Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica

    Directory of Open Access Journals (Sweden)

    Victoria Sosa

    2016-11-01

    Full Text Available Background Cloud forests, characterized by a persistent, frequent or seasonal low-level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space for phenotypic traits of tree fern species to make inferences about evolutionary processes in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal distribution of tree ferns to investigate ancestral area and elevation and environmental preferences of Mesoamerican tree ferns. The phylogeny was then used to estimate divergence times and ask whether the ancestral area and elevation and environmental shifts were linked to climatic events and historical climatic preferences. Results Bayesian trees retrieved Cyathea, Alsophyla, Gymnosphaera and Sphaeropteris in monophyletic clades. Splits for species in these genera found in Mesoamerican cloud forests are recent, from the Neogene to the Quaternary, Australia was identified as the ancestral area for the clades of these genera, except for Gymnosphaera that was Mesoamerica. Climate tolerance was not divergent from

  13. Birds of a high-altitude cloud forest in Alta Verapaz, Guatemala

    Directory of Open Access Journals (Sweden)

    Knut Eisermann

    2005-09-01

    Full Text Available The Northern Central American Highlands have been recognized as endemic bird area, but little is known about bird communities in Guatemalan cloud forests. From 1997 to 2001 a total of 142 bird species were recorded between 2 000 and 2 400 masl in cloud forest and agricultural clearings on Montaña Caquipec (Alta Verapaz, Guatemala. The bird community is described based on line transect counts within the forest. Pooling census data from undisturbed and disturbed forest, the Gray-breasted Wood-Wren (Henicorhina leucophrys was found to be the most abundant species, followed in descending order by the Common Bush-Tanager (Chlorospingus ophthalmicus, the Paltry Tyrannulet (Zimmerius vilissimus, the Yellowish Flycatcher (Empidonax flavescens, the Ruddy-capped Nightingale-Thrush (Catharus frantzii, and the Amethyst-throated Hummingbird (Lampornis amethystinus. Bird communities in undisturbed and disturbed forest were found to be similar (Sørensen similarity index 0.85, indicating low human impact. Of all recorded species, ~27% were Nearctic-Neotropical migratory birds. The most abundant one was the Wilson’s Warbler (Wilsonia pusilla. The Montaña Caquipec is an important area for bird conservation, which is indicated by the presence of four species listed in the IUCN Red List (Highland Guan Penelopina nigra, Resplendent Quetzal Pharomachrus mocinno, Pink-headed Warbler Ergaticus versicolor, Golden-cheeked Warbler Dendroica chrysoparia, and 42 Mesoamerican endemics, of which 14 species are endemic to the Central American Highlands. The results presented here will be useful as baseline data for a long-term monitoring. Rev. Biol. Trop. 53(3-4: 577-594. Epub 2005 Oct 3.Las alturas del norte de Centroamérica han sido reconocidas como región de aves endémicas, pero se conoce poco sobre las comunidades de aves en bosques nubosos de Guatemala. De 1997 a 2001 se han detectado 142 especies de aves entre 2 000 y 2 400 msnm en el bosque nuboso y áreas agr

  14. Phenotypic plasticity of Vaccinium meridionale (Ericaceae in wild populations of mountain forests in Colombia

    Directory of Open Access Journals (Sweden)

    Gustavo A Ligarreto

    2011-06-01

    Full Text Available Vaccinium meridionale is a promising crop for the Andean region of South America and is currently available only in the wild. Spontaneous populations of this plant are found across the Colombian mountains, but very few published records on this plant morphology are available. A zonification study of V. meridionale was conducted in four principal areas of a low mountain forest of Colombia (Provinces of Boyacá, Cundinamarca, Santander and Nariño in 2007. A total of 20 populations and 100 plants of V. meridionale were individually characterized and surveyed, using a list of 26 characters of morphological variables (9 quantitative and 17 qualitative characters. Our results indicated that natural populations of V. meridionale might be found in the tropical forest under a highly heterogeneous climate and microclimate conditions, at different mountain regions between 2 357 and 3 168masl. The shrubs of V. meridionale exhibited a high level of intra-population variation in several quantitative (plant height, stem diameter and qualitative (growth habit, ramification density, presence of anthocyanins in stems morphological characters, suggesting an environmentally induced phenotypic plasticity. Plant height, stem diameter and foliar density were the most variable morphological traits, with coefficients of variation higher than 50%. However, several quantitative characters of its reproductive potential, such as berry dimensions, rachis length and number of flowers per inflorescence, resulted with low plasticity with coefficients of variation lower than 30.2%, indicating that these characters were genetically determined. The highest correlation coefficients (pVaccinium meridionale es una planta promisoria para la región Andina de Sudamérica y está disponible actualmente sólo en forma silvestre. Las poblaciones espontáneas de esta planta se encuentran en las montañas colombianas y existen muy pocos reportes publicados respecto a su morfología. Se

  15. Precipitation and air temperature control the variations of dissolved organic matter along an altitudinal forest gradient, Gongga Mountains, China.

    Science.gov (United States)

    Hu, Zhaoyong; Wang, Genxu; Sun, Xiangyang

    2017-04-01

    Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) contribute significantly to C and N cycling in forest ecosystems. Little information is available on the variations in the DOC and DON concentrations and depositions in bulk and stand precipitation within forests along an altitudinal gradient. To determine the temporal variations in the DOC and DON concentrations and depositions in different forests and the spatial variations along the elevation gradient, the DOC and DON concentrations and depositions were measured in bulk precipitation, throughfall, and stemflow within three forest types, i.e., broadleaf forest (BLF), broadleaf-coniferous forest (BCF), and coniferous forest (CF), during the wet season (May to October) on Gongga Mountain, China, in 2015. The concentrations of bulk precipitation in BLF, BCF, and CF were 3.92, 4.04, and 2.65 mg L -1 , respectively, for DOC and were 0.38, 0.26, and 0.29 mg L -1 , respectively, for DON. BCF had the highest DOC deposition both in bulk precipitation (45.12 kg ha -1 ) and stand precipitation (98.52 kg ha -1 ), whereas the highest DON deposition was in BLF (3.62 kg ha -1 bulk precipitation and 4.11 kg ha -1 stand precipitation) during the study period. The meteorological conditions of precipitation and air temperature significantly influenced the dissolved organic matter (DOM) depositions along the elevation gradient. The leaf area index did not show any correlation with DOM depositions during the growing season.

  16. Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador

    International Nuclear Information System (INIS)

    Zach, A.; Horna, V.; Leuschner, C.

    2008-01-01

    A study was conducted to quantify species-specific differences in wood tissue respiration in tropical mountain forests. The respiratory activity of stems and coarse roots were compared, and changes in stem and root respiration along an altitudinal span of 2000 m in a rain forest in Ecuador were analyzed. Stem and root carbon dioxide (CO 2 ) efflux of trees were investigated using an open gas exchange system while stand microclimate was also monitored. Results of the study demonstrated substantial variations in respiratory activity among the different species of trees. Mean daily CO 2 release rates declined, and mean daily CO 2 released from coarse roots decreased with altitude. Higher stem to coarse root respiration rates were observed at lower elevations. It was concluded that decreases in stem respiration coincided with a significant decrease in relative stem diameter increment and increases in fine and coarse root biomass production. 34 refs., 3 tabs., 3 figs

  17. Precipitation isotopes link regional climate patterns to water supply in a tropical mountain forest, eastern Puerto Rico

    Science.gov (United States)

    Scholl, Martha A.; Murphy, Sheila F.

    2014-05-01

    Like many mountainous areas in the tropics, watersheds in the Luquillo Mountains of eastern Puerto Rico have abundant rainfall and stream discharge and provide much of the water supply for the densely populated metropolitan areas nearby. Projected changes in regional temperature and atmospheric dynamics as a result of global warming suggest that water availability will be affected by changes in rainfall patterns. It is essential to understand the relative importance of different weather systems to water supply to determine how changes in rainfall patterns, interacting with geology and vegetation, will affect the water balance. To help determine the links between climate and water availability, stable isotope signatures of precipitation from different weather systems were established to identify those that are most important in maintaining streamflow and groundwater recharge. Precipitation stable isotope values in the Luquillo Mountains had a large range, from fog/cloud water with δ2H, δ18O values as high as +12 ‰, -0.73 ‰ to tropical storm rain with values as low as -127 ‰, -16.8 ‰. Temporal isotope values exhibit a reverse seasonality from those observed in higher latitude continental watersheds, with higher isotopic values in the winter and lower values in the summer. Despite the higher volume of convective and low-pressure system rainfall, stable isotope analyses indicated that under the current rainfall regime, frequent trade -wind orographic showers contribute much of the groundwater recharge and stream base flow. Analysis of rain events using 20 years of 15 -minute resolution data at a mountain station (643 m) showed an increasing trend in rainfall amount, in agreement with increased precipitable water in the atmosphere, but differing from climate model projections of drying in the region. The mean intensity of rain events also showed an increasing trend. The determination of recharge sources from stable isotope tracers indicates that water supply

  18. Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest.

    Science.gov (United States)

    Bendix, J; Homeier, J; Cueva, E Ortiz; Emck, P; Breckle, S-W; Richter, M; Beck, E

    2006-07-01

    Flowering and fruiting as phenological events of 12 tree species in an evergreen tropical mountain rain forest in southern Ecuador were examined over a period of 3-4 years. Leaf shedding of two species was observed for 12 months. Parallel to the phenological recordings, meteorological parameters were monitored in detail and related to the flowering and fruiting activity of the trees. In spite of the perhumid climate of that area, a high degree of intra- and inter-specific synchronisation of phenological traits was apparent. With the exception of one species that flowered more or less continuously, two groups of trees could be observed, one of which flowered during the less humid months (September to October) while the second group started to initiate flowers towards the end of that phase and flowered during the heavy rains (April to July). As reflected by correlation coefficients, the all-time series of meteorological parameters showed a distinct seasonality of 8-12 months, apparently following the quasi-periodic oscillation of precipitation and related cloudiness. As revealed by power spectrum analysis and Markov persistence, rainfall and minimum temperature appear to be the only parameters with a periodicity free of long-term variations. The phenological events of most of the plant species showed a similar periodicity of 8-12 months, which followed the annual oscillation of relatively less and more humid periods and thus was in phase or in counter-phase with the oscillations of the meteorological parameters. Periods of unusual cold or dryness, presumably resulting from underlying longer-term trends or oscillations (such as ENSO), affected the homogeneity of quasi-12-month flowering events, fruit maturation and also the production of germinable seeds. Some species show underlying quasi-2-year-oscillations, for example that synchronise with the development of air temperature; others reveal an underlying decrease or increase in flowering activity over the

  19. Impact of mountain pine beetle induced mortality on forest carbon and water fluxes

    International Nuclear Information System (INIS)

    E Reed, David; Ewers, Brent E; Pendall, Elise

    2014-01-01

    Quantifying impacts of ecological disturbance on ecosystem carbon and water fluxes will improve predictive understanding of biosphere—atmosphere feedbacks. Tree mortality caused by mountain pine bark beetles (Dendroctonus ponderosae) is hypothesized to decrease photosynthesis and water flux to the atmosphere while increasing respiration at a rate proportional to mortality. This work uses data from an eddy-covariance flux tower in a bark beetle infested lodgepole pine (Pinus contorta) forest to test ecosystem responses during the outbreak. Analyses were conducted on components of carbon (C) and water fluxes in response to disturbance and environmental factors (solar radiation, soil water content and vapor pressure deficit). Maximum CO 2 uptake did not change as tree basal area mortality increased from 30 to 78% over three years of beetle disturbance. Growing season evapotranspiration varied among years while ecosystem water use efficiency (the ratio of net CO 2 uptake to water vapor loss) did not change. Between 2009 and 2011, canopy water conductance increased from 98.6 to 151.7 mmol H 2 O m −2 s −1 . Ecosystem light use efficiency of photosynthesis increased, with quantum yield increasing by 16% during the outbreak as light increased below the mature tree canopy and illuminated remaining vegetation more. Overall net ecosystem productivity was correlated with water flux and hence water availability. Average weekly ecosystem respiration, derived from light response curves and standard Ameriflux protocols for CO 2 flux partitioning into respiration and gross ecosystem productivity, did not change as mortality increased. Separate effects of increased respiration and photosynthesis efficiency largely canceled one another out, presumably due to increased diffuse light in the canopy and soil organic matter decomposition resulting in no change in net CO 2 exchange. These results agree with an emerging consensus in the literature demonstrating CO 2 and H 2 O dynamics

  20. Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data

    Directory of Open Access Journals (Sweden)

    Víctor González-Jaramillo

    2018-04-01

    Full Text Available A reliable estimation of Above Ground Biomass (AGB in Tropical Mountain Forest (TMF is still complicated, due to fast-changing climate and topographic conditions, which modifies the forest structure within fine scales. The variations in vertical and horizontal forest structure are hardly detectable by small field plots, especially in natural TMF due to the high tree diversity and the inaccessibility of remote areas. Therefore, the present approach used remotely sensed data from a Light Detection and Ranging (LiDAR sensor in combination with field measurements to estimate AGB accurately for a catchment in the Andes of south-eastern Ecuador. From the LiDAR data, information about horizontal and vertical structure of the TMF could be derived and the vegetation at tree level classified, differentiated between the prevailing forest types (ravine forest, ridge forest and Elfin Forest. Furthermore, topographical variables (Topographic Position Index, TPI; Morphometric Protection Index, MPI were calculated by means of the high-resolution LiDAR data to analyse the AGB distribution within the catchment. The field measurements included different tree parameters of the species present in the plots, which were used to determine the local mean Wood Density (WD as well as the specific height-diameter relationship to calculate AGB, applying regional scale modelling at tree level. The results confirmed that field plot measurements alone cannot capture completely the forest structure in TMF but in combination with high resolution LiDAR data, applying a classification at tree level, the AGB amount (Mg ha−1 and its distribution in the entire catchment could be estimated adequately (model accuracy at tree level: R2 > 0.91. It was found that the AGB distribution is strongly related to ridges and depressions (TPI and to the protection of the site (MPI, because high AGB was also detected at higher elevations (up to 196.6 Mg ha−1, above 2700 m, if the site is

  1. Impact of biomass harvesting on forest soil productivity in the northern Rocky Mountains

    Science.gov (United States)

    Woongsoon Jang; Christopher R. Keyes; Deborah Page-Dumroese

    2015-01-01

    Biomass harvesting extracts an increased amount of organic matter from forest ecosystems over conventional harvesting. Since organic matter plays a critical role in forest productivity, concerns of potential negative long-term impacts of biomass harvesting on forest productivity (i.e., changing nutrient/water cycling, aggravating soil properties, and compaction) have...

  2. Northern Rocky Mountain experimental forests: Settings for science, management, and education alliances

    Science.gov (United States)

    Theresa B. Jain; Michael A. Battaglia; Russell T. Graham

    2014-01-01

    Society's view of forests and what they produce changed considerably during the latter part of the 20th century. Prior to the 1970s, society believed that forests in the western United States provided a seemingly infinite supply of natural resources and economic prosperity. The public trusted experts to make forest management decisions dedicated to resource...

  3. Fuelwood collection and its impacts on a protected tropical mountain forest in Uganda

    NARCIS (Netherlands)

    Sassen, M.; Sheil, D.; Giller, K.E.

    2015-01-01

    Local communities who live close to protected tropical forests often depend on them for woodfuel, their main source of energy. The impacts of fuelwood extraction in humid forests are rarely studied, yet the extraction of wood for fuel can impact forest structure, function and biodiversity. We

  4. Water relations and microclimate around the upper limit of a cloud forest in Maui, Hawai'i.

    Science.gov (United States)

    Gotsch, Sybil G; Crausbay, Shelley D; Giambelluca, Thomas W; Weintraub, Alexis E; Longman, Ryan J; Asbjornsen, Heidi; Hotchkiss, Sara C; Dawson, Todd E

    2014-07-01

    The goal of this study was to determine the effects of atmospheric demand on both plant water relations and daily whole-tree water balance across the upper limit of a cloud forest at the mean base height of the trade wind inversion in the tropical trade wind belt. We measured the microclimate and water relations (sap flow, water potential, stomatal conductance, pressure-volume relations) of Metrosideros polymorpha Gaudich. var. polymorpha in three habitats bracketing the cloud forest's upper limit in Hawai'i to understand the role of water relations in determining ecotone position. The subalpine shrubland site, located 100 m above the cloud forest boundary, had the highest vapor pressure deficit, the least amount of rainfall and the highest levels of nighttime transpiration (EN) of all three sites. In the shrubland site, on average, 29% of daily whole-tree transpiration occurred at night, while on the driest day of the study 50% of total daily transpiration occurred at night. While EN occurred in the cloud forest habitat, the proportion of total daily transpiration that occurred at night was much lower (4%). The average leaf water potential (Ψleaf) was above the water potential at the turgor loss point (ΨTLP) on both sides of the ecotone due to strong stomatal regulation. While stomatal closure maintained a high Ψleaf, the minimum leaf water potential (Ψleafmin) was close to ΨTLP, indicating that drier conditions may cause drought stress in these habitats and may be an important driver of current landscape patterns in stand density. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science

    Science.gov (United States)

    Art Borkent; Brian V. Brown; Peter H. Adler; Dalton de Souza Amorim; Kevin Barber; Daniel Bickel; Stephanie Boucher; Scott E. Brooks; John Burger; Zelia L. Burington; Renato S. Capellari; Daniel N. R. Costa; Jeffrey M. Cumming; Greg Curler; Carl W. Dick; John H. Epler; Eric Fisher; Stephen D. Gaimari; Jon Gelhaus; David A. Grimaldi; John Hash; Martin Hauser; Heikki Hippa; Sergio Ibanez-Bernal; Mathias Jaschhof; Elena P. Kameneva; Peter H. Kerr; Valery Korneyev; Cheslavo A. Korytkowski; Giar-Ann Kung; Gunnar Mikalsen Kvifte; Owen Lonsdale; Stephen A. Marshall; Wayne N. Mathis; Verner Michelsen; Stefan Naglis; Allen L. Norrbom; Steven Paiero; Thomas Pape; Alessandre Pereira-Colavite; Marc Pollet; Sabrina Rochefort; Alessandra Rung; Justin B. Runyon; Jade Savage; Vera C. Silva; Bradley J. Sinclair; Jeffrey H. Skevington; John O. Stireman; John Swann; F. Christian Thompson; Pekka Vilkamaa; Terry Wheeler; Terry Whitworth; Maria Wong; D. Monty Wood; Norman Woodley; Tiffany Yau; Thomas J. Zavortink; Manuel A. Zumbado

    2018-01-01

    Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America....

  6. Exploratory Water Budget Analysis of A Transitional Premontane Cloud Forest in Costa Rica Through Undergraduate Research

    Science.gov (United States)

    Washington-Allen, R. A.; Buckwalter, E. H.; Moore, G. W.; Burns, J. N.; Dennis, A. R.; Dodge, O.; Guffin, E. C.; Morris, E. R.; Oien, R. P.; Orozco, G.; Peterson, A.; Teale, N. G.; Shibley, N. C.; Tourtellotte, N.; Houser, C.; Brooks, S. D.; Brumbelow, J. K.; Cahill, A. T.; Frauenfeld, O. W.; Gonzalez, E.; Hallmark, C. T.; McInnes, K. J.; Miller, G. R.; Morgan, C.; Quiring, S. M.; Rapp, A. D.; Roark, E.; Delgado, A.; Ackerson, J. P.; Arnott, R.

    2012-12-01

    The ecohydrology of transitional premontane cloud forests is not well understood. This problem is being addressed by a NSF Research Experience for Undergraduates (REU) study at the Texas A&M University Soltis Center for Research & Education in Costa Rica. Exploratory analysis of the water budget within a 20-ha watershed was used to connect three faculty-mentored research areas in ecohydrology, climate, and soil sciences and highlight the roles of 12 undergraduate researchers from 12 different universities. The water budget model is Q = Pn - E - T + ΔG + ΔS where Q = runoff, Pn = net precipitation, E = evaporation, T = transpiration, and ΔG and ΔS are change in groundwater soil water storage, respectively. Additionally, Pn = Pg - I = Tf + Sf + D, where Pg = gross precipitation, I/ΔI = canopy interception or storage, Tf = throughfall, Sf = stemflow, and D = canopy drip. The following terms were well understood Pg (satellite = 34-mm and tower = 38.1-mm) and Q from a recently constructed v-notch weir. We moderately understand Tf + D (30.9-mm from an array of forest rain gages), ΔI (7.2-mm) related to Sf, and T (10.4-mm measured with sapflow sensors). We found that soils were clay loam to silty loam textured Andisols on saprolitic tuft with a mean potential ΔS of 398 mm H2O under laboratory conditions, but in the field the following terms are almost completely unknown and require further field studies including E, ΔG, and ΔS. Recent installation of piezometers will address ΔG. Temporal scaling of measurements to a 1-week period was a challenge as well as the construction, deployment and calibration of instruments. However, this exploration allowed us to determine measurement uncertainties in the water budget, e.g., E, and to set future areas of research to address these uncertainties.

  7. Changes in forest landscape due to agricultural activities and their influence on natural ecosystems: the eastern Galician mountains

    Directory of Open Access Journals (Sweden)

    Diaz-Maroto I.J.

    2018-03-01

    Full Text Available Forest and agricultural landscapes are vital in relation to biodiversity. Protection policies in such areas should include incentives to enable the common landuse practices. Conservation cannot be addressed in the short term because these landscapes have evolved as socio-ecological systems and provide optimal conditions for biodiversity maintenance. They occur in areas where agriculture has not changed significantly as in the eastern Galician mountains. The landscape dynamics has been shaped by human involvement during centuries. We analyzed how the landscape has evolved according to environmental, socioeconomic and historical changes with the aim of proposing actions for its conservation. The study focused on the recovery of natural hardwood forests which have been intensively exploited since ancient times. Over the past few centuries, these forests have been transformed to agricultural land, felled for use in the naval, metallurgical and railway industries, expropriated from the Church, and affected by wildfire; more recently, have been replaced by fast growing species. Today, broadleaved forests cover small areas of rugged land where the topography often precludes other land uses. In conclusion, although the landscape in the study area has undergone a major transformation, now this land is a priority for biodiversity conservation.

  8. Monitoring oak-hickory forest change during an unprecedented red oak borer outbreak in the Ozark Mountains: 1990 to 2006

    Science.gov (United States)

    Jones, Joshua S.; Tullis, Jason A.; Haavik, Laurel J.; Guldin, James M.; Stephen, Fred M.

    2014-01-01

    Upland oak-hickory forests in Arkansas, Missouri, and Oklahoma experienced oak decline in the late 1990s and early 2000s during an unprecedented outbreak of a native beetle, the red oak borer (ROB), Enaphalodes rufulus (Haldeman). Although remote sensing supports frequent monitoring of continuously changing forests, comparable in situ observations are critical for developing an understanding of past and potential ROB damage in the Ozark Mountains. We categorized forest change using a normalized difference water index (NDWI) applied to multitemporal Landsat TM and ETM+ imagery (1990, 2001, and 2006). Levels of decline or growth were categorized using simple statistical thresholds of change in the NDWI over time. Corresponding decline and growth areas were then observed in situ where tree diameter, age, crown condition, and species composition were measured within variable radius plots. Using a machine learning decision tree classifier, remote sensing-derived decline and growth was characterized in terms of in situ observation. Plots with tree quadratic mean diameter at breast height ≥21.5 cm were categorized remotely as in severe decline. Landsat TM/ETM+-based NDWI derivatives reveal forest decline and regrowth in post-ROB outbreak surveys. Historical and future Landsat-based canopy change detection should be incorporated with existing landscape-based prediction of ROB hazard.

  9. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    Science.gov (United States)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P gy (r2 = 0.53, P gy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area ratio, and stem wood density were all correlated with CMIgy . The tight coupling of forest carbon cycling and species traits with water availability suggests that warmer and drier conditions projected for the 21st century could have significant biogeochemical, ecological, and social consequences in the Pacific Northwest.

  10. [Characteristics of floor litter and soil arthropod community in different types ot subtropical forest in Ailao Mountain of Yunnan, Southwest China].

    Science.gov (United States)

    Yang, Zhao; Yang, Xiao-Dong

    2011-11-01

    By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of

  11. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    Science.gov (United States)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  12. Extracting Features of Acacia Plantation and Natural Forest in the Mountainous Region of Sarawak, Malaysia by ALOS/AVNIR2 Image

    Science.gov (United States)

    Fadaei, H.; Ishii, R.; Suzuki, R.; Kendawang, J.

    2013-12-01

    The remote sensing technique has provided useful information to detect spatio-temporal changes in the land cover of tropical forests. Land cover characteristics derived from satellite image can be applied to the estimation of ecosystem services and biodiversity over an extensive area, and such land cover information would provide valuable information to global and local people to understand the significance of the tropical ecosystem. This study was conducted in the Acacia plantations and natural forest situated in the mountainous region which has different ecological characteristic from that in flat and low land area in Sarawak, Malaysia. The main objective of this study is to compare extract the characteristic of them by analyzing the ALOS/AVNIR2 images and ground truthing obtained by the forest survey. We implemented a ground-based forest survey at Aacia plantations and natural forest in the mountainous region in Sarawak, Malaysia in June, 2013 and acquired the forest structure data (tree height, diameter at breast height (DBH), crown diameter, tree spacing) and spectral reflectance data at the three sample plots of Acacia plantation that has 10 x 10m area. As for the spectral reflectance data, we measured the spectral reflectance of the end members of forest such as leaves, stems, road surface, and forest floor by the spectro-radiometer. Such forest structure and spectral data were incorporated into the image analysis by support vector machine (SVM) and object-base/texture analysis. Consequently, land covers on the AVNIR2 image were classified into three forest types (natural forest, oil palm plantation and acacia mangium plantation), then the characteristic of each category was examined. We additionally used the tree age data of acacia plantation for the classification. A unique feature was found in vegetation spectral reflectance of Acacia plantations. The curve of the spectral reflectance shows two peaks around 0.3μm and 0.6 - 0.8μm that can be assumed to

  13. Rainfall, fog and throughfall dynamics in a sub-tropical ridge-top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain)

    NARCIS (Netherlands)

    García-Santos, G.; Bruijnzeel, L.A.

    2011-01-01

    Mixed tree-heath/beech forest is a type of subtropical montane cloud forest found on wind- and fog-exposed ridges in the Canary Islands. With a dry season of 5 months and an annual precipitation of 600-700 mm, the extra water inputs through fog interception assume particular importance in this

  14. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    Science.gov (United States)

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  15. Variations in canopy and litter interception across a forest chronosequence in the southern Appalachian Mountains

    Science.gov (United States)

    Steven T. Brantley; Paul V. Bolstad; Stephanie H. Laseter; A. Christopher Oishi; Kimberly A. Novick; Chelcy F. Miniat

    2016-01-01

    Variations in evapotranspiration (ET) have been well documented across a variety of forest types and climates in recent decades; however, most of these data have focused on mature, secondgrowth stands. Here we present data on two important fluxes of water, canopy interception (Ic) and forest floor litter interception (Iff), across a chronosequence of forest age in the...

  16. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    OpenAIRE

    Tamara Heartsill Scalley

    2017-01-01

    The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously measured tropical forest plots is presented. Long-term measurements, 72 years at the leeward site, and 25 years at windward site, o...

  17. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  18. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont.

    Science.gov (United States)

    Beckage, Brian; Osborne, Ben; Gavin, Daniel G; Pucko, Carolyn; Siccama, Thomas; Perkins, Timothy

    2008-03-18

    Detecting latitudinal range shifts of forest trees in response to recent climate change is difficult because of slow demographic rates and limited dispersal but may be facilitated by spatially compressed climatic zones along elevation gradients in montane environments. We resurveyed forest plots established in 1964 along elevation transects in the Green Mountains (Vermont) to examine whether a shift had occurred in the location of the northern hardwood-boreal forest ecotone (NBE) from 1964 to 2004. We found a 19% increase in dominance of northern hardwoods from 70% in 1964 to 89% in 2004 in the lower half of the NBE. This shift was driven by a decrease (up to 76%) in boreal and increase (up to 16%) in northern hardwood basal area within the lower portions of the ecotone. We used aerial photographs and satellite imagery to estimate a 91- to 119-m upslope shift in the upper limits of the NBE from 1962 to 2005. The upward shift is consistent with regional climatic change during the same period; interpolating climate data to the NBE showed a 1.1 degrees C increase in annual temperature, which would predict a 208-m upslope movement of the ecotone, along with a 34% increase in precipitation. The rapid upward movement of the NBE indicates little inertia to climatically induced range shifts in montane forests; the upslope shift may have been accelerated by high turnover in canopy trees that provided opportunities for ingrowth of lower elevation species. Our results indicate that high-elevation forests may be jeopardized by climate change sooner than anticipated.

  19. Quantifying diffuse pathways for overland flow between the roads and streams of the mountain ash forests of central Victoria Australia

    Science.gov (United States)

    Lane, Patrick N. J.; Hairsine, Peter B.; Croke, Jacky C.; Takken, Ingrid

    2006-06-01

    Limiting connectivity between road runoff sources and stream networks is crucial for preservation of water quality in forested environments. Where flow is non-eroding, the length of hillslope available to accommodate volumes of discharged water is the key to restricting connectivity. Hairsine et al. ([2002], Hydrological Processes 16: 2311-2327) proposed a probabilistic model of diffuse overland flow that predicted the hillslope lengths required to infiltrate road discharge, based on the concept of volume to breakthrough (Vbt). This paper extends this analysis to a different forest environment with the aim of testing the portability of the Hairsine et al. ([2002]) model. The volume of flow required to travel overland to a distance of 5 and 10 m (Vbt5 and Vbt10) from drainage outlets was measured in deep, highly conductive mountain soils in the Upper Tyers catchment, Victoria, Australia. Rainfall, hydraulic conductivity and soil depths contrasted markedly with those in the Hairsine et al. ([2002]) study, and represent an extreme in Australian forests. Statistical analyses revealed the population of Vbt5 to be indistinguishable from that observed by Hairsine et al. ([2002]), indicating the model is valid for a range of forest soils. There was no significant correlation of sediment plume length with site characteristics such as slope, width of flow, or existence of incised pathways. It is suggested there are universal properties of pathways draining tracks and roads, with bioturbation acting to restore available pore spaces filled by antecedent plumes. Drain discharge design criteria may be developed for local conditions using the Hairsine et al. ([2002]) model, providing a robust tool for protection of water quality in the siting of new forest roads, and maintenance of exiting roads and tracks.

  20. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  1. Holocene vegetation dynamics of Taiga forest in the Southern Altai Mountains documented by sediments from Kanas Lake

    Science.gov (United States)

    Huang, X.; Chen, F.

    2016-12-01

    The Chinese Altai is the southern limit of the Taiga forest of the continent, and regional vegetation dynamics during the Holocene will help us to understand regional climate changes, such as the Siberian High variations. Here we present a pollen-based vegetation and climate reconstruction from a well dated sediment core from Kanas Lake, a deep glacial moraine dammed lake in the Southern Altai Mountains (Chinese Altai). The 244-cm-long sequence spans the last 13,500 years, and the chronology is based on nine accelerator mass spectrometry radiocarbon dates from terrestrial plant macrofossils. At least five stages of regional vegetation history are documented: (i) From 13.5 to 11.7 ka (1 ka = 1000 cal yr BP), Kanas Lake region was occupied by steppe dominated by Artemisia, Chenopodiaceae and grass pollen, with low tree coverage. (ii) From 11.7 to 8.5 ka, regional forest build up dramatically indicated by increasing tree pollen percentages, including Picea, Larix, and the highest Junipers, with decreasing Artemisia and increasing Chenopodiaceae. (iii) From 8.5 to 7.2 ka, the forest around the lake became dense with the maximum content of Picea and Betula pollen types. And the steppe pollen types reached their lowest values. (iv) From 7.2 to 4 ka, as a typical tree species of Taiga forest, Larix pollen percentage became much higher than previous stage, and the sum of trees & shrubs pollen types decreased, which possibly indicated cooler and wetter climate (v) After 4 ka, trees & shrubs (e.g. Betula, Junipers) pollen types decreased, with increasing Artemisia and decreasing Chenopodiaceae, which might indicated more humid and cooler climate in the late Holocene. Comparing to the other pollen records in the Altai Mountains, Lake Grusha and Lake Hoton had recorded a slightly different process of vegetation evolution in the early Holocene, where forest was built up in the northern side of the Chinese Altai faster than that of the Kanas Lake area. And the difference could

  2. Multifunctionality assessment in forest planning at landscape level. The study case of Matese Mountain Community (Italy.

    Directory of Open Access Journals (Sweden)

    Umberto Di Salvatore

    2013-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 The main objective is to improve a method that aims at evaluating forest multifunctionality from a technical and practical point of view. A methodological approach - based on the index of forest multifunctionality level - is proposed to assess the “fulfilment capability” of a function providing an estimate of performance level of each function in a given forest. This method is aimed at supporting technicians requested to define most suitable management guidelines and silvicultural practices in the framework of a Forest Landscape Management Plan (FLMP. The study area is the Matese district in southern Apennines (Italy, where a landscape planning experimentation was implemented. The approach includes the qualitative and quantitative characterization of selected populations, stratified by forest category by a sampling set of forest inventory plots. A 0.5 ha area around the sample plot was described by filling a form including the following information: site condition, tree species composition, stand origin and structure, silvicultural system, health condition, microhabitats presence. In each sample plot, both the multifunctionality assessment and the estimate of the effect of alternative management options on ecosystem goods and services, were carried out. The introduction of the term “fulfilment capability” and the modification of the concept of priority level - by which the ranking of functions within a plot is evaluated - is an improvement of current analysis method. This enhanced approach allows to detect the current status of forest plot and its potential framed within the whole forest. Assessing functional features of forests with this approach reduces the inherent subjectivity and allows to get useful information on forest multifunctionality to support forest planners in defining management guidelines consistent with current status and potential evolutive pattern.

  3. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region.

    Science.gov (United States)

    Greenwood, Sarah; Chen, Jan-Chang; Chen, Chaur-Tzuhn; Jump, Alistair S

    2014-12-01

    Altitudinal treelines are typically temperature limited such that increasing temperatures linked to global climate change are causing upslope shifts of treelines worldwide. While such elevational increases are readily predicted based on shifting isotherms, at the regional level the realized response is often much more complex, with topography and local environmental conditions playing an important modifying role. Here, we used repeated aerial photographs in combination with forest inventory data to investigate changes in treeline position in the Central Mountain Range of Taiwan over the last 60 years. A highly spatially variable upslope advance of treeline was identified in which topography is a major driver of both treeline form and advance. The changes in treeline position that we observed occurred alongside substantial increases in forest density, and lead to a large increase in overall forest area. These changes will have a significant impact on carbon stocking in the high altitude zone, while the concomitant decrease in alpine grassland area is likely to have negative implications for alpine species. The complex and spatially variable changes that we report highlight the necessity for considering local factors such as topography when attempting to predict species distributional responses to warming climate. © 2014 John Wiley & Sons Ltd.

  4. Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains

    International Nuclear Information System (INIS)

    Hedl, Radim; Petrik, Petr; Boublik, Karel

    2011-01-01

    Soil acidification was assessed in the Eastern Sudetes Mountains (Czech Republic) between 1941 and 2003, i.e. before and after the period of major industrial pollution (1950s-1990s). The twenty sites included in our study were distributed along a gradient of altitude ranging 1000 m. Values of pH have decreased in 80-90% of the pairs of samples after the six decades, on average by 0.7 for pH-H 2 O and 0.6 for pH-KCl. Organic matter increased in the topsoil, probably reflecting a change in decomposition conditions. The most important finding is that the acidification varies along the joint gradient of altitude/tree layer composition, and displays a changing pattern in three soil horizons (A, B and C). Contrary to expectations, most acidified were soils in beech forests at lower elevations. - Highlights: → Soil acidification varies along the joint gradient of altitude/tree composition. → Soil acidification displays a changing pattern in topsoil and subsoil horizons. → Acidification rate is stronger in soils of beech forests at lower elevation. → Historical measurements provide a reliable evidence of long-term soil acidification. - Strong acidification decreasing with altitude was observed in forest soils resurveyed after more than half a century.

  5. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest

    NARCIS (Netherlands)

    Gomes, L.G.L.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M.

    2008-01-01

    In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed

  6. Wildlife Habitats in Managed Forests the Blue Mountains of Oregon and Washington

    Science.gov (United States)

    Jack Ward [Technical Editor] Thomas

    1979-01-01

    The Nation's forests are one of the last remaining natural habitats forterrestrial wildlife. Much of this vast forest resource has changed dramatically in the last 200 years and can no longer be considered wild. It is now managed for multiple use benefits, including timber production. Timber harvesting and roadbuilding now alter wildlife habitat more than any...

  7. Data base for early postfire succession in Northern Rocky Mountain forests

    Science.gov (United States)

    Peter F. Stickney; Robert B. Campbell

    2000-01-01

    Web site and CD-ROM include 21 pages of text plus electronic data for 55 succession sites including color plates, tables, and figures. Provides data on quantitative postfire changes of plant species and forest vegetation components for up to the first 25 years of secondary plant succession for 55 forest sites in northern Idaho and northwestern Montana. Cover (aerial...

  8. Aspen increase soil moisture, nutrients, organic matter and respiration in Rocky Mountain forest communities.

    Science.gov (United States)

    Buck, Joshua R; St Clair, Samuel B

    2012-01-01

    Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than mixed and conifer dominated stands and meadows. Specifically, total N, NO(3) and NH(4) were nearly two-fold higher in soil underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource availability, which is likely to have important feedbacks on plant community development.

  9. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    Science.gov (United States)

    Tamara Heartsill Scalley

    2017-01-01

    The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously...

  10. Production rates for United States Forest Service brush disposal planning in the northern Rocky Mountains

    Science.gov (United States)

    Dan Loeffler; Stu Hoyt; Nathaniel Anderson

    2017-01-01

    Timber harvesting operations generate brush and other vegetative debris, which often has no marketable value. In many western U.S. forests, these materials represent a fire hazard and a potential threat to forest health and must be removed or burned for disposal. Currently, there is no established, consistent method to estimate brush disposal production rates in the U....

  11. Curve Numbers for Nine Mountainous Eastern United States Watersheds: Seasonal Variation and Forest Cutting

    Science.gov (United States)

    Many engineers and hydrologists use the curve number method to estimate runoff from ungaged watersheds; however, the method does not explicitly account for the influence of season or forest cutting on runoff. This study of observed rainfall and runoff for small, forested watershe...

  12. Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnans F. Muell.) forest in Victoria, Australia

    NARCIS (Netherlands)

    Meer, van der P.J.; Dignan, P.; Saveneh, A.G.

    1999-01-01

    Establishment, growth and survival of Eucalyptus regnans F. Muell. seedlings was studied at two sites over three years under a range of small gaps (up to 30mx30m) and large gaps (50mx50m up to clearfells) in a gap cutting experiment in mountain ash forest at Tanjil Bren, Victoria, Australia. In both

  13. Regeneration after 8 years in artificial canopy gaps in mountain ash (Eucalyptus regnans F. Muell.) forest in south-eastern Australia

    NARCIS (Netherlands)

    Meer, van der P.J.; Dignan, P.

    2007-01-01

    We report on a study of regeneration of Mountain Ash (Eucalyptus regnans) forest in S.E. Australia in artificially created canopy gaps (0.01¿2 ha) and clearfelled coupes (4¿27 ha) with different seedbed treatments. Treatments were applied in 1988, 1989, and 1990. Our results are based on

  14. Why Mountain Pine Beetle Exacerbates a Principal-agent Relationship: Exploring Strategic Policy Responses to Beetle Attack in a Mixed Species Forest

    NARCIS (Netherlands)

    Bogle, T.; Kooten, van G.C.

    2012-01-01

    The management of public forestland is often carried out by private forest companies, in which case the landowner needs to exercise care in dealing with catastrophic natural disturbance. We use the mountain pine beetle (Dendroctonus ponderosae Hopkins, 1902) damage in British Columbia to explore how

  15. Safety analysis report: A comparison of incidents from Safety Years 2006 through 2010, USDA Forest Service, Rocky Mountain Research Station Inventory and Monitoring Program

    Science.gov (United States)

    Devon Donahue

    2012-01-01

    This paper is an analysis of 5 years of accident data for the USDA Forest Service, Rocky Mountain Research Station (RMRS) Inventory and Monitoring (IM) Program that identifies past trends, allows for standardized self-comparison, and increases our understanding of the true costs of injuries and accidents. Measuring safety is a difficult task. While most agree that...

  16. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Science.gov (United States)

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  17. The role of clouds in the surface energy balance over the Amazon forest

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.; Humphries, E.J. Jr.

    1998-01-01

    Deforestation in the Amazon region will initially impact the energy balance at the land surface through changes in land cover and surface hydrology. However, continuation of this human activity will eventually lead to atmospheric feedbacks, including changes in cloudiness which may play an important role in the final equilibrium of solar and terrestrial radiation at the surface. In this study, the different components of surface radiation over an undisturbed forest in the Amazon region are computed using data from the Amazon region micrometerological experiment (ARME). Several measures of cloudiness are defined: two estimated from the terrestrial radiation measurements, and one from the solar radiation measurements. The sensitivity of the surface fluxes of solar and terrestrial radiation to natural variability in cloudiness is investigated to infer the potential role of the cloudiness feedback in the surface energy balance. The results of this analysis indicate that a 1% decrease in cloudiness would increase net solar radiation by ca. 1.6 W/m 2 . However, the overall magnitude of this feedback, due to total deforestation of the Amazon forest, is likely to be of the same order as the magnitude of the decrease in net solar radiation due to the observed increase in surface albedo following deforestation. Hence, the total change in net solar radiation is likely to have a negligible magnitude. In contrast to this conclusion, we find that terrestrial radiation is likely to be more strongly affected; reduced cloudiness will decrease net terrestrial radiation; a 1% decrease in cloudiness induces a reduction in net terrestrial radiation of ca. 0.7 W/m 2 ; this process augments the similar effects of the predicted warming and drying in the boundary layer. Due to the cloudiness feedback, the most significant effect of large-scale deforestation on the surface energy balance is likely to be in the modification of the terrestrial radiation field rather than the classical albedo

  18. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  19. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  20. 78 FR 25693 - Mt. Baker-Snoqualmie National Forest; Snohomish County, WA; Green Mountain Lookout Removal

    Science.gov (United States)

    2013-05-02

    ... the concrete foundation and removal of all materials to the extent possible. Disturbed areas would be... concrete foundation for the placement of Green Mountain Lookout. Minor soil excavation and clearing of... statement. It is important that reviewers provide their comments at such times and in such manner that they...

  1. Forest bioenergy system to reduce the hazard of wildfires: White Mountains, Arizona

    International Nuclear Information System (INIS)

    Neary, Daniel G.; Zieroth, Elaine J.

    2007-01-01

    In an innovative effort, the USDA Forest Service is planning to reduce the long-term threat of catastrophic wildfires by inaugurating a series of forest thinnings for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache-Sitgreaves National Forest. ''The Nutrioso Wildland/Urban Interface Fuels Reduction Project'', under the authority of the Healthy Forest Restoration Act of 2003, addresses the existing condition of the forest, defines the desired condition of the forest, and proposes actions that will result in a healthier forest and a reduced risk from wildfire. This project is part of larger-scale, small-diameter tree thinning covering an area of 607 km 2 over a 10-yr period. Although the Nutrioso Project encompasses 213 km 2 of mixed ownerships, only National Forest lands (79%) will be treated. A variety of thinning and fire prescriptions have been established depending on slopes, road access, and distance from private land. The mostly small-diameter (<12 cm) trees in ponderosa pine and mixed conifer stands are being removed under a ''Stewardship Contract'' for utilization in small power plants (<3 MW), and a wood-heating pellet manufacturing facility. The outlet for the wood fuel pellets is the growing market for house and business heating, and co-generation fuel in a 615 MW coal-fired power station. This paper examines the scope, costs, and environmental trade-offs of this pioneering and remarkably successful effort in forest bioenergy in the southwestern USA. (author)

  2. Effects of ground fires on element dynamics in mountainous coniferous forest in Germany

    Directory of Open Access Journals (Sweden)

    Kerstin Näthe

    2012-09-01

    Full Text Available Disturbances such as fires are a natural phenomenon of forested ecosystems, having a different impact on (micro- climate (e.g. emissions of gases and aerosols, ecology (destruction of flora and fauna and nutrient cycles especially in the soils. Forest fires alter the spatial distribution (forest floor vs. mineral soil, binding forms (organic vs. inorganic and availability (water solubility of organic substances and nutrients. The effects of fires on chemical, biological and physical soil properties in forested ecosystems have been intensively studied in the last decades, especially in the Mediterranean area and North America. However, differences in fire intensity, forest type (species, age and location (climate, geological substrate, nutrient status lead to divergent results. Furthermore, only a few case studies focused on the effects of ground fires in hilly landscapes, on the vertical and lateral water-driven fluxes of elements (C, N, nutrients, as well as on the input of fire-released terrestrial nutrients into aquatic ecosystems. Thus, this study will evaluate the effects of low-severity fires on nutrient cycling in a coniferous forest in a hilly landscape connected to an aquatic system. At three spatially independent sites three paired plots (control and manipulated were chosen at a forested site in Thuringia, Germany. All plots are similar in the vegetation cover and pedogenetic properties.In relation to control sites, this study will examine the effects of low-severity fires on:a the mobilization of organic carbon and nutrients (released from ash material and the forest floor via leachate and erosion paths,b the binding form (inorganic/organic of elements and organic compounds, and c the particle size fraction (DOM/POM of elements and organic compounds.The goal of this study is a better understanding of the impact of forest fires on element cycling and release in a hilly landscape connected to an aquatic system, supposedly driven by

  3. MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites

    Directory of Open Access Journals (Sweden)

    G. Blöschl

    2012-07-01

    Full Text Available Numerous global and regional validation studies have examined MODIS snow mapping accuracy by using measurements at climate stations, which are mainly at open sites. MODIS accuracy in alpine and forested regions is, however, still not well understood. The main objective of this study is to evaluate MODIS (MOD10A1 and MYD10A1 snow cover products in a small experimental catchment by using extensive snow course measurements at open and forest sites. The MODIS accuracy is tested in the Jalovecky creek catchment (northern Slovakia in the period 2000–2011. The results show that the combined Terra and Aqua images enable snow mapping at an overall accuracy of 91.5%. The accuracies at forested, open and mixed land uses at the Červenec sites are 92.7%, 98.3% and 81.8%, respectively. The use of a 2-day temporal filter enables a significant reduction in the number of days with cloud coverage and an increase in overall snow mapping accuracy. In total, the 2-day temporal filter decreases the number of cloudy days from 61% to 26% and increases the snow mapping accuracy to 94%. The results indicate three possible factors leading to misclassification of snow as land: patchy snow cover, limited MODIS geolocation accuracy and mapping algorithm errors. Out of a total of 27 misclassification cases, patchy snow cover, geolocation issues and mapping errors occur in 12, 12 and 3 cases, respectively.

  4. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  5. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    Science.gov (United States)

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  6. Reconciling Biodiversity Conservation and Timber Production in Mixed Uneven-Aged Mountain Forests: Identification of Ecological Intensification Pathways.

    Science.gov (United States)

    Lafond, Valentine; Cordonnier, Thomas; Courbaud, Benoît

    2015-11-01

    Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).

  7. Afforestation, subsequent forest fires and provision of hydrological services: a model-based analysis for a Mediterranean mountainous catchment

    Science.gov (United States)

    Nunes, João Pedro; Naranjo Quintanilla, Paula; Santos, Juliana; Serpa, Dalila; Carvalho-Santos, Cláudia; Rocha, João; Keizer, Jan Jacob; Keesstra, Saskia

    2017-04-01

    Mediterranean landscapes have experienced extensive abandonment and reforestation in recent decades, which should have improved the provision of hydrological services, such as flood mitigation, soil erosion protection and water quality regulation. However, these forests are fire-prone, and the post-fire increase in runoff, erosion and sediment exports could negatively affect service provision. This issue was assessed using the SWAT model for a small mountain agroforestry catchment, which was monitored between 2010 and 2014 and where some eucalypt stands burned in 2011 and were subsequently plowed for replanting. The model was calibrated and validated for streamflow, sediment yield and erosion in agricultural fields and the burnt hillslopes, showing that it can be adapted for post-fire simulation. It was then used to perform a decadal assessment of surface runoff, erosion, and sediment exports between 2004 and 2014. Results show that the fire did not noticeably affect flood mitigation but that it increased erosion by 3 orders of magnitude, which subsequently increased sediment yield. Erosion in the burnt forest during this decade was one order of magnitude above that in agricultural fields. SWAT was also used to assess different fire and land-use scenarios during the same period. Results indicate that the impacts of fire were lower without post-fire soil management, and when the fire occurred in pine forests (i.e. before the 1990s) or in shrublands (i.e. before afforestation in the 1930s). These impacts were robust to changes in post-fire weather conditions and to a lower fire frequency (20-year intervals). The results suggest that, in the long term, fire-prone forests might not provide the anticipated soil protection and water quality regulation services in wet Mediterranean regions.

  8. Low-level gamma spectrometry of forest and moor soils from exposed mountain regions in Saxony (Erzgebirge)

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, N [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Preusse, W [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Degering, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics; Unterricker, S [Technische Univ. Bergakademie Freiberg (Germany). Inst. of Applied Physics

    1997-03-01

    In soils with distinct organic and mineral horizons, radionuclides (RN) can be used to understand geochemical migration processes. In the study presented here high sensitivity HPGe-detectors with active and passive shielding were employed to determine the low activity levels of various natural, cosmogenic and artificial RN. Soils of a spruce forest and a moor from exposed mountain regions in Saxony (Erzgebirge) were investigated as they provide a good example of layered soil systems with vertical transfer of chemical elements. Different soil horizons were sub-sampled as thin slices and analysed to examine the migration processes at sub-horizon level. The depth distributions of chemically different RN were studied considering the geochemical and pedological soil characteristics of the profiles. (orig.)

  9. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    Science.gov (United States)

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to

  10. 76 FR 48120 - Black Hills National Forest, Custer, SD-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2011-08-08

    ... species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus ponderosae). Since 1997 the... rated as having high wildfire hazard. Since 1980, due to several factors including drought the Forest...

  11. 77 FR 10717 - Black Hills National Forest, Custer, South Dakota-Mountain Pine Beetle Response Project

    Science.gov (United States)

    2012-02-23

    .... The predominant tree species on lands of all ownerships in the Black Hills is ponderosa pine (Pinus... drought the Forest has seen a dramatic increase in acreage burned by wildfires. In that period over 250...

  12. Multifunctional management of mountain forests - Compromises between the protection and conservation functions

    Directory of Open Access Journals (Sweden)

    Marc Fuhr, Nicolas Clouet, Thomas Cordonnier and Frédéric Berger

    2011-03-01

    Full Text Available How can the balance between protection against natural hazards and biodiversity conservation be determined at each stage in forest development? This study provides a number of answers in view of improving multifunctional management.

  13. Physiognomy and distribution of mountain meadows in an alpine valley over 150 years of spontaneous forest expansion

    Directory of Open Access Journals (Sweden)

    Sitzia T

    2012-02-01

    Full Text Available Through the classification of current and historical aerial photosbetween 1973 and 2006, we analysed the evolution of size, shape and connectivity of 59 mountain meadows (maggenghi of the Pejo district (Trentino, Northern Italy. The maggenghi are scattered patches within a forested matrix. We conducted the same analysis on an Austro-Hungarian cadastral map of 1859. The total surface covered by maggenghi was 137.4 ha in 1973, and decreased to 78.3 ha (57% in 2006. The mean shape and connectivity index in 1973 are significantly lower than those of 2006. Within a 1-km radius around the studied patches, woodlands increased by 7% in the same time range. Among the 25 maggenghi present in 1958, 12 has been subdivided into 39 smaller fragments and 13 has been reduced in their size without any fragmentation. A general process of meadow patches evolution which included area and connectivity reduction and shape simplification has been noticed. This process is common to many other alpine landscapes. The study of these processes is fundamental for policies aimed to conservation of mountain meadows, as well as to identify the single patches deserving conservation for their current and historical landscape structure, as many studies report their significant effects on local floristic diversity.

  14. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  15. Effects of a Severe Mountain Pine Beetle Epidemic in Western Alberta, Canada under Two Forest Management Scenarios

    Directory of Open Access Journals (Sweden)

    Richard R. Schneider

    2010-01-01

    Full Text Available We used a simulation model to investigate possible effects of a severe mountain pine beetle (Dendroctonus ponderosae Hopkins epidemic under two management scenarios in Alberta, Canada. Our simulated outbreak was based on the current epidemic in British Columbia, which may kill close to 80% of the province's pine volume. Our two management scenarios were conventional harvest and a pine-reduction strategy modeled on a component of Alberta's Mountain Pine Beetle Management Strategy. The pine strategy seeks to reduce the number of susceptible pine stands by 75% over the next 20 years through targeted harvesting by the forest industry. Our simulations showed that the pine strategy could not be effectively implemented, even if the onset of the beetle outbreak was delayed for 20 years. Even though we increased mill capacity by 20% and directed all harvesting to high volume pine stands during the pine strategy's surge cut, the amount of highly susceptible pine was reduced by only 43%. Additional pine volume remained within mixed stands that were not targeted by the pine strategy. When the outbreak occurred in each scenario, sufficient pine remained on the landscape for the beetle to cause the timber supply to collapse. Alternative management approaches and avenues for future research are discussed.

  16. Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains

    Directory of Open Access Journals (Sweden)

    Tamara Heartsill Scalley

    2017-06-01

    Full Text Available The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously measured tropical forest plots is presented. Long-term measurements, 72 years at the leeward site, and 25 years at windward site, of stem density are similar to initial and pre-hurricane values at both sites. For 10 years post-hurricane Hugo (1989, stem density increased at both sites. Following that increase period, stem density has remained at 1400 to 1600 stems/ha in the leeward site, and at 1200 stems/ha in the windward site. The forests had similar basal area values before hurricane Hugo in 1989, but these sites are following different patterns of basal area accumulation. The leeward forest site continues to accumulate and increase basal area with each successive measurement, currently above 50 m2/ha. The windward forest site maintains its basal area values close to an asymptote of 35 m2/ha. Currently, the most abundant species at both sites is the sierra palm. Ordinations to explore variation in tree species composition through time present the leeward site with a trajectory of directional change, while at the windward site, the composition of species seems to be converging to pre-hurricane conditions. The observed differences in forest structure and composition from sites differently affected by hurricane disturbance provide insight into how particular forest characteristics respond at shorter or longer time scales in relation to previous site conditions and intensity of disturbance effects.

  17. Characterization of organic matter in cloud waters sampled at the puy de Dôme mountain using FT-ICR-MS

    Science.gov (United States)

    Bianco, A.; Chaumerliac, N.; Vaitilingom, M.; Deguillaume, L.; Bridoux, M. C.

    2017-12-01

    The chemical composition of organic matter in cloud water is highly complex. The organic species result from their dissolution from the gas phase or from the soluble fraction of the particle phase. They are also produced by aqueous phase reactivity. Several low molecular weight organic species have been quantified such as aldehydes and carboxylic acids. Recently, amino acids were also detected in cloud water and their presence is related to the presence of microorganisms. Compounds presenting similarities with high molecular weight organic substances or HULIS found in aerosols were also observed in clouds. Overall, these studies mainly focused on individual compounds or functional groups rather than the complex mixture at the molecular level. This study presents a non-targeted approach to characterize the organic matter in clouds. Samples were collected at the puy de Dôme Mountain (France). Two cloud water samples (June & July 2016) were analyzed using high resolution mass spectrometry (ESI-FT-ICR-MS 9.4T). A reversed solid phase extraction (SPE) procedure was performed to concentrate dissolved organic matter components. Composer (v.1.5.3) software was used to filter the mass spectral data, recalibrate externally the dataset and calculate all possible formulas for detected anions. The first cloud sample (June) resulted from air mass coming from the North (North Sea) while the second one (July) resulted from air mass coming from the West (Atlantic Ocean). Thus, both cloud events derived from marine air masses but were characterized by different hydrogen peroxide concentration and dissolved organic carbon content and were sampled at different periods during the day. Elemental compositions of 6487 and 3284 unique molecular species were identified in each sample. Nitrogen-containing compounds (CHNO compounds), sulfur-containing compounds (CHOS & CHNOS compounds) and other oxygen-containing compounds (CHO compounds) with molecular weights up to 800 Da were detected

  18. Altitude dependence of trace substance deposition from clouds to forests. Final report; Hoehenabhaengigkeit der Spurenstoffdeposition durch Wolken auf Waelder. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Pahl, S.; Winkler, P.

    1995-12-31

    Novel forest decline is particularly pronounced in the area of the ridges of medium-range mountains. Whereas acid precipitation was viewed as its sole cause early on in the discussions, it turned out later that the impact of trace gases, too, contributes to the damaging of forests. This report wants to point out the importance of fog interception, which equally plays a part in the pollutant receipts of forests. The deposition of fog water to a forest stand depends very much on altitude, so that trace substance deposition, too, is to be expected to be dependent on altitude. By attempting to quantify this effect, the report helps to pinpoint areas of relevance of this deposition pathway (orig./KW) [Deutsch] Die neuartigen Waldschaeden sind in den Kammlagen der Mittelgebirge besonders ausgepraegt. Waehrend in der anfaenglichen Diskussion die sauren Niederschlaege als alleinige Ursache angesehen wurden, zeigte sich spaeter, dass auch Einwirkungen von Spurengasen zur Schaedigung des Waldes beitragen. Dieser Bericht soll auf die Bedeutung der Nebelinterzeption aufmerksam machen, die ebenfalls zum Schadstoffeintrag in den Wald beitraegt. Die Deposition von Wolkenwasser auf einen Waldbestand ist stark abhaengig von der Hoehenlage, in der sich der Waldbestand befindet, so dass auch eine Hoehenabhaengigkeit des Spurenstoffeintrages zu erwarten ist. Durch den Versuch der Quantifizierung traegt dieser Bericht dazu bei, Gebiete zu erkennen, in denen dieser Eintragspfad eine Rolle spielt. (orig./KW)

  19. The role of frugivorous birds and bats in the colonization of cloud forest plant species in burned areas in western Mexico

    Directory of Open Access Journals (Sweden)

    Rost, J.

    2015-07-01

    Full Text Available The extension of montane cloud forests in western Mexico is threatened by several disturbances that limit their extension. In this study we aim to assess the contribution of birds and bats in the dispersal and colonization of cloud–forest plants in contiguous surface–burned pine forests. We sampled seed rain and sapling establishment over one year in two surface–burned sites, which differed in the size of their closest cloud forest patch. A total of 17 plant species were found, most of which were late–successional trees, shrubs and climbers. Distance influenced the seed rain of only one dispersed taxon (Solanum sp. and had no effect on the sapling distribution of this or other plants. In turn, marked differences were found between sites, with more seeds dispersed and higher sapling density in the site that was next to the larger cloud forest patch. The role of long–distance dispersers and the existence of seed banks before fire could explain the little importance of distance from seed source on seed dispersal and sapling distribution. Nevertheless, dispersal by birds and bats before or after fire facilitates the regeneration and conservation of cloud forests in disturbed areas formerly occupied by other habitats.

  20. Spatial and temporal patterns of ground vegetation dominants in mountain spruce forests damaged by sulphur

    Czech Academy of Sciences Publication Activity Database

    Chumanová-Vávrová, Eva; Cudlín, Ondřej; Cudlín, Pavel

    2015-01-01

    Roč. 20, č. 5 (2015), s. 620-636 ISSN 1239-6095 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD14039; GA MŠk(CZ) EE2.3.20.0265 Institutional support: RVO:67179843 Keywords : Arbuscular mycorrhizal fungi * simulated acid-rain * picea abies * Krkonoše Mountains * Calamagrostis-Villosa * natural regeneration * bark beetles Subject RIV: EH - Ecology, Behaviour Impact factor: 1.476, year: 2015

  1. Ozone distribution and phytotoxic potential in mixed conifer forests of the San Bernardino Mountains, southern California

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Arbaugh, Michael; Schilling, Susan; Fraczek, Witold; Alexander, Diane

    2008-01-01

    In the San Bernardino Mountains of southern California, ozone (O 3 ) concentrations have been elevated since the 1950s with peaks reaching 600 ppb and summer seasonal averages >100 ppb in the 1970s. During that period increased mortality of ponderosa and Jeffrey pines occurred. Between the late 1970s and late1990s, O 3 concentrations decreased with peaks ∼180 ppb and ∼60 ppb seasonal averages. However, since the late 1990s concentrations have not changed. Monitoring during summers of 2002-2006 showed that O 3 concentrations (2-week averages) for individual years were much higher in western sites (58-69 ppb) than eastern sites (44-50 ppb). Potential O 3 phytotoxicity measured as various exposure indices was very high, reaching SUM00 - 173.5 ppm h, SUM60 - 112.7 ppm h, W126 - 98.3 ppm h, and AOT40 - 75 ppm h, representing the highest values reported for mountain areas in North America and Europe. - Although peak ozone concentrations have greatly decreased in the San Bernardino Mountains, very high ozone phytotoxic potential remains

  2. Geochemical survey maps of the wildernesses and roadless areas in the White Mountains National Forest, Coos, Grafton, and Carroll counties, New Hampshire

    Science.gov (United States)

    Canney, F.C.; Howd, F.H.; Domenico, J.A.; Nakagawa, H.M.

    1987-01-01

    The Wilderness Act (Public Law 88-577, September 3, 1964) and related acts require the U.S. Geological Survey and the U.S. Bureau of Mines to survey certain areas on Federal lands to determine what mineral values, if any, may be present. Results must be made available to the public and be submitted to the President and the Congress. This report presents the results a geochemical survey of the Great Gulf and Presidential Range-Dry River Wilderness Areas; the Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Jobildunk, Carr Mountain, Sandwich Range, and the Dry River Extention (2 parcels) Roadless Areas; and the intervening and immediately surrounding areas in the White Mountain National Forest, Coos, Grafton, and Carroll Counties, New Hampshire. The Great Gulf Wilderness was established when the Wilderness Act was passed in 1964, and the Presidential Range-Dray Wiver Wilderness was established by Public Law 93-622, January 3, 1975. The Dartmouth Range, Wild River, Pemigewasset, Kinsman Mountain, Mount Wolf-Gordon Pond, Carr Mountain, and Jobildunk areas were classified as a further planning area during the Second Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service, January 1979.

  3. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Science.gov (United States)

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  4. High Elevation Refugia for Bombus terricola (Hymenoptera: Apidae) Conservation and Wild Bees of the White Mountain National Forest.

    Science.gov (United States)

    Tucker, Erika M; Rehan, Sandra M

    2017-01-01

    Many wild bee species are in global decline, yet much is still unknown about their diversity and contemporary distributions. National parks and forests offer unique areas of refuge important for the conservation of rare and declining species populations. Here we present the results of the first biodiversity survey of the bee fauna in the White Mountain National Forest (WMNF). More than a thousand specimens were collected from pan and sweep samples representing 137 species. Three species were recorded for the first time in New England and an additional seven species were documented for the first time in the state of New Hampshire. Four introduced species were also observed in the specimens collected. A checklist of the species found in the WMNF, as well as those found previously in Strafford County, NH, is included with new state records and introduced species noted as well as a map of collecting locations. Of particular interest was the relatively high abundance of Bombus terricola Kirby 1837 found in many of the higher elevation collection sites and the single specimen documented of Bombus fervidus (Fabricius 1798). Both of these bumble bee species are known to have declining populations in the northeast and are categorized as vulnerable on the International Union for Conservation of Nature's Red List. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  5. The application of APEX images in the assessment of the state of non-forest vegetation in the Karkonosze Mountains

    Directory of Open Access Journals (Sweden)

    Jarocińska Anna M.

    2016-03-01

    Full Text Available Information about vegetation condition is needed for the effective management of natural resources and the estimation of the effectiveness of nature conservation. The aim of the study was to analyse the condition of non-forest mountain communities: synanthropic communities and natural grasslands. UNESCO’s M&B Karkonosze Transboundary Biosphere Reserve was selected as the research area. The analysis was based on 40 field test polygons and APEX hyperspectral images. The field measurements allowed the collection of biophysical parameters - Leaf Area Index (LAI, fraction of Absorbed Photosynthetically Active Radiation (fAPAR and chlorophyll content - which were correlated with vegetation indices calculated using the APEX images. Correlations were observed between the vegetation indices (general condition, plant structure and total area of leaves (LAI, as well as fraction of Absorbed Photosynthetically Active Radiation (fAPAR. The outcomes show that the non-forest communities in the Karkonosze are in good condition, with the synanthropic communities characterised by better condition compared to the natural communities.

  6. Tree competition and species coexistence in a Quercus--Betula forest in the Dongling Mountains in northern China

    Science.gov (United States)

    Hou, Ji-hua; Mi, Xiang-cheng; Liu, Can-ran; Ma, Ke-ping

    2006-09-01

    The population size structure, growth dynamics and mode of competition among adult trees (≥ 4 cm DBH) of six abundant tree species in a 5 ha study plot of a temperate deciduous forest in the Dongling Mountains in northern China were investigated using diffusion and growth dynamics models. In the year of 2000, two dominant species, Quercus liaotungensis and Betula dahurica accounted for ca. 68.69% of the total basal area and 52.71% of the total density of adult plants. Q. liaotungensis, Populus davidiana and Acer mono exhibited inverse J-shaped DBH distributions whereas Betula dahurica, B. platyphylla and Salix caprea had unimodal DBH distributions. One-sided interspecific competition was detected between some species combinations at the scale of the 5 ha study plot, and the competitive effect was mainly size-dependent rather than from species-specific interactions with large individuals in the canopy layer out competing smaller individuals in the understory. Symmetric competition was found between Q. liaotungensis and A. mono only. However, considering the straight line relationship of G ( t, x) - √{D(t, x)}, which suggests that competitive asymmetry is very low or absent, combined with the relatively low mortality of trees with a DBH larger than 4 cm, we speculate that asymmetric interspecific competition was not important in structuring this tree community. Regeneration characteristics of each species are most likely important in regulating species coexistence and stand dynamics in this forest.

  7. The wind and fire disturbance in Central European mountain spruce forests: the regeneration after four years

    Directory of Open Access Journals (Sweden)

    Monika Budzáková

    2013-03-01

    Full Text Available A strong windstorm in November 2004 resulted in a huge blown-down spruce forest area in the southern part of the Tatra National Park in the Western Carpathians in Slovakia, Central Europe. The aim of this work is to study the vegetation composition of spruce forest at differently managed sites four years after this disturbance. Four study areas were selected for this purpose: (i an area where the fallen trees were extracted and new seedlings were planted; (ii an area, which was hit by a forest fire after the extraction; (iii an area where no active management was applied; (iv a reference forest unaffected by such disturbance. A total of 100 plots were selected, 25 of each area type. The result of DCA and CCA analyses consistently indicated that after this short period the non-extracted and extracted areas are currently most similar to the reference forest area, while the fire affected area differed. A one-way ANOVA comparing species cover for the different plot sizes indicated some significant differences between the extracted and non-extracted plots. The abundance of certain species commonly occurring in spruce forests, such as Dyopteris carthusiana agg., Vaccinium myrtillus and Avenella flexuosa, correlated weli with the non-extracted plots, compared to the extracted plots. Coverage of these species was lowest on burned plots. The lowest Shannon-Wiener’s diversity values were recorded in burned plots. This was most likely a consequence of mono-dominant competitive species spread, (mainly Chamerion angustifolium which profited from the altered ecological conditions following the fire. Although some differences were also registered in the Shannon-Wiener diversity index between the remaining research plots, however these were not statistically significant. The most important results of our investigations include the extensive influence of fire disturbance on vegetation. Study revealed that the wind-disturbed area is able to regenerate

  8. Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: characteristics of biological diversity, structure and productivity

    Directory of Open Access Journals (Sweden)

    I. M. Danilin

    2016-12-01

    Full Text Available Complex estimation of forest ecosystems dynamics based on detailing characteristics of structure, growth and productivity of the stands and describing general geographical and biological management options for preserving their biodiversity and sustaining stability are discussed in the paper by describing examples of tree stands restored on burned and logged areas in mountain regions of Siberia. On vast areas in Siberia, characterized as sub-boreal, subarid and with a strongly continental climate, forests grow on seasonally frozen soils and in many cases are surrounded by vast steppe and forest-steppe areas and uplands. Developing criteria for sustainability of mountain forest ecosystems is necessary for forest resource management and conservation. It is therefore important to obtain complex biometric characteristics on forest stands and landscapes and to thoroughly study their structure, biological diversity and productivity. Morphometric methods, Weibull simulation and allometric equations were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground stand components were also studied.

  9. Sustaining the Landscape: A Method for Comparing Current and Desired Future Conditions of Forest Ecosystems in the North Cumberland Plateau and Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Druckenbrod, D.L.

    2004-12-22

    This project initiates an integrated-landscape conservation approach within the Northern Cumberlands Project Area in Tennessee and Kentucky. The mixed mesophytic forests within the Cumberland Plateau and Mountains are among the most diverse in North America; however, these forests have been impacted by and remain threatened from changes in land use across this landscape. The integrated-landscape conservation approach presented in this report outlines a sequence of six conservation steps. This report considers the first three of these steps in two, successive stages. Stage 1 compares desired future conditions (DFCs) and current prevailing conditions (CPCs) at the landscape-scale utilizing remote sensing imagery, remnant forests, and descriptions of historical forest types within the Cumberland Plateau. Subsequently, Stage 2 compares DFCs and CPCs for at-risk forest types identified in Stage 1 utilizing structural, compositional, or functional attributes from USFS Forest Inventory and Analysis data. Ecological indicators will be developed from each stage that express the gaps between these two realizations of the landscape. The results from these first three steps will directly contribute to the final three steps of the integrated-landscape conservation approach by providing guidance for the generation of new conservation strategies in the Northern Cumberland Plateau and Mountains.

  10. Forest inventory, Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final report

    International Nuclear Information System (INIS)

    Narolski, S.W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area

  11. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Narolski, Steven W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  12. Water quality concerns due to forest fires: polycyclic aromatic hydrocarbons (PAH) contamination of groundwater from mountain areas.

    Science.gov (United States)

    Mansilha, C; Carvalho, A; Guimarães, P; Espinha Marques, J

    2014-01-01

    Water quality alterations due to forest fires may considerably affect aquatic organisms and water resources. These impacts are cumulative as a result of pollutants mobilized from fires, chemicals used to fight fire, and postfire responses. Few studies have examined postfire transport into water resources of trace elements, including the polycyclic aromatic hydrocarbons (PAH), which are organic pollutants produced during combustion and are considered carcinogenic and harmful to humans. PAH are also known to adversely affect survival, growth, and reproduction of many aquatic species. This study assessed the effects of forest wildfires on groundwater from two mountain regions located in protected areas from north and central Portugal. Two campaigns to collect water samples were performed in order to measure PAH levels. Fifteen of 16 studied PAH were found in groundwater samples collected at burned areas, most of them at concentrations significantly higher than those found in control regions, indicating aquifer contamination. The total sum of PAH in burned areas ranged from 23.1to 95.1 ng/L with a median of 62.9 ng/L, which is one- to sixfold higher than the average level measured in controls (16.2 ng/L). In addition, in control samples, the levels of light PAH with two to four rings were at higher levels than heavy PAH with five or six rings, thus showing a different profile between control and burned sites. The contribution of wildfires to groundwater contamination by PAH was demonstrated, enabling a reliable assessment of the impacts on water quality and preparation of scientifically based decision criteria for postfire forest management practices.

  13. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    Science.gov (United States)

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  14. Detection of Spatio-Temporal Changes of Norway Spruce Forest Stands in Ore Mountains Using Landsat Time Series and Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Jan Mišurec

    2016-01-01

    Full Text Available The study focuses on spatio-temporal changes in the physiological status of the Norway spruce forests located at the central and western parts of the Ore Mountains (northwestern part of the Czech Republic, which suffered from severe environmental pollution from the 1970s to the 1990s. The situation started improving after the pollution loads decreased significantly at the end of the 1990s. The general trends in forest recovery were studied using the tasseled cap transformation and disturbance index (DI extracted from the 1985–2015 time series of Landsat data. In addition, 16 vegetation indices (VIs extracted from airborne hyperspectral (HS data acquired in 1998 using the Advanced Solid-State Array Spectroradiometer (ASAS and in 2013 using the Airborne Prism Experiment (APEX were used to study changes in forest health. The forest health status analysis of HS image data was performed at two levels of spatial resolution; at a tree level (original 2.0 m spatial resolution, as well as at a forest stand level (generalized to 6.0 m spatial resolution. The temporal changes were studied primarily using the VOG1 vegetation index (VI as it was showing high and stable sensitivity to forest damage for both spatial resolutions considered. In 1998, significant differences between the moderately to heavily damaged (central Ore Mountains and initially damaged (western Ore Mountains stands were detected for all the VIs tested. In 2013, the stands in the central Ore Mountains exhibited VI values much closer to the global mean, indicating an improvement in their health status. This result fully confirms the finding of the Landsat time series analysis. The greatest difference in Disturbance Index (DI values between the central (1998: 0.37 and western Ore Mountains stands (1998: −1.21 could be seen at the end of the 1990s. Nonetheless, levelling of the physiological status of Norway spruce was observed for the central and western parts of the Ore Mountains in

  15. Topographic Correction of Landsat TM-5 and Landsat OLI-8 Imagery to Improve the Performance of Forest Classification in the Mountainous Terrain of Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Uday Pimple

    2017-02-01

    Full Text Available The accurate mapping and monitoring of forests is essential for the sustainable management of forest ecosystems. Advancements in the Landsat satellite series have been very useful for various forest mapping applications. However, the topographic shadows of irregular mountains are major obstacles to accurate forest classification. In this paper, we test five topographic correction methods: improved cosine correction, Minnaert, C-correction, Statistical Empirical Correction (SEC and Variable Empirical Coefficient Algorithm (VECA, with multisource digital elevation models (DEM to reduce the topographic relief effect in mountainous terrain produced by the Landsat Thematic Mapper (TM-5 and Operational Land Imager (OLI-8 sensors. The effectiveness of the topographic correction methods are assessed by visual interpretation and the reduction in standard deviation (SD, by means of the coefficient of variation (CV. Results show that the SEC performs best with the Shuttle Radar Topographic Mission (SRTM 30 m × 30 m DEM. The random forest (RF classifier is used for forest classification, and the overall accuracy of forest classification is evaluated to compare the performances of the topographic corrections. Our results show that the C-correction, SEC and VECA corrected imagery were able to improve the forest classification accuracy of Landsat TM-5 from 78.41% to 81.50%, 82.38%, and 81.50%, respectively, and OLI-8 from 81.06% to 81.50%, 82.38%, and 81.94%, respectively. The highest accuracy of forest type classification is obtained with the newly available high-resolution SRTM DEM and SEC method.

  16. 75 FR 43138 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Howard Elliot Johnson Fuels and...

    Science.gov (United States)

    2010-07-23

    ... Analysis. Generally speaking, the Watershed Analysis determined that vegetation condition in the... scoping process. The Ochoco National Forest will give notice of the full environmental analysis and.... DATES: Comments concerning the scope of the analysis must be received by August 23, 2010. The draft...

  17. Landscape modeling for forest restoration planning and assessment: lessons from the Southern Appalachian Mountains

    Science.gov (United States)

    Weimin Xi; Robert N. Coulson; John D. Waldron; Maria D. Tchakerian; Charles W. Lafon; David M. Cairns; Andrew G. Birt; Kier D. Klepzig

    2009-01-01

    Restoration planning, evaluation, and implementation are important in areas where abiotic disturbances (e.g., wildfires, hurricanes, and ice storms), biotic disturbances (e.g., outbreaks of native and exotic invasive pests and diseases), and anthropogenic disturbances (e.g., harvesting, planting, and fire exclusion) have altered forest...

  18. The relation between tree burn severity and forest structure in the Rocky Mountains

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham

    2007-01-01

    Many wildfire events have burned thousands of hectares across the western United States, such as the Bitterroot (Montana), Rodeo-Chediski (Arizona), Hayman (Colorado), and Biscuit (Oregon) fires. These events led to Congress enacting the Healthy Forest Restoration Act of 2003, which, with other policies, encourages federal and state agencies to decrease wildfire risks...

  19. Effects of fuel treatments on carbon-disturbance relationships in forests of the northern Rocky Mountains

    Science.gov (United States)

    Elizabeth Reinhardt; Lisa Holsinger

    2010-01-01

    Fuel treatments alter conditions in forested stands at the time of the treatment and subsequently. Fuel treatments reduce on-site carbon and also change the fire potential and expected outcome of future wildfires, including their carbon emissions. We simulated effects of fuel treatments on 140 stands representing seven major habitat type groups of the northern Rocky...

  20. Diversity of forest vegetation across a strong gradient of climatic continentality: Western Sayan Mountains, southern Siberia

    Czech Academy of Sciences Publication Activity Database

    Chytrý, M.; Danihelka, Jiří; Kubešová, S.; Lustyk, P.; Ermakov, N.; Hájek, Michal; Hájková, Petra; Kočí, M.; Otýpková, Z.; Roleček, J.; Řezníčková, M.; Šmarda, P.; Valachovič, M.; Popov, D.; Pišút, I.

    2008-01-01

    Roč. 196, č. 1 (2008), s. 61-83 ISSN 1385-0237 Grant - others:GA AV ČR(CZ) IAA6163303; RFBR(RU) RFBR 06-04-48971 Program:IA Institutional research plan: CEZ:AV0Z60050516 Keywords : forest * vegetation * Siberia Subject RIV: EF - Botanics Impact factor: 1.730, year: 2008

  1. Restoration of Central-European mountain Norway spruce forest 15 years after natural and anthropogenic disturbance

    Czech Academy of Sciences Publication Activity Database

    Nováková, M. H.; Edwards-Jonášová, Magda

    2015-01-01

    Roč. 144, 15 May (2015), s. 120-130 ISSN 0378-1127 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Picea abies forest * disturbance * bark beetle * salvage logging * natural regeneration * Herb-layer vegetation Subject RIV: GK - Forestry Impact factor: 2.826, year: 2015

  2. Detection System of HTTP DDoS Attacks in a Cloud Environment Based on Information Theoretic Entropy and Random Forest

    Directory of Open Access Journals (Sweden)

    Mohamed Idhammad

    2018-01-01

    Full Text Available Cloud Computing services are often delivered through HTTP protocol. This facilitates access to services and reduces costs for both providers and end-users. However, this increases the vulnerabilities of the Cloud services face to HTTP DDoS attacks. HTTP request methods are often used to address web servers’ vulnerabilities and create multiple scenarios of HTTP DDoS attack such as Low and Slow or Flooding attacks. Existing HTTP DDoS detection systems are challenged by the big amounts of network traffic generated by these attacks, low detection accuracy, and high false positive rates. In this paper we present a detection system of HTTP DDoS attacks in a Cloud environment based on Information Theoretic Entropy and Random Forest ensemble learning algorithm. A time-based sliding window algorithm is used to estimate the entropy of the network header features of the incoming network traffic. When the estimated entropy exceeds its normal range the preprocessing and the classification tasks are triggered. To assess the proposed approach various experiments were performed on the CIDDS-001 public dataset. The proposed approach achieves satisfactory results with an accuracy of 99.54%, a FPR of 0.4%, and a running time of 18.5s.

  3. Individual aerosol particles in ambient and updraft conditions below convective cloud bases in the Oman mountain region

    Science.gov (United States)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2014-03-01

    An airborne study of cloud microphysics provided an opportunity to collect aerosol particles in ambient and updraft conditions of natural convection systems for transmission electron microscopy (TEM). Particles were collected simultaneously on lacey carbon and calcium-coated carbon (Ca-C) TEM grids, providing information on particle morphology and chemistry and a unique record of the particle's physical state on impact. In total, 22 particle categories were identified, including single, coated, aggregate, and droplet types. The fine fraction comprised up to 90% mixed cation sulfate (MCS) droplets, while the coarse fraction comprised up to 80% mineral-containing aggregates. Insoluble (dry), partially soluble (wet), and fully soluble particles (droplets) were recorded on Ca-C grids. Dry particles were typically silicate grains; wet particles were mineral aggregates with chloride, nitrate, or sulfate components; and droplets were mainly aqueous NaCl and MCS. Higher numbers of droplets were present in updrafts (80% relative humidity (RH)) compared with ambient conditions (60% RH), and almost all particles activated at cloud base (100% RH). Greatest changes in size and shape were observed in NaCl-containing aggregates (>0.3 µm diameter) along updraft trajectories. Their abundance was associated with high numbers of cloud condensation nuclei (CCN) and cloud droplets, as well as large droplet sizes in updrafts. Thus, compositional dependence was observed in activation behavior recorded for coarse and fine fractions. Soluble salts from local pollution and natural sources clearly affected aerosol-cloud interactions, enhancing the spectrum of particles forming CCN and by forming giant CCN from aggregates, thus, making cloud seeding with hygroscopic flares ineffective in this region.

  4. Exploring interactions between payment for hydrologic service policies, landowner decisions, and ecohydrology in a Mexican cloud forest watershed: Is there a disconnect between the policy and the resource?

    Science.gov (United States)

    Asbjornsen, H.; Geissert, D.; Gomez-Tagle, A.; Holwerda, F.; Manson, R.; Perez-Maqueo, O.; Munoz-Villers, L.; Scullion, J.

    2013-05-01

    Payment for hydrologic service (PHS) programs are increasingly being used as a means to incentivize watershed protection by compensating upstream 'water producers' with payments made by downstream 'water consumers'. However, the effectiveness of PHS programs in achieving their target goals is often poorly understood. Here, we draw from insights obtained from socioeconomic and ecohydrological research in Veracruz, Mexico to explore interactions between PHS policies, landowner decisions, and hydrologic services. GIS analysis of land-cover changes during 2003-2009 combined with interviews of PHS participants indicated that despite lower deforestation rates on properties receiving PES payments, other factors were likely to have a greater influence on land use decisions than PHS payments per se, including opportunity costs and personal conservation ethic. The interviews also highlighted a general lack of trust and cooperation between the citizen participants and government administrators, which was reflected in the relatively low level of knowledge of the PHS programs' regulations and goals, the role of forests in protecting water resources, and a low level of co-financing by the private sector. An important premise of PHS programs is that protecting existing forest cover (and planting trees) will enhance water supply, especially in upland cloud forests that are due to their perceived role as water producers. Measurements of climate, steamflow, canopy fog interception, plant transpiration, soil water dynamics, and hydrologic flow paths were collected over a 3-year period to assess stand water balance and streamflow response under four different land covers: mature cloud forest, pasture, regenerating cloud forest, pine reforestation. Results suggested relatively minor additional inputs of fog to increasing streamflow in cloud forest watersheds, while conversion of forest to pasture did not markedly decrease dry season flows, but did increase annual flows due to lower

  5. Soil Microbial Biomass, Basal Respiration and Enzyme Activity of Main Forest Types in the Qinling Mountains

    Science.gov (United States)

    Cheng, Fei; Peng, Xiaobang; Zhao, Peng; Yuan, Jie; Zhong, Chonggao; Cheng, Yalong; Cui, Cui; Zhang, Shuoxin

    2013-01-01

    Different forest types exert essential impacts on soil physical-chemical characteristics by dominant tree species producing diverse litters and root exudates, thereby further regulating size and activity of soil microbial communities. However, the study accuracy is usually restricted by differences in climate, soil type and forest age. Our objective is to precisely quantify soil microbial biomass, basal respiration and enzyme activity of five natural secondary forest (NSF) types with the same stand age and soil type in a small climate region and to evaluate relationship between soil microbial and physical-chemical characters. We determined soil physical-chemical indices and used the chloroform fumigation-extraction method, alkali absorption method and titration or colorimetry to obtain the microbial data. Our results showed that soil physical-chemical characters remarkably differed among the NSFs. Microbial biomass carbon (Cmic) was the highest in wilson spruce soils, while microbial biomass nitrogen (Nmic) was the highest in sharptooth oak soils. Moreover, the highest basal respiration was found in the spruce soils, but mixed, Chinese pine and spruce stands exhibited a higher soil qCO2. The spruce soils had the highest Cmic/Nmic ratio, the greatest Nmic/TN and Cmic/Corg ratios were found in the oak soils. Additionally, the spruce soils had the maximum invertase activity and the minimum urease and catalase activities, but the maximum urease and catalase activities were found in the mixed stand. The Pearson correlation and principle component analyses revealed that the soils of spruce and oak stands obviously discriminated from other NSFs, whereas the others were similar. This suggested that the forest types affected soil microbial properties significantly due to differences in soil physical-chemical features. PMID:23840671

  6. Microbial N immobilization is of great importance in acidified mountain spruce forest soils

    Czech Academy of Sciences Publication Activity Database

    Tahovská, K.; Kaňa, Jiří; Bárta, J.; Oulehle, F.; Richter, A.; Šantrůčková, H.

    2013-01-01

    Roč. 59, April (2013), s. 58-71 ISSN 0038-0717 R&D Projects: GA AV ČR(CZ) KJB600960907; GA ČR(CZ) GAP504/12/1218 Institutional support: RVO:60077344 Keywords : N immobilization * microbial biomass * 15 N * N saturation * DOC * nitrate leaching * nitrification * C limitation * fungi/bacteria ratio * forest floor Subject RIV: CE - Biochemistry Impact factor: 4.410, year: 2013

  7. Detection of Single Tree Stems in Forested Areas from High Density ALS Point Clouds Using 3d Shape Descriptors

    Science.gov (United States)

    Amiri, N.; Polewski, P.; Yao, W.; Krzystek, P.; Skidmore, A. K.

    2017-09-01

    Airborne Laser Scanning (ALS) is a widespread method for forest mapping and management purposes. While common ALS techniques provide valuable information about the forest canopy and intermediate layers, the point density near the ground may be poor due to dense overstory conditions. The current study highlights a new method for detecting stems of single trees in 3D point clouds obtained from high density ALS with a density of 300 points/m2. Compared to standard ALS data, due to lower flight height (150-200 m) this elevated point density leads to more laser reflections from tree stems. In this work, we propose a three-tiered method which works on the point, segment and object levels. First, for each point we calculate the likelihood that it belongs to a tree stem, derived from the radiometric and geometric features of its neighboring points. In the next step, we construct short stem segments based on high-probability stem points, and classify the segments by considering the distribution of points around them as well as their spatial orientation, which encodes the prior knowledge that trees are mainly vertically aligned due to gravity. Finally, we apply hierarchical clustering on the positively classified segments to obtain point sets corresponding to single stems, and perform ℓ1-based orthogonal distance regression to robustly fit lines through each stem point set. The ℓ1-based method is less sensitive to outliers compared to the least square approaches. From the fitted lines, the planimetric tree positions can then be derived. Experiments were performed on two plots from the Hochficht forest in Oberösterreich region located in Austria.We marked a total of 196 reference stems in the point clouds of both plots by visual interpretation. The evaluation of the automatically detected stems showed a classification precision of 0.86 and 0.85, respectively for Plot 1 and 2, with recall values of 0.7 and 0.67.

  8. SPECIES-SPECIFIC FOREST VARIABLE ESTIMATION USING NON-PARAMETRIC MODELING OF MULTI-SPECTRAL PHOTOGRAMMETRIC POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    J. Bohlin

    2012-07-01

    Full Text Available The recent development in software for automatic photogrammetric processing of multispectral aerial imagery, and the growing nation-wide availability of Digital Elevation Model (DEM data, are about to revolutionize data capture for forest management planning in Scandinavia. Using only already available aerial imagery and ALS-assessed DEM data, raster estimates of the forest variables mean tree height, basal area, total stem volume, and species-specific stem volumes were produced and evaluated. The study was conducted at a coniferous hemi-boreal test site in southern Sweden (lat. 58° N, long. 13° E. Digital aerial images from the Zeiss/Intergraph Digital Mapping Camera system were used to produce 3D point-cloud data with spectral information. Metrics were calculated for 696 field plots (10 m radius from point-cloud data and used in k-MSN to estimate forest variables. For these stands, the tree height ranged from 1.4 to 33.0 m (18.1 m mean, stem volume from 0 to 829 m3 ha-1 (249 m3 ha-1 mean and basal area from 0 to 62.2 m2 ha-1 (26.1 m2 ha-1 mean, with mean stand size of 2.8 ha. Estimates made using digital aerial images corresponding to the standard acquisition of the Swedish National Land Survey (Lantmäteriet showed RMSEs (in percent of the surveyed stand mean of 7.5% for tree height, 11.4% for basal area, 13.2% for total stem volume, 90.6% for pine stem volume, 26.4 for spruce stem volume, and 72.6% for deciduous stem volume. The results imply that photogrammetric matching of digital aerial images has significant potential for operational use in forestry.

  9. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    Science.gov (United States)

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  10. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Wang, C.-J.; Huang, C.-C.

    2008-01-01

    To understand the behavior of 137 Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of 137 Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of 137 Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, 137 Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of 137 Cs labile fractions - bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter - were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of 137 Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable 137 Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals

  11. 77 FR 53839 - Shasta-Trinity National Forest; California; East McCloud Plantations Thinning Project

    Science.gov (United States)

    2012-09-04

    ... actions include road maintenance and reconstruction of National Forest System, new road construction and... maintenance and 36 miles of reconstruction on National Forest System (NFS) roads. Existing unauthorized routes... be rehabilitated when no longer needed for this project. Maintenance Level 1 (intermittent use) roads...

  12. [Soil organic carbon pools and their turnover under two different types of forest in Xiao-xing'an Mountains, Northeast China].

    Science.gov (United States)

    Gao, Fei; Jiang, Hang; Cui, Xiao-yang

    2015-07-01

    Soil samples collected from virgin Korean pine forest and broad-leaved secondary forest in Xiaoxing'an Mountains, Northeast China were incubated in laboratory at different temperatures (8, 18 and 28 °C) for 160 days, and the data from the incubation experiment were fitted to a three-compartment, first-order kinetic model which separated soil organic carbon (SOC) into active, slow, and resistant carbon pools. Results showed that the soil organic carbon mineralization rates and the cumulative amount of C mineralized (all based on per unit of dry soil mass) of the broad-leaved secondary forest were both higher than that of the virgin Korean pine forest, whereas the mineralized C accounted for a relatively smaller part of SOC in the broad-leaved secondary forest soil. Soil active and slow carbon pools decreased with soil depth, while their proportions in SOC increased. Soil resistant carbon pool and its contribution to SOC were both greater in the broad-leaved secondary forest soil than in the virgin Korean pine forest soil, suggesting that the broad-leaved secondary forest soil organic carbon was relatively more stable. The mean retention time (MRT) of soil active carbon pool ranged from 9 to 24 d, decreasing with soil depth; while the MRT of slow carbon pool varied between 7 and 24 a, increasing with soil depth. Soil active carbon pool and its proportion in SOC increased linearly with incubation temperature, and consequently, decreased the slow carbon pool. Virgin Korean pine forest soils exhibited a higher increasing rate of active carbon pool along temperature gradient than the broad-leaved secondary forest soils, indicating that the organic carbon pool of virgin Korean pine forest soil was relatively more sensitive to temperature change.

  13. Predicting forest height using the GOST, Landsat 7 ETM+, and airborne LiDAR for sloping terrains in the Greater Khingan Mountains of China

    Science.gov (United States)

    Gu, Chengyan; Clevers, Jan G. P. W.; Liu, Xiao; Tian, Xin; Li, Zhouyuan; Li, Zengyuan

    2018-03-01

    Sloping terrain of forests is an overlooked factor in many models simulating the canopy bidirectional reflectance distribution function, which limits the estimation accuracy of forest vertical structure parameters (e.g., forest height). The primary objective of this study was to predict forest height on sloping terrain over large areas with the Geometric-Optical Model for Sloping Terrains (GOST) using airborne Light Detection and Ranging (LiDAR) data and Landsat 7 imagery in the western Greater Khingan Mountains of China. The Sequential Maximum Angle Convex Cone (SMACC) algorithm was used to generate image endmembers and corresponding abundances in Landsat imagery. Then, LiDAR-derived forest metrics, topographical factors and SMACC abundances were used to calibrate and validate the GOST, which aimed to accurately decompose the SMACC mixed forest pixels into sunlit crown, sunlit background and shade components. Finally, the forest height of the study area was retrieved based on a back-propagation neural network and a look-up table. Results showed good performance for coniferous forests on all slopes and at all aspects, with significant coefficients of determination above 0.70 and root mean square errors (RMSEs) between 0.50 m and 1.00 m based on ground observed validation data. Higher RMSEs were found in areas with forest heights below 5 m and above 17 m. For 90% of the forested area, the average RMSE was 3.58 m. Our study demonstrates the tremendous potential of the GOST for quantitative mapping of forest height on sloping terrains with multispectral and LiDAR inputs.

  14. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T; Negron, José F; Smith, Jeremy M

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  15. Assessing Watershed-Wildfire Risks on National Forest System Lands in the Rocky Mountain Region of the United States

    Directory of Open Access Journals (Sweden)

    Jessica R. Haas

    2013-07-01

    Full Text Available Wildfires can cause significant negative impacts to water quality with resultant consequences for the environment and human health and safety, as well as incurring substantial rehabilitation and water treatment costs. In this paper we will illustrate how state-of-the-art wildfire simulation modeling and geospatial risk assessment methods can be brought to bear to identify and prioritize at-risk watersheds for risk mitigation treatments, in both pre-fire and post-fire planning contexts. Risk assessment results can be particularly useful for prioritizing management of hazardous fuels to lessen the severity and likely impacts of future wildfires, where budgetary and other constraints limit the amount of area that can be treated. Specifically we generate spatially resolved estimates of wildfire likelihood and intensity, and couple that information with spatial data on watershed location and watershed erosion potential to quantify watershed exposure and risk. For a case study location we focus on National Forest System lands in the Rocky Mountain Region of the United States. The Region houses numerous watersheds that are critically important to drinking water supplies and that have been impacted or threatened by large wildfires in recent years. Assessment results are the culmination of a broader multi-year science-management partnership intended to have direct bearing on wildfire management decision processes in the Region. Our results suggest substantial variation in the exposure of and likely effects to highly valued watersheds throughout the Region, which carry significant implications for prioritization. In particular we identified the San Juan National Forest as having the highest concentration of at-risk highly valued watersheds, as well as the greatest amount of risk that can be mitigated via hazardous fuel reduction treatments. To conclude we describe future opportunities and challenges for management of wildfire-watershed interactions.

  16. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    Science.gov (United States)

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  17. Night-time airflow in a forest canopy near a mountain crest

    Czech Academy of Sciences Publication Activity Database

    Sedlák, Pavel; Aubinet, M.; Heinesch, B.; Janouš, Dalibor; Pavelka, Marian; Potužníková, Kateřina; Yernaux, M.

    2010-01-01

    Roč. 150, č. 5 (2010), s. 736-744 ISSN 0168-1923 R&D Projects: GA AV ČR IAA300420803; GA AV ČR KJB3087301 Grant - others:CarboEurope Integrated Project(XE) GOCE-CT-2003-505572 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z60870520 Keywords : Spruce forest * Canopy layer * Slope * Drainage flow * Wind profile Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.228, year: 2010

  18. Comparative Structural Dynamics of the Janj Mixed Old-Growth Mountain Forest in Bosnia and Herzegovina: Are Conifers in a Long-Term Decline?

    Directory of Open Access Journals (Sweden)

    Srdjan Keren

    2014-06-01

    Full Text Available Regression of conifers in European mixed old-growth mountain forests has been observed for a long period and studied from different aspects. Old-growth (OG forests in Bosnia and Herzegovina (BiH have not experienced heavy air pollution and chronic overbrowsing that have affected many other European OG forests, while climatic and anthropogenic disturbances have been well documented. We analysed stand structure in the Janj OG forest, compared it with inventories of Lom and Perucica OG forests (BiH and with earlier inventories of the same reserves. At present, OG forest Janj is characterized by a high growing stock (1215 m3∙ha−1. This is due to good site quality, prevalence of conifers (84% and dominant endogenous processes in recent decades. In all three OG forests, indicators of structural change exhibited progression of European beech over time. Historical evidence revealed the occurrence of warm summers and droughts followed by bark beetle outbreaks in the 1920s, 1940s and early 1950s, which in turn influenced a marked conifer decline. It seems likely that repeated canopy opening released waves of European beech regeneration. These stand structural changes have delayed the rejuvenation of conifers and can help explain the early observations of conifer decline.

  19. Simulating Water-Use Efficiency of Piceacrassi folia Forest under Representative Concentration Pathway Scenarios in the Qilian Mountains of Northwest China

    Directory of Open Access Journals (Sweden)

    Shouzhang Peng

    2016-07-01

    Full Text Available The current study used the Biome-Bio Geochemical Cycle (Biome-BGC model to simulate water-use efficiency (WUE of Piceacrassi folia (P. crassifolia forest under four representative concentration pathway (RCP scenarios, and investigated the responses of forest WUE to different combinations of climatic changes and CO2 concentrations in the Qilian Mountains of Northwest China. The model was validated by comparing simulated forest net primary productivity and transpiration under current climatic condition with independent field-measured data. Subsequently, the model was used to predict P. crassi folia forest WUE response to different climatic and CO2 change scenarios. Results showed that (1 increases in temperature, precipitation and atmospheric CO2 concentrations led to associated increases in WUE (ranging from 54% to 66% above the reference climate; (2 effect of CO2 concentration (increased WUE from 36% to 42.3% was more significant than that of climate change (increased WUE from 2.4% to 15%; and (3 forest WUE response to future global change was more intense at high elevations than at low ones, with CO2 concentration being the main factor that controlled forest WUE variation. These results provide valuable insight to help understand how these forest types might respond to future changes in climate and atmospheric CO2 concentration.

  20. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  1. Excess of Organic Carbon in Mountain Spruce Forest Soils after Bark Beetle Outbreak Altered Microbial N Transformations and Mitigated N-Saturation.

    Directory of Open Access Journals (Sweden)

    Jiří Kaňa

    Full Text Available Mountain forests in National park Bohemian Forest (Czech Republic were affected by bark beetle attack and windthrows in 2004-2008, followed by an extensive tree dieback. We evaluated changes in the biochemistry of the uppermost soil horizons with the emphasis on carbon (C and nitrogen (N cycling in a near-natural spruce (Picea abies mountain forest after the forest dieback, and compared it with an undisturbed control plot of similar age, climate, elevation, deposition, N-saturation level, and land use history. We hypothesised that the high litter input after forest dieback at the disturbed plot and its consequent decomposition might influence the availability of C for microorganisms, and consequently, N transformations in the soil. The concentrations of dissolved organic C (DOC and N (DON in soil water extracts rapidly increased at the disturbed plot for 3 yeas and then continually decreased. Net ammonification exhibited a similar trend as DOC and DON, indicating elevated mineralization. Despite the high ammonium concentrations found after the forest dieback (an increase from 0.5 mmol kg-1 to 2-3 mmol kg-1, net nitrification was stable and low during these 3 years. After the DOC depletion and decrease in microbial biomass 5 years after the forest dieback, net nitrification started to rise, and nitrate concentrations increased from 0.2-1 mmol kg-1 to 2-3 mmol kg-1. Our results emphasize the key role of the availability of organic C in microbial N transformations, which probably promoted microbial heterotrophic activity at the expense of slow-growing nitrifiers.

  2. Wind power in the open countryside, forests, mountains and seas; Vindkraft i oeppet landskap, skog, fjaell och hav

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, Aasa [Sociologiska inst,, Lunds Univ., Lund (Sweden); Ek, Kristina [Inst. foer Ekonomi, teknik och samhaelle, Luleaa Tekniska Univ., Luleaa (Sweden); Johansson, Maria [Miljoepsykologi, Institutionen foer Arkitektur och byggd miljoe, Lunds Univ., Lund (Sweden); Persson, Lars [Inst. foer Nationalekonomi, Umeaa Univ., Umeaa (Sweden)

    2013-01-15

    There is a support for the development of wind power. Meanwhile, there is uncertainty about how the landscape and the local values will be affected. Of the environments forests, mountains, open countryside and the sea, you can not point to any that would be suitable in particular for wind power. To find the right places, it is necessary to weigh the various factors. The report describes local conditions that are important for anchoring of wind power projects. It is about how people use the environment, what qualities they perceive as valuable, and how wind power project can be coordinated with other interests. It is about how people use the environment, what qualities they perceive as valuable, and how wind power project can be coordinated with other interests. Research also shows that people demand facts about wind power project's benefits and costs, both environmentally and economically. Also the ownership of wind turbines is important for attitude to planned wind power projects. The report is based on surveys and interview studies undertaken by an interdisciplinary research team in the areas of economics, environmental psychology and sociology. These studies underline the importance of dialogue and participation for all who feel concerned by a wind power establishment.

  3. EVALUATION OF VERTICAL LACUNARITY PROFILES IN FORESTED AREAS USING AIRBORNE LASER SCANNING POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    B. Székely

    2016-06-01

    Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.

  4. Response of high elevation rocky mountain (Wyoming, USA) forest carbon dioxide and water vapor fluxes to a bark beetle epidemic

    Science.gov (United States)

    Frank, J. M.; Massman, W. J.

    2010-12-01

    The GLEES-AmeriFlux site is located in the Snowy Range Mountains, Medicine Bow National Forest, southeastern Wyoming [41o21’52” N, 106o14’22” W; 3190 m MSL]. Since November 1999, measurements of surface energy balance, momentum, CO2, and water vapor eddy-covariance fluxes have been made at the subalpine site which is dominated by an Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forest. An ongoing spruce beetle (Dendroctonus rufipennis) outbreak has caused significant tree mortality in the forest over the past few years. In this study we investigate the impact of this bark beetle epidemic on the net ecosystem exchange of carbon (NEE) and evapotranspiration (ET); to achieve this goal we quantify the impact of significant eddy-covariance measurement issues. From 2006 to 2009 the magnitude of NEE decreased steadily by an average of 0.8 MgC ha-1 yr-1, which resulted in the reduction of the annual C sink from 2.9 to 0.6 MgC ha-1 yr-1. Over this time ET decreased steadily from 72.2 to 58.3 cm yr-1. The importance of the Webb-Pearman-Leuning (WPL) correction due to self-heating associated with open-path CO2/H2O analyzers was quantified by applying a thermodynamic model based on (1) a generalized model for instrument surface temperatures and (2) measured and site-specific modeled surface temperatures. The increase in measured NEE (towards being a net C source) due to the generalized model (1) was 2.2 MgC ha-1 yr-1, while the site specific corrections (2) accounted for an increase of 2.8 MgC ha-1 yr-1. The self-heating correction was much less important with ET measurements, increasing the measured flux by 0.5 cm yr-1, regardless of which method of determining surface temperature was used.

  5. Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley

    Directory of Open Access Journals (Sweden)

    J. R. Pierce

    2012-04-01

    Full Text Available The Whistler Aerosol and Cloud Study (WACS 2010, included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6–11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from <1 μg m−3 to ∼6 μg m−3. Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6–11 July, the anthropogenic influence was minimal with sulfate concentrations <0.2 μg m−3 and SO2 mixing ratios ≈ 0.05–0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO2 mixing ratios were relatively low, box-model simulations show that nucleation and growth may be modeled accurately if Jnuc = 3 × 10−7[H2SO4] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2–5 nm h−1 with a 10–25% probability of growing to CCN sizes (100 nm in the first two days as opposed to being scavenged by coagulation with larger particles. The nucleated particles were observed to grow to ∼200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (κ was ∼0.1 for particles larger 150 nm, but for smaller particles near 100 nm the κ value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO2, the rapid growth rates of the regionally nucleated particles – due to condensation of biogenic SOA – results in an unusually high efficiency of conversion of

  6. Automatic Mapping of Forest Stands Based on Three-Dimensional Point Clouds Derived from Terrestrial Laser-Scanning

    Directory of Open Access Journals (Sweden)

    Tim Ritter

    2017-07-01

    Full Text Available Mapping of exact tree positions can be regarded as a crucial task of field work associated with forest monitoring, especially on intensive research plots. We propose a two-stage density clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree diameter estimates based on terrestrial laser-scanning (TLS point cloud data sampled under limited sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter in breast height (DBH distribution, and to estimate single trees DBH with a mean average deviation of ±2.90 cm compared with tape measurements as reference.

  7. Disturbance history and stand dynamics in secondary and old-growth forests of the Southern Appalachian Mountains, USA

    Science.gov (United States)

    Sarah M. Butler; Alan S. White; Katherine J. Elliott; Robert S Seymour

    2014-01-01

    BUTLER, S. M. (Family Forest Research Center, University of Massachusetts, Amherst, MA 01003), A. S. WHITE (School of Forest Resources, University of Maine, Orono, ME 04469-5755), K. J. ELLIOTT (Coweeta Hydrologic Laboratory, Center for Forest Watershed Science, Southern Research Station, USDA Forest Service, Otto, NC 28763) AND R. S. SEYMOUR (School of Forest...

  8. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  9. Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador

    Directory of Open Access Journals (Sweden)

    R. Rollenbeck

    2006-01-01

    Full Text Available Terrestrial ecosystems in southern Ecuador are strongly affected by interannual climate variations. This holds especially true for the episodic El Niño events, which cause above-normal precipitation in the coastal region of Ecuador and below normal values in the eastern provinces of the Amazon basin (Bendix, 1999. For the transitional zone between these two extremes, which consists mainly of the andean slopes and larger interandean basins the effect on interannual climate variability is not well known. The PREDICT project monitors regional climate in the provinces of Loja and Zamora-Chinchipe (4° S/79° W, where a strong gradients of precipitation are observed. Between the eastern slopes of the Cordillera Real and the dry valley of Catamayo, which are only 70km apart, rain totals drop from over 4000 mm to only 300 mm per year. These two extremes represent the both sides of the Andean mountain chain and are completely covered by the study area, which is 120 km in diameter. Methods used are a combination of point measurements (climate stations and remote sensing devices (weather radar, satellite imagery, which enable a high-resolution real-time observation of rain distribution and underlying processes. By this, ideal conditions are given to monitor a potential shift of the transition zone between below-average and above-average rainfall situated in this region, if another ENSO-anomaly occurs. Furthermore variability of atmospheric nutrient inputs is analysed within the scope of the project, to assess further impacts on this ecosystem.

  10. Precipitation dynamics and chemical properties in tropical mountain forests of Ecuador

    Science.gov (United States)

    Rollenbeck, R.; Fabian, P.; Bendix, J.

    2006-01-01

    Terrestrial ecosystems in southern Ecuador are strongly affected by interannual climate variations. This holds especially true for the episodic El Niño events, which cause above-normal precipitation in the coastal region of Ecuador and below normal values in the eastern provinces of the Amazon basin (Bendix, 1999). For the transitional zone between these two extremes, which consists mainly of the andean slopes and larger interandean basins the effect on interannual climate variability is not well known. The PREDICT project monitors regional climate in the provinces of Loja and Zamora-Chinchipe (4° S/79° W), where a strong gradients of precipitation are observed. Between the eastern slopes of the Cordillera Real and the dry valley of Catamayo, which are only 70km apart, rain totals drop from over 4000 mm to only 300 mm per year. These two extremes represent the both sides of the Andean mountain chain and are completely covered by the study area, which is 120 km in diameter. Methods used are a combination of point measurements (climate stations) and remote sensing devices (weather radar, satellite imagery), which enable a high-resolution real-time observation of rain distribution and underlying processes. By this, ideal conditions are given to monitor a potential shift of the transition zone between below-average and above-average rainfall situated in this region, if another ENSO-anomaly occurs. Furthermore variability of atmospheric nutrient inputs is analysed within the scope of the project, to assess further impacts on this ecosystem.

  11. Fog in a marginal agricultural area surrounded by montane Andean cloud forest during El Niño climate

    Science.gov (United States)

    García-Santos, G.

    2010-07-01

    The aim of the present study was to evaluate temporal variations of water inputs, rainfall and fog (cloud water), and its contribution to the water balance in a marginal agricultural area of potato surrounded by tropical montane cloud forest in Colombia. Fog in the air boundary layer was estimated using a cylindrical fog collector. Liquid water content of fog events were evaluated before and during natural climate event of El Niño. Our study shows the temporal variation of these two water inputs in both daily and monthly cycles on Boyacá at 2900 m a.s.l. Rainfall was the most frequently observed atmospheric phenomenon, being present on average 62% of the days per year, whereas fog was 45% of the time. Reflected on the lower frequency, annual amount of fog was 11% of precipitation. However during the anomalous dry climate of El Niño, total amount of rainfall was negligible and the few fog events were the only water source for plant growth. Estimated water crop requirements were higher than the water inputs. The survival of the crops was explained by meteorological conditions during dew and fog events. High relative humidity might have eased the plant’s water stress by decreasing transpiration and temperature in leaves and soil, affecting the water balance and the heat exchange between the atmosphere-land interfaces in the marginal agricultural areas during exceptional dry climate.

  12. Effectiveness of native arbuscular mycorrhiza on the growth of four tree forest species from the Santa Marta Mountain, Veracruz (Mexico)

    Energy Technology Data Exchange (ETDEWEB)

    Retama-Ortiz, Y.; Ávila-Bello, C.H.; Alarcón, A.; Ferrera-Cerrato, R.

    2017-11-01

    Aim of the study: The aim of this work was to isolate consortia of arbuscular mycorrhizal fungi (AMF) associated to Liquidambar styraciflua in soils of the Santa Marta Mountain in Veracruz, and to select highly effective mycorrhizal consortia on promoting the growth of four tree forest species with economic and ecological importance. Area of study: Santa Marta Mountain, inside the buffer area of the Los Tuxtlas Biological Reserve in Veracruz (México). Materials and methods: Ten composite samples of rhizosphere soil were collected from L. styraciflua trees of 13-15 cm DBH (diameter at breast height). Roots were fixed in FAA solution to determine the mycorrhizal colonization percentage, the abundance of morphospecies, and its effectiveness in promoting the growth of L. styraciflua, Terminalia amazonia, Cordia alliodora, and Cojoba arborea. Soil physical and chemical characteristics were also analysed, and soil type recognition was performed with the Reference Base for Soil FAO-ISRIC World-SICS. Mycorrhizal colonization was determined by the method of clearing and staining roots with trypan blue; total percentage of colonization was estimated by the Linderman-Biermann method. Spores were extracted for counting and identifying morphospecies from each soil sample, those with more effectiveness were selected and inoculated in the four tree species, based upon a completely random design there were evaluated height, number of leaves, total dry weight and foliar area. Main results: Average mycorrhizal colonization percentage was 45% from natural conditions, samples one and four showed 80% of AMF-colonization. Average number of spores was 617 in 100 g-1 of dry soil. Forty-seven AMF-morphospecies were identified. After eight months significant differences were observed in root colonization, height, number of leaves, total dry weight, leaf area and foliar analysis of N5+, P5+ and K+ on plants inoculated with rhizosphere samples of L. styraciflua. Terminalia amazonia and

  13. Effectiveness of native arbuscular mycorrhiza on the growth of four tree forest species from the Santa Marta Mountain, Veracruz (Mexico)

    International Nuclear Information System (INIS)

    Retama-Ortiz, Y.; Ávila-Bello, C.H.; Alarcón, A.; Ferrera-Cerrato, R.

    2017-01-01

    Aim of the study: The aim of this work was to isolate consortia of arbuscular mycorrhizal fungi (AMF) associated to Liquidambar styraciflua in soils of the Santa Marta Mountain in Veracruz, and to select highly effective mycorrhizal consortia on promoting the growth of four tree forest species with economic and ecological importance. Area of study: Santa Marta Mountain, inside the buffer area of the Los Tuxtlas Biological Reserve in Veracruz (México). Materials and methods: Ten composite samples of rhizosphere soil were collected from L. styraciflua trees of 13-15 cm DBH (diameter at breast height). Roots were fixed in FAA solution to determine the mycorrhizal colonization percentage, the abundance of morphospecies, and its effectiveness in promoting the growth of L. styraciflua, Terminalia amazonia, Cordia alliodora, and Cojoba arborea. Soil physical and chemical characteristics were also analysed, and soil type recognition was performed with the Reference Base for Soil FAO-ISRIC World-SICS. Mycorrhizal colonization was determined by the method of clearing and staining roots with trypan blue; total percentage of colonization was estimated by the Linderman-Biermann method. Spores were extracted for counting and identifying morphospecies from each soil sample, those with more effectiveness were selected and inoculated in the four tree species, based upon a completely random design there were evaluated height, number of leaves, total dry weight and foliar area. Main results: Average mycorrhizal colonization percentage was 45% from natural conditions, samples one and four showed 80% of AMF-colonization. Average number of spores was 617 in 100 g-1 of dry soil. Forty-seven AMF-morphospecies were identified. After eight months significant differences were observed in root colonization, height, number of leaves, total dry weight, leaf area and foliar analysis of N5+, P5+ and K+ on plants inoculated with rhizosphere samples of L. styraciflua. Terminalia amazonia and

  14. Genetic effects of air pollution on forest tree species of the Carpathian Mountains

    International Nuclear Information System (INIS)

    Longauer, Roman; Goemoery, Dusan; Paule, Ladislav; Blada, Ioan; Popescu, Flaviu; Mankovska, Blanka; Mueller-Starck, Gerhard; Schubert, Roland; Percy, Kevin; Szaro, Robert C.; Karnosky, David F.

    2004-01-01

    The effects of air pollution on the genetic structure of Norway spruce, European silver fir and European beech were studied at four polluted sites in Slovakia, Romania and Czech Republic. In order to reduce potential effects of site heterogeneity on the health condition, pair-wise sampling of pollution-tolerant and sensitive trees was applied. Genotypes of sampled trees were determined at 21 isozyme gene loci of spruce, 18 loci of fir and 15 loci of beech. In comparison with Norway spruce, fewer genetic differences were revealed in beech and almost no differentiation between pollution-tolerant and sensitive trees was observed in fir. In adult stands of Norway spruce, sensitive trees exhibited higher genetic multiplicity and diversity. The decline of pollution-sensitive trees may result thus in a gradual genetic depletion of pollution-exposed populations of Norway spruce through the loss of less frequent alleles with potential adaptive significance to altered stressing regimes in the future. Comparison of the subsets of sensitive and tolerant Norway spruce individuals as determined by presence or absence of discolorations (''spruce yellowing'') revealed different heterozygosity at 3 out of 11 polymorphic loci. - Genetic effects of air pollution on main forest trees of the Carpathians are species- and site-specific

  15. North American Monsoon Response to Eemian Climate Forcings and its Effect on Rocky Mountain Forests

    Science.gov (United States)

    Insel, N.; Berkelhammer, M. B.

    2017-12-01

    The key to recognizing and predicting future changes in regional climate and ecosystems lies in understanding the causes and characteristics of paleovariations. The Last Interglacial (LIG: 130-116 ka) is the most recent period in Earth history when temperatures are believed to have exceeded those of today. In this study, we are focusing on the response of the North American monsoon (NAM) to shifts in orbital forcings during LIG. In particular, we are using regional climate model (RegCM) simulations under LIG (115ka, 125 ka and 135 ka) and modern forcings to evaluate changes in the strength, timing, duration, and amount of moisture transported from different sources during the NAM season. Understanding these variations is critical to forecast seasonal supply of water to the southwestern U.S. under current warming conditions. In addition, cellulose extracted stable isotopes from Rocky Mountain Eemian wood samples provides both a tool to diagnose the model simulations and to evaluate the response of western U.S. tree species to changes in temperature and moisture availability. Our preliminary results indicate enhanced summer precipitation, wind shifts and changes in NAM characteristics in response to increased Northern Hemisphere insolation. The following features were observed: (1) The NAM strengthens and extends slightly more northward during the Eemian due to a shift in upper-level divergence. (2) The onset and duration of the NAM seems to be similar between modern and Eemian simulations. (3) Consistent with modern observations, simulations suggest a western NAM region in Arizona that receives most of its monsoonal moisture from the Gulf of California, while the eastern NAM region in New Mexico obtains most of its summer rains from the Gulf of Mexico. In the Eemian, we see a spatial shift from more depleted to more enriched source waters throughout the monsoon season. These changes in the summer climate are confirmed by the tree ring isotope data, which show a

  16. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    Science.gov (United States)

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  17. Forests

    Science.gov (United States)

    Louis R. Iverson; Mark W. Schwartz

    1994-01-01

    Originally diminished by development, forests are coming back: forest biomass is accumulating. Forests are repositories for many threatened species. Even with increased standing timber, however, biodiversity is threatened by increased forest fragmentation and by exotic species.

  18. HUTAN DALAM KEHIDUPAN MASYARAKAT HATAM DI LINGKUNGAN CAGAR ALAM PEGUNUNGAN ARFAK (Forest In Hatam Community Live On Arfak Mountains Natural Reserve Environment

    Directory of Open Access Journals (Sweden)

    Susan Trida Salosa

    2015-01-01

    Full Text Available ABSTRAK Pegunungan Arfak adalah suatu wilayah dengan keunikan tersendiri di wilayah Propinsi Papua Barat. Wilayah ini didominasi oleh gunung-gunung yang tinggi dan ekosistemnya adalah ekosistem daerah pegunungan dan alpin, serta mengingat keunikan flora, fauna dan lingkungannya, maka wilayah ini ditetapkan sebagai Cagar AlamPegunungan Arfak. Wilayah Pegunungan Arfak ditempati oleh suku besar Arfak yang salah satu sub sukunya adalah sub suku Hatam. Hutan merupakan bagian dari kehidupan masyarakat Hatam. Terbentuknya kabupaten-kabupaten pemekaran secara tidak langsung akan berakibat terhadap kelestarian jenis yang ada di cagar alam. Analisis SWOT yang digunakan dalam studi ini dimaksudkan untuk merumuskan strategi-strategi yang memungkinkan untuk mengakomodasi kepentingan masyarakat dan menjaga kelestarian cagar alam. Penelitian dilaksanakan di kampung Anggra dan Apui di Distrik Minyambouw pada bulan Juni 2013. Hasil studi menunjukkan bahwa hutan sangat berperan dalam kehidupan masyarakat terutama dalam mengaplikasi nilai budaya dalam kehidupan masyarakat. Strategi yang tepat untuk menjaga kelestarian hutan dan mengakomodasi kepentingan masyarakat diharapkan agar didasarkan pada kearifan masyarakat dalam memanfaatkan hutan. ABSTRACT Arfak Mountains is a region with its own uniqueness in the Province of West Papua. This region is dominated by high mountains with particularities of flora and fauna in ecosystems of mountain and alpine. Therefore, it is designated as a Natural Reservation of Arfak Mountains. Arfak Mountains region is occupied by a large tribe of Arfak which is Hatam is one of its sub-tribe. Forests are part of Hatam people's lives. Establishment of districts expansion will indirectly result in the preservation of species in natural reservation. SWOT analysis used in this study is intended to look at the potential strategies in accomodating people interest and preserving the natural reservation. The study was conducted in villages of

  19. Interactions between payments for hydrologic services, landowner decisions, and ecohydrological consequences: synergies and disconnection in the cloud forest zone of central Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Heidi Asbjornsen

    2017-06-01

    hydrologic services and people's decisions, behavior, and knowledge regarding forest conservation and water. Using central Veracruz as our case study, we identify areas of both synchrony and disconnection between PHS goals and outcomes. Mature and regenerating cloud forests (targeted by PHS were found to produce enhanced hydrologic services relative to areas converted to pasture, including reduced peak flows during large rain events and maintenance of dry-season base flows. However, unexpectedly, these hydrologic benefits from cloud forests were not necessarily greater than those from other vegetation types. Consequently, the location of forests in strategic watershed positions (e.g., where deforestation risk or hydrologic recharge are high may be more critical than forest type in promoting hydrologic functions within watersheds and should be considered when targeting PHS payments. While our results suggest that participation in PHS improved the level of knowledge among watershed inhabitants about forest-water relationships, a mismatch existed between payment amounts and landowner opportunity costs, which may contribute to the modest success in targeting priority areas within watersheds. Combined, these findings underscore the complexity of factors that influence motivations for PHS participation and land use decisions and behavior, and the importance of integrating understanding of both ecohydrological and socioeconomic dynamics into PHS design and implementation. We conclude by identifying opportunities for improving the design of PHS programs and recommending priority areas for future research and monitoring, both in Mexico and globally.

  20. Nitrate Leaching From a Mountain Forest Ecosystem with Gleysols Subjected to Experimentally Increased N Deposition

    International Nuclear Information System (INIS)

    Schleppi, Patrick; Hagedorn, Frank; Providoli, Isabelle

    2004-01-01

    Nitrate leaching was measured over seven years of nitrogen (N) addition in a paired-catchment experiment in Alptal, central Switzerland (altitude: 1200 m, bulk N deposition: 12 kg ha -1 a -1 ). Two forested catchments (1500 m 2 each) dominated by Picea abies) were delimited by trenches in the Gleysols. NH 4 NO 3 was added to one of the catchments using sprinklers. During the first year, the N addition was labelled with 15 N. Additionally, soil N transformations were studied in replicated plots. Pre-treatment NO 3 - -N leaching was 4 kg ha -1 a -1 from both catchments, and remained between 2.5 and 4.8 kg ha -1 a -1 in the control catchment. The first year of treatment induced an additional leaching of 3.1 kg ha -1 , almost 90% of which was labelled with 15 N, indicating that it did not cycle through the large N pools of the ecosystem (soil organic matter and plants). These losses partly correspond to NO 3 - from precipitation bypassing the soil due to preferential flow. During rain or snowmelt events, NO 3 - concentration peaks as the water table is rising, indicating flushing from the soil. Nitrification occurs temporarily along the water flow paths in the soil and can be the source of NO 3 - flushing. Its isotopic signature however, shows that this release mainly affects recently applied N, stored only between runoff events or up to a few weeks. At first, the ecosystem retained 90% of the added N (2/3 in the soil), but NO 3 - losses increased from 10 to 30% within 7 yr, indicating that the ecosystem became progressively N saturated

  1. Characterization of organic nitrogen in aerosols at a forest site in the southern Appalachian Mountains

    Science.gov (United States)

    Chen, Xi; Xie, Mingjie; Hays, Michael D.; Edgerton, Eric; Schwede, Donna; Walker, John T.

    2018-05-01

    This study investigates the composition of organic particulate matter in PM2.5 in a remote montane forest in the southeastern US, focusing on the role of organic nitrogen (N) in sulfur-containing secondary organic aerosol (nitrooxy-organosulfates) and aerosols associated with biomass burning (nitro-aromatics). Bulk water-soluble organic N (WSON) represented ˜ 14 % w/w of water-soluble total N (WSTN) in PM2.5 on average across seasonal measurement campaigns conducted in the spring, summer, and fall of 2015. The largest contributions of WSON to WSTN were observed in spring ( ˜ 18 % w/w) and the lowest in the fall ( ˜ 10 % w/w). On average, identified nitro-aromatic and nitrooxy-organosulfate compounds accounted for a small fraction of WSON, ranging from ˜ 1 % in spring to ˜ 4 % in fall, though were observed to contribute as much as 28 % w/w of WSON in individual samples that were impacted by local biomass burning. The highest concentrations of oxidized organic N species occurred during summer (average of 0.65 ng N m-3) along with a greater relative abundance of higher-generation oxygenated terpenoic acids, indicating an association with more aged aerosol. The highest concentrations of nitro-aromatics (e.g., nitrocatechol and methyl-nitrocatechol), levoglucosan, and aged SOA tracers were observed during fall, associated with aged biomass burning plumes. Nighttime nitrate radical chemistry is the most likely formation pathway for nitrooxy-organosulfates observed at this low NOx site (generally chemistry and deposition of reactive N.

  2. Effects of mountain pine beetle on fuels and expected fire behavior in lodgepole pine forests, Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Tania Schoennagel

    Full Text Available In Colorado and southern Wyoming, mountain pine beetle (MPB has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1-3 yrs], Grey [4-10 yrs], and Old-MPB [∼30 yrs]. MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30-55 km/hr across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25-35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr, active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior.

  3. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea

    International Nuclear Information System (INIS)

    Meusburger, K.; Mabit, L.; Alewell, C.; Park, J.H.; Sandor, T.

    2013-01-01

    The aim of this study is to assess and to validate the suitability of the stable nitrogen and carbon isotope signature as soil erosion indicators in a mountain forest site in South Korea. Our approach is based on the comparison of the isotope signature of ''stable'' landscape positions (reference sites), which are neither affected by erosion nor deposition, with eroding sites. For undisturbed soils we expect that the enrichment of δ 15 N and δ 13 C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in nitrogen and carbon content. Soil erosion processes potentially weaken this correlation. The 137 Cs method and the Revised Universal Soil Loss Equation (RUSLE) were applied for the soil erosion quantification. Erosion rates obtained with the 137 Cs method range from 0.9 t ha -1 yr -1 to 7 t ha -1 yr -1 . Considering the steep slopes of up to 40 and the erosive monsoon events (R factor of 6600 MJ mm ha -1 h -1 yr -1 ), the rates are plausible and within the magnitude of the RUSLE-modeled soil erosion rates, varying from 0.02 t ha -1 yr -1 to 5.1 t ha -1 yr -1 . The soil profiles of the reference sites showed significant (p < 0.0001) correlations between nitrogen and carbon content and its corresponding δ 15 N and δ 13 C signatures. In contrast, for the eroding sites this relationship was weaker and for the carbon not significant. These results confirm the usefulness of the stable carbon isotope signature as a qualitative indicator for soil disturbance. We could show further that the δ 15 N isotope signature can be used similarly for uncultivated sites. We thus propose that the stable δ 15 N and δ 13 C signature of soil profiles could serve as additional indicators confirming the accurate choice of the reference site in soil erosion studies using the 137 Cs method.

  4. Impact of the Mountain Pine Beetle on the Forest Carbon Cycle in British Columbia from 1999 TO 2008 (Invited)

    Science.gov (United States)

    Chen, J. M.; Czurylowicz, P.; Mo, G.; Black, T. A.

    2013-12-01

    The unprecedented mountain pine beetle (Dendroctonus ponderosae) (MPB) outbreak in British Columbia starting in 1998 affected about 50% of the lodgepole pine (Pinus contorta var. latifolia) forests occupying about 50% of the land area of the province. The impact of this outbreak on the C cycle is assessed in this study. Annual leaf area index (LAI) maps of the affected area from 1999 to 2008 were produced using SPOT VEGETATION data, and net ecosystem production (NEP) was modeled using inputs of LAI, land cover, soil texture and daily meteorological data with the Boreal Ecosystem Productivity Simulator (BEPS). Both LAI and NEP were validated using field measurements. LAI was found to decrease on average by 20% compared to pre-outbreak conditions, while NEP decreased on average by 90%. Annual NEP values ranged from 2.4 to -8.0 Tg C between 1999 and 2008, with the ecosystem changing from a carbon sink to a carbon source in 2000. The annual average NEP was -2.9 Tg C over the 10 years, resulting in a total loss of carbon of 29 Tg C to the atmosphere. The inter-annual variability of both LAI and NEP was characterized by substantial initial decreases followed by steady increases from 2006 to 2008 with NEP returning to near carbon neutrality in 2008 (-1.8 Pg C/y). The impact of this MPB outbreak appears to be less dramatic than previously anticipated. The apparent fast recovery of LAI and NEP after MPB attacks is examined under the framework of ecosystem resilience which was manifested in the form of secondary overstory and understory growth and increased production of non-attacked host trees.

  5. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring.

    Science.gov (United States)

    Kozlov, M V; Zverev, V; Zvereva, E L

    2017-12-01

    Both pollution and climate affect insect-plant interactions, but the combined effects of these two abiotic drivers of global change on insect herbivory remain almost unexplored. From 1991 to 2016, we monitored the population densities of 25 species or species groups of insects feeding on mountain birch (Betula pubescens ssp. czerepanovii) in 29 sites and recorded leaf damage by insects in 21 sites in subarctic forests around the nickel-copper smelter at Monchegorsk, north-western Russia. The leaf-eating insects demonstrated variable, and sometimes opposite, responses to pollution-induced forest disturbance and to climate variations. Consequently, we did not discover any general trend in herbivory along the disturbance gradient. Densities of eight species/species groups correlated with environmental disturbance, but these correlations weakened from 1991 to 2016, presumably due to the fivefold decrease in emissions of sulphur dioxide and heavy metals from the smelter. The densities of externally feeding defoliators decreased from 1991 to 2016 and the densities of leafminers increased, while the leaf roller densities remained unchanged. Consequently, no overall temporal trend in the abundance of birch-feeding insects emerged despite a 2-3°C elevation in spring temperatures. Damage to birch leaves by insects decreased during the observation period in heavily disturbed forests, did not change in moderately disturbed forests and tended to increase in pristine forests. The temporal stability of insect-plant interactions, quantified by the inverse of the coefficient of among-year variations of herbivore population densities and of birch foliar damage, showed a negative correlation with forest disturbance. We conclude that climate differently affects insect herbivory in heavily stressed versus pristine forests, and that herbivorous insects demonstrate diverse responses to environmental disturbance and climate variations. This diversity of responses, in combination with the

  6. Errors in terrain-based model preditions caused by altered forest inventory plot locations in the Southern Appalachian Mountains, USA.

    Science.gov (United States)

    Huei-Jin Wang; Stephen Prisley; Philip Radtke; John Coulston

    2012-01-01

    Forest modeling applications that cover large geographic area can benefit from the use of widely-held knowledge about relationships between forest attributes and topographic variables. A noteworthy example involved the coupling of field survey data from the Forest Inventory Analysis (FIA) program of USDA Forest Service with digital elevation model (DEM) data in...

  7. Forest resources of the Lincoln National Forest

    Science.gov (United States)

    John D. Shaw

    2006-01-01

    The Interior West Forest Inventory and Analysis (IWFIA) program of the USDA Forest Service, Rocky Mountain Research Station, as part of its national Forest Inventory and Analysis (FIA) duties, conducted forest resource inventories of the Southwestern Region (Region 3) National Forests. This report presents highlights of the Lincoln National Forest 1997 inventory...

  8. Water dynamics in a laurel montane cloud forest in the Garajonay National Park (Canary Islands, Spain)

    Science.gov (United States)

    García-Santos, G.; Marzol, M. V.; Aschan, G.

    Field measurements from February 2003 to January 2004 in a humid (but dry in summer) crest heath wood-land (degraded laurel forest) in the National Park of Garajonay, Canary Islands (Spain), were combined to calculate water balance components. The water balance domain is at the surface of the catchment and is controlled by atmospheric processes and vegetation. This study found that annual water income (rainfall plus fog water) was 1440 mm year-1, half of which was occult (or fog) precipitation, while stand transpiration estimated from measurements of sap flow amounted, annually, to 40% of potential evapotranspiration calculated from measurements of meteorological variables. The positive role of crest laurel forests, which transpire less water than is incoming from rain and fog is emphasised.

  9. Photochemical smog effects in mixed conifer forests along a natural gradient of ozone and nitrogen deposition in the San Bernardino Mountains.

    Science.gov (United States)

    Arbaugh, Michael; Bytnerowicz, Andrzej; Grulke, Nancy; Fenn, Mark; Poth, Mark; Temple, Patrick; Miller, Paul

    2003-06-01

    Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a period of about 40 years of multidisciplinary research. Recently, the focus of research has shifted from studying the effects of ozone to multiple pollutant effects. Recent studies have indicated that the combination of ozone and nitrogen may alter biomass allocation in pines towards that of deciduous trees, accelerate litter accumulation, and increase carbon sequestration rates in heavily polluted forests. Further study of the effects of multiple pollutants, and their long-term consequences on the mixed conifer ecosystem, cannot be adequately done using the original San Bernardino Mountains Air Pollution Gradient network. To correct deficiencies in the design, the new site network is being configured for long-term studies on multiple air pollutant concentrations and deposition, physiological and biochemical changes in trees, growth and composition of over-story species, biogeochemical cycling including carbon cycling and sequestration, water quality, and biodiversity of forest ecosystems. Eleven sites have been re-established. A comparison of 1974 stand composition with data from 2000 stand composition indicate that significant changes in species composition have occurred at some sites with less change at other sites. Moist, high-pollution sites have experienced the greatest amount of forest change, while dryer low-pollution sites have experienced the least amount of stand change. In general, ponderosa pine had the lowest basal area increases and the highest mortality across the San Bernardino Mountains.

  10. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform

    Science.gov (United States)

    Chen, Bangqian; Xiao, Xiangming; Li, Xiangping; Pan, Lianghao; Doughty, Russell; Ma, Jun; Dong, Jinwei; Qin, Yuanwei; Zhao, Bin; Wu, Zhixiang; Sun, Rui; Lan, Guoyu; Xie, Guishui; Clinton, Nicholas; Giri, Chandra

    2017-09-01

    Due to rapid losses of mangrove forests caused by anthropogenic disturbances and climate change, accurate and contemporary maps of mangrove forests are needed to understand how mangrove ecosystems are changing and establish plans for sustainable management. In this study, a new classification algorithm was developed using the biophysical characteristics of mangrove forests in China. More specifically, these forests were mapped by identifying: (1) greenness, canopy coverage, and tidal inundation from time series Landsat data, and (2) elevation, slope, and intersection-with-sea criterion. The annual mean Normalized Difference Vegetation Index (NDVI) was found to be a key variable in determining the classification thresholds of greenness, canopy coverage, and tidal inundation of mangrove forests, which are greatly affected by tide dynamics. In addition, the integration of Sentinel-1A VH band and modified Normalized Difference Water Index (mNDWI) shows great potential in identifying yearlong tidal and fresh water bodies, which is related to mangrove forests. This algorithm was developed using 6 typical Regions of Interest (ROIs) as algorithm training and was run on the Google Earth Engine (GEE) cloud computing platform to process 1941 Landsat images (25 Path/Row) and 586 Sentinel-1A images circa 2015. The resultant mangrove forest map of China at 30 m spatial resolution has an overall/users/producer's accuracy greater than 95% when validated with ground reference data. In 2015, China's mangrove forests had a total area of 20,303 ha, about 92% of which was in the Guangxi Zhuang Autonomous Region, Guangdong, and Hainan Provinces. This study has demonstrated the potential of using the GEE platform, time series Landsat and Sentine-1A SAR images to identify and map mangrove forests along the coastal zones. The resultant mangrove forest maps are likely to be useful for the sustainable management and ecological assessments of mangrove forests in China.

  11. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  12. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    Science.gov (United States)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  13. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Directory of Open Access Journals (Sweden)

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  14. Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Meusburger, K.; Mabit, L.; Alewell, C. [Basel Univ. (Switzerland). Environmental Geosciences; Park, J.H. [Ewha Womans Univ., Seoul (Korea, Republic of). Dept. of Environmental Science and Engineering; Sandor, T. [Central Agricultural Office Food and Feed Safety Directorate (Hungary). Radioanalytical Reference Lab.

    2013-07-01

    The aim of this study is to assess and to validate the suitability of the stable nitrogen and carbon isotope signature as soil erosion indicators in a mountain forest site in South Korea. Our approach is based on the comparison of the isotope signature of ''stable'' landscape positions (reference sites), which are neither affected by erosion nor deposition, with eroding sites. For undisturbed soils we expect that the enrichment of δ{sup 15}N and δ{sup 13}C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in nitrogen and carbon content. Soil erosion processes potentially weaken this correlation. The {sup 137}Cs method and the Revised Universal Soil Loss Equation (RUSLE) were applied for the soil erosion quantification. Erosion rates obtained with the {sup 137}Cs method range from 0.9 t ha{sup -1} yr{sup -1} to 7 t ha{sup -1} yr{sup -1}. Considering the steep slopes of up to 40 and the erosive monsoon events (R factor of 6600 MJ mm ha{sup -1} h{sup -1} yr {sup -1}), the rates are plausible and within the magnitude of the RUSLE-modeled soil erosion rates, varying from 0.02 t ha{sup -1} yr{sup -1} to 5.1 t ha{sup -1} yr{sup -1}. The soil profiles of the reference sites showed significant (p < 0.0001) correlations between nitrogen and carbon content and its corresponding δ{sup 15}N and δ{sup 13}C signatures. In contrast, for the eroding sites this relationship was weaker and for the carbon not significant. These results confirm the usefulness of the stable carbon isotope signature as a qualitative indicator for soil disturbance. We could show further that the δ{sup 15}N isotope signature can be used similarly for uncultivated sites. We thus propose that the stable δ{sup 15}N and δ{sup 13}C signature of soil profiles could serve as additional indicators confirming the accurate choice of the reference site in soil erosion studies using the {sup 137}Cs method.

  15. Using structural sustainability for forest health monitoring and triage: Case study of a mountain pine beetle (Dendroctonusponderosae)-impacted landscape

    Science.gov (United States)

    Jonathan A. Cale; Jennifer G. Klutsch; Nadir Erbilgin; Jose F. Negron; John D. Castello

    2016-01-01

    Heavy disturbance-induced mortality can negatively impact forest biota, functions, and services by drastically altering the forest structures that create stable environmental conditions. Disturbance impacts on forest structure can be assessed using structural sustainability - the degree of balance between living and dead portions of a tree population’s size-...

  16. Estimates of carbon stored in harvested wood products from United States Forest Service Rocky Mountain Region, 1906-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  17. Air pollution increases forest susceptibility to wildfires: a case study for the San Bernardino Mountains in southern California

    Science.gov (United States)

    N.E. Grulke; R.A. Minnich; T. Paine; P. Riggan

    2010-01-01

    Many factors increase susceptibility of forests to wildfire. Among them are increases in human population, changes in land use, fire suppression, and frequent droughts. These factors have been exacerbating forest susceptibility to wildfires over the last century in southern California. Here we report on the significant role that air pollution has on increasing forest...

  18. Observations of distributed snow depth and snow duration within diverse forest structures in a maritime mountain watershed

    Science.gov (United States)

    Dickerson-Lange, Susan E.; Lutz, James A.; Gersonde, Rolf; Martin, Kael A.; Forsyth, Jenna E.; Lundquist, Jessica D.

    2015-11-01

    Spatially distributed snow depth and snow duration data were collected over two to four snow seasons during water years 2011-2014 in experimental forest plots within the Cedar River Municipal Watershed, 50 km east of Seattle, Washington, USA. These 40 × 40 m forest plots, situated on the western slope of the Cascade Range, include unthinned second-growth coniferous forests, variable density thinned forests, forest gaps in which a 20 m diameter (approximately equivalent to one tree height) gap was cut in the middle of each plot, and old-growth forest. Together, this publicly available data set includes snow depth and density observations from manual snow surveys, distributed snow duration observations from ground temperature sensors and time-lapse cameras, meteorological data collected at two open locations and three forested locations, and forest canopy data from airborne light detection and ranging (LiDAR) data and hemispherical photographs. These colocated snow, meteorological, and forest data have the potential to improve understanding of forest influences on snow processes, and provide a unique model-testing data set for hydrological analyses in a forested, maritime watershed. We present empirical snow depletion curves within forests to illustrate an application of these data to improve subgrid representation of snow cover in distributed modeling.

  19. Regional forest landscape restoration priorities: Integrating historical conditions and an uncertain future in the northern Rocky Mountains

    Science.gov (United States)

    Barry L. Bollenbacher; Russell T. Graham; Keith M. Reynolds

    2014-01-01

    National law and policy direct the management of the National Forests, with restoring resilient forest conditions being an overarching theme. Climate is a major driver of disturbances that affect ecosystems, especially those with vegetation that show large departures from historical conditions. Drought, fire, insects, and diseases are common forest stressors whose...

  20. Impact of mountain pine beetle outbreaks on forest albedo and radiative forcing, as derived from Moderate Resolution Imaging Spectroradiometer, Rocky Mountains, USA

    Science.gov (United States)

    Vanderhoof, M.; Williams, C. A.; Ghimire, B.; Rogan, J.

    2013-12-01

    pine beetle (Dendroctonus ponderosae) outbreaks in North America are widespread and have potentially large-scale impacts on albedo and associated radiative forcing. Mountain pine beetle outbreaks in Colorado and southern Wyoming have resulted in persistent and significant increases in both winter albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.05 ± 0.01, in lodgepole pine (Pinus contorta) and ponderosa pine (Pinus ponderosa) stands, respectively) and spring albedo (change peaked 10 years post outbreak at 0.06 ± 0.01 and 0.04 ± 0.01, in lodgepole pine and ponderosa pine stands, respectively). Instantaneous top-of-atmosphere radiative forcing peaked for both lodgepole pine and ponderosa pine stands in winter at 10 years post outbreak at -1.7 ± 0.2 W m-2 and -1.4 ± 0.2 W m-2, respectively. The persistent increase in albedo with time since mountain pine beetle disturbance combined with the continued progression of the attack across the landscape from 1994-2011 resulted in an exponential increase in winter and annual radiative cooling (MW) over time. In 2011 the rate of radiative forcing within the study area reached -982.7 ± 139.0 MW, -269.8 ± 38.2 MW, -31.1 ± 4.4 MW, and -147.8 ± 20.9 MW in winter, spring, summer, and fall, respectively. An increase in radiative cooling has the potential to decrease sensible and/or latent heat flux by reducing available energy. Such changes could affect current mountain pine beetle outbreaks which are influenced by climatic conditions.

  1. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  2. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    Science.gov (United States)

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Optimization Forest Thinning Measures for Carbon Budget in a Mixed Pine-Oak Stand of the Qingling Mountains, China: A Case Study

    Directory of Open Access Journals (Sweden)

    Lin Hou

    2016-11-01

    Full Text Available Forest thinning is a silviculture treatment for sustainable forest management. It may promote growth of the remaining individuals by decreasing stand density, reducing competition, and increasing light and nutrient availability to increase carbon sequestration in the forest ecosystem. However, the action also increases carbon loss simultaneously by reducing carbon and other nutrient inputs as well as exacerbating soil CO2 efflux. To achieve a maximum forest carbon budget, the central composite design with two independent variables (thinning intensity and thinning residual removal rate was explored in a natural pine-oak mixed stand in the Qinling Mountains, China. The net primary productivity of living trees was estimated and soil CO2 efflux was stimulated by the Yasso07 model. Based on two years observation, the preliminary results indicated the following. Evidently chemical compounds of the litter of the tree species affected soil CO2 efflux stimulation. The thinning residual removal rate had a larger effect than thinning intensity on the net ecosystem productivity. When the selective thinning intensity and residual removal rate was 12.59% and 66.62% concurrently, the net ecosystem productivity reached its maximum 53.93 t·ha−1·year−1. The lower thinning intensity and higher thinning residual removal rated benefited the net ecosystem productivity.

  4. Reforestation Sites Show Similar and Nested AMF Communities to an Adjacent Pristine Forest in a Tropical Mountain Area of South Ecuador

    Science.gov (United States)

    Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo

    2013-01-01

    Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts. PMID:23671682

  5. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Directory of Open Access Journals (Sweden)

    Tongxin Hu

    Full Text Available In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March. Mean spring freeze-thaw cycle (FTC period (April soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  6. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  7. Effects of fire disturbance on soil respiration in the non-growing season in a Larix gmelinii forest in the Daxing'an Mountains, China.

    Science.gov (United States)

    Hu, Tongxin; Sun, Long; Hu, Haiqing; Guo, Futao

    2017-01-01

    In boreal forests, fire is an important part of the ecosystem that greatly influences soil respiration, which in turn affects the carbon balance. Wildfire can have a significant effect on soil respiration and it depends on the fire severity and environmental factors (soil temperature and snow water equivalent) after fire disturbance. In this study, we quantified post-fire soil respiration during the non-growing season (from November to April) in a Larix gmelinii forest in Daxing'an Mountains of China. Soil respiration was measured in the snow-covered and snow-free conditions with varying degrees of natural burn severity forests. We found that soil respiration decreases as burn severity increases. The estimated annual C efflux also decreased with increased burn severity. Soil respiration during the non-growing season approximately accounted for 4%-5% of the annual C efflux in all site types. Soil temperature (at 5 cm depth) was the predominant determinant of non-growing season soil respiration change in this area. Soil temperature and snow water equivalent could explain 73%-79% of the soil respiration variability in winter snow-covering period (November to March). Mean spring freeze-thaw cycle (FTC) period (April) soil respiration contributed 63% of the non-growing season C efflux. Our finding is key for understanding and predicting the potential change in the response of boreal forest ecosystems to fire disturbance under future climate change.

  8. A cloud-based home health care information sharing system to connect patients with home healthcare staff -A case report of a study in a mountainous region.

    Science.gov (United States)

    Nomoto, Shinichi; Utsumi, Momoe; Sasayama, Satoshi; Dekigai, Hiroshi

    2017-01-01

    We have developed a cloud system, the e-Renraku Notebook (e-RN) for sharing of home care information based on the concept of "patient-centricity". In order to assess the likelihood that our system will enhance the communication and sharing of information between home healthcare staff members and home-care patients, we selected patients who were residing in mountainous regions for inclusion in our study. We herein report the findings.Eighteen staff members from 7 medical facilities and 9 patients participated in the present study.The e-RN was developed for two reasons: to allow patients to independently report their health status and to have staff members view and respond to the information received. The patients and staff members were given iPads with the pre-installed applications and the information being exchanged was reviewed over a 54-day period.Information was mainly input by the patients (61.6%), followed by the nurses who performed home visits (19.9%). The amount of information input by patients requiring high-level nursing care and their corresponding staff member was significantly greater than that input by patients who required low-level of nursing care.This patient-centric system in which patients can independently report and share information with a member of the healthcare staff provides a sense of security. It also allows staff members to understand the patient's health status before making a home visit, thereby giving them a sense of security and confidence. It was also noteworthy that elderly patients requiring high-level nursing care and their staff counterpart input information in the system significantly more frequently than patients who required low-level care.

  9. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests

    Directory of Open Access Journals (Sweden)

    Kim André Vanselow

    2014-07-01

    Full Text Available In many arid mountains, dwarf shrubs represent the most important fodder and firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan, they are assumed to be overused. However, empirical evidence on this issue is lacking. We aim to provide a method capable of mapping vegetation in this mountain desert. We used random forest models based on remote sensing data (RapidEye, ASTER GDEM and 359 plots to predictively map total vegetative cover and the distribution of the most important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as present in 33.8% of the study area (accuracy 90.6%. The total cover of the dwarf shrub communities ranged from 0.5% to 51% (per pixel. Areas with very low cover were limited to the vicinity of roads and settlements. The model could explain 80.2% of the total variance. The most important predictor across the models was MSAVI2 (a spectral vegetation index particularly invented for low-cover areas. We conclude that the combination of statistical models and remote sensing data worked well to map vegetation in an arid mountainous environment. With this approach, we were able to provide tangible data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about their extensive depletion.

  10. Spatiotemporal variation of mosquito diversity (Diptera: Culicidae) at places with different land-use types within a neotropical montane cloud forest matrix.

    Science.gov (United States)

    Abella-Medrano, Carlos Antonio; Ibáñez-Bernal, Sergio; MacGregor-Fors, Ian; Santiago-Alarcon, Diego

    2015-09-24

    Land-use change has led to a dramatic decrease in total forest cover, contributing to biodiversity loss and changes of ecosystems' functions. Insect communities of medical importance can be favored by anthropogenic alterations, increasing the risk of novel zoonotic diseases. The response of mosquito (Diptera: Culicidae) abundance and richness to five land-use types (shade coffee plantation, cattle field, urban forest, peri-urban forest, well-preserved montane cloud forest) and three seasons ("dry", "rainy" and "cold") embedded in a neotropical montane cloud forest landscape was evaluated. Standardized collections were performed using 8 CDC miniature black-light traps, baited with CO2 throughout the year. Generalized additive mixed models were used to describe the seasonal and spatial trends of both species richness and abundance. Rank abundance curves and ANCOVAs were used to detect changes in the spatial and temporal structure of the mosquito assemblage. Two cluster analyses were conducted, using 1-βsim and the Morisita-Horn index to evaluate species composition shifts based on incidences and abundances. A total of 2536 adult mosquitoes were collected, belonging to 9 genera and 10 species; the dominant species in the study were: Aedes quadrivittatus, Wyeomyia adelpha, Wy. arthrostigma, and Culex restuans. Highest richness was recorded in the dry season, whereas higher abundance was detected during the rainy season. The urban forest had the highest species richness (n = 7) when compared to all other sites. Species composition cluster analyses show that there is a high degree of similarity in species numbers across sites and seasons throughout the year. However, when considering the abundance of such species, the well-preserved montane cloud forest showed significantly higher abundance. Moreover, the urban forest is only 30 % similar to other sites in terms of species abundances, indicating a possible isolating role of the urban environment. Mosquito

  11. The role of forest type on throughfall during extreme precipitation events - A comparison of methods using data from the Pohorje mountains (NE Slovenia)

    Science.gov (United States)

    Vilhar, Urša; Simončič, Primož

    2013-04-01

    Extreme precipitation in the Alpine region is a major environmental factor due to high frequency of such events and consequences such as flooding of populated valley floors, erosion, avalanches, debris flow and landslides endangering exposed settlements. However, the effects of extreme precipitation are buffered by forest cover, therefore forest management practices should aim towards decreased surface runoff and soil erosion in alpine climates. In Central Europe, many pure Norway spruce stands, established on primary beech sites, were converted into mixed stands over the last 60 years. The conversion of forest management from spruce monocultures into mixed deciduous-coniferous forests changed the forest structure dramatically. This changes could influence the hydrological processes on the catchment scale, associated with major river flooding following extreme precipitation events. In this study, the effect of forest management on the partitioning of rainfall into throughfall and stemflow in coniferous and mixed deciduous-coniferous stands on Pohorje mountains in NE Slovenia were investigated. Four spruce Picea abies (L. Karst) stands were compared to four mixed spruce-beech Fagus sylvatica (L.) stands with prevailing forest plant community Cardamine Savensi Fagetum with small areas of Sphagno - Piceetum, Bazzanio - Piceetum and Rhytidiodelpholorei - Piceetum intermixed. The monthly throughfall from rain collectors and half-hourly throughfall from automated rain gauges in growing seasons from 2008 till 2012 were analyzed in order to estimate the throughfall under forest canopies. In the mixed spruce-beech stands the monthly stemflow on beech trees was also measured. For the precipitation in the open an automated weather station and rainfall collectors in an open area located very close to the research plots were used. There were small differences in seasonal throughfall found between the coniferous and mixed deciduous-coniferous stands. The seasonal throughfall was

  12. Occurrence patterns of Black-backed Woodpeckers in green forest of the Sierra Nevada Mountains, California, USA.

    Directory of Open Access Journals (Sweden)

    Alissa M. Fogg

    2014-12-01

    Full Text Available Black-backed Woodpeckers (Picoides arcticus are a rare habitat specialist typically found in moderate and high severity burned forest throughout its range. It also inhabits green forest but little is known about occurrence and habitat use patterns outside of burned areas, especially in the Sierra Nevada of California, USA. We used point count and playback surveys to detect Black-backed Woodpeckers during 2011 - 2013 on 460 transects on 10 national forest units. We defined green forest as areas that had not burned at moderate or high severity since 1991 and were more than 2 km from areas burned at moderate or high severity within the previous eight years (n = 386 transects. We used occupancy models to examine green forest habitat associations and found positive relationships with elevation, latitude, northern aspects, number of snags, tree diameter, lodgepole pine (Pinus contorta forest, and a negative relationship with slope. Estimated occupancy in green forest was higher than previously understood (0.21. In addition site colonization and extinction probability in green forest were low (0.05 and 0.19, respectively and suggest that many of the individuals detected in green forest were not just actively dispersing across the landscape in search of burned areas, but were occupying relatively stable home ranges. The association with high elevation and lodgepole pine forest may increase their exposure to climate change as these elevation forest types are predicted to decrease in extent over the next century. Although density is high in burned forest, green forest covers significantly more area in the Sierra Nevada and should be considered in efforts to conserve this rare species.

  13. The Late Holocene upper montane cloud forest and high altitude grassland mosaic in the Serra da Igreja, Southern Brazil

    Directory of Open Access Journals (Sweden)

    MAURÍCIO B. SCHEER

    2013-06-01

    Full Text Available Many soils of the highlands of Serra do Mar, as in other mountain ranges, have thick histic horizons that preserve high amounts of carbon. However, the age and constitution of the organic matter of these soils remain doubtful, with possible late Pleistocene or Holocene ages. This study was conducted in three profiles (two in grassland and one in forest in Serra da Igreja highlands in the state of Paraná. We performed δ13C isotope analysis of organic matter in soil horizons to detect whether C3 or C4 plants dominated the past communities and 14C dating of the humin fraction to obtain the age of the studied horizons. C3 plants seem to have dominated the mountain ridges of Serra da Igreja since at least 3,000 years BP. Even though the Serra da Igreja may represents a landscape of high altitude grasslands in soils containing organic matter from the late Pleistocene, as reported elsewhere in Southern and Southeastern Brazil, our results indicate that the sites studied are at least from the beginning of the Late Holocene, when conditions of high moisture enabled the colonization/recolonization of the Serra da Igreja ridges by C3 plants. This is the period, often reported in the literature, when forests advanced onto grasslands and savannas.Muitos solos dos picos da Serra do Mar, como em muitas outras serras, apresentam horizontes hísticos espessos com elevados estoques de carbono. No entanto, a idade e constituição da matéria orgânica destes solos ainda é pouco conhecida e não se sabe se é predominantemente proveniente de comunidades de plantas do final do Pleistoceno ou do Holoceno. Este estudo foi realizado em três perfis, dois em campos altomontanos sobre Organossolos (1.335 m s.n.m e um em um colo (ponto de sela, onde a floresta altomontana sobre Gleissolos alcança seu patamar mais alto (1.325 m s.n.m. Foram realizadas análises isotópicas (δ13C da matéria orgânica de horizontes do solo para saber se plantas C3 ou C4 dominaram

  14. Fog and precipitation chemistry at a mid-land forest in central Taiwan.

    Science.gov (United States)

    Liang, Yang-Ling; Lin, Teng-Chiu; Hwong, Jeen-Liang; Lin, Neng-Huei; Wang, Chiao-Ping

    2009-01-01

    We analyzed fog and bulk precipitation chemistry at a cloud forest in central Taiwan where mountain agriculture activities are highest. There were 320 foggy days (visibility agriculture has a major impact on atmospheric deposition at the surrounding forest ecosystems. The input of inorganic N reached 125 kg N ha(-1) yr(-1) and likely exceeded the biological demand of the forest ecosystem. Sulfate is the most abundant anion in fog at Chi-tou and in precipitation at various forests throughout Taiwan, suggesting that the emission and transport of large quantities of SO(2,) the precursor of SO(4)(2-), is an island-wide environmental issue.

  15. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    Science.gov (United States)

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  16. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal