WorldWideScience

Sample records for motorized microdrive array

  1. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  2. The development of a PZT-based microdrive for neural signal recording

    International Nuclear Information System (INIS)

    Park, Sangkyu; Yoon, Euisung; Park, Sukho; Lee, Sukchan; Shin, Hee-sup; Park, Hyunjun; Kim, Byungkyu; Kim, Daesoo; Park, Jongoh

    2008-01-01

    A hand-controlled microdrive has been used to obtain neural signals from rodents such as rats and mice. However, it places severe physical stress on the rodents during its manipulation, and this stress leads to alertness in the mice and low efficiency in obtaining neural signals from the mice. To overcome this issue, we developed a novel microdrive, which allows one to adjust the electrodes by a piezoelectric device (PZT) with high precision. Its mass is light enough to install on the mouse's head. The proposed microdrive has three H-type PZT actuators and their guiding structure. The operation principle of the microdrive is based on the well known inchworm mechanism. When the three PZT actuators are synchronized, linear motion of the electrode is produced along the guiding structure. The electrodes used for the recording of the neural signals from neuron cells were fixed at one of the PZT actuators. Our proposed microdrive has an accuracy of about 400 nm and a long stroke of about 5 mm. In response to formalin-induced pain, single unit activities are robustly measured at the thalamus with electrodes whose vertical depth is adjusted by the microdrive under urethane anesthesia. In addition, the microdrive was efficient in detecting neural signals from mice that were moving freely. Thus, the present study suggests that the PZT-based microdrive could be an alternative for the efficient detection of neural signals from mice during behavioral states without any stress to the mice. (technical note)

  3. Microdrive- A research program on sustainable bio-ethanol and biogas systems

    International Nuclear Information System (INIS)

    Schnurer, J.; Schnurer, A.

    2009-01-01

    Microdrive Microbially Derived Energy is a thematic research program on sustainable bio fuel production at the Faculty for Natural Resources and Agriculture (NL), Swedish University of Agricultural Sciences (SLU). The program has the following long term goals: To maximise the energy yield of ethanol and biogas processes, improve overall process economy through development of novel co-products, and to minimise environmental impact. (Author)

  4. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  5. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  6. An open source 3-d printed modular micro-drive system for acute neurophysiology.

    Directory of Open Access Journals (Sweden)

    Shaun R Patel

    Full Text Available Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED that utilizes rapid prototyping (3-d printing and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use.

  7. Structural optimization of the Halbach array PM rim thrust motor

    Science.gov (United States)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.

  8. Halbach array motor/generators: A novel generalized electric machine

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A. [Lawrence Livermore National Lab., CA (United States)

    1995-02-01

    For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different, application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.

  9. Design of a Solar Motor Drive System Fed by a Direct-Connected Photovoltaic Array

    Directory of Open Access Journals (Sweden)

    AYDOGMUS, O.

    2012-08-01

    Full Text Available A solar motor pump drive system is modeled and simulated. The proposed drive system does not require any kind of energy storage system and dc-dc converter. The system is connected directly to a photovoltaic (PV array. Thus, a low cost solar system can be achieved. A vector controlled Permanent Magnet Synchronous Motor (PMSM is used as a solar motor to increase the efficiency of system. The motor is designed for a low rated voltage level about 24V. The hill climbing MPPT method is used for balanced the motor power and PV power to obtain a high efficiency. The results are performed by using MATLAB/SimPowerSystem blocks. In addition, the PV array is modeled to allow for the possibility of running as on-line adjustable in simulation environment without using lookup table. The performances of motor, MPPT and drive system are analyzed in different conditions as temperature and irradiation of PV array.

  10. Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high precision positioning system

    International Nuclear Information System (INIS)

    Lee, Moon G.; Gweon, Dae-Gab

    2004-01-01

    A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here

  11. Position sensor for linear synchronous motors employing halbach arrays

    Science.gov (United States)

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  12. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    OpenAIRE

    Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  13. Micro-drive and headgear for chronic implant and recovery of optoelectronic probes.

    Science.gov (United States)

    Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien

    2017-06-05

    Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.

  14. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  15. Test-retest reliability of trunk motor variability measured by large-array surface electromyography.

    Science.gov (United States)

    Abboud, Jacques; Nougarou, François; Loranger, Michel; Descarreaux, Martin

    2015-01-01

    The objective of this study was to evaluate the test-retest reliability of the trunk muscle activity distribution in asymptomatic participants during muscle fatigue using large-array surface electromyography (EMG). Trunk muscle activity distribution was evaluated twice, with 3 to 4 days between them, in 27 asymptomatic volunteers using large-array surface EMG. Motor variability, assessed with 2 different variables (the centroid coordinates of the root mean square map and the dispersion variable), was evaluated during a low back muscle fatigue task. Test-retest reliability of muscle activity distribution was obtained using Pearson correlation coefficients. A shift in the distribution of EMG amplitude toward the lateral-caudal region of the lumbar erector spinae induced by muscle fatigue was observed. Moderate to very strong correlations were found between both sessions in the last 3 phases of the fatigue task for both motor variability variables, whereas weak to moderate correlations were found in the first phases of the fatigue task only for the dispersion variable. These findings show that, in asymptomatic participants, patterns of EMG activity are less reliable in initial stages of muscle fatigue, whereas later stages are characterized by highly reliable patterns of EMG activity. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  16. Halbach arrays in precision motion control

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, D.L.; Williams, M.E. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The Halbach array was developed for use as an optical element in particle accelerators. Following up on a suggestion from Klaus Halbach, the authors have investigated the utility of such arrays as the permanent magnet structure for synchronous machines in cartesian, polar, and cylindrical geometries. Their work has focused on the design of a novel Halbach array linear motor for use in a magnetic suspension stage for photolithography. This paper presents the details of the motor design and its force and power characteristics.

  17. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays(Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM08))

    OpenAIRE

    K., Nakaiwa; A., Yamada; K., Tashiro; H., Wakiwaka; Tamagawa-Seiki Co., Ltd; Shinshu University; Shinshu University; Shinshu University

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  18. Analysis and Optimization of a Novel 2-D Magnet Array with Gaps and Staggers for a Moving-Magnet Planar Motor

    Science.gov (United States)

    Chen, Xuedong; Zeng, Lizhan

    2018-01-01

    This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323

  19. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  20. Gene Silencing in Skin After Deposition of Self-Delivery siRNA With a Motorized Microneedle Array Device

    Directory of Open Access Journals (Sweden)

    Robyn P Hickerson

    2013-01-01

    Full Text Available Despite the development of potent siRNAs that effectively target genes responsible for skin disorders, translation to the clinic has been hampered by inefficient delivery through the stratum corneum barrier and into the live cells of the epidermis. Although hypodermic needles can be used to transport siRNA through the stratum corneum, this approach is limited by pain caused by the injection and the small volume of tissue that can be accessed by each injection. The use of microneedle arrays is a less painful method for siRNA delivery, but restricted payload capacity limits this approach to highly potent molecules. To address these challenges, a commercially available motorized microneedle array skin delivery device was evaluated. This device combines the positive elements of both hypodermic needles and microneedle array technologies with little or no pain to the patient. Application of fluorescently tagged self-delivery (sd-siRNA to both human and murine skin resulted in distribution throughout the treated skin. In addition, efficient silencing (78% average reduction of reporter gene expression was achieved in a transgenic fluorescent reporter mouse skin model. These results indicate that this device effectively delivers functional sd-siRNA with an efficiency that predicts successful clinical translation.

  1. Multichannel micromanipulator and chamber system for recording multineuronal activity in alert, non-human primates.

    Science.gov (United States)

    Gray, Charles M; Goodell, Baldwin; Lear, Alex

    2007-07-01

    We describe the design and performance of an electromechanical system for conducting multineuron recording experiments in alert non-human primates. The system is based on a simple design, consisting of a microdrive, control electronics, software, and a unique type of recording chamber. The microdrive consists of an aluminum frame, a set of eight linear actuators driven by computer-controlled miniature stepping motors, and two printed circuit boards (PCBs) that provide connectivity to the electrodes and the control electronics. The control circuitry is structured around an Atmel RISC-based microcontroller, which sends commands to as many as eight motor control cards, each capable of controlling eight motors. The microcontroller is programmed in C and uses serial communication to interface with a host computer. The graphical user interface for sending commands is written in C and runs on a conventional personal computer. The recording chamber is low in profile, mounts within a circular craniotomy, and incorporates a removable internal sleeve. A replaceable Sylastic membrane can be stretched across the bottom opening of the sleeve to provide a watertight seal between the cranial cavity and the external environment. This greatly reduces the susceptibility to infection, nearly eliminates the need for routine cleaning, and permits repeated introduction of electrodes into the brain at the same sites while maintaining the watertight seal. The system is reliable, easy to use, and has several advantages over other commercially available systems with similar capabilities.

  2. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  3. Rotor position sensor switches currents in brushless dc motors

    Science.gov (United States)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  4. PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump

    Science.gov (United States)

    Domijan, Alexander, Jr.; Buchh, Tariq Aslam

    1995-01-01

    A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.

  5. Activity patterns of cultured neural networks on micro electrode arrays

    NARCIS (Netherlands)

    Rutten, Wim; van Pelt, J.

    2001-01-01

    A hybrid neuro-electronic interface is a cell-cultured micro electrode array, acting as a neural information transducer for stimulation and/or recording of neural activity in the brain or the spinal cord (ventral motor region or dorsal sensory region). It consists of an array of micro electrodes on

  6. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  7. Performance evaluation of directly photovoltaic powered DC PM (direct current permanent magnet) motor – propeller thrust system

    International Nuclear Information System (INIS)

    Atlam, Ozcan; Kolhe, Mohan

    2013-01-01

    Photovoltaic (PV) powered directly coupled electro-mechanical system has wide applications (e.g. PV powered cooling fans in green houses, PV water pumping system, solar vehicles). The objective of this work is to analyse the operation of directly PV powered DC PM (direct current permanent magnet) motor – propeller system for selection of motor parameters. The performance of such system mainly depends on the incident solar radiation, operating cell temperature, DC motor and propeller load parameters. It is observed that the operating points of the PV DC PM motor – propeller system matches very closely with the maximum power points (MPPs) of the PV array, if the DC PM motor – propeller parameters have been properly selected. It is found that for a specific application of such type of system, matching of torque–speed operating points with respect to the maximum power points of PV array are very important. It is ascertained through results that the DC PM motor's armature resistance, magnetic field constant, starting current to overcome the starting torque and torque coefficient are the main parameters. In designing a PV powered DC PM motor for a specific application, selection of these parameters are important for maximum utilization of the PV array output. The results of this system are useful for designing of directly PV powered DC PM motor's for aerodynamic applications. - Highlights: • We analyse the performance of directly PV powered DC PM motor – propeller system. • We examine PV electro-mechanical system for selection of DC motor parameters. • Matching of torque–speed curve to maximum power points of PV array is important

  8. Modeling and analysis of mover gaps in tubular moving-magnet linear oscillating motors

    Directory of Open Access Journals (Sweden)

    Xuesong LUO

    2018-05-01

    Full Text Available A tubular moving-magnet linear oscillating motor (TMMLOM has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones. Keywords: Air-gap flux density, Linear motor, Mover gaps, Quasi-Halbach array, Thrust output, Tubular moving-magnet linear oscillating motor (TMMLOM

  9. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  10. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording

    Science.gov (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  11. A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.

    Science.gov (United States)

    Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl

    2017-02-25

    This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.

  12. Development of Motor Bearings for a New SADA (BepiColombo)

    Science.gov (United States)

    Kreuser, J.; Bachman, R.; Bergrath, B.; Heinrich, B.; Zemann, J.

    2013-09-01

    The special requirements of the new MPO Solar Array Drive Assembly (SADA) developed for the BepiColombo program demanded also new ball bearing designs. In addition to typical requirements for other bearings in space mechanisms, the BepiColombo mission is characterized by a non-operating time of six years at extreme environmental conditions. In cooperation with RUAG Space CEROBEAR has developed different types of ball bearings for this SADA including motor bearings for the drive, a customized stepper motor.The purpose of this paper is to present and summarize the results of the development of the motor bearings of the SADA.

  13. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    Science.gov (United States)

    Appelbaum, J.; Singer, S.

    1989-01-01

    A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.

  14. Brushless DC motor drives supplied by PV power system based on Z-source inverter and FL-IC MPPT controller

    International Nuclear Information System (INIS)

    Mozaffari Niapour, S.A.KH.; Danyali, S.; Sharifian, M.B.B.; Feyzi, M.R.

    2011-01-01

    Highlights: → Employing the BLDC motor in water pumping systems. → Utilizing the ZSI as a single-stage power converter in the PV water pumping systems based on BLDC motor. → Improvement of the conventional IC MPPT method with the fuzzy logic control scheme to save more energy from the PV array. → Taking the advantages of the DTC drive of the BLDC motor. → Optimizing the water pumping system speed response characteristic by PSO. - Abstract: This paper discusses operation performance of a water pumping system consist of a brushless dc (BLDC) motor coupled a centrifugal pump and accompanying a Z-source inverter (ZSI) fed by a photovoltaic (PV) array, to be improved. Despite conventional double-stage power converters, this paper proposes utilizing a single-stage ZSI to extract the maximum power of the PV array and supply the BLDC motor simultaneously. Utilizing the ZSI provides some inherent advantages such as high efficiency and low cost, which is very promising for PV systems due to its novel voltage buck/boost capability. In addition, in order to precisely perform the maximum power point tracking (MPPT) of the PV array the fuzzy logic-incremental conductance (FL-IC) MPPT scheme is proposed. The proposed FL-IC MPPT scheme provides enough modification to the conventional IC method to enjoy an appropriate variable step size MPPT control signal for the ZSI. Moreover, direct torque control (DTC) is found more effective in comparison with hysteresis current control with current shaping to drive the BLDC motor, because it benefits from faster torque response, reduced torque ripple, less sensitivity to parameters variations, and simple implementation. In the mean time, due to the frequently variations of the PV power generation; delivered mechanical power to the centrifugal pump is variable. Thus, the BLDC motor should be driven with variable reference speed. In order to improve the speed transient response of the BLDC motor and enhance the energy saving aspect of

  15. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  16. Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral Sclerosis Patient-Derived Motor Neurons

    Directory of Open Access Journals (Sweden)

    Brian J. Wainger

    2014-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1, C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.

  17. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  18. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  19. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  20. Recruitment and Decruitment of Motor Units Activities of M. Biceps Brachii During Isovelocity Movements

    National Research Council Canada - National Science Library

    Okuno, Ryuhei

    2001-01-01

    ... (from 0 DEG to 120 DEG) of elbow joint angle with a surface electrode array. We identified action potensials of each moitor unit and detected recruitment and decruitment of the identified motor units...

  1. Boost Converter Fed High Performance BLDC Drive for Solar PV Array Powered Air Cooling System

    Directory of Open Access Journals (Sweden)

    Shobha Rani Depuru

    2017-01-01

    Full Text Available This paper proposes the utilization of a DC-DC boost converter as a mediator between a Solar Photovoltaic (SPV array and the Voltage Source Inverters (VSI in an SPV array powered air cooling system to attain maximum efficiency. The boost converter, over the various common DC-DC converters, offers many advantages in SPV based applications. Further, two Brushless DC (BLDC motors are employed in the proposed air cooling system: one to run the centrifugal water pump and the other to run a fan-blower. Employing a BLDC motor is found to be the best option because of its top efficiency, supreme reliability and better performance over a wide range of speeds. The air cooling system is developed and simulated using the MATLAB/Simulink environment considering the steady state variation in the solar irradiance. Further, the efficiency of BLDC drive system is compared with a conventional Permanent Magnet DC (PMDC motor drive system and from the simulated results it is found that the proposed system performs better.

  2. Imaging spectroscopy using embedded diffractive optical arrays

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  3. Language changes coincide with motor and fMRI changes following upper extremity motor therapy for hemiparesis: a brief report.

    Science.gov (United States)

    Harnish, Stacy; Meinzer, Marcus; Trinastic, Jonathan; Fitzgerald, David; Page, Stephen

    2014-09-01

    To formally assess changes in language, affected UE movement, and motor functional activation changes via functional magnetic resonance imaging (fMRI) following participation in motor therapy without any accompanying language intervention. Pre-post case series. Five subjects with stroke exhibiting chronic, stable UE hemiparesis. The upper extremity section of the Fugl-Meyer (FM), the Western Aphasia Battery (WAB), and functional magnetic resonance imaging (fMRI), administered during performance of an affected UE motor task. All subjects were administered six weeks of repetitive task specific training (RTP), performed for approximately 2.5 hours per day, split into two sessions. For the first four weeks of the intervention period, RTP was administered every weekday, whereas, for the subsequent two weeks, RTP was administered 3 days/week. Epidural cortical stimulation was co-administered with the RTP via an electrode array and implanted pulse generator. For all sessions, one subject worked with a single therapist. Four weeks before and four weeks after the intervention period, all subjects were administered the FM, WAB, and fMRI. Three of the subjects exhibited clinically significant language changes on the WAB. These individuals exhibited the largest motor changes as measured by the FM. Functional MRI revealed distinct motor activation patterns in these subjects, characterized by more strongly right lateralized focal BOLD activity or a shift in activation toward the right hemisphere. Language changes appear to co-occur with motor changes after UE RTP. Understanding the underlying mechanisms of these findings may lead to more efficient and synergistic rehabilitative therapy delivery.

  4. System Identification and Integration Design of an Air/Electric Motor

    Directory of Open Access Journals (Sweden)

    Shih-Yao Huang

    2013-02-01

    Full Text Available This paper presents an integration design and implementation of an air motor and a DC servo motor which utilizes a magnetic powder brake to integrate these two motors together. The dynamic model of the air/electric hybrid system will be derived and eventually leads to successful ECE-40 driving cycle tests with a FPGA-based speed controller. The testing results obtained by using the proposed experimental platform indicate that the total air consumption is about 256 L under air motor mode and the electric charge consumption is about 530 coulombs under DC servo motor mode. In a hybrid mode, the current reduction of the battery is about 18.5%, and then the service life of the battery can be improved. Furthermore, a prototype is built with a proportional-integral (PI speed controller based on a field-programmable gate array (FPGA in order to facilitate the entire analysis of the velocity switch experiment. Through the modular methodology of FPGA, the hybrid power platform can successfully operate under ECE-40 driving cycle with the PI speed controller. The experimental data shows that the chattering ranges of the air motor within ±1 km/h and ±0.2 km/h under DC servo motor drive. Therefore, the PI speed controller based on FPGA is successfully actualized.

  5. Embedded system based on a real time fuzzy motor speed controller

    Directory of Open Access Journals (Sweden)

    Ebrahim Abd El-Hamid Mohamed Ramadan

    2014-06-01

    Full Text Available This paper describes an implementation of a fuzzy logic control (FLC system and a/the conventional proportional-integral (PI controller for speed control of DC motor, based on field programmable gate array (FPGA circuit. The proposed scheme is aimed to improve the tracking performance and to eliminate the load disturbance in the speed control of DC motors. The proposed fuzzy system has been applied to a permanent magnet DC motor, via a configuration of H-bridge. The fuzzy control algorithm is designed and verified with a nonlinear model, using the MATLAB® tools. Both FLC and conventional PI controller hardware are synthesized, functionally verified and implemented using Xilinx Integrated Software Environment (ISE Version 11.1i. The real time implementation of these controllers is made on Spartan-3E FPGA starter kit (XC3S500E. The practical results showed that the proposed FLC scheme has better tracking performance than the conventional PI controller for the speed control of DC motors.

  6. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  7. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  8. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  9. Disc rotors with permanent magnets for brushless DC motor

    Science.gov (United States)

    Hawsey, Robert A.; Bailey, J. Milton

    1992-01-01

    A brushless dc permanent magnet motor drives an autonomous underwater vehe. In one embodiment, the motor comprises four substantially flat stators in stacked relationship, with pairs of the stators axially spaced, each of the stators comprising a tape-wound stator coil, and first and second substantially flat rotors disposed between the spaced pairs of stators. Each of the rotors includes an annular array of permanent magnets embedded therein. A first shaft is connected to the first rotor and a second, concentric shaft is connected to the second rotor, and a drive unit causes rotation of the two shafts in opposite directions. The second shaft comprises a hollow tube having a central bore in which the first shaft is disposed. Two different sets of bearings support the first and second shafts. In another embodiment, the motor comprises two ironless stators and pairs of rotors mounted on opposite sides of the stators and driven by counterrotating shafts.

  10. Overlapping structures in sensory-motor mappings.

    Directory of Open Access Journals (Sweden)

    Kevin Earland

    Full Text Available This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the representation and transmission of spatial location information on and between topographic maps. Through a series of experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to provide guidance for application in sensory-motor learning robots.

  11. Reliability of MUAP properties in multi-channel array EMG recordings of trapezius and SCM

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Preece, S.; Hermens, Hermanus J.

    2007-01-01

    Muscle activity can be assessed non-invasively by means of surface electrodes places at the skin overlyin a muscle. When multiy-channel array electrodes are used, it is possible to extract motor unit action potentials (MUAP's) from the EMG signals with a segmentation approach based on the Continuous

  12. Design of control system for optical fiber drawing machine driven by double motor

    Science.gov (United States)

    Yu, Yue Chen; Bo, Yu Ming; Wang, Jun

    2018-01-01

    Micro channel Plate (MCP) is a kind of large-area array electron multiplier with high two-dimensional spatial resolution, used as high-performance night vision intensifier. The high precision control of the fiber is the key technology of the micro channel plate manufacturing process, and it was achieved by the control of optical fiber drawing machine driven by dual-motor in this paper. First of all, utilizing STM32 chip, the servo motor drive and control circuit was designed to realize the dual motor synchronization. Secondly, neural network PID control algorithm was designed for controlling the fiber diameter fabricated in high precision; Finally, the hexagonal fiber was manufactured by this system and it shows that multifilament diameter accuracy of the fiber is +/- 1.5μm.

  13. FIVE PHASE PENTAGON HYBRID STEPPER MOTOR INTELLIGENT HALF/FULL DRIVER

    Directory of Open Access Journals (Sweden)

    Alexandru Morar

    2017-06-01

    Full Text Available Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo systems. In this paper, an intelligent five-phase stepper motor driver of business card size proposed. Constant current chopping technique was applied for the purposes of high torque, high velocity and high efficiency. The driver was designed to drive a middle-sized hybrid stepper motor with wire current rating from 0.4 to 1.5A. An up-to-dated translator of five-phase stepping motor was used to drive the gates of N- channel MOSFET array. The resolution in full/half mode is 0.72/0.36 degrees/step. Moreover, an automatic power down circuit was used to limit the power consuming as the motor stops. Additionally, a self-testing program embedded in a 80C31-CPU (PCL838 can self-test whether the driver is normal or not. This embedded program including linear acceleration and deceleration routines also can serve as a positioning controller. The dimension of this driver is approximate 70x65x35 millimeters, which is smaller than a business card. Experimental results demonstrate that the responses of the driver can reach 60 kilo pulses per second

  14. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  15. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.

    Science.gov (United States)

    Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P

    2018-01-01

    Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.

  16. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  17. Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control

    Directory of Open Access Journals (Sweden)

    E.A. Ramadan

    2014-09-01

    Full Text Available This paper presents an improved adaptive fuzzy logic speed controller for a DC motor, based on field programmable gate array (FPGA hardware implementation. The developed controller includes an adaptive fuzzy logic control (AFLC algorithm, which is designed and verified with a nonlinear model of DC motor. Then, it has been synthesised, functionally verified and implemented using Xilinx Integrated Software Environment (ISE and Spartan-3E FPGA. The performance of this controller has been successfully validated with good tracking results under different operating conditions.

  18. The study on electromagnetic compatibility of DC electric motor in HAPS

    Energy Technology Data Exchange (ETDEWEB)

    Junping, Geng; Ronghong, Jin; Yu, Fan; Bo, Liu; Jiaqiang, Li; Yuebo, Cheng; Zhongyuan, Wang [Shanghai Jiao Tong Univ., Dpt. Electronic Engineering, Shanghai (China)

    2005-10-01

    The electromagnetic compatibility (EMC) problem of high altitude platform systems (HAPS) is investigated in this paper. A physical model for electromagnetic interferences (EMI) of electromagnetic radiation of spark discharge in DC electric motor is proposed. Based on this model, EMI frequency points has been estimated by approximative equation for the given structure and size of a motor, and EMI frequency points, peak values that received by the ports of antennas and far-field pattern have been calculated. The estimated results are consistent with the calculated ones. These frequency bands and spatial directions with max EMI should be avoided in the valid information when the HAPS system is being designed. Two methods are taken to shield electromagnetic radiation, either to mount a metal plate near the DC electric motor (EMI source), or to mount a perfect conductor board near the antenna array (sensitive element), are valid to shield electromagnetic radiation, but to mount a metal plate near the EMI source is more effective. (authors)

  19. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  20. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  1. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  2. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.

    Science.gov (United States)

    Headley, Drew B; DeLucca, Michael V; Haufler, Darrell; Paré, Denis

    2015-04-01

    Recent advances in recording and computing hardware have enabled laboratories to record the electrical activity of multiple brain regions simultaneously. Lagging behind these technical advances, however, are the methods needed to rapidly produce microdrives and head-caps that can flexibly accommodate different recording configurations. Indeed, most available designs target single or adjacent brain regions, and, if multiple sites are targeted, specially constructed head-caps are used. Here, we present a novel design style, for both microdrives and head-caps, which takes advantage of three-dimensional printing technology. This design facilitates targeting of multiple brain regions in various configurations. Moreover, the parts are easily fabricated in large quantities, with only minor hand-tooling and finishing required. Copyright © 2015 the American Physiological Society.

  3. Is PIGD a legitimate motor subtype in Parkinson disease?

    Science.gov (United States)

    Kotagal, Vikas

    2016-06-01

    Parkinson disease is a chronic progressive syndrome with a broad array of clinical features. Different investigators have suggested the heterogeneous motor manifestations of early Parkinson disease can be conceptualized through a taxonomy of clinical subtypes including tremor-predominant and postural instability and gait difficulty-predominant subtypes. Although it is theoretically valuable to distinguish subtypes of Parkinson disease, the reality is that few patients fit these discrete categories well and many transition from exhibiting elements of one subtype to elements of another. In the time since the initial description of the postural instability and gait difficulty-predominant subtype, Parkinson disease clinical research has blossomed in many ways - including an increased emphasis on the role of medical comorbidities and extranigral pathologies in Parkinson disease as markers of prognostic significance. By conceptualizing the pathogenesis of an expansive disease process in the limited terms of categorical motor subtypes, we run the risk of overlooking or misclassifying clinically significant pathogenic risk factors that lead to the development of motor milestones such as falls and related axial motor disability. Given its critical influence on quality of life and overall prognosis, we are in need of a model of postural instability and gait difficulty-predominant features in Parkinson disease that emphasizes the overlooked pathological influence of aging and medical comorbidities on the development of axial motor burden and postural instability and gait difficulty-predominant features. This Point of View proposes thinking of postural instability and gait difficulties in Parkinson disease not as a discrete subtype, but rather as multidimensional continuum influenced by several overlapping age-related pathologies.

  4. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  5. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  6. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    Science.gov (United States)

    Li, J.; Rutkove, S. B.

    2013-04-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  7. A flexible electrode array for muscle impedance measurements in the mouse hind limb: A tool to speed research in neuromuscular disease

    International Nuclear Information System (INIS)

    Li, J; Rutkove, S B

    2013-01-01

    Electrical impedance myography (EIM) is a bioelectrical impedance technique focused on the assessment of neuromuscular diseases using tetrapolar surface arrays. Recently, we have shown that reproducible and sensitive EIM measurements can be made on the gastrocnemius muscle of the mouse hind limb and that these are sensitive to disease alterations. A dedicated array would help speed data acquisition and provide additional sensitivity to disease-induced alterations. A flexible electrode array was developed with electrode sizes of 1mm × 1mm by Parlex, Inc. Tetrapolar electrode sets were arranged both parallel to (longitudinal) and orthogonally to (transverse) the major muscle fiber direction of the gastrocnemius muscle. Measurements were made with a dedicated EIM system. A total of 11 healthy animals and 7 animals with spinal muscular atrophy (a form of motor neuron disease) were evaluated after the fur was completely removed with a depilatory agent from the hind limb. Standard electrophysiologic testing (compound motor action potential amplitude and motor unit number estimation) was also performed. The flexible electrode array demonstrated high repeatability in both the longitudinal and transverse directions in the healthy and diseased animals (with intraclass correlation coefficients of 0.94 and 0.89, respectively, for phase angle measured transversely). In addition, differences between healthy and diseased animals were identifiable. For example, the 50 kHz transverse phase angle was higher in the healthy as compared to the SMA animals (16.8° ± 0.5 vs. 14.3° ± 0.7, respectively) at 21 weeks of age (p = 0.01). Differences in anisotropy were also identifiable. Correlations to several standard neurophysiologic parameters also appeared promising. This novel flexible tetrapolar electrode array can be used on the mouse hind limb and provides multidirectional data that can be used to assess muscle health. This technique has the potential of finding widespread use in

  8. Input Shaping to Reduce Solar Array Structural Vibrations

    Science.gov (United States)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  9. Bacteria-foraging based-control of high-performance railway level-crossing safety drives fed from photovoltaic array

    Directory of Open Access Journals (Sweden)

    Essamudin A. Ebrahim

    2016-12-01

    Full Text Available In the past ten years, railway level-crossing accidents have noticeably escalated in an indisputably preposterous manner, this devastating snag opened the floodgates for the frustrating death of a numerous number of the third world’s citizens, especially in Egypt. To tackle with this problem, a fully intelligent control system is required, which must be automated without human intervention. So, in this research, a new proposed level-crossing tracking system is designed and introduced. The system comprises a high-performance induction motor (IM fed from photovoltaic (PV array, the boom barrier (gate with its mechanism – as a load – buck–boost converter, inverter, and two smart PI-controllers. The first one is designed to regulate the duty cycle of the converter to its optimum value required to balance between maximum power point tracking (MPPT and keeping dc-link voltage of the inverter at a minimum level needed to maintain the motor internal torque at rated value. The second PI-controller is designed for speed control of indirect field-oriented vector-control (IFO-VC IM. The proposed design problems of MPPT, dc-link voltage and speed controllers are solved as optimization problems by bacteria-foraging optimization (BFO algorithm to search for the optimal PI-parameters. The simulation test results are acquired when using the battery-less PV-array with and without the proposed controllers. Also, results are obtained when applying several prescribed speed trajectories to test the robustness against PV-irradiance fluctuations and motor-dynamic disturbances. From these results, the proposed intelligent controllers are robust compared to classical Ziegler–Nichols (ZN PI-controllers and also when the motor is directly fed from PV generator without converter.

  10. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  11. Locating noise sources with a microphone array

    International Nuclear Information System (INIS)

    Bale, A.; Johnson, D.

    2010-01-01

    Noise pollution is one of the contributors to the public opposition of wind farms. Most of the noise produced by turbines is caused by the aerodynamic interactions between the turbine blades and the surrounding air. This poster presentation discussed a series of aeroacoustic tests conducted to account for the different in vortical structures caused by the rotation of the blades. Microphone arrays were used measure and locate the source of noise. A beam forming technique was used to measure the noise using an algorithm that identified a scanning grid on a plane where the source was thought to be located. It delayed each microphone's signal by the length of time required for the sound to travel from the scan position to each microphone, and accounted for the amplitudes according to the distance from the scan position to each microphone. Demonstration test cases were conducted using piezo buzzers attached to aluminum bars and mounted to the shaft of a DC motor that produced a rotational diameter of 0.95 meter. The buzzers were placed 1 meter from the array. Multiple sound sources at the same frequency were identified, and the moving sources were accurately measured and located. tabs., figs.

  12. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    Science.gov (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  13. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  14. Effect of embedded dexamethasone in cochlear implant array on insertion forces in an artificial model of scala tympani.

    Science.gov (United States)

    Nguyen, Yann; Bernardeschi, Daniele; Kazmitcheff, Guillaume; Miroir, Mathieu; Vauchel, Thomas; Ferrary, Evelyne; Sterkers, Olivier

    2015-02-01

    Loading otoprotective drug into cochlear implant might change its mechanical properties, thus compromising atraumatic insertion. This study evaluated the effect of incorporation of dexamethasone (DXM) in the silicone of cochlear implant arrays on insertion forces. Local administration of DXM with embedded array can potentially reduce inflammation and fibrosis after cochlear implantation procedure to improve hearing preservation and reduce long-term impedances. Four models of arrays have been tested: 0.5-mm distal diameter array (n = 5) used as a control, drug-free 0.4-mm distal diameter array (n = 5), 0.4-mm distal diameter array with 1% eluded DXM silicone (n = 5), and 0.4-mm distal diameter array with 10% eluded DXM silicone (n = 5). Via a motorized insertion bench, each array has been inserted into an artificial scala tympani model. The forces were recorded by a 6-axis force sensor. Each array was tested seven times for a total number of 140 insertions. During the first 10-mm insertion, no difference between the four models was observed. From 10- to 24-mm insertion, the 0.5-mm distal diameter array presented higher insertion forces than the drug-free 0.4-mm distal diameter arrays, with or without DXM. Friction forces for drug-free 0.4-mm distal diameter array and 0.4-mm distal diameter DXM eluded arrays were similar on all insertion lengths. Incorporation of DXM in silicone for cochlear implant design does not change electrode array insertion forces. It does not raise the risk of trauma during array insertion, making it suitable for long-term in situ administration to the cochlea.

  15. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex

    Science.gov (United States)

    Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh

    2013-08-01

    Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.

  16. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  17. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  18. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  19. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  20. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  1. ArrayBridge: Interweaving declarative array processing with high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Haoyuan [The Ohio State Univ., Columbus, OH (United States); Floratos, Sofoklis [The Ohio State Univ., Columbus, OH (United States); Blanas, Spyros [The Ohio State Univ., Columbus, OH (United States); Byna, Suren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prabhat, Prabhat [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wu, Kesheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Paul [Paradigm4, Inc., Waltham, MA (United States)

    2017-05-04

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.

  2. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  3. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  4. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    Science.gov (United States)

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  5. Motorized Positioning Apparatus Having Coaxial Carrousels.

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2002-04-02

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  6. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  7. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  8. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  9. Solar tracker motor having a fixed caliper and a translating caliper each with an electromagnetic brake system

    Science.gov (United States)

    Rau, Scott James

    2013-01-29

    Concepts and technologies described herein provide for an accurate and cost-effective method for rotating a solar array disk for tracking the movement of the sun. According to various aspects, a motor includes a fixed caliper and a translating caliper positioned adjacent to one another. Electromagnetically controlled brakes on the translating caliper grip the solar array disk while adjacent, but spaced apart, electromagnets on the fixed caliper and the translating caliper are energized to create an attractive force that pulls the translating caliper with the solar array disk toward the fixed caliper. After reaching the fixed caliper, brakes on the fixed caliper are engaged with the disk, brakes on the translating caliper are released from the disk, and the translating caliper is pushed back to the starting location where the process repeats until the desired rotation is completed.

  10. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  11. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  12. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    International Nuclear Information System (INIS)

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  13. An FPGA-Based Multiple-Axis Velocity Controller and Stepping Motors Drives Design

    Directory of Open Access Journals (Sweden)

    Lai Chiu-Keng

    2016-01-01

    Full Text Available A Field Programmable Gate Array based system is a great hardware platform to support the implementation of hardware controllers such as PID controller and fuzzy controller. It is also programmed as hardware accelerator to speed up the mathematic calculation and greatly enhance the performance as applied to motor drive and motion control. Furthermore, the open structure of FPGA-based system is suitable for those designs with the ability of parallel processing or soft code processor embedded. In this paper, we apply the FPGA to a multi-axis velocity controller design. The developed system integrated three functions inside the FPGA chip, which are respectively the stepping motor drive, the multi-axis motion controller and the motion planning. Furthermore, an embedded controller with a soft code processor compatible to 8051 micro-control unit (MCU is built to handle the data transfer between the FPGA board and host PC. The MCU is also used to initialize the motion control and run the interpolator. The designed system is practically applied to a XYZ motion platform which is driven by stepping motors to verify its performance.

  14. Projection neuron circuits resolved using correlative array tomography

    Directory of Open Access Journals (Sweden)

    Daniele eOberti

    2011-04-01

    Full Text Available Assessment of three-dimensional morphological structure and synaptic connectivity is essential for a comprehensive understanding of neural processes controlling behavior. Different microscopy approaches have been proposed based on light microcopy (LM, electron microscopy (EM, or a combination of both. Correlative array tomography (CAT is a technique in which arrays of ultrathin serial sections are repeatedly stained with fluorescent antibodies against synaptic molecules and neurotransmitters and imaged with LM and EM (Micheva and Smith, 2007. The utility of this correlative approach is limited by the ability to preserve fluorescence and antigenicity on the one hand, and EM tissue ultrastructure on the other. We demonstrate tissue staining and fixation protocols and a workflow that yield an excellent compromise between these multimodal imaging constraints. We adapt CAT for the study of projection neurons between different vocal brain regions in the songbird. We inject fluorescent tracers of different colors into afferent and efferent areas of HVC in zebra finches. Fluorescence of some tracers is lost during tissue preparation but recovered using anti-dye antibodies. Synapses are identified in EM imagery based on their morphology and ultrastructure and classified into projection neuron type based on fluorescence signal. Our adaptation of array tomography, involving the use of fluorescent tracers and heavy-metal rich staining and embedding protocols for high membrane contrast in EM will be useful for research aimed at statistically describing connectivity between different projection neuron types and for elucidating how sensory signals are routed in the brain and transformed into a meaningful motor output.

  15. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  16. Design and characterization of a microelectromechanical system electro-thermal linear motor with interlock mechanism for micro manipulators.

    Science.gov (United States)

    Hu, Tengjiang; Zhao, Yulong; Li, Xiuyuan; Zhao, You; Bai, Yingwei

    2016-03-01

    The design, fabrication, and testing of a novel electro-thermal linear motor for micro manipulators is presented in this paper. The V-shape electro-thermal actuator arrays, micro lever, micro spring, and slider are introduced. In moving operation, the linear motor can move nearly 1 mm displacement with 100 μm each step while keeping the applied voltage as low as 17 V. In holding operation, the motor can stay in one particular position without consuming energy and no creep deformation is found. Actuation force of 12.7 mN indicates the high force generation capability of the device. Experiments of lifetime show that the device can wear over two million cycles of operation. A silicon-on-insulator wafer is introduced to fabricate a high aspect ratio structure and the chip size is 8.5 mm × 8.5 mm × 0.5 mm.

  17. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  18. Motor experience with a sport-specific implement affects motor imagery

    Science.gov (United States)

    Zhu, Hua; Shen, Cheng; Zhang, Jian

    2018-01-01

    The present study tested whether sport-specific implements facilitate motor imagery, whereas nonspecific implements disrupt motor imagery. We asked a group of basketball players (experts) and a group of healthy controls (novices) to physically perform (motor execution) and mentally simulate (motor imagery) basketball throws. Subjects produced motor imagery when they were holding a basketball, a volleyball, or nothing. Motor imagery performance was measured by temporal congruence, which is the correspondence between imagery and execution times estimated as (imagery time minus execution time) divided by (imagery time plus execution time), as well as the vividness of motor imagery. Results showed that experts produced greater temporal congruence and vividness of kinesthetic imagery while holding a basketball compared to when they were holding nothing, suggesting a facilitation effect from sport-specific implements. In contrast, experts produced lower temporal congruence and vividness of kinesthetic imagery while holding a volleyball compared to when they were holding nothing, suggesting the interference effect of nonspecific implements. Furthermore, we found a negative correlation between temporal congruence and the vividness of kinesthetic imagery in experts while holding a basketball. On the contrary, the implement manipulation did not modulate the temporal congruence of novices. Our findings suggest that motor representation in experts is built on motor experience associated with specific-implement use and thus was subjected to modulation of the implement held. We conclude that sport-specific implements facilitate motor imagery, whereas nonspecific implements could disrupt motor representation in experts. PMID:29719738

  19. Using variable speed drives technology to reap rewards of efficient HVAC design

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Electric motors are continuously running at full speed with vanes and throttles used to modulate the output, in most HVAC applications. This results in an excessive wastage of electrical energy, and the solution is the variable speed drive, which can save vast amounts of energy in fans, pumps and compressors across the HVAC system. Users of traditional control methods will not benefit from the energy savings that are possible through variable speed drives because the motor speed remains the same, with the result that some, and in some cases most, of the energy drawn will be wasted. Variable speed drives are more efficient because they control output by regulating the motor speed, rather than run the motor at full speed and use restrictions to reduce the flow. Recently, small so-called micro-drives have been launched, cutting the cost for most variable speed operation. Variable speed motors can also introduce new features to the HVAC system. An example of how drives can save money and improve the indoor climate is cited for Heathrow airport. There, the gateroom was earlier controlled by modulating valves in both heater and cooler coils, with two fans that operated continuously at rated speed. This system was very inefficient because the occupancy of the gateroom varied between zero and maximum several times daily. A new system was installed using two AC drives, in which one drive controls the supply air fan and the other the return air fan. The energy savings amounted to 89% during two tests and 77% in a third. A pump installation in the district heating system of Strasbourg, Germany, showed the savings that are possible in pump applications

  20. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  1. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  2. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  3. A novel method to design sparse linear arrays for ultrasonic phased array.

    Science.gov (United States)

    Yang, Ping; Chen, Bin; Shi, Ke-Ren

    2006-12-22

    In ultrasonic phased array testing, a sparse array can increase the resolution by enlarging the aperture without adding system complexity. Designing a sparse array involves choosing the best or a better configuration from a large number of candidate arrays. We firstly designed sparse arrays by using a genetic algorithm, but found that the arrays have poor performance and poor consistency. So, a method based on the Minimum Redundancy Linear Array was then adopted. Some elements are determined by the minimum-redundancy array firstly in order to ensure spatial resolution and then a genetic algorithm is used to optimize the remaining elements. Sparse arrays designed by this method have much better performance and consistency compared to the arrays designed only by a genetic algorithm. Both simulation and experiment confirm the effectiveness.

  4. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  5. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  6. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  7. Motor cortex is required for learning but not executing a motor skill

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  8. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  9. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  10. Genetic Design of an Interval Type-2 Fuzzy Controller for Velocity Regulation in a DC Motor

    Directory of Open Access Journals (Sweden)

    Yazmin Maldonado

    2012-11-01

    Full Text Available This paper proposes the design of a Type-2 Fuzzy Logic Controller (T2-FLC using Genetic Algorithms (GAs. The T2-FLC was tested with different levels of uncertainty to regulate velocity in a Direct Current (DC motor. The T2-FLC was synthesized in Very High Description Language (VHDL code for a Field-programmable Gate Array (FPGA, using the Xilinx System Generator (XSG of Xilinx ISE and Matlab-Simulink. Comparisons were made between the Type-1 Fuzzy Logic Controller and the T2-FLC in VHDL code and a Proportional Integral Differential (PID Controller so as to regulate the velocity of a DC motor and evaluate the difference in performance of the three types of controllers, using the t-student test statistic.

  11. HTSL massive motor. Project: Motor field calculation. Final report

    International Nuclear Information System (INIS)

    Gutt, H.J.; Gruener, A.

    2003-01-01

    HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de

  12. Shannon Entropy and K-Means Method for Automatic Diagnosis of Broken Rotor Bars in Induction Motors Using Vibration Signals

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez

    2016-01-01

    Full Text Available For industry, the induction motors are essential elements in production chains. Despite the robustness of induction motors, they are susceptible to failures. The broken rotor bar (BRB fault in induction motors has received special attention since one of its characteristics is that the motor can continue operating with apparent normality; however, at certain point the fault may cause severe damage to the motor. In this work, a methodology to detect BRBs using vibration signals is proposed. The methodology uses the Shannon entropy to quantify the amount of information provided by the vibration signals, which changes due to the presence of new frequency components associated with the fault. For automatic diagnosis, the K-means cluster algorithm and a decision-making unit that looks for the nearest cluster through the Euclidian distance are applied. Unlike other reported works, the proposal can diagnose the BRB condition during startup transient and steady state regimes of operation. Additionally, the proposal is also implemented into a field programmable gate array in order to offer a low-cost and low-complex online monitoring system. The obtained results demonstrate the proposal effectiveness to diagnose half, one, and two BRBs.

  13. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  14. Towards a common framework of grounded action cognition: Relating motor control, perception and cognition.

    Science.gov (United States)

    Gentsch, Antje; Weber, Arne; Synofzik, Matthis; Vosgerau, Gottfried; Schütz-Bosbach, Simone

    2016-01-01

    The relation between motor control and action cognition - including action-related thoughts and action-related perception - has been subject to controversial discussions in the last three decades. During these decades, cognitive neuroscience has been increasingly confronted with a huge variety of different accounts trying to understand and explain the relation between these systems, their interdependencies and the mediating mechanisms by establishing notions such as "internal models", "simulation" or "shared representation". These accounts, however, include a large array of partly overlapping, partly contradictory theories using similar terms for different mechanisms and different terms for similar mechanisms. In the absence of a systematic work-up and comparison, this array of accounts and theories leads to confusion in the field, duplication of experimental work, and unconnected parallelism of theory formation within and between different disciplines. Here we provide a systematic comparison of current models and prospective theories that deal with the relation between cognition, perception and motor control mechanisms. In a second step, we propose "grounded action cognition" as a comprehensive metatheoretical framework which defines different hypothetical possibilities of the relations between these domains, offers systematic insights into current models and theories and last but not least may help to increase comparability of empirical research in the domain of action and action cognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  16. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification...

  17. DC Motor control using motor-generator set with controlled generator field

    Science.gov (United States)

    Belsterling, Charles A.; Stone, John

    1982-01-01

    A d.c. generator is connected in series opposed to the polarity of a d.c. power source supplying a d.c. drive motor. The generator is part of a motor-generator set, the motor of which is supplied from the power source connected to the motor. A generator field control means varies the field produced by at least one of the generator windings in order to change the effective voltage output. When the generator voltage is exactly equal to the d.c. voltage supply, no voltage is applied across the drive motor. As the field of the generator is reduced, the drive motor is supplied greater voltage until the full voltage of the d.c. power source is supplied when the generator has zero field applied. Additional voltage may be applied across the drive motor by reversing and increasing the reversed field on the generator. The drive motor may be reversed in direction from standstill by increasing the generator field so that a reverse voltage is applied across the d.c. motor.

  18. Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays.

    Science.gov (United States)

    Hiremath, Shivayogi V; Chen, Weidong; Wang, Wei; Foldes, Stephen; Yang, Ying; Tyler-Kabara, Elizabeth C; Collinger, Jennifer L; Boninger, Michael L

    2015-01-01

    A brain-computer interface (BCI) system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  19. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  20. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  1. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    Science.gov (United States)

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  2. Motor-pump unit provided with a lifting appliance of the motor

    International Nuclear Information System (INIS)

    Veronesi, Luciano; Francis, W.R.

    1978-01-01

    This invention relates to lifting appliances and particularly concerns a 'pump and motor set' or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr

  3. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  4. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    Science.gov (United States)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  5. Motor cortex is required for learning but not for executing a motor skill.

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Modulation of motor performance and motor learning by transcranial direct current stimulation.

    Science.gov (United States)

    Reis, Janine; Fritsch, Brita

    2011-12-01

    Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. Within the past years, behavioural studies have confirmed and specified the timing and polarity specific effects of tDCS on motor skill learning and motor adaptation. There is strong evidence that timely co-application of (hand/arm) training and anodal tDCS to the contralateral M1 can improve motor learning. Improvements in motor function as measured by clinical scores have been described for combined tDCS and training in stroke patients. For this purpose, electrode montages have been modified with respect to interhemispheric imbalance after brain injury. Cathodal tDCS applied to the unlesioned M1 or bihemispheric M1 stimulation appears to be well tolerated and useful to induce improvements in motor function. Mechanistic studies in humans and animals are discussed with regard to physiological motor learning. tDCS is well tolerated, easy to use and capable of inducing lasting improvements in motor function. This method holds promise for the rehabilitation of motor disabilities, although acute studies in patients with brain injury are so far lacking.

  7. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    Science.gov (United States)

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  8. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    Directory of Open Access Journals (Sweden)

    José Angelo Barela

    2013-09-01

    Full Text Available Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has been marginalized in many of our physical education proposal and in doing so, we have not promote motor competence in our children who lack proficiency to engage and to participate in later motor activities such as sport-related or recreational.

  9. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  10. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  11. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  12. DC motors and servo-motors controlled by Raspberry Pi 2B

    Directory of Open Access Journals (Sweden)

    Šustek Michal

    2017-01-01

    Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.

  13. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  14. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  15. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  16. The Function and Organization of the Motor System Controlling Flight Maneuvers in Flies.

    Science.gov (United States)

    Lindsay, Theodore; Sustar, Anne; Dickinson, Michael

    2017-02-06

    Animals face the daunting task of controlling their limbs using a small set of highly constrained actuators. This problem is particularly demanding for insects such as Drosophila, which must adjust wing motion for both quick voluntary maneuvers and slow compensatory reflexes using only a dozen pairs of muscles. To identify strategies by which animals execute precise actions using sparse motor networks, we imaged the activity of a complete ensemble of wing control muscles in intact, flying flies. Our experiments uncovered a remarkably efficient logic in which each of the four skeletal elements at the base of the wing are equipped with both large phasically active muscles capable of executing large changes and smaller tonically active muscles specialized for continuous fine-scaled adjustments. Based on the responses to a broad panel of visual motion stimuli, we have developed a model by which the motor array regulates aerodynamically functional features of wing motion. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  18. A Unique test for Hubble's new Solar Arrays

    Science.gov (United States)

    2000-10-01

    pairs. The arrays use high efficiency solar cells and an advanced structural system to support the solar panels. Unlike the earlier sets, which roll up like window shades, the new arrays are rigid. ESA provided Hubble's first two sets of solar arrays, and built and tested the motors and electronics of the new set provided by NASA Goddard Space Flight Center. Now, this NASA/ESA test has benefits that extend beyond Hubble to the world-wide aerospace community. It will greatly expand basic knowledge of the jitter phenomenon. Engineers across the globe can apply these findings to other spacecraft that are subjected to regular, dramatic changes in sunlight and temperature. Note to editors The Hubble Project The Hubble Space Telescope is a project of international co-operation between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The partnership agreement between ESA and NASA was signed on 7 October 1977. ESA has provided two pairs of solar panels and one of Hubble's scientific instruments (the Faint Object Camera), as well as a number of other components and supports NASA during routine Servicing Missions to the telescope. In addition, 15 European scientists are working at the Space Telescope Science Institute in Baltimore (STScI), which is responsible for the scientific operation of the Hubble Observatory and is managed by the Association of Universities for Research in Astronomy (AURA) for NASA. In return, European astronomers have guaranteed access to 15% of Hubble's observing time. The Space Telescope European Coordinating Facility (ST-ECF) hosted at the European Southern Observatory (ESO) in Garching bei München, Germany, supports European Hubble users. ESA and ESO jointly operate the ST-ECF.

  19. Gene Expression Changes in the Motor Cortex Mediating Motor Skill Learning

    Science.gov (United States)

    Cheung, Vincent C. K.; DeBoer, Caroline; Hanson, Elizabeth; Tunesi, Marta; D'Onofrio, Mara; Arisi, Ivan; Brandi, Rossella; Cattaneo, Antonino; Goosens, Ki A.

    2013-01-01

    The primary motor cortex (M1) supports motor skill learning, yet little is known about the genes that contribute to motor cortical plasticity. Such knowledge could identify candidate molecules whose targeting might enable a new understanding of motor cortical functions, and provide new drug targets for the treatment of diseases which impair motor function, such as ischemic stroke. Here, we assess changes in the motor-cortical transcriptome across different stages of motor skill acquisition. Adult rats were trained on a gradually acquired appetitive reach and grasp task that required different strategies for successful pellet retrieval, or a sham version of the task in which the rats received pellet reward without needing to develop the reach and grasp skill. Tissue was harvested from the forelimb motor-cortical area either before training commenced, prior to the initial rise in task performance, or at peak performance. Differential classes of gene expression were observed at the time point immediately preceding motor task improvement. Functional clustering revealed that gene expression changes were related to the synapse, development, intracellular signaling, and the fibroblast growth factor (FGF) family, with many modulated genes known to regulate synaptic plasticity, synaptogenesis, and cytoskeletal dynamics. The modulated expression of synaptic genes likely reflects ongoing network reorganization from commencement of training till the point of task improvement, suggesting that motor performance improves only after sufficient modifications in the cortical circuitry have accumulated. The regulated FGF-related genes may together contribute to M1 remodeling through their roles in synaptic growth and maturation. PMID:23637843

  20. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  1. Het motorrijwiel : handboek voor motor- en scooterrijders, motor- en scootermonteurs en -technici

    NARCIS (Netherlands)

    Seyffardt, A.L.W.

    1961-01-01

    INHOUD: 1. De werking van de motor ; 2. De hoofddelen van de motor ; 3. De kleppen en de klepbeweging ; 4. Balancering, de meercilinder motor ; 5. Bijzonderheden over de werking ; 6. De carburateur ; 7. De smering van de motor ; 8. De tweetaktmotor ; 9. De elektrische installatie ; 10. De

  2. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  3. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2011-01-05

    ... Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3... Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... motors and small electric motors, clarify the scope of energy conservation standards for electric motors...

  4. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation

    Energy Technology Data Exchange (ETDEWEB)

    Farshchian, Bahador [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Gatabi, Javad R. [Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Bernick, Steven M.; Park, Sooyeon [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Lee, Gwan-Hyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Droopad, Ravindranath [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States); Materials Science, Engineering and Commercialization, Texas State University, San Marcos, TX 78666 (United States); Kim, Namwon, E-mail: n_k43@txstate.edu [Ingram School of Engineering, Texas State University, San Marcos, TX 78666 (United States)

    2017-02-28

    Highlights: • Superhydrophobic grid patterns were processed on the surface of PDMS using a pulsed nanosecond laser. • Droplet arrays form instantly on the laser-patterned PDMS with the superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water. • Droplet size can be controlled by controlling the pitch size of superhydrophobic grid and the withdrawal speed. - Abstract: We demonstrate a facile single step laser treatment process to render a polydimethylsiloxane (PDMS) surface superhydrophobic. By synchronizing a pulsed nanosecond laser source with a motorized stage, superhydrophobic grid patterns were written on the surface of PDMS. Hierarchical micro and nanostructures were formed in the irradiated areas while non-irradiated areas were covered by nanostructures due to deposition of ablated particles. Arrays of droplets form spontaneously on the laser-patterned PDMS with superhydrophobic grid pattern when the PDMS sample is simply immersed in and withdrawn from water due to different wetting properties of the irradiated and non-irradiated areas. The effects of withdrawal speed and pitch size of superhydrophobic grid on the size of formed droplets were investigated experimentally. The droplet size increases initially with increasing the withdrawal speed and then does not change significantly beyond certain points. Moreover, larger droplets are formed by increasing the pitch size of the superhydrophobic grid. The droplet arrays formed on the laser-patterned PDMS with wettability contrast can be used potentially for patterning of particles, chemicals, and bio-molecules and also for cell screening applications.

  5. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  6. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    OpenAIRE

    MEMISEVIC Haris; HADZIC Selmir

    2015-01-01

    Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegbo...

  7. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    Science.gov (United States)

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  8. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    OpenAIRE

    Barela, José Angelo

    2013-01-01

    Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has be...

  9. Neural mechanisms of sequence generation in songbirds

    Science.gov (United States)

    Langford, Bruce

    Animal models in research are useful for studying more complex behavior. For example, motor sequence generation of actions requiring good muscle coordination such as writing with a pen, playing an instrument, or speaking, may involve the interaction of many areas in the brain, each a complex system in itself; thus it can be difficult to determine causal relationships between neural behavior and the behavior being studied. Birdsong, however, provides an excellent model behavior for motor sequence learning, memory, and generation. The song consists of learned sequences of notes that are spectrographically stereotyped over multiple renditions of the song, similar to syllables in human speech. The main areas of the songbird brain involve in singing are known, however, the mechanisms by which these systems store and produce song are not well understood. We used a custom built, head-mounted, miniature motorized microdrive to chronically record the neural firing patterns of identified neurons in HVC, a pre-motor cortical nucleus which has been shown to be important in song timing. These were done in Bengalese finch which generate a song made up of stereotyped notes but variable note sequences. We observed song related bursting in neurons projecting to Area X, a homologue to basal ganglia, and tonic firing in HVC interneurons. Interneuron had firing rate patterns that were consistent over multiple renditions of the same note sequence. We also designed and built a light-weight, low-powered wireless programmable neural stimulator using Bluetooth Low Energy Protocol. It was able to generate perturbations in the song when current pulses were administered to RA, which projects to the brainstem nucleus responsible for syringeal muscle control.

  10. Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...

    African Journals Online (AJOL)

    In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...

  11. Motor proteins and molecular motors: how to operate machines at the nanoscale

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B

    2013-01-01

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors. (topical review)

  12. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  13. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  14. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  16. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  17. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  18. A Motor/Generator for Flywheel Energy Storage System Levitated by Bulk Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, C.S.; Yeon, J.U.; Jeoung, H.M.; Choi, J.H. [Chungbuk National University (Korea); Lee, H.J; Hong, G.W. [Korea Atomic Energy Research Institute (Korea)

    2000-06-01

    The energy storage systems are being widely researched for the high quality of the electric power. The FES(flywheel energy storage system)is especially, on the center of the research because it does not make any pollution and its life is long. The FES converts the electrical energy into the mechanical kinetic energy of the flywheel and reconverts the mechanical energy into the electrical energy, In order to store as much energy as possible, the flywheel is supposed to be rotated with very high speed. The motor/generator of the FES should be high efficient at high speed, and generate constant torque with respect to the rotation. In this paper, a motor/generator employing a Halbach array of permanent magnets is designed and constructed to meet the requirements, and its characteristics are examined. The magnetic field is analysed by using the magnetic surface charge method. The armature winding is designed for the harmonic components to be minimized by using the FFT. The sinusoidal currents for the motor driving are generated by the hysteresis current controller. A sample superconducting flywheel energy storage system is constructed with a duralumin flywheel which has a maximum rotating speed of 40,000[rpm] and a stored energy of 240[Wh] and its validity is examined through the experiment. (author). 15 refs., 17 figs., 2 tabs.

  19. Distribution of motor unit potential velocities in short static and prolongd dynamic contractions at low forces: Use of the within-subject's skewness and standard deviation variables

    NARCIS (Netherlands)

    Klaver-Krol, E.G.; Henriquez, N.R.; Oosterloo, Sebe J.; Klaver, P.; Bos, J.M.; Zwarts, M.J.

    2007-01-01

    Behaviour of motor unit potential (MUP) velocities in relation to (low) force and duration was investigated in biceps brachii muscle using a surface electrode array. Short static tests of 3.8 s (41 subjects) and prolonged dynamic tests (prolonged tests) of 4 min (30 subjects) were performed as

  20. Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.

    Science.gov (United States)

    Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng

    2018-05-14

    In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.

  1. Reduction of power consumption in motor-driven applications by using PM motors; PM = Permanent Magnet; Reduktion af elforbrug til motordrift ved anvendelse af PM motorer

    Energy Technology Data Exchange (ETDEWEB)

    Hvenegaard, C.M.; Hansen, Mads P.R.; Groenborg Nikolaisen, C. (Teknologisk Institut, Taastrup (Denmark)); Nielsen, Sandie B. (Teknologisk Institut, AArhus (Denmark)); Ritchie, E.; Leban, K. (Aalborg Univ., Aalborg (Denmark))

    2009-12-15

    The traditional asynchronous motor with aluminum rotor is today by far the most widespread and sold electric motor, but a new and more energy efficient type of engine - the permanent magnet motor (PM motor) - is expected in the coming years to win larger and larger market shares. Several engine manufacturers in Europe, USA and Asia are now beginning to market the PM motors, which can replace the traditional asynchronous motor. The project aims to uncover the pros and cons of replacing asynchronous motors including EFF1 engines with PM motors, including the price difference. Furthermore, it is identified how the efficiency of PM motors is affected by low load levels and at various forms of control. Finally, the energy savings potential is analysed, by replacing asynchronous motors with PM motors. The study includes laboratory tests of PM motors, made in a test stand at Danish Technological Institute. (ln)

  2. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Science.gov (United States)

    2010-07-01

    ... practicable, conflicts between motorized and non-motorized rivercraft users and between both types of...-motorized rivercraft may be permitted subject to restrictions on size, type of craft, numbers, duration... Service where such activity may be permitted subject to restrictions on size, type of craft, numbers...

  3. Energy-saving motor; Energiesparmotor

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the development and testing of an advanced electrical motor using a permanent-magnet rotor. The aims of the project - to study the technical feasibility and market potential of the Eco-Motor - are discussed and the three phases of the project described. These include the calculation and realisation of a 250-watt prototype operating at 230 V, the measurement of the motor's characteristics as well as those of a comparable asynchronous motor on the test bed at the University of Applied Science in Lucerne, Switzerland, and a market study to establish if the Eco-Motor and its controller can compete against normal asynchronous motors. Also, the results of an analysis of the energy-savings potential is made, should such Eco-Motors be used. Detailed results of the three phases of the project are presented and the prospects of producing such motors in Switzerland for home use as well as for export are examined.

  4. Brain Computer Interface Learning for Systems Based on Electrocorticography and Intracortical Microelectrode Arrays

    Directory of Open Access Journals (Sweden)

    Shivayogi V Hiremath

    2015-06-01

    Full Text Available A brain-computer interface (BCI system transforms neural activity into control signals for external devices in real time. A BCI user needs to learn to generate specific cortical activity patterns to control external devices effectively. We call this process BCI learning, and it often requires significant effort and time. Therefore, it is important to study this process and develop novel and efficient approaches to accelerate BCI learning. This article reviews major approaches that have been used for BCI learning, including computer-assisted learning, co-adaptive learning, operant conditioning, and sensory feedback. We focus on BCIs based on electrocorticography and intracortical microelectrode arrays for restoring motor function. This article also explores the possibility of brain modulation techniques in promoting BCI learning, such as electrical cortical stimulation, transcranial magnetic stimulation, and optogenetics. Furthermore, as proposed by recent BCI studies, we suggest that BCI learning is in many ways analogous to motor and cognitive skill learning, and therefore skill learning should be a useful metaphor to model BCI learning.

  5. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2012-05-04

    ... Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable... electric motors and small electric motors. That supplemental proposal, along with an earlier proposal from...

  6. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    Science.gov (United States)

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  8. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  9. Reprogramming movements: Extraction of motor intentions from cortical ensemble activity when movement goals change

    Directory of Open Access Journals (Sweden)

    Peter James Ifft

    2012-07-01

    Full Text Available The ability to inhibit unwanted movements and change motor plans is essential for behaviors of advanced organisms. The neural mechanisms by which the primate motor system rejects undesired actions have received much attention during the last decade, but it is not well understood how this neural function could be utilized to improve the efficiency of brain-machine interfaces (BMIs. Here we employed linear discriminant analysis (LDA and a Wiener filter to extract motor plan transitions from the activity of ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted with multielectrode arrays in primary motor (M1 and primary sensory (S1 cortices, were overtrained to produce reaching movements with a joystick towards visual targets upon their presentation. Then, the behavioral task was modified to include a distracting target that flashed for 50, 150 or 250 ms (25% of trials each followed by the true target that appeared at a different screen location. In the remaining 25% of trials, the initial target stayed on the screen and was the target to be approached. M1 and S1 neuronal activity represented both the true and distracting targets, even for the shortest duration of the distracting event. This dual representation persisted both when the monkey initiated movements towards the distracting target and then made corrections and when they moved directly towards the second, true target. The Wiener filter effectively decoded the location of the true target, whereas the LDA classifier extracted the location of both targets from ensembles of 50-250 neurons. Based on these results, we suggest developing real-time BMIs that inhibit unwanted movements represented by brain activity while enacting the desired motor outcome concomitantly.

  10. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  11. Microprocessor controller for stepping motors

    International Nuclear Information System (INIS)

    Strait, B.G.; Thuot, M.E.

    1977-01-01

    A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer

  12. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  13. Motor units in vastus lateralis and in different vastus medialis regions show different firing properties during low-level, isometric knee extension contraction.

    Science.gov (United States)

    de Souza, Leonardo Mendes Leal; Cabral, Hélio Veiga; de Oliveira, Liliam Fernandes; Vieira, Taian Martins

    2018-04-01

    Architectural differences along vastus medialis (VM) and between VM and vastus lateralis (VL) are considered functionally important for the patellar tracking, knee joint stability and knee joint extension. Whether these functional differences are associated with a differential activity of motor units between VM and VL is however unknown. In the present study, we, therefore, investigate neuroanatomical differences in the activity of motor units detected proximo-distally from VM and from the VL muscle. Nine healthy volunteers performed low-level isometric knee extension contractions (20% of their maximum voluntary contraction) following a trapezoidal trajectory. Surface electromyograms (EMGs) were recorded from VM proximal and distal regions and from VL using three linear adhesive arrays of eight electrodes. The firing rate and recruitment threshold of motor units decomposed from EMGs were then compared among muscle regions. Results show that VL motor units reached lower mean firing rates in comparison with VM motor units, regardless of their position within VM (P motor units (P = .997). Furthermore, no significant differences in the recruitment threshold were observed for all motor units analysed (P = .108). Our findings possibly suggest the greater potential of VL to generate force, due to its fibres arrangement, may account for the lower discharge rate observed for VL then either proximally or distally detected motor units in VM. Additionally, the present study opens new perspectives on the importance of considering muscle architecture in investigations of the neural aspects of motor behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    Science.gov (United States)

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  15. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes

    Science.gov (United States)

    Hara, Seth A.; Kim, Brian J.; Kuo, Jonathan T. W.; Lee, Curtis D.; Meng, Ellis; Pikov, Victor

    2016-12-01

    Objective. Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results. Approach. The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum. The probe includes a novel three-dimensional sheath structure, perforations, and bioactive coatings that improve tissue integration and manage immune response. Coatings were applied using a sequential dip-coating method that provided coverage over the entire probe surface and interior of the sheath structure. A sharp probe tip taper facilitated insertion with minimal trauma. Fabricated probes were subject to examination by optical and electron microscopy and electrochemical testing prior to implantation. Main results. 1 × 2 arrays were successfully fabricated on wafer and then packaged together to produce 2 × 2 arrays. Then, probes having electrode sites with adequate electrochemical properties were selected. A subset of arrays was treated with bioactive coatings to encourage neuronal growth and suppress inflammation and another subset of arrays was implanted in conjunction with a virally mediated expression of Caveolin-1. Arrays were attached to a custom-made insertion shuttle to facilitate precise insertion into the rat motor cortex. Stable electrophysiological recordings were obtained during the period of implantation up to 12 months. Immunohistochemical evaluation of cortical tissue around individual probes indicated a strong correlation between the electrophysiological performance of the probes and histologically observable proximity of neurons and dendritic sprouting. Significance. The PSEA demonstrates the scalability of sheath electrode technology and provides higher electrode count and density to access a greater volume for recording

  16. What happens to the motor theory of perception when the motor system is damaged?

    Science.gov (United States)

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  17. Permanent magnet DC motor control by using arduino and motor drive module BTS7960

    Science.gov (United States)

    Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.

    2018-05-01

    This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.

  18. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  19. Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.

    Science.gov (United States)

    Seven, Yasin B; Perim, Raphael R; Hobson, Orinda R; Simon, Alec K; Tadjalli, Arash; Mitchell, Gordon S

    2018-04-15

    Although adenosine 2A (A 2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A 2A receptor siRNA injections. A 2A receptor siRNA injections selectively knocked down A 2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A 2A receptors relevant to A 2A receptor-induced phrenic motor facilitation. Upregulation of A 2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A 2A receptors for pMF are unknown. This is an important question since the physiological outcome of A 2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A 2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A 2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A 2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A 2A receptor knock-down was verified by a ∼45% decrease in A 2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, p

  20. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story

    Science.gov (United States)

    Llinás, Rodolfo R

    2011-01-01

    Abstract Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail. PMID:21486816

  1. The Digital Motion Control System for the Submillimeter Array Antennas

    Science.gov (United States)

    Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.

    2013-09-01

    We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.

  2. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    Science.gov (United States)

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  3. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  4. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  5. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    Science.gov (United States)

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  6. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Hereditary motor neuropathies and motor neuron diseases: which is which.

    Science.gov (United States)

    Hanemann, Clemens O; Ludolph, Albert C

    2002-12-01

    When Charcot first defined amyotrophic lateral sclerosis (ALS) he used the clinical and neuropathological pattern of vulnerability as a guideline. Similarly other motor neuron diseases such as the spinal muscular atrophies (SMA) and the motor neuropathies (MN) were grouped following clinical criteria. However, ever since the etiology of these diseases has started to be disclosed by genetics, we have learnt that the limits of the syndromes are not as well defined as our forefathers thought. A mutation leading to ALS can also be associated with the clinical picture of spinal muscular atrophy; even more unexpected is the overlap of the so-called motor neuropathies with the clinical syndrome of slowly progressive ALS or that primary lateral sclerosis (PLS) can be caused by the same gene as that responsible for some cases of ALS. In this review we summarise recent work showing that there is a considerable overlap between CMT, MN, SMA, ALS and PLS. Insights into these phenotypes should lead to study of the variants of motor neuron disease and possibly to a reclassification. This comprehensive review should help to improve understanding of the pathogenesis of motor neuron degeneration and finally may aid the research for urgently needed new treatment strategies, perhaps with validity for the entire group of motor neuron diseases.

  8. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    Science.gov (United States)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  9. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  10. The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement.

    Science.gov (United States)

    Ishiura, Hiroyuki; Sako, Wataru; Yoshida, Mari; Kawarai, Toshitaka; Tanabe, Osamu; Goto, Jun; Takahashi, Yuji; Date, Hidetoshi; Mitsui, Jun; Ahsan, Budrul; Ichikawa, Yaeko; Iwata, Atsushi; Yoshino, Hiide; Izumi, Yuishin; Fujita, Koji; Maeda, Kouji; Goto, Satoshi; Koizumi, Hidetaka; Morigaki, Ryoma; Ikemura, Masako; Yamauchi, Naoko; Murayama, Shigeo; Nicholson, Garth A; Ito, Hidefumi; Sobue, Gen; Nakagawa, Masanori; Kaji, Ryuji; Tsuji, Shoji

    2012-08-10

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal-dominant neurodegenerative disorder characterized by widespread fasciculations, proximal-predominant muscle weakness, and atrophy followed by distal sensory involvement. To date, large families affected by HMSN-P have been reported from two different regions in Japan. Linkage and haplotype analyses of two previously reported families and two new families with the use of high-density SNP arrays further defined the minimum candidate region of 3.3 Mb in chromosomal region 3q12. Exome sequencing showed an identical c.854C>T (p.Pro285Leu) mutation in the TRK-fused gene (TFG) in the four families. Detailed haplotype analysis suggested two independent origins of the mutation. Pathological studies of an autopsied patient revealed TFG- and ubiquitin-immunopositive cytoplasmic inclusions in the spinal and cortical motor neurons. Fragmentation of the Golgi apparatus, a frequent finding in amyotrophic lateral sclerosis, was also observed in the motor neurons with inclusion bodies. Moreover, TAR DNA-binding protein 43 kDa (TDP-43)-positive cytoplasmic inclusions were also demonstrated. In cultured cells expressing mutant TFG, cytoplasmic aggregation of TDP-43 was demonstrated. These findings indicate that formation of TFG-containing cytoplasmic inclusions and concomitant mislocalization of TDP-43 underlie motor neuron degeneration in HMSN-P. Pathological overlap of proteinopathies involving TFG and TDP-43 highlights a new pathway leading to motor neuron degeneration. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  12. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  13. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  14. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  15. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  16. Comparison of capabilities of reluctance synchronous motor and induction motor

    International Nuclear Information System (INIS)

    Stumberger, Gorazd; Hadziselimovic, Miralem; Stumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradisnik, Ivan

    2006-01-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements

  17. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  18. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  19. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  20. IE Information No. 87-08: Degraded motor leads in Limitorque dc motor operators

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On May 6, 1986 the NRC received from Portland General Electric Company a 10 CFR 21 report concerning a motor failure which occurred at its Trojan Nuclear Power Plant. The failure involved shorting of the motor leads inside a Limitorque motor operator connected to an auxiliary feedwater flow control valve. Upon inspection it was determined that the failure was the result of insulation degradation of the motor leads that had allowed two leads to short together. Recently, the NRC has also learned of a failure at the Turkey Point Nuclear Power Plant in which the steam supply valve for the auxiliary feedwater turbine failed to operate after a Limitorque motor operator experienced a similar motor lead short circuit. The Trojan and the Turkey Point Limitorque operators were found to contain motors manufactured with Nomex-Kapton insulated leads. On January 12--14, 1987, the NRC conducted an inspection at Peerless-Winsmith, Inc., manufacturer of dc motors for Limitorque Co. During this inspection it was determined that the failed Nomex-Kapton leads were different than the leads which were fitted to the motors, tested, and documented in Limitorque Qualification Report B-0009 for dc motor operators. The leads attached to the tested motors were insulated with Nomex plus an epoxy impregnated braided fiberglass sleeve. The NRC knows of no analysis or testing that has been performed to show the Nomex-Kapton leads are acceptable for use in an application requiring environmental qualification. Further, it should be noted that the failures cited above occurred under normal operating conditions, not under the harsh conditions which could occur in areas where environmental qualification is required

  1. Electrodynamic linear motor

    Energy Technology Data Exchange (ETDEWEB)

    Munehiro, H

    1980-05-29

    When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.

  2. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  3. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  5. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  6. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  7. FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives

    Energy Technology Data Exchange (ETDEWEB)

    Hasanien, Hany M., E-mail: Hanyhasanien@ieee.or [Dept. of Elec. Power and Machines, Faculty of Eng., Ain Shams Univ., Cairo (Egypt)

    2011-02-15

    This paper presents a novel adaptive artificial neural network (ANN) controller, which applies on permanent magnet stepper motor (PMSM) for regulating its speed. The dynamic response of the PMSM with the proposed controller is studied during the starting process under the full load torque and under load disturbance. The effectiveness of the proposed adaptive ANN controller is then compared with that of the conventional PI controller. The proposed methodology solves the problem of nonlinearities and load changes of PMSM drives. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. Matlab/Simulink tool is used for this dynamic simulation study. The main contribution of this work is the implementation of the proposed controller on field programmable gate array (FPGA) hardware to drive the stepper motor. The driver is built on FPGA Spartan-3E Starter from Xilinx. Experimental results are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  8. FPGA implementation of adaptive ANN controller for speed regulation of permanent magnet stepper motor drives

    International Nuclear Information System (INIS)

    Hasanien, Hany M.

    2011-01-01

    This paper presents a novel adaptive artificial neural network (ANN) controller, which applies on permanent magnet stepper motor (PMSM) for regulating its speed. The dynamic response of the PMSM with the proposed controller is studied during the starting process under the full load torque and under load disturbance. The effectiveness of the proposed adaptive ANN controller is then compared with that of the conventional PI controller. The proposed methodology solves the problem of nonlinearities and load changes of PMSM drives. The proposed controller ensures fast and accurate dynamic response with an excellent steady state performance. Matlab/Simulink tool is used for this dynamic simulation study. The main contribution of this work is the implementation of the proposed controller on field programmable gate array (FPGA) hardware to drive the stepper motor. The driver is built on FPGA Spartan-3E Starter from Xilinx. Experimental results are presented to demonstrate the validity and effectiveness of the proposed control scheme.

  9. Motor Importance of motor assessment in school children: analysis of the reliability of the motor development scale

    Directory of Open Access Journals (Sweden)

    Kassandra Nunes Amaro

    2010-09-01

    Full Text Available The objective of this study was to investigate the motor performance of school chil-dren aged 6 to 10 years without learning difficulties (n=101, and to analyze the reliability of the Motor Development Scale (MDS (Rosa Neto, 2002. Descriptive statistics with calculation of the mean, standard deviation, and range was used for data analysis. The internal consistency of the MDS was assessed using Cronbach’s alpha coefficient, and the correlation between variables was determined by Pearson’s linear correlation, with p<0.05. The results showed (1 that motor development was within normal limits in 96% of the children, and (2 a high correlation betwe-en chronological age and general motor age, indicating good internal consistency. These data demonstrate the logic and structured design of the MDS, confirming its reliability.

  10. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  11. Markov process of muscle motors

    International Nuclear Information System (INIS)

    Kondratiev, Yu; Pechersky, E; Pirogov, S

    2008-01-01

    We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors

  12. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  13. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  14. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  15. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  16. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  18. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  19. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  20. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  1. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  2. Deafness and motor abilities level

    Directory of Open Access Journals (Sweden)

    A Zwierzchowska

    2008-09-01

    Full Text Available The audition injury hinders some motor motions and the organised coordination at the higher level and may be a cause of disturbances and disorder in some motor abilities adoption. It was assumed that deafness including its aetiology and injury mechanism may significantly influence the motor development of human being. The study aimed in checking if the deafness, as a result of various unfavourable factors, determines the motor development of children and youngsters. Consequently the dependency between qualitative features i.e.: signed motor level and aetiology, audition injury mechanism and the deafness degree was examined. The mechanism and aetiology of hearing correlated with the motor abilities displayed statistically significant dependencies in few motor trials only. Revealed correlations regarded mostly the coordination trials excluding the flexibility one. Statistically significant dependencies between the audition diminution and the motor abilities level were not found.

  3. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  4. Rapid ELISA Using a Film-Stack Reaction Field with Micropillar Arrays.

    Science.gov (United States)

    Suzuki, Yuma; Morioka, Kazuhiro; Ohata, Soichiro; Shimizu, Tetsuhide; Nakajima, Hizuru; Uchiyama, Katsumi; Yang, Ming

    2017-07-11

    A film-stack reaction field with a micropillar array using a motor stirrer was developed for the high sensitivity and rapid enzyme-linked immunosorbent assay (ELISA) reaction. The effects of the incubation time of a protein (30 s, 5 min, and 10 min) on the fluorescence intensity in ELISAs were investigated using a reaction field with different micropillar array dimensions (5-µm, 10-µm and 50-µm gaps between the micropillars). The difference in fluorescence intensity between the well with the reaction field of 50-µm gap for the incubation time of 30 s and the well without the reaction field with for incubation time of 10 min was 6%. The trend of the fluorescence intensity in the gap between the micro pillars in the film-stack reaction field was different between the short incubation time and the long incubation time. The theoretical analysis of the physical parameters related with the biomolecule transport indicated that the reaction efficiency defined in this study was the dominant factor determining the fluorescence intensity for the short incubation time, whereas the volumetric rate of the circulating flow through the space between films and the specific surface area were the dominant factors for the long incubation time.

  5. Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

    International Nuclear Information System (INIS)

    Jones, Brent Manley; Jennings, Christopher A.; Coverdale, Christine Anne; Cuneo, Michael Edward; Maron, Yitzhak; LePell, Paul David; Deeney, Christopher

    2010-01-01

    Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.

  6. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  7. Increasing Mud Pump Motor Reliability against Malfunctions of DC Motor Excitation System

    Science.gov (United States)

    Nikulin, O. V.; Shabanov, V. A.

    2017-10-01

    The most widely used drilling machinery, such as mud pumps, draw-works, and rotors, use direct-current (DC) motors with independent excitation as the electric drive. Drilling machinery drives operate in harsh ambient conditions, including those with the presence of moisture, dust and vibration, which increases the malfunction rate of both drilling equipment and their electric drives. One of the frequently encountered malfunctions are DC motor excitation coil faults, which disrupt the normal functioning of electric drives, often leading to shutdown of the drilling process. In a four-pole DC motor, the malfunction of one coil leads to lack of excitation current in just one coil pair, while the other pair remains functional. In this case, DC motors and drilling equipment can remain operational, which would allow for continuing the drilling process. This paper considers the possibility of operation of a DC motor on a drilling rig in those cases when one pair of excitation coils is non-functional, and describes the device for switching between the excitation coils and the auxiliary winding in a DC motor with independent excitation.

  8. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  9. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  11. Single-electron tunnel junction array

    International Nuclear Information System (INIS)

    Likharev, K.K.; Bakhvalov, N.S.; Kazacha, G.S.; Serdyukova, S.I.

    1989-01-01

    The authors have carried out an analysis of statics and dynamics of uniform one-dimensional arrays of ultrasmall tunnel junctions. The correlated single-electron tunneling in the junctions of the array results in its behavior qualitatively similar to that of the Josephson transmission line. In particular, external electric fields applied to the array edges can inject single-electron-charged solitons into the array interior. Shape of such soliton and character of its interactions with other solitons and the array edges are very similar to those of the Josephson vortices (sine-Gordon solitons) in the Josephson transmission line. Under certain conditions, a coherent motion of the soliton train along the array is possible, resulting in generation of narrowband SET oscillations with frequency f/sub s/ = /e where is the dc current flowing along the array

  12. Extraction of motor activity from the cervical spinal cord of behaving rats

    Science.gov (United States)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.

  13. Parkinson Disease: The Relationship Between Non-motor Symptoms and Motor Phenotype.

    Science.gov (United States)

    Ba, Fang; Obaid, Mona; Wieler, Marguerite; Camicioli, Richard; Martin, W R Wayne

    2016-03-01

    Parkinson disease (PD) presents with motor and non-motor symptoms (NMS). The NMS often precede the onset of motor symptoms, but may progress throughout the disease course. Tremor dominant, postural instability gait difficulty (PIGD), and indeterminate phenotypes can be distinguished using Unified PD Rating scales (UPDRS-III). We hypothesized that the PIGD phenotype would be more likely to develop NMS, and that the non-dopamine-responsive axial signs would correlate with NMS severity. We conducted a retrospective cross-sectional chart review to assess the relationship between NMS and PD motor phenotypes. PD patients were administered the NMS Questionnaire, the UPDRS-III, and the Mini-Mental State Examination score. The relationship between NMS burden and PD subtypes was examined using linear regression models. The prevalence of each NMS among difference PD motor subtypes was analyzed using chi-square test. PD patients with more advanced disease based on their UPDRS-III had higher NMS Questionnaire scores. The axial component of UPDRS-III correlated with higher NMS. There was no correlation between NMS and tremor scores. There was a significant correlation between PIGD score and higher NMS burden. PIGD group had higher prevalence in most NMS domains when compared with tremor dominant and indeterminate groups independent of disease duration and severity. NMS profile and severity vary according to motor phenotype. We conclude that in the PD population, patients with a PIGD phenotype who have more axial involvement, associated with advanced disease and poor motor response, have a higher risk for a higher NMS burden.

  14. Direction-of-Arrival Estimation for Coprime Array Using Compressive Sensing Based Array Interpolation

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    2017-01-01

    Full Text Available A method of direction-of-arrival (DOA estimation using array interpolation is proposed in this paper to increase the number of resolvable sources and improve the DOA estimation performance for coprime array configuration with holes in its virtual array. The virtual symmetric nonuniform linear array (VSNLA of coprime array signal model is introduced, with the conventional MUSIC with spatial smoothing algorithm (SS-MUSIC applied on the continuous lags in the VSNLA; the degrees of freedom (DoFs for DOA estimation are obviously not fully exploited. To effectively utilize the extent of DoFs offered by the coarray configuration, a compressing sensing based array interpolation algorithm is proposed. The compressing sensing technique is used to obtain the coarse initial DOA estimation, and a modified iterative initial DOA estimation based interpolation algorithm (IMCA-AI is then utilized to obtain the final DOA estimation, which maps the sample covariance matrix of the VSNLA to the covariance matrix of a filled virtual symmetric uniform linear array (VSULA with the same aperture size. The proposed DOA estimation method can efficiently improve the DOA estimation performance. The numerical simulations are provided to demonstrate the effectiveness of the proposed method.

  15. The Applicability of Incoherent Array Processing to IMS Seismic Array Stations

    Science.gov (United States)

    Gibbons, S. J.

    2012-04-01

    The seismic arrays of the International Monitoring System for the CTBT differ greatly in size and geometry, with apertures ranging from below 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high frequency phases since signals are often incoherent between sensors. Many such phases, typically from events at regional distances, remain undetected since pipeline algorithms often consider only frequencies low enough to allow coherent array processing. High frequency phases that are detected are frequently attributed qualitatively incorrect backazimuth and slowness estimates and are consequently not associated with the correct event hypotheses. This can lead to missed events both due to a lack of contributing phase detections and by corruption of event hypotheses by spurious detections. Continuous spectral estimation can be used for phase detection and parameter estimation on the largest aperture arrays, with phase arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity and the ability to estimate backazimuth and slowness requires that the spatial extent of the array is large enough to resolve time-delays between envelopes with a period of approximately 4 or 5 seconds. The NOA, AKASG, YKA, WRA, and KURK arrays have apertures in excess of 20 km and spectrogram beamforming on these stations provides high quality slowness estimates for regional phases without additional post-processing. Seven arrays with aperture between 10 and 20 km (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 second period signal. The MJAR array in Japan recorded high SNR Pn signals for both the 2006 and 2009 North Korea

  16. System programs design of motors; Sistema de programas de diseno de motores

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Gonzalez Palomas, Oscar; Ciprian Avila, Fernando [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1988-12-31

    This paper describes the objective of creating the program system for induction motors design SIPRODIMO, its scope, its general characteristics, its structure and the results obtained with its application, as well as the service capacity developed by the Motors Area of the Instituto de Investigaciones Elctricas. [Espanol] En este articulo se describe el objetivo de crear el sistema de programas de diseno de motores de induccion, Siprodimo, su alcance, sus caracteristicas generales, su estructura y los resultados obtenidos con su aplicacion, asi como la capacidad de servicio desarrollada por el area de motores, del Instituto de Investigaciones Electricas.

  17. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial enterprises, roads, motor... Rules § 35.5 Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft... private rights, there shall be no commercial enterprise and no permanent road within a wilderness unit...

  18. MROI Array telescopes: the relocatable enclosure domes

    Science.gov (United States)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  19. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  20. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    Energy Technology Data Exchange (ETDEWEB)

    Porter, F.S. E-mail: frederick.s.porter@gsfc.nasa.gov; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T

    2000-04-07

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight.

  1. The XQC microcalorimeter sounding rocket: a stable LTD platform 30 seconds after rocket motor burnout

    International Nuclear Information System (INIS)

    Porter, F.S.; Almy, R.; Apodaca, E.; Figueroa-Feliciano, E.; Galeazzi, M.; Kelley, R.; McCammon, D.; Stahle, C.K.; Szymkowiak, A.E.; Sanders, W.T.

    2000-01-01

    The XQC microcalorimeter sounding rocket experiment is designed to provide a stable thermal environment for an LTD detector system within 30 s of the burnout of its second stage rocket motor. The detector system used for this instrument is a 36-pixel microcalorimeter array operated at 60 mK with a single-stage adiabatic demagnetization refrigerator (ADR). The ADR is mounted on a space-pumped liquid helium tank with vapor cooled shields which is vibration isolated from the rocket structure. We present here some of the design and performance details of this mature LTD instrument, which has just completed its third suborbital flight

  2. The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients

    Directory of Open Access Journals (Sweden)

    Kasahara Takashi

    2012-06-01

    Full Text Available Abstract Background The event-related desynchronization (ERD in EEG is known to appear during motor imagery, and is thought to reflect cortical processing for motor preparation. The aim of this study is to examine the modulation of ERD with motor impairment in ALS patients. ERD during hand motor imagery was obtained from 8 ALS patients with a variety of motor impairments. ERD was also obtained from age-matched 11 healthy control subjects with the same motor task. The magnitude and frequency of ERD were compared between groups for characterization of ALS specific changes. Results The ERD of ALS patients were significantly smaller than those of control subjects. Bulbar function and ERD were negatively correlated in ALS patients. Motor function of the upper extremities did was uncorrelated with ERD. Conclusions ALS patients with worsened bulbar scales may show smaller ERD. Motor function of the upper extremities did was uncorrelated with ERD.

  3. Spinal Accessory Motor Neurons in the Mouse: A Special Type of Branchial Motor Neuron?

    Science.gov (United States)

    Watson, Charles; Tvrdik, Petr

    2018-04-16

    The spinal accessory nerve arises from motor neurons in the upper cervical spinal cord. The axons of these motor neurons exit dorsal to the ligamentum denticulatum and form the spinal accessory nerve. The nerve ascends in the spinal subarachnoid space to enter the posterior cranial fossa through the foramen magnum. The spinal accessory nerve then turns caudally to exit through the jugular foramen alongside the vagus and glossopharyngeal nerves, and then travels to supply the sternomastoid and trapezius muscles in the neck. The unusual course of the spinal accessory nerve has long prompted speculation that it is not a typical spinal motor nerve and that it might represent a caudal remnant of the branchial motor system. Our cell lineage tracing data, combined with images from public databases, show that the spinal accessory motor neurons in the mouse transiently express Phox2b, a transcription factor that is required for development of brain stem branchial motor nuclei. While this is strong prima facie evidence that the spinal accessory motor neurons should be classified as branchial motor, the evolutionary history of these motor neurons in anamniote vertebrates suggests that they may be considered to be an atypical branchial group that possesses both branchial and somatic characteristics. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  4. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  5. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    Directory of Open Access Journals (Sweden)

    Zhu Yuelin

    2008-01-01

    Full Text Available Abstract Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from http://www.ezarray.com/.

  6. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  7. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  8. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  10. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  11. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  12. Contribution of LFP dynamics to single-neuron spiking variability in motor cortex during movement execution

    Science.gov (United States)

    Rule, Michael E.; Vargas-Irwin, Carlos; Donoghue, John P.; Truccolo, Wilson

    2015-01-01

    Understanding the sources of variability in single-neuron spiking responses is an important open problem for the theory of neural coding. This variability is thought to result primarily from spontaneous collective dynamics in neuronal networks. Here, we investigate how well collective dynamics reflected in motor cortex local field potentials (LFPs) can account for spiking variability during motor behavior. Neural activity was recorded via microelectrode arrays implanted in ventral and dorsal premotor and primary motor cortices of non-human primates performing naturalistic 3-D reaching and grasping actions. Point process models were used to quantify how well LFP features accounted for spiking variability not explained by the measured 3-D reach and grasp kinematics. LFP features included the instantaneous magnitude, phase and analytic-signal components of narrow band-pass filtered (δ,θ,α,β) LFPs, and analytic signal and amplitude envelope features in higher-frequency bands. Multiband LFP features predicted single-neuron spiking (1ms resolution) with substantial accuracy as assessed via ROC analysis. Notably, however, models including both LFP and kinematics features displayed marginal improvement over kinematics-only models. Furthermore, the small predictive information added by LFP features to kinematic models was redundant to information available in fast-timescale (spiking history. Overall, information in multiband LFP features, although predictive of single-neuron spiking during movement execution, was redundant to information available in movement parameters and spiking history. Our findings suggest that, during movement execution, collective dynamics reflected in motor cortex LFPs primarily relate to sensorimotor processes directly controlling movement output, adding little explanatory power to variability not accounted by movement parameters. PMID:26157365

  13. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    Science.gov (United States)

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  14. Skeletal maturation, fundamental motor skills and motor performance in preschool children.

    Science.gov (United States)

    Freitas, D L; Lausen, B; Maia, J A; Gouveia, É R; Antunes, A M; Thomis, M; Lefevre, J; Malina, R M

    2018-06-01

    Relationships among skeletal age (SA), body size and fundamental motor skills (FMS) and motor performance were considered in 155 boys and 159 girls 3-6 years of age. Stature and body mass were measured. SA of the hand-wrist was assessed with the Tanner-Whitehouse II 20 bone method. The Test of Gross Motor Development, 2 nd edition (TGMD-2) and the Preschool Test Battery were used, respectively, to assess FMS and motor performance. Based on hierarchical regression analyses, the standardized residuals of SA on chronological age (SAsr) explained a maximum of 6.1% of the variance in FMS and motor performance in boys (ΔR 2 3 , range 0.0% to 6.1%) and a maximum of 20.4% of the variance in girls (ΔR 2 3 , range 0.0% to 20.4%) over that explained by body size and interactions of SAsr with body size (step 3). The interactions of the SAsr and stature and body mass (step 2) explained a maximum of 28.3% of the variance in boys (ΔR 2 2 , range 0.5% to 28.3%) and 16.7% of the variance in girls (ΔR 2 2 , range 0.7% to 16.7%) over that explained by body size alone. With the exception of balance, relationships among SAsr and FMS or motor performance differed between boys and girls. Overall, SA per se or interacting with body size had a relatively small influence in FMS and motor performance in children 3-6 years of age. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. 76 FR 10396 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2011-02-24

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...

  16. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  17. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  18. Synchronous motor with soft start element formed between the motor rotor and motor output shaft to successfully synchronize loads that have high inertia and/or high torque

    Science.gov (United States)

    Umans, Stephen D; Nisley, Donald L; Melfi, Michael J

    2014-10-28

    A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.

  19. Microbial Diagnostic Array Workstation (MDAW: a web server for diagnostic array data storage, sharing and analysis

    Directory of Open Access Journals (Sweden)

    Chang Yung-Fu

    2008-09-01

    Full Text Available Abstract Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.

  20. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  1. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  2. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  3. How thoughts give rise to action - conscious motor intention increases the excitability of target-specific motor circuits.

    Directory of Open Access Journals (Sweden)

    Volker R Zschorlich

    Full Text Available The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR, and extensor carpi radialis (ECR, induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension, without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an "intention network" in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before

  4. How Thoughts Give Rise to Action - Conscious Motor Intention Increases the Excitability of Target-Specific Motor Circuits

    Science.gov (United States)

    Zschorlich, Volker R.; Köhling, Rüdiger

    2013-01-01

    The present study shows evidence for conscious motor intention in motor preparation prior to movement execution. We demonstrate that conscious motor intention of directed movement, combined with minimally supra-threshold transcranial magnetic stimulation (TMS) of the motor cortex, determines the direction and the force of resulting movements, whilst a lack of intention results in weak and omni-directed muscle activation. We investigated changes of consciously intended goal directed movements by analyzing amplitudes of motor-evoked potentials of the forearm muscle, flexor carpi radialis (FCR), and extensor carpi radialis (ECR), induced by transcranial magnetic stimulation over the right motor cortex and their motor outcome. Right-handed subjects were asked to develop a strong intention to move their left wrist (flexion or extension), without any overt motor output at the wrist, prior to brain stimulation. Our analyses of hand acceleration and electromyography showed that during the strong motor intention of wrist flexion movement, it evoked motor potential responses that were significantly larger in the FCR muscle than in the ECR, whilst the opposite was true for an extension movement. The acceleration data on flexion/extension corresponded to this finding. Under no-intention conditions again, which served as a reference for motor evoked potentials, brain stimulation resulted in undirected and minimally simultaneous extension/flexion innervation and virtually no movement. These results indicate that conscious intentions govern motor function, which in turn shows that a neuronal activation representing an “intention network” in the human brain pre-exists, and that it functionally represents target specific motor circuits. Until today, it was unclear whether conscious motor intention exists prior to movement, or whether the brain constructs such an intention after movement initiation. Our study gives evidence that motor intentions become aware before any motor

  5. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  6. Heavy metals in locus ceruleus and motor neurons in motor neuron disease.

    Science.gov (United States)

    Pamphlett, Roger; Kum Jew, Stephen

    2013-12-12

    The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons.

  7. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  8. Electric vehicle traction motors - The development of an advanced motor concept

    Science.gov (United States)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  9. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  10. Non-Motor Symptoms in Patients Suffering from Motor Neuron Diseases.

    Science.gov (United States)

    Günther, René; Richter, Nicole; Sauerbier, Anna; Chaudhuri, Kallol Ray; Martinez-Martin, Pablo; Storch, Alexander; Hermann, Andreas

    2016-01-01

    The recently postulated "disease spreading hypothesis" has gained much attention, especially for Parkinson's disease (PD). The various non-motor symptoms (NMS) in neurodegenerative diseases would be much better explained by this hypothesis than by the degeneration of disease-specific cell populations. Motor neuron disease (MND) is primarily known as a group of diseases with a selective loss of motor function. However, recent evidence suggests disease spreading into non-motor brain regions also in MND. The aim of this study was to comprehensively detect NMS in patients suffering from MND. We used a self-rating questionnaire including 30 different items of gastrointestinal, autonomic, neuropsychiatric, and sleep complaints [NMS questionnaire (NMSQuest)], which is an established tool in PD patients. 90 MND patients were included and compared to 96 controls. In total, MND patients reported significantly higher NMS scores (median: 7 points) in comparison to controls (median: 4 points). Dribbling, impaired taste/smelling, impaired swallowing, weight loss, loss of interest, sad/blues, falling, and insomnia were significantly more prevalent in MND patients compared to controls. Interestingly, excessive sweating was more reported in the MND group. Correlation analysis revealed an increase of total NMS score with disease progression. NMS in MND patients seemed to increase with disease progression, which would fit with the recently postulated "disease spreading hypothesis." The total NMS score in the MND group significantly exceeded the score for the control group, but only 8 of the 30 single complaints of the NMSQuest were significantly more often reported by MND patients. Dribbling, impaired swallowing, weight loss, and falling could primarily be connected to motor neuron degeneration and declared as motor symptoms in MND.

  11. Motor-operated gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  12. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  13. Motor-operator gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  14. Two-Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab Markadeh

    2010-10-01

    Full Text Available The lack of variable-speed drives for two (single induction motor is a reality. This article attempts mainly to investigate the reasons for this lack of variable – speed drives. This paper deals with literature survey of various existing converter topologies, which have been proposed for adjustable speed single phase induction motor drives. Various converter topologies have been compared in this paper. Among these converter topologies, the adjustable frequency PWM inverter is the best choice for single-phase induction motor drives. However, adjustable-frequency drives have not been widely used with single-phase Induction motors. The open-loop constant V/F control law cannot be used with the single-phase induction motor drives as it is used with three phase motors. The variation of the operating frequency at lower speed range with constant load torque causes variation in motor's slip. A constant V/F control is suitable only over the upper speed range.

  15. Echoes on the motor network: how internal motor control structures afford sensory experience.

    Science.gov (United States)

    Burgess, Jed D; Lum, Jarrad A G; Hohwy, Jakob; Enticott, Peter G

    2017-12-01

    Often, during daily experiences, hearing peers' actions can activate motor regions of the CNS. This activation is termed auditory-motor resonance (AMR) and is thought to represent an internal simulation of one's motor memories. Currently, AMR is demonstrated at the neuronal level in the Macaque and songbird, in conjunction with evidence on a systems level in humans. Here, we review evidence of AMR development from a motor control perspective. In the context of internal modelling, we consider data that demonstrates sensory-guided motor learning and action maintenance, particularly the notion of sensory comparison seen during songbird vocalisation. We suggest that these comparisons generate accurate sensory-to-motor inverse mappings. Furthermore, given reports of mapping decay after songbird learning, we highlight the proposal that the maintenance of these sensorimotor maps potentially explains why frontoparietal regions are activated upon hearing known sounds (i.e., AMR). In addition, we also recommend that activation of these types of internal models outside of action execution may provide an ecological advantage when encountering known stimuli in ambiguous conditions.

  16. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  17. CANONICAL RELATIONS BETWEEN BASIC AND MOTOR - SITUATIONAL-MOTOR SKILLS IN SPORT GAMES

    Directory of Open Access Journals (Sweden)

    Bećir Šabotić

    2013-07-01

    Full Text Available The aim of this study was to establish the correlation between the predictor-basic motor and situational-motor tests in sports games. On the sample of 62 subjects of the first year of high school was carried out measurements which covered 12 basic and 6 motor variables and situational tests in volleyball and basketball.Based on the results of the canonical correlation analysis, it can be concluded that there is a significant relationship between the predictor variables and a set of criterion variables, situational-motor tests basketball and volleyball. These results are logical given the structure of movements from basketball and volleyball that require a high level of coordination and speed.

  18. How Kinesthetic Motor Imagery works: A predictive-processing theory of visualization in sports and motor expertise

    NARCIS (Netherlands)

    Ridderinkhof, K.R.; Brass, M.

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits

  19. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2011-03-08

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY..., Exemption from the Theft Prevention Standard. This petition is granted because the agency has determined... in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of...

  20. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Science.gov (United States)

    2012-04-13

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA AGENCY: National Highway Traffic... exemption. SUMMARY: This document grants in full the petition of Tesla Motors Inc's. (Tesla) for an... 49 CFR Part 541, Federal Motor Vehicle Theft Prevention Standard. Tesla requested confidential...

  1. [Children and motor competence].

    Science.gov (United States)

    Sigmundsson, H; Haga, M

    2000-10-20

    Recently, the topic of motor competence has figured prominently in the media. The claims made are many, but the research that support the statements is seldom cited. The aim of this review article is to address that deficiency by documenting what is really known about the motor competence of children. Motor competence not only allows children to carry out everyday practical tasks, but it is also an important determinant of their level of self-esteem and of their popularity and status in their peer group. While many studies have shown a significant correlation between motor problems and other problems in the social sphere, it has been difficult to establish causal relationships with any degree of confidence, as there appear to be several interactions which need to be taken into account. Research has shown that 6-10% of Norwegian children in the 7 to 10 year age group have a motor competence well below the norm. It is unusual for motor problems to simply disappear over time. In the absence of intervention the syndrome is likely to continue to manifest itself. More recent research points to some of the circularity in this causal network, children with motor problems having been shown to be less physically active than their peers. In a larger health perspective this in itself can have very serious consequences for the child.

  2. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  3. Individual differences in motor timing and its relation to cognitive and fine motor skills.

    Directory of Open Access Journals (Sweden)

    Håvard Lorås

    Full Text Available The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100 performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3 to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven's scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.

  4. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  5. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  6. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  7. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    Science.gov (United States)

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Experimental thermodynamics of single molecular motor.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  9. Linear methods for reducing EMG contamination in peripheral nerve motor decodes.

    Science.gov (United States)

    Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J

    2016-08-01

    Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.

  10. Use of a Microphone Phased Array to Determine Noise Sources in a Rocket Plume

    Science.gov (United States)

    Panda, J.; Mosher, R.

    2010-01-01

    A 70-element microphone phased array was used to identify noise sources in the plume of a solid rocket motor. An environment chamber was built and other precautions were taken to protect the sensitive condenser microphones from rain, thunderstorms and other environmental elements during prolonged stay in the outdoor test stand. A camera mounted at the center of the array was used to photograph the plume. In the first phase of the study the array was placed in an anechoic chamber for calibration, and validation of the indigenous Matlab(R) based beamform software. It was found that the "advanced" beamform methods, such as CLEAN-SC was partially successful in identifying speaker sources placed closer than the Rayleigh criteria. To participate in the field test all equipments were shipped to NASA Marshal Space Flight Center, where the elements of the array hardware were rebuilt around the test stand. The sensitive amplifiers and the data acquisition hardware were placed in a safe basement, and 100m long cables were used to connect the microphones, Kulites and the camera. The array chamber and the microphones were found to withstand the environmental elements as well as the shaking from the rocket plume generated noise. The beamform map was superimposed on a photo of the rocket plume to readily identify the source distribution. It was found that the plume made an exceptionally long, >30 diameter, noise source over a large frequency range. The shock pattern created spatial modulation of the noise source. Interestingly, the concrete pad of the horizontal test stand was found to be a good acoustic reflector: the beamform map showed two distinct source distributions- the plume and its reflection on the pad. The array was found to be most effective in the frequency range of 2kHz to 10kHz. As expected, the classical beamform method excessively smeared the noise sources at lower frequencies and produced excessive side-lobes at higher frequencies. The "advanced" beamform

  11. Development of kinesthetic-motor and auditory-motor representations in school-aged children.

    Science.gov (United States)

    Kagerer, Florian A; Clark, Jane E

    2015-07-01

    In two experiments using a center-out task, we investigated kinesthetic-motor and auditory-motor integrations in 5- to 12-year-old children and young adults. In experiment 1, participants moved a pen on a digitizing tablet from a starting position to one of three targets (visuo-motor condition), and then to one of four targets without visual feedback of the movement. In both conditions, we found that with increasing age, the children moved faster and straighter, and became less variable in their feedforward control. Higher control demands for movements toward the contralateral side were reflected in longer movement times and decreased spatial accuracy across all age groups. When feedforward control relies predominantly on kinesthesia, 7- to 10-year-old children were more variable, indicating difficulties in switching between feedforward and feedback control efficiently during that age. An inverse age progression was found for directional endpoint error; larger errors increasing with age likely reflect stronger functional lateralization for the dominant hand. In experiment 2, the same visuo-motor condition was followed by an auditory-motor condition in which participants had to move to acoustic targets (either white band or one-third octave noise). Since in the latter directional cues come exclusively from transcallosally mediated interaural time differences, we hypothesized that auditory-motor representations would show age effects. The results did not show a clear age effect, suggesting that corpus callosum functionality is sufficient in children to allow them to form accurate auditory-motor maps already at a young age.

  12. Human motor unit recordings: origins and insight into the integrated motor system.

    Science.gov (United States)

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.

  13. Brief Overview of Motor Learning and It's Application to Rehabilitation: Part Ⅰ: Motor Learning Theory

    Institute of Scientific and Technical Information of China (English)

    Christopher A Zaino

    2003-01-01

    @@ 1 DEFINITION OF MOTOR LEARNING Motor learning is the study of how we acquire and modify movements.1 The acquisition of motor skills is the process of learning how to do a particular movement (performance), but the real key to therapeutic intervention is being able to affect permanent changes in motor skills via the process of motor learning. Therefore, motor learning is defined as the ability to retain the ability to perform a motor task at a later time. In rehabilitation, it is important to be cognizant of the concepts of acquisition and retention. We can facilitate acquisition,but do little to assist in the retention of the task (learning). Conversely, we can arrange practice such that acquisition is slowed, but we can actually be assisting learning the task. It is important to have a clear goal in mind and work towards the eventual learning of the task to allow full functional use of that skill.

  14. Motor current signature analysis for determining operational readiness of motor-operated valves (MOVs)

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1987-01-01

    Motor current signature analysis (MCSA) is a novel diagnostic process for condition monitoring of electric-motor-driven mechanical equipment (e.g., pumps, motor-operated valves, compressors, and processing machinery). The MCSA process identifies, characterizes, and trends over time the instantaneous load variations of mechanical equipment in order to diagnose changes in the condition of the equipment (e.g., due to degradation or service wear), which, if allowed to continue, may lead to failure. It monitors the instantaneous variations (noise content) in the electric current flowing through the power leads to the electric motor that drives the equipment. The motor itself thereby acts as a transducer, sensing both large and small, long-term and rapid, mechanical load variations and converting them to variations in the induced current generated in the motor windings. This motor current noise signature is detected, amplified, and further processed as needed to examine its time domain and frequency domain (spectral) characteristics. The operational principles of MCSA and the nonintrusive data collection apparatus and procedure used with MOVs will be described. Data collected from MOVs in both laboratory and in-plant environments will also be shown to illustrate the ability of MCSA to ''see'' the detailed inner workings of the valve and operator and thus to detect degraded performance at an incipient stage. (Set of 18 vugraphs)

  15. Central motor control failure in fibromyalgia: a surface electromyography study.

    Science.gov (United States)

    Casale, Roberto; Sarzi-Puttini, Piercarlo; Atzeni, Fabiola; Gazzoni, Marco; Buskila, Dan; Rainoldi, Alberto

    2009-07-01

    Fibromyalgia (FM) is characterised by diffuse musculoskeletal pain and stiffness at multiple sites, tender points in characteristic locations, and the frequent presence of symptoms such as fatigue. The aim of this study was to assess whether the myoelectrical manifestations of fatigue in patients affected by FM are central or peripheral in origin. Eight female patients aged 55.6 +/- 13.6 years (FM group) and eight healthy female volunteers aged 50.3 +/- 9.3 years (MCG) were studied by means of non-invasive surface electromyography (s-EMG) involving a linear array of 16 electrodes placed on the skin overlying the biceps brachii muscle, with muscle fatigue being evoked by means of voluntary and involuntary (electrically elicited) contractions. Maximal voluntary contractions (MVCs), motor unit action potential conduction velocity distributions (mean +/- SD and skewness), and the mean power frequency of the spectrum (MNF) were estimated in order to assess whether there were any significant differences between the two groups and contraction types. The motor pattern of recruitment during voluntary contractions was altered in the FM patients, who also showed fewer myoelectrical manifestations of fatigue (normalised conduction velocity rate of changes: -0.074 +/- 0.052%/s in FM vs -0.196 +/- 0.133%/s in MCG; normalised MNF rate of changes: -0.29 +/- 0.16%/s in FM vs -0.66 +/- 0.34%/s in MCG). Mean conduction velocity distribution and skewnesses values were higher (p fatigue in FM is the electrophysiological expression of muscle remodelling in terms of the prevalence of slow conducting fatigue-resistant type I fibres. As the only between-group differences concerned voluntary contractions, they are probably more related to central motor control failure than muscle membrane alterations, which suggests pathological muscle fibre remodelling related to altered suprasegmental control.

  16. Assessment of global motor performance and gross and fine motor skills of infants attending day care centers.

    Science.gov (United States)

    Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P

    2010-01-01

    To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.

  17. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  18. Integrated Array/Metadata Analytics

    Science.gov (United States)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  19. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    Science.gov (United States)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  20. ALAT PENDETEKSI KEBOCORAN GAS BERACUN CO PADA MOBIL DENGAN ARRAY SENSOR MENGGUNAKAN FUZZY CONTROLLER

    Directory of Open Access Journals (Sweden)

    Slamet Widodo

    2016-03-01

    Full Text Available Perkembangan teknologi otomotif sekarang ini semakin pesat yaitu dengan fasilitas accessories mobil yang semakin lengkap. Namun berbagai fasilitas yang terdapat dalam mobil tanpa disadari menyimpan ancaman bahaya bagi pengguna mobil salah satunya ketika system pada AC (Air Conditioner terjadi kebocoran maka gas CO (karbon monoksida akan memenuhi ruang mobil yang tertutup. Gas CO ini sangat berbahaya karena gas ini tidak berwarna, tidak berbau, dan tidak berasa sehingga sulit untuk dideteksi yang dapat menyebabkan orang yang ada didalam mobil menjadi mati lemas tanpa disadari karena menghirup gas CO yang bocor. Dengan fenomena tersebut dibutuhkan sebuah alat yang dapat mendeteksi dan mengontrol kebocoran gas CO untuk memberikan rasa aman kepada pengguna mobil. Alat ini menggunakan kendali logika fuzzy sebagai proses pengambilan keputusan sebagai hasil nilai dari inferensi kerja array sensor. Pengendali utama pada sistem menggunakan mikrokontroller ATmega32. Ketika array sensor yaitu TGS2442 dan TGS2600 mendeteksi kadar gas CO >29,0 ppm berarti dalam status bahaya sehingga buzzer akan aktif diikuti motor DC yang menggerakkan kaca mobil agar terbuka. Berdasarkan lima kali pengujian yang dilakukan didapatkanlah rata-rata selisih error output gas sebesar 0.29 ppm disaat kondisi aman dan 3.87 ppm disaat kondisi bahaya.

  1. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  2. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  4. Optimal shortening of uniform covering arrays.

    Directory of Open Access Journals (Sweden)

    Jose Torres-Jimenez

    Full Text Available Software test suites based on the concept of interaction testing are very useful for testing software components in an economical way. Test suites of this kind may be created using mathematical objects called covering arrays. A covering array, denoted by CA(N; t, k, v, is an N × k array over [Formula: see text] with the property that every N × t sub-array covers all t-tuples of [Formula: see text] at least once. Covering arrays can be used to test systems in which failures occur as a result of interactions among components or subsystems. They are often used in areas such as hardware Trojan detection, software testing, and network design. Because system testing is expensive, it is critical to reduce the amount of testing required. This paper addresses the Optimal Shortening of Covering ARrays (OSCAR problem, an optimization problem whose objective is to construct, from an existing covering array matrix of uniform level, an array with dimensions of (N - δ × (k - Δ such that the number of missing t-tuples is minimized. Two applications of the OSCAR problem are (a to produce smaller covering arrays from larger ones and (b to obtain quasi-covering arrays (covering arrays in which the number of missing t-tuples is small to be used as input to a meta-heuristic algorithm that produces covering arrays. In addition, it is proven that the OSCAR problem is NP-complete, and twelve different algorithms are proposed to solve it. An experiment was performed on 62 problem instances, and the results demonstrate the effectiveness of solving the OSCAR problem to facilitate the construction of new covering arrays.

  5. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays

    Science.gov (United States)

    Dowden, B. R.; Frankel, M. A.; Normann, R. A.; Clark, G. A.

    2012-02-01

    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  6. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  7. The micro-step motor controller

    International Nuclear Information System (INIS)

    Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu

    2004-11-01

    The developed micro-step motor controller can handle 4 axes stepping motor drivers simultaneously and provide high power bipolar driving mechanism with constant current mode. It can be easily controlled by manual key functions and the motor driving status is displayed by the front panel VFD. Due to the development of several kinds of communication and driving protocol, PC can operate even several micro-step motor controllers at once by multi-drop connection

  8. Analisa Perbandingan Efisiensi Motor Dc Kompon Pendek Dengan Motor Dc Kompon Panjang Akibat Penambahan Kutub

    OpenAIRE

    Sitompul, Fuad Rahim

    2015-01-01

    Motor listrik merupakan perangkat elekromagnetis yang mengubah energi listrik menjadi energi mekanik. Motor DC memerlukan tegangan searah pada kumparan medan untuk diubah menjadi energi mekanik. Energi mekanik ini digunakan sebagai penggerak peralatan listrik seperti pompa,penggerak kipas angin, lift dan lain-lain. Karena penggunaannya yang cukup luas maka kinerjanya harus baik. Kinerja suatu motor DC dikatakan baik jika efisiensi motor tersebut tinggi. Hal itu dapat dicapai dengan mengatur b...

  9. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  10. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  11. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  12. Motor and non-motor symptoms in old-age onset Parkinson's disease patients.

    Science.gov (United States)

    Mendonça, Marcelo D; Lampreia, Tania; Miguel, Rita; Caetano, André; Barbosa, Raquel; Bugalho, Paulo

    2017-07-01

    Advancing age is a well-known risk factor for Parkinson's disease (PD). With population ageing it is expected that the total number of patients with PD onset at oldage increases. Information on the motor but particularly on non-motor phenotype of this late-onset population is lacking. We recruited 24 patients with PD onset at or over 75 years. Each patient was matched with 1 control patient with PD onset between the ages of 40 and 65 and matched for disease duration. Both groups were assessed with the UPDRS, the Non-motor symptoms scale (NMSS) and other scales to assess non-motor symptoms. Groups were compared with conditional logistic regression analysis. Old-age onset PD was, on average, 80 years at the time of PD onset while middle-age onset were 59. Disease duration was approximately 5 years in both groups. While no difference was observed in the total UPDRS-III scores, old-age onset PD was associated with higher axial symptoms (7.42 vs. 4.63, p = 0.011) and a higher frequency of dementia (7/24 vs. 0/24, p = 0.009). While no difference in the total number of non-motor symptoms was observed (6.79 vs. 6.22, p = 0.310), old-age onset patients had a higher prevalence of gastrointestinal symptoms (20/24 vs. 12/24, p = 0.037). For the same disease duration, older age onset is associated with worse axial motor dysfunction and dementia in PD patients. Beside gastrointestinal symptoms, non-motor symptoms are not associated with age.

  13. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  14. Applications of superconductors to electric motors

    International Nuclear Information System (INIS)

    McConnell, B.W.

    1988-01-01

    This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications

  15. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  16. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  17. ESPRIT And Uniform Linear Arrays

    Science.gov (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  18. RELATIONS BETWEEN MOTORIC ABILITIES AND SPECIFIC MOTORIC BASKETBALL SKILLS IN PHYSICAL EDUCATION CLASSES

    Directory of Open Access Journals (Sweden)

    Dejan Milenković

    2014-06-01

    Full Text Available The aim of this study was to determine the relation between motoric and specific motoric basketball skills in physical education classes for elementary school students. The sample was taken from a population of boys and girls in four elementary schools in Niš. Boys (66 and girls (58, have been students of elementary school, 10 years old and all of them have been attending regular physical education classes three times a week. For the assessment of motoric abilities, a set of 12 motoric tests was applied: Explosive strength: squat jump, squat jump arms swing and drop jump; Speed: 20m running from a low start, orbiting hand and orbiting leg; Coordination: jumping over the horizontal rope, envelope test and figure „8“ with bending; Accuracy: darts, shooting with the ball at horizontal target and stiletto. For the assessment of specific motoric basketball skills a set of six tests was applied: elevations precision of ball passing with two hands, horizontal precision of  ball passing with two hands, orbiting ball around the body, orbiting ball through the legs (figure „8“, dribble around a central circle of the basketball court and dribble two "small eights" around two adjacent circles of basketball court. In data processing canonical correlation and regression analysis were used. The results showed that motoric abilities significantly contributed to success of specific motoric tests performance both with boys and also with girls.

  19. A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners

    Science.gov (United States)

    Africa, Eileen K.; van Deventer, Karel J.

    2017-01-01

    Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…

  20. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-04-28

    ... 1300 [Docket No. NHTSA-2010-0054] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  1. Shielding in ungated field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [U.S. Navy Reserve, Navy Operational Support Center New Orleans, New Orleans, Louisiana 70143 (United States); Jensen, K. L. [Code 6854, Naval Research Laboratory, Washington, D.C. 20375 (United States); Shiffler, D. A. [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Petillo, J. J. [Leidos, Billerica, Massachusetts 01821 (United States)

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  2. 75 FR 67770 - General Motors Company, Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Science.gov (United States)

    2010-11-03

    ..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From Aerotek Automotive, Ryder and Premier Manufacturing Support Services, Lake Orion, MI; Amended... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake...

  3. The change in perceived motor competence and motor task values during elementary school : A longitudinal cohort study

    NARCIS (Netherlands)

    Noordstar, Johannes J; van der Net, Janjaap; Jak, Suzanne; Helders, Paul J M; Jongmans, Marian J

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  4. 75 FR 28656 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and...

    Science.gov (United States)

    2010-05-21

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing... joint venture of General Motors Corporation and Toyota Motor Corporation, including on-site leased...

  5. 75 FR 62424 - New United Motor Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-10-08

    ... Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor Corporation...

  6. 75 FR 47632 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-08-06

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... of General Motors Corporation and Toyota Motor Corporation, including on-site leased workers from...

  7. Motor imagery based brain-computer interfaces: An emerging technology to rehabilitate motor deficits.

    Science.gov (United States)

    Alonso-Valerdi, Luz Maria; Salido-Ruiz, Ricardo Antonio; Ramirez-Mendoza, Ricardo A

    2015-12-01

    When the sensory-motor integration system is malfunctioning provokes a wide variety of neurological disorders, which in many cases cannot be treated with conventional medication, or via existing therapeutic technology. A brain-computer interface (BCI) is a tool that permits to reintegrate the sensory-motor loop, accessing directly to brain information. A potential, promising and quite investigated application of BCI has been in the motor rehabilitation field. It is well-known that motor deficits are the major disability wherewith the worldwide population lives. Therefore, this paper aims to specify the foundation of motor rehabilitation BCIs, as well as to review the recent research conducted so far (specifically, from 2007 to date), in order to evaluate the suitability and reliability of this technology. Although BCI for post-stroke rehabilitation is still in its infancy, the tendency is towards the development of implantable devices that encompass a BCI module plus a stimulation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  9. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  10. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  11. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  12. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  13. The ASTRI mini-array within the future Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Vercellone Stefano

    2016-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS. Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily of an end-to-end dual-mirror prototype of the CTA small size telescope (SST and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1–100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10–15%, is well suited to study relatively bright sources (a few × 10−12 erg cm−2 s−1 at 10 TeV at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC and future high-altitude extensive air-shower detectors.

  14. Submersible canned motor mixer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.

    1997-01-01

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs

  15. The hyperion particle-γ detector array

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.O.; Burke, J.T.; Casperson, R.J.; Ota, S. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Fisher, S.; Parker, J. [Science, Technology and Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Beausang, C.W. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Dag, M. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Humby, P. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Department of Physics, University of Surrey, Surrey GU27XH (United Kingdom); Koglin, J. [Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); McCleskey, E.; McIntosh, A.B.; Saastamoinen, A. [Cyclotron Institute, Texas A& M University, College Station, TX 77840 (United States); Tamashiro, A.S. [Department of Nuclear Science and Engineering, Oregon State University, Corvallis, OR 97331 (United States); Wilson, E. [Department of Physics, University of Richmond, 28 Westhampton Way, Richmond, VA 23173 (United States); Wu, T.C. [Department of Physics and Astronomy, University of Utah, Salt Lake City UT 84112-0830 (United States)

    2017-06-01

    Hyperion is a new high-efficiency charged-particle γ-ray detector array which consists of a segmented silicon telescope for charged-particle detection and up to fourteen high-purity germanium clover detectors for the detection of coincident γ rays. The array will be used in nuclear physics measurements and Stockpile Stewardship studies and replaces the STARLiTeR array. This article discusses the features of the array and presents data collected with the array in the commissioning experiment.

  16. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Bernal-Bernal, Inmaculada; Bonilla-Toribio, Marta; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson's disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  17. GBA Variants Influence Motor and Non-Motor Features of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Silvia Jesús

    Full Text Available The presence of mutations in glucocerebrosidase (GBA gene is a known factor increasing the risk of developing Parkinson's disease (PD. Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson's patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021, earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013, as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants.

  18. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  19. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  20. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  1. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    Science.gov (United States)

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  2. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  3. Design of a Control System for a Maglev Planar Motor Based on Two-Dimension Linear Interpolation

    Directory of Open Access Journals (Sweden)

    Feng Xing

    2017-08-01

    Full Text Available In order to realize the high speed and high-precision control of a maglev planar motor, a high-precision electromagnetic model is needed in the first place, which can also contribute to meeting the real-time running requirements. Traditionally, the electromagnetic model is based on analytical calculations. However, this neglects the model simplification and the manufacturing errors, which may bring certain errors to the model. Aiming to handle this inaccuracy, this paper proposes a novel design method for a maglev planar motor control system based on two-dimensional linear interpolation. First, the magnetic field is divided into several regions according to the symmetry of the Halbach magnetic array, and the uniform grid method is adopted to partition one of these regions. Second, targeting this region, it is possible to sample the electromagnetic forces and torques on each node of the grid and obtain the complete electromagnetic model in this region through the two-dimensional linear interpolation method. Third, the whole electromagnetic model of the maglev planar motor can be derived according to the symmetry of the magnetic field. Finally, the decoupling method and controller are designed according to this electromagnetic model, and thereafter, the control model can be established. The designed control system is demonstrated through simulations and experiments to feature better accuracy and meet the requirements of real-time control.

  4. Shuffle motor: a high force, high precision linear electrostatic stepper motor

    NARCIS (Netherlands)

    Tas, Niels Roelof; Wissink, Jeroen; Sander, A.F.M.; Sander, Louis; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1997-01-01

    The shuffle motor is a electrostatic stepper motor that employs a mechanical transformation to obtain high forces and small steps. A model has been made to calculate the driving voltage, step size and maximum load to pull as well as the optimal geometry. Tests results are an effective step size of

  5. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  6. Motor of the future - superconducting

    International Nuclear Information System (INIS)

    Moen, Odd

    2001-01-01

    High-temperature superconductors count as the most innovative and future-oriented technology for electric motors. When these materials are used, the engine rating can be doubled and at the same time the losses halved while retaining the same size of construction. Siemens have recently developed a synchronous motor based on a high-temperature superconducting excitation winding. The rated power of the motor is 380 kW. The high-temperature superconductor that is used in this motor requires considerably less cooling outfit than low-temperature superconductors

  7. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  8. Harmonic modeling of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, J.; Sainz, L.; Corcoles, F. [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain)

    2006-07-15

    The paper proposes an induction motor model for the study of harmonic load flow in balanced and unbalanced conditions. The parameters of this model are obtained from motor manufacturer data and the positive- and negative-sequence equivalent circuits of the single- and double-cage models. An approximate harmonic model based on motor manufacturer data only is also proposed. In addition, the paper includes manufacturer data and the calculated parameters of 36 induction motors of different rated powers. This database is used to analyze the proposed models. (author)

  9. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  10. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  11. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez

    2014-01-01

    Full Text Available Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE-based frequency estimator and a feed forward neural network (FFNN-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications.

  12. Empirical Mode Decomposition and Neural Networks on FPGA for Fault Diagnosis in Induction Motors

    Science.gov (United States)

    Garcia-Perez, Arturo; Osornio-Rios, Roque Alfredo; Romero-Troncoso, Rene de Jesus

    2014-01-01

    Nowadays, many industrial applications require online systems that combine several processing techniques in order to offer solutions to complex problems as the case of detection and classification of multiple faults in induction motors. In this work, a novel digital structure to implement the empirical mode decomposition (EMD) for processing nonstationary and nonlinear signals using the full spline-cubic function is presented; besides, it is combined with an adaptive linear network (ADALINE)-based frequency estimator and a feed forward neural network (FFNN)-based classifier to provide an intelligent methodology for the automatic diagnosis during the startup transient of motor faults such as: one and two broken rotor bars, bearing defects, and unbalance. Moreover, the overall methodology implementation into a field-programmable gate array (FPGA) allows an online and real-time operation, thanks to its parallelism and high-performance capabilities as a system-on-a-chip (SoC) solution. The detection and classification results show the effectiveness of the proposed fused techniques; besides, the high precision and minimum resource usage of the developed digital structures make them a suitable and low-cost solution for this and many other industrial applications. PMID:24678281

  13. Movement Sonification: Audiovisual benefits on motor learning

    Directory of Open Access Journals (Sweden)

    Weber Andreas

    2011-12-01

    Full Text Available Processes of motor control and learning in sports as well as in motor rehabilitation are based on perceptual functions and emergent motor representations. Here a new method of movement sonification is described which is designed to tune in more comprehensively the auditory system into motor perception to enhance motor learning. Usually silent features of the cyclic movement pattern "indoor rowing" are sonified in real time to make them additionally available to the auditory system when executing the movement. Via real time sonification movement perception can be enhanced in terms of temporal precision and multi-channel integration. But beside the contribution of a single perceptual channel to motor perception and motor representation also mechanisms of multisensory integration can be addressed, if movement sonification is configured adequately: Multimodal motor representations consisting of at least visual, auditory and proprioceptive components - can be shaped subtly resulting in more precise motor control and enhanced motor learning.

  14. Beam pattern improvement by compensating array nonuniformities in a guided wave phased array

    International Nuclear Information System (INIS)

    Kwon, Hyu-Sang; Lee, Seung-Seok; Kim, Jin-Yeon

    2013-01-01

    This paper presents a simple data processing algorithm which can improve the performance of a uniform circular array based on guided wave transducers. The algorithm, being intended to be used with the delay-and-sum beamformer, effectively eliminates the effects of nonuniformities that can significantly degrade the beam pattern. Nonuniformities can arise intrinsically from the array geometry when the circular array is transformed to a linear array for beam steering and extrinsically from unequal conditions of transducers such as element-to-element variations of sensitivity and directivity. The effects of nonuniformities are compensated by appropriately imposing weight factors on the elements in the projected linear array. Different cases are simulated, where the improvements of the beam pattern, especially the level of the highest sidelobe, are clearly seen, and related issues are discussed. An experiment is performed which uses A0 mode Lamb waves in a steel plate, to demonstrate the usefulness of the proposed method. The discrepancy between theoretical and experimental beam patterns is explained by accounting for near-field effects. (paper)

  15. Design of motors for inverter operation

    Energy Technology Data Exchange (ETDEWEB)

    Haring, T. [ABB Motors OY, Vaasa (Finland)

    2000-07-01

    This paper describes very practical principles of how an induction motor should be designed for converter application. The main focus targets the efficiency of the motor and drive. The results presented are based on actual test motors and FEM-calculation simulations. FEM-calculation together with a time-stepping function is a powerful tool for estimating magnetic flux densities, iron losses, current densities and corresponding losses in windings, in other words a tool for optimisation of the motor design. Time-stepping is rather time consuming because all the circuit equations must be solved for each time-step, but it provides a way to estimate the iron losses; hysteresis and eddy current losses as well as current distribution and current losses. The calculation tool also provides the possibility to check if an existing motor is feasible for a converter drive. Alternatively if a motor is only to be supplied by a converter there are many more degrees of freedom in the electrical design and the motor may be optimised for that converter drive by incorporationg rather simple design changes. Additionally a design compromise, ''a general purpose motor'' useable for DOL and feasible for converter drive can be produced following the principles presented herewith. The converter types which are considered are indirect types and mainly voltage source converters since they are the most common on the market and are ''general purpose converters'' and providing a certain freedom to select the motor for the drive. Current source converters require ''matching'' with the motor and therefore need a precise knowledge of the motor equivalent circuit, making the selection of the motor more complicated. (orig.)

  16. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  17. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  18. Ventajas de los motores de flujo axial

    Directory of Open Access Journals (Sweden)

    Alberto M Basanta Otero

    2011-03-01

    Full Text Available Es importante conocer sobre una familia de motores que a diferencia de los convencionales o tradicionales no presentanun flujo rotatorio radial, denominados motores de flujo axial. Dichos motores presentan altos valores de par motriz abajas velocidades, una alta eficiencia y alta densidad de potencia. Este trabajo constituye un breve análisis dealgunos motores de la referencia bibliográfica.  Is important to know about a family of motors that at difference whit the traditional, don't have a rotator radial flux,called, axial flux motors. These motors have high torque for low speed, high efficiency and high power density. Thiswork is a brief analysis of several motors of the bibliographic references.

  19. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  20. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  1. The China Motor Systems Energy Conservation Program: A major national initiative to reduce motor system energy use in China

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, Steven; Wang, Wanxing; Liu, Peter; McKane, Aimee T.

    2001-05-31

    Electric motor systems are widely used in China to power fans, pumps, blowers, air compressors, refrigeration compressors, conveyers, machinery, and many other types of equipment. Overall, electric motor systems consume more than 600 billion kWh annually, accounting for more than 50 percent of China's electricity use. There are large opportunities to improve the efficiency of motor systems. Electric motors in China are approximately 2-4 percent less efficient on average than motors in the U.S. and Canada. Fans and pumps in China are approximately 3-5 percent less efficient than in developed countries. Even more importantly, motors, fans, pumps, air compressors and other motor-driven equipment are frequently applied with little attention to system efficiency. More optimized design, including appropriate sizing and use of speed control strategies, can reduce energy use by 20 percent or more in many applications. Unfortunately, few Chinese enterprises use or even know about these energy-saving practices. Opportunities for motor system improvements are probably greater in China than in the U.S. In order to begin capturing these savings, China is establishing a China Motor Systems Energy Conservation Program. Elements of this program include work to develop minimum efficiency standards for motors, a voluntary ''green motor'' labeling program for high-efficiency motors, efforts to develop and promote motor system management guidelines, and a training, technical assistance and financing program to promote optimization of key motor systems.

  2. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  3. Estimation of electrode location in a rat motor cortex by laminar analysis of electrophysiology and intracortical electrical stimulation

    Science.gov (United States)

    Yazdan-Shahmorad, A.; Lehmkuhle, M. J.; Gage, G. J.; Marzullo, T. C.; Parikh, H.; Miriani, R. M.; Kipke, D. R.

    2011-08-01

    While the development of microelectrode arrays has enabled access to disparate regions of a cortex for neurorehabilitation, neuroprosthetic and basic neuroscience research, accurate interpretation of the signals and manipulation of the cortical neurons depend upon the anatomical placement of the electrode arrays in a layered cortex. Toward this end, this report compares two in vivo methods for identifying the placement of electrodes in a linear array spaced 100 µm apart based on in situ laminar analysis of (1) ketamine-xylazine-induced field potential oscillations in a rat motor cortex and (2) an intracortical electrical stimulation-induced movement threshold. The first method is based on finding the polarity reversal in laminar oscillations which is reported to appear at the transition between layers IV and V in laminar 'high voltage spindles' of the rat cortical column. Analysis of histological images in our dataset indicates that polarity reversal is detected 150.1 ± 104.2 µm below the start of layer V. The second method compares the intracortical microstimulation currents that elicit a physical movement for anodic versus cathodic stimulation. It is based on the hypothesis that neural elements perpendicular to the electrode surface are preferentially excited by anodic stimulation while cathodic stimulation excites those with a direction component parallel to its surface. With this method, we expect to see a change in the stimulation currents that elicits a movement at the beginning of layer V when comparing anodic versus cathodic stimulation as the upper cortical layers contain neuronal structures that are primarily parallel to the cortical surface and lower layers contain structures that are primarily perpendicular. Using this method, there was a 78.7 ± 68 µm offset in the estimate of the depth of the start of layer V. The polarity reversal method estimates the beginning of layer V within ±90 µm with 95% confidence and the intracortical stimulation

  4. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  5. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  6. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  7. The Bayley-III accommodated for motor and/or visual impairment : “Low motor/vision version”.

    NARCIS (Netherlands)

    Visser, Linda; Ruiter, Selma; Timmerman, Marieke; van der Meulen, Bieuwe; Ruijssenaars, Wied

    Introduction: The aim of the newly developed Low Motor/Vision (LM/LVi) version of the Dutch Bayley-III is to increase the suitability of the instrument for testing children with a motor and/or visual impairment. Method: We tested 64 children with motor and/or visual impairment with the Low

  8. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  9. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    Science.gov (United States)

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, Pneck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  10. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  11. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    Science.gov (United States)

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  13. Piezoelectric/magnetostrictive resonant inchworm motor

    Science.gov (United States)

    Miesner, John E.; Teter, Joseph P.

    1994-05-01

    Magnetostrictive and piezoelectric materials were used to create a linear motor operating on the inchworm principle. This motor operates at an electrical resonance, switching power internally between inductive and capacitive components. Magnetic coils surrounding the two Terfenol-D rods which drive the inchworm's center expanding element form the inductive component. Piezoelectric stacks that control the end clamping action are the capacitive components. The normal electrical phase relationship between these components provides natural drive timing for the inchworm. The motor direction can be easily reversed by changing the magnetic bias on the Terfenol. A prototype motor was built that achieved a stall load of 26 lb and no-load speed of 1 inch/sec vs the design of 30 lb and 1.3 inch/sec. A new type of power supply that switches power from a dc source was built for the motor. This power supply uses a small number of components to exactly supply the energy used in each inchworm cycle. It tracks the motor circuit resonance and is not affected by frequency shifts.

  14. In situ synthesis of protein arrays.

    Science.gov (United States)

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  15. Improved linear pyroelectric IR detector arrays

    International Nuclear Information System (INIS)

    Twiney, R.C.; Robinson, M.K.; Porter, S.G.

    1987-01-01

    Good agreement has been found between theoretical models and measured performance for a range of array geometries. A 64-element 80 x 140-micron element array with integral MOSFET IC buffer preamplifiers shows improved source voltage uniformity, a J-FET buffered array, and low-frequency specific detectivity (SD) of 1.7 x 10 to the 8th cm sq rt Hz/W at 40 Hz. The MOSFET array shows reduced degradation of SD at high temperatures, retaining an SD of not less than 1 x 10 to the 8th cm sq rt Hz/W at +70 C across much of the band. A 64-element array has been designed using onboard multiplexers, thus greatly reducing the connections needed to run the array

  16. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  17. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  18. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  19. Motor Development and Motor Resonance Difficulties in Autism: Relevance to Early Intervention for Language and Communication Skills

    Directory of Open Access Journals (Sweden)

    Joseph P. Mccleery

    2013-04-01

    Full Text Available Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural mirroring mechanisms activated when we observe the actions of others deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective.

  20. Motor development and motor resonance difficulties in autism: relevance to early intervention for language and communication skills

    Science.gov (United States)

    McCleery, Joseph P.; Elliott, Natasha A.; Sampanis, Dimitrios S.; Stefanidou, Chrysi A.

    2013-01-01

    Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective. PMID:23630476

  1. Design of circular differential microphone arrays

    CERN Document Server

    Benesty, Jacob; Cohen, Israel

    2015-01-01

    Recently, we proposed a completely novel and efficient way to design differential beamforming algorithms for linear microphone arrays. Thanks to this very flexible approach, any order of differential arrays can be designed. Moreover, they can be made robust against white noise amplification, which is the main inconvenience in these types of arrays. The other well-known problem with linear arrays is that electronic steering is not really feasible.  In this book, we extend all these fundamental ideas to circular microphone arrays and show that we can design small and compact differential arrays of any order that can be electronically steered in many different directions and offer a good degree of control of the white noise amplification problem, high directional gain, and frequency-independent response. We also present a number of practical examples, demonstrating that differential beamforming with circular microphone arrays is likely one of the best candidates for applications involving speech enhancement (i....

  2. Preliminary results from the Chicago air shower array and the Michigan muon array

    International Nuclear Information System (INIS)

    Krimm, H.A.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Mascarenhas, N.C.; McKay, T.A.; Mueller, D.; Newport, B.J.; Ong, R.A.; Rosenberg, L.J.; Wiedenbeck, M.E.; Green, K.D.; Matthews, J.; Nitz, D.; Sinclair, D.; van der Velde, J.C.

    1991-01-01

    The Chicago Air Shower Array (CASA) is a large area surface array designed to detect extensive air showers (EAS) produced by primaries with energy ∼100 TeV. It operates in coincidence with the underground Michigan Muon Array (MIA). Preliminary results are presented from a search for steady emission and daily emission from three astrophysical sources: Cygnus X-3, Hercules X-1, and the Crab nebula and pulsar. There is no evidence for a significant signal from any of these sources in the 1989 data

  3. Characterization of photovoltaic array performance: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Jr., R. G.

    1986-09-15

    Characterization of the electrical performance of a photovoltaic array can take many forms depending on the end use of the data. Typical uses include buyer-seller negotiations, system performance prediction, and performance measurement. Buyer-seller negotiations may deal with specifying the size (power) of an array to be purchased under some standard reporting conditions, and may treat the warranty conditions governing allowable degradation of this performance with time. System design, on the other hand, requires prediction of performance under varying field conditions, not standard reporting conditions, and must include the non-ideal realities of operating systems: array shadowing, steep angles of incidence, soiling, and array-load energy utilization. Typical uses of predicted array performance include array sizing tradeoffs, tracking-pointing comparisons, load-array interface analyses and system economic evaluations. The third use, performance measurement, refers to the characterization of an as-built array as opposed to prediction of the performance of an array to be built. This may be done to assess actual array performance or to measure performance degradation over time.

  4. Bearing estimation with acoustic vector-sensor arrays

    International Nuclear Information System (INIS)

    Hawkes, M.; Nehorai, A.

    1996-01-01

    We consider direction-of-arrival (DOA) estimation using arrays of acoustic vector sensors in free space, and derive expressions for the Cramacute er-Rao bound on the DOA parameters when there is a single source. The vector-sensor array is seen to have improved performance over the traditional scalar-sensor (pressure-sensor) array for two distinct reasons: its elements have an inherent directional sensitivity and the array makes a greater number of measurements. The improvement is greatest for small array apertures and low signal-to-noise ratios. Examination of the conventional beamforming and Capon DOA estimators shows that vector-sensor arrays can completely resolve the bearing, even with a linear array, and can remove the ambiguities associated with spatial undersampling. We also propose and analyze a diversely-oriented array of velocity sensors that possesses some of the advantages of the vector-sensor array without the increase in hardware and computation. In addition, in certain scenarios it can avoid problems with spatially correlated noise that the vector-sensor array may suffer. copyright 1996 American Institute of Physics

  5. 77 FR 65765 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2012-10-30

    ... the vehicle. The antenna module translates the radio frequency signal received from the key into a... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  6. 77 FR 25534 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2012-04-30

    ... response back to the vehicle. The antenna module translates the radio frequency signal received from the... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  7. Motor Vehicle Theft. Special Report.

    Science.gov (United States)

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  8. Experiments with a DC Motor

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  9. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  10. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  11. Cerebellum tunes the excitability of the motor system: evidence from peripheral motor axons.

    Science.gov (United States)

    Nodera, Hiroyuki; Manto, Mario

    2014-12-01

    Cerebellum is highly connected with the contralateral cerebral cortex. So far, the motor deficits observed in acute focal cerebellar lesions in human have been mainly explained on the basis of a disruption of the cerebello-thalamo-cortical projections. Cerebellar circuits have also numerous anatomical and functional interactions with brainstem nuclei and projects also directly to the spinal cord. Cerebellar lesions alter the excitability of peripheral motor axons as demonstrated by peripheral motor threshold-tracking techniques in cerebellar stroke. The biophysical changes are correlated with the functional scores. Nerve excitability measurements represent an attractive tool to extract the rules underlying the tuning of excitability of the motor pathways by the cerebellum and to discover the contributions of each cerebellar nucleus in this key function, contributing to early plasticity and sensorimotor learning.

  12. Motor deficits, impaired response inhibition, and blunted response to methylphenidate following neonatal exposure to decabromodiphenyl ether.

    Science.gov (United States)

    Markowski, Vincent P; Miller-Rhodes, Patrick; Cheung, Randy; Goeke, Calla; Pecoraro, Vincent; Cohen, Gideon; Small, Deena J

    2017-09-01

    Decabromodiphenyl ether (decaBDE) is an applied brominated flame retardant that is widely-used in electronic equipment. After decades of use, decaBDE and other members of its polybrominated diphenyl ether class have become globally-distributed environmental contaminants that can be measured in the atmosphere, water bodies, wildlife, food staples and human breastmilk. Although it has been banned in Europe and voluntarily withdrawn from the U.S. market, it is still used in Asian countries. Evidence from epidemiological and animal studies indicate that decaBDE exposure targets brain development and produces behavioral impairments. The current study examined an array of motor and learning behaviors in a C57BL6/J mouse model to determine the breadth of the developmental neurotoxicity produced by decaBDE. Mouse pups were given a single daily oral dose of 0 or 20mg/kg decaBDE from postnatal day 1 to 21 and were tested in adulthood. Exposed male mice had impaired forelimb grip strength, altered motor output in a circadian wheel-running procedure, increased response errors during an operant differential reinforcement of low rates (DRL) procedure and a blunted response to an acute methylphenidate challenge administered before DRL testing. With the exception of altered wheel-running output, exposed females were not affected. Neither sex had altered somatic growth, motor coordination impairments on the Rotarod, gross learning deficits during operant lever-press acquisition, or impaired food motivation. The overall pattern of effects suggests that males are more sensitive to developmental decaBDE exposure, especially when performing behaviors that require effortful motor output or when learning tasks that require sufficient response inhibition for their successful completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Motor automaticity in Parkinson’s disease

    Science.gov (United States)

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  14. Does transcranial direct current stimulation affect the learning of a fine sequential hand motor skill with motor imagery?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2017-01-01

    Learning a fine sequential hand motor skill, comparable to playing the piano or learning to type, improves not only due to physical practice, but also due to motor imagery. Previous studies revealed that transcranial direct current stimulation (tDCS) and motor imagery independently affect motor

  15. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  16. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus

    2013-01-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  17. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  18. Dependently typed array programs don’t go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2009-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  19. Dependently typed array programs don't go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2008-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  20. On line protection systems for induction motors

    International Nuclear Information System (INIS)

    Colak, I.; Celik, H.; Sefa, I.; Demirbas, S.

    2005-01-01

    Protection of induction motors is very important since they are widely used in industry for many applications due to their high robustness, reliability, low cost and maintenance, high efficiency and long service life. So, protecting these motors is crucial for operations. This paper presents a combined protection approach for induction motors. To achieve this, the electrical values of the induction motor were measured with sensitivity ±1% through a data acquisition card and processed with software developed in Visual C++. An on line protection system for induction motors was achieved easily and effectively. The experimental results have shown that the induction motor was protected against the possible problems faced during the operation. The software developed for this protection provides flexible and reliable media for operators and their motors. It is expected that the motor protection achieved in this study might be faster than the classical techniques and also may be applied to larger motors easily after small modifications of the software

  1. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    Science.gov (United States)

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex.

    Directory of Open Access Journals (Sweden)

    Julianne K Baarbé

    Full Text Available The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs produced by motor cortex stimulation alone, called cerebellar inhibition (CBI. Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18-27 years or sham control (13 participants, 19-24 years. Twelve healthy controls (20-27 years also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001, while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001. Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain.

  3. RELATION BETWEEN LATENT SPECIFIC MOTOR ABILITIES AND SITUATION MOTOR SKILLS WITH VOLLEYBALL PLAYERS AGED FROM 16 TO 17

    Directory of Open Access Journals (Sweden)

    Rabit Veseli

    2015-05-01

    Full Text Available The game of volleyball with its dynamic character is present in the world of the sport with permanent development and growing popularity and fans. Volleyball is part of a pollystructural complex sports activities. It is performed on a ground of a relatively small size (18 x 9 meters and is a kind of game that requires of players a high level of advanced motoric abilities (speed, strength, endurance, a fast rate of visual reaction, explosivity, as well as specific motoric skills (precision etc.. Scientific conclusion as well as the growing number of conducted researches in the very game, have a real contribution to its modern development and level of popularity. Situation-motoric skills make a significant dimension in the structure of volleyball game. The subject of the research is specific-motoric abilities and situation-motoric skills of 52 volleyball players aged from 16 to 17. The basic goal of the research is to establish the effect of specific-motoric abilities on situation-motoric skills of volleyball players in latent space. In order to assess the specific-motoric abilities 9 tests are used, and to assess the situation-motoric skills 3 precision tests are used. The results obtained from the 12 applied tests are worked out through the basic statistic parameters. Through component factor analysis 3 latent specific-motoric dimensions are isolated as well as one situation-motoric dimension. By regressive analysis there is established a low but statistically significant relation between the criterion and predictor latent dimensions. That confirms the dependence and relation between the specific-motoric abilities and situation-motoric skills. Researches in the fi eld of similar questions have been conducted by the following authors: Jurko et al., 2013 and Nešić, et al., 2011.

  4. The validity of parental reports on motor skills performance level in preschool children: a comparison with a standardized motor test.

    Science.gov (United States)

    Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G

    2018-05-01

    Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are

  5. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    Science.gov (United States)

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  6. A semi-automatic calibration method for seismic arrays applied to an Alaskan array

    Science.gov (United States)

    Lindquist, K. G.; Tibuleac, I. M.; Hansen, R. A.

    2001-12-01

    Well-calibrated, small (less than 22 km) aperture seismic arrays are of great importance for event location and characterization. We have implemented the crosscorrelation method of Tibuleac and Herrin (Seis. Res. Lett. 1997) as a semi-automatic procedure, applicable to any seismic array. With this we are able to process thousands of phases with several days of computer time on a Sun Blade 1000 workstation. Complicated geology beneath elements and elevation differences amonst the array stations made station corrections necessary. 328 core phases (including PcP, PKiKP, PKP, PKKP) were used in order to determine the static corrections. To demonstrate this application and method, we have analyzed P and PcP arrivals at the ILAR array (Eielson, Alaska) between years 1995-2000. The arrivals were picked by PIDC, for events (mb>4.0) well located by the USGS. We calculated backazimuth and horizontal velocity residuals for all events. We observed large backazimuth residuals for regional and near-regional phases. We are discussing the possibility of a dipping Moho (strike E-W, dip N) beneath the array versus other local structure that would produce the residuals.

  7. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    Science.gov (United States)

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  8. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  9. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  10. Current and investigational non-dopaminergic agents for management of motor symptoms (including motor complications) in Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas

    2017-10-01

    Parkinson's disease is characterized by a heterogeneous combination of motor and non motor symptoms. The nigrostriatal dopamine deficit is one of its essential pathophysiologic features. Areas covered: This invited narrative review provides an overlook over current available and future promising non dopaminergic therapeutics to modulate altered dopaminergic neurotransmission in Parkinson's disease. Current research strategies aim to proof clinical efficacy by amelioration of motor symptoms and preponderant levodopa related movement fluctuations. These so-called motor complications are characterized by involuntary movements as a result of an overstimulation of the nigrostriatal dopaminergic system or by temporary recurrence of motor symptoms, when beneficial effects of dopamine substituting drugs vane. Expert opinion: Non dopaminergic modulation of dopamine replacement is currently mostly investigated in well defined and selected patients with motor complications to get approval. However, the world of daily maintenance of patients with its individually adapted, so-called personalised, therapy will determine the real value of these therapeutics. Here the clinical experience of the treating neurologists and the courage to use unconventional drug combinations are essential preconditions for successful treatments of motor and associated non motor complications in cooperation with the patients and their care giving surroundings.

  11. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  12. 78 FR 3081 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2013-01-15

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic.... SUMMARY: This document grants in full Toyota Motor North America, Inc.'s (Toyota) petition for an... a petition dated October 16, 2012, Toyota requested an exemption from the parts-marking requirements...

  13. 76 FR 12221 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2011-03-04

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic.... SUMMARY: This document grants in full the petition of Toyota Motor North America, Inc's., (Toyota... INFORMATION: In a petition dated January 24, 2011, Toyota requested an exemption from the parts-marking...

  14. 77 FR 29752 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Science.gov (United States)

    2012-05-18

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar Land Rover AGENCY: National... part 543, Exemption from the Theft Prevention Standard. This petition is granted, because the agency... be as effective in reducing and deterring motor vehicle theft as compliance with the parts-marking...

  15. 76 FR 12220 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Science.gov (United States)

    2011-03-04

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar Land Rover AGENCY: National... 543, Exemption from the Theft Prevention Standard. This petition is granted because the agency has... effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of...

  16. Motor Control Abnormalities in Parkinson’s Disease

    Science.gov (United States)

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  17. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  18. Wind loads on flat plate photovoltaic array fields

    Science.gov (United States)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  19. Actual motor performance and self-perceived motor competence in children with attention-deficit hyperactivity disorder compared with healthy siblings and peers.

    Science.gov (United States)

    Fliers, Ellen A; de Hoog, Marieke L A; Franke, Barbara; Faraone, Stephen V; Rommelse, Nanda N J; Buitelaar, Jan K; Nijhuis-van der Sanden, Maria W G

    2010-01-01

    : Children with attention-deficit hyperactivity disorder (ADHD) frequently experience comorbid motor problems, developmental coordination disorder. Also, children with ADHD are said to overestimate their abilities in the cognitive and social domain, the so-called "Positive Illusory Bias." In this cross-sectional study, the relationship between actual motor performance and perceived motor competence was examined. Motor performance was assessed using the Movement Assessment Battery for Children in 100 children and adolescents (age 6-17 years), including 32 children with ADHD combined type, 18 unaffected siblings, and 50 healthy control children. ADHD was diagnosed using Parent and Teacher questionnaires and a clinical interview. Perceived motor competence and interest in the motor domain were rated with the Dutch supplement scale to Harters' Self-Perception Profile for Children, especially focusing on the motor domain (m-CBSK). Children with ADHD had poorer motor performance than unaffected siblings and control children, especially in the field of manual dexterity. However, no relationship was found between motor performance and perceived motor competence. Only children with the very lowest motor performance had a significantly lowered perception of their motor competence. Interest in the motor domain and motor self-perception was positively correlated. Children with ADHD performed poorer on the Movement Assessment Battery for Children, but generally overestimated their own motor competence.

  20. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  1. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  2. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    Science.gov (United States)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  3. Leakage analysis of crossbar memristor arrays

    KAUST Repository

    Zidan, Mohammed A.

    2014-07-01

    Crossbar memristor arrays provide a promising high density alternative for the current memory and storage technologies. These arrays suffer from parasitic current components that significantly increase the power consumption, and could ruin the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  4. Method to fabricate hollow microneedle arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kravitz, Stanley H [Placitas, NM; Ingersoll, David [Albuquerque, NM; Schmidt, Carrie [Los Lunas, NM; Flemming, Jeb [Albuquerque, NM

    2006-11-07

    An inexpensive and rapid method for fabricating arrays of hollow microneedles uses a photoetchable glass. Furthermore, the glass hollow microneedle array can be used to form a negative mold for replicating microneedles in biocompatible polymers or metals. These microneedle arrays can be used to extract fluids from plants or animals. Glucose transport through these hollow microneedles arrays has been found to be orders of magnitude more rapid than natural diffusion.

  5. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  6. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  7. Ganzfeld stimulation or sleep enhance long term motor memory consolidation compared to normal viewing in saccadic adaptation paradigm.

    Directory of Open Access Journals (Sweden)

    Caroline Voges

    Full Text Available Adaptation of saccade amplitude in response to intra-saccadic target displacement is a type of implicit motor learning which is required to compensate for physiological changes in saccade performance. Once established trials without intra-saccadic target displacement lead to de-adaptation or extinction, which has been attributed either to extra-retinal mechanisms of spatial constancy or to the influence of the stable visual surroundings. Therefore we investigated whether visual deprivation ("Ganzfeld"-stimulation or sleep can partially maintain this motor learning compared to free viewing of the natural surroundings. Thirty-five healthy volunteers performed two adaptation blocks of 100 inward adaptation trials - interspersed by an extinction block - which were followed by a two-hour break with or without visual deprivation (VD. Using additional adaptation and extinction blocks short and long (4 weeks term memory of this implicit motor learning were tested. In the short term, motor memory tested immediately after free viewing was superior to adaptation performance after VD. In the long run, however, effects were opposite: motor memory and relearning of adaptation was superior in the VD conditions. This could imply independent mechanisms that underlie the short-term ability of retrieving learned saccadic gain and its long term consolidation. We suggest that subjects mainly rely on visual cues (i.e., retinal error in the free viewing condition which makes them prone to changes of the visual stimulus in the extinction block. This indicates the role of a stable visual array for resetting adapted saccade amplitudes. In contrast, visual deprivation (GS and sleep, might train subjects to rely on extra-retinal cues, e.g., efference copy or prediction to remap their internal representations of saccade targets, thus leading to better consolidation of saccadic adaptation.

  8. GBA Variants Influence Motor and Non-Motor Features of Parkinson’s Disease

    Science.gov (United States)

    Jesús, Silvia; Huertas, Ismael; Cáceres-Redondo, María Teresa; Vargas-González, Laura; Gómez-Llamas, Myriam; Carrillo, Fátima; Calderón, Enrique; Carballo, Manuel; Gómez-Garre, Pilar; Mir, Pablo

    2016-01-01

    The presence of mutations in glucocerebrosidase (GBA) gene is a known factor increasing the risk of developing Parkinson’s disease (PD). Mutations carriers have earlier disease onset and are more likely to develop neuropsychiatric symptoms than other sporadic PD cases. These symptoms have primarily been observed in Parkinson’s patients carrying the most common pathogenic mutations L444P and N370S. However, recent findings suggest that other variants across the gene may have a different impact on the phenotype as well as on the disease progression. We aimed to explore the influence of variants across GBA gene on the clinical features and treatment related complications in PD. In this study, we screened the GBA gene in a cohort of 532 well-characterised PD patients and 542 controls from southern Spain. The potential pathogeniticy of the identified variants was assessed using in-silico analysis and subsequently classified as benign or deleterious. As a result, we observed a higher frequency of GBA variants in PD patients (12.2% vs. 7.9% in controls, p = 0.021), earlier mean age at disease onset in GBA variant carriers (50.6 vs. 56.6 years; p = 0.013), as well as more prevalent motor and non-motor symptoms in patients carrying deleterious variants. In addition, we found that dopaminergic motor complications are influenced by both benign and deleterious variants. Our results highlight the fact that the impact on the phenotype highly depends on the potential pathogenicity of the carried variants. Therefore, the course of motor and non-motor symptoms as well as treatment-related motor complications could be influenced by GBA variants. PMID:28030538

  9. Probing muscle myosin motor action: x-ray (m3 and m6) interference measurements report motor domain not lever arm movement.

    Science.gov (United States)

    Knupp, Carlo; Offer, Gerald; Ranatunga, K W; Squire, John M

    2009-07-10

    The key question in understanding how force and movement are produced in muscle concerns the nature of the cyclic interaction of myosin molecules with actin filaments. The lever arm of the globular head of each myosin molecule is thought in some way to swing axially on the actin-attached motor domain, thus propelling the actin filament past the myosin filament. Recent X-ray diffraction studies of vertebrate muscle, especially those involving the analysis of interference effects between myosin head arrays in the two halves of the thick filaments, have been claimed to prove that the lever arm moves at the same time as the sliding of actin and myosin filaments in response to muscle length or force steps. It was suggested that the sliding of myosin and actin filaments, the level of force produced and the lever arm angle are all directly coupled and that other models of lever arm movement will not fit the X-ray data. Here, we show that, in addition to interference across the A-band, which must be occurring, the observed meridional M3 and M6 X-ray intensity changes can all be explained very well by the changing diffraction effects during filament sliding caused by heads stereospecifically attached to actin moving axially relative to a population of detached or non-stereospecifically attached heads that remain fixed in position relative to the myosin filament backbone. Crucially, and contrary to previous interpretations, the X-ray interference results provide little direct information about the position of the myosin head lever arm; they are, in fact, reporting relative motor domain movements. The implications of the new interpretation are briefly assessed.

  10. High-inertia drive motors and their starting characteristics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref

  11. Motor skills of toddlers with autism spectrum disorders.

    Science.gov (United States)

    Lloyd, Meghann; MacDonald, Megan; Lord, Catherine

    2013-03-01

    With increased interest in the early diagnosis and treatment of children with autism spectrum disorders (ASD), more attention has been called to the motor skills of very young children with ASD. This study describes the gross and fine motor skills of a cross-sectional group of 162 children with ASD between the ages of 12 and 36 months, as well as a subset of 58 children followed longitudinally. Gross motor and fine motor age equivalent scores were obtained for all children. A 'motor difference' variable was calculated for each child's gross and fine motor skills by taking the absolute difference of the children's age equivalent motor score and their respective chronological age. In Study 1 (the cross-sectional analysis), ANCOVA (co-varied for nonverbal problem solving) revealed significant group differences in the gross motor and fine motor age difference variables. Post-hoc analysis revealed that gross motor and fine motor differences became significantly greater with each 6-month period of chronological age. In Study 2, 58 children were measured twice, an average of 12 months apart. Results indicate that the gross motor and fine motor difference scores significantly increased between the first and second measurements. The importance of addressing motor development in early intervention treatments is discussed.

  12. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  13. 77 FR 4396 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2012-01-27

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic... exemption. SUMMARY: This document grants in full the petition of Toyota Motor North America, Inc's., (Toyota.... SUPPLEMENTARY INFORMATION: In a petition dated September 30, 2011, Toyota requested an exemption from the parts...

  14. Design and optical analyses of an arrayed microfluidic tunable prism panel for enhancing solar energy collection

    International Nuclear Information System (INIS)

    Narasimhan, Vinayak; Jiang, Dongyue; Park, Sung-Yong

    2016-01-01

    Highlights: • We present an arrayed tunable prism panel enabling wide tracking and high solar concentration. • A microfluidic technology allows a low-cost, lightweight and precise solar tracking system. • Our prism panel enables high solar concentration up to 2032× factor. • Various liquid prism configurations (stacked prism arrays) and optical materials are considered. • Their impacts on solar beam steering, reflection losses and beam concentration are studied. - Abstract: We present the design and optical analyses of an arrayed microfluidic tunable prism panel that enables wide solar tracking and high solar concentration while minimizing energy loss. Each of the liquid prism modules is implemented by a microfluidic (i.e. non-mechanical) technology based on electrowetting for adaptive solar beam steering. Therefore the proposed platform offers a low-cost, lightweight and precise solar tracking system while obviating the need for bulky and heavy mechanical moving parts essentially required for a conventional motor-driven solar tracker. In this paper, various liquid prism configurations in terms of design (single, double, triple and quad-stacked prism arrays) as well as optical materials are considered and their impact on optical performance aspects such as solar beam steering, reflection losses and beam concentration is studied. Our system is able to achieve a wide solar tracking covering the whole-day movement of the Sun and a reflection loss below 4.4% with a Rayleigh’s film for a quad-stacked prism configuration. Furthermore, an arrayed prism panel is proposed to increase the aperture area and thus allows for the collection of large amounts of sunlight. Our simulation study based on the optical design software, ZEMAX, indicates that the prism panel is capable of high solar concentration up to 2032× factor even without conventional solar tracking devices. We also deal with dispersion characteristics of the materials and their corresponding effect on

  15. Spatial normalization of array-CGH data

    Directory of Open Access Journals (Sweden)

    Brennetot Caroline

    2006-05-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (array-CGH is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. Results We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays. Conclusion We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization, which is described at http://bioinfo.curie.fr/projects/manor and available from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

  16. Configuration Considerations for Low Frequency Arrays

    Science.gov (United States)

    Lonsdale, C. J.

    2005-12-01

    The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.

  17. Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning

    DEFF Research Database (Denmark)

    Roig, Marc; Ritterband-Rosenbaum, Anina; Jensen, Jesper Lundbye

    2014-01-01

    Declines in the ability to learn motor skills in older adults are commonly attributed to deficits in the encoding of sensorimotor information during motor practice. We investigated whether aging also impairs motor memory consolidation by assessing the susceptibility to memory interference and off...... greater susceptibility to memory interference and no off-line gains in motor skill learning. Performing B produced memory interference and reduced off-line gains only in the older group. However, older adults also showed deficits in memory consolidation independent of the interfering effects of B. Age......-related declines in motor skill learning are not produced exclusively by deficits in the encoding of sensorimotor information during practice. Aging also increases the susceptibility to memory interference and reduces off-line gains in motor skill learning after practice....

  18. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  19. Law of substitution for mixed arrays

    International Nuclear Information System (INIS)

    Koudelka, A.J.

    1987-01-01

    The nuclear safety justification of a mixed array of dissimilar fissile units of metal units and dilute solution units, according to Clayton, has been a persistent and nagging problem. Dissimilar uranium metal or dissimilar uranium solution units in a mixed array can also create a modeling nightmare for the nuclear criticality safety engineer. Now, a calculational method known as the Law of Substitution has been developed to ensure that the k/sub eff/ of an array of uranium metal and uranium solution units will satisfy any k/sub eff/ limit set by the nuclear safety engineer. The nuclear criticality safety engineer can utilize the Law of Substitution to safely mix or substitute different uranium metal units, different uranium solution units, and more importantly, uranium metal and dilute UO 2 solution units in an array. The Law of Substitution is as follows: (1) calculate the k/sub eff/ of each unit type in its own infinite planar array. (2) Determine the edge-to-edge spacing of the infinite planar array of each type of unit to satisfy a desired k/sub eff/. (3) Select the largest edge-to-edge spacing from among the similar units in their infinite planar arrays and use that spacing for the finite or infinite planar array of mixed units

  20. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  1. Experiments with a dc motor

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the mechanical and electrical parameters of the motor is clearly seen. The measurements are carried out with the ScienceWorkshop data-acquisition system and the DataStudio software from PASCO scientific. The experiments are well related to university courses of electricity and magnetism and can be used in undergraduate laboratories or for lecture demonstrations.

  2. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Science.gov (United States)

    2013-05-29

    ...-OAR-2011-0135; FRL-9818-5] RIN 2060-A0 Control of Air Pollution From Motor Vehicles: Tier 3 Motor... extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as...

  3. Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA

    Science.gov (United States)

    Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.

    2015-02-01

    ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.

  4. Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA

    International Nuclear Information System (INIS)

    Dziewiecki, M; Kurjata, R; Marzec, J; Rychter, A; Anfimov, N; Anosov, V; Chalyshev, V; Chirikov-Zorin, I; Frolov, V; Guskov, A; Krumshteyn, Z; Nagaytsev, A; Olchevski, A; Orlov, I; Rybnikov, A; Selyunin, A; Barth, J; Elsner, D; Frommberger, F; Klein, F

    2015-01-01

    ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans

  5. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  6. Adaptive port-starboard beamforming of triplet arrays

    NARCIS (Netherlands)

    Beerens, S.P.; Been, R.; Groen, J.; Noutary, E.; Doisy, Y.

    2000-01-01

    Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides immediate port-starboard (PS) discrimination. This paper discusses the theoretical and experimental performance of triplet arrays. Results are obtained on detection gain

  7. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  8. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    Science.gov (United States)

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  9. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  10. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  11. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  12. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Streeter, K.A.; Baker-Herman, T.L.

    2014-01-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30 min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. PMID:24681155

  13. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  14. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  15. Gross motor performance and self-perceived motor competence in children with emotional, behavioural, and pervasive developmental disorders: a review

    NARCIS (Netherlands)

    Emck, C.; Bosscher, R.J.; Beek, P.J.; Doreleijers, T.A.H.

    2009-01-01

    Aims: Motor performance and self-perceived motor competence have a great impact on the psychosocial development of children in general. In this review, empirical studies of gross motor performance and self-perception of motor competence in children with emotional (depression and anxiety),

  16. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    Science.gov (United States)

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; Precruitment of the reference and test motor units (r2=0.229, Pmotor unit activity (r2=0.110, Precruitment threshold of the test motor unit (r2=0.237, Pmotor unit analysis. PMID:21459110

  17. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  18. High-resolution SNP array analysis of patients with developmental disorder and normal array CGH results

    Directory of Open Access Journals (Sweden)

    Siggberg Linda

    2012-09-01

    Full Text Available Abstract Background Diagnostic analysis of patients with developmental disorders has improved over recent years largely due to the use of microarray technology. Array methods that facilitate copy number analysis have enabled the diagnosis of up to 20% more patients with previously normal karyotyping results. A substantial number of patients remain undiagnosed, however. Methods and Results Using the Genome-Wide Human SNP array 6.0, we analyzed 35 patients with a developmental disorder of unknown cause and normal array comparative genomic hybridization (array CGH results, in order to characterize previously undefined genomic aberrations. We detected no seemingly pathogenic copy number aberrations. Most of the vast amount of data produced by the array was polymorphic and non-informative. Filtering of this data, based on copy number variant (CNV population frequencies as well as phenotypically relevant genes, enabled pinpointing regions of allelic homozygosity that included candidate genes correlating to the phenotypic features in four patients, but results could not be confirmed. Conclusions In this study, the use of an ultra high-resolution SNP array did not contribute to further diagnose patients with developmental disorders of unknown cause. The statistical power of these results is limited by the small size of the patient cohort, and interpretation of these negative results can only be applied to the patients studied here. We present the results of our study and the recurrence of clustered allelic homozygosity present in this material, as detected by the SNP 6.0 array.

  19. [Non-motor symptoms of Parkinson's disease

    NARCIS (Netherlands)

    Weerkamp, N.J.; Nijhof, A.; Tissingh, G.

    2012-01-01

    Parkinson's disease has traditionally been viewed as a disease with only motor features. Nowadays, a wide variety of non-motor symptoms and signs are also recognised as being characteristic of the disease. Non-motor symptoms, most importantly autonomic dysfunction, neuropsychiatric symptoms and

  20. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  1. Physical mechanisms of biological molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)], E-mail: jhmiller@uh.edu; Vajrala, Vijayanand; Infante, Hans L. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Claycomb, James R. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Department of Mathematics and Physics, Houston Baptist University, 7502 Fondren Road, Houston, TX 77074-3298 (United States); Palanisami, Akilan; Fang Jie; Mercier, George T. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)

    2009-03-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors.

  2. High efficiency motor selection handbook

    Science.gov (United States)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  3. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  4. Array coding for large data memories

    Science.gov (United States)

    Tranter, W. H.

    1982-01-01

    It is pointed out that an array code is a convenient method for storing large quantities of data. In a typical application, the array consists of N data words having M symbols in each word. The probability of undetected error is considered, taking into account three symbol error probabilities which are of interest, and a formula for determining the probability of undetected error. Attention is given to the possibility of reading data into the array using a digital communication system with symbol error probability p. Two different schemes are found to be of interest. The conducted analysis of array coding shows that the probability of undetected error is very small even for relatively large arrays.

  5. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  6. Auditory-motor learning influences auditory memory for music.

    Science.gov (United States)

    Brown, Rachel M; Palmer, Caroline

    2012-05-01

    In two experiments, we investigated how auditory-motor learning influences performers' memory for music. Skilled pianists learned novel melodies in four conditions: auditory only (listening), motor only (performing without sound), strongly coupled auditory-motor (normal performance), and weakly coupled auditory-motor (performing along with auditory recordings). Pianists' recognition of the learned melodies was better following auditory-only or auditory-motor (weakly coupled and strongly coupled) learning than following motor-only learning, and better following strongly coupled auditory-motor learning than following auditory-only learning. Auditory and motor imagery abilities modulated the learning effects: Pianists with high auditory imagery scores had better recognition following motor-only learning, suggesting that auditory imagery compensated for missing auditory feedback at the learning stage. Experiment 2 replicated the findings of Experiment 1 with melodies that contained greater variation in acoustic features. Melodies that were slower and less variable in tempo and intensity were remembered better following weakly coupled auditory-motor learning. These findings suggest that motor learning can aid performers' auditory recognition of music beyond auditory learning alone, and that motor learning is influenced by individual abilities in mental imagery and by variation in acoustic features.

  7. Low Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance

    Directory of Open Access Journals (Sweden)

    Irma N. Angulo-Sherman

    2017-07-01

    Full Text Available Transcranial direct current stimulation (tDCS is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the location of the stimulation electrodes. Hence, testing tDCS montages at several current levels would allow the selection of current parameters for improving stimulation outcomes and the comparison of montages. In a previous study, we found that cortico-cerebellar tDCS shows potential of enhancing right-hand motor imagery. In this paper, we aim to evaluate the effects of the focal stimulation of the motor cortex over motor imagery. In particular, the effect of supplying tDCS with a 4 × 1 ring montage, which consists in placing an anode on the motor cortex and four cathodes around it, over motor imagery was assessed with different current densities. Electroencephalographic (EEG classification into rest or right-hand/feet motor imagery was evaluated on five healthy subjects for two stimulation schemes: applying tDCS for 10 min on the (1 right-hand or (2 feet motor cortex before EEG recording. Accuracy differences related to the tDCS intensity, as well as μ and β band power changes, were tested for each subject and tDCS modality. In addition, a simulation of the electric field induced by the montage was used to describe its effect on the brain. Results show no improvement trends on classification for the evaluated currents, which is in accordance with the observation of variable EEG band power results despite the focused stimulation. The lack of effects is probably related to the underestimation of the current intensity required to apply a particular current density for small electrodes and the relatively short inter-electrode distance. Hence, higher current

  8. Parkinson's disease motor subtypes and mood.

    Science.gov (United States)

    Burn, David J; Landau, Sabine; Hindle, John V; Samuel, Michael; Wilson, Kenneth C; Hurt, Catherine S; Brown, Richard G

    2012-03-01

    Parkinson's disease is heterogeneous, both in terms of motor symptoms and mood. Identifying associations between phenotypic variants of motor and mood subtypes may provide clues to understand mechanisms underlying mood disorder and symptoms in Parkinson's disease. A total of 513 patients were assessed using the Hospital Anxiety and Depression Scale, and separately classified into anxious, depressed, and anxious-depressed mood classes based on latent class analysis of a semistructured interview. Motor subtypes assessed related to age-of-onset, rate of progression, presence of motor fluctuations, lateralization of motor symptoms, tremor dominance, and the presence of postural instability and gait symptoms and falls. The directions of observed associations tended to support previous findings with the exception of lateralization of symptoms, for which there were no consistent or significant results. Regression models examining a range of motor subtypes together indicated increased risk of anxiety in patients with younger age-of-onset and motor fluctuations. In contrast, depression was most strongly related to axial motor symptoms. Different risk factors were observed for depressed patients with and without anxiety, suggesting heterogeneity within Parkinson's disease depression. Such association data may suggest possible underlying common risk factors for motor subtype and mood. Combined with convergent evidence from other sources, possible mechanisms may include cholinergic system damage and white matter changes contributing to non-anxious depression in Parkinson's disease, while situational factors related to threat and unpredictability may contribute to the exacerbation and maintenance of anxiety in susceptible individuals. Copyright © 2011 Movement Disorder Society.

  9. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...

  10. Phase II CRADA ORNL99-0568 Report : Developing Transmission-Less Inverter Drive Systems for Axial-Gap Permanent magnet Accessory and Traction Motors and Generators; FINAL

    International Nuclear Information System (INIS)

    McKeever, J.W.

    2001-01-01

    Researchers of the Oak Ridge National Laboratory's (ORNLs) Power Electronics and Electric Machine Research Center (PEEMRC) collaborated with Visual Computing Systems (VCS) to develop an electric axial-gap permanent magnet (PM) motor controlled by a self-sensing inverter for driving vehicle accessories such as power steering, air conditioning, and brakes. VCS designed an 8 kW motor based on their Segmented Electromagnetic Array (SEMA) technology. ORNL designed a 10 kW inverter to fit within the volume of a housing, which had been integrated with the motor. This modular design was pursued so that multiple modules could be used for higher power applications. ORNL built the first inverter under the cooperative research and development agreement (CRADA) ORNL 98-0514 and drove a refurbished Delta motor with no load during the Merit Review at ORNL on Monday, May 17, 1999. Inverter circuitry and instructions for assembling the inverters were sent to VCS. A report was prepared and delivered during the Future Car Congress in April 2000, at Arlington, Virginia. Collaboration continued under CRADA ORNL 99-0568 as VCS designed and built a SEMA motor with a dual coil platter to be the traction motor for an electric truck. VCS and ORNL assembled two 45 kW inverters. Each inverter drove one coil, which was designed to deliver 15 kW continuous power and 45 kW peak power for 90 s. The vehicle was road tested as part of the Future Truck Competition. A report was prepared and delivered during the PCIM in October 2000, at Boston, Massachusetts

  11. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  12. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  13. Efficient IEC permanent-magnet motor (3 kW) - Final report; Effizienter IEC Permanent-Magnet-Motor (3 kW) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M. [Circle Motor AG, Guemligen (Switzerland); Biner, H. P.; Evequoz, B. [Haute Ecole valaisanne, Sion (Switzerland); Salathe, D. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland)

    2008-04-15

    Efficient permanent-magnet motors achieve in the area up to 100 kW a higher efficiency than induction machines (standard motors). A simple and fast energy saving option is the exchange of inefficient standard motors. The objective of this work is to install a 3 kW permanent-magnet motor in a standard IEC housing and the optimization of the design for high efficiency. Another objective is the development and the realization of an efficient variable speed control. The efficiency of the motor and the inverter with the control system must be demonstrated by tests. These tasks have been split between Circle Motor AG and the universities of applied sciences of Valais and Lucerne. Considering high-efficiency and low manufacturing cost, a brushless DC solution was adopted. This resulted in an optimum design of the motor and the control system realized with a three-phase rectifier, a buck converter with variable DC voltage, and a three-phase inverter feeding full positive and negative current to two of the legs simultaneously. The maximum measured efficiency is about 96.5% for the inverter and 92% for the motor. With the advantage of the variable speed operation, the efficiency of the realized 3 kW permanent magnet motor together with the control system is always higher than the efficiency of a measured class EFF1 induction motor, even with a direct connection to the grid. The permanent-magnet motor is also about 10 kg lighter. The cost calculation shows that the permanent-magnet motor can be competitive with the induction motor when speed control is desired. This is also the domain with the largest potential for energy savings from variable speed pumps, compressors, fans. (author)

  14. A Squirrel Cage Type Electric Motor Rotor Assembly.

    Science.gov (United States)

    1996-09-05

    cage motor, but also provides efficiencies approaching those of permanent magnet motors . With the above and other objects in view, as will...and active motor life relative to known permanent magnet motors . Referring to FIG. 4, there is illustrated an alternative embodiment in which...part the.known advantages of a squirrel cage motor, and further provides improved efficiencies approaching those of permanent magnet motors . It is to

  15. Combinatorial aspects of covering arrays

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn

    2004-11-01

    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  16. Introduction to the permanent magnet motor market

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Toshihiro; Hamada, Kaneyuki [Yaskawa Electric Corp. (Japan)

    2000-07-01

    According to the Kyoto summit on global warming (COP3) in December 1997, the green-house gas emission level has to be reduced to 92-94% of the 1990 green-house gas level by the year 2014-2018. This would require conserving energy. An efficient means of achieving this voluntary goal is by employing high-efficiency drives, since motors consume 70% of all electricity for industrial use in Japan. As adjustable speed drives become popular, interior permanent magnet (IPM) motors, lately, have been recognized for high-efficiency performance. Due to the progress in permanent magnet technology combined with modern control methods, especially vector control with and without speed-sensors, the IPM motor is gaining in popularity. Compact size and high-efficiency performance is furthering the IPM motor as the preferred motor in many applications. This paper describes the principle and operation of IPM motors and compares its performance with that of an induction motor. Important features and practical control methods for IPM motors are presented. Various application examples highlighting the advantages of employing an IPM motor system are discussed. The applications include, but are not limited to, machine tools, fans, pumps, elevators, cranes, etc. (orig.)

  17. Cross-cultural analysis of the motor development of Brazilian, Greek and Canadian infants assessed with the Alberta Infant Motor Scale

    Directory of Open Access Journals (Sweden)

    Raquel Saccani

    2013-09-01

    Full Text Available OBJECTIVE: To compare the motor development of infants from three population samples (Brazil, Canada and Greece, to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. METHODS: Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants and Canada (2,400 infants. Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p≤0.05. RESULTS: 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. CONCLUSIONS: The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care.

  18. Thermodynamics and kinetics of a molecular motor ensemble.

    Science.gov (United States)

    Baker, J E; Thomas, D D

    2000-10-01

    If, contrary to conventional models of muscle, it is assumed that molecular forces equilibrate among rather than within molecular motors, an equation of state and an expression for energy output can be obtained for a near-equilibrium, coworking ensemble of molecular motors. These equations predict clear, testable relationships between motor structure, motor biochemistry, and ensemble motor function, and we discuss these relationships in the context of various experimental studies. In this model, net work by molecular motors is performed with the relaxation of a near-equilibrium intermediate step in a motor-catalyzed reaction. The free energy available for work is localized to this step, and the rate at which this free energy is transferred to work is accelerated by the free energy of a motor-catalyzed reaction. This thermodynamic model implicitly deals with a motile cell system as a dynamic network (not a rigid lattice) of molecular motors within which the mechanochemistry of one motor influences and is influenced by the mechanochemistry of other motors in the ensemble.

  19. Criticality safety of low-density storage arrays

    International Nuclear Information System (INIS)

    Bauer, T.H.

    1996-01-01

    This note proposes a straightforward and simple method for the criticality safety analysis of fissionable materials configured into large arrays of standard containers. While criticality-safe storage limits have been well-established for standard containers--even under flooded conditions, it is also necessary to rule out the potential for criticality arising from neutronic interactions among multiple containers that might build up over long distances in a large array. Traditionally, the array problem has been approached by individual Monte Carlo analyses of explicit arrangements of single units and their surroundings. Here, the authors show how multiple Monte Carlo analyses can be usefully combined for wide-ranging general application. The technique takes advantage of low average density of fissionable material in typical storage arrays to separate neutron interactions that take place in the neutron's ''birth unit'' from subsequent interactions in a highly dilute array. Effects of array size, in particular, are conservatively calculated by straightforward analyses which simply smear array contents uniformly across the extent of the array. For given unit loadings in standard containers, practical expressions for neutron multiplication depend only on overall array shape, size and reflective boundary

  20. Acoustic array systems theory, implementation, and application

    CERN Document Server

    Bai, Mingsian R; Benesty, Jacob

    2013-01-01

    Presents a unified framework of far-field and near-field array techniques for noise source identification and sound field visualization, from theory to application. Acoustic Array Systems: Theory, Implementation, and Application provides an overview of microphone array technology with applications in noise source identification and sound field visualization. In the comprehensive treatment of microphone arrays, the topics covered include an introduction to the theory, far-field and near-field array signal processing algorithms, practical implementations, and common applic

  1. Integrated motor drive and non-isolated battery charger based on the split-phase PM motors for plug-in vehicles

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-06-01

    Full Text Available A novel integrated motor drive and non-isolated battery charger based on a split-phase permanent magnet (PM motor is presented and described for a plug-in vehicle. The motor windings are reconfigured by a relay for the traction and charging operation. In traction mode, the motor is like a normal three-phase motor, whereas in the charging mode, after windings reconnection, the system is a three-phase Boost rectifier. One important challenge to use the motor as three inductors in charger circuit is to have it in standstill during the battery charging. Based on the presented mathematical model of a split-phase PM motor, the zero-torque condition of the motor is explained which led to a proper windings reconnection for the charging. Simulation and experimental results of two separate practical systems are provided to verify the proposed integrated battery charger. Some practical limitations and design recommendations are provided to achieve a more realistic practical system.

  2. 32 CFR 935.138 - Motor bus operation.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Motor bus operation. 935.138 Section 935.138 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR REGULATIONS WAKE ISLAND CODE Motor Vehicle Code § 935.138 Motor bus operation. Each person operating a motor...

  3. 75 FR 39045 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-07-07

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Corporation and Toyota Motor Corporation, including on-site leased workers from Corestaff, ABM Janitorial, and...

  4. Can a single session of motor imagery promote motor learning of locomotion in older adults? A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nicholson VP

    2018-04-01

    Full Text Available Vaughan P Nicholson,1 Justin WL Keogh,2–4 Nancy L Low Choy1 1School of Physiotherapy, Australian Catholic University, Brisbane, QLD, Australia; 2Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia; 3Human Potential Centre, AUT University, Auckland, New Zealand; 4Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia Purpose: To investigate the influence of a single session of locomotor-based motor imagery training on motor learning and physical performance. Patients and methods: Thirty independent adults aged >65 years took part in the randomized controlled trial. The study was conducted within an exercise science laboratory. Participants were randomly divided into three groups following baseline locomotor testing: motor imagery training, physical training, and control groups. The motor imagery training group completed 20 imagined repetitions of a locomotor task, the physical training group completed 20 physical repetitions of a locomotor task, and the control group spent 25 minutes playing mentally stimulating games on an iPad. Imagined and physical performance times were measured for each training repetition. Gait speed (preferred and fast, timed-up-and-go, gait variability and the time to complete an obstacle course were completed before and after the single training session. Results: Motor learning occurred in both the motor imagery training and physical training groups. Motor imagery training led to refinements in motor planning resulting in imagined movements better matching the physically performed movement at the end of training. Motor imagery and physical training also promoted improvements in some locomotion outcomes as demonstrated by medium to large effect size improvements after training for fast gait speed and timed-up-and-go. There were no training effects on gait variability. Conclusion: A single session

  5. Procedure for the energy evaluation of electric motors; Procedimiento para la evaluacion energetica de motores electricos

    Energy Technology Data Exchange (ETDEWEB)

    Feliz Quiroz, Marco Antonio [Universidad Autonoma Metropolitana (Mexico)

    2002-06-01

    The present article is not a complete treaty about motors, here it is simply tried to show a practical procedure to evaluate electric motors, in order to determine the economics of their possible replacement by others of high efficiency. With the former in mind, the included database is sustained in the information of a representative number of motors brands commercialized in Mexico, since to include all the brands sold in our country would not be practical and it would be outside the scope of this publication. [Spanish] El presente articulo no es todo un tratado acerca de motores, sencillamente aqui se pretende mostrar un procedimiento practico para evaluar los motores electricos, a fin de determinar la rentabilidad de su eventual reemplazo por otros de alta eficiencia. Por lo anterior, la base de datos incluida se sustente en la informacion de un numero representativo de marcas de motores comercializados en Mexico, ya que abarcar todas las marcas vendidas en nuestro pais no seria practico y quedaria fuera del alcance de esta publicacion.

  6. INFLUENCE OF MOTOR MANIFESTATIONS FROM THE EUROFIT PROGRAM FOR CHILDREN ON MOTOR SKILLS AND HABITS AT HIGH SCHOOL FEMALE STUDENTS

    Directory of Open Access Journals (Sweden)

    Viktor Mitrevski

    2011-08-01

    Full Text Available The survey was conducted among 183 regular female students in the secondary education. The objective of the research was to see what was the correlation, i.e. the influence of a system of motor tests EUROFIT program for children on motor test - polygon to assess motor skills and habits of pupils who regularly attended the course sport and sport activities. The sample of indicators included one criteria variable for the assessment of motor skills and habits and eight motor variables for the assessment of motor skills. With regression analysis was determined the impact of the system of motor variables on the criterion.

  7. New applications using phased array techniques

    International Nuclear Information System (INIS)

    Erhard, A.; Schenk, G.; Hauser, Th.; Voelz, U.

    2001-01-01

    In general, the application of phased array techniques used to be limited to heavy components with large wall thicknesses, such as those in the nuclear power industry. With the improvement of the phased array equipment, including phased array search units, other application areas are now accessible for the phased array inspection technique, e.g. the inspection of turbine blade roots, weld inspection with a wall thickness ranging from 12 to 40 mm, inspection of aircraft components, inspection of spot welds and the inspection of concrete building components. The objective for the use of phased array techniques has not significantly changed since their first application, e.g. instant adjustment of the sound beam to the geometry of the test object by steering incidence angle, skew angle and/or sound field focusing. Because some new phased array technique applications are still in the experimental (laboratory) stage, this article will focus on some examples for practical, real-weld applications

  8. Open-Ended Electric Motor

    Science.gov (United States)

    Gould, Mauri

    1975-01-01

    Presents complete instructions for assembling an electric motor which does not require large amounts of power to operate and which is inexpensive as well as reliable. Several open-ended experiments with the motor are included as well as information for obtaining a kit of parts and instructions. (BR)

  9. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-06-01

    Phrenic motor neurons receive rhythmic synaptic inputs throughout life. Since even brief disruption in phrenic neural activity is detrimental to life, on-going neural activity may play a key role in shaping phrenic motor output. To test the hypothesis that spinal mechanisms sense and respond to reduced phrenic activity, anesthetized, ventilated rats received micro-injections of procaine in the C2 ventrolateral funiculus (VLF) to transiently (~30min) block axon conduction in bulbospinal axons from medullary respiratory neurons that innervate one phrenic motor pool; during procaine injections, contralateral phrenic neural activity was maintained. Once axon conduction resumed, a prolonged increase in phrenic burst amplitude was observed in the ipsilateral phrenic nerve, demonstrating inactivity-induced phrenic motor facilitation (iPMF). Inhibition of tumor necrosis factor alpha (TNFα) and atypical PKC (aPKC) activity in spinal segments containing the phrenic motor nucleus impaired ipsilateral iPMF, suggesting a key role for spinal TNFα and aPKC in iPMF following unilateral axon conduction block. A small phrenic burst amplitude facilitation was also observed contralateral to axon conduction block, indicating crossed spinal phrenic motor facilitation (csPMF). csPMF was independent of spinal TNFα and aPKC. Ipsilateral iPMF and csPMF following unilateral withdrawal of phrenic synaptic inputs were associated with proportional increases in phrenic responses to chemoreceptor stimulation (hypercapnia), suggesting iPMF and csPMF increase phrenic dynamic range. These data suggest that local, spinal mechanisms sense and respond to reduced synaptic inputs to phrenic motor neurons. We hypothesize that iPMF and csPMF may represent compensatory mechanisms that assure adequate motor output is maintained in a physiological system in which prolonged inactivity ends life. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Variable current speed controller for eddy current motors

    Science.gov (United States)

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  11. Agricultural Electricity. Electric Motors. Student Manual.

    Science.gov (United States)

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  12. 47 CFR 32.2112 - Motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  13. An Evaluation of Electric Motors for Ship Propulsion

    Science.gov (United States)

    2003-06-01

    AIM). Permanent magnet motors are more power dense than a comparatively sized in- duction motor. The permanent magnet motor has been chosen to...study. They include the axial flux, the ra- dial flux, and the transverse flux permanent magnet motors . Each motor has its unique advantages...to be ideal for ship propulsion, work is ongoing to develop the PMSM for ship propulsion. Permanent magnet motors are expected to have significant

  14. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  15. Motor development of blind toddler

    OpenAIRE

    Likar, Petra

    2013-01-01

    For blind toddlers, development of motor skills enables possibilities for learning and exploring the environment. The purpose of this graduation thesis is to systematically mark the milestones in development of motor skills in blind toddlers, to establish different factors which affect this development, and to discover different ways for teachers for visually impaired and parents to encourage development of motor skills. It is typical of blind toddlers that they do not experience a wide varie...

  16. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  17. Control of permanent magnet synchronous motors

    CERN Document Server

    Vaez-Zadeh, Sadegh

    2018-01-01

    This is the first comprehensive, coherent, and up-to-date book devoted solely to the control of permanent magnet synchronous (PMS) motors, as the fastest growing AC motor. It covers a deep and detailed presentation of major PMS motor modeling and control methods. The readers can find rich materials on the fundamentals of PMS motor control in addition to new motor control methods, which have mainly been developed in the last two decades, including recent advancements in the field in a systematic manner. These include extensive modeling of PMS motors and a full range of vector control and direct torque control schemes, in addition to predictive control, deadbeat control, and combined control methods. All major sensorless control and parameter estimation methods are also studied. The book covers about 10 machine models in various reference frames and 70 control and estimation schemes with sufficient analytical and implementation details including about 200 original figures. A great emphasis is placed on energy-s...

  18. 36 CFR 261.13 - Motor vehicle use.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Motor vehicle use. 261.13... General Prohibitions § 261.13 Motor vehicle use. After National Forest System roads, National Forest... have been identified on a motor vehicle use map, it is prohibited to possess or operate a motor vehicle...

  19. Recommendations for the use of high efficiency motors; Recomendaciones para la utilizacion de motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Buitron Sanchez, Horacio [Comision Federal de Electricidad, Mexico, D. F. (Mexico)

    1994-12-31

    In this paper the most important characteristics of the high efficiency motors are examined and the use of these motors as an alternative for the saving and efficient use of the electrical energy is proposed. The operating cost is analyzed in relation with similar standard motors and several suggestions that can help to justify its application are given. [Espanol] En este trabajo se examinan las caracteristicas relevantes de los motores de alta eficiencia y se plantea su utilizacion como alternativa para el ahorro y uso eficiente de la energia electrica. Se analiza su costo de operacion, en relacion con motores estandar similares y se dan varias sugerencias que pueden ayudar a justificar su aplicacion.

  20. Recommendations for the use of high efficiency motors; Recomendaciones para la utilizacion de motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Buitron Sanchez, Horacio [Comision Federal de Electricidad, Mexico, D. F. (Mexico)

    1993-12-31

    In this paper the most important characteristics of the high efficiency motors are examined and the use of these motors as an alternative for the saving and efficient use of the electrical energy is proposed. The operating cost is analyzed in relation with similar standard motors and several suggestions that can help to justify its application are given. [Espanol] En este trabajo se examinan las caracteristicas relevantes de los motores de alta eficiencia y se plantea su utilizacion como alternativa para el ahorro y uso eficiente de la energia electrica. Se analiza su costo de operacion, en relacion con motores estandar similares y se dan varias sugerencias que pueden ayudar a justificar su aplicacion.