WorldWideScience

Sample records for motor unit activation

  1. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  2. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  3. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  4. Simulation of motor unit recruitment and microvascular unit perfusion: spatial considerations.

    Science.gov (United States)

    Fuglevand, A J; Segal, S S

    1997-10-01

    Muscle fiber activity is the principal stimulus for increasing capillary perfusion during exercise. The control elements of perfusion, i.e., microvascular units (MVUs), supply clusters of muscle fibers, whereas the control elements of contraction, i.e., motor units, are composed of fibers widely scattered throughout muscle. The purpose of this study was to examine how the discordant spatial domains of MVUs and motor units could influence the proportion of open capillaries (designated as perfusion) throughout a muscle cross section. A computer model simulated the locations of perfused MVUs in response to the activation of up to 100 motor units in a muscle with 40,000 fibers and a cross-sectional area of 100 mm2. The simulation increased contraction intensity by progressive recruitment of motor units. For each step of motor unit recruitment, the percentage of active fibers and the number of perfused MVUs were determined for several conditions: 1) motor unit fibers widely dispersed and motor unit territories randomly located (which approximates healthy human muscle), 2) regionalized motor unit territories, 3) reversed recruitment order of motor units, 4) densely clustered motor unit fibers, and 5) increased size but decreased number of motor units. The simulations indicated that the widespread dispersion of motor unit fibers facilitates complete capillary (MVU) perfusion of muscle at low levels of activity. The efficacy by which muscle fiber activity induced perfusion was reduced 7- to 14-fold under conditions that decreased the dispersion of active fibers, increased the size of motor units, or reversed the sequence of motor unit recruitment. Such conditions are similar to those that arise in neuromuscular disorders, with aging, or during electrical stimulation of muscle, respectively.

  5. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Science.gov (United States)

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  6. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    Science.gov (United States)

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  7. Dependence of the paired motor unit analysis on motor unit discharge characteristics in the human tibialis anterior muscle

    Science.gov (United States)

    Stephenson, Jennifer L.; Maluf, Katrina S.

    2011-01-01

    The paired motor unit analysis provides in vivo estimates of the magnitude of persistent inward currents (PIC) in human motoneurons by quantifying changes in the firing rate (ΔF) of an earlier recruited (reference) motor unit at the time of recruitment and derecruitment of a later recruited (test) motor unit. This study assessed the variability of ΔF estimates, and quantified the dependence of ΔF on the discharge characteristics of the motor units selected for analysis. ΔF was calculated for 158 pairs of motor units recorded from nine healthy individuals during repeated submaximal contractions of the tibialis anterior muscle. The mean (SD) ΔF was 3.7 (2.5) pps (range −4.2 to 8.9 pps). The median absolute difference in ΔF for the same motor unit pair across trials was 1.8 pps, and the minimal detectable change in ΔF required to exceed measurement error was 4.8 pps. ΔF was positively related to the amount of discharge rate modulation in the reference motor unit (r2=0.335; Precruitment of the reference and test motor units (r2=0.229, Pmotor unit activity (r2=0.110, Precruitment threshold of the test motor unit (r2=0.237, Pmotor unit analysis. PMID:21459110

  8. Adjustments differ among low-threshold motor units during intermittent, isometric contractions.

    Science.gov (United States)

    Farina, Dario; Holobar, Ales; Gazzoni, Marco; Zazula, Damjan; Merletti, Roberto; Enoka, Roger M

    2009-01-01

    We investigated the changes in muscle fiber conduction velocity, recruitment and derecruitment thresholds, and discharge rate of low-threshold motor units during a series of ramp contractions. The aim was to compare the adjustments in motor unit activity relative to the duration that each motor unit was active during the task. Multichannel surface electromyographic (EMG) signals were recorded from the abductor pollicis brevis muscle of eight healthy men during 12-s contractions (n = 25) in which the force increased and decreased linearly from 0 to 10% of the maximum. The maximal force exhibited a modest decline (8.5 +/- 9.3%; P motor units that were active for 16-98% of the time during the first five contractions were identified throughout the task by decomposition of the EMG signals. Action potential conduction velocity decreased during the task by a greater amount for motor units that were initially active for >70% of the time compared with that of less active motor units. Moreover, recruitment and derecruitment thresholds increased for these most active motor units, whereas the thresholds decreased for the less active motor units. Another 18 motor units were recruited at an average of 171 +/- 32 s after the beginning of the task. The recruitment and derecruitment thresholds of these units decreased during the task, but muscle fiber conduction velocity did not change. These results indicate that low-threshold motor units exhibit individual adjustments in muscle fiber conduction velocity and motor neuron activation that depended on the relative duration of activity during intermittent contractions.

  9. Motor Unit Action Potential Clustering—Theoretical Consideration for Muscle Activation during a Motor Task

    Directory of Open Access Journals (Sweden)

    Michael J. Asmussen

    2018-01-01

    Full Text Available During dynamic or sustained isometric contractions, bursts of muscle activity appear in the electromyography (EMG signal. Theoretically, these bursts of activity likely occur because motor units are constrained to fire temporally close to one another and thus the impulses are “clustered” with short delays to elicit bursts of muscle activity. The purpose of this study was to investigate whether a sequence comprised of “clustered” motor unit action potentials (MUAP can explain spectral and amplitude changes of the EMG during a simulated motor task. This question would be difficult to answer experimentally and thus, required a model to study this type of muscle activation pattern. To this end, we modeled two EMG signals, whereby a single MUAP was either convolved with a randomly distributed impulse train (EMG-rand or a “clustered” sequence of impulses (EMG-clust. The clustering occurred in windows lasting 5–100 ms. A final mixed signal of EMG-clust and EMG-rand, with ratios (1:1–1:10, was also modeled. A ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50% of “clustered” MUAP occurred in a given time window (5–100 ms. The results of the model showed that clustering MUAP caused a downshift in the mean power frequency (i.e., ~30 Hz with the largest shift occurring with a cluster window of 10 ms. The mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high. Further, the clustering of MUAP also caused a substantial increase in the amplitude of the EMG signal. This model potentially explains an activation pattern that changes the EMG spectra during a motor task and thus, a potential activation pattern of muscles observed experimentally. Changes in EMG measurements during fatiguing conditions are typically attributed to slowing of conduction velocity but could, per this model, also result from changes of the clustering of MUAP. From a clinical standpoint, this type of muscle

  10. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox.

    Science.gov (United States)

    Holt, N C; Wakeling, J M; Biewener, A A

    2014-05-22

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force-velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested.

  11. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Human motor unit recordings: origins and insight into the integrated motor system.

    Science.gov (United States)

    Duchateau, Jacques; Enoka, Roger M

    2011-08-29

    Soon after Edward Liddell [1895-1981] and Charles Sherrington [1857-1952] introduced the concept of a motor unit in 1925 and the necessary technology was developed, the recording of single motor unit activity became feasible in humans. It was quickly discovered by Edgar Adrian [1889-1977] and Detlev Bronk [1897-1975] that the force exerted by muscle during voluntary contractions was the result of the concurrent recruitment of motor units and modulation of the rate at which they discharged action potentials. Subsequent studies found that the relation between discharge frequency and motor unit force was characterized by a sigmoidal function. Based on observations on experimental animals, Elwood Henneman [1915-1996] proposed a "size principle" in 1957 and most studies in humans focussed on validating this concept during various types of muscle contractions. By the end of the 20th C, the experimental evidence indicated that the recruitment order of human motor units was determined primarily by motoneuron size and that the occasional changes in recruitment order were not an intended strategy of the central nervous system. Fundamental knowledge on the function of Sherrington's "common final pathway" was expanded with observations on motor unit rotation, minimal and maximal discharge rates, discharge variability, and self-sustained firing. Despite the great amount of work on characterizing motor unit activity during the first century of inquiry, however, many basic questions remain unanswered and these limit the extent to which findings on humans and experimental animals can be integrated and generalized to all movements. 2011 Elsevier B.V. All rights reserved.

  13. Discharge patterns of human genioglossus motor units during arousal from sleep.

    Science.gov (United States)

    Wilkinson, Vanessa; Malhotra, Atul; Nicholas, Christian L; Worsnop, Christopher; Jordan, Amy S; Butler, Jane E; Saboisky, Julian P; Gandevia, Simon C; White, David P; Trinder, John

    2010-03-01

    Single motor unit recordings of the human genioglossus muscle reveal motor units with a variety of discharge patterns. Integrated multiunit electromyographic recordings of genioglossus have demonstrated an abrupt increase in the muscle's activity at arousal from sleep. The aim of the present study was to determine the effect of arousal from sleep on the activity of individual motor units as a function of their particular discharge pattern. Genioglossus activity was measured using intramuscular fine-wire electrodes inserted via a percutaneous approach. Arousals from sleep were identified using the ASDA criterion and the genioglossus electromyogram recordings analyzed for single motor unit activity. Sleep research laboratory. Sleep and respiratory data were collected in 8 healthy subjects (6 men). 138 motor units were identified during prearousalarousal sleep: 25% inspiratory phasic, 33% inspiratory tonic, 4% expiratory phasic, 3% expiratory tonic, and 35% tonic. At arousal from sleep inspiratory phasic units significantly increased the proportion of a breath over which they were active, but did not appreciably increase their rate of firing. 80 new units were identified at arousals, 75% were inspiratory, many of which were active for only 1 or 2 breaths. 22% of units active before arousal, particularly expiratory and tonic units, stopped at the arousal. Increased genioglossus muscle activity at arousal from sleep is primarily due to recruitment of inspiratory phasic motor units. Further, activity within the genioglossus motoneuron pool is reorganized at arousal as, in addition to recruitment, approximately 20% of units active before arousals stopped firing.

  14. Motor unit recruitment in human genioglossus muscle in response to hypercapnia.

    Science.gov (United States)

    Nicholas, Christian L; Bei, Bei; Worsnop, Christopher; Malhotra, Atul; Jordan, Amy S; Saboisky, Julian P; Chan, Julia K M; Duckworth, Ella; White, David P; Trinder, John

    2010-11-01

    single motor unit recordings of the genioglossus (GG) muscle indicate that GG motor units have a variety of discharge patterns, including units that have higher discharge rates during inspiration (inspiratory phasic and inspiratory tonic), or expiration (expiratory phasic and expiratory tonic), or do not modify their rate with respiration (tonic). Previous studies have shown that an increase in GG muscle activity is a consequence of increased activity in inspiratory units. However, there are differences between studies as to whether this increase is primarily due to recruitment of new motor units (motor unit recruitment) or to increased discharge rate of already active units (rate coding). Sleep-wake state studies in humans have suggested the former, while hypercapnia experiments in rats have suggested the latter. In this study, we investigated the effect of hypercapnia on GG motor unit activity in humans during wakefulness. sleep research laboratory. sixteen healthy men. each participant was administered at least 6 trials with P(et)CO(2) being elevated 8.4 (SD = 1.96) mm Hg over 2 min following a 30-s baseline. Subjects were instrumented for GG EMG and respiratory measurements with 4 fine wire electrodes inserted subcutaneously into the muscle. One hundred forty-one motor units were identified during the baseline: 47% were inspiratory modulated, 29% expiratory modulated, and 24% showed no respiratory related modulation. Sixty-two new units were recruited during hypercapnia. The distribution of recruited units was significantly different from the baseline distribution, with 84% being inspiratory modulated (P units active during baseline, nor new units recruited during hypercapnia, increased their discharge rate as P(et)CO(2) increased (P > 0.05 for all comparisons). increased GG muscle activity in humans occurs because of recruitment of previously inactive inspiratory modulated units.

  15. Discharge patterns of human tensor palatini motor units during sleep onset.

    Science.gov (United States)

    Nicholas, Christian L; Jordan, Amy S; Heckel, Leila; Worsnop, Christopher; Bei, Bei; Saboisky, Julian P; Eckert, Danny J; White, David P; Malhotra, Atul; Trinder, John

    2012-05-01

    Upper airway muscles such as genioglossus (GG) and tensor palatini (TP) reduce activity at sleep onset. In GG reduced muscle activity is primarily due to inspiratory modulated motor units becoming silent, suggesting reduced respiratory pattern generator (RPG) output. However, unlike GG, TP shows minimal respiratory modulation and presumably has few inspiratory modulated motor units and minimal input from the RPG. Thus, we investigated the mechanism by which TP reduces activity at sleep onset. The activity of TP motor units were studied during relaxed wakefulness and over the transition from wakefulness to sleep. Sleep laboratory. Nine young (21.4 ± 3.4 years) males were studied on a total of 11 nights. Sleep onset. Two TP EMGs (thin, hooked wire electrodes), and sleep and respiratory measures were recorded. One hundred twenty-one sleep onsets were identified (13.4 ± 7.2/subject), resulting in 128 motor units (14.3 ± 13.0/subject); 29% of units were tonic, 43% inspiratory modulated (inspiratory phasic 18%, inspiratory tonic 25%), and 28% expiratory modulated (expiratory phasic 21%, expiratory tonic 7%). There was a reduction in both expiratory and inspiratory modulated units, but not tonic units, at sleep onset. Reduced TP activity was almost entirely due to de-recruitment. TP showed a similar distribution of motor units as other airway muscles. However, a greater proportion of expiratory modulated motor units were active in TP and these expiratory units, along with inspiratory units, tended to become silent over sleep onset. The data suggest that both expiratory and inspiratory drive components from the RPG are reduced at sleep onset in TP.

  16. EMG analysis tuned for determining the timing and level of activation in different motor units.

    Science.gov (United States)

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles

    NARCIS (Netherlands)

    Thomas, CK; Nelson, G; Than, L; Zijdewind, Inge

    The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce

  18. Motor unit recruitment for dynamic tasks: current understanding and future directions.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2009-01-01

    Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the 'size principle', governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.

  19. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    Science.gov (United States)

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  20. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    Science.gov (United States)

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  1. Motor-pump unit provided with a lifting appliance of the motor

    International Nuclear Information System (INIS)

    Veronesi, Luciano; Francis, W.R.

    1978-01-01

    This invention relates to lifting appliances and particularly concerns a 'pump and motor set' or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr

  2. Synchronization of lower limb motor unit activity during walking in human subjects

    DEFF Research Database (Denmark)

    Hansen, Naja L; Hansen, S; Christensen, L. O. D.

    2001-01-01

    lateralis and medialis of quadriceps), but not or rarely for paired recordings from ankle and knee muscles. The data demonstrate that human motor units within a muscle as well as synergistic muscles acting on the same joint receive a common synaptic drive during human gait. It is speculated that the common...... drive responsible for the motor unit synchronization during gait may be similar to that responsible for short-term synchronization during tonic voluntary contraction....

  3. The relationship of motor unit size, firing rate and force.

    Science.gov (United States)

    Conwit, R A; Stashuk, D; Tracy, B; McHugh, M; Brown, W F; Metter, E J

    1999-07-01

    Using a clinical electromyographic (EMG) protocol, motor units were sampled from the quadriceps femoris during isometric contractions at fixed force levels to examine how average motor unit size and firing rate relate to force generation. Mean firing rates (mFRs) and sizes (mean surface-detected motor unit action potential (mS-MUAP) area) of samples of active motor units were assessed at various force levels in 79 subjects. MS-MUAP size increased linearly with increased force generation, while mFR remained relatively constant up to 30% of a maximal force and increased appreciably only at higher force levels. A relationship was found between muscle force and mS-MUAP area (r2 = 0.67), mFR (r2 = 0.38), and the product of mS-MUAP area and mFR (mS-MUAP x mFR) (r2 = 0.70). The results support the hypothesis that motor units are recruited in an orderly manner during forceful contractions, and that in large muscles only at higher levels of contraction ( > 30% MVC) do mFRs increase appreciably. MS-MUAP and mFR can be assessed using clinical EMG techniques and they may provide a physiological basis for analyzing the role of motor units during muscle force generation.

  4. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (pmotor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Motor unit discharge rate in dynamic movements of the aging soleus

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne

    2014-01-01

    Aging is related to a variety of changes at the muscular level. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine the motor unit discharge rate (MUDR) in both isometric and dynamic contractions of the aging...

  6. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  7. Microgravity induced changes in the control of motor units

    Science.gov (United States)

    de Luca, C.; Roy, S.

    The goal of this project is to understand the effects of microgravity on the control of muscles. It is motivated by the notion that in order to adequately address microgravity-induced deterioration in the force generating capacity of muscles, one needs to understand the changes in the control aspects in addition to histochemical and morphological changes. The investigations into muscle control need to include the regulation of the firing activity of motor units that make up a muscle and the coordination of different muscles responsible for the control of a joint. In order to understand the effects of microgravity on these two aspects of muscle control, we will test astronauts before and after spaceflight. The investigations of the control of motor units will involve intramuscular EMG techniques developed in our laboratory. We will use a quadrifilar electrode to detect simultaneously three differential channels of EMG activity. These data will be decomposed accurately using a sophisticated set of algorithms constructed with artificial intelligence knowledge- based techniques. Particular attention will be paid to the firing rate and recruitment behavior of motor units and we will study the degree of cross-correlation of the firing rates. This approach will enable us to study the firing behavior of several (approx. 10) concurrently active motor units. This analysis will enable us to detect modifications in the control of motor units. We will perform these investigations in a hand muscle, which continues being used in prehensile tasks in space, and a leg muscle whose antigravity role is not needed in space. The comparison of the effects of weightlessness on these muscles will determine if continued use of muscles in space deters the possible deleterious effects of microgravity on the control of motor units, in addition to slowing down atrophy. We are particularly interested in comparing the results of this study to similar data already obtained from elderly subjects

  8. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  9. Respiration-related discharge of hyoglossus muscle motor units in the rat.

    Science.gov (United States)

    Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F

    2014-01-01

    Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.

  10. Effect of age on changes in motor units functional connectivity.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh

    2015-08-01

    With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.

  11. Motor unit firing intervals and other parameters of electrical activity in normal and pathological muscle

    DEFF Research Database (Denmark)

    Fuglsang-Frederiksen, Anders; Smith, T; Høgenhaven, H

    1987-01-01

    The analysis of the firing intervals of motor units has been suggested as a diagnostic tool in patients with neuromuscular disorders. Part of the increase in number of turns seen in patients with myopathy could be secondary to the decrease in motor unit firing intervals at threshold force...

  12. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Science.gov (United States)

    Mohr, Maurice; Nann, Marius; von Tscharner, Vinzenz; Eskofier, Bjoern; Nigg, Benno Maurus

    2015-01-01

    Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM) and Lateralis (VL). Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role. Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG) was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum. For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat. There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement task at hand.

  13. Hierarchical control of motor units in voluntary contractions.

    Science.gov (United States)

    De Luca, Carlo J; Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.

  14. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.

    Science.gov (United States)

    Kim, Hojeong; Kim, Minjung

    2018-01-01

    We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.

  15. Motor unit number estimation in the quantitative assessment of severity and progression of motor unit loss in Hirayama disease.

    Science.gov (United States)

    Zheng, Chaojun; Zhu, Yu; Zhu, Dongqing; Lu, Feizhou; Xia, Xinlei; Jiang, Jianyuan; Ma, Xiaosheng

    2017-06-01

    To investigate motor unit number estimation (MUNE) as a method to quantitatively evaluate severity and progression of motor unit loss in Hirayama disease (HD). Multipoint incremental MUNE was performed bilaterally on both abductor digiti minimi and abductor pollicis brevis muscles in 46 patients with HD and 32 controls, along with handgrip strength examination. MUNE was re-evaluated approximately 1year after initial examination in 17 patients with HD. The MUNE values were significantly lower in all the tested muscles in the HD group (Pdisease duration (Pmotor unit loss in patients with HD within approximately 1year (P4years. A reduction in the functioning motor units was found in patients with HD compared with that in controls, even in the early asymptomatic stages. Moreover, the motor unit loss in HD progresses gradually as the disease advances. These results have provided evidence for the application of MUNE in estimating the reduction of motor unit in HD and confirming the validity of MUNE for tracking the progression of HD in a clinical setting. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    Science.gov (United States)

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  17. PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2018-04-01

    Full Text Available We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input–output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites. To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.

  18. Periodic modulation of motor-unit activity in extrinsic hand muscles during multidigit grasping.

    Science.gov (United States)

    Johnston, Jamie A; Winges, Sara A; Santello, Marco

    2005-07-01

    We recently examined the extent to which motor units of digit flexor muscles receive common input during multidigit grasping. This task elicited moderate to strong motor-unit synchrony (common input strength, CIS) across muscles (flexor digitorum profundus, FDP, and flexor pollicis longus, FPL) and across FDP muscle compartments, although the strength of this common input was not uniform across digit pairs. To further characterize the neural mechanisms underlying the control of multidigit grasping, we analyzed the relationship between firing of single motor units from these hand muscles in the frequency domain by computing coherence. We report three primary findings. First, in contrast to what has been reported in intrinsic hand muscles, motor units belonging to different muscles and muscle compartments of extrinsic digit flexors exhibited significant coherence in the 0- to 5- and 5- to 10-Hz frequency ranges and much weaker coherence in the higher 10-20 Hz range (maximum 0.0025 and 0.0008, respectively, pooled across all FDP compartment pairs). Second, the strength and incidence of coherence differed considerably across digit pairs. Third, contrary to what has been reported in the literature, across-muscle coherence can be stronger and more prevalent than within-muscle coherence, as FPL-FDP2 (thumb-index digit pair) exhibited the strongest and most prevalent coherence in our data (0.010 and 43% at 3 Hz, respectively). The heterogeneous organization of common input to these muscles and muscle compartments is discussed in relation to the functional role of individual digit pairs in the coordination of multiple digit forces in grasping.

  19. Associations between motor unit action potential parameters and surface EMG features.

    Science.gov (United States)

    Del Vecchio, Alessandro; Negro, Francesco; Felici, Francesco; Farina, Dario

    2017-10-01

    The surface interference EMG signal provides some information on the neural drive to muscles. However, the association between neural drive to muscle and muscle activation has long been debated with controversial indications due to the unavailability of motor unit population data. In this study, we clarify the potential and limitations of interference EMG analysis to infer motor unit recruitment strategies with an experimental investigation of several concurrently active motor units and of the associated features of the surface EMG. For this purpose, we recorded high-density surface EMG signals during linearly increasing force contractions of the tibialis anterior muscle, up to 70% of maximal force. The recruitment threshold (RT), conduction velocity (MUCV), median frequency (MDF MU ), and amplitude (RMS MU ) of action potentials of 587 motor units from 13 individuals were assessed and associated with features of the interference EMG. MUCV was positively associated with RT ( R 2 = 0.64 ± 0.14), whereas MDF MU and RMS MU showed a weaker relation with RT ( R 2 = 0.11 ± 0.11 and 0.39 ± 0.24, respectively). Moreover, the changes in average conduction velocity estimated from the interference EMG predicted well the changes in MUCV ( R 2 = 0.71), with a strong association to ankle dorsiflexion force ( R 2 = 0.81 ± 0.12). Conversely, both the average EMG MDF and RMS were poorly associated with motor unit recruitment. These results clarify the limitations of EMG spectral and amplitude analysis in inferring the neural strategies of muscle control and indicate that, conversely, the average conduction velocity could provide relevant information on these strategies. NEW & NOTEWORTHY The surface EMG provides information on the neural drive to muscles. However, the associations between EMG features and neural drive have been long debated due to unavailability of motor unit population data. Here, by using novel highly accurate decomposition of the EMG, we related motor unit

  20. Substantiation of Structure of Adaptive Control Systems for Motor Units

    Science.gov (United States)

    Ovsyannikov, S. I.

    2018-05-01

    The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.

  1. Motor Unit Interpulse Intervals During High Force Contractions.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2016-01-01

    We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.

  2. Task-dependent output of human parasternal intercostal motor units across spinal levels.

    Science.gov (United States)

    Hudson, Anna L; Gandevia, Simon C; Butler, Jane E

    2017-12-01

    During breathing, there is differential activity in the human parasternal intercostal muscles and the activity is tightly coupled to the known mechanical advantages for inspiration of the same regions of muscles. It is not known whether differential activity is preserved for the non-respiratory task of ipsilateral trunk rotation. In the present study, we compared single motor units during resting breathing and axial rotation of the trunk during apnoea. We not only confirmed non-uniform recruitment of motor units across parasternal intercostal muscles in breathing, but also demonstrated that the same motor units show an altered pattern of recruitment in the non-respiratory task of trunk rotation. The output of parasternal intercostal motoneurones is modulated differently across spinal levels depending on the task and these results help us understand the mechanisms that may govern task-dependent differences in motoneurone output. During inspiration, there is differential activity in the human parasternal intercostal muscles across interspaces. We investigated whether the earlier recruitment of motor units in the rostral interspaces compared to more caudal spaces during inspiration is preserved for the non-respiratory task of ipsilateral trunk rotation. Single motor unit activity (SMU) was recorded from the first, second and fourth parasternal interspaces on the right side in five participants in two tasks: resting breathing and 'isometric' axial rotation of the trunk during apnoea. Recruitment of the same SMUs was compared between tasks (n = 123). During resting breathing, differential activity was indicated by earlier recruitment of SMUs in the first and second interspaces compared to the fourth space in inspiration (P motor units showed an altered pattern of recruitment because SMUs in the first interspace were recruited later and at a higher rotation torque than those in the second and fourth interspaces (P recruitment measures, was good-excellent [intraclass

  3. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  4. Task-Dependent Intermuscular Motor Unit Synchronization between Medial and Lateral Vastii Muscles during Dynamic and Isometric Squats.

    Directory of Open Access Journals (Sweden)

    Maurice Mohr

    Full Text Available Motor unit activity is coordinated between many synergistic muscle pairs but the functional role of this coordination for the motor output is unclear. The purpose of this study was to investigate the short-term modality of coordinated motor unit activity-the synchronized discharge of individual motor units across muscles within time intervals of 5ms-for the Vastus Medialis (VM and Lateralis (VL. Furthermore, we studied the task-dependency of intermuscular motor unit synchronization between VM and VL during static and dynamic squatting tasks to provide insight into its functional role.Sixteen healthy male and female participants completed four tasks: Bipedal squats, single-leg squats, an isometric squat, and single-leg balance. Monopolar surface electromyography (EMG was used to record motor unit activity of VM and VL. For each task, intermuscular motor unit synchronization was determined using a coherence analysis between the raw EMG signals of VM and VL and compared to a reference coherence calculated from two desynchronized EMG signals. The time shift between VM and VL EMG signals was estimated according to the slope of the coherence phase angle spectrum.For all tasks, except for singe-leg balance, coherence between 15-80Hz significantly exceeded the reference. The corresponding time shift between VM and VL was estimated as 4ms. Coherence between 30-60Hz was highest for the bipedal squat, followed by the single-leg squat and the isometric squat.There is substantial short-term motor unit synchronization between VM and VL. Intermuscular motor unit synchronization is enhanced for contractions during dynamic activities, possibly to facilitate a more accurate control of the joint torque, and reduced during single-leg tasks that require balance control and thus, a more independent muscle function. It is proposed that the central nervous system scales the degree of intermuscular motor unit synchronization according to the requirements of the movement

  5. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  6. Task-specific recruitment of motor units for vibration damping.

    Science.gov (United States)

    Wakeling, James M; Liphardt, Anna-Maria

    2006-01-01

    Vibrations occur within the soft tissues of the lower extremities due to the heel-strike impact during walking. Increases in muscle activity in the lower extremities result in increased damping to reduce this vibration. The myoelectric intensity spectra were compared using principal component analysis from the tibialis anterior and lateral gastrocnemius of 40 subjects walking with different shoe conditions. The soft insert condition resulted in a significant, simultaneous increase in muscle activity with a shift to higher myoelectric frequencies in the period 0-60 ms after heel-strike which is the period when the greater vibration damping occurred. These increases in myoelectric frequency match the spectral patterns which indicate increases in recruitment of faster motor units. It is concluded that fast motor units are recruited during the task of damping the soft-tissue resonance that occurs following heel-strike.

  7. Changes in muscle fiber conduction velocity indicate recruitment of distinct motor unit populations.

    Science.gov (United States)

    Houtman, C J; Stegeman, D F; Van Dijk, J P; Zwarts, M J

    2003-09-01

    To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.

  8. Recruitment and Decruitment of Motor Units Activities of M. Biceps Brachii During Isovelocity Movements

    National Research Council Canada - National Science Library

    Okuno, Ryuhei

    2001-01-01

    ... (from 0 DEG to 120 DEG) of elbow joint angle with a surface electrode array. We identified action potensials of each moitor unit and detected recruitment and decruitment of the identified motor units...

  9. Motor unit recruitment in human biceps brachii during sustained voluntary contractions.

    Science.gov (United States)

    Riley, Zachary A; Maerz, Adam H; Litsey, Jane C; Enoka, Roger M

    2008-04-15

    The purpose of the study was to examine the influence of the difference between the recruitment threshold of a motor unit and the target force of the sustained contraction on the discharge of the motor unit at recruitment. The discharge characteristics of 53 motor units in biceps brachii were recorded after being recruited during a sustained contraction. Some motor units (n = 22) discharged action potentials tonically after being recruited, whereas others (n = 31) discharged intermittent trains of action potentials. The two groups of motor units were distinguished by the difference between the recruitment threshold of the motor unit and the target force for the sustained contraction: tonic, 5.9 +/- 2.5%; intermittent, 10.7 +/- 2.9%. Discharge rate for the tonic units decreased progressively (13.9 +/- 2.7 to 11.7 +/- 2.6 pulses s(-1); P = 0.04) during the 99 +/- 111 s contraction. Train rate, train duration and average discharge rate for the intermittent motor units did not change across 211 +/- 153 s of intermittent discharge. The initial discharge rate at recruitment during the sustained contraction was lower for the intermittent motor units (11.0 +/- 3.3 pulses s(-1)) than the tonic motor units (13.7 +/- 3.3 pulses s(-1); P = 0.005), and the coefficient of variation for interspike interval was higher for the intermittent motor units (34.6 +/- 12.3%) than the tonic motor units (21.2 +/- 9.4%) at recruitment (P = 0.001) and remained elevated for discharge duration (34.6 +/- 9.2% versus 19.1 +/- 11.7%, P motor units were recorded at two different target forces below recruitment threshold (5.7 +/- 1.9% and 10.5 +/- 2.4%). Each motor unit exhibited the two discharge patterns (tonic and intermittent) as observed for the 53 motor units. The results suggest that newly recruited motor units with recruitment thresholds closer to the target force experienced less synaptic noise at the time of recruitment that resulted in them discharging action potentials at more regular

  10. Synchronization of low- and high-threshold motor units.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  11. Relationships between motor unit size and recruitment threshold in older adults: implications for size principle.

    Science.gov (United States)

    Fling, Brett W; Knight, Christopher A; Kamen, Gary

    2009-08-01

    As a part of the aging process, motor unit reorganization occurs in which small motoneurons reinnervate predominantly fast-twitch muscle fibers that have lost their innervation. We examined the relationship between motor unit size and the threshold force for recruitment in two muscles to determine whether older individuals might develop an alternative pattern of motor unit activation. Young and older adults performed isometric contractions ranging from 0 to 50% of maximal voluntary contraction in both the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles. Muscle fiber action potentials were recorded with an intramuscular needle electrode and motor unit size was computed using spike-triggered averaging of the global EMG signal (macro EMG), which was also obtained from the intramuscular needle electrode. As expected, older individuals exhibited larger motor units than young subjects in both the FDI and the TA. However, moderately strong correlations were obtained for the macro EMG amplitude versus recruitment threshold relationship in both the young and older adults within both muscles, suggesting that the size principle of motor unit recruitment seems to be preserved in older adults.

  12. Masseter motor unit recruitment is altered in experimental jaw muscle pain.

    Science.gov (United States)

    Minami, I; Akhter, R; Albersen, I; Burger, C; Whittle, T; Lobbezoo, F; Peck, C C; Murray, G M

    2013-02-01

    Some management strategies for chronic orofacial pain are influenced by models (e.g., Vicious Cycle Theory, Pain Adaptation Model) proposing either excitation or inhibition within a painful muscle. The aim of this study was to determine if experimental painful stimulation of the masseter muscle resulted in only increases or only decreases in masseter activity. Recordings of single-motor-unit (SMU, basic functional unit of muscle) activity were made from the right masseters of 10 asymptomatic participants during biting trials at the same force level and direction under infusion into the masseter of isotonic saline (no-pain condition), and in another block of biting trials on the same day, with 5% hypertonic saline (pain condition). Of the 36 SMUs studied, 2 SMUs exhibited a significant (p units were present only during the no-pain block and 10 units during the pain block only. The findings suggest that, rather than only excitation or only inhibition within a painful muscle, a re-organization of activity occurs, with increases and decreases occurring within the painful muscle. This suggests the need to re-assess management strategies based on models that propose uniform effects of pain on motor activity.

  13. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions.

    Science.gov (United States)

    Oya, Tomomichi; Riek, Stephan; Cresswell, Andrew G

    2009-10-01

    Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset-offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset-offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.

  14. Motor unit activity when young and old adults perform steady contractions while supporting an inertial load

    Science.gov (United States)

    Gould, Jeffrey R.; Enoka, Roger M.

    2013-01-01

    The purpose of the study was to compare the discharge characteristics of biceps brachii motor units of young and old adults when they performed steady, submaximal contractions while the arm supported different inertial loads. Young (28 ± 4 yr; n = 16) and old (75 ± 4 yr; n = 14) adults performed steady contractions with the elbow flexors at target forces set at either small (11.7 ± 4.4% maximum) or large (17.8 ± 6.5% maximum) differences below the recruitment threshold force of the motor unit (n = 40). The task was to maintain an elbow angle at 1.57 rad until the motor unit was recruited and discharged action potentials for ∼120 s. Time to recruitment was longer for the larger target force difference (187 ± 227 s vs. 23 ± 46 s, P recruited, motor units discharged action potentials either repetitively or intermittently, with a greater proportion of motor units exhibiting the repetitive pattern for old adults. Discharge rate at recruitment and during the steady contraction was similar for the two target force differences for old adults but was greater for the small target force difference for young adults. Discharge variability was similar at recruitment for the two age groups but less for the old adults during the steady contraction. The greatest difference between the present results and those reported previously when the arm pulled against a rigid restraint was that old adults modulated discharge rate less than young adults across the two contraction intensities for both load types. PMID:23221403

  15. Electrical stimulation of transplanted motoneurons improves motor unit formation

    Science.gov (United States)

    Liu, Yang; Grumbles, Robert M.

    2014-01-01

    Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10–15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements. PMID:24848463

  16. Motor unit recruitment strategies are altered during deep-tissue pain.

    Science.gov (United States)

    Tucker, Kylie; Butler, Jane; Graven-Nielsen, Thomas; Riek, Stephan; Hodges, Paul

    2009-09-02

    Muscle pain is associated with decreased motor unit discharge rate during constant force contractions. As discharge rate is a determinant of force, other adaptations in strategy must explain force maintenance during pain. Our aim was to determine whether motor unit recruitment strategies are altered during pain to maintain force despite reduced discharge rate. Motor unit discharge behavior was recorded in two muscles, one with (quadriceps) and one without [flexor pollicis longus (FPL)] synergists. Motor units were recruited during matched low-force contractions with and without experimentally induced pain, and at higher force without pain. A total of 52 and 34 units were recorded in quadriceps and FPL, respectively, during low-force contractions with and without pain. Of these, 20 quadriceps and 9 FPL units were identified during both trials. The discharge rate of these units reduced during pain in both muscles [quadriceps: 8.7 (1.5) to 7.5 (1.3) Hz, p units discharged only with or without pain, but not in both conditions. Only one-third of the additional units recruited during pain (quadriceps n = 7/19, FPL n = 3/15) were those expected given orderly recruitment of the motor unit pool as determined during higher-force contractions. We conclude that reduced motor unit discharge rate with pain is accompanied by changes in the population of units used to maintain force. The recruitment of new units is partly inconsistent with generalized inhibition of the motoneuron pool predicted by the "pain adaptation" theory, and provides the basis for a new mechanism of motor adaptation with pain.

  17. Spontaneous motor unit behavior in human thenar muscles after spinal cord injury

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, CK

    Our first aim was to characterize spontaneous motor unit activity in thenar muscles influenced by chronic cervical spinal cord injury. Thenar surface electromyography (EMG), intramuscular EMG, and abduction and flexion forces were recorded. Subjects were instructed to relax for 2 min. Units still

  18. Similar alteration of motor unit recruitment strategies during the anticipation and experience of pain.

    Science.gov (United States)

    Tucker, Kylie; Larsson, Anna-Karin; Oknelid, Stina; Hodges, Paul

    2012-03-01

    A motor unit consists of a motoneurone and the multiple muscle fibres that it innervates, and forms the final neural pathway that influences movement. Discharge of motor units is altered (decreased discharge rate and/or cessation of firing; and increased discharge rate and/or recruitment of new units) during matched-force contractions with pain. This is thought to be mediated by nociceptive (pain) input on motoneurones, as demonstrated in animal studies. It is also possible that motoneurone excitability is altered by pain related descending inputs, that these changes persist after noxious stimuli cease, and that direct nociceptive input is not necessary to induce pain related changes in movement. We aimed to determine whether anticipation of pain (descending pain related inputs without nociceptor discharge) alters motor unit discharge, and to observe motor unit discharge recovery after pain has ceased. Motor unit discharge was recorded with fine-wire electrodes in the quadriceps of 9 volunteers. Subjects matched isometric knee-extension force during anticipation of pain (anticipation: electrical shocks randomly applied over the infrapatellar fat-pad); pain (hypertonic saline injected into the fat-pad); and 3 intervening control conditions. Discharge rate of motor units decreased during pain (Precruitment of 1 population of units and new recruitment of another population were observed during both anticipation and pain; some changes in motor unit recruitment persisted after pain ceased. This challenges the fundamental theory that pain-related changes in muscle activity result from direct nociceptor discharge, and provides a mechanism that may underlie long-term changes in movement/chronicity in some musculoskeletal conditions. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    Science.gov (United States)

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  20. The effects of local forearm muscle cooling on motor unit properties.

    Science.gov (United States)

    Mallette, Matthew M; Green, Lara A; Gabriel, David A; Cheung, Stephen S

    2018-02-01

    Muscle cooling impairs maximal force. Using needle electromyography (EMG) to assess motor unit properties during muscle cooling, is limited and equivocal. Therefore, we aimed to determine the impact of local muscle cooling on motor unit firing properties using surface EMG decomposition. Twenty participants (12 M, 8 F) completed maximal, evoked, and trapezoidal contractions during thermoneutral and cold muscle conditions. Forearm muscle temperature was manipulated using 10-min neutral (~ 32 °C) or 20-min cold (~ 3 °C) water baths. Twitches and maximal voluntary contractions were performed prior to, and after, forearm immersion in neutral or cold water. Motor unit properties were assessed during trapezoidal contractions to 50% baseline force using surface EMG decomposition. Impaired contractile properties from muscle cooling were evident in the twitch amplitude, duration, and rate of force development indicating that the muscle was successfully cooled from the cold water bath (all d ≥ 0.5, P motor units (d = 0.7, P = 0.01) and motor unit action potential (MUAP) duration (d = 0.6, P motor unit firing rates (d = 0.1, P = 0.843) nor recruitment threshold (d = 0.1, P = 0.746) changed; however, the relationship between the recruitment threshold and motor unit firing rate was steeper (d = 1.0, P motor units, and small but coupled changes in motor unit firing rates and recruitment threshold to produce the same force.

  1. Large motor units are selectively affected following a stroke.

    Science.gov (United States)

    Lukács, M; Vécsei, L; Beniczky, S

    2008-11-01

    Previous studies have revealed a loss of functioning motor units in stroke patients. However, it remained unclear whether the motor units are affected randomly or in some specific pattern. We assessed whether there is a selective loss of the large (high recruitment threshold) or the small (low recruitment threshold) motor units following a stroke. Forty-five stroke patients and 40 healthy controls participated in the study. Macro-EMG was recorded from the abductor digiti minimi muscle at two levels of force output (low and high). The median macro motor unit potential (macro-MUP) amplitude on the paretic side was compared with those on the unaffected side and in the controls. In the control group and on the unaffected side, the macro-MUPs were significantly larger at the high force output than at the low one. However, on the paretic side the macro-MUPs at the high force output had the same amplitude as those recorded at the low force output. These changes correlated with the severity of the paresis. Following a stroke, there is a selective functional loss of the large, high-threshold motor units. These changes are related to the severity of the symptoms. Our findings furnish further insight into the pathophysiology of the motor deficit following a stroke.

  2. DEVELOPING STUDENT SOCIALIZATION THROUGH MOTOR ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Ioan Sabin SOPA

    2016-10-01

    Full Text Available : Starting from the assumption that motor activities are the perfect environment for socialization, communication and social integration of young people, this study aims to analyze the effectiveness of these activities in improving intergroup relations at the university level. In this research, the samples were composed of two groups, the experimental group (n = 25 with students from the Physical Education specialization and control group B (n = 25, composed of students from the Faculty of Sciences. The sociological survey applied on the two samples aimed to analyze the level of socialization, communication and social integration of students. The findings showed that the experimental group is more united, having a higher level of socialization and communication, compared to the control group B, proving once again the socializing effects of motor activities.

  3. Load type influences motor unit recruitment in biceps brachii during a sustained contraction.

    Science.gov (United States)

    Baudry, Stéphane; Rudroff, Thorsten; Pierpoint, Lauren A; Enoka, Roger M

    2009-09-01

    Twenty subjects participated in four experiments designed to compare time to task failure and motor-unit recruitment threshold during contractions sustained at 15% of maximum as the elbow flexor muscles either supported an inertial load (position task) or exerted an equivalent constant torque against a rigid restraint (force task). Subcutaneous branched bipolar electrodes were used to record single motor unit activity from the biceps brachii muscle during ramp contractions performed before and at 50 and 90% of the time to failure for the position task during both fatiguing contractions. The time to task failure was briefer for the position task than for the force task (P=0.0002). Thirty and 29 motor units were isolated during the force and position tasks, respectively. The recruitment threshold declined by 48 and 30% (P=0.0001) during the position task for motor units with an initial recruitment threshold below and above the target force, respectively, whereas no significant change in recruitment threshold was observed during the force task. Changes in recruitment threshold were associated with a decrease in the mean discharge rate (-16%), an increase in discharge rate variability (+40%), and a prolongation of the first two interspike intervals (+29 and +13%). These data indicate that there were faster changes in motor unit recruitment and rate coding during the position task than the force task despite a similar net muscle torque during both tasks. Moreover, the results suggest that the differential synaptic input observed during the position task influences most of the motor unit pool.

  4. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  5. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Science.gov (United States)

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  6. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions.

    Science.gov (United States)

    Adam, Alexander; De Luca, Carlo J

    2003-11-01

    Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

  7. Antigravity posture for analysis of motor unit recruitment: the "45 degree test".

    Science.gov (United States)

    Petajan, J H

    1990-04-01

    The maximum number of different motor unit action potentials (MUAPs), their firing rates, and total MUAP spikes/second recorded by monopolar needle electrode were determined for the biceps brachii muscle during 45-degree elbow flexion. There were 4.2 +/- 1.6 different MUAPs exceeding 100 microV. Mean firing rate was 10.0 +/- 1.7 Hz, and total MUAP spikes/second were 40.3 +/- 18. Recordings from 16 patients with neurogenic atrophy (NA) and just detectable weakness revealed corresponding values of 3.1 +/- 1.7 different MUAPs, a mean rate of 10.2 +/- 1.5 Hz and 30.6 +/- 19 total MUAP spikes/second, not different from normal. In these patients, increased force of muscle contraction was required to activate high threshold motor units firing at high rates. In each of 4 patients just able to hold the arm against gravity, 1 or 2 "overdriven" motor units firing at a mean rate greater than 20 Hz were recorded. In 8 patients with myopathy and just detectable weakness, greater than 100 total MUAP spikes/second were recorded. Antigravity posture as a reference level of innervation has the advantage that motor unit firing rate is set about that of physiologic tremor (10-13 Hz). Its application was helpful in quantifying recruitment.

  8. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  9. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  10. 2-Deoxyglucose autoradiography of single motor units: labelling of individual acutely active muscle fibers

    International Nuclear Information System (INIS)

    Toop, J.; Burke, R.E.; Dum, R.P.; O'Donovan, M.J.; Smith, C.B.

    1982-01-01

    2-Deoxy-D-[1- 14 C]glucose (2DG) was given intravenously during repetitive stimulation of single motor units in adult cats and autoradiographs were made of frozen sections of the target muscles in order to evaluate methods designed to improve the spatial resolution of [ 14 C]2DG autoradiography. With the modifications used, acutely active muscle fibers, independently identified by depletion of intrafiber glycogen, were associated with highly localized accumulations of silver grains over the depleted fibers. The results indicate that [ 14 C]2DG autoradiography can successfully identify individual active muscle fibers and might in principle be used to obtain quantitative data about rates of glucose metabolism in single muscle fibers of defined histochemical type. The modifications may be applicable also to other tissues to give improved spatial resolution with [ 14 C]-labeled metabolic markers. (Auth.)

  11. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  12. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  13. Hip position and sex differences in motor unit firing patterns of the vastus medialis and vastus medialis oblique in healthy individuals.

    Science.gov (United States)

    Peng, Yi-Ling; Tenan, Matthew S; Griffin, Lisa

    2018-06-01

    Weakness of the vastus medialis oblique (VMO) has been proposed to explain the high prevalence of knee pain in female subjects. Clinicians commonly use exercises in an attempt to preferentially activate the VMO. Recently, our group found evidence to support clinical theory that the VMO is neurologically distinct from the vastus medialis (VM). However, the ability to voluntarily activate these muscle subsections is still disputed. The aim of this study was to determine if VM and VMO activation varies between sexes and if control of the two muscles is different between rehabilitation exercises. Thirteen men and 13 women performed isometric straight leg raises in two hip positions, neutral hip rotation and 30 degrees lateral hip rotation. Bipolar intramuscular fine-wire electrodes were inserted into the VM and VMO to obtain motor unit recruitment thresholds and initial firing rates at recruitment. Linear mixed models and Tukey post hoc tests were used to assess significant differences in 654 motor units. Women demonstrated faster motor unit firing rate at recruitment, 1.18 ± 0.56 Hz higher than men. Motor units fired 0.47 ± 0.19 Hz faster during neutral hip rotation compared with lateral hip rotation. The VMO motor units were recruited 2.92 ± 1.28% earlier than the VM. All motor units were recruited 3.74 ± 1.27% earlier during neutral hip rotation than lateral hip rotation. Thus the VM and the VMO can be activated differentially, and their motor unit recruitment properties are affected by sex and hip position. NEW & NOTEWORTHY This is the first study to reveal differential activation of the vastus medialis oblique from the vastus medialis in clinical exercise protocols. Our research group used fine-wire electrodes to examine EMG signals of the vastus medialis oblique and vastus medialis to avoid possible cross talk. We also consider the effect of sex on motor unit firing patterns because of higher prevalence of knee pain in women, and yet few

  14. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    Science.gov (United States)

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  15. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  16. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  17. 49 CFR 565.14 - Motor vehicles imported into the United States.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS VIN Requirements § 565.14 Motor vehicles imported into the United States. (a) Importers shall utilize the VIN assigned by the original manufacturer of the motor vehicle. (b) All passenger cars...

  18. Effects of aging and Parkinson's disease on motor unit remodeling: influence of resistance exercise training.

    Science.gov (United States)

    Kelly, Neil A; Hammond, Kelley G; Bickel, C Scott; Windham, Samuel T; Tuggle, S Craig; Bamman, Marcas M

    2018-04-01

    Aging muscle atrophy is in part a neurodegenerative process revealed by denervation/reinnervation events leading to motor unit remodeling (i.e., myofiber type grouping). However, this process and its physiological relevance are poorly understood, as is the wide-ranging heterogeneity among aging humans. Here, we attempted to address 1) the relation between myofiber type grouping and molecular regulators of neuromuscular junction (NMJ) stability; 2) the impact of motor unit remodeling on recruitment during submaximal contractions; 3) the prevalence and impact of motor unit remodeling in Parkinson's disease (PD), an age-related neurodegenerative disease; and 4) the influence of resistance exercise training (RT) on regulators of motor unit remodeling. We compared type I myofiber grouping, molecular regulators of NMJ stability, and the relative motor unit activation (MUA) requirement during a submaximal sit-to-stand task among untrained but otherwise healthy young (YA; 26 yr, n = 27) and older (OA; 66 yr, n = 91) adults and OA with PD (PD; 67 yr, n = 19). We tested the effects of RT on these outcomes in OA and PD. PD displayed more motor unit remodeling, alterations in NMJ stability regulation, and a higher relative MUA requirement than OA, suggesting PD-specific effects. The molecular and physiological outcomes tracked with the severity of type I myofiber grouping. Together these findings suggest that age-related motor unit remodeling, manifested by type I myofiber grouping, 1) reduces MUA efficiency to meet submaximal contraction demand, 2) is associated with disruptions in NMJ stability, 3) is further impacted by PD, and 4) may be improved by RT in severe cases. NEW & NOTEWORTHY Because the physiological consequences of varying amounts of myofiber type grouping are unknown, the current study aims to characterize the molecular and physiological correlates of motor unit remodeling. Furthermore, because exercise training has demonstrated neuromuscular benefits in aged

  19. Independence Between Two Channels of Surface Electromyogram Signal to Measure the Loss of Motor Units

    Directory of Open Access Journals (Sweden)

    Arjunan Sridhar P.

    2015-06-01

    Full Text Available This study has investigated the relationship in the connectivity of motor units in surface electromyogram (sEMG of biceps brachii muscle. It is hypothesized that with ageing, there is reduction/loss in number of motor units, leading to reduction in the independence between the channels of the recorded muscle activity. Two channels of sEMG were recorded during three levels of isometric muscle contraction: 50 %, 75 % and 100 % maximal voluntary contraction (MVC. 73 subjects (age range 20-70 participated in the experiments. The independence in channel index (ICI between the two sEMG recording locations was computed using the independent components and Frobenius norm. ANOVA Statistical analysis was performed to test the effect of age (loss of motor units and level of contraction on ICI. The results show that the ICI among the older cohort was significantly lower compared with the younger adults. This research study has shown that the reduction in number of motor units is reflected by the reduction in the ICI of the sEMG signal.

  20. Discharge properties of upper airway motor units during wakefulness and sleep.

    Science.gov (United States)

    Trinder, John; Jordan, Amy S; Nicholas, Christian L

    2014-01-01

    Upper airway muscle motoneurons, as assessed at the level of the motor unit, have a range of different discharge patterns, varying as to whether their activity is modulated in phase with the respiratory cycle, are predominantly inspiratory or expiratory, or are phasic as opposed to tonic. Two fundamental questions raised by this observation are: how are synaptic inputs from premotor neurons distributed over motoneurons to achieve these different discharge patterns; and how do different discharge patterns contribute to muscle function? We and others have studied the behavior of genioglossus (GG) and tensor palatini (TP) single motor units at transitions from wakefulness to sleep (sleep onset), from sleep to wakefulness (arousal from sleep), and during hypercapnia. Results indicate that decreases or increases in GG and TP muscle activity occur as a consequence of derecruitment or recruitment, respectively, of phasic and tonic inspiratory-modulated motoneurons, with only minor changes in rate coding. Further, sleep-wake state and chemical inputs to this "inspiratory system" appear to be mediated through the respiratory pattern generator. In contrast, phasic and tonic expiratory units and units with a purely tonic pattern, the "tonic system," are largely unaffected by sleep-wake state, and are only weakly influenced by chemical stimuli and the respiratory cycle. We speculate that the "inspiratory system" produces gross changes in upper airway muscle activity in response to changes in respiratory drive, while the "tonic system" fine tunes airway configuration with activity in this system being determined by local mechanical conditions. © 2014 Elsevier B.V. All rights reserved.

  1. Recruitment of motor units in two fascicles of the semispinalis cervicis muscle.

    Science.gov (United States)

    Schomacher, Jochen; Dideriksen, Jakob Lund; Farina, Dario; Falla, Deborah

    2012-06-01

    This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 (n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 (n = 92, 6.9 ± 4.3% MVC) (P motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) (P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.

  2. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus).

    Science.gov (United States)

    Hodson-Tole, E F; Wakeling, J M

    2007-07-01

    Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (Pmotor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).

  3. Orderly recruitment of motor units under optical control in vivo.

    Science.gov (United States)

    Llewellyn, Michael E; Thompson, Kimberly R; Deisseroth, Karl; Delp, Scott L

    2010-10-01

    A drawback of electrical stimulation for muscle control is that large, fatigable motor units are preferentially recruited before smaller motor units by the lowest-intensity electrical cuff stimulation. This phenomenon limits therapeutic applications because it is precisely the opposite of the normal physiological (orderly) recruitment pattern; therefore, a mechanism to achieve orderly recruitment has been a long-sought goal in physiology, medicine and engineering. Here we demonstrate a technology for reliable orderly recruitment in vivo. We find that under optical control with microbial opsins, recruitment of motor units proceeds in the physiological recruitment sequence, as indicated by multiple independent measures of motor unit recruitment including conduction latency, contraction and relaxation times, stimulation threshold and fatigue. As a result, we observed enhanced performance and reduced fatigue in vivo. These findings point to an unanticipated new modality of neural control with broad implications for nervous system and neuromuscular physiology, disease research and therapeutic innovation.

  4. Motor units in vastus lateralis and in different vastus medialis regions show different firing properties during low-level, isometric knee extension contraction.

    Science.gov (United States)

    de Souza, Leonardo Mendes Leal; Cabral, Hélio Veiga; de Oliveira, Liliam Fernandes; Vieira, Taian Martins

    2018-04-01

    Architectural differences along vastus medialis (VM) and between VM and vastus lateralis (VL) are considered functionally important for the patellar tracking, knee joint stability and knee joint extension. Whether these functional differences are associated with a differential activity of motor units between VM and VL is however unknown. In the present study, we, therefore, investigate neuroanatomical differences in the activity of motor units detected proximo-distally from VM and from the VL muscle. Nine healthy volunteers performed low-level isometric knee extension contractions (20% of their maximum voluntary contraction) following a trapezoidal trajectory. Surface electromyograms (EMGs) were recorded from VM proximal and distal regions and from VL using three linear adhesive arrays of eight electrodes. The firing rate and recruitment threshold of motor units decomposed from EMGs were then compared among muscle regions. Results show that VL motor units reached lower mean firing rates in comparison with VM motor units, regardless of their position within VM (P motor units (P = .997). Furthermore, no significant differences in the recruitment threshold were observed for all motor units analysed (P = .108). Our findings possibly suggest the greater potential of VL to generate force, due to its fibres arrangement, may account for the lower discharge rate observed for VL then either proximally or distally detected motor units in VM. Additionally, the present study opens new perspectives on the importance of considering muscle architecture in investigations of the neural aspects of motor behaviour. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Motor unit recruitment and firing rate in medial gastrocnemius muscles during external perturbations in standing in humans.

    Science.gov (United States)

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2014-10-01

    There is limited investigation of the interaction between motor unit recruitment and rate coding for modulating force during standing or responding to external perturbations. Fifty-seven motor units were recorded from the medial gastrocnemius muscle with intramuscular electrodes in response to external perturbations in standing. Anteriorly directed perturbations were generated by applying loads in 0.45-kg increments at the pelvis every 25-40 s until 2.25 kg was maintained. Motor unit firing rate was calculated for the initial recruitment load and all subsequent loads during two epochs: 1) dynamic response to perturbation directly following each load drop and 2) maintenance of steady state between perturbations. Joint kinematics and surface electromyography (EMG) from lower extremities and force platform measurements were assessed. Application of the external loads resulted in a significant forward progression of the anterior-posterior center of pressure (AP COP) that was accompanied by modest changes in joint angles (recruitment, motor unit firing rate immediately after the load drop was significantly lower than during subsequent load drops or during the steady state at the same load. There was a modest increase in motor unit firing rate immediately after the load drop on subsequent load drops associated with regaining balance. There was no effect of maintaining balance with increased load and forward progression of the AP COP on steady-state motor unit firing rate. The medial gastrocnemius utilized primarily motor unit recruitment to achieve the increased levels of activation necessary to maintain standing in the presence of external loads. Copyright © 2014 the American Physiological Society.

  6. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve.

    Science.gov (United States)

    Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  7. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  8. Age-related motor unit remodeling in the Tibialis Anterior.

    Science.gov (United States)

    Siddiqi, Ariba; Kumar, Dinesh; Arjunan, Sridhar

    2015-01-01

    Limited studies exist on the use of surface electromyogram (EMG) signal features to detect age-related motor unit remodeling in the Tibialis Anterior. Motor unit remodeling leads to declined muscle strength and force steadiness during submaximal contractions which are factors for risk of falls in the elderly. This study investigated the remodeling phenomena in the Tibialis Anterior using sample entropy and higher order statistics. Eighteen young (26.1 ± 2.9 years) and twelve elderly (68.7 ± 9.0 years) participants performed isometric dorsiflexion of the ankle at 20% maximal voluntary contraction (MVC) and their Tibialis Anterior (TA) EMG was recorded. Sample entropy, Gaussianity and Linearity Test statistics were calculated from the recorded EMG for each MVC. Shapiro-Wilk test was used to determine normality, and either a two-tail student t-test or Wilcoxon rank sum test was performed to determine significant difference in the EMG features between the young and old cohorts. Results show age-related motor unit remodeling to be depicted by decreased sample entropy (p <; 0.1), increased non-Gaussianity (p <; 0.05) and lesser degree of linearity in the elderly. This is due to the increased sparsity of the MUAPs as a result of the denervation-reinnervation process, and the decrease in total number of motor units.

  9. Age-related decreases in motor unit discharge rate and force control during isometric plantar flexion

    DEFF Research Database (Denmark)

    Kallio, J; Søgaard, Karen; Avela, J

    2012-01-01

    Aging is related to multiple changes in muscle physiology and function. Previous findings concerning the effects of aging on motor unit discharge rate (DR) and fluctuations in DR and force are somewhat contradictory. Eight YOUNG and nine OLD physically active males performed isometric ramp (RECR......) and isotonic (ISO) plantar flexions at 10 and 20% of surface EMG at MVC. Motor unit (MU) action potentials were recorded with intramuscular fine-wire electrodes and decomposed with custom build software "Daisy". DR was lower in OLD in RECR-10% (17.9%, p...

  10. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors

    Science.gov (United States)

    Heckman, C. J.; Powers, R. K.; Rymer, W. Z.; Suresh, N. L.

    2014-01-01

    Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing. PMID:24572092

  11. Architecture of vagal motor units controlling striated muscle of esophagus: peripheral elements patterning peristalsis?

    Science.gov (United States)

    Powley, Terry L; Mittal, Ravinder K; Baronowsky, Elizabeth A; Hudson, Cherie N; Martin, Felecia N; McAdams, Jennifer L; Mason, Jacqueline K; Phillips, Robert J

    2013-12-01

    Little is known about the architecture of the vagal motor units that control esophageal striated muscle, in spite of the fact that these units are necessary, and responsible, for peristalsis. The present experiment was designed to characterize the motor neuron projection fields and terminal arbors forming esophageal motor units. Nucleus ambiguus compact formation neurons of the rat were labeled by bilateral intracranial injections of the anterograde tracer dextran biotin. After tracer transport, thoracic and abdominal esophagi were removed and prepared as whole mounts of muscle wall without mucosa or submucosa. Labeled terminal arbors of individual vagal motor neurons (n=78) in the esophageal wall were inventoried, digitized and analyzed morphometrically. The size of individual vagal motor units innervating striated muscle, throughout thoracic and abdominal esophagus, averaged 52 endplates per motor neuron, a value indicative of fine motor control. A majority (77%) of the motor terminal arbors also issued one or more collateral branches that contacted neurons, including nitric oxide synthase-positive neurons, of local myenteric ganglia. Individual motor neuron terminal arbors co-innervated, or supplied endplates in tandem to, both longitudinal and circular muscle fibers in roughly similar proportions (i.e., two endplates to longitudinal for every three endplates to circular fibers). Both the observation that vagal motor unit collaterals project to myenteric ganglia and the fact that individual motor units co-innervate longitudinal and circular muscle layers are consistent with the hypothesis that elements contributing to peristaltic programming inhere, or are "hardwired," in the peripheral architecture of esophageal motor units. © 2013.

  12. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  13. Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment?

    Science.gov (United States)

    Vieira, Taian M M; Loram, Ian D; Muceli, Silvia; Merletti, Roberto; Farina, Dario

    2012-01-01

    The recruitment and the rate of discharge of motor units are determinants of muscle force. Within a motoneuron pool, recruitment and rate coding of individual motor units might be controlled independently, depending on the circumstances. In this study, we tested whether, during human quiet standing, the force of the medial gastrocnemius (MG) muscle is predominantly controlled by recruitment or rate coding. If MG control during standing was mainly due to recruitment, then we further asked what the trigger mechanism is. Is it determined internally, or is it related to body kinematics? While seven healthy subjects stood quietly, intramuscular electromyograms were recorded from the MG muscle with three pairs of wire electrodes. The number of active motor units and their mean discharge rate were compared for different sway velocities and positions. Motor unit discharges occurred more frequently when the body swayed faster and forward (Pearson R = 0.63; P motor unit potentials was explained chiefly by the recruitment of additional units. During forward body shifts, the median number of units detected increased from 3 to 11 (P motor units did not discharge continuously throughout standing. They were recruited within individual, forward sways and intermittently, with a modal rate of two recruitments per second. This modal rate is consistent with previous circumstantial evidence relating the control of standing to an intrinsic, higher level planning process.

  14. Common input to motor units of intrinsic and extrinsic hand muscles during two-digit object hold.

    Science.gov (United States)

    Winges, Sara A; Kornatz, Kurt W; Santello, Marco

    2008-03-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsic-extrinsic muscle pairs. To address this void in the literature, we quantified the incidence and strength of near-simultaneous discharges of motor units residing in either the same or different intrinsic hand muscles (m. first dorsal, FDI, and m. first palmar interosseus, FPI) during two-digit object hold. To extend the characterization of common input to pairs of extrinsic muscles (previous work) and pairs of intrinsic muscles (present work), we also recorded electromyographic (EMG) activity from an extrinsic thumb muscle (m. flexor pollicis longus, FPL). Motor-unit synchrony across FDI and FPI was weak (common input strength, CIS, mean +/- SE: 0.17 +/- 0.02). Similarly, motor units from extrinsic-intrinsic muscle pairs were characterized by weak synchrony (FPL-FDI: 0.25 +/- 0.02; FPL-FPI: 0.29 +/- 0.03) although stronger than FDI-FPI. Last, CIS from within FDI and FPI was more than three times stronger (0.70 +/- 0.06 and 0.66 +/- 0.06, respectively) than across these muscles. We discuss present and previous findings within the framework of muscle-pair specific distribution of common input to hand muscles based on their functional role in grasping.

  15. Assessment of the integrity and functional requirement of moderator pump-motor units

    International Nuclear Information System (INIS)

    Soni, R.S.; Chawla, D.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The design of various active components in a nuclear power plant calls for a satisfactory analysis of these components for various loadings from the point of view of safety because a designated number of these components must always remain functional. Presented herein is the structural and seismic qualification of one the active components namely the moderator system pump-motor units for a typical PHWR. (author). 5 refs., 8 figs

  16. Vastus Lateralis Motor Unit Firing Rate Is Higher in Women With Patellofemoral Pain.

    Science.gov (United States)

    Gallina, Alessio; Hunt, Michael A; Hodges, Paul W; Garland, S Jayne

    2018-05-01

    To compare neural drive, determined from motor unit firing rate, in the vastus medialis and lateralis in women with and without patellofemoral pain. Cross-sectional study. University research laboratory. Women (N=56) 19 to 35 years of age, including 36 with patellofemoral pain and 20 controls. Not applicable. Participants sustained an isometric knee extension contraction at 10% of their maximal voluntary effort for 70 seconds. Motor units (N=414) were identified using high-density surface electromyography. Average firing rate was calculated between 5 and 35 seconds after recruitment for each motor unit. Initial firing rate was the inverse of the first 3 motor unit interspike intervals. In control participants, vastus medialis motor units discharged at higher rates than vastus lateralis motor units (P=.001). This was not observed in women with patellofemoral pain (P=.78) because of a higher discharge rate of vastus lateralis compared with control participants (P=.002). No between-group differences were observed for vastus medialis (P=.93). Similar results were obtained for the initial motor unit firing rate. These findings suggest that women with patellofemoral pain have a higher neural drive to vastus lateralis but not vastus medialis, which may be a contributor of the altered patellar kinematics observed in some studies. The different neural drive may be an adaptation to patellofemoral pain, possibly to compensate for decreased quadriceps force production, or a precursor of patellofemoral pain. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Electric Motors. An Instructional Unit for High School Teachers of Vocational Agriculture.

    Science.gov (United States)

    Dalton, Delmer; Carpenter, Bruce

    Designed as a 3-week course of study in the agricultural mechanics curriculum to be taught at the junior or senior high school level, this unit on electric motors is divided into 11 major performance objectives. Each objective is subdivided into the areas of content, suggested teaching and learning activities, resources, and evaluation. Topics for…

  18. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve

    Directory of Open Access Journals (Sweden)

    Jesse eDean

    2014-12-01

    Full Text Available Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s, below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC voluntary contractions. Higher frequencies recruited more units (n=3/25 at 10 Hz; n=25/25 at 100 Hz at shorter latencies (19.4±9.4 s at 10 Hz; 4.1±4.0 s at 100 Hz than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz was lower than during 30 Hz (8.6 Hz and 40 Hz (8.4 Hz stimulation. Discharge was largely asynchronous from the stimulus pulses with time-locked discharge occurring at an H-reflex latency with only a 24% probability. Motor units discharged after the stimulation ended in 89% of trials, although at a lower rate (5.8 Hz than during the stimulation (7.9 Hz. This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in physiological recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  19. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  20. Vastus lateralis surface and single motor unit EMG following submaximal shortening and lengthening contractions

    NARCIS (Netherlands)

    Altenburg, T.M.; de Ruiter, C.J.; Verdijk, P.W.L.; van Mechelen, W.; de Haan, A.

    2008-01-01

    A single shortening contraction reduces the force capacity of muscle fibers, whereas force capacity is enhanced following lengthening. However, how motor unit recruitment and discharge rate (muscle activation) are adapted to such changes in force capacity during submaximal contractions remains

  1. Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Bakels, Robert; Thomas, Christine K.

    2014-01-01

    Involuntary contractions of paralyzed muscles (spasms) commonly disrupt daily activities and rehabilitation after human spinal cord injury (SCI). Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical

  2. Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults.

    Science.gov (United States)

    Jesunathadas, Mark; Marmon, Adam R; Gibb, James M; Enoka, Roger M

    2010-06-01

    The significant decline in motor neuron number after approximately 60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n=54) and old adults (n=56; P=0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P=0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (Por=0.729). These results suggest that the difference in force between the recruitment of successive motor units does not differ between age groups, but that motor unit recruitment may be more transient and could contribute to the greater variability in force observed in old adults during graded ramp contractions.

  3. Shifts in the relationship between motor unit recruitment thresholds versus derecruitment thresholds during fatigue.

    Science.gov (United States)

    Stock, Matt S; Mota, Jacob A

    2017-12-01

    Muscle fatigue is associated with diminished twitch force amplitude. We examined changes in the motor unit recruitment versus derecruitment threshold relationship during fatigue. Nine men (mean age = 26 years) performed repeated isometric contractions at 50% maximal voluntary contraction (MVC) knee extensor force until exhaustion. Surface electromyographic signals were detected from the vastus lateralis, and were decomposed into their constituent motor unit action potential trains. Motor unit recruitment and derecruitment thresholds and firing rates at recruitment and derecruitment were evaluated at the beginning, middle, and end of the protocol. On average, 15 motor units were studied per contraction. For the initial contraction, three subjects showed greater recruitment thresholds than derecruitment thresholds for all motor units. Five subjects showed greater recruitment thresholds than derecruitment thresholds for only low-threshold motor units at the beginning, with a mean cross-over of 31.6% MVC. As the muscle fatigued, many motor units were derecruited at progressively higher forces. In turn, decreased slopes and increased y-intercepts were observed. These shifts were complemented by increased firing rates at derecruitment relative to recruitment. As the vastus lateralis fatigued, the central nervous system's compensatory adjustments resulted in a shift of the regression line of the recruitment versus derecruitment threshold relationship. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. REDUNDANT ELECTRIC MOTOR DRIVE CONTROL UNIT DESIGN USING AUTOMATA-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    Yuri Yu. Yankin

    2014-11-01

    Full Text Available Implementation of redundant unit for motor drive control based on programmable logic devices is discussed. Continuous redundancy method is used. As compared to segregated standby redundancy and whole system standby redundancy, such method provides preservation of all unit functions in case of redundancy and gives the possibility for continuous monitoring of major and redundant elements. Example of that unit is given. Electric motor drive control channel block diagram contains two control units – the major and redundant; it also contains four power supply units. Control units programming was carried out using automata-based approach. Electric motor drive control channel model was developed; it provides complex simulation of control state-machine and power converter. Through visibility and hierarchy of finite state machines debug time was shortened as compared to traditional programming. Control state-machine description using hardware description language is required for its synthesis with FPGA-devices vendor design software. This description was generated automatically by MATLAB software package. To verify results two prototype control units, two prototype power supply units, and device mock-up were developed and manufactured. Units were installed in the device mock-up. Prototype units were created in accordance with requirements claimed to deliverable hardware. Control channel simulation and tests results in the perfect state and during imitation of major element fault are presented. Automata-based approach made it possible to observe and debug control state-machine transitions during simulation of transient processes, occurring at imitation of faults. Results of this work can be used in development of fault tolerant electric motor drive control channels.

  5. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  6. Condition monitoring of primary coolant pump-motor units of Indian PHWR

    International Nuclear Information System (INIS)

    Rshikesan, P.B.; Sharma, S.S.; Mhetre, S.G.

    1994-01-01

    As the primary coolant pump motor units are located in shut down accessible area, their start up, satisfactory operation and shut down are monitored from control room. As unavailability of one pump in standardised 220 MWe station reduces the station power to about 110 MWe, satisfactory operation of the pump is also important from economic considerations. All the critical parameters of pump shaft, mechanical seal, bearing system, motor winding and shaft displacement (vibrations) are monitored/recorded to ensure satisfactory operation of critical, capital intensive pump-motor units. (author). 2 tabs., 1 fig

  7. Motor unit firing behaviour of soleus muscle in isometric and dynamic contractions

    DEFF Research Database (Denmark)

    Kallio, Jouni; Søgaard, Karen; Avela, Janne

    2013-01-01

    Understanding the detailed control of human locomotion and balance can be improved, when individual motor units can be isolated and their firing rates followed in natural movement of large, fuctionally important muscles. For this reason the present study investigated the motor unit discharge rate...

  8. Change in muscle fascicle length influences the recruitment and discharge rate of motor units during isometric contractions.

    Science.gov (United States)

    Pasquet, Benjamin; Carpentier, Alain; Duchateau, Jacques

    2005-11-01

    This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit (n = 59) was compared at two ankle joint angles (+10 and -10 degrees around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10 degrees plantarflexion to 10 degrees dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 +/- 3.3 vs. 44.3 +/- 4.2 (SD) Nm; P Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 +/- 2.5 vs. 3.6 +/- 3.7 Nm; P motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10-35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.

  9. United Motors narashtshivajet oborotõ / Sergei Kolikov

    Index Scriptorium Estoniae

    Kolikov, Sergei

    2007-01-01

    BMW ja MINI esindaja Eestis AS United Motors müüs 2006. aastal 697 autot, esialgsetel andmete ületas kompanii käive 450 miljonit krooni, mis on kolmandiku võrra suurem kui 2005. aastal. Kompanii aastatulu oli 15 miljonit krooni

  10. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    Science.gov (United States)

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  11. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    Directory of Open Access Journals (Sweden)

    José Angelo Barela

    2013-09-01

    Full Text Available Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has been marginalized in many of our physical education proposal and in doing so, we have not promote motor competence in our children who lack proficiency to engage and to participate in later motor activities such as sport-related or recreational.

  12. 49 CFR 565.24 - Motor vehicles imported into the United States.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Motor vehicles imported into the United States...) REQUIREMENTS Alternative VIN Requirements In Effect for Limited Period § 565.24 Motor vehicles imported into... motor vehicle. (b) A passenger car certified by a Registered Importer under 49 CFR part 592 shall have a...

  13. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Science.gov (United States)

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Speed of the bacterial flagellar motor near zero load depends on the number of stator units.

    Science.gov (United States)

    Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M

    2017-10-31

    The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.

  15. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  16. Human spinal cord injury : motor unit properties and behaviour

    NARCIS (Netherlands)

    Thomas, C. K.; Bakels, R.; Klein, C. S.; Zijdewind, I.

    Spinal cord injury (SCI) results in widespread variation in muscle function. Review of motor unit data shows that changes in the amount and balance of excitatory and inhibitory inputs after SCI alter management of motoneurons. Not only are units recruited up to higher than usual relative forces when

  17. The effect of recording site on extracted features of motor unit action potential.

    Science.gov (United States)

    Artuğ, N Tuğrul; Goker, Imran; Bolat, Bülent; Osman, Onur; Kocasoy Orhan, Elif; Baslo, M Baris

    2016-06-01

    Motor unit action potential (MUAP), which consists of individual muscle fiber action potentials (MFAPs), represents the electrical activity of the motor unit. The values of the MUAP features are changed by denervation and reinnervation in neurogenic involvement as well as muscle fiber loss with increased diameter variability in myopathic diseases. The present study is designed to investigate how increased muscle fiber diameter variability affects MUAP parameters in simulated motor units. In order to detect this variation, simulated MUAPs were calculated both at the innervation zone where the MFAPs are more synchronized, and near the tendon, where they show increased temporal dispersion. Reinnervation in neurogenic state increases MUAP amplitude for the recordings at both the innervation zone and near the tendon. However, MUAP duration and the number of peaks significantly increased in a case of myopathy for recordings near the tendon. Furthermore, of the new features, "number of peaks×spike duration" was found as the strongest indicator of MFAP dispersion in myopathy. MUAPs were also recorded from healthy participants in order to investigate the biological counterpart of the simulation data. MUAPs which were recorded near to tendon revealed significantly prolonged duration and decreased amplitude. Although the number of peaks was increased by moving the needle near to tendon, this was not significant. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    Science.gov (United States)

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  19. Assessment of load of beam-balanced pumping units by electric motor power indicators

    Directory of Open Access Journals (Sweden)

    Д. И. Шишлянников

    2017-10-01

    Full Text Available The results of experimental studies on the loading of beam-balanced pumping units (BP of sucker rod- pumping equipment (SRPE are presented. It is noted that the key factor that has the most significant effect causing the SRPE failure is the balance of the beam pumping unit, which determines the amount of specific energy consumption for the rise of reservoir fluid and the level of dynamic loads on the machine units. The urgency of using software-recording systems for estimating the loading of units of oil field pumping installations is substantiated. The principle of operation and design of the «AKD-SK» software recording system is described. The prospects of using this method for controlling the performance parameters and evaluating the technical state of the sicker rod-pumping units is proved on the basis of an analysis of the magnitude and nature of the changes in the loads of drive motors determined by the registration of the instantaneous values of the consumed power. The main provisions of the methodology for analyzing the watt-meters of drive motors of the sucker rod-pumping units are outlined. The nature of the manifestation of the main defects of submersible pumps and beam-balanced pumping units is described. The results of pilot-industrial tests of the beam-balanced pumping units equipped with advanced permanent magnet motors and intelligent control stations are presented. It is proved that the use of permanent magnet motors allows to reduce the specific energy consumption for the rise of reservoir fluid, which increases the efficiency of the SRPE.However, the presence of transient processes and generator operating modes of the permanent magnet motors results in the occurrence of significant dynamic loads, which, due to the rigid fixing of the rotor of magnet motor on the reducer shaft, negatively affect the life of the gearbox bearings. It has been shown that the lack of its own bearings in the tested motors causes a high probability

  20. Intra-rater reliability of motor unit number estimation and quantitative motor unit analysis in subjects with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ives, Colleen T; Doherty, Timothy J

    2014-01-01

    To assess the intra-rater reliability of decomposition-enhanced spike-triggered averaging (DE-STA) motor unit number estimation (MUNE) and quantitative motor unit potential analysis in the upper trapezius (UT) and biceps brachii (BB) of subjects with amyotrophic lateral sclerosis (ALS) and to compare the results from the UT to control data. Patients diagnosed with clinically probable or definite ALS completed the experimental protocol twice with the same evaluator for the UT (n=10) and BB (n=9). Intra-rater reliability for the UT was good for the maximum compound muscle action potential (CMAP) (ICC=0.88), mean surface-detected motor unit potential (S-MUP) (ICC=0.87) and MUNE (ICC=0.88), and for the BB was moderate for maximum CMAP (ICC=0.61), and excellent for mean S-MUP (ICC=0.94) and MUNE (ICC=0.93). A significant difference between tests was found for UT MUNE. Comparing subjects with ALS to control subjects, UT maximum CMAP (p<0.01) and MUNE (p<0.001) values were significantly lower, and mean S-MUP values significantly greater (p<0.05) in subjects with ALS. This study has demonstrated the ability of the DE-STA MUNE technique to collect highly reliable data from two separate muscle groups and to detect the underlying pathophysiology of the disease. This was the first study to examine the reliability of this technique in subjects with ALS, and demonstrates its potential for future use as an outcome measure in ALS clinical trials and studies of ALS disease severity and natural history. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. A Simulation Based Analysis of Motor Unit Number Index (MUNIX) Technique Using Motoneuron Pool and Surface Electromyogram Models

    Science.gov (United States)

    Li, Xiaoyan; Rymer, William Zev; Zhou, Ping

    2013-01-01

    Motor unit number index (MUNIX) measurement has recently achieved increasing attention as a tool to evaluate the progression of motoneuron diseases. In our current study, the sensitivity of the MUNIX technique to changes in motoneuron and muscle properties was explored by a simulation approach utilizing variations on published motoneuron pool and surface electromyogram (EMG) models. Our simulation results indicate that, when keeping motoneuron pool and muscle parameters unchanged and varying the input motor unit numbers to the model, then MUNIX estimates can appropriately characterize changes in motor unit numbers. Such MUNIX estimates are not sensitive to different motor unit recruitment and rate coding strategies used in the model. Furthermore, alterations in motor unit control properties do not have a significant effect on the MUNIX estimates. Neither adjustment of the motor unit recruitment range nor reduction of the motor unit firing rates jeopardizes the MUNIX estimates. The MUNIX estimates closely correlate with the maximum M wave amplitude. However, if we reduce the amplitude of each motor unit action potential rather than simply reduce motor unit number, then MUNIX estimates substantially underestimate the motor unit numbers in the muscle. These findings suggest that the current MUNIX definition is most suitable for motoneuron diseases that demonstrate secondary evidence of muscle fiber reinnervation. In this regard, when MUNIX is applied, it is of much importance to examine a parallel measurement of motor unit size index (MUSIX), defined as the ratio of the maximum M wave amplitude to the MUNIX. However, there are potential limitations in the application of the MUNIX methods in atrophied muscle, where it is unclear whether the atrophy is accompanied by loss of motor units or loss of muscle fiber size. PMID:22514208

  2. Misconceptions about mirror-induced motor cortex activation.

    NARCIS (Netherlands)

    Praamstra, P.; Torney, L.; Rawle, C.J.; Miall, R.C.

    2011-01-01

    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex

  3. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  4. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle

    NARCIS (Netherlands)

    van Bolhuis, A.I.; Holsheimer, J.; Savelsberg, H.H.C.M.

    2001-01-01

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low

  5. Do Additional Inputs Change Maximal Voluntary Motor Unit Firing Rates After Spinal Cord Injury?

    NARCIS (Netherlands)

    Zijdewind, Inge; Gant, Katie; Bakels, Rob; Thomas, Christine K.

    Background. Motor unit firing frequencies are low during maximal voluntary contractions (MVCs) of human thenar muscles impaired by cervical spinal cord injury (SCI). Objective. This study aimed to examine whether thenar motor unit firing frequencies increase when driven by both maximal voluntary

  6. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  7. Vastus lateralis single motor unit EMG at the same absolute torque production at different knee angles

    NARCIS (Netherlands)

    Altenburg, T.M.; de Haan, A.; Verdijk, P.W.; van Mechelen, W.; de Ruiter, C.J.

    2009-01-01

    Single motor unit electromyographic (EMG) activity of the knee extensors was investigated at different knee angles with subjects (n = 10) exerting the same absolute submaximal isometric torque at each angle. Measurements were made over a 20° range around the optimum angle for torque production

  8. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness

    Science.gov (United States)

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.

    2012-01-01

    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  9. Electrical stimulation site influences the spatial distribution of motor units recruited in tibialis anterior.

    Science.gov (United States)

    Okuma, Yoshino; Bergquist, Austin J; Hong, Mandy; Chan, K Ming; Collins, David F

    2013-11-01

    To compare the spatial distribution of motor units recruited in tibialis anterior (TA) when electrical stimulation is applied over the TA muscle belly versus the common peroneal nerve trunk. Electromyography (EMG) was recorded from the surface and from fine wires in superficial and deep regions of TA. Separate M-wave recruitment curves were constructed for muscle belly and nerve trunk stimulation. During muscle belly stimulation, significantly more current was required to generate M-waves that were 5% of the maximal M-wave (M max; M5%max), 50% M max (M 50%max) and 95% M max (M 95%max) at the deep versus the superficial recording site. In contrast, during nerve trunk stimulation, there were no differences in the current required to reach M5%max, M 50%max or M 95%max between deep and superficial recording sites. Surface EMG reflected activity in both superficial and deep muscle regions. Stimulation over the muscle belly recruited motor units from superficial to deep with increasing stimulation amplitude. Stimulation over the nerve trunk recruited superficial and deep motor units equally, regardless of stimulation amplitude. These results support the idea that where electrical stimulation is applied markedly affects how contractions are produced and have implications for the interpretation of surface EMG data. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  11. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  12. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    Directory of Open Access Journals (Sweden)

    Chia-Chi Yang

    Full Text Available Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  13. Characteristics of the Motor Units during Sternocleidomastoid Isometric Flexion among Patients with Mechanical Neck Disorder and Asymptomatic Individuals.

    Science.gov (United States)

    Yang, Chia-Chi; Su, Fong-Chin; Yang, Po-Ching; Lin, Hwai-Ting; Guo, Lan-Yuen

    2016-01-01

    Mechanical neck disorder is a widespread and non-neurological musculoskeletal condition resulting from modern lifestyles. Presently, the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles and the characteristics of the short-term synchronization of the motor unit in patients with neck pain are ambiguous. This study therefore aims to clarify the fundamental electrophysiological properties of the motor units of the sternocleidomastoid muscles in patients with mechanical neck disorder and in asymptomatic individuals. We further investigated whether alterations in the degree of motor unit short-term synchronization occur. The surface electrophysiological signals of the bilateral sternal heads of the sternocleidomastoid muscles of twelve patients with mechanical neck disorder and asymptomatic individuals were detected at 25% of the maximum voluntary contraction during cervical isometric flexion and then decomposed into individual motor unit action potential trains. We found that the patients with mechanical neck disorder showed significantly higher initial and mean firing rates of the sternocleidomastoid muscles and displayed substantially lower motor unit short-term synchronization values compared with the asymptomatic subjects. Consequently, these convincing findings support the assertion that patients with mechanical neck disorder display altered neuromuscular control strategies, such as the reinforcement of motor unit recruitment firing rates in the sternocleidomastoid muscles. The motor units of these patients also revealed neural recruitment strategies with relatively poor efficiency when executing the required motor tasks.

  14. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    Science.gov (United States)

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  15. Reduced firing rates of high threshold motor units in response to eccentric overload.

    Science.gov (United States)

    Balshaw, Tom G; Pahar, Madhu; Chesham, Ross; Macgregor, Lewis J; Hunter, Angus M

    2017-01-01

    Acute responses of motor units were investigated during submaximal voluntary isometric tasks following eccentric overload (EO) and constant load (CL) knee extension resistance exercise. Ten healthy resistance-trained participants performed four experimental test sessions separated by 5 days over a 20 day period. Two sessions involved constant load and the other two used eccentric overload. EO and CL used both sessions for different target knee eccentric extension phases; one at 2 sec and the other at 4 sec. Maximal voluntary contractions (MVC) and isometric trapezoid efforts for 10 sec at 70% MVC were completed before and after each intervention and decomposed electromyography was used to measure motor unit firing rate. The firing rate of later recruited, high-threshold motor units declined following the 2-sec EO but was maintained following 2sec CL (P motor units were maintained for both loading types following 4-sec extension phases. MVC and rate of force development where maintained following both EO and CL and 2 and 4 sec phases. This study demonstrates a slower firing rate of high-threshold motor units following fast eccentric overload while MVC was maintained. This suggests that there was a neuromuscular stimulus without cost to the force-generating capacity of the knee extensors. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Changes in time and frequency related aspects of motor unit action potentials during fatigue

    NARCIS (Netherlands)

    Wallinga, W.; Bouwens, Jeroen S.; Baten, Christian T.M.

    1996-01-01

    During fatigue the shape of motor unit action potentials (MUAPs) change. Characteristics of the MUAPs described before concern several time related aspects. No attention has been given to the frequency spectrum changes of MUAPS. The median frequency of MUAPS has now been determined for motor units

  17. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    OpenAIRE

    Barela, José Angelo

    2013-01-01

    Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has be...

  18. Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.

    Science.gov (United States)

    Jesunathadas, Mark; Klass, Malgorzata; Duchateau, Jacques; Enoka, Roger M

    2012-06-01

    The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P motor units in the tibialis anterior.

  19. Characterization of motor units in behaving adult mice shows a wide primary range.

    Science.gov (United States)

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  20. Neuron activity in rat hippocampus and motor cortex during discrimination reversal.

    Science.gov (United States)

    Disterhoft, J F; Segal, M

    1978-01-01

    Chronic unit activity and gross movement were recorded from rats during two discrimination reversals in a classical appetitive conditioning situation. The anticipatory movement decreased in response to the former CS+ tone and increased to the previous CS- tone after each reversal. Hippocampus and motor cortex were differently related to these two kinds of behavioral change. Response rates of hippocampal neurons were more closely related to the increased movement response to the former CS- which now signaled food. Motor cortex neuron responses were more closely correlated with the decrease in movement responses to the former CS+ which became neutral after the reversal. It appeared that hippocampal neurons could have been involved in one cognitive aspect of the situation, motor cortex neurons in another. The data were related to current functional concepts of these brain regions.

  1. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.

    Science.gov (United States)

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M

    2012-01-01

    The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.

  2. Recruitment of single human low-threshold motor units with increasing loads at different muscle lengths.

    Science.gov (United States)

    McNulty, P A; Cresswell, A G

    2004-06-01

    We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (Precruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.

  3. Distribution of muscle fibre conduction velocity for representative samples of motor units in the full recruitment range of the tibialis anterior muscle.

    Science.gov (United States)

    Del Vecchio, A; Negro, F; Felici, F; Farina, D

    2018-02-01

    Motor units are recruited in an orderly manner according to the size of motor neurones. Moreover, because larger motor neurones innervate fibres with larger diameters than smaller motor neurones, motor units should be recruited orderly according to their conduction velocity (MUCV). Because of technical limitations, these relations have been previously tested either indirectly or in small motor unit samples that revealed weak associations between motor unit recruitment threshold (RT) and MUCV. Here, we analyse the relation between MUCV and RT for large samples of motor units. Ten healthy volunteers completed a series of isometric ankle dorsiflexions at forces up to 70% of the maximum. Multi-channel surface electromyographic signals recorded from the tibialis anterior muscle were decomposed into single motor unit action potentials, from which the corresponding motor unit RT, MUCV and action potential amplitude were estimated. Established relations between muscle fibre diameter and CV were used to estimate the fibre size. Within individual subjects, the distributions of MUCV and fibre diameters were unimodal and did not show distinct populations. MUCV was strongly correlated with RT (mean (SD) R 2  = 0.7 (0.09), P motor units), which supported the hypothesis that fibre diameter is associated with RT. The results provide further evidence for the relations between motor neurone and muscle fibre properties for large samples of motor units. The proposed methodology for motor unit analysis has also the potential to open new perspectives in the study of chronic and acute neuromuscular adaptations to ageing, training and pathology. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  4. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  5. Motor unit potential morphology differences in individuals with non-specific arm pain and lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    McLean Linda

    2008-12-01

    Full Text Available Abstract Background The pathophysiology of non-specific arm pain (NSAP is unclear and the diagnosis is made by excluding other specific upper limb pathologies, such as lateral epicondylitis or cervical radiculopathy. The purpose of this study was to determine: (i if the quantitative parameters related to motor unit potential morphology and/or motor unit firing patterns derived from electromyographic (EMG signals detected from an affected muscle of patients with NSAP are different from those detected in the same muscle of individuals with lateral epicondylitis (LE and/or control subjects and (ii if the quantitative EMG parameters suggest that the underlying pathophysiology in NSAP is either myopathic or neuropathic in nature. Methods Sixteen subjects with NSAP, 11 subjects with LE, eight subjects deemed to be at-risk for developing a repetitive strain injury, and 37 control subjects participated. A quantitative electromyography evaluation was completed using decomposition-based quantitative electromyography (DQEMG. Needle- and surface-detected EMG signals were collected during low-level isometric contractions of the extensor carpi radialis brevis (ECRB muscle. DQEMG was used to extract needle-detected motor unit potential trains (MUPTs, and needle-detected motor unit potential (MUP and surface detected motor unit potential (SMUP morphology and motor unit (MU firing rates were compared among the four groups using one-way analysis of variance (ANOVA. Post hoc analyses were performed using Tukey's pairwise comparisons. Results Significant group differences were found for all MUP variables and for MU firing rate (p p p p p Conclusion The size-related parameters suggest that the NSAP group had significantly smaller MUPs and SMUPs than the control and LE subjects. Smaller MUPs and SMUPs may be indicative of muscle fiber atrophy and/or loss. A prospective study is needed to confirm any causal relationship between smaller MUPs and SMUPs and NSAP as found

  6. Common Input to Motor Units of Intrinsic and Extrinsic Hand Muscles During Two-Digit Object Hold

    OpenAIRE

    Winges, Sara A.; Kornatz, Kurt W.; Santello, Marco

    2008-01-01

    Anatomical and physiological evidence suggests that common input to motor neurons of hand muscles is an important neural mechanism for hand control. To gain insight into the synaptic input underlying the coordination of hand muscles, significant effort has been devoted to describing the distribution of common input across motor units of extrinsic muscles. Much less is known, however, about the distribution of common input to motor units belonging to different intrinsic muscles and to intrinsi...

  7. Eccentric muscle damage has variable effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles.

    Science.gov (United States)

    Dartnall, Tamara J; Rogasch, Nigel C; Nordstrom, Michael A; Semmler, John G

    2009-07-01

    The purpose of this study was to determine the effect of eccentric muscle damage on recruitment threshold force and repetitive discharge properties of low-threshold motor units. Ten subjects performed four tasks involving isometric contraction of elbow flexors while electromyographic (EMG) data were recorded from human biceps brachii and brachialis muscles. Tasks were 1) maximum voluntary contraction (MVC); 2) constant-force contraction at various submaximal targets; 3) motor unit recruitment threshold task; and 4) minimum motor unit discharge rate task. These tasks were performed on three separate days before, immediately after, and 24 h after eccentric exercise of elbow flexor muscles. MVC force declined (42%) immediately after exercise and remained depressed (29%) 24 h later, indicative of muscle damage. Mean motor unit recruitment threshold for biceps brachii was 8.4+/-4.2% MVC, (n=34) before eccentric exercise, and was reduced by 41% (5.0+/-3.0% MVC, n=34) immediately after and by 39% (5.2+/-2.5% MVC, n=34) 24 h after exercise. No significant changes in motor unit recruitment threshold were observed in the brachialis muscle. However, for the minimum tonic discharge rate task, motor units in both muscles discharged 11% faster (10.8+/-2.0 vs. 9.7+/-1.7 Hz) immediately after (n=29) exercise compared with that before (n=32). The minimum discharge rate variability was greater in brachialis muscle immediately after exercise (13.8+/-3.1%) compared with that before (11.9+/-3.1%) and 24 h after exercise (11.7+/-2.4%). No significant changes in minimum discharge rate variability were observed in the biceps brachii motor units after exercise. These results indicate that muscle damage from eccentric exercise alters motor unit recruitment thresholds for >or=24 h, but the effect is not the same in the different elbow flexor muscles.

  8. Vastus medialis motor unit properties in knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Chess David G

    2011-09-01

    Full Text Available Abstract Background Maximal isometric quadriceps strength deficits have been widely reported in studies of knee osteoarthritis (OA, however little is known about the effect of osteoarthritis knee pain on submaximal quadriceps neuromuscular function. The purpose of this study was to measure vastus medialis motor unit (MU properties in participants with knee OA, during submaximal isometric contractions. Methods Vastus medialis motor unit potential (MUP parameters were assessed in 8 patients with knee OA and 8 healthy, sex and age-matched controls during submaximal isometric contractions (20% of maximum isometric torque. Unpaired t-tests were used to compare groups for demographic and muscle parameters. Results Maximum knee extension torque was ~22% lower in the OA group, a difference that was not statistically significantly (p = 0.11. During submaximal contractions, size related parameters of the needle MUPs (e.g. negative peak duration and amplitude-to-area ratio were greater in the OA group (p Conclusions Changes in MU recruitment and rate coding strategies in OA may reflect a chronic reinnervation process or a compensatory strategy in the presence of chronic knee pain associated with OA.

  9. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. United Motors avas eile 100miljonilise BMW keskuse / Hille Tressum

    Index Scriptorium Estoniae

    Tressum, Hille

    2008-01-01

    United Motors avas Tallinna läheduses uue, 100 miljonit krooni maksma läinud BMW autokeskuse, lisaks salongile asub keskuses ka remonditöökoda, milles ettevõtte juht Ants Kanter näeb peamist sissetulekuallikat. Lisa: Taust

  11. A speed estimation unit for induction motors based on adaptive linear combiner

    International Nuclear Information System (INIS)

    Marei, Mostafa I.; Shaaban, Mostafa F.; El-Sattar, Ahmed A.

    2009-01-01

    This paper presents a new induction motor speed estimation technique, which can estimate the rotor resistance as well, from the measured voltage and current signals. Moreover, the paper utilizes a novel adaptive linear combiner (ADALINE) structure for speed and rotor resistance estimations. This structure can deal with the multi-output systems and it is called MO-ADALINE. The model of the induction motor is arranged in a linear form, in the stationary reference frame, to cope with the proposed speed estimator. There are many advantages of the proposed unit such as wide speed range capability, immunity against harmonics of measured waveforms, and precise estimation of the speed and the rotor resistance at different dynamic changes. Different types of induction motor drive systems are used to evaluate the dynamic performance and to examine the accuracy of the proposed unit for speed and rotor resistance estimation.

  12. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-04-01

    Full Text Available In the paper, a formula is introduced for calculating electric motor supply unit voltage under feeding by a common transformer in the condition of a phase short-circuit in one of the motors. The formula is used in every time step of electromechanical state equations integration.

  13. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  14. Effect of STA-MCA bypass based on the motor activation SPECT

    International Nuclear Information System (INIS)

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    The effect of STA-MCA bypass for ischemic cerebrovascular diseases (CVDs) on pure motor function using motor activation SPECT was evaluated and analyzed, and this effect with the resting cerebral blood flow and reserved capacity was compared. Motor activation SPECT were carried out on 22 cases with STA-MCA bypass for symptomatic ischemic CVDs. All motors activation SPECT using the finger opposition task on the affected side were performed before bypass, at 1 month, and 3 months after the bypass. Visual inspection was used to determine whether the result of the motor activation SPECT was as negative or positive. The activated region was detected anatomically precisely by superimposing the SPECT on the MRI. Before this study, the same examination was performed on normal controls. In controls, 91% showed the activated area on the sensorimotor cortex after the finger opposition tasks. Before bypass, the resting SPECT revealed reduction of cerebral blood flow (CBF) on the affected side in all cases. All cases also showed a disturbed response to acetazolamide (ACZ). Nine cases were positive in the motor activation SPECT. One month after bypass, the resting CBF increased in 11 cases. Seven showed preoperative positive motor activation. Fifteen cases were positive in the motor activation SPECT. Three months after bypass, 20 cases showed improvement in the resting CBF, and 19 cases were positive in the motor activation SPECT. Ten cases were negative in the preoperative motor activation SPECT. At one month after surgery, ACZ activation SPECT was performed in 12 cases. Five showed improvement of the response to ACZ. At 3 months after surgery, 8 of 12 cases treated with ACZ activation SPECT showed improved response to ACZ. In most of the cases, improved response to ACZ could be seen after response to motor activation improved. STA-MCA bypass is useful not only for resting CBF but also for pure motor function based on motor activation SPECT. (K.H.)

  15. Effect of STA-MCA bypass based on the motor activation SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    The effect of STA-MCA bypass for ischemic cerebrovascular diseases (CVDs) on pure motor function using motor activation SPECT was evaluated and analyzed, and this effect with the resting cerebral blood flow and reserved capacity was compared. Motor activation SPECT were carried out on 22 cases with STA-MCA bypass for symptomatic ischemic CVDs. All motors activation SPECT using the finger opposition task on the affected side were performed before bypass, at 1 month, and 3 months after the bypass. Visual inspection was used to determine whether the result of the motor activation SPECT was as negative or positive. The activated region was detected anatomically precisely by superimposing the SPECT on the MRI. Before this study, the same examination was performed on normal controls. In controls, 91% showed the activated area on the sensorimotor cortex after the finger opposition tasks. Before bypass, the resting SPECT revealed reduction of cerebral blood flow (CBF) on the affected side in all cases. All cases also showed a disturbed response to acetazolamide (ACZ). Nine cases were positive in the motor activation SPECT. One month after bypass, the resting CBF increased in 11 cases. Seven showed preoperative positive motor activation. Fifteen cases were positive in the motor activation SPECT. Three months after bypass, 20 cases showed improvement in the resting CBF, and 19 cases were positive in the motor activation SPECT. Ten cases were negative in the preoperative motor activation SPECT. At one month after surgery, ACZ activation SPECT was performed in 12 cases. Five showed improvement of the response to ACZ. At 3 months after surgery, 8 of 12 cases treated with ACZ activation SPECT showed improved response to ACZ. In most of the cases, improved response to ACZ could be seen after response to motor activation improved. STA-MCA bypass is useful not only for resting CBF but also for pure motor function based on motor activation SPECT. (K.H.)

  16. CONTRACTION CHARACTERISTICS AND MYOSIN HEAVY-CHAIN COMPOSITION OF RABBIT MASSETER MOTOR UNITS

    NARCIS (Netherlands)

    KWA, SHS; WEIJS, WA; JUCH, PJW

    1. We studied isometric twitch peak force (TPF) and twitch contraction time (TCT) of 249 motor units of the masseter muscle in 41 rabbits after extracellular electrical stimulation of single trigeminal motoneurons in the brain stem. In 41 of these units we determined the amount of tension decrease

  17. Discharge characteristics of biceps brachii motor units at recruitment when older adults sustained an isometric contraction.

    Science.gov (United States)

    Pascoe, Michael A; Holmes, Matthew R; Enoka, Roger M

    2011-02-01

    The purpose of this study was to compare the discharge characteristics of motor units recruited during an isometric contraction that was sustained with the elbow flexor muscles by older adults at target forces that were less than the recruitment threshold force of each isolated motor unit. The discharge times of 27 single motor units were recorded from the biceps brachii in 11 old adults (78.8 ± 5.9 yr). The target force was set at either a relatively small (6.6 ± 3.7% maximum) or large (11.4 ± 4.5% maximum) difference below the recruitment threshold force and the contraction was sustained until the motor unit was recruited and discharged action potentials for about 60 s. The time to recruitment was longer for the large target-force difference (P = 0.001). At recruitment, the motor units discharged repetitively for both target-force differences, which contrasts with data from young adults when motor units discharged intermittently at recruitment for the large difference between recruitment threshold force and target force. The coefficient of variation (CV) for the first five interspike intervals (ISIs) increased from the small (18.7 ± 7.9) to large difference (35.0 ± 10.2%, P = 0.008) for the young adults, but did not differ for the two target force differences for the old adults (26.3 ± 14.7 to 24.0 ± 13.1%, P = 0.610). When analyzed across the discharge duration, the average CV for the ISI decreased similarly for the two target-force differences (P = 0.618) in old adults. These findings contrast with those of young adults and indicate that the integration of synaptic input during sustained contractions differs between young and old adults.

  18. Pre-motor and motor activities in early handwriting

    OpenAIRE

    van Zwieten, Koos Jaap

    2011-01-01

    Behavioural studies make use of handwritten letters’ characteristics like strokes, roundedness, etcetera. In consequence, Fisher et al. (2010) studying brain activation during rejected love, noticed typical pre-motor activity patterns, as suggested by irregular writing patterns as well, due to basal ganglia dysfunction (Mergl et al., 2004). A short historical text written in a presumably depressed mood was checked on such characteristics in the light of hypothesised finger-, and hand movement...

  19. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    Science.gov (United States)

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing

  20. MOTOR UNIT TERRITORIES AND FIBER TYPES IN RABBIT MASSETER MUSCLE

    NARCIS (Netherlands)

    WEIJS, WA; JUCH, PJW; KWA, SHS; KORFAGE, JAM

    1993-01-01

    The myosin heavy chain (MHC) content and spatial distribution of the fibers of 11 motor units (MUs) of the rabbit masseter muscle were determined. The fibers of single MUs were visualized in whole-muscle serial sections by a negative periodic acid/Schiff reaction for glycogen after they had been

  1. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion

    Science.gov (United States)

    Lee, Sabrina S. M.; de Boef Miara, Maria; Arnold, Allison S.; Biewener, Andrew A.; Wakeling, James M.

    2013-01-01

    SUMMARY Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation–deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these

  2. Control Of Motor Unit Firing During Step-Like Increases In Voluntary Force

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2014-09-01

    Full Text Available In most skeletal muscles, force is generated by a combination of motor unit (MU recruitment and increases in the firing rate of previously active MUs. Two contrasting patterns of firing rate organization have been reported. In the first pattern, the earliest recruited MUs reach the highest firing rates as force is increased, and later recruited MUs fire at lower rates. When firing rate of multiple MUs are superimposed, these rate trajectories form a concentric layered profile termed ‘onion skin’. In the second pattern, called ‘reverse onion skin’, later recruited MUs reach higher firing rates, and crossing of firing rate trajectories for recorded MUs is common (although such trajectories are assembled routinely from different trials. Our present study examined the firing rate organization of concurrently active MUs of the first dorsal interosseous muscle during serial, step-like increases in isometric abduction forces. We used a surface sensor array coupled with MU discrimination algorithms to characterize MU firing patterns. Our objective was to determine whether ‘onion skin’ profiles are contingent upon the force trajectory of the motor task, examined here using step-like increases of force output, and also whether they are manifested at different force levels.Our results revealed that the overall ‘onion skin’ firing rate profile was retained as the force level increased with each force step up to 15% MVC. However, the distribution of firing rates across MUs was compressed with increasing force, and overlapping firing rate of units were observed. This rate compression was largely due to rate saturation of the relatively high frequency discharging MUs.Our results reflect flexible firing patterns across MUs at different levels of excitation drive. It is also evident that many units did not follow all the step increases consistently. This failure to track firing rate increases at higher forces could be due to an intrinsically

  3. [Statistical (Poisson) motor unit number estimation. Methodological aspects and normal results in the extensor digitorum brevis muscle of healthy subjects].

    Science.gov (United States)

    Murga Oporto, L; Menéndez-de León, C; Bauzano Poley, E; Núñez-Castaín, M J

    Among the differents techniques for motor unit number estimation (MUNE) there is the statistical one (Poisson), in which the activation of motor units is carried out by electrical stimulation and the estimation performed by means of a statistical analysis based on the Poisson s distribution. The study was undertaken in order to realize an approximation to the MUNE Poisson technique showing a coprehensible view of its methodology and also to obtain normal results in the extensor digitorum brevis muscle (EDB) from a healthy population. One hundred fourteen normal volunteers with age ranging from 10 to 88 years were studied using the MUNE software contained in a Viking IV system. The normal subjects were divided into two age groups (10 59 and 60 88 years). The EDB MUNE from all them was 184 49. Both, the MUNE and the amplitude of the compound muscle action potential (CMAP) were significantly lower in the older age group (page than CMAP amplitude ( 0.5002 and 0.4142, respectively pphisiology of the motor unit. The value of MUNE correlates better with the neuromuscular aging process than CMAP amplitude does.

  4. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    Science.gov (United States)

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  5. Contractile function and motor unit firing rates of the human hamstrings.

    Science.gov (United States)

    Kirk, Eric A; Rice, Charles L

    2017-01-01

    Neuromuscular properties of the lower limb in health, aging, and disease are well described for major lower limb muscles comprising the quadriceps, triceps surae, and dorsiflexors, with the notable exception of the posterior thigh (hamstrings). The purpose of this study was to further characterize major muscles of the lower limb by comprehensively exploring contractile properties in relation to spinal motor neuron output expressed as motor unit firing rates (MUFRs) in the hamstrings of 11 (26.5 ± 3.8) young men. Maximal isometric voluntary contraction (MVC), voluntary activation, stimulated contractile properties including a force-frequency relationship, and MUFRs from submaximal to maximal voluntary contractile intensities were assessed in the hamstrings. Strength and MUFRs were assessed at two presumably different muscle lengths by varying the knee joint angles (90° and 160°). Knee flexion MVCs were 60-70% greater in the extended position (160°). The frequency required to elicit 50% of maximum tetanic torque was 16-17 Hz. Mean MUFRs at 25-50% MVC were 9-31% less in the biceps femoris compared with the semimembranosus-semitendinosus group. Knee joint angle (muscle length) influenced MUFRs such that mean MUFRs were greater in the shortened (90°) position at 50% and 100% MVC. Compared with previous reports, mean maximal MUFRs in the hamstrings are greater than those in the quadriceps and triceps surae and somewhat less than those in the tibialis anterior. Mean maximal MUFRs in the hamstrings are influenced by changes in knee joint angle, with lower firing rates in the biceps femoris compared with the semimembranosus-semitendinosus muscle group. We studied motor unit firing rates (MUFRs) at various voluntary contraction intensities in the hamstrings, one of the only major lower limb muscles to have MUFRs affected by muscle length changes. Within the hamstrings muscle-specific differences have greater impact on MUFRs than length changes, with the biceps femoris

  6. An evaluation of the utility and limitations of counting motor unit action potentials in the surface electromyogram

    Science.gov (United States)

    Zhou, Ping; Zev Rymer, William

    2004-12-01

    The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.

  7. Localised task-dependent motor-unit recruitment in the masseter.

    Science.gov (United States)

    Schindler, H J; Hellmann, D; Giannakopoulos, N N; Eiglsperger, U; van Dijk, J P; Lapatki, B G

    2014-07-01

    Localised motor-unit (MU) recruitment in the masseter was analysed in this study. We investigated whether differential activation behaviour, which has already been reported for distant masseter regions, can also be detected in small muscle subvolumes at the level of single MUs. Two bipolar fine-wire electrodes and an intra-oral 3D bite-force transmitter were used to record intra-muscular electromyograms (EMG) resulting from controlled bite-forces of 10 healthy human subjects (mean age 24.1 ± 1.2 years). Two-hundred and seventeen decomposed MUs were organised into localised MU task groups with different (P < 0.001) force-direction-specific behaviour. Proportions of MUs involved in one, two, three or four examined tasks were 46%, 31%, 18% and 5%, respectively. This study provides evidence of the ability of the neuromuscular system to modify the mechanical output of small masseter subvolumes by differential control of adjacent MUs belonging to distinct task groups. Localised differential activation behaviour of the masseter may be the crucial factor enabling highly flexible and efficient adjustment of the muscle activity in response to complex local biomechanical needs, for example, continually varying bite-forces during the demanding masticatory process. © 2014 John Wiley & Sons Ltd.

  8. The correlation between motor proficiency and physical activity in ...

    African Journals Online (AJOL)

    Background: One of the risks associated with low physical activity levels is the insufficient development of motor proficiency, which in turn has an impact on participation in physical activity and sport during adolescence. Objectives: To determine the relationship between motor proficiency and physical activity levels in ...

  9. Statistically rigorous calculations do not support common input and long-term synchronization of motor-unit firings

    Science.gov (United States)

    Kline, Joshua C.

    2014-01-01

    Over the past four decades, various methods have been implemented to measure synchronization of motor-unit firings. In this work, we provide evidence that prior reports of the existence of universal common inputs to all motoneurons and the presence of long-term synchronization are misleading, because they did not use sufficiently rigorous statistical tests to detect synchronization. We developed a statistically based method (SigMax) for computing synchronization and tested it with data from 17,736 motor-unit pairs containing 1,035,225 firing instances from the first dorsal interosseous and vastus lateralis muscles—a data set one order of magnitude greater than that reported in previous studies. Only firing data, obtained from surface electromyographic signal decomposition with >95% accuracy, were used in the study. The data were not subjectively selected in any manner. Because of the size of our data set and the statistical rigor inherent to SigMax, we have confidence that the synchronization values that we calculated provide an improved estimate of physiologically driven synchronization. Compared with three other commonly used techniques, ours revealed three types of discrepancies that result from failing to use sufficient statistical tests necessary to detect synchronization. 1) On average, the z-score method falsely detected synchronization at 16 separate latencies in each motor-unit pair. 2) The cumulative sum method missed one out of every four synchronization identifications found by SigMax. 3) The common input assumption method identified synchronization from 100% of motor-unit pairs studied. SigMax revealed that only 50% of motor-unit pairs actually manifested synchronization. PMID:25210152

  10. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    Science.gov (United States)

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  11. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Directory of Open Access Journals (Sweden)

    Matt S Stock

    Full Text Available Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC assessment. Twenty-four previously untrained men (mean age  = 24 years were randomly assigned to training (n = 15 or control (n = 9 groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC and y-intercepts (pps of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70, but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  12. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    Science.gov (United States)

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  13. Motor units in the human medial gastrocnemius muscle are not spatially localized or functionally grouped.

    Science.gov (United States)

    Héroux, Martin E; Brown, Harrison J; Inglis, J Timothy; Siegmund, Gunter P; Blouin, Jean-Sébastien

    2015-08-15

    Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories or regions, with low-threshold units preferentially located distally. We used intramuscular recordings to measure the territory of muscle fibres from MG MUs and determine whether these MUs are grouped by recruitment threshold or joint action (ankle plantar flexion and knee flexion). The territory of MUs from the MG muscle varied from somewhat localized to highly distributed, with approximately half the MUs spanning at least half the length and width of the muscle. There was also no evidence of regional muscle activity based on MU recruitment thresholds or joint action. The CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. Human medial gastrocnemius (MG) motor units (MUs) are thought to occupy small muscle territories, with low-threshold units preferentially located distally. In this study, subjects (n = 8) performed ramped and sustained isometric contractions (ankle plantar flexion and knee flexion; range: ∼1-40% maximal voluntary contraction) and we measured MU territory size with spike-triggered averages from fine-wire electrodes inserted along the length (seven electrodes) or across the width (five electrodes) of the MG muscle. Of 69 MUs identified along the length of the muscle, 32 spanned at least half the muscle length (≥ 6.9 cm), 11 of which spanned all recording sites (13.6-17.9 cm). Distal fibres had smaller pennation angles (P recruitment threshold or contraction type, nor was there a relationship between MU territory size and recruitment threshold (Spearman's rho = -0.20 and 0.13, P > 0.18). MUs in the human MG have larger territories than previously reported and are not localized based on recruitment threshold or joint action. This indicates that the CNS does not have the means to selectively activate regions of the MG muscle based on task requirements. © 2015 The Authors. The Journal of

  14. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers.

    Science.gov (United States)

    Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C

    2005-08-15

    Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.

  15. THE MODEL OF MOTOR ACTIVITY OPTIMIZATION OF YOUNGER SCHOOL AGE CHILDREN LIVING IN THE CONDITIONS OF THE NORTHERN CITY

    Directory of Open Access Journals (Sweden)

    Zhanna Ildarovna Busheva

    2017-10-01

    Full Text Available Extreme conditions of the North, computerization, Internet and a gadget dependence, high physical and intellectual loads of children activities living in the north negatively affect younger generation health state. It is difficult to overestimate a role of motor activity in expansion of functionality of the developing organism as the lack of locomotion can lead to pathological shifts in an organism. Based on the study of the concept of a ‘motor activity’ and features North of the city the article suggests a model of motor activity optimization of younger school age children living in the conditions of the northern city. It consisted of 6 units related to goal-setting, diagnostic-analytical, concept, process-activity, reflexive-evaluative and effective. The research was conducted on the basis of Surgut city schools and the Surgut region of Khanty-Mansi Autonomous Region-Yugra. During the research we revealed the most priority organization forms of motor activity of younger school age children living in conditions of the northern city. The model of motor activity optimization of younger school age children allows to create necessary optimum volume and to control of motor activity of children of younger school age. Purpose. The purpose of our research was to create model of motor activity optimization of younger school age children living in the conditions of the northern city. Methodology. Analysis and synthesis of the materials as well as the method of simulation are used as the main instruments. Results. A model of motor activity optimization of younger school age children has been elaborated in the course of study and its characteristics have been specified. Practical implications. The results can be of use for teachers at professional educational institutions.

  16. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    Science.gov (United States)

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  17. Firing rate modulation of human motor units in different muscles during isometric contraction with various forces.

    Science.gov (United States)

    Seki, K; Narusawa, M

    1996-05-06

    To examine the factors affecting the control of human motor units, rate coding strategies of the motor units were investigated in upper limb and intrinsic hand muscles during voluntary isometric contraction of steady force levels up to 80% of maximal voluntary contraction. Numerous spike trains from single motor units were recorded from the m. first dorsal interosseous (FDI) and the m. biceps brachii (BB) of eight human subjects by means of tungsten micro-electrodes, and the mean firing rate (MFR) was calculated for each subject and inter-individual comparisons made. The MFRs of the FDI were larger than that of the BB at the higher force level, and substantial differences were not found between these muscles at the lower force level. The slope of the linear regression line of MFRs vs. exerted forces for the FDI was more than twice that for the BB. Therefore, isometric force control of the FDI depends more on the rate coding strategy. The difference in rate coding between the FDI and BB motor units may be determined by factors other than muscle fiber composition, because both muscles are known to possess a similar composition of fiber types. Possible mechanisms underlying these characteristics of rate coding strategy are considered in this report.

  18. Phenomenological and neuropsychological profile across motor variants of delirium in a palliative care unit

    LENUS (Irish Health Repository)

    Leonard, Maeve

    2011-01-01

    Studies using composite measurement of cognition suggest that cognitive performance is similar across motor variants of delirium. The authors assessed neuropsychological and symptom profiles in 100 consecutive cases of DSM-IV delirium allocated to motor subtypes in a palliative-care unit: Hypoactive (N=33), Hyperactive (N=18), Mixed (N=26), and No-Alteration motor groups (N=23). The Mixed group had more severe delirium, with highest scores for DRS-R-98 sleep-wake cycle disturbance, hallucinations, delusions, and language abnormalities. Neither the total Cognitive Test for Delirium nor its five neuropsychological domains differed across Hyperactive, Mixed, and Hypoactive motor groups. Most patients (70%) with no motor alteration had DRS-R-98 scores in the mild or subsyndromal range even though they met DSM-IV criteria. Motor variants in delirium have similar cognitive profiles, but mixed cases differ in expression of several noncognitive features.

  19. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii.

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A; Mezzarane, Rinaldo A; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  20. Reassessment of Non-Monosynaptic Excitation from the Motor Cortex to Motoneurons in Single Motor Units of the Human Biceps Brachii

    Science.gov (United States)

    Nakajima, Tsuyoshi; Tazoe, Toshiki; Sakamoto, Masanori; Endoh, Takashi; Shibuya, Satoshi; Elias, Leonardo A.; Mezzarane, Rinaldo A.; Komiyama, Tomoyoshi; Ohki, Yukari

    2017-01-01

    Corticospinal excitation is mediated by polysynaptic pathways in several vertebrates, including dexterous monkeys. However, indirect non-monosynaptic excitation has not been clearly observed following transcranial electrical stimulation (TES) or cervicomedullary stimulation (CMS) in humans. The present study evaluated indirect motor pathways in normal human subjects by recording the activities of single motor units (MUs) in the biceps brachii (BB) muscle. The pyramidal tract was stimulated with weak TES, CMS, and transcranial magnetic stimulation (TMS) contralateral to the recording side. During tasks involving weak co-contraction of the BB and hand muscles, all stimulation methods activated MUs with short latencies. Peristimulus time histograms (PSTHs) showed that responses with similar durations were induced by TES (1.9 ± 1.4 ms) and CMS (2.0 ± 1.4 ms), and these responses often showed multiple peaks with the PSTH peak having a long duration (65.3% and 44.9%, respectively). Such long-duration excitatory responses with multiple peaks were rarely observed in the finger muscles following TES or in the BB following stimulation of the Ia fibers. The responses obtained with TES were compared in the same 14 BB MUs during the co-contraction and isolated BB contraction tasks. Eleven and three units, respectively, exhibited activation with multiple peaks during the two tasks. In order to determine the dispersion effects on the axon conduction velocities (CVs) and synaptic noise, a simulation study that was comparable to the TES experiments was performed with a biologically plausible neuromuscular model. When the model included the monosynaptic-pyramidal tract, multiple peaks were obtained in about 34.5% of the motoneurons (MNs). The experimental and simulation results indicated the existence of task-dependent disparate inputs from the pyramidal tract to the MNs of the upper limb. These results suggested that intercalated interneurons are present in the spinal cord and

  1. Associations between gross motor skills and physical activity in Australian toddlers.

    Science.gov (United States)

    Veldman, Sanne L C; Jones, Rachel A; Santos, Rute; Sousa-Sá, Eduarda; Pereira, João R; Zhang, Zhiguang; Okely, Anthony D

    2018-08-01

    Physical activity can be promoted by high levels of gross motor skills. A systematic review found a positive relationship in children (3-18 years) but only few studies examined this in younger children. The aim of this study was to examine the association between gross motor skills and physical activity in children aged 11-29 months. Cross-sectional study. This study involved 284 children from 30 childcare services in NSW, Australia (Mean age=19.77±4.18months, 53.2% boys). Physical activity was measured using accelerometers (Actigraph GT3X+). Gross motor skills were assessed using the Peabody Developmental Motor Scales Second Edition (PDMS-2). Multilevel linear regression analyses were computed to assess associations between gross motor skills and physical activity, adjusting for sex, age and BMI. Children spent 53.08% of their time in physical activity and 10.39% in moderate to vigorous physical activity (MVPA). Boys had higher total physical activity (pskills score was 96.16. Boys scored higher than girls in object manipulation (pskills and total physical activity or MVPA. Although gross motor skills were not associated with physical activity in this sample, stronger associations are apparent in older children. This study therefore highlights a potential important age to promote gross motor skills. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  3. Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation

    NARCIS (Netherlands)

    Denier van der Gon, J.J.; Haar Romenij, ter B.M.; Zuylen, Van E.J.

    1985-01-01

    The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion of the elbow joint, supination of the forearm

  4. Influence of Water and Mineral Oil on the Leaks in Satellite Motor Commutation Unit Clearances

    Directory of Open Access Journals (Sweden)

    Śliwiński Paweł

    2017-09-01

    Full Text Available The article describes the flow rates of mineral oil and water flowing, as working media, through the commutation unit of a hydraulic satellite motor. It is demonstrated that geometrical dimensions of commutation unit clearances change as a function of the machine shaft rotation angle. Methods for measuring the rate of this flow and the pressure in the working chamber are presented. The results of pressure measurements in the working chamber during the transition from the filling cycle to the emptying cycle are included. The pressure in the motor’s working chamber changes linearly as a function of the shaft rotation angle, which has a significant effect on the leakage in the commutation unit clearances. The paper presents new mathematical formulas in the form: Q=f(Δpγ to calculate the flow rate of water and mineral oil in the commutation unit clearances. The γ factor is described as a function of fluid viscosity and clearance length (the motor shaft rotation angle. The coefficients used in these formulas were determined based on the results of laboratory tests of a motor supplied with water and mineral oil.

  5. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  6. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  7. Gender impacts on motor skill proficiency-physical activity relationship in children

    Directory of Open Access Journals (Sweden)

    Diana Samara

    2015-12-01

    Full Text Available BACKGROUND Physical activity is the greatest contributor to achievement of adequate physical activity. Children performing adequate daily physical activity will get positive benefits from their activity. Several studies indicate a difference in motor skills between boys and girls. To understand the development of motor skill proficiency and physical activity in boys and girls, a study was conducted to determine the role of gender on motor skill proficiency and physical activity in children aged 6-12 years. METHODS A cross-sectional observational study was conducted and a total of 162 children were included at a primary school in the Grogol area, West Jakarta. Data collection was by questionnaire-based interviews, covering age, gender, and physical activity (watching TV, playing games, and outdoor play. Assessment of motor skills was performed using the Bruininks-Oseretsky Test–Second Edition (BOT-2. Data analysis was performed using SPSS for Windows release 17.0 and level of significance was set at 0.05. RESULTS Multiple linear regression results showed that in boys the strength subset was the most influential factor on TV watching activity, with the higher scores for strength indicating a lower TV watching activity (â=-0.125;p=0.021. Age was the most influential factor on outdoor playing activity in girls, with older girls having lower outdoor playing activity (â=-0.375;p=0.016. CONCLUSIONS This study revealed that gender difference impacts on motor skills and physical activity in children. Higher motor proficiency increases outdoor playing activity only in boys. Primary school pupils should be given opportunities for performing outdoor playing activities to improve their motor proficiency.

  8. Gender impacts on motor skill proficiency-physical activity relationship in children

    Directory of Open Access Journals (Sweden)

    Diana Samara

    2012-12-01

    Full Text Available Background Physical activity is the greatest contributor to achievement of adequate physical activity. Children performing adequate daily physical activity will get positive benefits from their activity. Several studies indicate a difference in motor skills between boys and girls. To understand the development of motor skill proficiency and physical activity in boys and girls, a study was conducted to determine the role of gender on motor skill proficiency and physical activity in children aged 6-12 years. Methods A cross-sectional observational study was conducted and a total of 162 children were included at a primary school in the Grogol area, West Jakarta. Data collection was by questionnaire-based interviews, covering age, gender, and physical activity (watching TV, playing games, and outdoor play. Assessment of motor skills was performed using the Bruininks-Oseretsky Test–Second Edition (BOT-2. Data analysis was performed using SPSS for Windows release 17.0 and level of significance was set at 0.05. Results Multiple linear regression results showed that in boys the strength subset was the most influential factor on TV watching activity, with the higher scores for strength indicating a lower TV watching activity (â=-0.125;p=0.021. Age was the most influential factor on outdoor playing activity in girls, with older girls having lower outdoor playing activity (â=-0.375;p=0.016. Conclusions This study revealed that gender difference impacts on motor skills and physical activity in children. Higher motor proficiency increases outdoor playing activity only in boys. Primary school pupils should be given opportunities for performing outdoor playing activities to improve their motor proficiency.

  9. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    NARCIS (Netherlands)

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  11. The effect of a physical activity intervention on preschoolers' fundamental motor skills - A cluster RCT.

    Science.gov (United States)

    Wasenius, Niko S; Grattan, Kimberly P; Harvey, Alysha L J; Naylor, Patti-Jean; Goldfield, Gary S; Adamo, Kristi B

    2018-07-01

    To assess the effect of a physical activity intervention delivered in the childcare centres (CC), with or without a parent-driven home physical activity component, on children's fundamental motor skills (FMS). Six-month 3-arm cluster randomized controlled trial. Preschoolers were recruited from 18 licensed CC. CC were randomly assigned to a typical curriculum comparison group (COM), childcare intervention alone (CC), or childcare intervention with parental component (CC+HOME). FMS was measured with the Test of Gross Motor Development-2. Linear mixed models were performed at the level of the individual while accounting for clustering. Raw locomotor skills score increased significantly in the CC group (mean difference=2.5 units, 95% Confidence Intervals, CI, 1.0-4.1, p0.05) between group differences were observed in the raw object control skills, sum of raw scores, or gross motor quotient. No significant sex differences were found in any of the measured outcomes. A physical activity intervention delivered in childcare with or without parents' involvement was effective in increasing locomotor skills in preschoolers. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. Sleep/wake firing patterns of human genioglossus motor units.

    Science.gov (United States)

    Bailey, E Fiona; Fridel, Keith W; Rice, Amber D

    2007-12-01

    Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

  13. Electric motor drive unit, especially adjustment drive for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Litterst, P

    1980-05-29

    An electric motor drive unit, particularly an adjustment drive for vehicles with at least two parallel drive shafts is described, which is compact and saves space, and whose manufacturing costs are low compared with those of well-known drive units of this type. The drive unit contains a suitable number of magnet systems, preferably permanent magnet systems, whose pole axes are spaced and run parallel. The two pole magnet systems have diametrically opposite shell-shaped segments, to which the poles are fixed. In at least one magnet system the two segments are connected by diametrically opposite flat walls parallel to the pole axes to form a single magnetic circuit pole housing. The segments of at least one other magnet system are arranged on this pole housing so that one of these flat walls is a magnetically conducting, connecting component of the magnetic circuit of the other magnet system.

  14. Associations among Elementary School Children's Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study.

    Science.gov (United States)

    De Meester, An; Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Children's (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus recommended to expand health interventions in children

  15. Diminished activation of motor working-memory networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Claudia Rottschy

    Full Text Available Parkinson's disease (PD is characterized by typical extrapyramidal motor features and increasingly recognized non-motor symptoms such as working memory (WM deficits. Using functional magnetic resonance imaging (fMRI, we investigated differences in neuronal activation during a motor WM task in 23 non-demented PD patients and 23 age- and gender-matched healthy controls. Participants had to memorize and retype variably long visuo-spatial stimulus sequences after short or long delays (immediate or delayed serial recall. PD patients showed deficient WM performance compared to controls, which was accompanied by reduced encoding-related activation in WM-related regions. Mirroring slower motor initiation and execution, reduced activation in motor structures such as the basal ganglia and superior parietal cortex was detected for both immediate and delayed recall. Increased activation in limbic, parietal and cerebellar regions was found during delayed recall only. Increased load-related activation for delayed recall was found in the posterior midline and the cerebellum. Overall, our results demonstrate that impairment of WM in PD is primarily associated with a widespread reduction of task-relevant activation, whereas additional parietal, limbic and cerebellar regions become more activated relative to matched controls. While the reduced WM-related activity mirrors the deficient WM performance, the additional recruitment may point to either dysfunctional compensatory strategies or detrimental crosstalk from "default-mode" regions, contributing to the observed impairment.

  16. Active training paradigm for motor imagery BCI.

    Science.gov (United States)

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  17. Social interaction is associated with changes in infants’ motor activity

    Directory of Open Access Journals (Sweden)

    Céline Scola

    2015-11-01

    Full Text Available Background: In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods: We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song. Results: The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion: These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants.

  18. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    DEFF Research Database (Denmark)

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning......-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical.......73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities...

  19. Acute effects of dynamic exercises on the relationship between the motor unit firing rate and the recruitment threshold.

    Science.gov (United States)

    Ye, Xin; Beck, Travis W; DeFreitas, Jason M; Wages, Nathan P

    2015-04-01

    The aim of this study was to compare the acute effects of concentric versus eccentric exercise on motor control strategies. Fifteen men performed six sets of 10 repetitions of maximal concentric exercises or eccentric isokinetic exercises with their dominant elbow flexors on separate experimental visits. Before and after the exercise, maximal strength testing and submaximal trapezoid isometric contractions (40% of the maximal force) were performed. Both exercise conditions caused significant strength loss in the elbow flexors, but the loss was greater following the eccentric exercise (t=2.401, P=.031). The surface electromyographic signals obtained from the submaximal trapezoid isometric contractions were decomposed into individual motor unit action potential trains. For each submaximal trapezoid isometric contraction, the relationship between the average motor unit firing rate and the recruitment threshold was examined using linear regression analysis. In contrast to the concentric exercise, which did not cause significant changes in the mean linear slope coefficient and y-intercept of the linear regression line, the eccentric exercise resulted in a lower mean linear slope and an increased mean y-intercept, thereby indicating that increasing the firing rates of low-threshold motor units may be more important than recruiting high-threshold motor units to compensate for eccentric exercise-induced strength loss. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Voluntary drive-dependent changes in vastus lateralis motor unit firing rates during a sustained isometric contraction at 50% of maximum knee extension force.

    NARCIS (Netherlands)

    de Ruiter, C.J.; Elzinga, M.J.; Verdijk, PW; van Mechelen, W.; de Haan, A.

    2004-01-01

    The purpose of the present study was to relate the expected inter-subject variability in voluntary drive of the knee extensor muscles during a sustained isometric contraction to the changes in firing rates of single motor units. Voluntary activation, as established with super-imposed electrical

  1. Changes in recruitment order of motor units in the human biceps muscle

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Denier van der Gon, J.J.; Gielen, C.C.A.M.

    1982-01-01

    Changes in recruitment threshold of individual motor units of the human biceps (caput longum), a multifunctional muscle, were investigated during different tasks, i.e., isometric flexion of the elbow, isometric supination of the forearm, and isometric exorotation of the humerus of the 110° flexed

  2. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  3. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Science.gov (United States)

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning activities. Thus, the aim of this study was to investigate whether fine or gross motor activity integrated into math lessons (i.e., motor-enrichment) could improve children's mathematical performance. Methods: A 6-week within school cluster-randomized intervention study investigated the effects of motor-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical teaching enriched with fine and gross motor activity, respectively. The children were tested before (T0), immediately after (T1) and 8 weeks after the intervention (T2). A standardized mathematical test (50 tasks) was used to evaluate mathematical performance. Furthermore, it was investigated whether motor-enriched math was accompanied by different effects in low and normal math performers. Additionally, the study investigated the potential contribution of cognitive functions and motor skills on mathematical performance. Results: All groups improved their mathematical performance from T0 to T1. However, from T0 to T1, the improvement was significantly greater in GMM compared to FMM (1.87 ± 0.71 correct answers) (p = 0.02). At T2 no significant differences in mathematical performance were observed. A subgroup analysis revealed that normal math-performers benefitted from GMM compared to both CON 1.78 ± 0.73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly

  4. Relations between Playing Activities and Fine Motor Development

    Science.gov (United States)

    Suggate, Sebastian; Stoeger, Heidrun; Pufke, Eva

    2017-01-01

    Children's fine motor skills (FMS) are being increasingly recognized as an important aspect of preschool development; yet, we know very little about the experiences that foster their development. We utilized a parent-administered children's fine and gross motor activities questionnaire (MAQ) to investigate links with FMS. We recruited a sample of…

  5. The correlation between motor proficiency and physical activity in ...

    African Journals Online (AJOL)

    Lizl-Louise van Niekerk

    eOseretsky Test of Motor Proficiency 2 (BOT-2) for motor proficiency, and the International. Physical Activity ... Pienaar, 2007; Malina, 2012). ..... sults of Hardy, Reinten-Reynolds, Espinel, Zask, and Okely .... Journal of Psychiatric and Mental.

  6. Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle.

    Science.gov (United States)

    de Ruiter, C J; Elzinga, M J H; Verdijk, P W L; van Mechelen, W; de Haan, A

    2005-08-01

    We investigated the effects of low frequency fatigue (LFF) on post-exercise changes in rectified surface EMG (rsEMG) and single motor unit EMG (smuEMG) in vastus lateralis muscle (n = 9). On two experimental days the knee extensors were fatigued with a 60-s-isometric contraction (exercise) at 50% maximal force capacity (MFC). On the first day post-exercise (15 s, 3, 9, 15, 21 and 27 min) rsEMG and electrically-induced (surface stimulation) forces were investigated. SmuEMG was obtained on day two. During short ramp and hold (5 s) contractions at 50% MFC, motor unit discharges of the same units were followed over time. Post-exercise MFC and tetanic force (100 Hz stimulation) recovered to about 90% of the pre-exercise values, but recovery with 20 Hz stimulation was less complete: the 20-100 Hz force ratio (mean +/- SD) decreased from 0.65+/-0.06 (pre-exercise) to 0.56+/-0.04 at 27 min post-exercise (Pexercise rsEMG (% pre-exercise maximum) and motor unit discharge rate were 51.1 +/- 12.7% and 14.1 +/- 3.7 (pulses per second; pps) respectively, 15 s post-exercise the respective values were 61.4 +/- 15.4% (P0.05). Thereafter, rsEMG (at 50% MFC) remained stable but motor unit discharge rate significantly increased to 17.7 +/- 3.9 pps 27 min post-exercise. The recruitment threshold decreased (Pexercise to 25.2 +/- 6.7% 27 min post-exercise. The increase in discharge rate was significantly greater than could be expected from the decrease in recruitment threshold. Thus, post-exercise LFF was compensated by increased motor unit discharge rates which could only partly be accounted for by the small decrease in motor unit recruitment threshold.

  7. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    Science.gov (United States)

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  8. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes.

    Science.gov (United States)

    Sanghavi, Paulomi; D'Souza, Ashwin; Rai, Ashim; Rai, Arpan; Padinhatheeri, Ranjith; Mallik, Roop

    2018-05-07

    How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Motor unit number index (MUNIX) derivation from the relationship between the area and power of surface electromyogram: a computer simulation and clinical study

    Science.gov (United States)

    Miralles, Francesc

    2018-06-01

    Objective. The motor unit number index (MUNIX) is a technique based on the surface electromyogram (sEMG) that is gaining acceptance as a method for monitoring motor neuron loss, because it is reliable and produces less discomfort than other electrodiagnostic techniques having the same intended purpose. MUNIX assumes that the relationship between the area of sEMG obtained at increasing levels of muscle activation and the values of a variable called ‘ideal case motor unit count’ (ICMUC), defined as the product of the ratio between area and power of the compound muscle action potential (CMAP) by that of the sEMG, is described by a decreasing power function. Nevertheless, the reason for this comportment is unknown. The objective of this work is to investigate if the definition of MUNIX could derive from more basic properties of the sEMG. Approach. The CMAP and sEMG epochs obtained at different levels of muscle activation from (1) the abductor pollicis brevis (APB) muscle of persons with and without a carpal tunnel syndrome (CTS) and (2) from a computer model of sEMG generation previously published were analysed. Main results. MUNIX reflects the power relationship existing between the area and power of a sEMG. The exponent of this function was smaller in patients with motor CTS than in the rest of the subjects. The analysis of the relationship between the area and power of a sEMG could aid in distinguishing a MUNIX reduction due to a motoneuron loss from that due to a loss of muscle fibre. Significance. MUNIX is derived from the relationship between the area and power of a sEMG. This relationship changes when there is a loss of motor units (MUs), which partially explains the diagnostic sensibility of MUNIX. Although the reasons for this change are unknown, it could reflect an increase in the proportion of MUs of great amplitude.

  10. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates.

    Science.gov (United States)

    Negro, Francesco; Holobar, Ales; Farina, Dario

    2009-12-15

    The aim of the study was to investigate the relation between linear transformations of motor unit discharge rates and muscle force. Intramuscular (wire electrodes) and high-density surface EMG (13 x 5 electrode grid) were recorded from the abductor digiti minimi muscle of eight healthy men during 60 s contractions at 5%, 7.5% and 10% of the maximal force. Spike trains of a total of 222 motor units were identified from the EMG recordings with decomposition algorithms. Principal component analysis of the smoothed motor unit discharge rates indicated that one component (first common component, FCC) described 44.2 +/- 7.5% of the total variability of the smoothed discharge rates when computed over the entire contraction interval and 64.3 +/- 10.2% of the variability when computed over 5 s intervals. When the FCC was computed from four or more motor units per contraction, it correlated with the force produced by the muscle (62.7 +/- 10.1%) by a greater degree (P FCC and the force signal increased up to 71.8 +/- 13.1% when the duration and the shape of the smoothing window for discharge rates were similar to the average motor unit twitch force. Moreover, the coefficients of variation (CoV) for the force and for the FCC signal were correlated in all subjects (R(2) range = 0.14-0.56; P measures on the tibialis anterior muscle of an additional eight subjects during contractions at forces up to 20% of the maximal force (e.g. FCC explained 59.8 +/- 11.0% of variability of the smoothed discharge rates). In conclusion, one signal captures most of the underlying variability of the low-frequency components of motor unit discharge rates and explains large part of the fluctuations in the motor output during isometric contractions.

  11. Motor performance and physical activity habits of college students in Costa Rica

    Directory of Open Access Journals (Sweden)

    Judith Jiménez-Díaz

    2016-01-01

    Full Text Available The purpose of this study was to analyze the motor performance of fundamental motor skills and physical activity habits of students at the University of Costa Rica. A total of 92 males and 48 females (M age = 19.78 yr., SD = 4.72 yr. enrolled in different Sports Activity courses taught at the Rodrigo Facio campus was assessed. The Instrument for the Evaluation of Fundamental Movement Patterns was used to assess motor performance in eight fundamental movement patterns (running, jumping, galloping, catching, throwing, bouncing, and kicking. The physical activity level was obtained from a self-reported questionnaire developed for such purpose. Results show that 28% of the participants were physically active. Participants presented a proficient performance in kicking, running, and galloping, but a non-proficient performance in jumping, hopping, bouncing, throwing and catching. Physical activity behavior was related to the overall performance of the motor skills assessed (Rho = .233; p = .006. In conclusion, college students presented a proficient performance on three of the eight skills assessed. In addition, a relationship was found between physical activity levels and performance. Physical Education teachers are recommended to develop activities to enhance motor performance of fundamental motor skills in college students.

  12. Motor proficiency and physical fitness in active and inactive girls ...

    African Journals Online (AJOL)

    In modern day society physical activity levels diminish rapidly among girls and may be a direct consequence of girls experiencing motor difficulties. Therefore the aim of the study was to compare motor proficiency levels and physical fitness levels among active and inactive girls (N=97), aged 12 to 13 years. The BOTMP ...

  13. Motor activation in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS: T...

  14. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion.

    Science.gov (United States)

    Lauber, Benedikt; Lichtwark, Glen A; Cresswell, Andrew G

    2014-06-01

    While medial gastrocnemius (MG) and soleus (SOL) are considered synergists, they are anatomically exclusive in that SOL crosses only the ankle, while MG crosses both the knee and ankle. Due to the force-length properties of both active and passive structures, activation of SOL and MG must be constantly regulated to provide the required joint torques for any planned movement. As such, the aim of this study was to investigate the neural regulation of MG and SOL when independently changing their length by changing only the knee joint angle, thus exclusively altering the length of MG fibers. MG and SOL motor units (MU) were recorded intramuscularly along with ultrasound imaging of MG and SOL fascicle lengths, while moving the knee through 60° of rotation and maintaining a low level of voluntary plantar flexor torque. The results showed a reciprocal activation of MG and SOL as the knee was moved into flexion and extension. A clear reduction in MG MU firing rates occurred as the knee was flexed (MG fascicles shortening), with de-recruitment of most MG MU occurring at close to full knee flexion. A concomitant increase in SOL MU activity was observed while no change in the length of its fascicles was found. The opposite effects were found when the knee was moved into extension. A strong correlation (ICC = 0.78) was found between the fascicle length at which MG MUs were de-recruited and subsequently re-recruited. This was stronger than the relationship of de-recruitment and re-recruitment with knee angle (ICC = 0.52), indicating that in this instance, muscle fascicle length rather than joint angle is more influential in regulating MG recruitment. Such a reciprocal arrangement like the one presented here for SOL and MG is essential for human voluntary movements such as walking or cycling. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  16. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  17. Motor Development and Physical Activity: A Longitudinal Discordant Twin-Pair Study.

    Science.gov (United States)

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Pulkkinen, Lea; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri

    2015-10-01

    Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Altogether, 1550 twin pairs from the FinnTwin12 study and 1752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents' report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET·h·d) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (P men and women.

  18. The lateralization of motor cortex activation to action words

    Directory of Open Access Journals (Sweden)

    Olaf eHauk

    2011-11-01

    Full Text Available What determines the laterality of activation in motor cortex for words whose meaning is related to bodily actions? It has been suggested that the neuronal representation of the meaning of action-words is shaped by individual experience. However, core language functions are left-lateralized in the majority of both right- and left-handers. It is still an open question to what degree connections between left-hemispheric core language areas and right-hemispheric motor areas can play a role in semantics. We investigated laterality of brain activation using fMRI in right- and left-handed participants in response to visually presented hand-related action-words, namely uni- and bi-manual actions (such as "throw" and "clap". These stimulus groups were matched with respect to general (hand-action-relatedness, but differed with respect to whether they are usually performed with the dominant hand or both hands. We may expect generally more left-hemispheric motor-cortex activation for hand-related words in both handedness groups, with possibly more bilateral activation for bimanual words as well as left-handers. In our study, both participant groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups also showed a left-lateralized activation pattern to uni-manual words. We argue that this reflects the effect of left-hemispheric language dominance on the formation of semantic brain circuits on the basis of Hebbian correlation learning.

  19. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Directory of Open Access Journals (Sweden)

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  20. Vicarious motor activation during action perception: beyond correlational evidence

    Directory of Open Access Journals (Sweden)

    Alessio eAvenanti

    2013-05-01

    Full Text Available Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others’ actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people’s behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals’ ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings.

  1. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    Science.gov (United States)

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus

  2. Motor-related brain activity during action observation: a neural substrate for electrocorticographic brain-computer interfaces after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jennifer L Collinger

    2014-02-01

    Full Text Available After spinal cord injury (SCI, motor commands from the brain are unable to reach peripheral nerves and muscles below the level of the lesion. Action observation, in which a person observes someone else performing an action, has been used to augment traditional rehabilitation paradigms. Similarly, action observation can be used to derive the relationship between brain activity and movement kinematics for a motor-based brain-computer interface (BCI even when the user cannot generate overt movements. BCIs use brain signals to control external devices to replace functions that have been lost due to SCI or other motor impairment. Previous studies have reported congruent motor cortical activity during observed and overt movements using magnetoencephalography (MEG and functional magnetic resonance imaging (fMRI. Recent single-unit studies using intracortical microelectrodes also demonstrated that a large number of motor cortical neurons had similar firing rate patterns between overt and observed movements. Given the increasing interest in electrocorticography (ECoG-based BCIs, our goal was to identify whether action observation-related cortical activity could be recorded using ECoG during grasping tasks. Specifically, we aimed to identify congruent neural activity during observed and executed movements in both the sensorimotor rhythm (10-40 Hz and the high-gamma band (65-115 Hz which contains significant movement-related information. We observed significant motor-related high-gamma band activity during action observation in both able-bodied individuals and one participant with a complete C4 SCI. Furthermore, in able-bodied participants, both the low and high frequency bands demonstrated congruent activity between action execution and observation. Our results suggest that action observation could be an effective and critical procedure for deriving the mapping from ECoG signals to intended movement for an ECoG-based BCI system for individuals with

  3. Interplay of upper and lower motor neuron degeneration in amyotrophic lateral sclerosis.

    Science.gov (United States)

    de Carvalho, Mamede; Poliakov, Artiom; Tavares, Cristiano; Swash, Michael

    2017-11-01

    We studied motor unit recruitment to test a new method to identify motor unit firing rate (FR) variability. We studied 68 ALS patients, with and without upper neuron signs (UMN) in lower limbs, 24 patients with primary lateral sclerosis (PLS), 13 patients with spinal cord lesion and 39 normal subjects. All recordings were made from tibialis anterior muscles of normal strength. Subjects performed a very slight contraction in order to activate 2 motor units in each recording. 5-7 motor unit pairs were recorded in each subject. Mean consecutive differences (MCD) were calculated for each pair of potentials. The mean MCD for each muscle was estimated as the mean from the total number of pairs recorded. Ap valuemotor unit in a pair of units was markedly reduced in PLS, and in subjects with spinal cord lesions. These results support a lower threshold and reduced FR fluctuation in spinal motor neurons of spastic patients. This method can be developed for detection of UMN lesions. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  4. MOTOR UNIT FIRING RATES DURING SPASMS IN THENAR MUSCLES OF SPINAL CORD INJURED SUBJECTS

    Directory of Open Access Journals (Sweden)

    Inge eZijdewind

    2014-11-01

    Full Text Available Abstract Involuntary contractions of paralyzed muscles (spasms commonly disrupt daily activities and rehabilitation after human spinal cord injury. Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical spinal cord injury. Intramuscular electromyographic activity (EMG, surface EMG, and force were recorded during thenar muscle spasms that occurred spontaneously or that were triggered by movement of a shoulder or leg. Most spasms were submaximal (mean: 39%, SD: 33 of the force evoked by median nerve stimulation at 50 Hz with strong relationships between EMG and force (R2>0.69. Unit recruitment occurred over a wide force range (0.2-103% of 50 Hz force. Significant unit rate modulation occurred during spasms (frequency at 25% maximal force: 8.8 Hz, 3.3 SD; at maximal force: 16.1 Hz, 4.1 SD. Mean recruitment frequency (7.1 Hz, 3.2 SD was significantly higher than derecruitment frequency (5.4 Hz, 2.4 SD. Coactive unit pairs that fired for more than 4 s showed high (R2>0.7, n=4 or low (R2:0.3-0.7, n=12 rate-rate correlations, and derecruitment reversals (21 pairs, 29%. Later recruited units had higher or lower maximal firing rates than lower threshold units. These discrepant data show that coactive motoneurons are driven by both common inputs and by synaptic inputs from different sources during muscle spasms. Further, thenar motoneurons can still fire at high rates in response to various peripheral inputs after spinal cord injury, supporting the idea that low maximal voluntary firing rates and forces in thenar muscles result from reduced descending drive.

  5. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    Science.gov (United States)

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  7. Safety aspects of postanesthesia care unit discharge without motor function assessment after spinal anesthesia

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Jørgensen, Christoffer Calov; Laursen, Mogens Berg

    2017-01-01

    Background: Postanesthesia care unit (PACU) discharge without observation of lower limb motor function after spinal anesthesia has been suggested to signifcantly reduce PACU stay and enhance resource optimization and early rehabilitation but without enough data to allow clinical recommendations...... or knee arthroplasty was noninferior to motor function assessment in achieving length of stay 4 days or less or 30-day readmissions. Because a nonsignifcant tendency toward increased adverse events during the frst 24h in the ward was discovered, further safety data are needed in patients without...

  8. Motor activation in SPG4-linked hereditary spastic paraplegia

    DEFF Research Database (Denmark)

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS......: Thirteen patients and 13 normal controls matched for age, gender and handedness underwent O15-labelled water positron emission tomography during (1) right ankle flexion-extension, (2) right shoulder flexion-extension and (3) rest. Within-group comparisons of movement vs. rest (simple main effects......, the supplementary motor areas and the right premotor cortex compared to controls. CONCLUSIONS: Motor cortical reorganisation may explain this result, but as no significant differences were recognised in the motor response of the unaffected limb, differences in functional demands should also be considered...

  9. The effect of tumour type and distance on activation in the motor cortex

    International Nuclear Information System (INIS)

    Liu, Wen-Ching; Feldman, Susan C.; Zimmerman, Aphrodite; Sinensky, Rebecca; Rao, Satyaveni; Schulder, Michael; Kalnin, Andrew J.; Holodny, Andrei I.

    2005-01-01

    Functional MRI has been widely used to identify the eloquent cortex in neurosurgical/radiosurgical planning and treatment of CNS neoplasms and malformations. In this study we examined the effect of CNS tumours on the blood oxygenation level-dependent (BOLD) activation maps in the primary and supplementary motor cortex. A total of 33 tumour patients and five healthy right-handed adults were enrolled in the study. Patients were divided into four groups based on tumour type and distance from primary motor cortex: (1) intra-axial, near, (2) extra-axial, near, (3) intra-axial, far and (4) extra-axial, far. The intra-axial groups consisted of patients with astrocytomas, glioblastomas and metastatic tumours of mixed histology; all the extra-axial tumours were meningiomas. The motor task was a bilateral, self-paced, finger-tapping paradigm. Anatomical and functional data were acquired with a 1.5 T GE Echospeed scanner. Maps of the motor areas were derived from the BOLD images, using SPM99 software. For each subject we first determined the activation volume in the primary motor area and the supplementary motor area (SMA) and then calculated the percentage difference between the hemispheres. Two factors influenced the activation volumes: tumour type (P<0.04) and distance from the eloquent cortex (P<0.06). Patients in group 1 (intra-axial, near) had the smallest activation area in the primary motor cortex, the greatest percentage difference in the activation volume between the hemispheres, and the largest activation volume in the SMA. Patients in group 4 (extra-axial, far) had the largest activation volume in the primary motor cortex, the least percentage difference in volume between the hemispheres, and the smallest activation volume in the SMA. There was no significant change in the volume of the SMA in any group, compared with controls, suggesting that, although there is a gradual decrease in SMA volume with distance from the primary motor area, the effect on motor

  10. Design of voice coil motor dynamic focusing unit for a laser scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon G.; Kim, Gaeun; Lee, Chan-Woo; Lee, Soo-Hun; Jeon, Yongho, E-mail: princaps@ajou.ac.kr [Department of Mechanical Engineering, Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-749 (Korea, Republic of)

    2014-04-15

    Laser scanning systems have been used for material processing tasks such as welding, cutting, marking, and drilling. However, applications have been limited by the small range of motion and slow speed of the focusing unit, which carries the focusing optics. To overcome these limitations, a dynamic focusing system with a long travel range and high speed is needed. In this study, a dynamic focusing unit for a laser scanning system with a voice coil motor (VCM) mechanism is proposed to enable fast speed and a wide focusing range. The VCM has finer precision and higher speed than conventional step motors and a longer travel range than earlier lead zirconium titanate actuators. The system has a hollow configuration to provide a laser beam path. This also makes it compact and transmission-free and gives it low inertia. The VCM's magnetics are modeled using a permeance model. Its design parameters are determined by optimization using the Broyden–Fletcher–Goldfarb–Shanno method and a sequential quadratic programming algorithm. After the VCM is designed, the dynamic focusing unit is fabricated and assembled. The permeance model is verified by a magnetic finite element method simulation tool, Maxwell 2D and 3D, and by measurement data from a gauss meter. The performance is verified experimentally. The results show a resolution of 0.2 μm and travel range of 16 mm. These are better than those of conventional focusing systems; therefore, this focusing unit can be applied to laser scanning systems for good machining capability.

  11. Abstract Art and Cortical Motor Activation: an EEG study.

    Directory of Open Access Journals (Sweden)

    Maria Alessandra eUmilta'

    2012-11-01

    Full Text Available The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al 2007, Redies, 2007, and Taylor et al, 2011, neglected the question, while the field of neuroesthetics (Zeki, 1999; Ramachandran and Hirstein, 1999 mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder’s brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works. Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works.

  12. Physiological consequences of doublet discharges on motoneuronal firing and motor unit force

    Directory of Open Access Journals (Sweden)

    Włodzimierz eMrówczyński

    2015-03-01

    Full Text Available The double discharges are observed at the onset of contractions of mammalian motor units (MUs, especially during their recruitment to strong or fast movements. Doublets lead to MU force increase and improve ability of muscles to maintain high force during prolonged contractions. In this review we discuss an ability to produce doublets by fast and slow motoneurons (MNs, their influence on the course of action potential afterhyperpolarization as well as its role in modulation of the initial stage of the firing pattern of MNs. In conclusion, a generation of doublets is an important strategy of motor control, responsible for fitting the motoneuronal firing rate to the optimal for MUs at the start of their contraction, necessary for increment of muscle force.

  13. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  14. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  15. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    Science.gov (United States)

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.

  16. Effects of whole body vibration on motor unit recruitment and threshold.

    Science.gov (United States)

    Pollock, Ross D; Woledge, Roger C; Martin, Finbarr C; Newham, Di J

    2012-02-01

    Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.

  17. Analysis of the low motor activity of students of the specialized educational department

    Directory of Open Access Journals (Sweden)

    Gryban G.P.

    2012-02-01

    Full Text Available The paper highlights the results of investigations into the reasons for the low motor activity of students who belong to a special medical group due to their state of health. Deals with the gap between huge amount of mental activity and insufficient motor activity. The absence of dosed motor activity has it's negative impact on students' health, reduces their labor activity and the quality of educational process. The combination of physical exercises provide healthy and training effect on the students who have health condition aberrations.

  18. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  19. Gastric myoelectrical and antroduodenal motor activity in patients with achalasia

    NARCIS (Netherlands)

    Verhagen, M. A.; Samsom, M.; Smout, A. J.

    1998-01-01

    Achalasia is a primary motor disorder of the oesophagus, in which the myenteric plexus is involved. However, abnormalities in other parts of the digestive tract have also been described in achalasia. Whether gastric myoelectrical and duodenal motor activity in these patients is also affected is

  20. [Clinico-electromyographic evaluation of the state of motor units of the hand muscles replanted after traumatic amputation].

    Science.gov (United States)

    Rezkov, G I

    1991-01-01

    Needle electromyography was used to study motor units of the muscles leading away the thumb and little finger, replanted after traumatic amputation of the large segment of the upper limb in 34 patients. A direct relationship was discovered between the time of the appearance of action potentials of motor units (PMU), recovery of the movements, and trauma level. The appearance of clear PMU associated with movement recovery was recorded not earlier than 6-7 months after trauma. Analysis of PMU is a reliable criterion for the recovery of the own movements of the muscles and function of the neuromotor apparatus in patients with the replanted upper limb segment.

  1. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically.

    Science.gov (United States)

    Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell

    2015-01-01

    Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    Science.gov (United States)

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted

  3. Is generic physical activity or specific exercise associated with motor abilities?

    Science.gov (United States)

    Rinne, Marjo; Pasanen, Matti; Miilunpalo, Seppo; Mälkiä, Esko

    2010-09-01

    Evidence of the effect of leisure time physical activity (LTPA) modes on the motor abilities of a mature population is scarce. The purpose of this study was to compare the motor abilities of physically active and inactive men and women and to examine the associations of different exercise modes and former and recent LTPA (R-LTPA) with motor ability and various physical tests. The LTPA of the participants (men n = 69, women n = 79; aged 41-47 yr) was ascertained by a modified Physical Activity Readiness Questionnaire, including questions on the frequency, duration, and intensity of R-LTPA and former LTPA and on exercise modes. Motor abilities in terms of balance, agility, and coordination were assessed with a battery of nine tests supplemented with five physical fitness tests. Multiple statistical methods were used in analyses that were conducted separately for men and women. The MET-hours per week of R-LTPA correlated statistically significantly with the tests of agility and static balance (rs = -0.28, P = 0.022; rs = -0.25, P = 0.043, respectively) among men and with the static balance (rs = 0.41), 2-km walking (rs = 0.36), step squat (rs = 0.36) (P women. In the stepwise regression among men, the most frequent statistically significant predictor was the playing of several games. For women, a history of LTPA for more than 3 yr was the strongest predictor for good results in almost all tests. Participants with long-term and regular LTPA had better motor performance, and especially a variety of games improve components of motor ability. Diverse, regular, and long-term exercise including both specific training and general activity develops both motor abilities and physical fitness.

  4. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    Science.gov (United States)

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P recruitment was significantly (P recruited MUs and the RMS EMG values decreased significantly (P recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  5. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Science.gov (United States)

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  6. EEG alpha activity reflects motor preparation rather than the mode of action selection

    Directory of Open Access Journals (Sweden)

    Marie-Pierre eDeiber

    2012-08-01

    Full Text Available Alpha-band activity (8-13 Hz is suppressed by sensory stimulation and movements, modulated by attention, working memory and mental tasks and may be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None, a posterior alpha power decrease (event-related desynchronization, ERD dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha power increase (event-related synchronization, ERS, suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: 1 a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and 2 an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation. 

  7. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Science.gov (United States)

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751

  8. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Science.gov (United States)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  9. Media use, sports activities, and motor fitness in childhood and adolescence.

    Science.gov (United States)

    Kaiser-Jovy, Sebastian; Scheu, Anja; Greier, Klaus

    2017-07-01

    Physical activity is one of the key determinants of physical, mental, and social health of children and adolescents. Therefore, the early development of health-relevant behavior patterns is of high relevance. To examine the impact of selected socioeconomic factors as well as media consumption, on sports activities and the motor skills of 10- to 14-year-old secondary school students. Body height and body weight were measured. The motor skills were determined with the Deutschen Motorik Test (DMT 6‑18; German Motor Test). Information about media use, media equipment, recreational sports activities, migration status, and the parents' profession was collected by means of a standardized questionnaire. A total of 391 adolescents have been tested (male 235; female 156). Body mass index (BMI) types are evenly distributed on gender. On a weekday, the pupils spend 10.3 h using media (SD ± 9.1 h). On weekends, media use increases up to 12 h per day on average (SD ± 9.7 h). The number of available media is independent from the age of the respondents and the social status of their families. According to bivariate correlations, heavy media use, a high BMI as well as migration status correlate negatively with both sports activities and motor skills. BMI seems to have the strongest influence on athletic performance (b = 0.41). Media use is an important determinant of juvenile sports activity and motor performance, being part of a complex juvenile leisure behavior.

  10. Nocturnal motor activity in fibromyalgia patients with poor sleep quality.

    Science.gov (United States)

    Hyyppä, M T; Kronholm, E

    1995-01-01

    Nocturnal motor activity was examined in long-term rehabilitation patients complaining of poor sleep and having fibromyalgia syndrome (N = 24) or other musculoskeletal disorders (N = 60) and compared with that in 91 healthy controls drawn from a random community sample. Self-reports on sleep complaints and habits were collected. The frequency of nocturnal body movements, the "apnoea" index and ratio of "quiet sleep" to total time in bed were measured using the Static Charge Sensitive Bed (SCSB) (BioMatt). As a group, patients with fibromyalgia syndrome did not differ from patients with other musculoskeletal disorders or from healthy controls in their nocturnal motor activity. The "apnoea" index was a little higher in the fibromyalgia group than in the healthy control group but did not differ from that of the group of other musculoskeletal patients. Further multivariate analyses adjusted for age, BMI, medication and "apnoea" index did not support the assumption that an increased nocturnal motor activity characterizes patients with fibromyalgia syndrome.

  11. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Science.gov (United States)

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  12. Promoting gross motor skills and physical activity in childcare: A translational randomized controlled trial.

    Science.gov (United States)

    Jones, Rachel A; Okely, Anthony D; Hinkley, Trina; Batterham, Marijka; Burke, Claire

    2016-09-01

    Educator-led programs for physical activity and motor skill development show potential but few have been implemented and evaluated using a randomized controlled design. Furthermore, few educator-led programs have evaluated both gross motor skills and physical activity. Therefore, the aim of this study was to evaluate a gross motor skill and physical activity program for preschool children which was facilitated solely by childcare educators. A six-month 2-arm randomized controlled trial was implemented between April and September 2012 in four early childhood centers in Tasmania, Australia. Educators participated in ongoing professional development sessions and children participated in structured physical activity lessons and unstructured physical activity sessions. In total, 150 children were recruited from four centers which were randomized to intervention or wait-list control group. Six early childhood educators from the intervention centers were trained to deliver the intervention. Gross motor skills were assessed using the Test of Gross Motor Development (2nd edition) and physical activity was measured objectively using GT3X+ Actigraph accelerometers. No statistically significant differences were identified. However, small to medium effect sizes, in favor of the intervention group, were evident for four of the five gross motor skills and the total gross motor skill score and small to medium effect sizes were reported for all physical activity outcomes. This study highlights the potential of educator-led physical activity interventions and supports the need for further translational trials within the early childhood sector. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  14. Chemical and thermal modulation of molecular motor activities

    Science.gov (United States)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  15. Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.

    Science.gov (United States)

    Devinney, Michael J; Fields, Daryl P; Huxtable, Adrianne G; Peterson, Timothy J; Dale, Erica A; Mitchell, Gordon S

    2015-05-27

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. Copyright © 2015 the authors 0270-6474/15/358107-11$15.00/0.

  16. Proposal for the award of a contract for the supply of motor unit for the jacks for the LHC low-beta quadrupoles

    CERN Document Server

    2005-01-01

    This document concerns the award of a contract for the supply of 134 motor units for the jacks for the LHC low-beta quadrupoles. The Finance Committee is invited to agree to the negotiation of a contract with ZTS VVU KOSICE (SK), the lowest bidder, for the supply of 134 motor units for a total amount of 1 266 674 Swiss francs, not subject to revision.

  17. Motor control by precisely timed spike patterns

    DEFF Research Database (Denmark)

    Srivastava, Kyle H; Holmes, Caroline M; Vellema, Michiel

    2017-01-01

    whether the information in spike timing actually plays a role in brain function. By examining the activity of individual motor units (the muscle fibers innervated by a single motor neuron) and manipulating patterns of activation of these neurons, we provide both correlative and causal evidence......A fundamental problem in neuroscience is understanding how sequences of action potentials ("spikes") encode information about sensory signals and motor outputs. Although traditional theories assume that this information is conveyed by the total number of spikes fired within a specified time...... interval (spike rate), recent studies have shown that additional information is carried by the millisecond-scale timing patterns of action potentials (spike timing). However, it is unknown whether or how subtle differences in spike timing drive differences in perception or behavior, leaving it unclear...

  18. Categorization of safety related motor operated valve safety significance for Ulchin Unit 3

    International Nuclear Information System (INIS)

    Kang, D. I.; Kim, K. Y.

    2002-03-01

    We performed a categorization of safety related Motor Operated Valve (MOV) safety significance for Ulchin Unit 3. The safety evaluation of MOV of domestic nuclear power plants affects the generic data used for the quantification of MOV common cause failure ( CCF) events in Ulchin Units 3 PSA. Therefore, in this study, we re-estimated the MGL(Multiple Greek Letter) parameter used for the evaluation of MOV CCF probabilities in Ulchin Units 3 Probabilistic Safety Assessment (PSA) and performed a classification of the MOV safety significance. The re-estimation results of the MGL parameter show that its value is decreased by 30% compared with the current value in Ulchin Unit 3 PSA. The categorization results of MOV safety significance using the changed value of MGL parameter shows that the number of HSSCs(High Safety Significant Components) is decreased by 54.5% compared with those using the current value of it in Ulchin Units 3 PSA

  19. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  20. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  1. Selective fatigue of fast motor units after electrically elicited muscle contractions.

    Science.gov (United States)

    Hamada, Taku; Kimura, Tetsuya; Moritani, Toshio

    2004-10-01

    The aim of the present study was to elucidate the electrophysiological manifestations of selective fast motor unit (MU) activation by electrical stimulation (ES) of knee extensor muscles. In six male subjects, test contraction measurement at 40% maximal voluntary contraction (MVC) was performed before and at every 5 min (5, 10, 15 and 20 min) during 20-min low intensity intermittent exercise of either ES or voluntary contractions (VC) at 10% MVC (5-s isometric contraction and 5-s rest cycles). Both isolated intramuscular MU spikes obtained from three sets of bipolar fine-wire electrodes and surface electromyogram (EMG) were simultaneously recorded and were analyzed by means of a computer-aided intramuscular spike amplitude-frequency analysis and frequency power spectral analysis, respectively. Results indicated that mean MU spike amplitude, particularly those MUs with relatively large amplitude, was significantly reduced while those MUs with small spike amplitude increased their firing rate during the 40% MVC test contraction after the ES. This was accompanied by the increased amplitude of surface EMG (rmsEMG). However, no such significant changes in the intramuscular and surface EMGs were observed after VC. These findings indicated differential MU activation patterns in terms of MU recruitment and rate coding characteristics during ES and VC, respectively. Our data strongly suggest the possibility of "an inverse size principle" of MU recruitment during ES.

  2. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  3. Single motor unit firing behaviour in the right trapezius muscle during rapid movement of right or left index finger.

    Directory of Open Access Journals (Sweden)

    Karen eSøgaard

    2014-11-01

    Full Text Available Computer work is associated with low level sustained activity in the trapezius muscle that may cause myalgia. The activity may be attention related or part of a general multijoint motor program providing stabilization of the shoulder girdle for precise finger manipulation. This study examines single motor unit (MU firing pattern in the right trapezius muscle during fast movements of ipsi or contralateral index finger. Modulated firing rate would support a general multi joint motor program, while a generally increased and continuous firing rate would support attention related activation. 12 healthy female subjects were seated at a computer work place with elbows and forearms supported. Ten double clicks (DC were performed with right and left index finger on a computer mouse instrumented with a trigger.Surface EMG was recorded from right and left trapezius muscle. Intramuscular EMG was recorded with a quadripolar wire electrode in the right trapezius.Surface EMG was analysed as %MVE. The intramuscular EMG was decomposed into individual MU action potential trains. Instantaneous firing rate (IFR was calculated from inter-spike interval with ISI shorter than 20 ms defined as doublets. IFR was averaged across 10 DC to show IFR modulation.Surface EMG in both right and left trapezius was 1.8-2.5%MVE. During right hand DC a total of 32 MUs were identified. Four subjects showed no activity. Four showed MU activity with weak or no variations related to the timing of DC. Four subjects showed large modulation in IFR with temporal relation to DC. During left hand DC 15 MUs were identified in 4 subjects, for two of the subjects with IFR modulations related to DC. Doublets was found as an integrated part of MU activation in the trapezius muscle and for one subject temporarily related to DC. In conclusion, DC with ipsi- and contralateral fast movements of the index finger was found to evoke biomechanically as well as attention related activity pattern in the

  4. EQUATIONS OF ELECTRIC MOTOR POWER SUPPLY UNIT DISSYMMETRY UNDER PHASE-TO-PHASE SHORT-CIRCUIT FAULT

    Directory of Open Access Journals (Sweden)

    V.Y. Tchaban

    2013-10-01

    Full Text Available In the paper, a formula is introduced to calculate electric motor supply unit voltage under feeding by a common transformer in the condition of a phase-to-phase short-circuit. The formula is used in every time step of electromechanical state equations integration.

  5. Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control

    Science.gov (United States)

    Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.

    2017-08-01

    Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p  sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

  6. Spindles and active vortices in a model of confined filament-motor mixtures.

    Science.gov (United States)

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

  7. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    DEFF Research Database (Denmark)

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    2015-01-01

    Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated wit...... run in childhood may be important determinants of physical activity in adolescence.......Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated...... with physical activity in cross-sectional studies. The purpose of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow-up study. Methods Longitudinal analyses were performed using data from 673 participants (44% boys, 6-12 years old) who...

  8. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    Science.gov (United States)

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal

  9. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  10. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.

    Directory of Open Access Journals (Sweden)

    Masahito Mihara

    Full Text Available Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS, two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

  11. Motor training and physical activity among preschoolers with cerebral palsy: a survey of parents' experiences.

    Science.gov (United States)

    Myrhaug, Hilde Tinderholt; Østensjø, Sigrid

    2014-05-01

    To describe motor training and physical activity among preschoolers with cerebral palsy (CP) in Norway, and assess associations between child, parent, and motor intervention characteristics, and parent-reported child benefits from interventions. Survey of 360 parents and data from the Norwegian CP follow-up program. The response rate was 34%. During the six months preceding the time of the survey, 75% of the children performed gross-motor training, 73% fine-motor training, 80% manual stretching, and 67% participated regularly in physical activities. The training was highly goal-directed, intensive, frequently incorporated in daily routines, and often with a high level of parental involvement. The use of goals was associated with higher parent-reported child benefits for all types of interventions. Moreover, the positive relationship, which was indicated between frequency of training, parent education, and parent-reported child benefits of gross-motor training, was not seen for fine-motor training. Parent-reported child benefits support goal-directed motor interventions, and the use of everyday activities to increase practice of motor skills.

  12. The correlation between motor proficiency and physical activity in Senior Phase learners in the Potchefstroom area

    Directory of Open Access Journals (Sweden)

    Lizl-Louise van Niekerk

    2016-10-01

    Objectives: To determine the relationship between motor proficiency and physical activity levels in adolescent Senior Phase learners in Potchefstroom, South Africa. No literature exists on the relationship between motor proficiency and physical activity levels among South African adolescents. Method: A total of 239 13- to 14-year-old learners were assessed using the Bruininkse Oseretsky Test of Motor Proficiency 2 (BOT-2 for motor proficiency, and the International Physical Activity Questionnaire (IPAQ for physical activity levels. Data analysis included descriptive statistics, Spearman correlation coefficients and effect sizes. Results: Statistically and practically significant correlations were found between the total BOT-2 score and the physical activity levels of the total group, as well as the boys and the girls respectively. Fine motor coordination correlated with physical activity levels in the girls, while manipulation coordination correlated with the physical activity levels of the total group and the boys. The body coordination skill of jumping in place and the strength test items showed strong correlations with physical activity in all the groups. Conclusion: The motor skills of Senior Phase learners, especially coordination and strength skills, should be developed and maintained in the Physical Education curriculum to enhance physical activity levels.

  13. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  14. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  15. 76 FR 10396 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2011-02-24

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...

  16. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii

    DEFF Research Database (Denmark)

    Petersen, Nicolas Caesar; Taylor, Janet L; Gandevia, Simon C

    2002-01-01

    In healthy human subjects, descending motor pathways including the corticospinal tract were stimulated electrically at the level of the cervicomedullary junction to determine the effects on the discharge of motoneurones innervating the biceps brachii. Post-stimulus time histograms (PSTHs) were...... constructed for 15 single motor units following electrical stimulation of the corticospinal tract and for 11 units following electrical stimulation of large diameter afferents at the brachial plexus. Responses were assessed during weak voluntary contraction. Both types of stimulation produced a single peak...... in the two conditions when the intensity of the stimulation was adjusted so that responses of the same size could be compared. Estimates of the descending conduction velocity and measurements of presumed peripheral conduction time suggest that there is less than 0.5 ms for spinal events (including synaptic...

  17. Processing abstract language modulates motor system activity.

    Science.gov (United States)

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  18. Motor unit firing frequency of lower limb muscles during an incremental slide board skating test.

    Science.gov (United States)

    Piucco, Tatiane; Bini, Rodrigo; Sakaguchi, Masanori; Diefenthaeler, Fernando; Stefanyshyn, Darren

    2017-11-01

    This study investigated how the combination of workload and fatigue affected the frequency components of muscle activation and possible recruitment priority of motor units during skating to exhaustion. Ten male competitive speed skaters performed an incremental maximal test on a slide board. Activation of six muscles from the right leg was recorded throughout the test. A time-frequency analysis was performed to compute overall, high, and low frequency bands from the whole signal at 10, 40, 70, and 90% of total test time. Overall activation increased for all muscles throughout the test (p  0.80). There was an increase in low frequency (90 vs. 10%, p = 0.035, ES = 1.06) and a decrease in high frequency (90 vs. 10%, p = 0.009, ES = 1.38, and 90 vs. 40%, p = 0.025, ES = 1.12) components of gluteus maximus. Strong correlations were found between the maximal cadence and vastus lateralis, gluteus maximus and gluteus medius activation at the end of the test. In conclusion, the incremental skating test lead to an increase in activation of lower limb muscles, but only gluteus maximus was sensitive to changes in frequency components, probably caused by a pronounced fatigue.

  19. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Directory of Open Access Journals (Sweden)

    Leah Elizabeth Robinson

    2016-09-01

    Full Text Available Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 + 6.5 months; 49.5% males were randomly assigned to a treatment (n = 68 or control (n = 45 program. CHAMP participants engaged in 15, 40-minute sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development - 2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time*treatment interaction (p < .001. In regards to motor skills, post hoc comparisons found that all children improved their motor skills (p < .05, but the CHAMP group improved significantly more than the control group (p < .001. Children in CHAMP maintained their self-regulation scores across time while children in the control group scored significantly lower than the CHAMP group at the posttest (p < .05. CHAMP is a mastery climate movement program that may be an approach to enhance skills associated with healthy development in children (i.e., motor skills and self-regulation. This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age

  20. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial enterprises, roads, motor... Rules § 35.5 Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft... private rights, there shall be no commercial enterprise and no permanent road within a wilderness unit...

  1. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  2. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Science.gov (United States)

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  3. Motor unit properties of biceps brachii in chronic stroke patients assessed with high-density surface EMG

    NARCIS (Netherlands)

    Kallenberg, L.A.C.; Hermens, Hermanus J.

    2009-01-01

    The aim of this study was to investigate motor unit (MU) characteristics of the biceps brachii in post-stroke patients, using high-density surface electromyography (sEMG). Eighteen chronic hemiparetic stroke patients took part. The Fugl-Meyer score for the upper extremity was assessed. Subjects

  4. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Science.gov (United States)

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  5. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    Science.gov (United States)

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  6. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    Directory of Open Access Journals (Sweden)

    Patrizia Tortella

    Full Text Available This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  7. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    Science.gov (United States)

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  8. Interleaved neuromuscular electrical stimulation: Motor unit recruitment overlap.

    Science.gov (United States)

    Wiest, Matheus J; Bergquist, Austin J; Schimidt, Helen L; Jones, Kelvin E; Collins, David F

    2017-04-01

    In this study, we quantified the "overlap" between motor units recruited by single pulses of neuromuscular electrical stimulation (NMES) delivered over the tibialis anterior muscle (mNMES) and the common peroneal nerve (nNMES). We then quantified the torque produced when pulses were alternated between the mNMES and nNMES sites at 40 Hz ("interleaved" NMES; iNMES). Overlap was assessed by comparing torque produced by twitches evoked by mNMES, nNMES, and both delivered together, over a range of stimulus intensities. Trains of iNMES were delivered at the intensity that produced the lowest overlap. Overlap was lowest (5%) when twitches evoked by both mNMES and nNMES produced 10% peak twitch torque. iNMES delivered at this intensity generated 25% of maximal voluntary dorsiflexion torque (11 Nm). Low intensity iNMES leads to low overlap and produces torque that is functionally relevant to evoke dorsiflexion during walking. Muscle Nerve 55: 490-499, 2017. © 2016 Wiley Periodicals, Inc.

  9. Spindles and active vortices in a model of confined filament-motor mixtures

    Directory of Open Access Journals (Sweden)

    Head David A

    2011-11-01

    Full Text Available Abstract Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue

  10. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study.

    Science.gov (United States)

    Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng

    2018-05-15

    An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.

  11. On the muscle activity control in the hierarchy motor systems. Hierarchy undo system ni okeru kin no kassei seigyo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Akiba, M.; Miyamoto, Y. (Osaka Industrial University, Osaka (Japan). Faculty of Engineering)

    1991-10-31

    Excitory impulses for motor systems are controlled by the psychophysiological nervous systems in the body either autonomically or voluntarily. Involved in the voluntary control loop are motor cortex, basal gangalia, thalamus, cerebellum, etc. The purpose of this study is to confirm whether it is possible to reduce or emphasize the muscle contraction voluntarily through electromyogram (EMG) feedback training. EMG can indicate the excitory impulses of motor units. In the experiments, electrodes were placed on the skin above muscles. A significant reduction effect was observed for subjects trained in relaxation of the forehead musculature through EMG feedback. Results of the experiments suggested that biofeedback training for relaxation of the forehead tensional muscle might be effective in eliminating muscle contraction, and that feedback training for activation of damaged muscles might be effective in emphasizing muscle contraction. 4 refs., 9 figs.

  12. T & I--Electric Motors. Kit No. 621. Instructor's Manual and Student Learning Activity Guide.

    Science.gov (United States)

    Bomar, William

    This instructor's manual and student learning activity guide comprise a kit for trade and industrial education (T & I) activities on electric motors. Purpose stated for the activities is to teach the student the four basic types of electric motors, the advantages and disadvantages of each, the types of jobs each can perform, and how to disassemble…

  13. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    Science.gov (United States)

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  14. Effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke

    Directory of Open Access Journals (Sweden)

    Priyanka Shah

    2016-01-01

    Full Text Available Background: Motor imagery is beneficial to treat upper and lower limbs motor impairments in stroke patients, but the effects of imagery in the trunk recovery have not been reported. Hence, the aim is to test the effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke patients. Methods: This pilot randomized clinical trial was conducted in acute stroke unit. Acute stroke patients with hemodynamic stability, aged between 30 and 70 years, first time stroke, and scoring <20 on trunk impairment scale (TIS were included in the study. Patients in the experimental group practiced trunk motor imagery in addition to physical training. Control group was given conventional physical therapy. The treatment intensity was 90 min/day, 6 days a week for 3 weeks duration. Trunk control test, TIS, brunel balance assessment (BBA, and Barthel index (BI were considered as the outcome measures. Results: Among 23 patients included in the study, 12 and 11 patients, respectively, in the control and experimental groups completed the intervention. Repeated measures ANOVA, i.e., timeFNx01 group factor analysis and effect size showed statistically significant improvements (P = 0.001 in the scores of TIS (1.64, BBA (1.83, and BI (0.67. Conclusion: Motor imagery of trunk in addition to the physical practice showed benefits in improving trunk performance, functional balance, and daily living in acute stroke.

  15. 75 FR 28656 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and...

    Science.gov (United States)

    2010-05-21

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing... joint venture of General Motors Corporation and Toyota Motor Corporation, including on-site leased...

  16. 75 FR 62424 - New United Motor Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-10-08

    ... Manufacturing, Inc. Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor Corporation...

  17. 75 FR 47632 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-08-06

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... of General Motors Corporation and Toyota Motor Corporation, including on-site leased workers from...

  18. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Science.gov (United States)

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  19. Neuronal Population Activity in Spinal Motor Circuits

    DEFF Research Database (Denmark)

    Berg, Rune W.

    2017-01-01

    The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi......-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate...

  20. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    Science.gov (United States)

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  2. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Science.gov (United States)

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  3. The relationship among physical activity, motor competence and health-related fitness in 14-year-old adolescents.

    Science.gov (United States)

    Hands, B; Larkin, D; Parker, H; Straker, L; Perry, M

    2009-10-01

    Physical activity, physical fitness and motor competence are important health-related constructs. However, the relationship among them, particularly for children and adolescents, is still unclear. In this study, motor competence (measured by the McCarron Assessment of Neuromuscular Development), pedometer-determined physical activity and physical fitness (aerobic fitness, muscle strength, muscle endurance, flexibility and body composition) were examined in a cohort of 1585 adolescents (771 girls, 814 boys) of mean age 14.06 years. Significant gender differences were observed for all measures except motor competence. Apart from hip and shoulder flexibility, males outperformed females. For both males and females, motor competence was associated with all fitness measures, physical activity was associated only with aerobic fitness and aerobic fitness was associated with physical activity, motor competence, BMI and chest pass. Among males, aerobic fitness was also associated with all other fitness tests. The correlations were, in general, moderate to weak. The results challenge the current focus on physical activity rather than physical fitness as the preferred intervention.

  4. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    Science.gov (United States)

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR 24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR 24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR 24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  5. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    OpenAIRE

    Castetbon Katia; Andreyeva Tatiana

    2012-01-01

    Abstract Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2...

  6. Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery

    Science.gov (United States)

    Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.

    2009-01-01

    We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048

  7. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    Science.gov (United States)

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  8. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    Science.gov (United States)

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  9. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    Science.gov (United States)

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  10. Sport and Other Motor Activities of Warsaw Students

    Science.gov (United States)

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  11. Motor unit firing during and after voluntary contractions of human thenar muscles weakened by spinal cord injury

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, CK

    Spinal cord injury may change both the distribution and the strength of the synaptic input within a motoneuron pool and therefore alter force gradation. Here, we have studied the relative contributions of motor unit recruitment and rate modulation to force gradation during voluntary contractions of

  12. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism

    DEFF Research Database (Denmark)

    Perrier, Jean-François; Rasmussen, Hanne B; Jørgensen, Lone K

    2018-01-01

    Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS...

  13. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Lara McManus

    2017-11-01

    Full Text Available Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC. A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045. The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04. Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03. MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively, and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04. This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the

  14. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Science.gov (United States)

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  15. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  16. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    Science.gov (United States)

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  18. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    Science.gov (United States)

    2012-01-01

    Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight. PMID:22420636

  19. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    Science.gov (United States)

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  20. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    Science.gov (United States)

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  1. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review.

    Science.gov (United States)

    Zeng, Nan; Ayyub, Mohammad; Sun, Haichun; Wen, Xu; Xiang, Ping; Gao, Zan

    2017-01-01

    This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4-6 years) were screened. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  2. Physical activity and motor skills in children attending 43 preschools

    DEFF Research Database (Denmark)

    Olesen, Line Grønholt; Kristensen, Peter Lund; Ried-Larsen, Mathias

    2014-01-01

    BACKGROUND: Little is known about health characteristics and the physical activity (PA) patterns in children attending preschools. The objective of this study was to describe the gender differences in relation to body mass index (BMI), motor skills (MS) and PA, including PA patterns by the day type......-referenced classification of MS, the Danish sample distribution was significantly well for aiming and catching but poorer for the motor coordination test.The total sample and the least active children were most active on weekdays, during preschool time and in the late afternoon at the weekend. However, a relatively larger...... provide a valuable reference material for studies monitoring future trends in obesity, MS and PA behaviour in Denmark and other countries.Knowledge about sources of variation in PA among preschool children is scarce and our findings need to be replicated in future studies. A potentially important finding...

  3. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation.

    Science.gov (United States)

    Clark, Brian C; Taylor, Janet L; Hong, S Lee; Law, Timothy D; Russ, David W

    2015-09-01

    Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Biasing the random walk of a molecular motor

    Energy Technology Data Exchange (ETDEWEB)

    Astumian, R Dean [Department of Physics, University of Maine, Orono, ME 04469-5709 (United States)

    2005-11-30

    Biomolecular motors are often described in mechanical terms, with analogy to cars, turbines, judo throws, levers, etc. It is important to remember however that because of their small size, and because of the aqueous environment in which molecular motors move, viscous drag and thermal noise dominate the inertial forces that drive macroscopic machines. The sequence of motions-conformational changes-by which a motor protein moves can best be described as a random walk, with transitions from one state to another occurring by thermal activation over energy barriers. In this paper I will address the question of how this random walk is biased by a non-equilibrium chemical reaction (ATP hydrolysis) so that the motor molecule moves preferentially (with almost unit certainty) in one direction, even when an external force is applied to drive it in the opposite direction. I will also discuss how these 'soft matter' motors can achieve thermodynamic efficiencies of nearly 100%.

  5. Biasing the random walk of a molecular motor

    International Nuclear Information System (INIS)

    Astumian, R Dean

    2005-01-01

    Biomolecular motors are often described in mechanical terms, with analogy to cars, turbines, judo throws, levers, etc. It is important to remember however that because of their small size, and because of the aqueous environment in which molecular motors move, viscous drag and thermal noise dominate the inertial forces that drive macroscopic machines. The sequence of motions-conformational changes-by which a motor protein moves can best be described as a random walk, with transitions from one state to another occurring by thermal activation over energy barriers. In this paper I will address the question of how this random walk is biased by a non-equilibrium chemical reaction (ATP hydrolysis) so that the motor molecule moves preferentially (with almost unit certainty) in one direction, even when an external force is applied to drive it in the opposite direction. I will also discuss how these 'soft matter' motors can achieve thermodynamic efficiencies of nearly 100%

  6. The Dynamic Association between Motor Skill Development and Physical Activity

    Science.gov (United States)

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  7. Recreational Activities and Motor Skills of Children in Kindergarten

    Science.gov (United States)

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  8. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Science.gov (United States)

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  9. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.

    Science.gov (United States)

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2014-10-03

    We utilized functional magnetic resonance imaging (fMRI) to evaluate the common brain region of motor imagery for the right and left upper and lower limbs. The subjects were instructed to repeatedly imagined extension and flexion of the right or left hands/ankles. Brain regions, which included the supplemental motor area (SMA), premotor cortex and parietal cortex, were activated during motor imagery. Conjunction analysis revealed that the left SMA and inferior frontal gyrus (IFG)/ventral premotor cortex (vPM) were commonly activated with motor imagery of the right hand, left hand, right foot, and left foot. This result suggests that these brain regions are activated during motor imagery in an effector independent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. 75 FR 39045 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-07-07

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Corporation and Toyota Motor Corporation, including on-site leased workers from Corestaff, ABM Janitorial, and...

  11. Lower layers in the motor cortex are more effective targets for penetrating microelectrodes in cortical prostheses

    Science.gov (United States)

    Parikh, Hirak; Marzullo, Timothy C.; Kipke, Daryl R.

    2009-04-01

    Improving cortical prostheses requires the development of recording neural interfaces that are efficient in terms of providing maximal control information with minimal interface complexity. While the typical approaches have targeted neurons in the motor cortex with multiple penetrating shanks, an alternative approach is to determine an efficient distribution of electrode sites within the layers of the cortex with fewer penetrating shanks. The objective of this study was to compare unit activity in the upper and lower layers of the cortex with respect to movement and direction in order to inform the design of penetrating microelectrodes. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the neck/shoulder region of the motor cortex. We simultaneously recorded unit activity across all layers of the motor cortex while the animal was engaged in a movement direction task. Localization of the electrode array within the different layers of the cortex was determined by histology. We denoted units from layers 2 and 3 and units as upper layer units, and units from layers 5 and 6 as lower layer units. Analysis of unit spiking activity demonstrated that both the upper and lower layers encode movement and direction information. Unit responses in either cortical layer of the cortex were not preferentially associated with contralateral or ipsilateral movement. Aggregate analysis (633 neurons) and best session analysis (75 neurons) indicated that units in the lower layers (layers 5, 6) are more likely to encode direction information when compared to units in the upper layers (layers 2, 3) (p< 0.05). These results suggest that electrode sites clustered in the lower layers provide access to more salient control information for cortical neuroprostheses.

  12. Early motor skill competence as a mediator of child and adult physical activity

    Directory of Open Access Journals (Sweden)

    Paul D. Loprinzi

    2015-01-01

    Full Text Available Objective: In order to effectively promote physical activity (PA during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA.

  13. School Physical Activity Programming and Gross Motor Skills in Children.

    Science.gov (United States)

    Burns, Ryan D; Fu, You; Hannon, James C; Brusseau, Timothy A

    2017-09-01

    We examined the effect of a comprehensive school physical activity program (CSPAP) on gross motor skills in children. Participants were 959 children (1st-6th grade; Mean age = 9.1 ± 1.5 years; 406 girls, 553 boys) recruited from 5 low-income schools receiving a year-long CSPAP intervention. Data were collected at the beginning of the school year and at a 36-week follow-up. Gross motor skills were assessed using the Test for Gross Motor Development (3rd ed.) (TGMD-3) instrument. Multi-level mixed effects models were employed to examine the effect of CSPAP on TGMD-3 scores, testing age and sex as effect modifiers and adjusting for clustering of observations within the data structure. There were statistically significant coefficients for time (β = 8.1, 95% CI [3.9, 12.3], p skills and ball skills sub-test scores. Children showed improved gross motor skill scores at the end of the 36-week CSPAP that were modified by age, as younger children displayed greater improvements in TGMD-3 scores compared to older children.

  14. Is there an association among actual motor competence, perceived motor competence, physical activity, and sedentary behavior in preschool children?

    OpenAIRE

    Lopes, Vítor P.; Barnett, L.M.; Rodrigues, Luis Paulo

    2016-01-01

    The purpose is to explore relationships among moderate to vigorous physical activity (MVPA), sedentary behavior (SB), and actual gross motor competence (MC) and perceived motor competence (PMC) in young children. Data were collected in 101 children (M age = 4.9 ± 0.93 years). MVPA was measured with accelerometry. Gross MC was assessed with the Portuguese version of the Movement Assessment Battery for Children. PMC was evaluated with the Pictorial Scale of Perceived Competence and Social Accep...

  15. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Directory of Open Access Journals (Sweden)

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  16. Obesity and motor skills among 4 to 6-year-old children in the United States: nationally-representative surveys.

    Science.gov (United States)

    Castetbon, Katia; Andreyeva, Tatiana

    2012-03-15

    Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B) of preschool 4-year-old children (2005-2006; n = 5 100) and 5-6-year-old kindergarteners (2006-2007; n = 4 700). Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI) ≥ 95th percentile) and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p Obese girls could jump 1.6-1.7 inches shorter than normal weight peers (p motor skills and fine motor skills of young children were not consistently related to BMI z-scores and obesity. Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight.

  17. Obesity and motor skills among 4 to 6-year-old children in the united states: nationally-representative surveys

    Directory of Open Access Journals (Sweden)

    Castetbon Katia

    2012-03-01

    Full Text Available Abstract Background Few population-based studies have assessed relationships between body weight and motor skills in young children. Our objective was to estimate the association between obesity and motor skills at 4 years and 5-6 years of age in the United States. We used repeated cross-sectional assessments of the national sample from the Early Childhood Longitudinal Survey-Birth Cohort (ECLS-B of preschool 4-year-old children (2005-2006; n = 5 100 and 5-6-year-old kindergarteners (2006-2007; n = 4 700. Height, weight, and fine and gross motor skills were assessed objectively via direct standardized procedures. We used categorical and continuous measures of body weight status, including obesity (Body Mass Index (BMI ≥ 95th percentile and BMI z-scores. Multivariate logistic and linear models estimated the association between obesity and gross and fine motor skills in very young children adjusting for individual, social, and economic characteristics and parental involvement. Results The prevalence of obesity was about 15%. The relationship between motor skills and obesity varied across types of skills. For hopping, obese boys and girls had significantly lower scores, 20% lower in obese preschoolers and 10% lower in obese kindergarteners than normal weight counterparts, p p Conclusions Based on objective assessment of children's motor skills and body weight and a full adjustment for confounding covariates, we find no reduction in overall coordination and fine motor skills in obese young children. Motor skills are adversely associated with childhood obesity only for skills most directly related to body weight.

  18. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Nan Zeng

    2017-01-01

    Full Text Available Objective. This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Methods. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4–6 years were screened. Results. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80% reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80% showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Conclusions. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  19. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.

    Science.gov (United States)

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2012-09-01

    The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.

  20. Gender and motor competence affects perceived likelihood and importance of physical activity outcomes among 14 year olds.

    Science.gov (United States)

    Hands, B; Parker, H E; Rose, E; Larkin, D

    2016-03-01

    Perceptions of the effects of physical activity could facilitate or deter future participation. This study explored the differences between gender and motor competence at 14 years of age in the perceptions of likelihood and importance of physical activity outcomes. The sample comprised 1582 14-year-old adolescents (769 girls) from the Western Australian Pregnancy Cohort (Raine) Study. Four motor competence groups were formed from a standardized Neuromuscular Developmental Index score (McCarron 1997). Perceptions of the likelihood and the importance of 15 physical activity outcomes were measured by a questionnaire developed for the NSW Schools Fitness and Physical Activity Survey (Booth et al. 1997). Gender (two) × motor competence (four) analyses of variance and Tukey post hoc were conducted on outcome scores (P importance of physical activity outcomes within competition, social friendships and injury domains. Motor competence was significant in the perceived likelihood of physical health (P importance was perceived for academic outcomes for 14 year olds categorized with low compared with high motor competence (P importance. Although level of motor competence at 14 years affected the perceived likelihood of health, social and fun outcomes from future participation in physical activity, adolescents highly valued these outcomes, whereas gender affected competition and winning, outcomes that were less valued. Physical activity that promotes these key and valued outcomes may encourage young people's ongoing involvement in physical activity, especially for those at risk of low participation. © 2015 John Wiley & Sons Ltd.

  1. Motor competence and physical activity in 8-year-old school children with generalized joint hypermobility

    DEFF Research Database (Denmark)

    Juul-Kristensen, Birgit; Kristensen, Jens Halkjaer; Frausing, Britt

    2009-01-01

    regarding motor competence, self-reported physical activity, and incidence of musculoskeletal pain and injuries. METHODS: A cross-sectional study of 524 children in the second grade from 10 public schools was performed. A positive response rate was obtained for 416 (79.4%) children, and 411 (78.4%) children...... were clinically examined and tested for motor competence, whereas questionnaire response to items comprising musculoskeletal pain and injuries, in addition to daily level and duration of physical activity, corresponded to 377 (71.9%) children. RESULTS: In total, 29% of the children had GJH4, 19% had...... in the motor competence tests. CONCLUSION: Motor competence and physical activity are not reduced in primary school children at 8 years of age with GJH or BJHS. It is recommended that a potential negative influence on the musculoskeletal system over time, as a result of GJH, be investigated by longitudinal...

  2. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  4. Motor Skills and Free-Living Physical Activity Showed No Association Among Preschoolers in 2012 U.S. National Youth Fitness Survey.

    Science.gov (United States)

    Loprinzi, Paul D; Frith, Emily

    2017-04-01

    Albeit limited, some emerging work, using convenience-based samples, has demonstrated that greater motor skill development is associated with higher physical activity among preschool-aged children. The purpose of this study was to evaluate this topic using data from the 2012 National Youth Fitness Survey that included 329 preschool-aged children (3-5 years). Parents proxy-reported their child's physical activity, with motor skill level assessed from the Test of Gross Motor Development-Second Edition (TGMD2). Motor skill levels (Gross Motor Quotient, locomotor or object control) were not associated with preschool free-living physical activity in any analytic model. Thus, in this large sample of preschoolers, contrary to research with older children, motor skill level was not associated with physical activity. Findings are discussed in terms of study limitations of (a) a reliance on parent report of children's physical activity levels and (b) the possibility that physical activity data within the national survey were too limited in range to show possible associations to motor skill development with higher levels of free-living physical activity in preschoolers.

  5. The motor intervention as delays prevention factor in motor and cognitive development of infants during the hospital stay

    Directory of Open Access Journals (Sweden)

    arolina Panceri

    2017-09-01

    Full Text Available Introduction: Cognitive-motor tasks intervention is beneficial for the infant’s motor and cognitive development. These interventions in the hospital setting, have been widely studied in neonatal intensive care units, however, few studies evaluate child development within pediatric units. Objective: To evaluate the impact of cognitive-motor intervention in motor and cognitive development of infants hospitalized with respiratory diseases. Method: The research was characterized as quasi-experimental, 22 babies hospitalized in the pediatric unit for respiratory disease were divided into 2 groups (10 in the control group and 12 in the intervention group without significant differences in biological and socioeconomic data. The mean age was 5.50 months (SD ± 4.51, ranging between 1 and 16 months. Questionnaire was conducted with the infant’s parent/guardian for sample characterization. The Alberta Infant Motor Scale (AIMS and the Bayley Scales of Infant Development (BSID-III was used to evaluate motor e cognitive development. Data analysis was performed using descriptive statistics, Student’s t test, General Linear Model and One Way ANOVA. Results: The results show a significant interaction between group x time in motor and cognitive scores. When comparing the two times, the intervention group changed positively and significantly from pre- to post-intervention in motor and cognitive scores. The same was not observed for the control group. Conclusion: The results of this study suggest that the intervention during the hospital stay contributes positively to the motor and cognitive development.

  6. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila.

    Directory of Open Access Journals (Sweden)

    Matthias Landgraf

    2003-11-01

    Full Text Available The organisational principles of locomotor networks are less well understood than those of many sensory systems, where in-growing axon terminals form a central map of peripheral characteristics. Using the neuromuscular system of the Drosophila embryo as a model and retrograde tracing and genetic methods, we have uncovered principles underlying the organisation of the motor system. We find that dendritic arbors of motor neurons, rather than their cell bodies, are partitioned into domains to form a myotopic map, which represents centrally the distribution of body wall muscles peripherally. While muscles are segmental, the myotopic map is parasegmental in organisation. It forms by an active process of dendritic growth independent of the presence of target muscles, proper differentiation of glial cells, or (in its initial partitioning competitive interactions between adjacent dendritic domains. The arrangement of motor neuron dendrites into a myotopic map represents a first layer of organisation in the motor system. This is likely to be mirrored, at least in part, by endings of higher-order neurons from central pattern-generating circuits, which converge onto the motor neuron dendrites. These findings will greatly simplify the task of understanding how a locomotor system is assembled. Our results suggest that the cues that organise the myotopic map may be laid down early in development as the embryo subdivides into parasegmental units.

  7. Active Motor Training Has Long-term Effects on Infants’ Object Exploration

    Science.gov (United States)

    Wiesen, Sarah E.; Watkins, Rachel M.; Needham, Amy Work

    2016-01-01

    Long-term changes in infants’ behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant’s experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  8. Electric vehicle traction motors - The development of an advanced motor concept

    Science.gov (United States)

    Campbell, P.

    1980-01-01

    An axial-field permanent magnet traction motor is described, similar to several advanced motors that are being developed in the United States. This type of machine has several advantages over conventional dc motors, particularly in the electric vehicle application. The rapidly changing cost of magnetic materials, particularly cobalt, makes it important to study the utilization of permanent magnet materials in such machines. The impact of different magnets on machine design is evaluated, and the advantages of using iron powder composites in the armature are assessed.

  9. Responsiveness of rat fetuses to sibling motor activity: Communication in utero?

    Science.gov (United States)

    Brumley, Michele R; Hoagland, Riana; Truong, Melissa; Robinson, Scott R

    2018-04-01

    Previous research has revealed that fetuses detect and respond to extrauterine stimuli such as maternal movement and speech, but little attention has been cast on how fetuses may directly influence and respond to each other in the womb. This study investigated whether motor activity of E20 rat fetuses influenced the behavior of siblings in utero. Three experiments showed that; (a) contiguous siblings expressed a higher frequency of synchronized movement than noncontiguous siblings; (b) fetuses that lay between two siblings immobilized with curare showed less movement relative to fetuses between saline or uninjected controls; and (c) fetuses between two siblings behaviorally activated by the opioid agonist U50,488 also showed less activity and specific behavioral changes compared to controls. Our findings suggest that rat fetuses are directly impacted by sibling motor activity, and thus that a rudimentary form of communication between siblings may influence the development of fetuses in utero. © 2018 Wiley Periodicals, Inc.

  10. The Relationship between Fundamental Motor Skill Proficiency and Participation in Organized Sports and Active Recreation in Middle Childhood

    Directory of Open Access Journals (Sweden)

    Stephanie C. Field

    2017-06-01

    Full Text Available Motor skill proficiency in middle childhood is associated with higher physical activity levels at that age and is predictive of adolescent physical activity levels. Much of the previous research in this area has used accelerometry in determining these relationships, and as a result, little is known about what physical activities the children are engaging in. Therefore the aim of this study was to examine rates of participation in physical activities, the relationships between motor proficiency and how often children participate, and if there were gender-based differences in participation, motor skills, or the relationship between these variables. Participants were 400 boys and girls (Mean age = 9 years 6 months in grade 4. Motor skills were assessed using the Test of Gross Motor Development-2 (TGMD-2 and physical activity participation was measured using the Children’s Assessment of Participation and Enjoyment (CAPE. Descriptive statistics, chi-squared analyses, and multivariate analysis of variance (MANOVA were used to examine activity patterns and whether these patterns differed by gender. Correlation coefficients were used to estimate the relationships between fundamental motor skill proficiency and participation. The boys and girls participated in many of the same activities, but girls were more likely to participate in most of the informal physical activities. More boys than girls participated in team sports, boys participated more frequently in team sports, and the boys’ object control and locomotor skill proficiency were significantly associated with participation in team sports. There were some significant associations between motor skills and participation in specific activities; however it is not clear if participation is developing skillfulness or those who are more skilled are engaging and persisting with particular activities.

  11. Cluster analysis of activity-time series in motor learning

    DEFF Research Database (Denmark)

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  12. Activation properties of trigeminal motoneurons in participants with and without bruxism

    Science.gov (United States)

    D'Amico, Jessica M.; Yavuz, Ş. Utku; Saraçoğlu, Ahmet; Atiş, Elif Sibel; Türker, Kemal S.

    2013-01-01

    In animals, sodium- and calcium-mediated persistent inward currents (PICs), which produce long-lasting periods of depolarization under conditions of low synaptic drive, can be activated in trigeminal motoneurons following the application of the monoamine serotonin. Here we examined if PICs are activated in human trigeminal motoneurons during voluntary contractions and under physiological levels of monoaminergic drive (e.g., serotonin and norepinephrine) using a paired motor unit analysis technique. We also examined if PICs activated during voluntary contractions are larger in participants who demonstrate involuntary chewing during sleep (bruxism), which is accompanied by periods of high monoaminergic drive. In control participants, during a slowly increasing and then decreasing isometric contraction, the firing rate of an earlier-recruited masseter motor unit, which served as a measure of synaptic input to a later-recruited test unit, was consistently lower during derecruitment of the test unit compared with at recruitment (ΔF = 4.6 ± 1.5 imp/s). The ΔF, therefore, is a measure of the reduction in synaptic input needed to counteract the depolarization from the PIC to provide an indirect estimate of PIC amplitude. The range of ΔF values measured in the bruxer participants during similar voluntary contractions was the same as in controls, suggesting that abnormally high levels of monoaminergic drive are not continually present in the absence of involuntary motor activity. We also observed a consistent “onion skin effect” during the moderately sized contractions (motor units discharged at slower rates (by 4–7 imp/s) compared with motor units with relatively lower thresholds. The presence of lower firing rates in the more fatigue-prone, higher threshold trigeminal motoneurons, in addition to the activation of PICs, likely facilitates the activation of the masseter muscle during motor activities such as eating, nonnutritive chewing, clenching, and yawning

  13. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    Science.gov (United States)

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.

  14. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Directory of Open Access Journals (Sweden)

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  15. Sleep-Dependent Reactivation of Ensembles in Motor Cortex Promotes Skill Consolidation.

    Directory of Open Access Journals (Sweden)

    Dhakshin S Ramanathan

    Full Text Available Despite many prior studies demonstrating offline behavioral gains in motor skills after sleep, the underlying neural mechanisms remain poorly understood. To investigate the neurophysiological basis for offline gains, we performed single-unit recordings in motor cortex as rats learned a skilled upper-limb task. We found that sleep improved movement speed with preservation of accuracy. These offline improvements were linked to both replay of task-related ensembles during non-rapid eye movement (NREM sleep and temporal shifts that more tightly bound motor cortical ensembles to movements; such offline gains and temporal shifts were not evident with sleep restriction. Interestingly, replay was linked to the coincidence of slow-wave events and bursts of spindle activity. Neurons that experienced the most consistent replay also underwent the most significant temporal shift and binding to the motor task. Significantly, replay and the associated performance gains after sleep only occurred when animals first learned the skill; continued practice during later stages of learning (i.e., after motor kinematics had stabilized did not show evidence of replay. Our results highlight how replay of synchronous neural activity during sleep mediates large-scale neural plasticity and stabilizes kinematics during early motor learning.

  16. Motor activation in literal and non literal sentences: does time matter?

    Directory of Open Access Journals (Sweden)

    Cristina eCacciari

    2013-05-01

    Full Text Available Despite the impressive amount of evidence showing involvement of the sensorimotor systems in language processing, important questions remain unsolved among which the relationship between non literal uses of language and sensorimotor activation. The literature did not yet provide a univocal answer on whether the comprehension of non literal, abstract motion sentences engages the same neural networks recruited for literal sentences. A previous TMS study using the same experimental materials of the present study showed activation for literal, fictive and metaphoric motion sentences but not for idiomatic ones. To evaluate whether this may depend on insufficient time for elaborating the idiomatic meaning, we conducted a behavioural experiment that used a sensibility judgment task performed by pressing a button either with a hand finger or with a foot. Motor activation is known to be sensitive to the action-congruency of the effector used for responding. Therefore, all other things being equal, significant differences between response emitted with an action-congruent or incongruent effector (foot vs. hand may be attributed to motor activation. Foot-related action verbs were embedded in sentences conveying literal motion, fictive motion, metaphoric motion or idiomatic motion. Mental sentences were employed as a control condition. Foot responses were significantly faster than finger responses but only in literal motion sentences. We hypothesize that motor activation may arise in early phases of comprehension processes (i.e. upon reading the verb for then decaying as a function of the strength of the semantic motion component of the verb.

  17. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    Science.gov (United States)

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  18. Childhood motor skill proficiency as a predictor of adolescent physical activity.

    Science.gov (United States)

    Barnett, Lisa M; van Beurden, Eric; Morgan, Philip J; Brooks, Lyndon O; Beard, John R

    2009-03-01

    Cross-sectional evidence has demonstrated the importance of motor skill proficiency to physical activity participation, but it is unknown whether skill proficiency predicts subsequent physical activity. In 2000, children's proficiency in object control (kick, catch, throw) and locomotor (hop, side gallop, vertical jump) skills were assessed in a school intervention. In 2006/07, the physical activity of former participants was assessed using the Australian Physical Activity Recall Questionnaire. Linear regressions examined relationships between the reported time adolescents spent participating in moderate-to-vigorous or organized physical activity and their childhood skill proficiency, controlling for gender and school grade. A logistic regression examined the probability of participating in vigorous activity. Of 481 original participants located, 297 (62%) consented and 276 (57%) were surveyed. All were in secondary school with females comprising 52% (144). Adolescent time in moderate-to-vigorous and organized activity was positively associated with childhood object control proficiency. Respective models accounted for 12.7% (p = .001), and 18.2% of the variation (p = .003). Object control proficient children became adolescents with a 10% to 20% higher chance of vigorous activity participation. Object control proficient children were more likely to become active adolescents. Motor skill development should be a key strategy in childhood interventions aiming to promote long-term physical activity.

  19. Effects of a water activity intervention programme on motor ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the effect of a specially designed water activity programme on the motor competency levels of children with Down's syndrome. Six institutionalised children classified as having Down\\'s syndrome, from a school for the mentally retarded, took part in the study. The children\\'s ...

  20. Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts.

    Science.gov (United States)

    Dafsari, Haidar Salimi; Petry-Schmelzer, Jan Niklas; Ray-Chaudhuri, K; Ashkan, Keyoumars; Weis, Luca; Dembek, Till A; Samuel, Michael; Rizos, Alexandra; Silverdale, Monty; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Martinez-Martin, Pablo; Antonini, Angelo; Visser-Vandewalle, Veerle; Timmermann, Lars

    2018-03-16

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. To investigate the impact of active contact location on NMS in STN-DBS in PD. In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes. Copyright © 2018. Published by Elsevier Inc.

  1. EFFECTS OF OUTSCHOOL BODY ACTIVITIES ON QUALITATIVE CHANGES OF MOTORICAL STATUS PUPILS OF PRIMARY SCHOOL STRATURE

    Directory of Open Access Journals (Sweden)

    Izudin Tanović

    2011-09-01

    Full Text Available Population of pupil high classes primary school present one of cariks in chain of complex education and systematic social influence in body and health education, which are used a new generations (Mikić,1991. Including that we have a very sensibility population in way of strature and development in phase of adolescental period, it is necessary that throw the classes body education and extra outschool activities, give enough quantity of motorical activities, which will completly satisfied necessy of children this strature and also completly give them normal biopsychosocial growth. Explorations of effects extra outschool activities in frame of school sport sections pupils of primary school tell us that with a correct planning and programming work, which understand correctly choice adequate methods and operators of work could been very significant transformations of anthropological status of pupils (Malacko 2002. The basic target of this explorations was that confirm influence of outschool body activities on level qualitative changes of structure motorical space of pupils primary school strature, under influence applying programme of outschool activities. With help of factory analise, but also of method of congruation, it was explored structure of motorical space in the start but also at the end of this applying experimental programme of outschool body activities , and we concluded that changes which was appear in structure of explored motorical space, tell us on positive influence outschool body activities in sense transformation and progressing of motorical status of explorated sample.

  2. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.

    2012-01-01

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633

  3. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  4. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    International Nuclear Information System (INIS)

    Wang, Li; Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong; Liu, Chen; Yang, Jun; Yan, Rubing; Zheng, Xiaolin

    2014-01-01

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  5. Can Kinesiological Activities Change "Pure" Motor Development in Preschool Children during One School Year?

    Science.gov (United States)

    Krneta, Željko; Casals, Cristina; Bala, Gustav; Madić, Dejan; Pavlović, Slobodan; Drid, Patrik

    2015-07-01

    The purpose of this study was to evaluate the effects of an additional, organized, and more intensive kinesiological treatment on "pure" motor abilities in preschool children. In the present study an experimental treatment was carried out on a sample of 37 preschool boys by applying kinesiological activities. The 60 minute treatment was applied over a period of one school year (9 months), twice a week. A control group of 31 boys were trained according to the regular program for preschool institutions. Treatment effects were assessed by 8 motor ability tests and 5 anthropometric measures. The significant differences between the groups, which were observed after the final measurement and compared to the initial one, proved that the kinesiological treatment had a positive impact on the general development of "pure" motor abilities. The most significant effect of experimental kinesiological treatment was the improvement in whole body force, flexibility and coordination of preschool boys. These findings, obtained only in one school year, point to the importance of physical exercise and the application of additional kinesiological activities with various modalities, to improve motor development, even morphological growth and development in preschool children. The effects of the perennial application of kinesiological activities, under the supervision of kinesiological professionals, could be beneficial and could form the basis for a better biological and motor development in older age.

  6. FM-CW radar sensors for vital signs and motor activity monitoring

    Directory of Open Access Journals (Sweden)

    Octavian Adrian Postolache

    2011-12-01

    Full Text Available The article summarizes on-going research on vital signs and motor activity monitoring based on radar sensors embedded in wheelchairs, walkers and crutches for in home rehabilitation. Embedded sensors, conditioning circuits, real-time platforms that perform data acquisition, auto-identification, primary data processing and data communication contribute to convert daily used objects in home rehabilitation into smart objects that can be accessed by caregivers during the training sessions through human–machine interfaces expressed by the new generation of smart phones or tablet computers running Android OS or iOS operating systems. The system enables the management of patients in home rehabilitation by providing more accurate and up-to-date information using pervasive computing of vital signs and motor activity records.

  7. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    Directory of Open Access Journals (Sweden)

    Reilly John J

    2005-06-01

    Full Text Available Abstract Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical

  8. Understanding physical (in-) activity, overweight, and obesity in childhood: Effects of congruence between physical self-concept and motor competence.

    Science.gov (United States)

    Utesch, T; Dreiskämper, D; Naul, R; Geukes, K

    2018-04-12

    Both the physical self-concept and actual motor competence are important for healthy future physical activity levels and consequently decrease overweight and obesity in childhood. However, children scoring high on motor competence do not necessarily report high levels of physical self-concept and vice versa, resulting in respective (in-) accuracy also referred to as (non-) veridicality. This study examines whether children's accuracy of physical self-concept is a meaningful predictive factor for their future physical activity. Motor competence, physical self-concept and physical activity were assessed in 3 rd grade and one year later in 4 th grade. Children's weight status was categorized based on WHO recommendations. Polynomial regression with Response surface analyses were conducted with a quasi-DIF approach examining moderating weight status effects. Analyses revealed that children with higher motor competence levels and higher self-perceptions show greater physical activity. Importantly, children who perceive their motor competence more accurately (compared to less) show more future physical activity. This effect is strong for underweight and overweight/obese children, but weak for normal weight children. This study indicates that an accurate self-perception of motor competence fosters future physical activity beyond single main effects, respectively. Hence, the promotion of actual motor competence should be linked with the respective development of accurate self-knowledge.

  9. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    DEFF Research Database (Denmark)

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb......Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay...

  10. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  11. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    Directory of Open Access Journals (Sweden)

    Michael Villiger

    Full Text Available The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective of a foot kicking a ball. They were instructed to observe-only the action (O, observe and simultaneously imagine performing the action (O-MI, or imitate the action (O-IMIT. We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i combining observation with motor imagery (O-MI enhances activation compared to observation-only (O in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  12. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    Science.gov (United States)

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  13. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    Science.gov (United States)

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  14. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    Science.gov (United States)

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors.

  15. A study on the activation of supplementary motor area in functional magnetic resonance imaging of the brain

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Chung, Gyung Ho; Park, Hark Hoon; Oh, Hee Sul; Kim, Chong Soo; Chung, Jin Young

    1999-01-01

    To evaluate the activated zone of the supplementary motor area through motor and sensory stimulation of both hands by fMRI. Twenty-four healthy volunteers, ranging in age from 20 to 30 years, served as subjects. They were divided into four groups and performed one of the four activation tasks : complex movement, fine movement, touch sensation, heat sensation. Complex movement consisted of a finger task in which subjects flexed and extended all fingers repeatedly in union, without the fingers touching each other(group I). Fine movement involved a thumb task in which subjects flexed and extended the thumb repeatedly without touching the other fingers(group II). Touch sensation consisted of a palm task in which another person repeatedly drew a circle on the subject's palm (group III), and heat sensation involved of a palm task in which subject's palm was touched by another person with a 40 deg C water-bag (group IV). F-MRI was conducted on a commercial 1.5-T scanner equipped with echo-planar imaging. After overlapping images were obtained using a Z-s-core, and the mean/curve in the MR devices was evaluated, the activated zone of the supplementary motor area was also evalvated. Thirty-two of 48 images(20 of the 24 men) revealed activated zones in the supplementary motor area. In group I, activation was observed in five subjects, in three of whom it was bilateral (contralateral activation). In group II, activation was observed in five subjects, in one of whom it was bilateral. In group III, activation occurred in five subjects(bilateral in four, and contralateral in three), and In group IV, activation was also observed in five;in three of these it was bilateral. Using fMRI, and in association with motor and sensory tasks, the supplementary motor area was activated in 66.7% of healthy volunteers (32/48)

  16. Seismic qualification of moderator system pump-motor units for RAPP-3,4 and KAIGA-1,2 235 MWe PHWRs

    International Nuclear Information System (INIS)

    Neelwarne, A.; Soni, R.S.; Kushawaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1992-01-01

    Smooth operation of active components like primary heat transport pumps, moderator pumps, emergency core cooling pumps etc. is always required to ensure safety of any nuclear power plants in case of normal as well as abnormal conditions such as earthquake loading. In order to ensure the functional requirement of such rotating equipment, is necessary to demonstrate, either through theoretical means or through experimental means, that in an event like earthquake loading, the static parts and the rotating parts of the equipment do not rub against each other giving rise to trouble during their operation. The moderator system pump units for RAPP-3,4 and Kaiga-1,2 have been analysed theoretically to demonstrate the structural integrity of various components of the unit as well as the functional requirement during an earthquake loading. A detailed Finite Element Model (FEM) was prepared for this which includes the modelling of static parts, rotating parts, anti-friction bearings and fluid-film journal bearings. Response spectrum analysis of the unit was carried out using the applicable floor response spectra for RAPP-3,4 and Kaiga-1,2 sites. It was concluded from this analysis that the pump-motor unit analysed meets the required design intent in terms of structural integrity and operability of the unit. The present report gives a detailed description of the problem, the development of FEM model, results and the conclusions arrived at. (author). 23 refs., 9 tabs., 17 figs

  17. Moxidectin interference on motor activity of rats

    Directory of Open Access Journals (Sweden)

    Patrícia de Sá e Benevides Rodrigues-Alves

    2009-08-01

    Full Text Available The present study investigated the effects of t moxidectin (MXD in some parameters of rat motor function and neurochemical. The general activity in the open field and the motor coordination in the wooden beam were employed to evaluate the MXD effects. The results showed that, in the open field, even at high doses (2.0 and 20.0 mg/kg, the MXD did not alter the locomotion and the rearing frequencies. However, MXD was able to impair the motor coordination of the animals at wooden beam. Neurochemical studies of striatal GABA and dopamine neurotransmitters showed a reduced levels of dopamine and its metabolite, homovanillic acid, without interference on striatal GABA levels. Since GABAergic receptor stimulation had an inhibitory effect on dopaminergic striatal system, the decreased motor coordination could be attributed to an action of MXD on dopamine system via GABA activation.A moxidectina (MXD é uma droga antiparasitária amplamente empregada em animais domésticos; seu mecanismo de ação, em mamíferos, envolve o neurotransmissor ácido gama-aminobutírico (GABA. Esse neurotransmissor tem papel importante na função motora. Assim, no presente trabalho estudaram-se os efeitos da MXD em alguns parâmetros comportamentais ligados a função motora de ratos e também em sistemas de neurotransmissão central. A atividade geral no campo aberto e a coordenação motora na trave elevada foram empregadas para avaliar os efeitos de diferentes doses de MXD. Os resultados mostraram que: no campo aberto, mesmo as doses maiores (2.0 e 20.0 mg/kg de MXD não alteraram as freqüências de locomoção e levantar. Por outro lado, a MXD foi capaz de prejudicar a coordenação motora dos animais avaliada na trave elevada. Estudos neuroquímicos dos níveis estriatais de GABA e dopamina mostraram redução dos níveis de dopamina e seu metabólito, ácido homavanílico, sem interferência nos níveis de GABA estriatal. Considerando que a estimulação de

  18. How emotion context modulates unconscious goal activation during motor force exertion.

    Science.gov (United States)

    Blakemore, Rebekah L; Neveu, Rémi; Vuilleumier, Patrik

    2017-02-01

    Priming participants with emotional or action-related concepts influences goal formation and motor force output during effort exertion tasks, even without awareness of priming information. However, little is known about neural processes underpinning how emotional cues interact with action (or inaction) goals to motivate (or demotivate) motor behaviour. In a novel functional neuroimaging paradigm, visible emotional images followed by subliminal action or inaction word primes were presented before participants performed a maximal force exertion. In neutral emotional contexts, maximum force was lower following inaction than action primes. However, arousing emotional images had interactive motivational effects on the motor system: Unpleasant images prior to inaction primes increased force output (enhanced effort exertion) relative to control primes, and engaged a motivation-related network involving ventral striatum, extended amygdala, as well as right inferior frontal cortex. Conversely, pleasant images presented before action (versus control) primes decreased force and activated regions of the default-mode network, including inferior parietal lobule and medial prefrontal cortex. These findings show that emotional context can determine how unconscious goal representations influence motivational processes and are transformed into actual motor output, without direct rewarding contingencies. Furthermore, they provide insight into altered motor behaviour in psychopathological disorders with dysfunctional motivational processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The effect of the superficial temporal to middle cerebral artery bypass based on the data of motor activation single photon emission computed tomography

    International Nuclear Information System (INIS)

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Morimoto, Tetsuya; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the effect of the superficial temporal to middle cerebral artery (STA-MCA) bypass for the pure motor function in the ischemic cerebrovascular diseases (CVDs) using the motor activation single photon emission computed tomography (SPECT). Motor activation SPECT was performed on the 25 cases with ischemic CVD treated with STA-MCA bypass. Motor activation SPECT studies using the finger opposition task on the affected side were performed before surgery, at 1 month, and at 3 months after the bypass. The result of the motor activation SPECT was expressed as negative and positive by the visual inspection. During the follow-up period (mean; 2.2 years), there has been no recurrent or worsening clinical symptom. Before bypass, 10 cases were positive in the motor activation SPECT. The other 15 cases were negative. At one month after bypass, 14 cases were positive in the motor activation SPECT. At three months after bypass, 23 cases were positive in the motor activation SPECT. Twenty-two cases showed the improvement of the resting CBF. STA-MCA bypass is useful for pure motor function in the ischemic CVDs based on the motor activation SPECT coupling with their clinical symptoms. (author)

  20. The effect of the superficial temporal to middle cerebral artery bypass based on the data of motor activation single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Morimoto, Tetsuya; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We evaluated and analyzed the effect of the superficial temporal to middle cerebral artery (STA-MCA) bypass for the pure motor function in the ischemic cerebrovascular diseases (CVDs) using the motor activation single photon emission computed tomography (SPECT). Motor activation SPECT was performed on the 25 cases with ischemic CVD treated with STA-MCA bypass. Motor activation SPECT studies using the finger opposition task on the affected side were performed before surgery, at 1 month, and at 3 months after the bypass. The result of the motor activation SPECT was expressed as negative and positive by the visual inspection. During the follow-up period (mean; 2.2 years), there has been no recurrent or worsening clinical symptom. Before bypass, 10 cases were positive in the motor activation SPECT. The other 15 cases were negative. At one month after bypass, 14 cases were positive in the motor activation SPECT. At three months after bypass, 23 cases were positive in the motor activation SPECT. Twenty-two cases showed the improvement of the resting CBF. STA-MCA bypass is useful for pure motor function in the ischemic CVDs based on the motor activation SPECT coupling with their clinical symptoms. (author)

  1. Analysis of automated quantification of motor activity in REM sleep behaviour disorder

    DEFF Research Database (Denmark)

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle

    2015-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing...... baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters...... were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep...

  2. Brain activation related to the change between bimanual motor programs

    NARCIS (Netherlands)

    de Jong, BM; Willemsen, ATM; Paans, AMJ

    By using positron emission tomography, we aimed to identify cerebral foci of neuronal activation associated with the initiation of a specific motor program. To that end, a state of repeatedly alternating in- and antiphase of bimanual flexion and extension movements was compared with similar movement

  3. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Science.gov (United States)

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  4. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  5. Changes in motor unit recruitment strategy during pain alters force direction.

    Science.gov (United States)

    Tucker, Kylie J; Hodges, Paul W

    2010-10-01

    Motor unit (MU) recruitment is altered (decreased discharge rate and cessation of discharge in some units, and recruitment of new units) in force-matched contractions during pain compared to contractions performed before pain. As MU's within a motoneurone pool have different force direction properties we hypothesised that altered MU recruitment during experimental knee pain would change the force vector (total force (F(T)): amplitude and angle) generated by the quadriceps. Force was produced at two levels during 1 × 60-s and 3 × 10-s isometric contractions of knee extensors, and recorded by two force transducers at right angles. This enabled calculation of both F(E) (extension force) and F(T). MU recruitment was recorded from the medial and lateral vastii with four fine-wire electrodes. Pain was induced by hypertonic saline injection in the infra-patella fat pad. Nine subjects matched F(E) and six subjects also matched both medial and lateral forces (F(T)) before and during pain. Changes in MU discharge pattern (decreased discharge rate (Precruitment of new units) during pain were associated with a ∼5° change in absolute force angle. As force angle changed in both directions (left/right) for individual subjects with pain there was no change in average F(T) amplitude between conditions. When both medial and lateral forces were matched MU discharge rate decreased (Punits ceased firing or were newly recruited during pain. Change in motoneurone recruitment during pain alters direction of muscle force. This may be a strategy to avoid pain or protect the painful part. Copyright © 2010 European Federation of International Association for the Study of Pain Chapters. Published by Elsevier Ltd. All rights reserved.

  6. Phrenic motor neuron adenosine 2A receptors elicit phrenic motor facilitation.

    Science.gov (United States)

    Seven, Yasin B; Perim, Raphael R; Hobson, Orinda R; Simon, Alec K; Tadjalli, Arash; Mitchell, Gordon S

    2018-04-15

    Although adenosine 2A (A 2A ) receptor activation triggers specific cell signalling cascades, the ensuing physiological outcomes depend on the specific cell type expressing these receptors. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged facilitation in phrenic nerve activity, which was nearly abolished following intrapleural A 2A receptor siRNA injections. A 2A receptor siRNA injections selectively knocked down A 2A receptors in cholera toxin B-subunit-identified phrenic motor neurons, sparing cervical non-phrenic motor neurons. Collectively, our results support the hypothesis that phrenic motor neurons express the A 2A receptors relevant to A 2A receptor-induced phrenic motor facilitation. Upregulation of A 2A receptor expression in the phrenic motor neurons per se may potentially be a useful approach to increase phrenic motor neuron excitability in conditions such as spinal cord injury. Cervical spinal adenosine 2A (A 2A ) receptor activation elicits a prolonged increase in phrenic nerve activity, an effect known as phrenic motor facilitation (pMF). The specific cervical spinal cells expressing the relevant A 2A receptors for pMF are unknown. This is an important question since the physiological outcome of A 2A receptor activation is highly cell type specific. Thus, we tested the hypothesis that the relevant A 2A receptors for pMF are expressed in phrenic motor neurons per se versus non-phrenic neurons of the cervical spinal cord. A 2A receptor immunostaining significantly colocalized with NeuN-positive neurons (89 ± 2%). Intrapleural siRNA injections were used to selectively knock down A 2A receptors in cholera toxin B-subunit-labelled phrenic motor neurons. A 2A receptor knock-down was verified by a ∼45% decrease in A 2A receptor immunoreactivity within phrenic motor neurons versus non-targeting siRNAs (siNT; P phrenic motor neurons. In rats that were anaesthetized, subjected to neuromuscular blockade and ventilated, p

  7. Learning and Chaining of Motor Primitives for Goal-directed Locomotion of a Snake-Like Robot with Screw-Drive Units

    DEFF Research Database (Denmark)

    Chatterjee, Sromona; Nachstedt, Timo; Tamosiunaite, Minija

    2015-01-01

    -directed locomotion for the robot. The behavioural primitives of the robot are generated using a reinforcement learning approach called "Policy Improvement with Path Integrals" (PI2). PI2 is numerically simple and has the ability to deal with high-dimensional systems. Here, PI2 is used to learn the robot’s motor...... controls by finding proper locomotion control parameters, like joint angles and screw-drive unit velocities, in a coordinated manner for different goals. Thus, it is able to generate a large repertoire of motor primitives, which are selectively stored to form a primitive library. The learning process...

  8. Robot-assisted motor activation monitored by time-domain optical brain imaging

    Science.gov (United States)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  9. Sleep-Active Neurons: Conserved Motors of Sleep

    Science.gov (United States)

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  10. ADRIA: A summary of different tools for motor and generator field service activities in the international market

    International Nuclear Information System (INIS)

    Krell, M.; Wuehler, H.

    2012-01-01

    AREVA Drive In Application (ADRIA) – is an innovative program for use at sites all over the world. ADRIA is a full package for medium voltage motor and generator services growth in the long-term, which presents a wide range of applications for nuclear- , thermal- , renewable hydro power plants and all industrial plants. ADRIA support our customers with an optimized product in MV motor management systems e.g., dismantling, maintenance, repair, tools, containers with full equipped working tools or measure equipment. Are you planning to open a site? You will need special equipment and very special diagnostic methods for electrical analysis for preventive maintenance scheduling and planning; special support from experts, ADRIA is a good, unitized, and flexible solution which can be adapted to different customer requirements. • Technical modules show low service and maintenance costs due to the life time of electrical machines. • Measurement module – a solution for the actual condition of the MV motors and generators (vibration, partial discharge, infrared technology, cable analysis, motor – current – analysis) • Documentation module – for all projects in joining with quality management • Tools module – support for all activities in service (working tools, office / store containers) • Man power module – for all service in the field (Experts with world wide experience) • For pre-maintenance we use, for example, infrared technology. Experts monitor different cycles and find out which parts are creating problems. The maintenance strategy will be clear, shorter and more effective for the next outage. ADRIA offers great advantages for the global maintenance market providing time, efficiency and preventive scheduling, efforts and saving of costs. This new technology method has been successfully applied in various motor refurbishment projects in German, Spain or Brazil nuclear power plants since 2010. Further follow-up orders in German and

  11. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Science.gov (United States)

    Mokienko, Olesya A.; Chervyakov, Alexander V.; Kulikova, Sofia N.; Bobrov, Pavel D.; Chernikova, Liudmila A.; Frolov, Alexander A.; Piradov, Mikhail A.

    2013-01-01

    Background: Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). Subjects and Methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy. PMID:24319425

  12. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects

    Directory of Open Access Journals (Sweden)

    Olesya eMokienko

    2013-11-01

    Full Text Available Background: Motor imagery (MI is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms.Purpose: To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI.Subjects and methods: Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24–68 years were either trained with an MI-based BCI (BCI-trained, n = 5 or received no BCI training (n = 6, controls. Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS.Results: fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17% during MI, which was also observed only in BCI-trained subjects.Conclusion: Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.

  13. Validation of a motor activity system by a robotically controlled vehicle and using standard reference compounds.

    Science.gov (United States)

    Patterson, John P; Markgraf, Carrie G; Cirino, Maria; Bass, Alan S

    2005-01-01

    A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.

  14. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    OpenAIRE

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2012-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, pre...

  15. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Christian M. Simon

    2017-12-01

    Full Text Available The hallmark of spinal muscular atrophy (SMA, an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.

  16. Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: A Golgi study.

    Science.gov (United States)

    Vázquez-Hernández, Nallely; González-Tapia, Diana C; Martínez-Torres, Nestor I; González-Tapia, David; González-Burgos, Ignacio

    2017-09-14

    Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Science.gov (United States)

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  18. INDIVIDUAL CHARACTERISTICS OF THE STUDENTS ENROLLED IN DIFFERENT TYPES OF MOTOR ACTIVITY OF PHYSICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    E. M. Revenko

    2017-01-01

    Full Text Available The aim of this study was to examine intensity of motor and intellectual abilities and motivation for physical activity of students engaged in physical education in different sports groups.Methodology and research methods. Motor abilities of the students were assessed by measuring: hand, strength endurance, speed-power abilities, speed ability and general stamina. Assessment of general intelligence (GI was carried out by R. Amthauer’s test in the adaptation of L. A. Yasjukova. Formal-dynamic characteristics of the individuality (FDCI were studied using the technique of FDCI feedback form proposed by V. M. Rusalov. Assessment of motivation to implement motor activity was performed using the author's questionnaire. The method of statistical information processing has allowed the author to reveal correlation communications between motor abilities and GI of first-year students.Results. Significant differences in the manifestation of the individual students’ characteristics choosing practicing in different types of physical activity are experimentally established. In particular, students who chose table tennis, are inferior to the students who went in for wrestling in the manifestation of certain (power, motor skills, motivation for physical activity, but at the same time show relatively higher rates of certain intellectual abilities.Formal-dynamic traits of individuality are peculiar to students involved in table tennis, reflecting lower psychomotor activity (integrated indicator PDI - Psychomotor Development Index, in comparison with students who prefer fighting. The material presented provides a basis to argue that sports-oriented approach has some potential in the aspect of increase of efficiency of students’ physical education, distinguished by individual characteristics of age specific development.Scientific novelty. Scientific findings on distinct differences in motivation to physical activity, manifestation of motor and mental

  19. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    Science.gov (United States)

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  20. The impact of physical activity on non-motor symptoms in Parkinson’s disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Melanie Elizabeth Cusso

    2016-08-01

    Full Text Available Parkinson’s disease (PD is a neurological disorder that is associated with both motor and non-motor symptoms. The management of PD is primarily via pharmaceutical treatment, however non-pharmaceutical interventions have become increasingly recognised in the management of motor and non-motor symptoms (NMS. In this review, the efficacy of physical activity, including physiotherapy and occupational therapy, as an intervention in NMS will be assessed. The papers were extracted between the 20th to 22th of June 2016 from Pubmed, Web of Science, Medline, Ovid, SportsDiscuss and Scopus using the MeSH search terms ‘Parkinson’s’, ‘Parkinson’ and ‘Parkinsonism’ in conjunction with ‘exercise’, ‘physical activity’, ‘physiotherapy’, ‘occupational therapy’, ‘physical therapy’, ‘rehabilitation’, ‘dance’ and ‘martial arts’. Twenty studies matched inclusion criteria of having ten or more participants with diagnosed idiopathic PD participating in the intervention as well as having to evaluate the effects of physical activity on NMS in PD as controlled, randomized intervention studies. The outcomes of interest were NMS, including depression, cognition, fatigue, apathy, anxiety and sleep. Risk of bias in the studies was evaluated using the Cochrane Collaboration’s tool for assessing risk of bias. Comparability of the various intervention methods however was challenging due to demographic variability and methodological differences. Nevertheless, physical activity can positively impact the global NMS burden including depression, apathy, fatigue, day time sleepiness, sleep and cognition, thus supporting its therapeutic potential in neurodegenerative conditions such as PD. It is recommended that further adequately powered studies are conducted to assess the therapeutic role of physical activity on both motor and non-motor aspects of PD. These studies should be optimally designed to assess non-motor elements of disease

  1. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults

    Science.gov (United States)

    Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.

    2016-01-01

    The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910

  2. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    Science.gov (United States)

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  3. The effect of motor learning and fatigue on pre-activation of the lower extremity muscles during different jumps.

    Science.gov (United States)

    Kamelska, Anna M; Kot, Bartosz

    2017-09-22

    The first step in identifying risk factors for injuries is to characterize the myoelectric activity of different muscles after ground contact, especially when fatigue is a limiting factor. This study aimed at: (a) recording the myoelectric activity of calf muscles after ground contact during different types of jumps and (b) investigating the effect of motor learning and fatigue on muscle pre-activation. Twenty four male students aged 24.3 ± 1.2 years old performed three different motor activities: (a) Jump from a box with counter landing (JCL) on 30x30 cm plate (b) Drop jump with bounce drop jump (BDJ) and (c) BDJ followed by a jump on 51-cm step. The surface EMG was used to examine the following muscles: m. tibialis anterior (TA), m. gastrocnemius medialis (GM), m. gastrocnemius lateralis (GL), and m. soleus (S). The measurements were taken during different jumps before and after motor learning and fatigue stimulus. There were significant differences in pre-activation for TA between JCL and BDJ followed by a jump under the influence of fatigue (p<0.05). The differences were observed also during BDJ between non-fatigued and fatigued conditions. There was a statistically significant difference for GL between BDJ pre- and post-movement motor learning and BDJ pre- and post-fatigue influence. Current results indicate that myoelectric activity of muscles during motor activities is different, and the effect of motor learning and fatigue was shown. Thus, it could be important in the injury prevention in sport.

  4. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Masahiro [Gifu Univ. (Japan). School of Medicine

    1998-09-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with {sup 99m}Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%{Delta}CBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %{Delta}CBF were up 24.1{+-}4.3% in the contra-lateral sensorimotor area, and 22.3{+-}3.6% in the supplementary motor area, respectively. The average %{Delta}CBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  5. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Kawaguchi, Masahiro

    1998-01-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with 99m Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%ΔCBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %ΔCBF were up 24.1±4.3% in the contra-lateral sensorimotor area, and 22.3±3.6% in the supplementary motor area, respectively. The average %ΔCBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  6. Physical Activity and Motor Skills in Children with and without Visual Impairments

    NARCIS (Netherlands)

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    HOUWEN, S., E. HARTMAN, and C. VISSCHER. Physical Activity and Motor Skills in Children with and without Visual Impairments. Med. Sci. Sports Exerc., Vol. 41, No, 1, pp. 103-109, 2009. Purpose: To examine the physical activity levels of children with and without visual impairments(VI). We further

  7. Relationship between habitual physical activity and gross motor skills is multifaceted in 5- to 8-year-old children.

    Science.gov (United States)

    Laukkanen, A; Pesola, A; Havu, M; Sääkslahti, A; Finni, T

    2014-04-01

    Adequate motor skills are essential for children participating in age-related physical activities, and gross motor skills may play an important role for maintaining sufficient level of physical activity (PA) during life course. The purpose of this study was to examine the relationship between gross motor skills and PA in children when PA was analyzed by both metabolic- and neuromuscular-based methods. Gross motor skills (KTK--Körperkoordinationstest für Kinder and APM inventory--manipulative skill test) of 84 children aged 5-8 years (53 preschoolers, 28 girls; 31 primary schoolers, 18 girls) were measured, and accelerometer-derived PA was analyzed using in parallel metabolic counts and neuromuscular impact methods. The gross motor skills were associated with moderate-to-high neuromuscular impacts, PA of vigorous metabolic intensity, and mean level of PA in primary school girls (0.5 motor skills (0.4 motor skills and PA stressing both metabolic and neuromuscular systems in children. Furthermore, PA highly stressing neuromuscular system interacts with gross motor proficiency in girls especially. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Activities of daily living in children with hemiparesis: influence of cognitive abilities and motor competence.

    Science.gov (United States)

    Adler, Caroline; Rauchenzauner, Markus; Staudt, Martin; Berweck, Steffen

    2014-12-01

    The aim of the article is to investigate whether motor competence and cognitive abilities influence the quality of performance of activities of daily living (ADL) in children with hemiparesis. Patients and A total of 20 children with hemiparesis (age, 6-12 years; 11 congenital, 9 acquired during childhood) were studied. Motor competence was assessed with the Assisting Hand Assessment, cognitive abilities with the German version of the Wechsler Intelligence Scale for Children IV, and the quality of ADL performance with the Assessment of Motor and Process Skills (AMPS). The motor skills scale of the AMPS correlated with motor competence, and the process skills scale of the AMPS correlated with cognitive abilities. The quality of ADL performance is influenced not only by motor competence but also by the cognitive abilities of a hemiparetic child. This suggests that, in addition to motor-oriented training programs, an optimal therapy for hemiparetic children should also consider cognitive approaches. Georg Thieme Verlag KG Stuttgart · New York.

  9. Weight status and gender-related differences in motor skills and in child care - based physical activity in young children

    Science.gov (United States)

    2012-01-01

    Background Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Methods Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Results Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children. PMID:22405468

  10. Weight status and gender-related differences in motor skills and in child care - based physical activity in young children

    Directory of Open Access Journals (Sweden)

    Bonvin Antoine

    2012-03-01

    Full Text Available Abstract Background Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Methods Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight for body mass index (BMI. Results Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2, 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059 for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04. Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p Conclusions At this early age, there were no significant weight status- or gender-related differences in global motor skills. However, in accordance to data in older children, child care-based physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting

  11. Preferential distribution of nociceptive input to motoneurons with muscle units in the cranial portion of the upper trapezius muscle.

    Science.gov (United States)

    Dideriksen, Jakob L; Holobar, Ales; Falla, Deborah

    2016-08-01

    Pain is associated with changes in the neural drive to muscles. For the upper trapezius muscle, surface electromyography (EMG) recordings have indicated that acute noxious stimulation in either the cranial or the caudal region of the muscle leads to a relative decrease in muscle activity in the cranial region. It is, however, not known if this adaption reflects different recruitment thresholds of the upper trapezius motor units in the cranial and caudal region or a nonuniform nociceptive input to the motor units of both regions. This study investigated these potential mechanisms by direct motor unit identification. Motor unit activity was investigated with high-density surface EMG signals recorded from the upper trapezius muscle of 12 healthy volunteers during baseline, control (intramuscular injection of isotonic saline), and painful (hypertonic saline) conditions. The EMG was decomposed into individual motor unit spike trains. Motor unit discharge rates decreased significantly from control to pain conditions by 4.0 ± 3.6 pulses/s (pps) in the cranial region but not in the caudal region (1.4 ± 2.8 pps; not significant). These changes were compatible with variations in the synaptic input to the motoneurons of the two regions. These adjustments were observed, irrespective of the location of noxious stimulation. These results strongly indicate that the nociceptive synaptic input is distributed in a nonuniform way across regions of the upper trapezius muscle. Copyright © 2016 the American Physiological Society.

  12. Risk assessment analysis of the future technical unit dedicated to the evaluation and treatment of motor disabilities.

    Science.gov (United States)

    Grelier, S; Thetio, M; Quentin, V; Achache, V; Sanchez, N; Leroux, V; Durand, E; Pequignot, R

    2011-03-01

    The National Hospital of Saint Maurice (HNSM) for Physical Medicine and Rehabilitation aims at strengthening its position as a pivot rehabilitation and physical therapy center. The opening in 2011 of a new unit for the evaluation and treatment of motor disabilities meets this objective. This project includes several parts: clinical, financial, architectural, organizational, applied clinical research as well as dealing with medical equipments and information system. This study focuses on the risk assessment of this future technical unit. This study was conducted by a group of professionals working for the hospital. It started with the design of a functional model to better comprehend the system to be analyzed. Risk assessment consists in confronting this functional model to a list of dangers in order to determine the vulnerable areas of the system. Then the team designed some scenarios to identify the causes, securities barriers and consequences in order to rank the risks. The analysis targeted various dangers, e.g. political, strategic, financial, economical, marketing, clinical and operational. The team identified more than 70 risky scenarios. For 75% of them the criticality level was deemed initially tolerable and under control or unacceptable. The implementation of an action plan for reducing the level of risks before opening this technical unit brought the system down to an acceptable level at 66%. A year prior to opening this technical unit for the evaluation and treatment of motor disabilities, conducting this preliminary risk assessment, with its exhaustive and rigorous methodology, enabled the concerned professionals to work together around an action plan for reducing the risks. 2011 Elsevier Masson SAS. All rights reserved.

  13. Weight status and gender-related differences in motor skills and in child care - based physical activity in young children.

    Science.gov (United States)

    Bonvin, Antoine; Barral, Jérôme; Kakebeeke, Tanja H; Kriemler, Susi; Longchamp, Anouk; Marques-Vidal, Pedro; Puder, Jardena J

    2012-03-09

    Over the last decades, a decline in motor skills and in physical activity and an increase in obesity has been observed in children. However, there is a lack of data in young children. We tested if differences in motor skills and in physical activity according to weight or gender were already present in 2- to 4-year-old children. Fifty-eight child care centers in the French part of Switzerland were randomly selected for the Youp'là bouge study. Motor skills were assessed by an obstacle course including 5 motor skills, derived from the Zurich Neuromotor Assessment test. Physical activity was measured with accelerometers (GT1M, Actigraph, Florida, USA) using age-adapted cut-offs. Weight status was assessed using the International Obesity Task Force criteria (healthy weight vs overweight) for body mass index (BMI). Of the 529 children (49% girls, 3.4 ± 0.6 years, BMI 16.2 ± 1.2 kg/m2), 13% were overweight. There were no significant weight status-related differences in the single skills of the obstacle course, but there was a trend (p = 0.059) for a lower performance of overweight children in the overall motor skills score. No significant weight status-related differences in child care-based physical activity were observed. No gender-related differences were found in the overall motor skills score, but boys performed better than girls in 2 of the 5 motor skills (p ≤ 0.04). Total physical activity as well as time spent in moderate-vigorous and in vigorous activity during child care were 12-25% higher and sedentary activity 5% lower in boys compared to girls (all p physical activity was higher in boys compared to girls. These results are important to consider when establishing physical activity recommendations or targeting health promotion interventions in young children.

  14. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    DEFF Research Database (Denmark)

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    , health-related fitness and performance-related fitness were significantly associated to time spent at moderate to vigorous physical activity level at three years follow up. The clinical relevance of the results indicated cardiorespiratory fitness and shuttle run to be important skills to perceive......Background Physical activity is associated to several health benefits in children and has a tendency to track from childhood to adulthood. An adequate motor performance has been shown positively related to physical activity level in cross sectional studies and may be the foundation of a healthy...... lifestyle, but there is a lack of longitudinal studies. The objective of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow up study. Methods Longitudinal analyses were performed using data from the CHAMPS-Study DK, including 673...

  15. DESIGN AND EXPERIENCE WITH THE WS/HS ASSEMBLY MOVEMENT USING LABVIEW VIS, NATIONAL INSTRUMENT MOTION CONTROLLERS, AND COMPUMOTOR ELECTRONIC DRIVE UNITS AND MOTORS

    International Nuclear Information System (INIS)

    Barr, D.S.; Day, L.A.

    2001-01-01

    The Low-Energy Demonstration Accelerator (LEDA), designed and built at the Los Alamos National Laboratory, is part of the Accelerator Production of Tritium (APT) program and provides a platform for measuring high-power proton beam-halo formation. The technique used for measuring the beam halo employs nine combination Wire Scanner and Halo Scraper (WS/HS) devices. This paper will focus on the experience gained in the use of National Instrument (NI) LabVIEW VIs and motion controllers, and Compumotor electronic drive units and motors. The base configuration couples a Compumotor motor driven by a Parker-Hannifin Gemini GT Drive unit. The drive unit is controlled by a NI PXI-7344 controller card, which in turn is controlled by a PC running custom built NI LabVIEW VIs. The function of the control VI's is to interpret instructions from the main control system, the Experimental Physics and Industrial Control System (EPICS), and carry out the corresponding motion commands. The main control VI has to run all nineteen WS/HS motor axes used in the accelerator. A basic discussion of the main accelerator control system, EPICs which is hosted on a VXI platform, and its interface with the PC based LabVIEW motion control software will be included

  16. Training in the Motor Vehicle Repair and Sales Sector in the United Kingdom. Report for the FORCE Programme. First Edition.

    Science.gov (United States)

    Rhys, Garel

    An international team of researchers studied the following aspects of training in the United Kingdom's motor vehicle repair and sales sector: structure and characteristics; institutional and social context; relationship to the labor market; changing structural, economic, and organizational conditions; and training/recruitment and relationship to…

  17. Echoes on the motor network: how internal motor control structures afford sensory experience.

    Science.gov (United States)

    Burgess, Jed D; Lum, Jarrad A G; Hohwy, Jakob; Enticott, Peter G

    2017-12-01

    Often, during daily experiences, hearing peers' actions can activate motor regions of the CNS. This activation is termed auditory-motor resonance (AMR) and is thought to represent an internal simulation of one's motor memories. Currently, AMR is demonstrated at the neuronal level in the Macaque and songbird, in conjunction with evidence on a systems level in humans. Here, we review evidence of AMR development from a motor control perspective. In the context of internal modelling, we consider data that demonstrates sensory-guided motor learning and action maintenance, particularly the notion of sensory comparison seen during songbird vocalisation. We suggest that these comparisons generate accurate sensory-to-motor inverse mappings. Furthermore, given reports of mapping decay after songbird learning, we highlight the proposal that the maintenance of these sensorimotor maps potentially explains why frontoparietal regions are activated upon hearing known sounds (i.e., AMR). In addition, we also recommend that activation of these types of internal models outside of action execution may provide an ecological advantage when encountering known stimuli in ambiguous conditions.

  18. Microcomputer-based stepping-motor controller

    International Nuclear Information System (INIS)

    Johnson, K.

    1983-04-01

    A microcomputer-controlled stepping motor is described. A Motorola MC68701 microcomputer unit is interfaced to a Cybernetic CY500 stored-program controller that outputs through Motorola input/output isolation modules to the stepping motor. A complex multifunction controller with enhanced capabilities is thus available with a minimum number of parts

  19. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  20. Motor activation SPECT for the neurosurgical diseases. Clinical application

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  1. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  2. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  3. Cerebellar Shaping of Motor Cortical Firing Is Correlated with Timing of Motor Actions

    Directory of Open Access Journals (Sweden)

    Abdulraheem Nashef

    2018-05-01

    Full Text Available Summary: In higher mammals, motor timing is considered to be dictated by cerebellar control of motor cortical activity, relayed through the cerebellar-thalamo-cortical (CTC system. Nonetheless, the way cerebellar information is integrated with motor cortical commands and affects their temporal properties remains unclear. To address this issue, we activated the CTC system in primates and found that it efficiently recruits motor cortical cells; however, the cortical response was dominated by prolonged inhibition that imposed a directional activation across the motor cortex. During task performance, cortical cells that integrated CTC information fired synchronous bursts at movement onset. These cells expressed a stronger correlation with reaction time than non-CTC cells. Thus, the excitation-inhibition interplay triggered by the CTC system facilitates transient recruitment of a cortical subnetwork at movement onset. The CTC system may shape neural firing to produce the required profile to initiate movements and thus plays a pivotal role in timing motor actions. : Nashef et al. identified a motor cortical subnetwork recruited by cerebellar volley that was transiently synchronized at movement onset. Cerebellar control of cortical firing was dominated by inhibition that shaped task-related firing of neurons and may dictate motor timing. Keywords: motor control, primates, cerebellar-thalamo-cortical, synchrony, noise correlation, reaction time

  4. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    Science.gov (United States)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures

  5. When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects

    DEFF Research Database (Denmark)

    Gerlach, Christian; Law, Ian; Paulson, Olaf B

    2002-01-01

    Functional imaging studies have demonstrated that processing of man-made objects activate the left ventral premotor cortex, which is known to be concerned with motor function. This has led to the suggestion that the comprehension of man-made objects may rely on motor-based knowledge of object uti...

  6. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Science.gov (United States)

    2010-07-01

    ... practicable, conflicts between motorized and non-motorized rivercraft users and between both types of...-motorized rivercraft may be permitted subject to restrictions on size, type of craft, numbers, duration... Service where such activity may be permitted subject to restrictions on size, type of craft, numbers...

  7. Human duodenal motor activity in response to acid and different nutrients

    NARCIS (Netherlands)

    Schwartz, M. P.; Samsom, M.; Smout, A. J.

    2001-01-01

    Duodenal motor activity in response to intraduodenal infusion of small volumes of acid and nutrients of different chemical composition was studied in 10 healthy humans, using a water-perfused catheter incorporating 20 antropyloroduodenal sideholes. Saline and dextrose did not affect motility. Acid

  8. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow

  9. The change in perceived motor competence and motor task values during elementary school : A longitudinal cohort study

    NARCIS (Netherlands)

    Noordstar, Johannes J; van der Net, Janjaap; Jak, Suzanne; Helders, Paul J M; Jongmans, Marian J

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  10. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    Science.gov (United States)

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  11. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  12. Do Perceptions of Competence Mediate The Relationship Between Fundamental Motor Skill Proficiency and Physical Activity Levels of Children in Kindergarten?

    Science.gov (United States)

    Crane, Jeff R; Naylor, Patti J; Cook, Ryan; Temple, Viviene A

    2015-07-01

    Perceptions of competence mediate the relationship between motor skill proficiency and physical activity among older children and adolescents. This study examined kindergarten children's perceptions of physical competence as a mediator of the relationship between motor skill proficiency as a predictor variable and physical activity levels as the outcome variable; and also with physical activity as a predictor and motor skill proficiency as the outcome. Participants were 116 children (mean age = 5 years 7 months, 58% boys) from 10 schools. Motor skills were measured using the Test of Gross Motor Development-2 and physical activity was monitored through accelerometry. Perceptions of physical competence were measured using The Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, and the relationships between these variables were examined using a model of mediation. The direct path between object control skills and moderate-vigorous physical activity (MVPA) was significant and object control skills predicted perceived physical competence. However, perceived competence did not mediate the relationship between object control skills and MVPA. The significant relationship between motor proficiency and perceptions of competence did not in turn influence kindergarten children's participation in physical activity. These findings support concepts of developmental differences in the structure of the self-perception system.

  13. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Science.gov (United States)

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  14. Examination of muscle composition and motor unit behavior of the first dorsal interosseous of normal and overweight children.

    Science.gov (United States)

    Miller, Jonathan D; Sterczala, Adam J; Trevino, Michael A; Herda, Trent J

    2018-05-01

    We examined differences between normal weight (NW) and overweight (OW) children aged 8-10 yr in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous. Ultrasonography was used to determine muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing electromyography amplitude (EMG RMS ) and relationships between mean firing rates (MFR), recruitment thresholds (RT), and MU action potential amplitudes (MUAP size ) and durations (MUAP time ). The OW group had significantly greater EI than the NW group ( P = 0.002; NW, 47.99 ± 6.01 AU; OW, 58.90 ± 10.63 AU, where AU is arbitrary units) with no differences between groups for CSA ( P = 0.688) or MVC force ( P = 0.790). MUAP size was larger for NW than OW in relation to RT ( P = 0.002) and for MUs expressing similar MFRs ( P = 0.011). There were no significant differences ( P = 0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAP time was larger in OW ( P = 0.015) and EMG RMS was attenuated in OW compared with NW ( P = 0.034); however, there were no significant correlations ( P = 0.133-0.164, r = 0.270-0.291) between sFAT and EMG RMS . In a muscle that does not support body mass, the OW children had smaller MUAP size as well as greater EI, although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength compared with NW children. NEW & NOTEWORTHY Ultrasound data and motor unit action potential sizes suggest that overweight children have poorer muscle composition and smaller motor units in the first dorsal interosseous than normal weight children. Evidence is presented that suggests differences in action potential size cannot be explained

  15. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  16. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task