WorldWideScience

Sample records for motor proteins kif1a

  1. Diabetes alters KIF1A and KIF5B motor proteins in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Filipa I Baptista

    Full Text Available Diabetes mellitus is the most common metabolic disorder in humans. Diabetic encephalopathy is characterized by cognitive and memory impairments, which have been associated with changes in the hippocampus, but the mechanisms underlying those impairments triggered by diabetes, are far from being elucidated. The disruption of axonal transport is associated with several neurodegenerative diseases and might also play a role in diabetes-associated disorders affecting nervous system. We investigated the effect of diabetes (2 and 8 weeks duration on KIF1A, KIF5B and dynein motor proteins, which are important for axonal transport, in the hippocampus. The mRNA expression of motor proteins was assessed by qRT-PCR, and also their protein levels by immunohistochemistry in hippocampal slices and immunoblotting in total extracts of hippocampus from streptozotocin-induced diabetic and age-matched control animals. Diabetes increased the expression and immunoreactivity of KIF1A and KIF5B in the hippocampus, but no alterations in dynein were detected. Since hyperglycemia is considered a major player in diabetic complications, the effect of a prolonged exposure to high glucose on motor proteins, mitochondria and synaptic proteins in hippocampal neurons was also studied, giving particular attention to changes in axons. Hippocampal cell cultures were exposed to high glucose (50 mM or mannitol (osmotic control; 25 mM plus 25 mM glucose for 7 days. In hippocampal cultures incubated with high glucose no changes were detected in the fluorescence intensity or number of accumulations related with mitochondria in the axons of hippocampal neurons. Nevertheless, high glucose increased the number of fluorescent accumulations of KIF1A and synaptotagmin-1 and decreased KIF5B, SNAP-25 and synaptophysin immunoreactivity specifically in axons of hippocampal neurons. These changes suggest that anterograde axonal transport mediated by these kinesins may be impaired in hippocampal

  2. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function.

    Science.gov (United States)

    Tanaka, Yosuke; Niwa, Shinsuke; Dong, Ming; Farkhondeh, Atena; Wang, Li; Zhou, Ruyun; Hirokawa, Nobutaka

    2016-06-15

    KIF1A is a major axonal transport motor protein, but its functional significance remains elusive. Here we show that KIF1A-haploinsufficient mice developed sensory neuropathy. We found progressive loss of TrkA(+) sensory neurons in Kif1a(+/-) dorsal root ganglia (DRGs). Moreover, axonal transport of TrkA was significantly disrupted in Kif1a(+/-) neurons. Live imaging and immunoprecipitation assays revealed that KIF1A bound to TrkA-containing vesicles through the adaptor GTP-Rab3, suggesting that TrkA is a cargo of the KIF1A motor. Physiological measurements revealed a weaker capsaicin response in Kif1a(+/-) DRG neurons. Moreover, these neurons were hyposensitive to nerve growth factor, which could explain the reduced neuronal survival and the functional deficiency of the pain receptor TRPV1. Because phosphatidylinositol 3-kinase (PI3K) signaling significantly rescued these phenotypes and also increased Kif1a mRNA, we propose that KIF1A is essential for the survival and function of sensory neurons because of the TrkA transport and its synergistic support of the NGF/TrkA/PI3K signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy

    NARCIS (Netherlands)

    Lee, Jae Ran; Srour, Myriam; Kim, Doyoun; Hamdan, Fadi F.; Lim, So Hee; Brunel-Guitton, Catherine; Décarie, Jean Claude; Rossignol, Elsa; Mitchell, Grant A.; Schreiber, Allison; Moran, Rocio; Van Haren, Keith; Richardson, Randal; Nicolai, Joost; Oberndorff, Karin M E J; Wagner, Justin D.; Boycott, Kym M.; Rahikkala, Elisa; Junna, Nella; Tyynismaa, Henna; Cuppen, Inge; Verbeek, Nienke E.; Stumpel, Connie T R M; Willemsen, Michel A.; de Munnik, Sonja A.; Rouleau, Guy A.; Kim, Eunjoon; Kamsteeg, Erik Jan; Kleefstra, Tjitske; Michaud, Jacques L.

    2015-01-01

    KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations

  4. The Drosophila KIF1A homolog unc-104 is important for site-specific active zone maturation

    Directory of Open Access Journals (Sweden)

    Yao V. Zhang

    2016-09-01

    Full Text Available Abstract Mutations in the kinesin-3 family member KIF1A have been associated with hereditary spastic paraplegia, hereditary sensory and autonomic neuropathy type 2 and intellectual disability. Both autosomal recessive and autosomal dominant forms of inheritance have been reported. Loss of KIF1A or its homolog unc-104 causes early postnatal or embryonic lethality in mice and Drosophila, respectively. In this study we use a previously described hypomorphic allele of unc-104, unc-104bris, to investigate the impact of partial loss-of-function of kinesin-3 function on active zone formation at the Drosophila neuromuscular junction. unc-104bris mutants exhibit synaptic defects where a subset of synapses at the neuromuscular junction lack the key active zone organizer protein Bruchpilot. Modulating synaptic Bruchpilot levels by ectopic overexpression or RNAi-mediated knockdown suggests that the loss of active zone components such as Ca2+ channel and Liprin-α from these synapses is caused by impaired kinesin-3 transport rather than due to the absence of Bruchpilot at these synapses. In addition to defects in active zone maturation, unc-104bris mutants display impaired transport of dense core vesicles and synaptic vesicle associated proteins, among which Rab3 has been shown to regulate the distribution of Bruchpilot to active zones. Overexpression of Rab3 partially ameliorates synaptic phenotypes of unc-104bris neuromuscular junction, suggesting that lack of presynaptic Rab3 may contribute to defects in synapse maturation.

  5. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2.

    Science.gov (United States)

    Rivière, Jean-Baptiste; Ramalingam, Siriram; Lavastre, Valérie; Shekarabi, Masoud; Holbert, Sébastien; Lafontaine, Julie; Srour, Myriam; Merner, Nancy; Rochefort, Daniel; Hince, Pascale; Gaudet, Rébecca; Mes-Masson, Anne-Marie; Baets, Jonathan; Houlden, Henry; Brais, Bernard; Nicholson, Garth A; Van Esch, Hilde; Nafissi, Shahriar; De Jonghe, Peter; Reilly, Mary M; Timmerman, Vincent; Dion, Patrick A; Rouleau, Guy A

    2011-08-12

    Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    Science.gov (United States)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  7. Mechanical design of translocating motor proteins.

    Science.gov (United States)

    Hwang, Wonmuk; Lang, Matthew J

    2009-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.

  8. Motor proteins and molecular motors: how to operate machines at the nanoscale

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B

    2013-01-01

    Several classes of biological molecules that transform chemical energy into mechanical work are known as motor proteins or molecular motors. These nanometer-sized machines operate in noisy stochastic isothermal environments, strongly supporting fundamental cellular processes such as the transfer of genetic information, transport, organization and functioning. In the past two decades motor proteins have become a subject of intense research efforts, aimed at uncovering the fundamental principles and mechanisms of molecular motor dynamics. In this review, we critically discuss recent progress in experimental and theoretical studies on motor proteins. Our focus is on analyzing fundamental concepts and ideas that have been utilized to explain the non-equilibrium nature and mechanisms of molecular motors. (topical review)

  9. Dynamic properties of motor proteins with two subunits

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B; III, Hubert Phillips

    2005-01-01

    The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion

  10. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  11. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  12. Multiscale modeling and simulation of microtubule–motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2016-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate–consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation. PMID:26764729

  13. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  14. Impact of fluorescent protein fusions on the bacterial flagellar motor.

    Science.gov (United States)

    Heo, M; Nord, A L; Chamousset, D; van Rijn, E; Beaumont, H J E; Pedaci, F

    2017-10-03

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side effects, but such insight is still lacking for many applications. This is particularly relevant in the study of the internal dynamics of motor proteins, where both the chemical and mechanical reaction coordinates can be affected. Fluorescent proteins fused to the stator of the Bacterial Flagellar Motor (BFM) have previously been used to unveil the motor subunit dynamics. Here we report the effects on single motors of three fluorescent proteins fused to the stators, all of which altered BFM behavior. The torque generated by individual stators was reduced while their stoichiometry remained unaffected. MotB fusions decreased the switching frequency and induced a novel bias-dependent asymmetry in the speed in the two directions. These effects could be mitigated by inserting a linker at the fusion point. These findings provide a quantitative account of the effects of fluorescent fusions to the stator on BFM dynamics and their alleviation- new insights that advance the use of fluorescent fusions to probe the dynamics of protein complexes.

  15. A simple theory of motor protein kinetics and energetics. II.

    Science.gov (United States)

    Qian, H

    2000-01-10

    A three-state stochastic model of motor protein [Qian, Biophys. Chem. 67 (1997) pp. 263-267] is further developed to illustrate the relationship between the external load on an individual motor protein in aqueous solution with various ATP concentrations and its steady-state velocity. A wide variety of dynamic motor behavior are obtained from this simple model. For the particular case of free-load translocation being the most unfavorable step within the hydrolysis cycle, the load-velocity curve is quasi-linear, V/Vmax = (cF/Fmax-c)/(1-c), in contrast to the hyperbolic relationship proposed by A.V. Hill for macroscopic muscle. Significant deviation from the linearity is expected when the velocity is less than 10% of its maximal (free-load) value--a situation under which the processivity of motor diminishes and experimental observations are less certain. We then investigate the dependence of load-velocity curve on ATP (ADP) concentration. It is shown that the free load Vmax exhibits a Michaelis-Menten like behavior, and the isometric Fmax increases linearly with ln([ATP]/[ADP]). However, the quasi-linear region is independent of the ATP concentration, yielding an apparently ATP-independent maximal force below the true isometric force. Finally, the heat production as a function of ATP concentration and external load are calculated. In simple terms and solved with elementary algebra, the present model provides an integrated picture of biochemical kinetics and mechanical energetics of motor proteins.

  16. Protein Synthesis Inhibition Blocks Consolidation of an Acrobatic Motor Skill

    Science.gov (United States)

    Kaelin-Lang, Alain; Dichgans, Johannes; Schulz, Jorg B.; Luft, Andreas R.; Buitrago, Manuel M.

    2004-01-01

    To investigate whether motor skill learning depends on de novo protein synthesis, adult rats were trained in an acrobatic locomotor task (accelerating rotarod) for 7 d. Animals were systemically injected with cycloheximide (CHX, 0.5 mg/kg, i.p.) 1 h before sessions 1 and 2 or sessions 2 and 3. Control rats received vehicle injections before…

  17. Decreased function of survival motor neuron protein impairs endocytic pathways.

    Science.gov (United States)

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  18. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation

    Science.gov (United States)

    Bojovschi, A.; Liu, Ming S.; Sadus, Richard J.

    2012-08-01

    The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F1-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg2+ leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.

  19. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    NARCIS (Netherlands)

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  20. Motor protein traffic regulation by supply–demand balance of resources

    International Nuclear Information System (INIS)

    Ciandrini, Luca; Dauloudet, Olivier; Parmeggiani, Andrea; Neri, Izaak; Walter, Jean Charles

    2014-01-01

    In cells and in in vitro assays the number of motor proteins involved in biological transport processes is far from being unlimited. The cytoskeletal binding sites are in contact with the same finite reservoir of motors (either the cytosol or the flow chamber) and hence compete for recruiting the available motors, potentially depleting the reservoir and affecting cytoskeletal transport. In this work we provide a theoretical framework in which to study, analytically and numerically, how motor density profiles and crowding along cytoskeletal filaments depend on the competition of motors for their binding sites. We propose two models in which finite processive motor proteins actively advance along cytoskeletal filaments and are continuously exchanged with the motor pool. We first look at homogeneous reservoirs and then examine the effects of free motor diffusion in the surrounding medium. We consider as a reference situation recent in vitro experimental setups of kinesin-8 motors binding and moving along microtubule filaments in a flow chamber. We investigate how the crowding of linear motor proteins moving on a filament can be regulated by the balance between supply (concentration of motor proteins in the flow chamber) and demand (total number of polymerized tubulin heterodimers). We present analytical results for the density profiles of bound motors and the reservoir depletion, and propose novel phase diagrams that present the formation of jams of motor proteins on the filament as a function of two tuneable experimental parameters: the motor protein concentration and the concentration of tubulins polymerized into cytoskeletal filaments. Extensive numerical simulations corroborate the analytical results for parameters in the experimental range and also address the effects of diffusion of motor proteins in the reservoir. We then propose experiments for validating our models and discuss how the ‘supply–demand’ effects can regulate motor traffic also in in vivo

  1. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    Science.gov (United States)

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Life without double-headed non-muscle myosin II motor proteins

    Science.gov (United States)

    Betapudi, Venkaiah

    2014-07-01

    Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC) belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  3. Life without double-headed non-muscle myosin II motor proteins

    Directory of Open Access Journals (Sweden)

    Venkaiah eBetapudi

    2014-07-01

    Full Text Available Non-muscle myosin II motor proteins (myosin IIA, myosin IIB, and myosin IIC belong to a class of molecular motor proteins that are known to transduce cellular free-energy into biological work more efficiently than man-made combustion engines. Nature has given a single myosin II motor protein for lower eukaryotes and multiple for mammals but none for plants in order to provide impetus for their life. These specialized nanomachines drive cellular activities necessary for embryogenesis, organogenesis, and immunity. However, these multifunctional myosin II motor proteins are believed to go awry due to unknown reasons and contribute for the onset and progression of many autosomal-dominant disorders, cataract, deafness, infertility, cancer, kidney, neuronal, and inflammatory diseases. Many pathogens like HIV, Dengue, hepatitis C, and Lymphoma viruses as well as Salmonella and Mycobacteria are now known to take hostage of these dedicated myosin II motor proteins for their efficient pathogenesis. Even after four decades since their discovery, we still have a limited knowledge of how these motor proteins drive cell migration and cytokinesis. We need to enrich our current knowledge on these fundamental cellular processes and develop novel therapeutic strategies to fix mutated myosin II motor proteins in pathological conditions. This is the time to think how to relieve the hijacked myosins from pathogens in order to provide a renewed impetus for patients’ life. Understanding how to steer these molecular motors in proliferating and differentiating stem cells will improve stem cell based-therapeutics development. Given the plethora of cellular activities non-muscle myosin motor proteins are involved in, their importance is apparent for human life.

  4. Motoring through: the role of kinesin superfamily proteins in female meiosis.

    Science.gov (United States)

    Camlin, Nicole J; McLaughlin, Eileen A; Holt, Janet E

    2017-07-01

    The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. To examine the role of kinesin motor proteins in oocyte meiosis. A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to

  5. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots.

    Science.gov (United States)

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M; Ichimura, Taro

    2016-07-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery.

  6. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    Science.gov (United States)

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  7. Porters versus rowers: a unified stochastic model of motor proteins.

    Science.gov (United States)

    Leibler, S; Huse, D A

    1993-06-01

    We present a general phenomenological theory for chemical to mechanical energy transduction by motor enzymes which is based on the classical "tight-coupling" mechanism. The associated minimal stochastic model takes explicitly into account both ATP hydrolysis and thermal noise effects. It provides expressions for the hydrolysis rate and the sliding velocity, as functions of the ATP concentration and the number of motor enzymes. It explains in a unified way many results of recent in vitro motility assays. More importantly, the theory provides a natural classification scheme for the motors: it correlates the biochemical and mechanical differences between "porters" such as cellular kinesins or dyneins, and "rowers" such as muscular myosins or flagellar dyneins.

  8. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    Science.gov (United States)

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  9. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.

    Science.gov (United States)

    Kanada, Ryo; Kuwata, Takeshi; Kenzaki, Hiroo; Takada, Shoji

    2013-01-01

    Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT) using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A "walking."

  10. Structure-based molecular simulations reveal the enhancement of biased Brownian motions in single-headed kinesin.

    Directory of Open Access Journals (Sweden)

    Ryo Kanada

    Full Text Available Kinesin is a family of molecular motors that move unidirectionally along microtubules (MT using ATP hydrolysis free energy. In the family, the conventional two-headed kinesin was experimentally characterized to move unidirectionally through "walking" in a hand-over-hand fashion by coordinated motions of the two heads. Interestingly a single-headed kinesin, a truncated KIF1A, still can generate a biased Brownian movement along MT, as observed by in vitro single molecule experiments. Thus, KIF1A must use a different mechanism from the conventional kinesin to achieve the unidirectional motions. Based on the energy landscape view of proteins, for the first time, we conducted a set of molecular simulations of the truncated KIF1A movements over an ATP hydrolysis cycle and found a mechanism exhibiting and enhancing stochastic forward-biased movements in a similar way to those in experiments. First, simulating stand-alone KIF1A, we did not find any biased movements, while we found that KIF1A with a large friction cargo-analog attached to the C-terminus can generate clearly biased Brownian movements upon an ATP hydrolysis cycle. The linked cargo-analog enhanced the detachment of the KIF1A from MT. Once detached, diffusion of the KIF1A head was restricted around the large cargo which was located in front of the head at the time of detachment, thus generating a forward bias of the diffusion. The cargo plays the role of a diffusional anchor, or cane, in KIF1A "walking."

  11. Impact of fluorescent protein fusions on the bacterial flagellar motor

    NARCIS (Netherlands)

    Heo, M.; Nord, A. L.; Chamousset, D.; van Rijn, E.; Beaumont, H.J.E.; Pedaci, F.

    2017-01-01

    Fluorescent fusion proteins open a direct and unique window onto protein function. However, they also introduce the risk of perturbation of the function of the native protein. Successful applications of fluorescent fusions therefore rely on a careful assessment and minimization of the side

  12. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    OpenAIRE

    Schubring-Giese Maximilian; Leemburg Susan; Luft Andreas Rüdiger; Hosp Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of ...

  13. Vectorial loading of processive motor proteins: implementing a landscape picture

    International Nuclear Information System (INIS)

    Kim, Young C; Fisher, Michael E

    2005-01-01

    Individual processive molecular motors, of which conventional kinesin is the most studied quantitatively, move along polar molecular tracks and, by exerting a force F = (F x ,F y ,F z ) on a tether, drag cellular cargoes, in vivo, or spherical beads, in vitro, taking up to hundreds of nanometre-scale steps. From observations of velocities and the dispersion of displacements with time, under measured forces and controlled fuel supply (typically ATP), one may hope to obtain insight into the molecular motions undergone in the individual steps. In the simplest situation, the load force F may be regarded as a scalar resisting force, F x z >0, while more recently Block and co-workers (2002 Biophys. J. 83 491, 2003 Proc. Natl Acad. Sci. USA 100 2351) and Carter and Cross (2005 Nature 435 308) have studied assisting (or reverse) loads, F x >0, and also sideways (or transverse) loads F y ≠ 0. We extend previous mechanochemical kinetic models by explicitly implementing a free-energy landscape picture in order to allow for the full vectorial nature of the force F transmitted by the tether. The load-dependence of the various forward and reverse transition rates is embodied in load distribution vectors, θ j + and θ j - , which relate to substeps of the motor, and in next order, in compliance matrices η j + and η j - . The approach is applied specifically to discuss the experiments of Howard and co-workers (1996 Biophys.?J. 70 418) in which the buckling of partially clamped microtubules was measured under the action of bound kinesin molecules which induced determined perpendicular loads. But in the normal single-bead assay it also proves imperative to allow for F z >0: the appropriate analysis for kinesin, suggesting that the motor 'crouches' on binding ATP prior to stepping, is sketched. It yields an expression for the velocity, V (F x ,F z ;[ATP]), needed to address the buckling experiments

  14. Versatile microsphere attachment of GFP-labeled motors and other tagged proteins with preserved functionality

    Directory of Open Access Journals (Sweden)

    Michael Bugiel

    2015-11-01

    Full Text Available Microspheres are often used as handles for protein purification or force spectroscopy. For example, optical tweezers apply forces on trapped particles to which motor proteins are attached. However, even though many attachment strategies exist, procedures are often limited to a particular biomolecule and prone to non-specific protein or surface attachment. Such interactions may lead to loss of protein functionality or microsphere clustering. Here, we describe a versatile coupling procedure for GFP-tagged proteins via a polyethylene glycol linker preserving the functionality of the coupled proteins. The procedure combines well-established protocols, is highly reproducible, reliable, and can be used for a large variety of proteins. The coupling is efficient and can be tuned to the desired microsphere-to-protein ratio. Moreover, microspheres hardly cluster or adhere to surfaces. Furthermore, the procedure can be adapted to different tags providing flexibility and a promising attachment strategy for any tagged protein.

  15. The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Jafari, Gholamali; Appleford, Peter J; Seago, Julian

    2011-01-01

    , an RNAi screen designed to identify upstream transcriptional regulators of mab-9 showed that silencing of unc-4 (encoding a paired-class homeodomain protein) increases mab-9::gfp expression in the nervous system, specifically in posterior DA motor neurons. Over-expression of unc-4 from a heat...

  16. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Directory of Open Access Journals (Sweden)

    Chia-Shan Wu

    Full Text Available The G-protein coupled receptor 55 (GPR55 is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  17. GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination.

    Science.gov (United States)

    Wu, Chia-Shan; Chen, Hongmei; Sun, Hao; Zhu, Jie; Jew, Chris P; Wager-Miller, James; Straiker, Alex; Spencer, Corinne; Bradshaw, Heather; Mackie, Ken; Lu, Hui-Chen

    2013-01-01

    The G-protein coupled receptor 55 (GPR55) is activated by lysophosphatidylinositols and some cannabinoids. Recent studies found prominent roles for GPR55 in neuropathic/inflammatory pain, cancer and bone physiology. However, little is known about the role of GPR55 in CNS development and function. To address this question, we performed a detailed characterization of GPR55 knockout mice using molecular, anatomical, electrophysiological, and behavioral assays. Quantitative PCR studies found that GPR55 mRNA was expressed (in order of decreasing abundance) in the striatum, hippocampus, forebrain, cortex, and cerebellum. GPR55 deficiency did not affect the concentrations of endocannabinoids and related lipids or mRNA levels for several components of the endocannabinoid system in the hippocampus. Normal synaptic transmission and short-term as well as long-term synaptic plasticity were found in GPR55 knockout CA1 pyramidal neurons. Deleting GPR55 function did not affect behavioral assays assessing muscle strength, gross motor skills, sensory-motor integration, motor learning, anxiety or depressive behaviors. In addition, GPR55 null mutant mice exhibited normal contextual and auditory-cue conditioned fear learning and memory in a Pavlovian conditioned fear test. In contrast, when presented with tasks requiring more challenging motor responses, GPR55 knockout mice showed impaired movement coordination. Taken together, these results suggest that GPR55 plays a role in motor coordination, but does not strongly regulate CNS development, gross motor movement or several types of learned behavior.

  18. Protein friction limits diffusive and directed movements of kinesin motors on microtubules.

    Science.gov (United States)

    Bormuth, Volker; Varga, Vladimir; Howard, Jonathon; Schäffer, Erik

    2009-08-14

    Friction limits the operation of macroscopic engines and is critical to the performance of micromechanical devices. We report measurements of friction in a biological nanomachine. Using optical tweezers, we characterized the frictional drag force of individual kinesin-8 motor proteins interacting with their microtubule tracks. At low speeds and with no energy source, the frictional drag was related to the diffusion coefficient by the Einstein relation. At higher speeds, the frictional drag force increased nonlinearly, consistent with the motor jumping 8 nanometers between adjacent tubulin dimers along the microtubule, and was asymmetric, reflecting the structural polarity of the microtubule. We argue that these frictional forces arise from breaking bonds between the motor domains and the microtubule, and they limit the speed and efficiency of kinesin.

  19. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases.

    Science.gov (United States)

    Brady, Scott T; Morfini, Gerardo A

    2017-09-01

    Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    Science.gov (United States)

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  1. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  2. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins.

    Science.gov (United States)

    Goshima, Gohta; Nédélec, François; Vale, Ronald D

    2005-10-24

    During the formation of the metaphase spindle in animal somatic cells, kinetochore microtubule bundles (K fibers) are often disconnected from centrosomes, because they are released from centrosomes or directly generated from chromosomes. To create the tightly focused, diamond-shaped appearance of the bipolar spindle, K fibers need to be interconnected with centrosomal microtubules (C-MTs) by minus end-directed motor proteins. Here, we have characterized the roles of two minus end-directed motors, dynein and Ncd, in such processes in Drosophila S2 cells using RNA interference and high resolution microscopy. Even though these two motors have overlapping functions, we show that Ncd is primarily responsible for focusing K fibers, whereas dynein has a dominant function in transporting K fibers to the centrosomes. We also report a novel localization of Ncd to the growing tips of C-MTs, which we show is mediated by the plus end-tracking protein, EB1. Computer modeling of the K fiber focusing process suggests that the plus end localization of Ncd could facilitate the capture and transport of K fibers along C-MTs. From these results and simulations, we propose a model on how two minus end-directed motors cooperate to ensure spindle pole coalescence during mitosis.

  3. Human myosin VIIa is a very slow processive motor protein on various cellular actin structures.

    Science.gov (United States)

    Sato, Osamu; Komatsu, Satoshi; Sakai, Tsuyoshi; Tsukasaki, Yoshikazu; Tanaka, Ryosuke; Mizutani, Takeomi; Watanabe, Tomonobu M; Ikebe, Reiko; Ikebe, Mitsuo

    2017-06-30

    Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s -1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s -1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores

    Science.gov (United States)

    Tuma, M. Carolina; Zill, Andrew; Le Bot, Nathalie; Vernos, Isabelle; Gelfand, Vladimir

    1998-01-01

    Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles. PMID:9852150

  5. The influence of protein kinases and microtubule binding proteins on cerebellar motor learning

    NARCIS (Netherlands)

    F.J. Branco Madeira

    2007-01-01

    textabstractThe cerebellum (from the latin - little brain) is located at the posterior end of the brain. It is known to be involved in vital functions like the control of heart beat and respiration and also in motor coordination, a function involving balance and equilibrium, which also requires the

  6. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation

    Science.gov (United States)

    Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.

    2012-01-01

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633

  7. Imaging Flow Cytometry Analysis to Identify Differences of Survival Motor Neuron Protein Expression in Patients With Spinal Muscular Atrophy.

    Science.gov (United States)

    Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko

    2016-08-01

    Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Investigation of New Morpholino Oligomers to Increase Survival Motor Neuron Protein Levels in Spinal Muscular Atrophy.

    Science.gov (United States)

    Ramirez, Agnese; Crisafulli, Sebastiano G; Rizzuti, Mafalda; Bresolin, Nereo; Comi, Giacomo P; Corti, Stefania; Nizzardo, Monica

    2018-01-06

    Spinal muscular atrophy (SMA) is an autosomal-recessive childhood motor neuron disease and the main genetic cause of infant mortality. SMA is caused by deletions or mutations in the survival motor neuron 1 ( SMN1 ) gene, which results in SMN protein deficiency. Only one approved drug has recently become available and allows for the correction of aberrant splicing of the paralogous SMN2 gene by antisense oligonucleotides (ASOs), leading to production of full-length SMN protein. We have already demonstrated that a sequence of an ASO variant, Morpholino (MO), is particularly suitable because of its safety and efficacy profile and is both able to increase SMN levels and rescue the murine SMA phenotype. Here, we optimized this strategy by testing the efficacy of four new MO sequences targeting SMN2 . Two out of the four new MO sequences showed better efficacy in terms of SMN protein production both in SMA induced pluripotent stem cells (iPSCs) and SMAΔ7 mice. Further, the effect was enhanced when different MO sequences were administered in combination. Our data provide an important insight for MO-based treatment for SMA. Optimization of the target sequence and validation of a treatment based on a combination of different MO sequences could support further pre-clinical studies and the progression toward future clinical trials.

  9. Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice

    Science.gov (United States)

    Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.

    2015-01-01

    Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve

  10. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  12. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    International Nuclear Information System (INIS)

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-01-01

    Highlights: ► The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. ► The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. ► The MBP–Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the “ATP state” of the mechanochemical cycle. This site differs from the Kar3 neck–core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  13. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    Energy Technology Data Exchange (ETDEWEB)

    Delorme, Caroline; Joshi, Monika [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada); Allingham, John S., E-mail: allinghj@queensu.ca [Department of Biomedical and Molecular Sciences, Queen' s University, Kingston, ON, Canada K7L 3N6 (Canada)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  14. Gestational Age-Dependent Increase of Survival Motor Neuron Protein in Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Iwatani, Sota; Harahap, Nur Imma Fatimah; Nurputra, Dian Kesumapramudya; Tairaku, Shinya; Shono, Akemi; Kurokawa, Daisuke; Yamana, Keiji; Thwin, Khin Kyae Mon; Yoshida, Makiko; Mizobuchi, Masami; Koda, Tsubasa; Fujioka, Kazumichi; Taniguchi-Ikeda, Mariko; Yamada, Hideto; Morioka, Ichiro

    2017-01-01

    Background: Spinal muscular atrophy (SMA) is the most common genetic neurological disease leading to infant death. It is caused by loss of survival motor neuron (SMN) 1 gene and subsequent reduction of SMN protein in motor neurons. Because SMN is ubiquitously expressed and functionally linked to general RNA metabolism pathway, fibroblasts (FBs) are most widely used for the assessment of SMN expression in SMA patients but usually isolated from skin biopsy samples after the onset of overt sympt...

  15. Protein-Energy Malnutrition Causes Deficits in Motor Function in Adult Male Rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Li, Xue; Paterson, Phyllis G

    2015-11-01

    Adult protein-energy malnutrition (PEM) often occurs in combination with neurological disorders affecting hand use and walking ability. The independent effects of PEM on motor function are not well characterized and may be obscured by these comorbidities. Our goal was to undertake a comprehensive evaluation of sensorimotor function with the onset and progression of PEM in an adult male rat model. In Expt. 1 and Expt. 2, male Sprague-Dawley rats (14-15 wk old) were assigned ad libitum access for 4 wk to normal-protein (NP) or low-protein (LP) diets containing 12.5% and 0.5% protein, respectively. Expt. 1 assessed muscle strength, balance, and skilled walking ability on days 2, 8, and 27 by bar-holding, cylinder, and horizontal ladder walking tasks, respectively. In addition to food intake and body weight, nutritional status was determined on days 3, 9, and 28 by serum acute-phase reactant and corticosterone concentrations and liver lipids. Expt. 2 addressed the effect of an LP diet on hindlimb muscle size. PEM evolved over time in rats consuming the LP diet. Total food intake decreased by 24% compared with the NP group. On day 28, body weight and serum albumin decreased by 31% and 26%, respectively, and serum α2-macroglobulin increased by 445% (P malnutrition. This model can be used in combination with disease models of sensorimotor deficits to examine the interactions between nutritional status, other treatments, and disease progression. © 2015 American Society for Nutrition.

  16. Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Atsushi Umemura

    Full Text Available C-reactive protein (CRP, a blood inflammatory biomarker, is associated with the development of Alzheimer disease. In animal models of Parkinson disease (PD, systemic inflammatory stimuli can promote neuroinflammation and accelerate dopaminergic neurodegeneration. However, the association between long-term systemic inflammations and neurodegeneration has not been assessed in PD patients.To investigate the longitudinal effects of baseline CRP concentrations on motor prognosis in PD.Retrospective analysis of 375 patients (mean age, 69.3 years; mean PD duration, 6.6 years. Plasma concentrations of high-sensitivity CRP were measured in the absence of infections, and the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III scores were measured at five follow-up intervals (Days 1-90, 91-270, 271-450, 451-630, and 631-900.Change of UPDRS-III scores from baseline to each of the five follow-up periods.Change in UPDRS-III scores was significantly greater in PD patients with CRP concentrations ≥0.7 mg/L than in those with CRP concentrations <0.7 mg/L, as determined by a generalized estimation equation model (P = 0.021 for the entire follow-up period and by a generalized regression model (P = 0.030 for the last follow-up interval (Days 631-900. The regression coefficients of baseline CRP for the two periods were 1.41 (95% confidence interval [CI] 0.21-2.61 and 2.62 (95% CI 0.25-4.98, respectively, after adjusting for sex, age, baseline UPDRS-III score, dementia, and incremental L-dopa equivalent dose.Baseline plasma CRP levels were associated with motor deterioration and predicted motor prognosis in patients with PD. These associations were independent of sex, age, PD severity, dementia, and anti-Parkinsonian agents, suggesting that subclinical systemic inflammations could accelerate neurodegeneration in PD.

  17. Importance of anisotropy in detachment rates for force production and cargo transport by a team of motor proteins.

    Science.gov (United States)

    Takshak, Anjneya; Kunwar, Ambarish

    2016-05-01

    Many cellular processes are driven by collective forces generated by a team consisting of multiple molecular motor proteins. One aspect that has received less attention is the detachment rate of molecular motors under mechanical force/load. While detachment rate of kinesin motors measured under backward force increases rapidly for forces beyond stall-force; this scenario is just reversed for non-yeast dynein motors where detachment rate from microtubule decreases, exhibiting a catch-bond type behavior. It has been shown recently that yeast dynein responds anisotropically to applied load, i.e. detachment rates are different under forward and backward pulling. Here, we use computational modeling to show that these anisotropic detachment rates might help yeast dynein motors to improve their collective force generation in the absence of catch-bond behavior. We further show that the travel distance of cargos would be longer if detachment rates are anisotropic. Our results suggest that anisotropic detachment rates could be an alternative strategy for motors to improve the transport properties and force production by the team. © 2016 The Protein Society.

  18. Functions and regulation of the multitasking FANCM family of DNA motor proteins.

    Science.gov (United States)

    Xue, Xiaoyu; Sung, Patrick; Zhao, Xiaolan

    2015-09-01

    Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. © 2015 Xue et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Sensing surface mechanical deformation using active probes driven by motor proteins

    Science.gov (United States)

    Inoue, Daisuke; Nitta, Takahiro; Kabir, Arif Md. Rashedul; Sada, Kazuki; Gong, Jian Ping; Konagaya, Akihiko; Kakugo, Akira

    2016-01-01

    Studying mechanical deformation at the surface of soft materials has been challenging due to the difficulty in separating surface deformation from the bulk elasticity of the materials. Here, we introduce a new approach for studying the surface mechanical deformation of a soft material by utilizing a large number of self-propelled microprobes driven by motor proteins on the surface of the material. Information about the surface mechanical deformation of the soft material is obtained through changes in mobility of the microprobes wandering across the surface of the soft material. The active microprobes respond to mechanical deformation of the surface and readily change their velocity and direction depending on the extent and mode of surface deformation. This highly parallel and reliable method of sensing mechanical deformation at the surface of soft materials is expected to find applications that explore surface mechanics of soft materials and consequently would greatly benefit the surface science. PMID:27694937

  20. Alteration of protein folding and degradation in motor neuron diseases : Implications and protective functions of small heat shock proteins

    NARCIS (Netherlands)

    Carra, Serena; Crippa, Valeria; Rusmini, Paola; Boncoraglio, Alessandra; Minoia, Melania; Giorgetti, Elisa; Kampinga, Harm H.; Poletti, Angelo

    Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy.

  1. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor.

    Directory of Open Access Journals (Sweden)

    Alessandro Pandini

    Full Text Available Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM domains (amino-terminal (FliGN, middle (FliGM and FliGC as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6. FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM

  2. Selective cell-surface labeling of the molecular motor protein prestin

    International Nuclear Information System (INIS)

    McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.

    2011-01-01

    Highlights: → Trafficking to the plasma membrane is required for prestin function. → Biotin acceptor peptide (BAP) was fused to prestin through a transmembrane domain. → BAP-prestin can be metabolically labeled with biotin in HEK293 cells. → Biotin-BAP-prestin allows for selective imaging of fully trafficked prestin. → The biotin-BAP-prestin displays voltage-sensitive activity. -- Abstract: Prestin, a multipass transmembrane protein whose N- and C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity.

  3. Kinesin-73 is a processive motor that localizes to Rab5-containing organelles.

    Science.gov (United States)

    Huckaba, Thomas M; Gennerich, Arne; Wilhelm, James E; Chishti, Athar H; Vale, Ronald D

    2011-03-04

    Drosophila Kinesin-73 (Khc-73), which plays a role in mitotic spindle polarity in neuroblasts, is a metazoan-specific member of the Kinesin-3 family of motors, which includes mammalian KIF1A and Caenorhabditis elegans Unc-104. The mechanism of Kinesin-3 motors has been controversial because some studies have reported that they transport cargo as monomers whereas other studies have suggested a dimer mechanism. Here, we have performed single-molecule motility and cell biological studies of Khc-73. We find that constructs containing the motor and the conserved short stretches of putative coiled-coil-forming regions are predominantly monomeric in vitro, but that dimerization allows for fast, processive movement and high force production (7 piconewtons). In Drosophila cell lines, we present evidence that Khc-73 can dimerize in vivo. We also show that Khc-73 is recruited specifically to Rab5-containing endosomes through its "tail" domain. Our results suggest that the N-terminal half of Khc-73 can undergo a monomer-dimer transition to produce a fast processive motor and that its C-terminal half possesses a specific Rab5-vesicle binding domain.

  4. A classical Master equation approach to modeling an artificial protein motor

    International Nuclear Information System (INIS)

    Kuwada, Nathan J.; Blab, Gerhard A.; Linke, Heiner

    2010-01-01

    Inspired by biomolecular motors, as well as by theoretical concepts for chemically driven nanomotors, there is significant interest in constructing artificial molecular motors. One driving force is the opportunity to create well-controlled model systems that are simple enough to be modeled in detail. A remaining challenge is the fact that such models need to take into account processes on many different time scales. Here we describe use of a classical Master equation approach, integrated with input from Langevin and molecular dynamics modeling, to stochastically model an existing artificial molecular motor concept, the Tumbleweed, across many time scales. This enables us to study how interdependencies between motor processes, such as center-of-mass diffusion and track binding/unbinding, affect motor performance. Results from our model help guide the experimental realization of the proposed motor, and potentially lead to insights that apply to a wider class of molecular motors.

  5. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    Science.gov (United States)

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  6. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  7. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    Science.gov (United States)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  8. The molecular motor F-ATP synthase is targeted by the tumoricidal protein HAMLET.

    Science.gov (United States)

    Ho, James; Sielaff, Hendrik; Nadeem, Aftab; Svanborg, Catharina; Grüber, Gerhard

    2015-05-22

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) interacts with multiple tumor cell compartments, affecting cell morphology, metabolism, proteasome function, chromatin structure and viability. This study investigated if these diverse effects of HAMLET might be caused, in part, by a direct effect on the ATP synthase and a resulting reduction in cellular ATP levels. A dose-dependent reduction in cellular ATP levels was detected in A549 lung carcinoma cells, and by confocal microscopy, co-localization of HAMLET with the nucleotide-binding subunits α (non-catalytic) and β (catalytic) of the energy converting F1F0 ATP synthase was detected. As shown by fluorescence correlation spectroscopy, HAMLET binds to the F1 domain of the F1F0 ATP synthase with a dissociation constant (KD) of 20.5μM. Increasing concentrations of the tumoricidal protein HAMLET added to the enzymatically active α3β3γ complex of the F-ATP synthase lowered its ATPase activity, demonstrating that HAMLET binding to the F-ATP synthase effects the catalysis of this molecular motor. Single-molecule analysis was applied to study HAMLET-α3β3γ complex interaction. Whereas the α3β3γ complex of the F-ATP synthase rotated in a counterclockwise direction with a mean rotational rate of 3.8±0.7s(-1), no rotation could be observed in the presence of bound HAMLET. Our findings suggest that direct effects of HAMLET on the F-ATP synthase may inhibit ATP-dependent cellular processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease.

    Science.gov (United States)

    Fujita, Kengo; Ito, Hidefumi; Nakano, Satoshi; Kinoshita, Yoshimi; Wate, Reika; Kusaka, Hirofumi

    2008-10-01

    This report concerns an immunohistochemical investigation on RNA-related proteins in the basophilic inclusions (BIs) from patients with adult-onset atypical motor neuron disease. Formalin-fixed, paraffin-embedded sections of the motor cortex and the lumbar spinal cord were examined. The BIs appeared blue in color with H&E and Nissl stain, and pink with methylgreen-pyronin stain. Ribonuclease pretreatment abolished the methylgreen-pyronin staining, suggesting that the BIs contained RNA. Immunohistochemically, the BIs were distinctly labeled with the antibodies against poly(A)-binding protein 1, T cell intracellular antigen 1, and ribosomal protein S6. These proteins are essential constituents of stress granules. In contrast, the BIs were not immunoreactive for ribosomal protein L28 and decapping enzyme 1, which are core components of transport ribonucleoprotein particles and processing bodies, respectively. Moreover, the BIs were not immunopositive for TDP-43. Our results imply that translation attenuation could be involved in the processes of BI formation in this disorder.

  10. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  11. NanoShuttles: Harnessing Motor Proteins to Transport Cargo in Synthetic Environments

    Science.gov (United States)

    Vogel, V.; Hess, H.

    Motors have become a crucial commodity in our daily lives, from transportation to driving conveyor belts that enable the sequential assembly of cars and other industrial machines. For the sequential assembly of building blocks at the nanoscale that would not assemble spontaneously into larger functional systems, however, active transport systems are not yet available. In contrast, cells have evolved sophisticated molecular machinery that drives movement and active transport. Driven by the conversion of chemical into mechanical energy, namely through hydrolysis of the biological fuel ATP, molecular motors enable cells to operate far away from equilibrium by transporting organelles and molecules to designated locations within the cell, often against concentration gradients. Inspired by the biological concept of active transport, major efforts are underway to learn how to build nanoscale transport systems that are driven by molecular motors. Emerging engineering principles are discussed of how to build tracks and junctions to guide such nanoshuttles, how to load them with cargo and control their speed, how to use active transport to assemble mesoscopic structures that would otherwise not assemble spontaneously and what polymeric materials to choose to integrate motors into MEMS and other biohybrid devices. Finally, two applications that exploit the physical properties of microtubules are discussed, surface imaging by a swarm of microtubules and a self-assembled picoNewton force meter to probe receptor-ligand interactions.

  12. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

    NARCIS (Netherlands)

    Simpson, Claire L.; Lemmens, Robin; Miskiewicz, Katarzyna; Broom, Wendy J.; Hansen, Valerie K.; van Vught, Paul W. J.; Landers, John E.; Sapp, Peter; Van Den Bosch, Ludo; Knight, Joanne; Neale, Benjamin M.; Turner, Martin R.; Veldink, Jan H.; Ophoff, Roel A.; Tripathi, Vineeta B.; Beleza, Ana; Shah, Meera N.; Proitsi, Petroula; Van Hoecke, Annelies; Carmeliet, Peter; Horvitz, H. Robert; Leigh, P. Nigel; Shaw, Christopher E.; van den Berg, Leonard H.; Sham, Pak C.; Powell, John F.; Verstreken, Patrik; Brown, Robert H.; Robberecht, Wim; Al-Chalabi, Ammar

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both

  13. Gestational Age-Dependent Increase of Survival Motor Neuron Protein in Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Sota Iwatani

    2017-09-01

    Full Text Available BackgroundSpinal muscular atrophy (SMA is the most common genetic neurological disease leading to infant death. It is caused by loss of survival motor neuron (SMN 1 gene and subsequent reduction of SMN protein in motor neurons. Because SMN is ubiquitously expressed and functionally linked to general RNA metabolism pathway, fibroblasts (FBs are most widely used for the assessment of SMN expression in SMA patients but usually isolated from skin biopsy samples after the onset of overt symptoms. Although recent translational studies of SMN-targeted therapies have revealed the very limited time window for effective SMA therapies during perinatal period, the exact time point when SMN shortage became evident is unknown in human samples. In this study, we analyzed SMN mRNA and protein expression during perinatal period by using umbilical cord-derived mesenchymal stem cells (UC-MSCs obtained from preterm and term infants.MethodsUC-MSCs were isolated from 16 control infants delivered at 22–40 weeks of gestation and SMA fetus aborted at 19 weeks of gestation (UC-MSC-Control and UC-MSC-SMA. FBs were isolated from control volunteer and SMA patient (FB-Control and FB-SMA. SMN mRNA and protein expression in UC-MSCs and FBs was determined by RT-qPCR and Western blot.ResultsUC-MSC-Control and UC-MSC-SMA expressed the comparable level of MSC markers on their cell surface and were able to differentiate into adipocytes, osteocytes, and chondrocytes. At steady state, SMN mRNA and protein expression was decreased in UC-MSC-SMA compared to UC-MSC-Control, as observed in FB-SMA and FB-Control. In response to histone deacetylase inhibitor valproic acid, SMN mRNA and protein expression in UC-MSC-SMA and FB-SMA was increased. During perinatal development from 22 to 40 weeks of gestation, SMN mRNA and protein expression in UC-MSC-Control was positively correlated with gestational age.ConclusionUC-MSCs isolated from 17 fetus/infant of 19–40 weeks of gestation

  14. Knockdown of Pnpla6 protein results in motor neuron defects in zebrafish

    Directory of Open Access Journals (Sweden)

    Yang Song

    2013-03-01

    Mutations in patatin-like phospholipase domain containing 6 (PNPLA6, also known as neuropathy target esterase (NTE or SPG39, cause hereditary spastic paraplegia (HSP. Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in neural development and in HSP are not clearly understood. Here, we describe the generation of a vertebrate model of PNPLA6 insufficiency using morpholino oligonucleotide knockdown in zebrafish (Danio rerio. Pnpla6 knockdown resulted in developmental abnormalities and motor neuron defects, including axon truncation and branching. The phenotypes in pnpla6 knockdown morphants were rescued by the introduction of wild-type, but not mutant, human PNPLA6 mRNA. Our results also revealed the involvement of BMP signaling in pnpla6 knockdown phenotypes. Taken together, these results demonstrate an important role of PNPLA6 in motor neuron development and implicate overexpression of BMP signaling as a possible mechanism underlying the developmental defects in pnpla6 morphants.

  15. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.

    Science.gov (United States)

    Baertsch, Nathan A; Baker, Tracy L

    2017-11-01

    Respiratory motoneuron pools must provide rhythmic inspiratory drive that is robust and reliable, yet dynamic enough to respond to respiratory challenges. One form of plasticity that is hypothesized to contribute to motor output stability by sensing and responding to inadequate respiratory neural activity is inactivity-induced phrenic motor facilitation (iPMF), an increase in inspiratory output triggered by a reduction in phrenic synaptic inputs. Evidence suggests that mechanisms giving rise to iPMF differ depending on the pattern of reduced respiratory neural activity (i.e., neural apnea). A prolonged neural apnea elicits iPMF via a spinal TNF-α-induced increase in atypical PKC activity, but little is known regarding mechanisms that elicit iPMF following intermittent neural apnea. We tested the hypothesis that iPMF triggered by intermittent neural apnea requires retinoic acid and protein synthesis. Phrenic nerve activity was recorded in urethane-anesthetized and -ventilated rats treated intrathecally with an inhibitor of retinoic acid synthesis (4-diethlyaminobenzaldehyde, DEAB), a protein synthesis inhibitor (emetine), or vehicle (artificial cerebrospinal fluid) before intermittent (5 episodes, ~1.25 min each) or prolonged (30 min) neural apnea. Both DEAB and emetine abolished iPMF elicited by intermittent neural apnea but had no effect on iPMF elicited by a prolonged neural apnea. Thus different patterns of reduced respiratory neural activity elicit phenotypically similar iPMF via distinct spinal mechanisms. Understanding mechanisms that allow respiratory motoneurons to dynamically tune their output may have important implications in the context of respiratory control disorders that involve varied patterns of reduced respiratory neural activity, such as central sleep apnea and spinal cord injury. NEW & NOTEWORTHY We identify spinal retinoic acid and protein synthesis as critical components in the cellular cascade whereby repetitive reductions in respiratory

  16. Entropic potential field formed for a linear-motor protein near a filament: Statistical-mechanical analyses using simple models.

    Science.gov (United States)

    Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro

    2010-07-28

    We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1

  17. The Epstein-Barr virus nuclear antigen-6 protein co-localizes with EBNA-3 and survival of motor neurons protein

    International Nuclear Information System (INIS)

    Krauer, Kenia G.; Buck, Marion; Belzer, Deanna K.; Flanagan, James; Chojnowski, Grace M.; Sculley, Tom B.

    2004-01-01

    The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6

  18. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    Science.gov (United States)

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  19. Electrochemical immunosensors for the detection of survival motor neuron (SMN) protein using different carbon nanomaterials-modified electrodes.

    Science.gov (United States)

    Eissa, Shimaa; Alshehri, Nawal; Rahman, Anas M Abdel; Dasouki, Majed; Abu-Salah, Khalid M; Zourob, Mohammed

    2018-03-15

    Spinal muscular atrophy is an untreatable potentially fatal hereditary disorder caused by loss-of-function mutations in the survival motor neuron (SMN) 1 gene which encodes the SMN protein. Currently, definitive diagnosis relies on the demonstration of biallelic pathogenic variants in SMN1 gene. Therefore, there is an urgent unmet need to accurately quantify SMN protein levels for screening and therapeutic monitoring of symptomatic newborn and SMA patients, respectively. Here, we developed a voltammetric immunosensor for the sensitive detection of SMN protein based on covalently functionalized carbon nanofiber-modified screen printed electrodes. A comparative study of six different carbon nanomaterial-modified electrodes (carbon, graphene (G), graphene oxide (GO), single wall carbon nanotube (SWCNT), multi-wall carbon nanotube (MWCNT), and carbon nanofiber (CNF)) was performed. 4-carboxyphenyl layers were covalently grafted on the six electrodes by electroreduction of diazonium salt. Then, the terminal carboxylic moieties on the electrodes surfaces were utilized to immobilize the SMN antibody via EDC/NHS chemistry and to fabricate the immunosensors. The electrochemical characterization and analytical performance of the six immunosensors suggest that carbon nanofiber is a better electrode material for the SMN immunosensor. The voltammetric SMN carbon nanofiber-based immunosensor showed high sensitivity (detection limit of 0.75pg/ml) and selectivity against other proteins such as cystic fibrosis transmembrane conductance regulator (CFTR) and dystrophin (DMD). We suggest that this novel biosensor is superior to other developed assays for SMN detection in terms of lower cost, higher sensitivity, simplicity and capability of high throughput screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Spinocerebellar Ataxia Type 6 Protein Aggregates Cause Deficits in Motor Learning and Cerebellar Plasticity

    NARCIS (Netherlands)

    Mark, Melanie D; Krause, Martin; Boele, Henk-Jan; Kruse, Wolfgang; Pollok, Stefan; Kuner, Thomas; Dalkara, Deniz; Koekkoek, Sebastiaan; De Zeeuw, Chris I; Herlitze, Stefan

    2015-01-01

    Spinocerebellar ataxia type 6 (SCA6) is linked to poly-glutamine (polyQ) within the C terminus (CT) of the pore-forming subunits of P/Q-type Ca(2+) channels (Cav2.1) and is characterized by CT protein aggregates found in cerebellar Purkinje cells (PCs). One hypothesis regarding SCA6 disease is that

  1. Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats.

    Science.gov (United States)

    Peng, Ji-Yun; Li, Bao-Ming

    2009-05-28

    It has been reported that consolidation of motor skill, a type of non-declarative memories, requires protein synthesis, as hippocampus-dependent declarative memory does. However, little is known about the importance of protein synthesis in maintenance and especially post-retrieval reconsolidation of acrobatic motor skill. Here, we show that protein synthesis is essential not only for the consolidation but also for the maintenance and reconsolidation of a rotarod-running skill. Intra-ventricle infusion of the protein synthesis inhibitor anisomycin 0 h but not 2 h post-training caused a severe deficit in the acquisition of the rotarod-running skill. Protein synthesis inhibition (PSI) also caused a deficit in the maintenance of the rotarod-running skill, as well-trained rats demonstrated a deficit in the rotarod-running performance upon treatment with anisomycin. Similarly, PSI impaired the post-retrieval reconsolidation of the rotarod-running skill: well-trained rats treated with anisomycin 0 h but not 0.5, 2 and 4 h after the task performance exhibited amnesia for the running skill later on. Interestingly, rats treated with anisomycin 6 and 12 h post-retrieval exhibited amnesia for the running skill. Thus, protein synthesis is essential not only for the consolidation but also for the maintenance and post-retrieval reconsolidation of rotarod-running acrobatic motor skill.

  2. Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats

    Directory of Open Access Journals (Sweden)

    Peng Ji-Yun

    2009-05-01

    Full Text Available Abstract It has been reported that consolidation of motor skill, a type of non-declarative memories, requires protein synthesis, as hippocampus-dependent declarative memory does. However, little is known about the importance of protein synthesis in maintenance and especially post-retrieval reconsolidation of acrobatic motor skill. Here, we show that protein synthesis is essential not only for the consolidation but also for the maintenance and reconsolidation of a rotarod-running skill. Intra-ventricle infusion of the protein synthesis inhibitor anisomycin 0 h but not 2 h post-training caused a severe deficit in the acquisition of the rotarod-running skill. Protein synthesis inhibition (PSI also caused a deficit in the maintenance of the rotarod-running skill, as well-trained rats demonstrated a deficit in the rotarod-running performance upon treatment with anisomycin. Similarly, PSI impaired the post-retrieval reconsolidation of the rotarod-running skill: well-trained rats treated with anisomycin 0 h but not 0.5, 2 and 4 h after the task performance exhibited amnesia for the running skill later on. Interestingly, rats treated with anisomycin 6 and 12 h post-retrieval exhibited amnesia for the running skill. Thus, protein synthesis is essential not only for the consolidation but also for the maintenance and post-retrieval reconsolidation of rotarod-running acrobatic motor skill.

  3. Marinesco-Sjögren syndrome protein SIL1 regulates motor neuron subtype-selective ER stress in ALS

    NARCIS (Netherlands)

    Filézac de L'Etang, Audrey; Maharjan, Niran; Cordeiro Braña, Marisa; Ruegsegger, Céline; Rehmann, Ruth; Goswami, Anand; Roos, Andreas; Troost, Dirk; Schneider, Bernard L.; Weis, Joachim; Saxena, Smita

    2015-01-01

    Mechanisms underlying motor neuron subtype-selective endoplasmic reticulum (ER) stress and associated axonal pathology in amyotrophic lateral sclerosis (ALS) remain unclear. Here we show that the molecular environment of the ER between motor neuron subtypes is distinct, with characteristic

  4. Motor and memory testing of long-lived pregnancy-associated plasma protein--a knock-out mice.

    Science.gov (United States)

    Mason, Emily J; Grell, Jacquelyn A; West, Sally A; Conover, Cheryl A

    2014-12-01

    Mice deficient in pregnancy-associated plasma protein-A (PAPP-A), an IGF binding protein protease, have been shown to be resistant to experimentally induced atherosclerosis and diabetic nephropathy, and, in the laboratory environment, live 30-40% longer than wild-type littermates in association with delayed incidence and occurrence of age-related neoplasms and degenerative diseases. PAPP-A is highly expressed in the cerebellum and hippocampus of the mouse brain. Therefore, the studies presented here were aimed at determining motor behavior, learning and retention in PAPP-A knock-out (KO) mice compared to wild-type (WT) littermates with age. Balance and coordination were assessed using an accelerating rotarod; learning and memory were assessed in a Stone T-maze. Time on the rotarod decreased with age but there was no significant difference between PAPP-A KO and WT mice at any of the testing ages. Latency to reach the goal box and number of errors committed in the Stone T-maze did not change with age and there were no significant differences between PAPP-A KO and WT mice. Lack of PAPP-A in mice did not impact central regulation of coordination, learning or memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  6. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis.

    Directory of Open Access Journals (Sweden)

    Paul M B Medina

    Full Text Available BACKGROUND: Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS: From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE: The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.

  7. HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.

    Science.gov (United States)

    Hao le, Thi; Duy, Phan Q; An, Min; Talbot, Jared; Iyer, Chitra C; Wolman, Marc; Beattie, Christine E

    2017-11-29

    Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons in vivo during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish HuD mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, Gap43 , is involved in axonal outgrowth. We found that Gap43 was decreased in both HuD and SMN mutants. Importantly, transgenic expression of HuD in motoneurons of SMN mutants rescued the motoneuron defects, the movement defects, and Gap43 mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA. SIGNIFICANCE STATEMENT In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons in vivo that SMN interacts with the RNA binding

  8. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export.

    Directory of Open Access Journals (Sweden)

    Gareth W Morgan

    2010-02-01

    Full Text Available Vaccinia virus (VACV uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC, a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs. Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD motif, which is conserved in the kinesin-1-binding sequence (KBS of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.

  9. An oral Na(V)1.8 blocker improves motor function in mice completely deficient of myelin protein P-0

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Krarup, Christian

    2016-01-01

    Mice deficient of myelin protein P0 are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Dysmyelination in these mice is associated with an ectopic expression of the sensory neuron specific sodium channel isoform NaV1.8 on motor axons. We reported that in P0+/−, a model of CMT......1B, the membrane dysfunction could be acutely improved by a novel oral NaV1.8 blocker referred to as Compound 31 (C31, Bioorg. Med. Chem. Lett. 2010, 20, 6812; AbbVie Inc.). The aim of this study was to investigate the extent to which C31 treatment could also improve the motor axon function in P0......-of-concept that treatment with oral subtype-selective NaV1.8 blockers could be used to improve the motor function in severe forms of demyelinating CMT....

  10. Distribution and evolution of stable single α-helices (SAH domains in myosin motor proteins.

    Directory of Open Access Journals (Sweden)

    Dominic Simm

    Full Text Available Stable single-alpha helices (SAHs are versatile structural elements in many prokaryotic and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way SAH-domains function as part of the lever of many different myosins. Canonical myosin levers consist of one or several IQ-motifs to which light chains such as calmodulin bind. SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be particularly suited for myosins working in crowded cellular environments. Although the function of the SAH-domains in human class-6 and class-10 myosins has well been characterised, the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of life remained elusive. Here, we analysed the largest available myosin sequence dataset consisting of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently developed tool for the identification of SAH-domains. With this approach we identified SAH-domains in more than one third of the supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can range from a few to almost all class members indicating complex patterns of independent and taxon-specific SAH-domain gain and loss.

  11. Ectopic expression of phloem motor protein pea forisome PsSEO-F1 enhances salinity stress tolerance in tobacco.

    Science.gov (United States)

    Srivastava, Vineet Kumar; Raikwar, Shailendra; Tuteja, Renu; Tuteja, Narendra

    2016-05-01

    PsSEOF-1 binds to calcium and its expression is upregulated by salinity treatment. PsSEOF - 1 -overexpressing transgenic tobacco showed enhanced salinity stress tolerance by maintaining cellular ion homeostasis and modulating ROS-scavenging pathway. Calcium (Ca(2+)) plays important role in growth, development and stress tolerance in plants. Cellular Ca(2+) homeostasis is achieved by the collective action of channels, pumps, antiporters and by Ca(2+) chelators present in the cell like calcium-binding proteins. Forisomes are ATP-independent mechanically active motor proteins known to function in wound sealing of injured sieve elements of phloem tissue. The Ca(2+)-binding activity of forisome and its role in abiotic stress signaling were largely unknown. Here we report the Ca(2+)-binding activity of pea forisome (PsSEO-F1) and its novel function in promoting salinity tolerance in transgenic tobacco. Native PsSEO-F1 promoter positively responded in salinity stress as confirmed using GUS reporter. Overexpression of PsSEO-F1 tobacco plants confers salinity tolerance by alleviating ionic toxicity and increased ROS scavenging activity which probably results in reduced membrane damage and improved yield under salinity stress. Evaluation of several physiological indices shows an increase in relative water content, electrolyte leakage, proline accumulation and chlorophyll content in transgenic lines as compared with null-segregant control. Expression of several genes involved in cellular homeostasis is perturbed by PsSEO-F1 overexpression. These findings suggest that PsSEO-F1 provides salinity tolerance through cellular Ca(2+) homeostasis which in turn modulates ROS machinery providing indirect link between Ca(2+) and ROS signaling under salinity-induced perturbation. PsSEO-F1 most likely functions in salinity stress tolerance by improving antioxidant machinery and mitigating ion toxicity in transgenic lines. This finding should make an important contribution in our better

  12. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans.

    Science.gov (United States)

    Florica, Roxana Oriana; Hipolito, Victoria; Bautista, Stephen; Anvari, Homa; Rapp, Chloe; El-Rass, Suzan; Asgharian, Alimohammad; Antonescu, Costin N; Killeen, Marie T

    2017-10-01

    The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evolution and Development of the Inner Ear Efferent System: Transforming a Motor Neuron Population to Connect to the Most Unusual Motor Protein via Ancient Nicotinic Receptors

    Directory of Open Access Journals (Sweden)

    Bernd Fritzsch

    2017-04-01

    Full Text Available All craniate chordates have inner ears with hair cells that receive input from the brain by cholinergic centrifugal fibers, the so-called inner ear efferents (IEEs. Comparative data suggest that IEEs derive from facial branchial motor (FBM neurons that project to the inner ear instead of facial muscles. Developmental data showed that IEEs develop adjacent to FBMs and segregation from IEEs might depend on few transcription factors uniquely associated with IEEs. Like other cholinergic terminals in the peripheral nervous system (PNS, efferent terminals signal on hair cells through nicotinic acetylcholine channels, likely composed out of alpha 9 and alpha 10 units (Chrna9, Chrna10. Consistent with the evolutionary ancestry of IEEs is the even more conserved ancestry of Chrna9 and 10. The evolutionary appearance of IEEs may reflect access of FBMs to a novel target, possibly related to displacement or loss of mesoderm-derived muscle fibers by the ectoderm-derived ear vesicle. Experimental transplantations mimicking this possible aspect of ear evolution showed that different motor neurons of the spinal cord or brainstem form cholinergic synapses on hair cells when ears replace somites or eyes. Transplantation provides experimental evidence in support of the evolutionary switch of FBM neurons to become IEEs. Mammals uniquely evolved a prestin related motor system to cause shape changes in outer hair cells regulated by the IEEs. In summary, an ancient motor neuron population drives in craniates via signaling through highly conserved Chrna receptors a uniquely derived cellular contractility system that is essential for hearing in mammals.

  14. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. The water extract of Liuwei dihuang possesses multi-protective properties on neurons and muscle tissue against deficiency of survival motor neuron protein.

    Science.gov (United States)

    Tseng, Yu-Ting; Jong, Yuh-Jyh; Liang, Wei-Fang; Chang, Fang-Rong; Lo, Yi-Ching

    2017-10-15

    Deficiency of survival motor neuron (SMN) protein, which is encoded by the SMN1 and SMN2 genes, induces widespread splicing defects mainly in spinal motor neurons, and leads to spinal muscular atrophy (SMA). Currently, there is no effective treatment for SMA. Liuwei dihuang (LWDH), a traditional Chinese herbal formula, possesses multiple therapeutic benefits against various diseases via modulation of the nervous, immune and endocrine systems. Previously, we demonstrated water extract of LWDH (LWDH-WE) protects dopaminergic neurons and improves motor activity in models of Parkinson's disease. This study aimed to investigate the potential protection of LWDH-WE on SMN deficiency-induced neurodegeneration and muscle weakness. The effects of LWDH-WE on SMN deficiency-induced neurotoxicity and muscle atrophy were examined by using SMN-deficient NSC34 motor neuron-like cells and SMA-like mice, respectively. Inducible SMN-knockdown NSC34 motor neuron-like cells were used to mimic SMN-deficient condition. Doxycycline (1 µg/ml) was used to induce SMN deficiency in stable NSC34 cell line carrying SMN-specific shRNA. SMAΔ7 mice were used as a severe type of SMA mouse model. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Apoptotic cells and neurite length were observed by inverted microscope. Protein expressions were examined by western blots. Muscle strength of animals was evaluated by hind-limb suspension test. LWDH-WE significantly increased SMN protein level, mitochondrial membrane potential and cell viability of SMN-deficient NSC34 cells. LWDH-WE attenuated SMN deficiency-induced down-regulation of B-cell lymphoma-2 (Bcl-2) and up-regulation of cytosolic cytochrome c and cleaved caspase-3. Moreover, LWDH-WE prevented SMN deficiency-induced inhibition of neurite outgrowth and activation of Ras homolog gene family, member A (RhoA)/ Rho-associated protein kinase (ROCK2)/ phospho

  16. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    International Nuclear Information System (INIS)

    Sharma, Aarti; Lambrechts, Anja; Le thi Hao; Le, Thanh T.; Sewry, Caroline A.; Ampe, Christophe; Burghes, Arthur H.M.; Morris, Glenn E.

    2005-01-01

    Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with β-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins

  17. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  18. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Spires Tara L

    2008-04-01

    Full Text Available Abstract Background Huntington's disease (HD is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line, expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw clasping motor sign, but not an accelerating rotarod deficit. Results We have now examined the effects of enhanced physical activity via wheel running, commenced at a juvenile age (4 weeks, with respect to the onset of various behavioral deficits and their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced abnormal habituation of locomotor activity and exploratory behavior in the open field. We have found that neither environment enrichment nor wheel running ameliorates the shrinkage of the striatum and anterior cingulate cortex (ACC in HD mice, nor the overall decrease in brain weight, measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel running. Conclusion These results indicate that enhanced voluntary physical activity, commenced at an early presymptomatic stage, contributes to the positive effects of environmental enrichment. However, sensory and cognitive stimulation, as well as motor stimulation not associated with running, may constitute major components of the therapeutic benefits associated with enrichment

  19. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  20. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA.

    Science.gov (United States)

    Iyer, Chitra C; McGovern, Vicki L; Murray, Jason D; Gombash, Sara E; Zaworski, Phillip G; Foust, Kevin D; Janssen, Paul M L; Burghes, Arthur H M

    2015-11-01

    Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Data on amyloid precursor protein accumulation, spontaneous physical activity, and motor learning after traumatic brain injury in the triple-transgenic mouse model of Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Yasushi Kishimoto

    2016-12-01

    Full Text Available This data article contains supporting information regarding the research article entitled “Traumatic brain injury accelerates amyloid-β deposition and impairs spatial learning in the triple-transgenic mouse model of Alzheimer׳s disease” (H. Shishido, Y. Kishimoto, N. Kawai, Y. Toyota, M. Ueno, T. Kubota, Y. Kirino, T. Tamiya, 2016 [1]. Triple-transgenic (3×Tg-Alzheimer׳s disease (AD model mice exhibited significantly poorer spatial learning than sham-treated 3×Tg-AD mice 28 days after traumatic brain injury (TBI. Correspondingly, amyloid-β (Aβ deposition within the hippocampus was significantly greater in 3×Tg-AD mice 28 days after TBI. However, data regarding the short-term and long-term influences of TBI on amyloid precursor protein (APP accumulation in AD model mice remain limited. Furthermore, there is little data showing whether physical activity and motor learning are affected by TBI in AD model mice. Here, we provide immunocytochemistry data confirming that TBI induces significant increases in APP accumulation in 3×Tg-AD mice at both 7 days and 28 days after TBI. Furthermore, 3×Tg-AD model mice exhibit a reduced ability to acquire conditioned responses (CRs during delay eyeblink conditioning compared to sham-treated 3×Tg-AD model mice 28 days after TBI. However, physical activity and motor performance are not significantly changed in TBI-treated 3×Tg-AD model mice.

  2. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    Science.gov (United States)

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  3. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  4. Pedigree with frontotemporal lobar degeneration – motor neuron disease and Tar DNA binding protein-43 positive neuropathology: genetic linkage to chromosome 9

    Directory of Open Access Journals (Sweden)

    Loy Clement T

    2008-08-01

    Full Text Available Abstract Background Frontotemporal lobar degeneration (FTLD represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD and motor neuron disease (MND. The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND. Methods Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing. Results Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree. Conclusion Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease

  5. Protective effect of parvalbumin on excitotoxic motor neuron death

    DEFF Research Database (Denmark)

    Van den Bosch, L.; Schwaller, B.; Vleminckx, V.

    2002-01-01

    Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin......Amyotrophic lateral sclerosis, ALS, AMPA receptor, calcium-binding proteins, calcium buffering, excitotoxity, kainic acid, motor neuron, parvalbumin...

  6. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  7. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  8. Crystallographic and molecular dynamics analysis of loop motions unmasking the peptidoglycan-binding site in stator protein MotB of flagellar motor.

    Directory of Open Access Journals (Sweden)

    Cyril F Reboul

    Full Text Available BACKGROUND: The C-terminal domain of MotB (MotB-C shows high sequence similarity to outer membrane protein A and related peptidoglycan (PG-binding proteins. It is believed to anchor the power-generating MotA/MotB stator unit of the bacterial flagellar motor to the peptidoglycan layer of the cell wall. We previously reported the first crystal structure of this domain and made a puzzling observation that all conserved residues that are thought to be essential for PG recognition are buried and inaccessible in the crystal structure. In this study, we tested a hypothesis that peptidoglycan binding is preceded by, or accompanied by, some structural reorganization that exposes the key conserved residues. METHODOLOGY/PRINCIPAL FINDINGS: We determined the structure of a new crystalline form (Form B of Helicobacter pylori MotB-C. Comparisons with the existing Form A revealed conformational variations in the petal-like loops around the carbohydrate binding site near one end of the β-sheet. These variations are thought to reflect natural flexibility at this site required for insertion into the peptidoglycan mesh. In order to understand the nature of this flexibility we have performed molecular dynamics simulations of the MotB-C dimer. The results are consistent with the crystallographic data and provide evidence that the three loops move in a concerted fashion, exposing conserved MotB residues that have previously been implicated in binding of the peptide moiety of peptidoglycan. CONCLUSION/SIGNIFICANCE: Our structural analysis provides a new insight into the mechanism by which MotB inserts into the peptidoglycan mesh, thus anchoring the power-generating complex to the cell wall.

  9. Motor homopolar

    OpenAIRE

    Martín Muñoz, Agustín

    2007-01-01

    Mostramos la construcción de un modelo de motor homopolar, uno de los más antiguos tipos de motores eléctricos. Se caracterizan porque el campo magnético del imán mantiene siempre la misma polaridad (de ahí su nombre, del griego homos, igual), de modo que, cuando una corriente eléctrica atraviesa el campo magnético, aparece una fuerza que hace girar los elementos no fijados mecánicamente. En el sencillísimo motor homopolar colgado (Schlichting y Ucke 2004), el imán puede girar ...

  10. Application of stepping motor

    International Nuclear Information System (INIS)

    1980-10-01

    This book is divided into three parts, which is about practical using of stepping motor. The first part has six chapters. The contents of the first part are about stepping motor, classification of stepping motor, basic theory og stepping motor, characteristic and basic words, types and characteristic of stepping motor in hybrid type and basic control of stepping motor. The second part deals with application of stepping motor with hardware of stepping motor control, stepping motor control by microcomputer and software of stepping motor control. The last part mentions choice of stepping motor system, examples of stepping motor, measurement of stepping motor and practical cases of application of stepping motor.

  11. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model.

  12. Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration.

    Science.gov (United States)

    Gomez-Deza, Jorge; Lee, Youn-Bok; Troakes, Claire; Nolan, Matthew; Al-Sarraj, Safa; Gallo, Jean-Marc; Shaw, Christopher E

    2015-06-25

    Cytoplasmic TDP-43 inclusions are the pathological hallmark of amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar dementia (FTLD). The G4C2 repeat mutation in C9ORF72 is the most common cause of ALS and FTLD in which, in addition to TDP-43 inclusions, five different di-peptide repeat (DPR) proteins have been identified. Di-peptide repeat proteins are translated in a non-canonical fashion from sense and antisense transcripts of the G4C2 repeat (GP, GA, GR, PA, PR). DPR inclusions are abundant in the cerebellum, as well as in the frontal and temporal lobes of ALS and FTLD patients and some are neurotoxic in a range of cellular and animal models, implying that DPR aggregation directly contributes to disease pathogenesis. Here we sought to quantify inclusions for each DPR and TDP-43 in ALS cases with and without the C9ORF72 mutation. We characterised the abundance of DPRs and their cellular location and compared this to cytoplasmic TDP-43 inclusions in order to explore the role of each inclusion in lower motor neuron degeneration. Spinal cord sections from ten cases positive for the C9ORF72 repeat expansion (ALS-C9+ve) and five cases that were not were probed by double immunofluorescence staining for individual DPRs and TDP-43. Inclusions immunoreactive for each of the DPRs were present in the spinal cord but they were rare or very rare in abundance (in descending order of frequency: GA, GP, GR, PA and PR). TDP-43 cytoplasmic inclusions were 45- to 750-fold more frequent than any DPR, and fewer than 4 % of DPR inclusions colocalized with TDP-43 inclusions. In motor neurons, a single cytoplasmic DPR inclusion was detected (0.1 %) in contrast to the 34 % of motor neurons that contained cytoplasmic TDP-43 inclusions. Furthermore, the number of TDP-43 inclusions in ALS cases with and without the C9ORF72 mutation was nearly identical. For all other neurodegenerative diseases, the neurotoxic protein aggregates are detected in the affected

  13. Jidosha's Motors

    OpenAIRE

    Shirakawa Okuma, Rosely; Calderón Orejuela, Javier

    2016-01-01

    La tesis narra la situación de una empresa concesionaria de vehículos nuevos, Jidosha's Motors, perteneciente a una corporación japonesa que cuenta con una cultura muy arraigada de ética y de cumplimiento. Se plantean respuestas, se identifican problemas y sus alternativas de solución para una toma adecuada de decisiones por parte de los directivos, siguiendo una estructura de análisis de situaciones de negocios (ASN). Tesis

  14. Controllable molecular motors engineered from myosin and RNA

    Science.gov (United States)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  15. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  16. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  17. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...... as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from...... aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P₀+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may...

  18. A Reconsideration of the Link between the Energetics of Water and of ATP Hydrolysis Energy in the Power Strokes of Molecular Motors in Protein Structures

    Directory of Open Access Journals (Sweden)

    Wilfred F. Widdas

    2008-09-01

    Full Text Available Mechanical energy from oxygen metabolism by mammalian tissues has been studied since 1837. The production of heat by mechanical work was studied by Fick in about 1860. Prior to Fick’s work, energetics were revised by Joule’s experiments which founded the First Law of Thermodynamics. Fenn in 1923/24 found that frog muscle contractions generated extra heat proportional to the amount of work done in shortening the muscle. This was fully consistent with the Joule, Helmholtz concept used for the First Law of Thermodynamics. The link between the energetics of water and ATP hydrolysis in molecular motors is recommended for reconsideration.

  19. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  20. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  1. Gabapentin-lactam, but not gabapentin, reduces protein aggregates and improves motor performance in a transgenic mouse model of Huntington's disease.

    Science.gov (United States)

    Zucker, Birgit; Ludin, Dagmar E; Gerds, Thomas A; Lücking, Carl H; Landwehrmeyer, G Bernhard; Feuerstein, Thomas J

    2004-08-01

    Gabapentin (GBP), an anti-convulsant widely used in the treatment of neuropathic pain syndromes, has been suggested to have neuroprotective properties. There is evidence, however, that the neuroprotective properties attributed to GBP are rather associated with a derivative of GBP, gabapentin-lactam (GBP-L), which opens mitochondrial ATP-dependent K+ channels, in contrast to GBP. We explored whether GBP and GBP-L may attenuate the course of a monogenetic autosomal neurodegenerative disorder, Huntington's disease (HD), using a transgenic mouse model. R6/2 mice treated with GBP-L performed walking on a narrow beam better than mice receiving no treatment, vehicle or GBP, suggesting a beneficial effect of GBP-L on motor function. In addition, a marked reduction of neuronal nuclear and cytoplasmic inclusions was observed in brains of mice treated with GBP-L. The pharmacokinetics of GBP-L yielded a mean plasma concentration near the EC50 of GBP-L to open mitochondrial ATP-dependent K+ channels. These findings support the role of GBP-L as a novel neuroprotective substance in vivo.

  2. Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia.

    Science.gov (United States)

    Weil, D; Levy, G; Sahly, I; Levi-Acobas, F; Blanchard, S; El-Amraoui, A; Crozet, F; Philippe, H; Abitbol, M; Petit, C

    1996-04-16

    The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.

  3. GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.

    Science.gov (United States)

    Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini

    2011-09-22

    The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effects of a High Protein Food Supplement on Physical Activity, Motor Performance and Health Related Quality of Life of HIV Infected Botswana Children on Anti-Retroviral Therapy (ART).

    Science.gov (United States)

    Malete, Leapetswe; Mokgatlhe, Lucky; Nnyepi, Maria; Jackson, Jose; Wen, Fujun; Bennink, Maurice; Anabwani, Gabriel; Makhanda, Jerry; Thior, Ibou; Lyoka, Philemon; Weatherspoon, Lorraine

    2017-01-01

    Despite existing evidence about the benefits of nutrition, physical activity (PA) and sport to the overall health and wellbeing of children, knowledge gaps remain on this relationship in children living with chronic conditions like HIV/AIDS. Such knowledge should inform context specific programs that could enhance the quality of life of children. The purpose of this study was to examine the effects of integrating a nutrition intervention (culturally tailored food supplement) into antiretroviral therapy (ART) on psychosocial outcomes and physical activity among HIV-positive children in Botswana. 201 HIV-positive children (6-15 years; M = 9.44, SD = 2.40) were recruited and randomly assigned (stratified by age and gender) to two groups. The intervention group (n = 97) received a high protein (bean-sorghum plus micronutrients) food supplement, while the control group (n = 104) received a sorghum plus micronutrients supplement. Participants were followed over 12 months. Anthropometric measures, PA, motor performance, and health related quality of life (HRQL) were collected at baseline, 6 and 12 months. Mixed repeated-measures ANOVA revealed a significant time effect of the food supplement on target variables except body fat percentage, speed, and school functioning. Time × treatment interaction was found for physical functioning, psychosocial functioning and total quality of life score. Scores on physical functioning and total of quality life in the intervention group significantly increased from baseline to 6 months compared with the control group ( p = 0.015). A combination of ART and nutritional intervention had a positive effect on physical functioning and total quality of life of HIV-positive children in this study. There were also improvements to physical activity and motor performance tests over time. More research is needed on long term effects of nutrition and PA interventions on HRQL in children living with HIV.

  5. Role of the import motor in insertion of transmembrane segments by the mitochondrial TIM23 complex.

    Science.gov (United States)

    Popov-Čeleketić, Dušan; Waegemann, Karin; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2011-06-01

    The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion.

  6. Electric motor handbook

    CERN Document Server

    Chalmers, B J

    2013-01-01

    Electric Motor Handbook aims to give practical knowledge in a wide range of capacities such as plant design, equipment specification, commissioning, operation and maintenance. The book covers topics such as the modeling of steady-state motor performance; polyphase induction, synchronous, and a.c. commutator motors; ambient conditions, enclosures, cooling and loss dissipation; and electrical supply systems and motor drives. Also covered are topics such as variable-speed drives and motor control; materials and motor components; insulation types, systems, and techniques; and the installation, sit

  7. Handbook on linear motor application

    International Nuclear Information System (INIS)

    1988-10-01

    This book guides the application for Linear motor. It lists classification and speciality of Linear Motor, terms of linear-induction motor, principle of the Motor, types on one-side linear-induction motor, bilateral linear-induction motor, linear-DC Motor on basic of the motor, linear-DC Motor for moving-coil type, linear-DC motor for permanent-magnet moving type, linear-DC motor for electricity non-utility type, linear-pulse motor for variable motor, linear-pulse motor for permanent magneto type, linear-vibration actuator, linear-vibration actuator for moving-coil type, linear synchronous motor, linear electromagnetic motor, linear electromagnetic solenoid, technical organization and magnetic levitation and linear motor and sensor.

  8. Interacting adiabatic quantum motor

    Science.gov (United States)

    Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix

    2018-05-01

    We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.

  9. Chronic motor tic disorder

    Science.gov (United States)

    Chronic vocal tic disorder; Tic - chronic motor tic disorder ... Chronic motor tic disorder is more common than Tourette syndrome . Chronic tics may be forms of Tourette syndrome. Tics usually start ...

  10. Piezoelectric Motors, an Overview

    OpenAIRE

    Karl Spanner; Burhanettin Koc

    2016-01-01

    Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ult...

  11. Electric Motor Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  12. Programmable dc motor controller

    Science.gov (United States)

    Hopwood, J. E.

    1982-11-01

    A portable programmable dc motor controller, with features not available on commercial instruments was developed for controlling fixtures during welding processes. The controller can be used to drive any dc motor having tachometer feedback and motor requirements not exceeding 30 volts, 3 amperes. Among the controller's features are delayed start time, upslope time, speed, and downslope time.

  13. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  14. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Motor/generator

    Science.gov (United States)

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  16. Energetics and efficiency of a molecular motor model

    DEFF Research Database (Denmark)

    C. Fogedby, Hans; Svane, Axel

    2013-01-01

    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al. (Phys. Lett. 237, 297 (1998)) is analyzed from an analytical point of view. The model which is based on protein friction with a track is described by coupled Langevin equations for the motion in combination...... when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action....

  17. Piezoelectric Motors, an Overview

    Directory of Open Access Journals (Sweden)

    Karl Spanner

    2016-02-01

    Full Text Available Piezoelectric motors are used in many industrial and commercial applications. Various piezoelectric motors are available in the market. All of the piezoelectric motors use the inverse piezoelectric effect, where microscopically small oscillatory motions are converted into continuous or stepping rotary or linear motions. Methods of obtaining long moving distance have various drive and functional principles that make these motors categorized into three groups: resonance-drive (piezoelectric ultrasonic motors, inertia-drive, and piezo-walk-drive. In this review, a comprehensive summary of piezoelectric motors, with their classification from initial idea to recent progress, is presented. This review also includes some of the industrial and commercial applications of piezoelectric motors that are presently available in the market as actuators.

  18. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  19. Neuroplasticity & Motor Learning

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye

    Practice of a new motor task is usually associated with an improvement in performance. Indeed, if we stop practicing and return the next day to the same task, we find that our performance has been maintained and may even be better than it was at the start of the first day. This improvement...... is a measure of our ability to form and store a motor memory of the task. However, the initial memory of the task is labile and may be subject to interference. During and following motor learning plastic changes occur within the central nervous system. On one hand these changes are driven by motor practice......, on the other hand the changes underlie the formation of motor memory and the retention of improved motor performance. During motor learning changes may occur at many different levels within the central nervous system dependent on the type of task and training. Here, we demonstrate different studies from our...

  20. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  1. Bicaudal-D: Switching motors, cargo and direction

    NARCIS (Netherlands)

    G.D. Splinter (Daniël)

    2008-01-01

    textabstractScope of this thesis Transport of vesicles and organelles is an essential cellular process. Proteins like Rab GTPases, specialized adaptor proteins and motor proteins are involved in targeting and movement of cargos to their destination. This thesis describes the function of the

  2. Intracellular Transport: How Do Motors Work Together?

    Science.gov (United States)

    Mallik, Roop; Gross, Steven P.

    2010-01-01

    How many motors move cargos on microtubules inside a cell, and how do they work together to achieve regulated transport? A new study uses an optical trap to investigate the motion of protein-bound beads on the surface of flagella to address these questions and comes up with some intriguing answers. PMID:19467211

  3. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  4. Cryogenic Electric Motor Tested

    Science.gov (United States)

    Brown, Gerald V.

    2004-01-01

    Technology for pollution-free "electric flight" is being evaluated in a number of NASA Glenn Research Center programs. One approach is to drive propulsive fans or propellers with electric motors powered by fuel cells running on hydrogen. For large transport aircraft, conventional electric motors are far too heavy to be feasible. However, since hydrogen fuel would almost surely be carried as liquid, a propulsive electric motor could be cooled to near liquid hydrogen temperature (-423 F) by using the fuel for cooling before it goes to the fuel cells. Motor windings could be either superconducting or high purity normal copper or aluminum. The electrical resistance of pure metals can drop to 1/100th or less of their room-temperature resistance at liquid hydrogen temperature. In either case, super or normal, much higher current density is possible in motor windings. This leads to more compact motors that are projected to produce 20 hp/lb or more in large sizes, in comparison to on the order of 2 hp/lb for large conventional motors. High power density is the major goal. To support cryogenic motor development, we have designed and built in-house a small motor (7-in. outside diameter) for operation in liquid nitrogen.

  5. Hybrid vehicle motor alignment

    Science.gov (United States)

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  6. A simplified tether model for molecular motor transporting cargo

    International Nuclear Information System (INIS)

    Fang-Zhen, Li; Li-Chun, Jiang

    2010-01-01

    Molecular motors are proteins or protein complexes which function as transporting engines in biological cells. This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and Peskin's work for which performance of the system was discussed only in some limiting cases, this study produces analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant when the strength of the ratchet tends to infinity. (general)

  7. Modeling Induction Motor Imbalances

    DEFF Research Database (Denmark)

    Armah, Kabenla; Jouffroy, Jerome; Duggen, Lars

    2016-01-01

    This paper gives a study into the development of a generalized model for a three-phase induction motor that offers flexibility of simulating balanced and unbalanced parameter scenarios. By analyzing the interaction of forces within the motor, we achieve our main objective of deriving the system d...

  8. To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Prekoracka-Krawczyk, Anna; Jaskowski, Wojciech; van der Lubbe, Robert Henricus Johannes

    2016-01-01

    Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and

  9. Higher Efficiency HVAC Motors

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Charles Joseph [QM Power, Inc., Kansas City, MO (United States)

    2018-02-13

    The objective of this project was to design and build a cost competitive, more efficient heating, ventilation, and air conditioning (HVAC) motor than what is currently available on the market. Though different potential motor architectures among QMP’s primary technology platforms were investigated and evaluated, including through the building of numerous prototypes, the project ultimately focused on scaling up QM Power, Inc.’s (QMP) Q-Sync permanent magnet synchronous motors from available sub-fractional horsepower (HP) sizes for commercial refrigeration fan applications to larger fractional horsepower sizes appropriate for HVAC applications, and to add multi-speed functionality. The more specific goal became the research, design, development, and testing of a prototype 1/2 HP Q-Sync motor that has at least two operating speeds and 87% peak efficiency compared to incumbent electronically commutated motors (EC or ECM, also known as brushless direct current (DC) motors), the heretofore highest efficiency HVACR fan motor solution, at approximately 82% peak efficiency. The resulting motor prototype built achieved these goals, hitting 90% efficiency and .95 power factor at full load and speed, and 80% efficiency and .7 power factor at half speed. Q-Sync, developed in part through a DOE SBIR grant (Award # DE-SC0006311), is a novel, patented motor technology that improves on electronically commutated permanent magnet motors through an advanced electronic circuit technology. It allows a motor to “sync” with the alternating current (AC) power flow. It does so by eliminating the constant, wasteful power conversions from AC to DC and back to AC through the synthetic creation of a new AC wave on the primary circuit board (PCB) by a process called pulse width modulation (PWM; aka electronic commutation) that is incessantly required to sustain motor operation in an EC permanent magnet motor. The Q-Sync circuit improves the power factor of the motor by removing all

  10. Linear motor coil assembly and linear motor

    NARCIS (Netherlands)

    2009-01-01

    An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially

  11. Spinal cord: motor neuron diseases.

    Science.gov (United States)

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. [Children and motor competence].

    Science.gov (United States)

    Sigmundsson, H; Haga, M

    2000-10-20

    Recently, the topic of motor competence has figured prominently in the media. The claims made are many, but the research that support the statements is seldom cited. The aim of this review article is to address that deficiency by documenting what is really known about the motor competence of children. Motor competence not only allows children to carry out everyday practical tasks, but it is also an important determinant of their level of self-esteem and of their popularity and status in their peer group. While many studies have shown a significant correlation between motor problems and other problems in the social sphere, it has been difficult to establish causal relationships with any degree of confidence, as there appear to be several interactions which need to be taken into account. Research has shown that 6-10% of Norwegian children in the 7 to 10 year age group have a motor competence well below the norm. It is unusual for motor problems to simply disappear over time. In the absence of intervention the syndrome is likely to continue to manifest itself. More recent research points to some of the circularity in this causal network, children with motor problems having been shown to be less physically active than their peers. In a larger health perspective this in itself can have very serious consequences for the child.

  13. Bidirectional transport of organelles: unity and struggle of opposing motors.

    Science.gov (United States)

    Bryantseva, Sofiya A; Zhapparova, Olga N

    2012-01-01

    Bidirectional transport along microtubules is ensured by opposing motor proteins: cytoplasmic dynein that drives cargo to the minus-ends and various kinesins that generally move to the plus-ends of microtubules. Regulation of motor proteins that are simultaneously bound to the same organelle is required to maintain directional transport and prevent pausing of cargo pulled away by motors of opposite polarity. Debates of the recent decade have been focused on two possible mechanisms of such regulation: (i) coordination, which implies that only one type of motors is active at a given time, and (ii) tug-of-war, which assumes that both motors are active at the same time and that direction of transport depends on the outcome of motor's confrontation. The initial idea of coordination has been challenged by observations of simultaneous activity of plus- and minus-end-directed motors applied to the same cargo. Analysis of the available data indicates that coordination and tug-of-war theories rather complement than contradict each other: cargo interacts with two teams of active motors, the resulting direction and the winner team are determined by coordination complexes, but the activity of the loser team is never completely inhibited and remains at some background level. Such persisting activity might enhance the overall efficiency of transport by increasing processivity or helping to overcome the obstacles on microtubule track. © The Author(s) Journal compilation © 2012 Portland Press Limited

  14. ALS and other motor neuron diseases.

    Science.gov (United States)

    Tiryaki, Ezgi; Horak, Holli A

    2014-10-01

    This review describes the most common motor neuron disease, ALS. It discusses the diagnosis and evaluation of ALS and the current understanding of its pathophysiology, including new genetic underpinnings of the disease. This article also covers other motor neuron diseases, reviews how to distinguish them from ALS, and discusses their pathophysiology. In this article, the spectrum of cognitive involvement in ALS, new concepts about protein synthesis pathology in the etiology of ALS, and new genetic associations will be covered. This concept has changed over the past 3 to 4 years with the discovery of new genes and genetic processes that may trigger the disease. As of 2014, two-thirds of familial ALS and 10% of sporadic ALS can be explained by genetics. TAR DNA binding protein 43 kDa (TDP-43), for instance, has been shown to cause frontotemporal dementia as well as some cases of familial ALS, and is associated with frontotemporal dysfunction in ALS. The anterior horn cells control all voluntary movement: motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking) lead patients to seek medical attention. Neurologists are the most likely practitioners to recognize and diagnose damage or loss of anterior horn cells. ALS, the prototypical motor neuron disease, demonstrates the impact of this class of disorders. ALS and other motor neuron diseases can represent diagnostic challenges. Neurologists are often called upon to serve as a "medical home" for these patients: coordinating care, arranging for durable medical equipment, and leading discussions about end-of-life care with patients and caregivers. It is important for neurologists to be able to identify motor neuron diseases and to evaluate and treat patients affected by them.

  15. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  16. Motor Carrier Crash Data -

    Data.gov (United States)

    Department of Transportation — Contains data on large trucks and buses involved in Federally reportable crashes as per Title 49 U.S.C. Part 390.5 (crashes involving a commercial motor vehicle, and...

  17. High Power Density Motors

    Science.gov (United States)

    Kascak, Daniel J.

    2004-01-01

    With the growing concerns of global warming, the need for pollution-free vehicles is ever increasing. Pollution-free flight is one of NASA's goals for the 21" Century. , One method of approaching that goal is hydrogen-fueled aircraft that use fuel cells or turbo- generators to develop electric power that can drive electric motors that turn the aircraft's propulsive fans or propellers. Hydrogen fuel would likely be carried as a liquid, stored in tanks at its boiling point of 20.5 K (-422.5 F). Conventional electric motors, however, are far too heavy (for a given horsepower) to use on aircraft. Fortunately the liquid hydrogen fuel can provide essentially free refrigeration that can be used to cool the windings of motors before the hydrogen is used for fuel. Either High Temperature Superconductors (HTS) or high purity metals such as copper or aluminum may be used in the motor windings. Superconductors have essentially zero electrical resistance to steady current. The electrical resistance of high purity aluminum or copper near liquid hydrogen temperature can be l/lOO* or less of the room temperature resistance. These conductors could provide higher motor efficiency than normal room-temperature motors achieve. But much more importantly, these conductors can carry ten to a hundred times more current than copper conductors do in normal motors operating at room temperature. This is a consequence of the low electrical resistance and of good heat transfer coefficients in boiling LH2. Thus the conductors can produce higher magnetic field strengths and consequently higher motor torque and power. Designs, analysis and actual cryogenic motor tests show that such cryogenic motors could produce three or more times as much power per unit weight as turbine engines can, whereas conventional motors produce only 1/5 as much power per weight as turbine engines. This summer work has been done with Litz wire to maximize the current density. The current is limited by the amount of heat it

  18. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  19. Electrodynamic linear motor

    Energy Technology Data Exchange (ETDEWEB)

    Munehiro, H

    1980-05-29

    When driving the carriage of a printer through a rotating motor, there are problems regarding the limited accuracy of the carriage position due to rotation or contraction and ageing of the cable. In order to solve the problem, a direct drive system was proposed, in which the printer carriage is driven by a linear motor. If one wants to keep the motor circuit of such a motor compact, then the magnetic flux density in the air gap must be reduced or the motor travel must be reduced. It is the purpose of this invention to create an electrodynamic linear motor, which on the one hand is compact and light and on the other hand has a relatively high constant force over a large travel. The invention is characterised by the fact that magnetic fields of alternating polarity are generated at equal intervals in the magnetic field, and that the coil arrangement has 2 adjacent coils, whose size corresponds to half the length of each magnetic pole. A logic circuit is provided to select one of the two coils and to determine the direction of the current depending on the signals of a magnetic field sensor on the coil arrangement.

  20. Markov process of muscle motors

    International Nuclear Information System (INIS)

    Kondratiev, Yu; Pechersky, E; Pirogov, S

    2008-01-01

    We study a Markov random process describing muscle molecular motor behaviour. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spends an exponential time depending on the state. The thin filament moves at a velocity proportional to the average of all displacements of all motors. We assume that the time which a motor stays in the bound state does not depend on its displacement. Then one can find an exact solution of a nonlinear equation appearing in the limit of an infinite number of motors

  1. Electric vehicle motors and controllers

    Science.gov (United States)

    Secunde, R. R.

    1981-01-01

    Improved and advanced components being developed include electronically commutated permanent magnet motors of both drum and disk configuration, an unconventional brush commutated motor, and ac induction motors and various controllers. Test results on developmental motors, controllers, and combinations thereof indicate that efficiencies of 90% and higher for individual components, and 80% to 90% for motor/controller combinations can be obtained at rated power. The simplicity of the developmental motors and the potential for ultimately low cost electronics indicate that one or more of these approaches to electric vehicle propulsion may eventually displace presently used controllers and brush commutated dc motors.

  2. Biasing the random walk of a molecular motor

    Energy Technology Data Exchange (ETDEWEB)

    Astumian, R Dean [Department of Physics, University of Maine, Orono, ME 04469-5709 (United States)

    2005-11-30

    Biomolecular motors are often described in mechanical terms, with analogy to cars, turbines, judo throws, levers, etc. It is important to remember however that because of their small size, and because of the aqueous environment in which molecular motors move, viscous drag and thermal noise dominate the inertial forces that drive macroscopic machines. The sequence of motions-conformational changes-by which a motor protein moves can best be described as a random walk, with transitions from one state to another occurring by thermal activation over energy barriers. In this paper I will address the question of how this random walk is biased by a non-equilibrium chemical reaction (ATP hydrolysis) so that the motor molecule moves preferentially (with almost unit certainty) in one direction, even when an external force is applied to drive it in the opposite direction. I will also discuss how these 'soft matter' motors can achieve thermodynamic efficiencies of nearly 100%.

  3. Energetics and efficiency of a molecular motor model

    International Nuclear Information System (INIS)

    Fogedby, Hans C; Svane, Axel

    2013-01-01

    The energetics and efficiency of a linear molecular motor model proposed by Mogilner et al are analyzed from an analytical point of view. The model, which is based on protein friction with a track, is described by coupled Langevin equations for the motion in combination with coupled master equations for the ATP hydrolysis. Here the energetics and efficiency of the motor are addressed using a many body scheme with focus on the efficiency at maximum power (EMP). It is found that the EMP is reduced from about 10% in a heuristic description of the motor to about 1 per mille when incorporating the full motor dynamics, owing to the strong dissipation associated with the motor action. (paper)

  4. Biasing the random walk of a molecular motor

    International Nuclear Information System (INIS)

    Astumian, R Dean

    2005-01-01

    Biomolecular motors are often described in mechanical terms, with analogy to cars, turbines, judo throws, levers, etc. It is important to remember however that because of their small size, and because of the aqueous environment in which molecular motors move, viscous drag and thermal noise dominate the inertial forces that drive macroscopic machines. The sequence of motions-conformational changes-by which a motor protein moves can best be described as a random walk, with transitions from one state to another occurring by thermal activation over energy barriers. In this paper I will address the question of how this random walk is biased by a non-equilibrium chemical reaction (ATP hydrolysis) so that the motor molecule moves preferentially (with almost unit certainty) in one direction, even when an external force is applied to drive it in the opposite direction. I will also discuss how these 'soft matter' motors can achieve thermodynamic efficiencies of nearly 100%

  5. Respiratory chain deficiency in aged spinal motor neurons☆

    Science.gov (United States)

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  6. A versatile stepping motor controller for systems with many motors

    International Nuclear Information System (INIS)

    Feng, S.K.; Siddons, D.P.

    1989-01-01

    A versatile system for controlling beamlines or complex experimental setups is described. The system as currently configured can control up to 32 motors, with all motors capable of full speed operation concurrently. There are 2 limit switch inputs for each motor, and a further input to accept a reference position marker. The motors can be controlled via a front panel keyboard with display, or by a host computer over an IEEE-488 interface. Both methods can be used together if required. There is an ''emergency stop'' key on the front panel keyboard to stop the motion of all motors without losing track of the motors' position. 3 refs., 4 figs., 1 tab

  7. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Science.gov (United States)

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Flood-proof motors

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Marcus [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  9. Advanced AC Motor Control

    Energy Technology Data Exchange (ETDEWEB)

    Kazmierkowski, M.P. [Institute of Control and Industrial Electronics, Warsaw University of Technology, Warszawa (Poland)

    1997-12-31

    In this paper a review of control methods for high performance PWM inverter-fed induction motor drives is presented. Starting from the description of an induction motor by the help of the space vectors, three basic control strategic are discussed. As first, the most popular Field Oriented Control (FOC) is described. Secondly, the Direct Torque and Flux vector Control (DTFC) method, which - in contrast to FOC - depart from idea of coordinate transformation and analogy with DC motor, is briefly characterized. The last group is based on Feedback Linearization Control (FLC) and can be easy combined with sliding mode control. The simulation and experimental oscillograms that illustrate the performance of the discussed control strategies are shown. (orig.) 35 refs.

  10. Flood-proof motors

    International Nuclear Information System (INIS)

    Schmitt, Marcus

    2013-01-01

    Even before the Fukushima event occurred some German nuclear power plants (NPP) have considered flooding scenarios. As a result of one of these studies, AREVA performed an upgrade project in NPP Isar 1 with flood-proof motors as a replacement of existing air-cooled low-voltage and high-voltage motors of the emergency cooling chain. After the Fukushima event, in which the cooling chains failed, the topic flood-proof equipment gets more and more into focus. This compact will introduce different kinds of flood-proof electrical motors which are currently installed or planned for installation into NPPs over the world. Moreover the process of qualification, as it was performed during the project in NPP Isar 1, will be shown. (orig.)

  11. Mechanical design of electric motors

    CERN Document Server

    Tong, Wei

    2014-01-01

    Rapid increases in energy consumption and emphasis on environmental protection have posed challenges for the motor industry, as has the design and manufacture of highly efficient, reliable, cost-effective, energy-saving, quiet, precisely controlled, and long-lasting electric motors.Suitable for motor designers, engineers, and manufacturers, as well as maintenance personnel, undergraduate and graduate students, and academic researchers, Mechanical Design of Electric Motors provides in-depth knowledge of state-of-the-art design methods and developments of electric motors. From motor classificati

  12. Transformers and motors

    CERN Document Server

    Shultz, George

    1991-01-01

    Transformers and Motors is an in-depth technical reference which was originally written for the National Joint Apprenticeship Training Committee to train apprentice and journeymen electricians. This book provides detailed information for equipment installation and covers equipment maintenance and repair. The book also includes troubleshooting and replacement guidelines, and it contains a minimum of theory and math.In this easy-to-understand, practical sourcebook, you'll discover:* Explanations of the fundamental concepts of transformers and motors* Transformer connections and d

  13. Linear induction motor

    International Nuclear Information System (INIS)

    Barkman, W.E.; Adams, W.Q.; Berrier, B.R.

    1978-01-01

    A linear induction motor has been operated on a test bed with a feedback pulse resolution of 5 nm (0.2 μin). Slewing tests with this slide drive have shown positioning errors less than or equal to 33 nm (1.3 μin) at feedrates between 0 and 25.4 mm/min (0-1 ipm). A 0.86-m (34-in)-stroke linear motor is being investigated, using the SPACO machine as a test bed. Initial results were encouraging, and work is continuing to optimize the servosystem compensation

  14. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  15. Electrodynamic ratchet motor.

    Science.gov (United States)

    Lim, Jiufu; Sader, John E; Mulvaney, Paul

    2009-03-01

    Brownian ratchets produce directed motion through rectification of thermal fluctuations and have been used for separation processes and colloidal transport. We propose a flashing ratchet motor that enables the transduction of electrical energy into rotary micromechanical work. This is achieved through torque generation provided by boundary shaping of equipotential surfaces. The present device contrasts to previous implementations that focus on translational motion. Stochastic simulations elucidate the performance characteristics of this device as a function of its geometry. Miniaturization to nanoscale dimensions yields rotational speeds in excess of 1 kHz, which is comparable to biomolecular motors of similar size.

  16. The effect of electroacupuncture on proteomic changes in the motor cortex of 6-OHDA Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Li, Lijuan; Wang, Ke; Su, Wenting; Jia, Jun; Wang, Xiaomin

    2017-10-15

    Electroacupuncture (EA) has been reported to alleviate motor deficits in Parkinson's disease (PD) patients, and PD animal models. However, the mechanisms by which EA improves motor function have not been investigated. We have employed a 6-hydroxydopamine (6-OHDA) unilateral injection induced PD model to investigate whether EA alters protein expression in the motor cortex. We found that 4weeks of EA treatment significantly improved spontaneous floor plane locomotion and rotarod performance. High-throughput proteomic analysis in the motor cortex was employed. The expression of 54 proteins were altered in the unlesioned motor cortex, and 102 protein expressions were altered in the lesioned motor cortex of 6-OHDA rats compared to sham rats. Compared to non-treatment PD control, EA treatment reversed 6 proteins in unlesioned and 19 proteins in lesioned motor cortex. The present study demonstrated that PD induces proteomic changes in the motor cortex, some of which are rescued by EA treatment. These targeted proteins were mainly involved in increasing autophagy, mRNA processing and ATP binding and maintaining the balance of neurotransmitters. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The effect of induction motor shaft diameter on motor performance

    Directory of Open Access Journals (Sweden)

    Asım Gökhan Yetgin

    2017-10-01

    Full Text Available Induction motors are used in many areas from the past to the present and in different fields with the development of technology has continued to be used. It is obvious that induction motors as an improvement to the efficiency in terms of energy saving would cause great benefit. In that context, induction motor manufacturers and designers are constantly trying out new methods to improve motor performance and efficiency. In this study, what would be the optimum diameter of the shaft in order to increase the efficiency of the induction motor were investigated. In the study, 5.5 kW, 7.5 kW and 11 kW motors analyzes were also performed. Obtained shaft diameter values were compared with the manufacturer values. In addition, critical points such as the magnetic flux values, weight values and performances of the motors were examined and optimal shaft diameter values for each motor have been determined.

  18. HTSL massive motor. Project: Motor field calculation. Final report

    International Nuclear Information System (INIS)

    Gutt, H.J.; Gruener, A.

    2003-01-01

    HTS motors up to 300 kW were to be developed and optimized. For this, specific calculation methods were enhanced to include superconducting rotor types (hysteresis, reluctance and permanent magnet HTS rotors). The experiments were carried out in a SHM70-45 hysteresis motor. It was shown how static and dynamic trapped field magnetisation of the rotor with YBCO rings will increase flux in the air gap motor, increasing the motor capacity to twice its original level. (orig.) [de

  19. Stepping Motor - Hydraulic Motor Servo Drives for an NC Milling ...

    African Journals Online (AJOL)

    In this paper the retrofit design of the control system of an NC milling machine with a stepping motor and stepping motor - actuated hydraulic motor servo mechanism on the machines X-axis is described. The servo designed in the course of this study was tested practically and shown to be linear - the velocity following errors ...

  20. Thiokol Solid Rocket Motors

    Science.gov (United States)

    Graves, S. R.

    2000-01-01

    This paper presents viewgraphs on thiokol solid rocket motors. The topics include: 1) Communications; 2) Military and government intelligence; 3) Positioning satellites; 4) Remote sensing; 5) Space burial; 6) Science; 7) Space manufacturing; 8) Advertising; 9) Space rescue space debris management; 10) Space tourism; 11) Space settlements; 12) Hazardous waste disposal; 13) Extraterrestrial resources; 14) Fast package delivery; and 15) Space utilities.

  1. Reciprocating Linear Electric Motor

    Science.gov (United States)

    Goldowsky, M. P.

    1984-01-01

    Features include structural simplicity and good force/displacement characteristics. Reciprocating motor has simple, rugged construction, relatively low reciprocating weight, improved power delivery, and improved force control. Wear reduced by use of magnetic bearings. Intended to provide drivers for long-lived Stirling-cycle cryogenic refrigerators, concept has less exotic applications, such as fuel pumps.

  2. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  3. Motor Incoordination in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-07-01

    Full Text Available The relationship between motor performance, attention deficit, impulsiveness, and hyperactivity in 42 school-aged children with ADHD (36 males, 6 females; mean age 8 years 2 months; range 6-11 years was studied at National Taiwan University, Taipei, Taiwan.

  4. Deafness and motor abilities level

    Directory of Open Access Journals (Sweden)

    A Zwierzchowska

    2008-09-01

    Full Text Available The audition injury hinders some motor motions and the organised coordination at the higher level and may be a cause of disturbances and disorder in some motor abilities adoption. It was assumed that deafness including its aetiology and injury mechanism may significantly influence the motor development of human being. The study aimed in checking if the deafness, as a result of various unfavourable factors, determines the motor development of children and youngsters. Consequently the dependency between qualitative features i.e.: signed motor level and aetiology, audition injury mechanism and the deafness degree was examined. The mechanism and aetiology of hearing correlated with the motor abilities displayed statistically significant dependencies in few motor trials only. Revealed correlations regarded mostly the coordination trials excluding the flexibility one. Statistically significant dependencies between the audition diminution and the motor abilities level were not found.

  5. Motor neuron, nerve, and neuromuscular junction disease.

    Science.gov (United States)

    Finsterer, Josef; Papić, Lea; Auer-Grumbach, Michaela

    2011-10-01

    The aim is to review the most relevant findings published during the last year concerning clinical, genetic, pathogenic, and therapeutic advances in motor neuron disease, neuropathies, and neuromuscular junction disorders. Studies on animal and cell models have improved the understanding of how mutated survival motor neuron protein in spinal muscular atrophy governs the pathogenetic processes. New phenotypes of SOD1 mutations have been described. Moreover, animal models enhanced the insight into the pathogenetic background of sporadic and familial amyotrophic lateral sclerosis. Novel treatment options for motor neuron disease have been described in humans and animal models. Considerable progress has been achieved also in elucidating the genetic background of many forms of inherited neuropathies and high clinical and genetic heterogeneity has been demonstrated. Mutations in MuSK and GFTP1 have been shown to cause new types of congenital myasthenic syndromes. A third type of autoantibodies (Lrp4) has been detected to cause myasthenia gravis. Advances in the clinical and genetic characterization of motor neuron diseases, neuropathies, and neuromuscular transmission defects have important implications on the fundamental understanding, diagnosis, and management of these disorders. Identification of crucial steps of the pathogenetic process may provide the basis for the development of novel therapeutic strategies.

  6. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  7. Microprocessor controller for stepping motors

    International Nuclear Information System (INIS)

    Strait, B.G.; Thuot, M.E.

    1977-01-01

    A new concept for digital computer control of multiple stepping motors which operate in a severe electromagnetic pulse environment is presented. The motors position mirrors in the beam-alignment system of a 100-kJ CO 2 laser. An asynchronous communications channel of a computer is used to send coded messages, containing the motor address and stepping-command information, to the stepping-motor controller in a bit serial format over a fiber-optics communications link. The addressed controller responds by transmitting to the computer its address and other motor information, thus confirming the received message. Each controller is capable of controlling three stepping motors. The controller contains the fiber-optics interface, a microprocessor, and the stepping-motor driven circuits. The microprocessor program, which resides in an EPROM, decodes the received messages, transmits responses, performs the stepping-motor sequence logic, maintains motor-position information, and monitors the motor's reference switch. For multiple stepping-motor application, the controllers are connected in a daisy chain providing control of many motors from one asynchronous communications channel of the computer

  8. Multiple stage miniature stepping motor

    International Nuclear Information System (INIS)

    Niven, W.A.; Shikany, S.D.; Shira, M.L.

    1981-01-01

    A stepping motor comprising a plurality of stages which may be selectively activated to effect stepping movement of the motor, and which are mounted along a common rotor shaft to achieve considerable reduction in motor size and minimum diameter, whereby sequential activation of the stages results in successive rotor steps with direction being determined by the particular activating sequence followed

  9. Experiments with a DC Motor

    Science.gov (United States)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the…

  10. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  11. Motor Vehicle Theft. Special Report.

    Science.gov (United States)

    Harlow, Caroline Wolf

    Thirteen years of data from the National Crime Survey were analyzed to examine the characteristics of motor vehicle theft, to identify trends during the past 13 years, and to determine who are most likely to be victims of motor vehicle theft. All motor vehicle thefts reported to the National Crime Survey from 1973 through 1985 were examined.…

  12. Structural atlas of dynein motors at atomic resolution.

    Science.gov (United States)

    Toda, Akiyuki; Tanaka, Hideaki; Kurisu, Genji

    2018-04-01

    Dynein motors are biologically important bio-nanomachines, and many atomic resolution structures of cytoplasmic dynein components from different organisms have been analyzed by X-ray crystallography, cryo-EM, and NMR spectroscopy. This review provides a historical perspective of structural studies of cytoplasmic and axonemal dynein including accessory proteins. We describe representative structural studies of every component of dynein and summarize them as a structural atlas that classifies the cytoplasmic and axonemal dyneins. Based on our review of all dynein structures in the Protein Data Bank, we raise two important points for understanding the two types of dynein motor and discuss the potential prospects of future structural studies.

  13. Segmented motor drive - with multi-phase induction motor

    DEFF Research Database (Denmark)

    Bendixen, Flemming Buus

    of the induction motor is set up. The model is able to calculate dynamical electric, magnetic and mechanic state variables, but initially it is used to calculate static characteristics in motors with different number of phases and different voltage supply shapes. This analysis show i.e. that the efficiency....... The multi-phase motor is selected for further analysis. The project is limited to examine if increasing the number of phases can improve the characteristics for induction motor drives. In the literature it is demonstrated that torque production in a six-phase motor can be increased, if a 3rd harmonic......This PhD project commences in modulation of motor drives, i.e. having the advantage of reducing the number of variants and improves the system reliability at error situations. Four different motor drive topologies with modular construction as common denominator are compared on a general level...

  14. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  15. Split-phase motor running as capacitor starts motor and as capacitor run motor

    OpenAIRE

    Yahaya Asizehi ENESI; Jacob TSADO; Mark NWOHU; Usman Abraham USMAN; Odu Ayo IMORU

    2016-01-01

    In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The ma...

  16. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  17. Dynamically Timed Electric Motor

    Science.gov (United States)

    Casper, Ann M. (Inventor)

    1997-01-01

    A brushless DC motor including a housing having an end cap secured thereto. The housing encloses a rotor. a stator and a rotationally displaceable commutation board having sensors secured thereon and spaced around the periphery of the rotor. An external rotational force is applied to the commutation board for displacement of the sensors to various positions whereby varying feedback signals are generated by the positioning of the sensors relative to the rotating rotor. The commutation board is secured in a fixed position in response to feedback signals indicative of optimum sensor position being determined. The rotation of the commutation board and the securing of the sensors in the desired fixed position is accomplished without requiring the removal of the end cap and with the DC motor operating.

  18. TFTR Motor Generator

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.; Horton, M.

    1977-01-01

    A general description is given of 475 MVA pulsed motor generators for TFTR at Princeton Plasma Physics Laboratory. Two identical generators operating in parallel are capable of supplying 950 MVA for an equivalent square pulse of 6.77 seconds and 4,500 MJ at 0.7 power factor to provide the energy for the pulsed electrical coils and heating system for TFTR. The description includes the operational features of the 15,000 HP wound rotor motors driving each generator with its starting equipment and cycloconverter for controlling speed, power factor, and regulating line voltage during load pulsing where the generator speed changes from 87.5 to 60 Hz frequency variation to provide the 4,500 MJ or energy. The special design characteristics such as fatigue stress calculations for 10 6 cycles of operation, forcing factor on exciter to provide regulation, and low generator impedance are reviewed

  19. Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics

    International Nuclear Information System (INIS)

    Qian, Hong

    2005-01-01

    An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells

  20. How molecular motors are arranged on a cargo is important for vesicular transport.

    Directory of Open Access Journals (Sweden)

    Robert P Erickson

    2011-05-01

    Full Text Available The spatial organization of the cell depends upon intracellular trafficking of cargos hauled along microtubules and actin filaments by the molecular motor proteins kinesin, dynein, and myosin. Although much is known about how single motors function, there is significant evidence that cargos in vivo are carried by multiple motors. While some aspects of multiple motor function have received attention, how the cargo itself--and motor organization on the cargo--affects transport has not been considered. To address this, we have developed a three-dimensional Monte Carlo simulation of motors transporting a spherical cargo, subject to thermal fluctuations that produce both rotational and translational diffusion. We found that these fluctuations could exert a load on the motor(s, significantly decreasing the mean travel distance and velocity of large cargos, especially at large viscosities. In addition, the presence of the cargo could dramatically help the motor to bind productively to the microtubule: the relatively slow translational and rotational diffusion of moderately sized cargos gave the motors ample opportunity to bind to a microtubule before the motor/cargo ensemble diffuses out of range of that microtubule. For rapidly diffusing cargos, the probability of their binding to a microtubule was high if there were nearby microtubules that they could easily reach by translational diffusion. Our simulations found that one reason why motors may be approximately 100 nm long is to improve their 'on' rates when attached to comparably sized cargos. Finally, our results suggested that to efficiently regulate the number of active motors, motors should be clustered together rather than spread randomly over the surface of the cargo. While our simulation uses the specific parameters for kinesin, these effects result from generic properties of the motors, cargos, and filaments, so they should apply to other motors as well.

  1. Libert-E Motor

    Science.gov (United States)

    Sieloff, Susan F.; Kinnunen, Raymond; Chevarley, Joseph

    2011-01-01

    Kei Yun Wong has big dreams. She has been entrusted with the United States launch of Libert-E Motor, a new line of Chinese-manufactured electric scooters. With only $750,000 of her original budget of $3 million left, she needs to make sure that the launch succeeds, as it represents the initial step in her desire to create the first Chinese global…

  2. 350 KVA motor generators

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    Each logic circuit in the central computers consumes only a fraction of a watt: however, the final load constituted by many such circuits plus peripheral equipment is nearly half a million watts. Shown here are two 350 KVA motor generators used to convert 50 Hz mains to 60 Hz (US standard). Flywheels on the M.G. shafts remove power dropouts of up to 0.5 s.

  3. Motor Fuel Excise Taxes

    Energy Technology Data Exchange (ETDEWEB)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  4. Motor car driving; Kraftfahrzeugfuehrung

    Energy Technology Data Exchange (ETDEWEB)

    Juergensohn, T. [Technische Univ. Berlin (Germany). ISS-Fahrzeugtechnik; Timpe, K.P. (eds.) [Technische Univ. Berlin (DE). Zentrum Mensch-Maschine-Systeme (ZMMS)

    2001-07-01

    This is the first comprehensive book on motor car driving, i.e. all aspects of motor car technology that cannot be looked at separately from the needs, characteristics and limitations of the human driver. This includes ergonomics as well as the design of the driver interface in consideration of the findings of cognitive science, problems of driving simulation in the context of simulation of technical systems, problems relating to optimal car automation up to traffic psychology. The book is in honour of Prof. Dr. Willumeit who died in summer 2000. Prof. Willumeit was one of the few scientists in Germany who had been an expert on all aspects of motor car driving for many years. [German] Erstmalig wird das Thema der Fahrzeugfuehrung geschlossen dargestellt. Die Thematik der 'Kraftfahrzeugfuehrung' umfasst in diesem Zusammenhang alle Aspekte der Kraftfahrzeugtechnik, die nicht isoliert von den Erfordernissen, Eigenschaften und Grenzen des menschlichen Fahrers betrachtet werden koennen. Dies beinhaltet u.a. Probleme der Ergonomie, aber auch Fragen nach einer kognitionswissenschaftlich unterstuetzten Schnittstellengestaltung, Fragen der Simulation des Fahrverhalten im Kontext der Simulation technischer Systeme oder Fragen einer optimalen Fahrzeugautomatisierung bis hin zu verkehrspsychologischen Aspekten. Das Buch ist als Gedenkband fuer Prof. Dr. Willumeit konzipiert, der im Sommer 2000 verstarb. Prof. Willumeit war einer der wenigen Wissenschaftler in Deutschland, der ueber viele Jahre diese Thematik der Kraftfahrzeugfuehrung in ihrer vollen Breite verfolgte. (orig.)

  5. 76 FR 647 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2011-01-05

    ... Electric Motors and Small Electric Motors; Proposed Rule #0;#0;Federal Register / Vol. 76, No. 3... Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... motors and small electric motors, clarify the scope of energy conservation standards for electric motors...

  6. 46 CFR 111.70-3 - Motor controllers and motor-control centers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Motor controllers and motor-control centers. 111.70-3... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-3 Motor controllers and motor-control centers. (a) General. The enclosure for each motor controller or motor-control...

  7. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  8. Performance Comparison between a Permanent Magnet Synchronous Motor and an Induction Motor as a Traction Motor for High Speed Train

    Science.gov (United States)

    Kondo, Minoru; Kawamura, Junya; Terauchi, Nobuo

    Performance tests are carried out to demonstrate the superiority of a permanent magnet synchronous motor to an induction motor as a traction motor for high-speed train. A prototype motor was manufactured by replacing the rotor of a conventional induction motor. The test results show that the permanent magnet motor is lighter, efficient and more silent than the induction motor because of the different rotor structure.

  9. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  10. Comparison of capabilities of reluctance synchronous motor and induction motor

    International Nuclear Information System (INIS)

    Stumberger, Gorazd; Hadziselimovic, Miralem; Stumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradisnik, Ivan

    2006-01-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements

  11. Peripheral nerve injury induces glial activation in primary motor cortex

    OpenAIRE

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  12. Control of synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park's transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in

  13. Electric Motors for Vehicle Propulsion

    OpenAIRE

    Larsson, Martin

    2014-01-01

    This work is intended to contribute with knowledge to the area of electic motorsfor propulsion in the vehicle industry. This is done by first studying the differentelectric motors available, the motors suitable for vehicle propulsion are then dividedinto four different types to be studied separately. These four types are thedirect current, induction, permanent magnet and switched reluctance motors. Thedesign and construction are then studied to understand how the different typesdiffer from ea...

  14. High efficiency motor selection handbook

    Science.gov (United States)

    McCoy, Gilbert A.; Litman, Todd; Douglass, John G.

    1990-10-01

    Substantial reductions in energy and operational costs can be achieved through the use of energy-efficient electric motors. A handbook was compiled to help industry identify opportunities for cost-effective application of these motors. It covers the economic and operational factors to be considered when motor purchase decisions are being made. Its audience includes plant managers, plant engineers, and others interested in energy management or preventative maintenance programs.

  15. Motor development of blind toddler

    OpenAIRE

    Likar, Petra

    2013-01-01

    For blind toddlers, development of motor skills enables possibilities for learning and exploring the environment. The purpose of this graduation thesis is to systematically mark the milestones in development of motor skills in blind toddlers, to establish different factors which affect this development, and to discover different ways for teachers for visually impaired and parents to encourage development of motor skills. It is typical of blind toddlers that they do not experience a wide varie...

  16. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  17. Motor of the future - superconducting

    International Nuclear Information System (INIS)

    Moen, Odd

    2001-01-01

    High-temperature superconductors count as the most innovative and future-oriented technology for electric motors. When these materials are used, the engine rating can be doubled and at the same time the losses halved while retaining the same size of construction. Siemens have recently developed a synchronous motor based on a high-temperature superconducting excitation winding. The rated power of the motor is 380 kW. The high-temperature superconductor that is used in this motor requires considerably less cooling outfit than low-temperature superconductors

  18. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  19. Design of an HTS motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Hong, Z; Jiang, Q; Coombs, T A [Cambridge University engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)], E-mail: yj222@cam.ac.uk

    2008-02-01

    This paper gives a detailed description of the design of a high temperature superconducting (HTS) motor. The stator of the motor consists of six air cored HTS racetrack windings, together with an iron shield. The rotor is made of 80 superconducting YBCO pucks, which can be magnetized and equates to a four-pole permanent magnet. The whole HTS motor is cooled by liquid nitrogen to 77K, and acts as a permanent magnet synchronous motor with the power rate of 15.7 kW.

  20. Experiments with a dc motor

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2010-01-01

    Experiments with an electric motor provide good opportunity to demonstrate some basic laws of electricity and magnetism. The aim of the experiments with a low-power dc motor is to show how the motor approaches its steady rotation and how its torque, mechanical power and efficiency depend on the rotation velocity. The tight relationship between the mechanical and electrical parameters of the motor is clearly seen. The measurements are carried out with the ScienceWorkshop data-acquisition system and the DataStudio software from PASCO scientific. The experiments are well related to university courses of electricity and magnetism and can be used in undergraduate laboratories or for lecture demonstrations.

  1. Harmonic modeling of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Pedra, J.; Sainz, L.; Corcoles, F. [Department of Electrical Engineering, ETSEIB-UPC, Av. Diagonal 647, 08028 Barcelona (Spain)

    2006-07-15

    The paper proposes an induction motor model for the study of harmonic load flow in balanced and unbalanced conditions. The parameters of this model are obtained from motor manufacturer data and the positive- and negative-sequence equivalent circuits of the single- and double-cage models. An approximate harmonic model based on motor manufacturer data only is also proposed. In addition, the paper includes manufacturer data and the calculated parameters of 36 induction motors of different rated powers. This database is used to analyze the proposed models. (author)

  2. Motor carrier evaluation program

    International Nuclear Information System (INIS)

    Portsmouth, James

    1992-01-01

    The U.S. Department of Energy-Headquarters (DOE-HQ), Transportation Management Program (TMP) has the overall responsibility to provide a well-managed transportation program for the safe, efficient, and economical transportation of DOE-owned materials. The DOE-TMP has established an excellent safety record in the transportation of hazardous materials including radioactive materials and radioactive wastes. This safety record can be maintained only through continued diligence and sustained effort on the part of the DOE-TMP, its field offices, and the contractors' organizations. Key elements in the DOE'S effective hazardous and radioactive materials shipping program are (1) integrity of packages, (2) strict adherence to regulations and procedures, (3) trained personnel, (4) complete management support, and (5) use of the best commercial carriers. The DOE Motor Carrier Evaluation Program was developed to better define the criteria and methodology needed to identify motor carriers for use in the transportation of Highway Route Controlled Quantities (HRCQ), Truck Load (TL) quantities of radioactive materials, hazardous materials and waste. (author)

  3. Zenn Motor Company

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, I. [Zenn Motor Company, Toronto, ON (Canada)

    2010-07-01

    Zenn Motor company is a leader in the electric vehicle space and builds and markets a low speed vehicle known as the zero emission, no noise (ZENN). This presentation provided background information on the Zenn Motor Company as well as on EEStor, a company that develops four-wheeled vehicles and that is seeking partners to fund the development for a modified barium titanate-based ultracapacitor. In 2004, ZENN entered into a technology agreement with EEStor that secured certain exclusive and non-exclusive rights to purchase and deploy EEStor's EESU technology as part of its ZENNergy solutions in several markets, including exclusive rights for new four-passenger vehicles with a curb weight of up to 1,400 kilograms; exclusive rights for the neighbourhood electric vehicles (NEV) and golf carts market; exclusive rights for utility vehicles; and exclusive rights for the aftermarket conversion to ZENNergy of any four-wheeled vehicles. The presentation also addressed ZENNergy and the art of integrating high energy drive solutions. Lessons learned and EEStor's technology attributes were discussed. A hypothetical case study was also offered. The presentation concluded with a discussion of EEStor technology status and opportunity horizons. It was concluded that a better battery is needed to enable the mass adoption of electric vehicles. tabs.

  4. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  5. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  6. Engineering controllable bidirectional molecular motors based on myosin

    Science.gov (United States)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  7. Torque control for electric motors

    Science.gov (United States)

    Bernard, C. A.

    1980-01-01

    Method for adjusting electric-motor torque output to accomodate various loads utilizes phase-lock loop to control relay connected to starting circuit. As load is imposed, motor slows down, and phase lock is lost. Phase-lock signal triggers relay to power starting coil and generate additional torque. Once phase lock is recoverd, relay restores starting circuit to its normal operating mode.

  8. Open-Ended Electric Motor

    Science.gov (United States)

    Gould, Mauri

    1975-01-01

    Presents complete instructions for assembling an electric motor which does not require large amounts of power to operate and which is inexpensive as well as reliable. Several open-ended experiments with the motor are included as well as information for obtaining a kit of parts and instructions. (BR)

  9. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  10. Energy-saving motor; Energiesparmotor

    Energy Technology Data Exchange (ETDEWEB)

    Lindegger, M.

    2002-07-01

    This report for the Swiss Federal Office of Energy (SFOE) describes the development and testing of an advanced electrical motor using a permanent-magnet rotor. The aims of the project - to study the technical feasibility and market potential of the Eco-Motor - are discussed and the three phases of the project described. These include the calculation and realisation of a 250-watt prototype operating at 230 V, the measurement of the motor's characteristics as well as those of a comparable asynchronous motor on the test bed at the University of Applied Science in Lucerne, Switzerland, and a market study to establish if the Eco-Motor and its controller can compete against normal asynchronous motors. Also, the results of an analysis of the energy-savings potential is made, should such Eco-Motors be used. Detailed results of the three phases of the project are presented and the prospects of producing such motors in Switzerland for home use as well as for export are examined.

  11. Advances in esophageal motor disorders

    NARCIS (Netherlands)

    Smout, André Jpm

    2008-01-01

    PURPOSE OF REVIEW: Esophageal motor disorders, often leading to dysphagia and chest pain, continue to pose diagnostic and therapeutic problems. In the past 12 months important new information regarding esophageal motor disorders was published. This information will be reviewed in this paper. RECENT

  12. Advances in esophageal motor disorders

    NARCIS (Netherlands)

    Smout, Andre J. P. M.

    Purpose of review Esophageal motor disorders, often leading to dysphagia and chest pain, continue to pose diagnostic and therapeutic problems. In the past 12 months important new information regarding esophageal motor disorders was published. This information will be reviewed in this paper. Recent

  13. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. 77 FR 26607 - Energy Conservation Program: Test Procedures for Electric Motors and Small Electric Motors

    Science.gov (United States)

    2012-05-04

    ... Conservation Program: Test Procedures for Electric Motors and Small Electric Motors; Final Rules #0;#0;Federal... Procedures for Electric Motors and Small Electric Motors AGENCY: Office of Energy Efficiency and Renewable... electric motors and small electric motors. That supplemental proposal, along with an earlier proposal from...

  15. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  16. Reciprocating linear motor

    Science.gov (United States)

    Goldowsky, Michael P. (Inventor)

    1987-01-01

    A reciprocating linear motor is formed with a pair of ring-shaped permanent magnets having opposite radial polarizations, held axially apart by a nonmagnetic yoke, which serves as an axially displaceable armature assembly. A pair of annularly wound coils having axial lengths which differ from the axial lengths of the permanent magnets are serially coupled together in mutual opposition and positioned with an outer cylindrical core in axial symmetry about the armature assembly. One embodiment includes a second pair of annularly wound coils serially coupled together in mutual opposition and an inner cylindrical core positioned in axial symmetry inside the armature radially opposite to the first pair of coils. Application of a potential difference across a serial connection of the two pairs of coils creates a current flow perpendicular to the magnetic field created by the armature magnets, thereby causing limited linear displacement of the magnets relative to the coils.

  17. Economical motor transport operations

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, P

    1979-09-01

    Motor transport is one area in a company where energy conservation is a function primarily of operative education and motivation rather than mechanical or technical control and monitoring. Unless the driver wants to save energy by proper operation of the vehicle, there is nothing the company can do to force him, whatever equipment it fits to the vehicles, or incentives it offers. This article gives an overview of the use of energy in road transport and examines a number of actions that can be taken to conserve energy. It discusses the question of the cost-effectiveness of transport energy conservation in the light of the complex issues involved. The problems and opportunities of implementing energy-saving programs are examined. (MCW)

  18. Stabilizing motor fuels

    Energy Technology Data Exchange (ETDEWEB)

    1935-07-12

    Motor fuel is stabilized by adding less than 2% of a tar fraction from peat, coal, torbanite or shale, said fraction containing sufficient constituents boiling between 200 and 325/sup 0/C, to inhibit gum formation. Low-temperature coal-tar fractions are specified. The preferred boiling ranges are from 225 or 250/sup 0/ to 275/sup 0/C. In examples, the quantity added was 0.01%. The fuel may be a cracked distillate of gasoline boiling-point range or containing gasoline, and may contain relatively large proportions of di- and tri-olefines. The material added to the fuel may be (1) the tar fraction itself; (2) its alkali-soluble constituents; (3) its acid-soluble constituents; (4) a mixture of (2) and (3); (5) a blend of (2), (3) or (4) with a normal tar fraction; (6) the residue after extraction with alkali; (7) the residue after extraction with acid and alkali.

  19. Sucker rod motor

    Energy Technology Data Exchange (ETDEWEB)

    Radzalov, N N; Radzhabov, N A

    1983-01-01

    The motor consists of rollers mounted on the wellmouth and connected by a flexible rink. Reciprocating mechanism is in the form of a horizontal non-mobile single-side operation cylinder, inside which a plunger and rod are mounted. The working housing of the hydrocylinder is connected to a gas-hydr aulic batter, and when running is connected via plunger to the high pressure source; running in reverse it is connected with a safety valve and automatic control unit. The unit is equipped with a reducer and a mechanical transformer consisting of screw and nut, and which is shutoff with a single-side lining. The plunger rod consists of an auger-like unit. The high pressure source is provided by the injection line of the sucker rod that has been equipped with a reverse valve.

  20. Motor-operated gearbox efficiency

    Energy Technology Data Exchange (ETDEWEB)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Weidenhamer, G.H.

    1996-12-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

  1. Motor-operated gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.; Weidenhamer, G.H.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, the authors compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators they tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  2. Motor-operator gearbox efficiency

    International Nuclear Information System (INIS)

    DeWall, K.G.; Watkins, J.C.; Bramwell, D.

    1996-01-01

    Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer

  3. Electric motors for use in radiation environments

    International Nuclear Information System (INIS)

    Aslam, T.U.D.; Mahmood, S.B.

    1981-01-01

    Requirements of electric motors for a nuclear plant and the effect of nuclear radiations on different parts of the motors are discussed. Feasibility of using locally-fabricated motors is also considered. (author)

  4. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu ... order as that of the screw-thread motor can be obtained. LIST OF .... The n stator have equal non- magnetic spacers .... induction motor. An.

  5. Spinal Muscular Atrophy: More than a Disease of Motor Neurons?

    Science.gov (United States)

    Nash, L A; Burns, J K; Chardon, J Warman; Kothary, R; Parks, R J

    2016-01-01

    Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease resulting in infant mortality. SMA is caused by genetic deletion or mutation in the survival of motor neuron 1 (SMN1) gene, which results in reduced levels of the survival of motor neuron (SMN) protein. SMN protein deficiency preferentially affects α- motor neurons, leading to their degeneration and subsequent atrophy of limb and trunk muscles, progressing to death in severe forms of the disease. More recent studies have shown that SMN protein depletion is detrimental to the functioning of other tissues including skeletal muscle, heart, autonomic and enteric nervous systems, metabolic/endocrine (e.g. pancreas), lymphatic, bone and reproductive system. In this review, we summarize studies discussing SMN protein's function in various cell and tissue types and their involvement in the context of SMA disease etiology. Taken together, these studies indicate that SMA is a multi-organ disease, which suggests that truly effective disease intervention may require body-wide correction of SMN protein levels. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    Science.gov (United States)

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  7. Actions to promote energy efficient electric motors. Motors study group

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, A.T. de [Coimbra Univ. (PT). Inst. of Systems and Robotics (ISR)

    1996-10-01

    Motor electricity consumption is influenced by many factors including: motor efficiency, motor speed controls, power supply quality, harmonics, systems oversizing, distribution network, mechanical transmission system, maintenance practices, load management and cycling, and the efficiency of the end-use device (e.g. fan, pump, etc.). Due to their importance, an overview of these factors is presented in this report. This study also describes the electricity use in the industrial and tertiary sectors and the electricity consumption associated with the different types of electric motors systems in the Member States of the European Union, as well as estimated future evolution until 2010. The studies for individual countries were carried out by the different partners of the motors study group at a previous stage. The study has found that there is a lack of accurate information about the motor electricity consumption, installed motor capacity and the motor market in almost all the European Union countries and only some general statistical sources are available. There is little field data, which is mainly available in Denmark, France, Italy and the Netherlands. Due to this lack of primary information, some common assumptions were made, based on the experience of the members of the study group. This lack of end-use characterisation data shows the need for improvement from the point of view of current knowledge. It is therefore recommended that further research is undertaken to arrive at more accurate figures. These could be the basis for a better understanding for motor use in practice and - as a consequence - for a more precise appraisal of potentials and barriers to energy efficiency. (orig.)

  8. Submersible canned motor mixer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.

    1997-01-01

    A mixer pump is described used in a waste tank for mobilizing high-level radioactive liquid waste having a column assembly containing power cables, a motor housing with electric motor means which includes a stator can of a stator assembly and a rotor can of a rotor assembly, and an impeller assembly with an impeller connected to a shaft of the rotor assembly. The column assembly locates the motor housing with the electric motor means adjacent to the impeller which creates an hydraulic head, and which forces the liquid waste into the motor housing to cool the electric motor means and to lubricate radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the impeller and electric motor means act to grind down large particles in the liquid waste flow. These larger particles are received in slots in the static bearing members of the radial bearing assemblies. Only solid waste particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the mixer pump. 10 figs

  9. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  10. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Dysregulation of RNA Mediated Gene Expression in Motor Neuron Diseases.

    Science.gov (United States)

    Gonçalves, Inês do Carmo G; Rehorst, Wiebke A; Kye, Min Jeong

    2016-01-01

    Recent findings indicate an important role for RNA-mediated gene expression in motor neuron diseases, including ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). ALS, also known as Lou Gehrig's disease, is an adult-onset progressive neurodegenerative disorder, whereby SMA or "children's Lou Gehrig's disease" is considered a pediatric neurodevelopmental disorder. Despite the difference in genetic causes, both ALS and SMA share common phenotypes; dysfunction/loss of motor neurons that eventually leads to muscle weakness and atrophy. With advanced techniques in molecular genetics and cell biology, current data suggest that these two distinct motor neuron diseases share more than phenotypes; ALS and SMA have similar cellular pathological mechanisms including mitochondrial dysfunction, oxidative stress and dysregulation in RNA-mediated gene expression. Here, we will discuss the current findings on these two diseases with specific focus on RNA-mediated gene regulation including miRNA expression, pre-mRNA processing and RNA binding proteins.

  12. Hereditary motor neuropathies and motor neuron diseases: which is which.

    Science.gov (United States)

    Hanemann, Clemens O; Ludolph, Albert C

    2002-12-01

    When Charcot first defined amyotrophic lateral sclerosis (ALS) he used the clinical and neuropathological pattern of vulnerability as a guideline. Similarly other motor neuron diseases such as the spinal muscular atrophies (SMA) and the motor neuropathies (MN) were grouped following clinical criteria. However, ever since the etiology of these diseases has started to be disclosed by genetics, we have learnt that the limits of the syndromes are not as well defined as our forefathers thought. A mutation leading to ALS can also be associated with the clinical picture of spinal muscular atrophy; even more unexpected is the overlap of the so-called motor neuropathies with the clinical syndrome of slowly progressive ALS or that primary lateral sclerosis (PLS) can be caused by the same gene as that responsible for some cases of ALS. In this review we summarise recent work showing that there is a considerable overlap between CMT, MN, SMA, ALS and PLS. Insights into these phenotypes should lead to study of the variants of motor neuron disease and possibly to a reclassification. This comprehensive review should help to improve understanding of the pathogenesis of motor neuron degeneration and finally may aid the research for urgently needed new treatment strategies, perhaps with validity for the entire group of motor neuron diseases.

  13. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The change in perceived motor competence and motor task values during elementary school : Gender and motor performance differences

    NARCIS (Netherlands)

    Noordstar, J.J.; van der Net, J.; Jak, S.; Helders, P.J.M.; Jongmans, M.J.

    2016-01-01

    Participation in motor activities is essential for social interaction and life satisfaction in children. Self-perceptions and task values have a central position in why children do or do not participate in (motor) activities. Investigating developmental changes in motor self-perceptions and motor

  15. 'Motor control center obsolescence'

    International Nuclear Information System (INIS)

    Irish, C.S.

    2003-01-01

    A significant and growing problem within the global nuclear industry is the aging of motor control center (MCC) components. MCC's have a very important role in the safety and critical to generation requirements of a nuclear power plant. Although many OEM's MCC's such as ITE/Telemechanique, GE, Westinghouse, Cutler Hammer, Klockner Moeller, etc. have been used throughout the global nuclear industry, they all have one common aspect obsolescence. Obsolescence of various components within the MCC's such as molded case circuit breakers, starters, relays, heaters, contactors, etc. are impacting the reliability of the MCC to serve its intended function. The paper will discuss the options which the nuclear industry is faced with to increase the reliability of the MCC's while maintaining design control, qualification and meeting budget constraints. The options as listed below shall be discussed in detail with examples to enhance the readers understanding of the situation: 1) Component by component replacement: The hurdles associated with trying to find equivalent components to replace the obsolete components while still worki (mechanically and electrically) in the original cubicle will be presented. 2) Complete MCC cubicle with new internal components replacement: The process of supplying a replacement cubicle, with all new internal components and new door to replace the original cubicle will be discussed. The presentation will conclude with a comparison of the advantages and dis-advantages of the two methods to bring the MCC to an as new condition with the overall goal of increasing reliability. (author)

  16. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1 G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1 G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  17. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    International Nuclear Information System (INIS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations. (paper)

  18. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  19. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  20. Honda Motor Company's CVCC Engine

    Science.gov (United States)

    1980-01-01

    From 1968 to 1972, Honda Motor Co. of Japan designed, tested, and massproduced a stratified charge engine, the CVCC, which was lower in carbon monoxide, hydrocarbon, and nitrogen oxide emissions and higher in fuel economy than contemporary convention...

  1. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  2. 78 FR 66801 - Motor Carrier Safety Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee; Charter Renewal AGENCY: Federal Motor Carrier Safety... and recommendations on motor carrier safety programs and motor carrier safety regulations through a...

  3. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  4. Mathematical modeling of molecular motors

    OpenAIRE

    Keller, Peter

    2013-01-01

    Amongst the many complex processes taking place in living cells, transport of cargoes across the cytosceleton is fundamental to cell viability and activity. To move cargoes between the different cell parts, cells employ Molecular Motors. The motors operate by transporting cargoes along the so-called cellular micro-tubules, namely rope-like structures that connect, for instance, the cell-nucleus and outer membrane. We introduce a new Markov Chain, the killed Quasi-Random-Walk, for such transpo...

  5. Segmented rail linear induction motor

    Science.gov (United States)

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  6. Motor performance of preschool children

    OpenAIRE

    Karina Słonka; Manuela Dyas; Tadeusz Słonka; Tomasz Szurmik

    2017-01-01

    Introduction: Pre‑school age is a period of intensive development when children shape their posture, habits and motor memory. Movement is child's physiological need.  Motive activity supports not only physical development, but also psychical, intellectual and social.   Aim: The aim of the study is to assess motor ability in preschool children from the city of Opole and District Dobrzeń Wielki. Materials and methods: The research involved 228 children, aged 5 and 6. The method used in...

  7. Paliperidone-associated motor tics.

    Science.gov (United States)

    Hsieh, Ming-Han; Chiu, Nan-Ying

    2014-01-01

    Paliperidone-associated motor tics. Case report. We report a 30-year-old man with schizophrenia who developed motor tics (eye blinking) after treatment of paliperidone up to 15 mg daily. Tic-like symptoms, from simple eye blinking to complex Tourette-like syndrome, may occur during paliperidone treatment, especially with high dose. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  8. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  9. Biophysics of filament length regulation by molecular motors

    International Nuclear Information System (INIS)

    Kuan, Hui-Shun; Betterton, M D

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells. (paper)

  10. Substrate interactions and promiscuity in a viral DNA packaging motor.

    Science.gov (United States)

    Aathavan, K; Politzer, Adam T; Kaplan, Ariel; Moffitt, Jeffrey R; Chemla, Yann R; Grimes, Shelley; Jardine, Paul J; Anderson, Dwight L; Bustamante, Carlos

    2009-10-01

    The ASCE (additional strand, conserved E) superfamily of proteins consists of structurally similar ATPases associated with diverse cellular activities involving metabolism and transport of proteins and nucleic acids in all forms of life. A subset of these enzymes consists of multimeric ringed pumps responsible for DNA transport in processes including genome packaging in adenoviruses, herpesviruses, poxviruses and tailed bacteriophages. Although their mechanism of mechanochemical conversion is beginning to be understood, little is known about how these motors engage their nucleic acid substrates. Questions remain as to whether the motors contact a single DNA element, such as a phosphate or a base, or whether contacts are distributed over several parts of the DNA. Furthermore, the role of these contacts in the mechanochemical cycle is unknown. Here we use the genome packaging motor of the Bacillus subtilis bacteriophage varphi29 (ref. 4) to address these questions. The full mechanochemical cycle of the motor, in which the ATPase is a pentameric-ring of gene product 16 (gp16), involves two phases-an ATP-loading dwell followed by a translocation burst of four 2.5-base-pair (bp) steps triggered by hydrolysis product release. By challenging the motor with a variety of modified DNA substrates, we show that during the dwell phase important contacts are made with adjacent phosphates every 10-bp on the 5'-3' strand in the direction of packaging. As well as providing stable, long-lived contacts, these phosphate interactions also regulate the chemical cycle. In contrast, during the burst phase, we find that DNA translocation is driven against large forces by extensive contacts, some of which are not specific to the chemical moieties of DNA. Such promiscuous, nonspecific contacts may reflect common translocase-substrate interactions for both the nucleic acid and protein translocases of the ASCE superfamily.

  11. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  12. Electric motor for laser-mechanical drilling

    Science.gov (United States)

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2017-10-10

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for performing a laser operation. A system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam having a wavelength less than 1060 nm through the electrical motor.

  13. Control of non-conventional synchronous motors

    CERN Document Server

    Louis, Jean-Paul

    2013-01-01

    Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors,

  14. Movement Sonification: Audiovisual benefits on motor learning

    Directory of Open Access Journals (Sweden)

    Weber Andreas

    2011-12-01

    Full Text Available Processes of motor control and learning in sports as well as in motor rehabilitation are based on perceptual functions and emergent motor representations. Here a new method of movement sonification is described which is designed to tune in more comprehensively the auditory system into motor perception to enhance motor learning. Usually silent features of the cyclic movement pattern "indoor rowing" are sonified in real time to make them additionally available to the auditory system when executing the movement. Via real time sonification movement perception can be enhanced in terms of temporal precision and multi-channel integration. But beside the contribution of a single perceptual channel to motor perception and motor representation also mechanisms of multisensory integration can be addressed, if movement sonification is configured adequately: Multimodal motor representations consisting of at least visual, auditory and proprioceptive components - can be shaped subtly resulting in more precise motor control and enhanced motor learning.

  15. 41 CFR 102-34.85 - What motor vehicles require motor vehicle identification?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What motor vehicles require motor vehicle identification? 102-34.85 Section 102-34.85 Public Contracts and Property Management... 34-MOTOR VEHICLE MANAGEMENT Identifying and Registering Motor Vehicles Motor Vehicle Identification...

  16. A novel missense variant (Gln220Arg) of GNB4 encoding guanine nucleotide-binding protein, subunit beta-4 in a Japanese family with autosomal dominant motor and sensory neuropathy.

    Science.gov (United States)

    Miura, Shiroh; Morikawa, Takuya; Fujioka, Ryuta; Noda, Kazuhito; Kosaka, Kengo; Taniwaki, Takayuki; Shibata, Hiroki

    2017-09-01

    Dominant intermediate Charcot-Marie-Tooth disease F (CMTDIF) is an autosomal dominant hereditary form of Charcot-Marie-Tooth disease (CMT) caused by variations in the guanine nucleotide-binding protein, subunit beta-4 gene (GNB4). We examined two Japanese familial cases with CMT. Case 1 was a 49-year-old male whose chief complaint was slowly progressive gait disturbance and limb dysesthesia that appeared at the age of 47. On neurological examination, he showed hyporeflexia or areflexia, distal limb muscle weakness, and distal sensory impairment with lower dominancy. Nerve conduction studies demonstrated demyelinating sensorimotor neuropathy with reduced action potentials in the lower limbs. Case 2 was an 80-year-old man, Case 1's father, who reported difficulty in riding a bicycle at the age of 76. On neurological examination, he showed areflexia in the upper and lower limbs. Distal sensory impairment in the lower limbs was also observed. Nerve conduction studies revealed mainly axonal involvement. Exome sequencing identified a novel heterozygous nonsynonymous variant (NM_021629.3:c.659T > C [p.Gln220Arg]) in GNB4 exon 8, which is known to be responsible for CMT. Sanger sequencing confirmed that both patients are heterozygous for the variation, which causes an amino acid substitution, Gln220Arg, in the highly conserved region of the WD40 domain of GNB4. The frequency of this variant in the Exome Aggregation Consortium Database was 0.000008247, and we confirmed its absence in 502 Japanese control subjects. We conclude that this novel GNB4 variant is causative for CMTDIF in these patients, who represent the first record of the disease in the Japanese population. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Applications of superconductors to electric motors

    International Nuclear Information System (INIS)

    McConnell, B.W.

    1988-01-01

    This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications

  18. Space shuttle booster separation motor design

    Science.gov (United States)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  19. Impacts of outboard motors on aquatic systems

    International Nuclear Information System (INIS)

    Moore, M.J.; Woodin, B.R.; Shea, D.S.; Stegeman, J.J.

    1995-01-01

    Outboard motor emissions often are localized in coastal and freshwater ponds, which may make their impact comparable to larger sources that discharge at greater distances from these locales. Outboard motor exhaust gases are rapidly cooled with some fractions being condensed and remaining in the water column rather than being released into the atmosphere. Here the authors compare the hydrocarbon emissions and biochemical effects of 2-cycle vs. 4-cycle engines. The engines were run for the same periods in 30-gallon containers and quantities and identities of hydrocarbons in the water were determined. Polynuclear aromatic hydrocarbons including 2-ring to 5-ring compounds and alkylated derivatives were detected. The concentration of total polynuclear aromatic hydrocarbon (PAH) was 5-fold less in the water from the 4 cycle than from the 2 cycle engine. However, the concentrations of 4- and 5-ring PAHs were not significantly different in water from the two engines. Exposure of killifish (Fundulus diaphanus) to diluted water containing emissions caused an induction of the content and catalytic activity of cytochrome P4501A (CYP1A), a sensitive biomarker for hydrocarbon exposure. CYP1A protein was induced by both, but inhibition of EROD induction occurred with greater concentrations of 4-cycle water. Relating these results to field data for CYP1A in fish from ponds that are or are not exposed to boating activity suggests that boating could account for a substantial part of the induction seen

  20. Dynamics and mechanics of motor-filament systems

    Science.gov (United States)

    Kruse, K.; Jülicher, F.

    2006-08-01

    Motivated by the cytoskeleton of eukaryotic cells, we develop a general framework for describing the large-scale dynamics of an active filament network. In the cytoskeleton, active cross-links are formed by motor proteins that are able to induce relative motion between filaments. Starting from pair-wise interactions of filaments via such active processes, our framework is based on momentum conservation and an analysis of the momentum flux. This allows us to calculate the stresses in the filament network generated by the action of motor proteins. We derive effective theories for the filament dynamics which can be related to continuum theories of active polar gels. As an example, we discuss the stability of homogenous isotropic filament distributions in two spatial dimensions.

  1. Motor demand-dependent activation of ipsilateral motor cortex.

    Science.gov (United States)

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  2. Changes of motor-cortical oscillations associated with motor learning.

    Science.gov (United States)

    Pollok, B; Latz, D; Krause, V; Butz, M; Schnitzler, A

    2014-09-05

    Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Submersible canned motor transfer pump

    International Nuclear Information System (INIS)

    Guardiani, R.F.; Pollick, R.D.; Nyilas, C.P.; Denmeade, T.J.

    1997-01-01

    A transfer pump is described which is used in a waste tank for transferring high-level radioactive liquid waste from a waste tank and having a column assembly, a canned electric motor means, and an impeller assembly with an upper impeller and a lower impeller connected to a shaft of a rotor assembly. The column assembly locates a motor housing with the electric motor means adjacent to the impeller assembly which creates an hydraulic head, and which forces the liquid waste, into the motor housing to cool the electric motor means and to cool and/or lubricate the radial and thrust bearing assemblies. Hard-on-hard bearing surfaces of the bearing assemblies and a ring assembly between the upper impeller and electric motor means grind large particles in the liquid waste flow. Slots in the static bearing member of the radial bearing assemblies further grind down the solid waste particles so that only particles smaller than the clearances in the system can pass there through, thereby resisting damage to and the interruption of the operation of the transfer pump. The column assembly is modular so that sections can be easily assembled, disassembled and/or removed. A second embodiment employs a stator jacket which provides an alternate means for cooling the electric motor means and lubricating and/or cooling the bearing assemblies, and a third embodiment employs a variable level suction device which allows liquid waste to be drawn into the transfer pump from varying and discrete levels in the waste tank. 17 figs

  4. Chaperonopathies: spotlight on hereditary motor neuropathies

    Directory of Open Access Journals (Sweden)

    Vincenzo Lupo

    2016-12-01

    Full Text Available Distal hereditary motor neuropathies (dHMN comprise a group of rare hereditary neuromuscular disorders characterized by a peroneal muscular atrophy without sensory symptoms. To date twenty-three genes for dHMN have been reported and four of them encode for chaperones: DNAJB2, which encodes a member of the HSP40/DNAJ co-chaperone family, and HSPB1, HSPB3 and HSPB8, which encode three members of the family of small heat shock proteins. Except for HSPB1, with around thirty different mutations, the remaining three genes comprise a much low number of cases. Thus, only one case has been described caused by an HSPB3 mutation, whereas few DNAJB2 and HSPB8 cases are known, most of them caused by a founder c.352+1G>A mutation in DNAJB2 and by mutations affecting the hot spot K141 residue of the HSPB8 chaperone. This low number of cases makes it difficult to understand the pathomechanism underlying the neuropathy. Chaperones can assemble in multi-chaperone complexes forming an integrative chaperone network in the cell, which plays relevant cellular roles in a variety of processes such as the correct folding of newly synthesized proteins, their escort to their precise cellular locations to form functional proteins and complexes and the response to protein misfolding, including the degradation of proteins that fail to refold properly. Despite of this variety of functions, mutations in some of them lead to diseases with a similar clinical picture, suggesting common pathways. This review gives an overview of the genetics of dHMNs caused by mutations in four genes, DNAJB2, HSPB1, HSPB3 and HSPB8, which encode chaperones and show a common disease mechanism.

  5. High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Directory of Open Access Journals (Sweden)

    Pereira Fred A

    2005-08-01

    Full Text Available Abstract Background Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. Methods To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. Results The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45. The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330. Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. Conclusion These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in

  6. 77 FR 65765 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2012-10-30

    ... the vehicle. The antenna module translates the radio frequency signal received from the key into a... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  7. 77 FR 25534 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2012-04-30

    ... response back to the vehicle. The antenna module translates the radio frequency signal received from the... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY...

  8. 75 FR 22317 - Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety

    Science.gov (United States)

    2010-04-28

    ... 1300 [Docket No. NHTSA-2010-0054] Federal Motor Vehicle Safety Standards; Small Business Impacts of Motor Vehicle Safety AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of..., multipurpose passenger vehicles, trucks, buses, trailers, incomplete vehicles, motorcycles, and motor vehicle...

  9. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    Science.gov (United States)

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  10. 46 CFR 169.684 - Overcurrent protection for motors and motor branch circuits.

    Science.gov (United States)

    2010-10-01

    ...) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Electrical Installations Operating at... motor that is responsive to motor current or to both motor current and temperature may be used. (b) The...

  11. On line protection systems for induction motors

    International Nuclear Information System (INIS)

    Colak, I.; Celik, H.; Sefa, I.; Demirbas, S.

    2005-01-01

    Protection of induction motors is very important since they are widely used in industry for many applications due to their high robustness, reliability, low cost and maintenance, high efficiency and long service life. So, protecting these motors is crucial for operations. This paper presents a combined protection approach for induction motors. To achieve this, the electrical values of the induction motor were measured with sensitivity ±1% through a data acquisition card and processed with software developed in Visual C++. An on line protection system for induction motors was achieved easily and effectively. The experimental results have shown that the induction motor was protected against the possible problems faced during the operation. The software developed for this protection provides flexible and reliable media for operators and their motors. It is expected that the motor protection achieved in this study might be faster than the classical techniques and also may be applied to larger motors easily after small modifications of the software

  12. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  13. Mirror neurons and motor intentionality.

    Science.gov (United States)

    Rizzolatti, Giacomo; Sinigaglia, Corrado

    2007-01-01

    Our social life rests to a large extent on our ability to understand the intentions of others. What are the bases of this ability? A very influential view is that we understand the intentions of others because we are able to represent them as having mental states. Without this meta-representational (mind-reading) ability their behavior would be meaningless to us. Over the past few years this view has been challenged by neurophysiological findings and, in particular, by the discovery of mirror neurons. The functional properties of these neurons indicate that intentional understanding is based primarily on a mechanism that directly matches the sensory representation of the observed actions with one's own motor representation of those same actions. These findings reveal how deeply motor and intentional components of action are intertwined, suggesting that both can be fully comprehended only starting from a motor approach to intentionality.

  14. Induction Motors by Electric Measurements

    Directory of Open Access Journals (Sweden)

    Andrzej M. Trzynadlowski

    1999-01-01

    Full Text Available The paper gives an overview of the issues and means of detection of mechanical abnormalities in induction motors by electric measurements. If undetected and untreated, the worn or damaged bearings, rotor imbalance and eccentricity, broken bars of the rotor cage, and torsional and lateral vibration lead to roughly a half of all failures of induction motor drives. The detection of abnormalities is based on the fact that they cause periodic disturbance of motor variables, such as the speed, torque, current, and magnetic flux. Thus, spectral analysis of those or related quantities may yield a warning about an incipient failure of the drive system. Although the traditional non-invasive diagnostics has mostly been based on the signature analysis of the stator current, other media can also be employed. In particular, the partial instantaneous input power is shown, theoretically and experimentally, to offer distinct advantages under noisy operating conditions. Use of torque and flux estimates is also discussed.

  15. Linear Synchronous Motor Repeatability Tests

    International Nuclear Information System (INIS)

    Ward, C.R.

    2002-01-01

    A cart system using linear synchronous motors was being considered for the Plutonium Immobilization Plant (PIP). One of the applications in the PIP was the movement of a stack of furnace trays, filled with the waste form (pucks) from a stacking/unstacking station to several bottom loaded furnaces. A system was ordered to perform this function in the PIP Ceramic Prototype Test Facility (CPTF). This system was installed and started up in SRTC prior to being installed in the CPTF. The PIP was suspended and then canceled after the linear synchronous motor system was started up. This system was used to determine repeatability of a linear synchronous motor cart system for the Modern Pit Facility

  16. Conceptual design of stepper motor replacing servo motor for control rod controller

    International Nuclear Information System (INIS)

    Mohd Dzul Aiman Aslan; Mohd Idris Taib; Izhar Abu Hussin; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat

    2010-01-01

    In PUSPATI TRIGA Reactor, current control rod controller are using servo motor to control the movement. Control rod is a very important safety element and measure in every nuclear reactor. So, precision is very important in measurement of security in the nuclear reactor. In this case, there are a few disadvantages when using the servo motor is measurement of the motor is not precise. One solution to overcome this is by shifting servo motor with stepper motor. A stepper motor (or step motor) is a brush less, synchronous electric motor that can divide a full rotation into a large number of steps. (author)

  17. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  18. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  19. Dynamics of relaxation to a stationary state for interacting molecular motors

    Science.gov (United States)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  20. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  1. Homopolar motor with dual rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, John S. (Oak Ridge, TN)

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  2. The Advanced Solid Rocket Motor

    Science.gov (United States)

    Mitchell, Royce E.

    1992-01-01

    The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.

  3. Interference in ballistic motor learning - is motor interference really sensory?

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Petersen, Tue Hvass; Rothwell, John C

    Skill gained after a short period of practice in one motor task can be abolished if a second task is learned shortly afterwards. We hypothesised that interference requires the same circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects...

  4. To what extent does motor imagery resemble motor preparation?

    NARCIS (Netherlands)

    van der Lubbe, Rob; Sobierajewicz, Jagna; Jongsma, Marijtje; Przekoracka-Krawczyk, Anna

    2017-01-01

    Motor imagery may be defined as the generation of an image of the acting self that lacks the final execution of a movement. This image is thought to be a simulation of the intended action from a first-person perspective. Recent studies with a Go/NoGo version of the discrete sequence production

  5. Motor learning as a criterion for evaluating coordination motor abilities

    Directory of Open Access Journals (Sweden)

    Boraczynski Tomasz

    2011-10-01

    Full Text Available The aim of the study was to evaluate the ability of motor learning based on objective, metric criteria, in terms of pedagogical process aimed at improving the accuracy of hits a golf ball to the target. A group of 77 students of physical education participated in the study. Within 8 months there were performed 11 measurement sessions. In each session, subjects performed 10 hits a golf ball to the target from a distance of 9 m. Accuracy of hits was recorded. Effect of motor learning has been demonstrated in the progress of 10 consecutive hits a golf ball to the target in each session (operational control; in the dynamics of performance improvement between sessions (current control; as well as in the total result of eight-month experiment (stage control. There were developed norms for quantitative and qualitative assessment of accuracy of hits a golf ball to the target. Developed quantitative and qualitative criteria for assessing the speed of motor learning in various conditions of the educational process creates the possibility of organization the operational, current and stage control of the level of human coordination motor abilities, as required by leading process.

  6. Assessing the Impact of Electrostatic Drag on Processive Molecular Motor Transport.

    Science.gov (United States)

    Smith, J Darby; McKinley, Scott A

    2018-06-04

    The bidirectional movement of intracellular cargo is usually described as a tug-of-war among opposite-directed families of molecular motors. While tug-of-war models have enjoyed some success, recent evidence suggests underlying motor interactions are more complex than previously understood. For example, these tug-of-war models fail to predict the counterintuitive phenomenon that inhibiting one family of motors can decrease the functionality of opposite-directed transport. In this paper, we use a stochastic differential equations modeling framework to explore one proposed physical mechanism, called microtubule tethering, that could play a role in this "co-dependence" among antagonistic motors. This hypothesis includes the possibility of a trade-off: weakly bound trailing molecular motors can serve as tethers for cargoes and processing motors, thereby enhancing motor-cargo run lengths along microtubules; however, this introduces a cost of processing at a lower mean velocity. By computing the small- and large-time mean-squared displacement of our theoretical model and comparing our results to experimental observations of dynein and its "helper protein" dynactin, we find some supporting evidence for microtubule tethering interactions. We extrapolate these findings to predict how dynein-dynactin might interact with the opposite-directed kinesin motors and introduce a criterion for when the trade-off is beneficial in simple systems.

  7. The ATPase of the phi29 DNA packaging motor is a member of the hexameric AAA+ superfamily.

    Science.gov (United States)

    Schwartz, Chad; De Donatis, Gian Marco; Fang, Huaming; Guo, Peixuan

    2013-08-15

    The AAA+ superfamily of proteins is a class of motor ATPases performing a wide range of functions that typically exist as hexamers. The ATPase of phi29 DNA packaging motor has long been a subject of debate in terms of stoichiometry and mechanism of action. Here, we confirmed the stoichiometry of phi29 motor ATPase to be a hexamer and provide data suggesting that the phi29 motor ATPase is a member of the classical hexameric AAA+ superfamily. Native PAGE, EMSA, capillary electrophoresis, ATP titration, and binomial distribution assay show that the ATPase is a hexamer. Mutations in the known Walker motifs of the ATPase validated our previous assumptions that the protein exists as another member of this AAA+ superfamily. Our data also supports the finding that the phi29 DNA packaging motor uses a revolution mechanism without rotation or coiling (Schwartz et al., this issue). Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Coupling with concentric contact around motor shaft for line start synchronous motor

    Science.gov (United States)

    Melfi, Michael J.; Burdeshaw, Galen E.

    2017-10-03

    A method comprises providing a line-start synchronous motor. The motor has a stator, a rotor core disposed within the stator, and a motor shaft. In accordance with a step of the method, a coupling for coupling a load to the motor is provided. The coupling has a motor shaft attachment portion configured to provide substantially concentric contact around the shaft at the end of the motor shaft. The coupling has a load attachment portion configured to operatively connect to a load. In accordance with a step of the method, a load is coupled to the motor with the coupling, and driven from start to at least near synchronous speed during steady state operation of the motor with a load coupled thereto. The motor shaft attachment portion may comprise a bushing assembly with matching and opposed tapered surfaces that cooperate to secure the motor shaft attachment portion around the motor shaft.

  9. Motor cortex is required for learning but not for executing a motor skill.

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Motor cortex is required for learning but not executing a motor skill

    Science.gov (United States)

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  11. Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.

    Science.gov (United States)

    Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik

    2016-12-01

    Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins.

    Science.gov (United States)

    Beattie, Christine E; Kolb, Stephen J

    2018-08-15

    Spinal muscular atrophy is caused by deletions or mutations in the SMN1 gene that result in reduced expression of the SMN protein. The SMN protein is an essential molecular chaperone that is required for the biogenesis of multiple ribonucleoprotein (RNP) complexes including spliceosomal small nuclear RNPs (snRNPs). Reductions in SMN expression result in a reduced abundance of snRNPs and to downstream RNA splicing alterations. SMN is also present in axons and dendrites and appears to have important roles in the formation of neuronal mRNA-protein complexes during development or neuronal repair. Thus, SMA is an exemplar, selective motor neuron disorder that is caused by defects in fundamental RNA processing events. A detailed molecular understanding of how motor neurons fail, and why other neurons do not, in SMA will yield important principals about motor neuron maintenance and neuronal specificity in neurodegenerative diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. ELECTRIC MOTORS FOR FARM USE.

    Science.gov (United States)

    Illinois Univ., Urbana. Coll. of Agriculture.

    BETWEEN 2 AND 8 HOURS ARE REQUIRED FOR USE OF THIS TEXTUAL OR REFERENCE MATERIAL ON ELECTRIC MOTORS. IT WAS DEVELOPED BY AN AGRICULTURAL EDUCATION-AGRICULTURAL ENGINEERING SPECIALIST ON THE BASIS OF CONFERENCES WITH SUBJECT MATTER SPECIALISTS, TEACHER EDUCATORS, SUPERVISORS, AND TEACHERS. THE OBJECTIVES AND SUBJECT MATTER CENTER AROUND THE…

  14. Imaging the ocular motor nerves.

    NARCIS (Netherlands)

    Ferreira, T.; Verbist, B.M.; Buchem, M. van; Osch, T. van; Webb, A.

    2010-01-01

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic

  15. Linear Motor With Air Slide

    Science.gov (United States)

    Johnson, Bruce G.; Gerver, Michael J.; Hawkey, Timothy J.; Fenn, Ralph C.

    1993-01-01

    Improved linear actuator comprises air slide and linear electric motor. Unit exhibits low friction, low backlash, and more nearly even acceleration. Used in machinery in which positions, velocities, and accelerations must be carefully controlled and/or vibrations must be suppressed.

  16. Technology and Motor Ability Development

    Science.gov (United States)

    Wang, Lin; Lang, Yong; Luo, Zhongmin

    2014-01-01

    As a new member joining the technology family, active video games have been developed to promote physical exercise. This working-in-progress paper shares an ongoing project on examining the basic motor abilities that are enhanced through participating in commercially available active video games. [For the full proceedings see ED557181.

  17. Motor Skill Learning in Children.

    Science.gov (United States)

    Gabbard, Carl P.

    The purpose of this article is to briefly describe schema theory and indicate its relevance to early childhood development, with specific reference to children's acquisition of motor skills. Schema theory proposes an explanation of how individuals learn and perform a seemingly endless variety of movements. According to Schmidt (1975), goal…

  18. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    1989a,b) that SMA spring or strip generates force as a non-linear function of its deformed length. ... magnetic property, smooth, jerk free operation and insensitivity to space radiations namely, electrons, protons ..... will be 1 Amp DC. The motor ...

  19. Treatment of functional motor disorders

    NARCIS (Netherlands)

    Gelauff, Jeannette M.; Dreissen, Yasmine E. M.; Tijssen, Marina A. J.; Stone, Jon

    OPINION STATEMENT: For the treatment of functional motor disorder, we recommend a three-stage approach. Firstly, patients must be assessed and given an unambiguous diagnosis, with an explanation that helps them understand that they have a genuine disorder, with the potential for reversibility. A key

  20. Motor Action and Emotional Memory

    Science.gov (United States)

    Casasanto, Daniel; Dijkstra, Katinka

    2010-01-01

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction…

  1. Magnetic Signature of Brushless Electric Motors

    National Research Council Canada - National Science Library

    Clarke, David

    2006-01-01

    Brushless electric motors are used in a number of underwater vehicles. When these underwater vehicles are used for mine clearance operations the magnetic signature of the brushless motors is important...

  2. Improving commercial motor vehicle safety in Oregon.

    Science.gov (United States)

    2010-08-01

    This study addressed the primary functions of the Oregon Department of Transportations (ODOTs) Motor Carrier Safety Assistance Program (MCSAP), which is administered by the Motor Carrier Transportation Division (MCTD). The study first documente...

  3. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  4. Experimental thermodynamics of single molecular motor.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Molecular motor is a nano-sized chemical engine that converts chemical free energy to mechanical motions. Hence, the energetics is as important as kinetics in order to understand its operation principle. We review experiments to evaluate the thermodynamic properties of a rotational F1-ATPase motor (F1-motor) at a single-molecule level. We show that the F1-motor achieves 100% thermo dynamic efficiency at the stalled state. Furthermore, the motor reduces the internal irreversible heat inside the motor to almost zero and achieves a highly-efficient free energy transduction close to 100% during rotations far from quasistatic process. We discuss the mechanism of how the F1-motor achieves such a high efficiency, which highlights the remarkable property of the nano-sized engine F1-motor.

  5. Motor Vehicle Crash Injuries PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    This 60 second Public Service Announcement is based on the October 2014 CDC Vital Signs report. Motor vehicle crashes are costly and preventable. Learn what can be done to help prevent motor vehicle injuries.

  6. Optimization analysis of propulsion motor control efficiency

    Directory of Open Access Journals (Sweden)

    CAI Qingnan

    2017-12-01

    Full Text Available [Objectives] This paper aims to strengthen the control effect of propulsion motors and decrease the energy used during actual control procedures.[Methods] Based on the traditional propulsion motor equivalence circuit, we increase the iron loss current component, introduce the definition of power matching ratio, calculate the highest efficiency of a motor at a given speed and discuss the flux corresponding to the power matching ratio with the highest efficiency. In the original motor vector efficiency optimization control module, an efficiency optimization control module is added so as to achieve motor efficiency optimization and energy conservation.[Results] MATLAB/Simulink simulation data shows that the efficiency optimization control method is suitable for most conditions. The operation efficiency of the improved motor model is significantly higher than that of the original motor model, and its dynamic performance is good.[Conclusions] Our motor efficiency optimization control method can be applied in engineering to achieve energy conservation.

  7. How to make spinal motor neurons.

    Science.gov (United States)

    Davis-Dusenbery, Brandi N; Williams, Luis A; Klim, Joseph R; Eggan, Kevin

    2014-02-01

    All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro. In this Primer, we discuss how the logic of spinal motor neuron development has been applied to allow generation of motor neurons either from pluripotent stem cells by directed differentiation and transcriptional programming, or from somatic cells by direct lineage conversion. Finally, we discuss methods to evaluate the molecular and functional properties of motor neurons generated through each of these techniques.

  8. Ultrasonic Linear Motor with Two Independent Vibrations

    Science.gov (United States)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  9. Ventajas de los motores de flujo axial

    Directory of Open Access Journals (Sweden)

    Alberto M Basanta Otero

    2011-03-01

    Full Text Available Es importante conocer sobre una familia de motores que a diferencia de los convencionales o tradicionales no presentanun flujo rotatorio radial, denominados motores de flujo axial. Dichos motores presentan altos valores de par motriz abajas velocidades, una alta eficiencia y alta densidad de potencia. Este trabajo constituye un breve análisis dealgunos motores de la referencia bibliográfica.  Is important to know about a family of motors that at difference whit the traditional, don't have a rotator radial flux,called, axial flux motors. These motors have high torque for low speed, high efficiency and high power density. Thiswork is a brief analysis of several motors of the bibliographic references.

  10. An exact approach for studying cargo transport by an ensemble of molecular motors

    International Nuclear Information System (INIS)

    Materassi, Donatello; Roychowdhury, Subhrajit; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies. Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport. In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived. Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments. The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms under which motor proteins could

  11. The micro-step motor controller

    International Nuclear Information System (INIS)

    Hong, Kwang Pyo; Lee, Chang Hee; Moon, Myung Kook; Choi, Bung Hun; Choi, Young Hyun; Cheon, Jong Gu

    2004-11-01

    The developed micro-step motor controller can handle 4 axes stepping motor drivers simultaneously and provide high power bipolar driving mechanism with constant current mode. It can be easily controlled by manual key functions and the motor driving status is displayed by the front panel VFD. Due to the development of several kinds of communication and driving protocol, PC can operate even several micro-step motor controllers at once by multi-drop connection

  12. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  13. Frequency modulation drive for a piezoelectric motor

    Science.gov (United States)

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  14. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart, Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed....

  15. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart,Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed.

  16. Physical mechanisms of biological molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)], E-mail: jhmiller@uh.edu; Vajrala, Vijayanand; Infante, Hans L. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Claycomb, James R. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Department of Mathematics and Physics, Houston Baptist University, 7502 Fondren Road, Houston, TX 77074-3298 (United States); Palanisami, Akilan; Fang Jie; Mercier, George T. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)

    2009-03-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors.

  17. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  18. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons.

    Directory of Open Access Journals (Sweden)

    Ximena Paez-Colasante

    Full Text Available In the inherited childhood neuromuscular disease spinal muscular atrophy (SMA, lower motor neuron death and severe muscle weakness result from the reduction of the ubiquitously expressed protein survival of motor neuron (SMN. Although SMA mice recapitulate many features of the human disease, it has remained unclear if their short lifespan and motor weakness are primarily due to cell-autonomous defects in motor neurons. Using Hb9(Cre as a driver, we selectively raised SMN expression in motor neurons in conditional SMAΔ7 mice. Unlike a previous study that used choline acetyltransferase (ChAT(Cre+ as a driver on the same mice, and another report that used Hb9(Cre as a driver on a different line of conditional SMA mice, we found no improvement in survival, weight, motor behavior and presynaptic neurofilament accumulation. However, like in ChAT(Cre+ mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ denervation status. The rescue of endplate size occurred in the absence of an increase in myofiber size, suggesting endplate size is determined by the motor neuron in these animals. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9(Cre+ SMA mice relative to ChAT(Cre+ SMA mice. This suggests that our lack of overall phenotypic improvement is most likely due to an unexpectedly poor recombination efficiency driven by Hb9(Cre . Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell autonomous phenotypes are very sensitive to changes in motoneuronal SMN levels. Our results directly suggest that even those therapeutic interventions with very modest effects in raising SMN in motor neurons may provide mitigation of neuromuscular phenotypes in SMA patients.

  19. FUZZY LOGIC CONTROL OF ELECTRIC MOTORS AND MOTOR DRIVES: FEASIBILITY STUDY

    Science.gov (United States)

    The report gives results of a study (part 1) of fuzzy logic motor control (FLMC). The study included: 1) reviews of existing applications of fuzzy logic, of motor operation, and of motor control; 2) a description of motor control schemes that can utilize FLMC; 3) selection of a m...

  20. Het motorrijwiel : handboek voor motor- en scooterrijders, motor- en scootermonteurs en -technici

    NARCIS (Netherlands)

    Seyffardt, A.L.W.

    1961-01-01

    INHOUD: 1. De werking van de motor ; 2. De hoofddelen van de motor ; 3. De kleppen en de klepbeweging ; 4. Balancering, de meercilinder motor ; 5. Bijzonderheden over de werking ; 6. De carburateur ; 7. De smering van de motor ; 8. De tweetaktmotor ; 9. De elektrische installatie ; 10. De

  1. The influence of motor imagery on the learning of a fine hand motor skill

    NARCIS (Netherlands)

    Sobierajewicz, Jagna; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; Verwey, Willem B.; van der Lubbe, Rob

    2017-01-01

    Motor imagery has been argued to affect the acquisition of motor skills. The present study examined the specificity of motor imagery on the learning of a fine hand motor skill by employing a modified discrete sequence production task: the Go/NoGo DSP task. After an informative cue, a response

  2. 76 FR 12792 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; General...

    Science.gov (United States)

    2011-03-08

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; General Motors Corporation AGENCY..., Exemption from the Theft Prevention Standard. This petition is granted because the agency has determined... in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of...

  3. 77 FR 22383 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA

    Science.gov (United States)

    2012-04-13

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; TESLA AGENCY: National Highway Traffic... exemption. SUMMARY: This document grants in full the petition of Tesla Motors Inc's. (Tesla) for an... 49 CFR Part 541, Federal Motor Vehicle Theft Prevention Standard. Tesla requested confidential...

  4. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults

    NARCIS (Netherlands)

    Berghuis, K. M. M.; Veldman, M. P.; Solnik, S.; Koch, G.; Zijdewind, I.; Hortobagyi, T.

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation

  5. Assessment of Preschoolers' Gross Motor Proficiency: Revisiting Bruininks-Oseretsky Test of Motor Proficiency

    Science.gov (United States)

    Lam, Hazel Mei Yung

    2011-01-01

    Literature reveals that there are very few validated motor proficiency tests for young children. According to Gallahue and Ozmun, the Bruininks-Oseretsky Test of Motor Proficiency is a valid test. However, manipulative skills, which are classified as gross motor skills by most motor development specialists, are only tested in the Upper Limb…

  6. Motor Programming in Apraxia of Speech

    Science.gov (United States)

    Maas, Edwin; Robin, Donald A.; Wright, David L.; Ballard, Kirrie J.

    2008-01-01

    Apraxia of Speech (AOS) is an impairment of motor programming. However, the exact nature of this deficit remains unclear. The present study examined motor programming in AOS in the context of a recent two-stage model [Klapp, S. T. (1995). Motor response programming during simple and choice reaction time: The role of practice. "Journal of…

  7. Agricultural Electricity. Electric Motors. Student Manual.

    Science.gov (United States)

    Benson, Robert T.

    Addressed to the student, this manual, which includes supplementary diagrams, discusses the following topics and principles: Electromagnetic fields, electromagnets, parts of an electric motor, determining speed of an electric motor, types of electric motors in common use (split-phase, capacitor, repulsion-induction, three-phase), the electric…

  8. Control of a superconducting synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y; Pei, R; Jiang, Q; Hong, Z; Coombs, T A [Engineering Department, Cambridge University, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    This paper presents a control algorithm for starting up a high temperature superconducting synchronous motor. The mathematical model of the motor has been established in m-file in Matlab and the parameters have been identified by means of the finite-element analysis method. Different starting methods for the motor have been compared and discussed, and eventually a hybrid control algorithm is proposed.

  9. Motor Development Programming in Trisomic-21 Babies

    Science.gov (United States)

    Sanz, Teresa; Menendez, Javier; Rosique, Teresa

    2011-01-01

    The present study contributes to the understanding of gross motor development in babies with Down's syndrome. Also, it facilitates the comprehension of the efficiency of the early motor stimulation as well as of beginning it as early as possible. We worked with two groups of babies with Down's syndrome, beginning the early motor training in each…

  10. Electric Motor Thermal Management R&D

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, Kevin

    2016-06-07

    Thermal management enables more efficient and cost-effective motors. This Annual Merit Review presentation describes the technical accomplishments and progress in electric motor thermal management R&D over the last year. This project supports a broad industry demand for data, analysis methods, and experimental techniques to improve and better understand motor thermal management.

  11. [Non-motor symptoms of Parkinson's disease

    NARCIS (Netherlands)

    Weerkamp, N.J.; Nijhof, A.; Tissingh, G.

    2012-01-01

    Parkinson's disease has traditionally been viewed as a disease with only motor features. Nowadays, a wide variety of non-motor symptoms and signs are also recognised as being characteristic of the disease. Non-motor symptoms, most importantly autonomic dysfunction, neuropsychiatric symptoms and

  12. Motor performance in children with Noonan syndrome

    NARCIS (Netherlands)

    Croonen, E.A.; Essink, M.; Burgt, I. van der; Draaisma, J.M.; Noordam, C.; Nijhuis-Van der Sanden, M.W.G.

    2017-01-01

    Although problems with motor performance in daily life are frequently mentioned in Noonan syndrome, the motor performance profile has never been systematically investigated. The aim of this study was to examine whether a specific profile in motor performance in children with Noonan syndrome was seen

  13. 33 CFR 127.1311 - Motor vehicles.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor vehicles. 127.1311 Section... Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1311 Motor vehicles. (a) When LHG is... operator shall ensure that no person— (1) Stops or parks a motor vehicle in a space other than a designated...

  14. 33 CFR 159.69 - Motor ratings.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Motor ratings. 159.69 Section 159.69 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.69 Motor ratings. Motors must be rated...

  15. 47 CFR 32.2112 - Motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Motor vehicles. 32.2112 Section 32.2112... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2112 Motor vehicles. This account shall include the original cost of motor vehicles of the type which are designed and...

  16. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    Science.gov (United States)

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  17. 76 FR 32390 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2011-06-06

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee (MCSAC) Meeting. SUMMARY...

  18. 77 FR 46555 - Motor Carrier Safety Advisory Committee: Public Meeting

    Science.gov (United States)

    2012-08-03

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee: Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of meeting of Motor Carrier Safety Advisory Committee (MCSAC...

  19. 75 FR 2923 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-01-19

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  20. 75 FR 29384 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-05-25

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee meeting. SUMMARY: FMCSA...

  1. 75 FR 72863 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-11-26

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2006-26367] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration, DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA announces...

  2. 75 FR 50797 - Motor Carrier Safety Advisory Committee Public Meeting

    Science.gov (United States)

    2010-08-17

    ... DEPARTMENT OF TRANSPORTATION Federal Motor Carrier Safety Administration [Docket No. FMCSA-2010-0143] Motor Carrier Safety Advisory Committee Public Meeting AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of Motor Carrier Safety Advisory Committee Meeting. SUMMARY: FMCSA...

  3. Pre-motor and motor activities in early handwriting

    OpenAIRE

    van Zwieten, Koos Jaap

    2011-01-01

    Behavioural studies make use of handwritten letters’ characteristics like strokes, roundedness, etcetera. In consequence, Fisher et al. (2010) studying brain activation during rejected love, noticed typical pre-motor activity patterns, as suggested by irregular writing patterns as well, due to basal ganglia dysfunction (Mergl et al., 2004). A short historical text written in a presumably depressed mood was checked on such characteristics in the light of hypothesised finger-, and hand movement...

  4. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  5. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    OpenAIRE

    MEMISEVIC Haris; HADZIC Selmir

    2015-01-01

    Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegbo...

  6. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Maximum power operation of interacting molecular motors

    DEFF Research Database (Denmark)

    Golubeva, Natalia; Imparato, Alberto

    2013-01-01

    , as compared to the non-interacting system, in a wide range of biologically compatible scenarios. We furthermore consider the case where the motor-motor interaction directly affects the internal chemical cycle and investigate the effect on the system dynamics and thermodynamics.......We study the mechanical and thermodynamic properties of different traffic models for kinesin which are relevant in biological and experimental contexts. We find that motor-motor interactions play a fundamental role by enhancing the thermodynamic efficiency at maximum power of the motors...

  8. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Mathematical Modeling of Diaphragm Pneumatic Motors

    Directory of Open Access Journals (Sweden)

    Fojtášek Kamil

    2014-03-01

    Full Text Available Pneumatic diaphragm motors belong to the group of motors with elastic working parts. This part is usually made of rubber with a textile insert and it is deformed under the pressure of a compressed air or from the external mass load. This is resulting in a final working effect. In this type of motors are in contact two different elastic environments – the compressed air and the esaltic part. These motors are mainly the low-stroke and working with relatively large forces. This paper presents mathematical modeling static properties of diaphragm motors.

  10. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  11. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  12. Motor carrier evaluation program plan

    International Nuclear Information System (INIS)

    Portsmouth, J.H.; Maxwell, J.E.; Boness, G.O.; Rice, L.E.

    1991-04-01

    The US Department of Energy (DOE) Transportation Management Program (TMP) has established a program to assist the DOE field offices and their contractors in evaluating the motor carriers used to transport DOE-owned hazardous and radioactive materials. This program was initiated to provide the DOE field offices with the tools necessary to help ensure, during this period of motor carrier deregulation, that only highly qualified carriers transport radioactive and hazardous commodities for the DOE. This program will assist DOE in maintaining their excellent performance record in the safe transportation of hazardous commodities. The program was also developed in response to public concern surrounding the transportation of hazardous materials. Representatives of other federal agencies, states, and tribal governments, as well as the news media, have expressed concern about the selection and qualification of carriers engaged in the transportation of Highway Route-Controlled Quantities (HRCQ) and Truckload (TL) quantities of radioactive material for the DOE. 8 refs

  13. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  14. Online Monitoring of Induction Motors

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Timothy R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lybeck, Nancy Jean [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    The online monitoring of active components project, under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program, researched diagnostic and prognostic models for alternating current induction motors (IM). Idaho National Laboratory (INL) worked with the Electric Power Research Institute (EPRI) to augment and revise the fault signatures previously implemented in the Asset Fault Signature Database of EPRI’s Fleet Wide Prognostic and Health Management (FW PHM) Suite software. Induction Motor diagnostic models were researched using the experimental data collected by Idaho State University. Prognostic models were explored in the set of literature and through a limited experiment with 40HP to seek the Remaining Useful Life Database of the FW PHM Suite.

  15. HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons.

    Science.gov (United States)

    Heilman, Patrick L; Song, SungWon; Miranda, Carlos J; Meyer, Kathrin; Srivastava, Amit K; Knapp, Amy; Wier, Christopher G; Kaspar, Brian K; Kolb, Stephen J

    2017-11-01

    Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Chemical and thermal modulation of molecular motor activities

    Science.gov (United States)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  17. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  18. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords

    OpenAIRE

    Otaegi, Gaizka; Pollock, Andrew; Hong, Janet; Sun, Tao

    2011-01-01

    The precise organization of motor neuron subtypes in a columnar pattern in developing spinal cords is controlled by cross-interactions of multiple transcription factors and segmental expressions of Hox genes and their accessory proteins. Accurate expression levels and domains of these regulators are essential for organizing spinal motor neuron columns and axonal projections to target muscles. Here, we show that microRNA miR-9 is transiently expressed in a motor neuron subtype and displays ove...

  19. Validating the Rett Syndrome Gross Motor Scale

    DEFF Research Database (Denmark)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley

    2016-01-01

    .93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice......Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated...... the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age...

  20. Motor memory in sports success

    Directory of Open Access Journals (Sweden)

    Silvia GRĂDINARU

    2017-02-01

    Full Text Available The model of modern sports performance asks for certain graduation in the treatment of its efficiency. Besides the coaching model, what matters is the genetic potential of the child or junior, and particularly the selection of the young talented athlete identified at the proper time and included in a proper training system, in full harmony with the education process. The sports output is determined by the simultaneous action of several factors whose influences are different. At present, there is a tendency to improve those factors on which rely sports outcomes and that need to be analysed and selected. Psychic capacity is a major factor, and mental control – the power to focus, motor intelligence, motor memory, creativity, and tactical skills play a major role in an athlete’s style. This study aims at showing the measure in which motor memory allows early and reliable diagnosis of future performance. The subjects selected are components of the mini-basket team of the Sports Club “Sport Star” from Timisoara, little girls that have played basketball since 1st grade in their free time (some of the girls have played it for four years. The research was carried out during a competitive year; we monitored the subjects both during coach lessons and minibasketball championship. To assess motor memory, we used the “cerebral module” consisting in memorising a complex of technical and tactical elements and applying them depending on the situation in the field. The research also involved monitoring the subjects in four directions considered defining in the assessment of the young athletes: somatic data, physical features, basketball features and intellectual potential. Most parameters point out a medium homogeneity of the group, except for height and commitment (great homogeneity. Half of the athletes of the tested group are above the mean of the group, which allows guiding them towards higher coaching forms (allowing them to practice basketball

  1. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  2. Advances in esophageal motor disorders.

    Science.gov (United States)

    Smout, André Jpm

    2008-07-01

    Esophageal motor disorders, often leading to dysphagia and chest pain, continue to pose diagnostic and therapeutic problems. In the past 12 months important new information regarding esophageal motor disorders was published. This information will be reviewed in this paper. A number of studies have addressed the issue of heterogeneity in achalasia, the best defined esophageal motility disorder. The spastic esophageal motility disorders nutcracker esophagus and diffuse esophageal spasm may coexist with gastroesophageal reflux disease, which has consequences for the management of patients with these disorders. The entity labelled ineffective esophageal motility is associated with reflux esophagitis, but also with morbid obesity. For the detection of disordered transit caused by ineffective esophageal motility, application of intraluminal impedance monitoring in conjunction with manometry leads to improved diagnosis. New data on the effect of Nissen fundoplication on esophageal motility were published during the last year. Recent knowledge on the heterogeneity of achalasia and the association of spastic esophageal motor disorders and ineffective motility with reflux disease will help the clinician in the management of patients with these disorders.

  3. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  4. Motor Proficiency in Young Children

    Directory of Open Access Journals (Sweden)

    Fotini Venetsanou

    2016-01-01

    Full Text Available This study aimed to examine motor proficiency in young children, focusing on potential gender differences. For that purpose, the Bruininks-Oseretsky Test of Motor Proficiency–Long Form (BOTMP-LF was administered to 540 children (272 boys, 4½ to 6 years old. First, the 2 (sex × 4 (age groups ANOVA computed on children’s total BOTMP-LF scores showed that age had a statistically significant effect, whereas gender did not. Second, the one-way MANCOVA applied on subtest scores, with age as covariate, revealed statistical significant gender differences; however, η2 values were found to be small or moderate. Finally, the MANCOVA applied on items where significant gender differences have been reported showed a significant effect of gender. Nonetheless, η2 values exceeded the limit of practical significance only on two items (“standing on preferred leg on floor”, “throwing a ball at a target with preferred hand” that are associated with gender-stereotyped activities. It can be concluded that (a besides statistical significance, effect sizes should be examined for the results of a study to be adequately interpreted; (b young boys’ and girls’ motor proficiency is similar rather than different. Gender differences in specific skills should be used for movement programs to be individualized.

  5. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes.

    Science.gov (United States)

    Sanghavi, Paulomi; D'Souza, Ashwin; Rai, Ashim; Rai, Arpan; Padinhatheeri, Ranjith; Mallik, Roop

    2018-05-07

    How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Motor properties from persistence: a linear molecular walker lacking spatial and temporal asymmetry

    International Nuclear Information System (INIS)

    Zuckermann, Martin J; Forde, Nancy R; Angstmann, Christopher N; Schmitt, Regina; Linke, Heiner; Blab, Gerhard A; Bromley, Elizabeth HC; Curmi, Paul MG

    2015-01-01

    The stepping direction of linear molecular motors is usually defined by a spatial asymmetry of the motor, its track, or both. Here we present a model for a molecular walker that undergoes biased directional motion along a symmetric track in the presence of a temporally symmetric chemical cycle. Instead of using asymmetry, directionality is achieved by persistence. At small load force the walker can take on average thousands of steps in a given direction until it stochastically reverses direction. We discuss a specific experimental implementation of a synthetic motor based on this design and find, using Langevin and Monte Carlo simulations, that a realistic walker can work against load forces on the order of picoNewtons with an efficiency of ∼18%, comparable to that of kinesin. In principle, the walker can be turned into a permanent motor by externally monitoring the walker’s momentary direction of motion, and using feedback to adjust the direction of a load force. We calculate the thermodynamic cost of using feedback to enhance motor performance in terms of the Shannon entropy, and find that it reduces the efficiency of a realistic motor only marginally. We discuss the implications for natural protein motor performance in the context of the strong performance of this design based only on a thermal ratchet. (paper)

  7. What happens to the motor theory of perception when the motor system is damaged?

    Science.gov (United States)

    Stasenko, Alena; Garcea, Frank E; Mahon, Bradford Z

    2013-09-01

    Motor theories of perception posit that motor information is necessary for successful recognition of actions. Perhaps the most well known of this class of proposals is the motor theory of speech perception, which argues that speech recognition is fundamentally a process of identifying the articulatory gestures (i.e. motor representations) that were used to produce the speech signal. Here we review neuropsychological evidence from patients with damage to the motor system, in the context of motor theories of perception applied to both manual actions and speech. Motor theories of perception predict that patients with motor impairments will have impairments for action recognition. Contrary to that prediction, the available neuropsychological evidence indicates that recognition can be spared despite profound impairments to production. These data falsify strong forms of the motor theory of perception, and frame new questions about the dynamical interactions that govern how information is exchanged between input and output systems.

  8. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  9. Spindles and active vortices in a model of confined filament-motor mixtures.

    Science.gov (United States)

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

  10. Spindles and active vortices in a model of confined filament-motor mixtures

    Directory of Open Access Journals (Sweden)

    Head David A

    2011-11-01

    Full Text Available Abstract Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue

  11. Using the motor to monitor pump conditions

    Energy Technology Data Exchange (ETDEWEB)

    Casada, D. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented.

  12. Using the motor to monitor pump conditions

    International Nuclear Information System (INIS)

    Casada, D.

    1996-01-01

    When the load of a mechanical device being driven by a motor changes, whether in response to changes in the overall process or changes in the performance of the driven device, the motor inherently responds. For induction motors, the current amplitude and phase angle change as the shaft load changes. By examining the details of these changes in amplitude and phase, load fluctuations of the driven device can be observed. The usefulness of the motor as a transducer to improve the understanding of devices with high torque fluctuations, such as positive displacement compressors and motor-operated valves, has been recognized and demonstrated for a number of years. On such devices as these, the spectrum of the motor current amplitude, phase, or power normally has certain characteristic peaks associated with various load components, such as the piston stroke or gear tooth meshing frequencies. Comparison and trending of the amplitudes of these peaks has been shown to provide some indication of their mechanical condition. For most centrifugal pumps, the load fluctuations are normally low in torque amplitude, and as a result, the motor experiences a correspondingly lower level of load fluctuation. However, both laboratory and field test data have demonstrated that the motor does provide insight into some important pump performance conditions, such as hydraulic stability and pump-to-motor alignment. Comparisons of other dynamic signals, such as vibration and pressure pulsation, to motor data for centrifugal pumps are provided. The effects of inadequate suction head, misalignment, mechanical and hydraulic unbalance on these signals are presented

  13. Tokyo Motor Show 2003; Tokyo Motor Show 2003

    Energy Technology Data Exchange (ETDEWEB)

    Joly, E.

    2004-01-01

    The text which follows present the different techniques exposed during the 37. Tokyo Motor Show. The report points out the great tendencies of developments of the Japanese automobile industry. The hybrid electric-powered vehicles or those equipped with fuel cells have been highlighted by the Japanese manufacturers which allow considerable budgets in the research of less polluting vehicles. The exposed models, although being all different according to the manufacturer, use always a hybrid system: fuel cell/battery. The manufacturers have stressed too on the intelligent systems for navigation and safety as well as on the design and comfort. (O.M.)

  14. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  15. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  16. Motor-pump unit provided with a lifting appliance of the motor

    International Nuclear Information System (INIS)

    Veronesi, Luciano; Francis, W.R.

    1978-01-01

    This invention relates to lifting appliances and particularly concerns a 'pump and motor set' or motor-pump unit fitted with a lifting appliance enabling the motor to be separated from the pump. In nuclear power stations the reactor discharges heat that is carried by the coolant to a distant point away from the reactor to generate steam and electricity conventionally. In order to cause the reactor coolant to flow through the system, coolant motor-pump units are provided in the cooling system. These units are generally of the vertical type with an electric motor fitted vertically on the pump by means of a cylindrical or conical structure called motor support [fr

  17. Reduction of power consumption in motor-driven applications by using PM motors; PM = Permanent Magnet; Reduktion af elforbrug til motordrift ved anvendelse af PM motorer

    Energy Technology Data Exchange (ETDEWEB)

    Hvenegaard, C.M.; Hansen, Mads P.R.; Groenborg Nikolaisen, C. (Teknologisk Institut, Taastrup (Denmark)); Nielsen, Sandie B. (Teknologisk Institut, AArhus (Denmark)); Ritchie, E.; Leban, K. (Aalborg Univ., Aalborg (Denmark))

    2009-12-15

    The traditional asynchronous motor with aluminum rotor is today by far the most widespread and sold electric motor, but a new and more energy efficient type of engine - the permanent magnet motor (PM motor) - is expected in the coming years to win larger and larger market shares. Several engine manufacturers in Europe, USA and Asia are now beginning to market the PM motors, which can replace the traditional asynchronous motor. The project aims to uncover the pros and cons of replacing asynchronous motors including EFF1 engines with PM motors, including the price difference. Furthermore, it is identified how the efficiency of PM motors is affected by low load levels and at various forms of control. Finally, the energy savings potential is analysed, by replacing asynchronous motors with PM motors. The study includes laboratory tests of PM motors, made in a test stand at Danish Technological Institute. (ln)

  18. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  19. Parkinson's Disease Subtypes Identified from Cluster Analysis of Motor and Non-motor Symptoms.

    Science.gov (United States)

    Mu, Jesse; Chaudhuri, Kallol R; Bielza, Concha; de Pedro-Cuesta, Jesus; Larrañaga, Pedro; Martinez-Martin, Pablo

    2017-01-01

    Parkinson's disease is now considered a complex, multi-peptide, central, and peripheral nervous system disorder with considerable clinical heterogeneity. Non-motor symptoms play a key role in the trajectory of Parkinson's disease, from prodromal premotor to end stages. To understand the clinical heterogeneity of Parkinson's disease, this study used cluster analysis to search for subtypes from a large, multi-center, international, and well-characterized cohort of Parkinson's disease patients across all motor stages, using a combination of cardinal motor features (bradykinesia, rigidity, tremor, axial signs) and, for the first time, specific validated rater-based non-motor symptom scales. Two independent international cohort studies were used: (a) the validation study of the Non-Motor Symptoms Scale ( n = 411) and (b) baseline data from the global Non-Motor International Longitudinal Study ( n = 540). k -means cluster analyses were performed on the non-motor and motor domains (domains clustering) and the 30 individual non-motor symptoms alone (symptoms clustering), and hierarchical agglomerative clustering was performed to group symptoms together. Four clusters are identified from the domains clustering supporting previous studies: mild, non-motor dominant, motor-dominant, and severe. In addition, six new smaller clusters are identified from the symptoms clustering, each characterized by clinically-relevant non-motor symptoms. The clusters identified in this study present statistical confirmation of the increasingly important role of non-motor symptoms (NMS) in Parkinson's disease heterogeneity and take steps toward subtype-specific treatment packages.

  20. Skeletal maturation, fundamental motor skills and motor coordination in children 7-10 years.

    Science.gov (United States)

    Freitas, Duarte L; Lausen, Berthold; Maia, José António; Lefevre, Johan; Gouveia, Élvio Rúbio; Thomis, Martine; Antunes, António Manuel; Claessens, Albrecht L; Beunen, Gaston; Malina, Robert M

    2015-01-01

    Relationships between skeletal maturation and fundamental motor skills and gross motor coordination were evaluated in 429 children (213 boys and 216 girls) 7-10 years. Skeletal age was assessed (Tanner-Whitehouse 2 method), and stature, body mass, motor coordination (Körperkoordinations Test für Kinder, KTK) and fundamental motor skills (Test of Gross Motor Development, TGMD-2) were measured. Relationships among chronological age, skeletal age (expressed as the standardised residual of skeletal age on chronological age) and body size and fundamental motor skills and motor coordination were analysed with hierarchical multiple regression. Standardised residual of skeletal age on chronological age interacting with stature and body mass explained a maximum of 7.0% of the variance in fundamental motor skills and motor coordination over that attributed to body size per se. Standardised residual of skeletal age on chronological age alone accounted for a maximum of 9.0% of variance in fundamental motor skills, and motor coordination over that attributed to body size per se and interactions between standardised residual of skeletal age on chronological age and body size. In conclusion, skeletal age alone or interacting with body size has a negligible influence on fundamental motor skills and motor coordination in children 7-10 years.

  1. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation.

    Science.gov (United States)

    Dale, Erica A; Fields, Daryl P; Devinney, Michael J; Mitchell, Gordon S

    2017-01-01

    Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are necessary for BDNF-dependent acute intermittent hypoxia-induced pLTF, demonstrating that phrenic motor neurons are a critical site of respiratory motor plasticity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young; Crooks, Daniel R.; Wilson-Ollivierre, Hayden; Ghosh, Manik C.; Sougrat, Rachid; Lee, Jaekwon; Cooperman, Sharon; Mitchell, James B.; Beaumont, Carole; Rouault, Tracey A.

    2011-01-01

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  3. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors

    NARCIS (Netherlands)

    Chen, Jiawen; Leung, Franco King-Chi; Stuart, Marc C A; Kajitani, Takashi; Fukushima, Takanori; van der Giessen, Erik; Feringa, Ben L

    A striking feature of living systems is their ability to produce motility by amplification of collective molecular motion from the nanoscale up to macroscopic dimensions. Some of nature's protein motors, such as myosin in muscle tissue, consist of a hierarchical supramolecular assembly of very large

  4. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young

    2011-10-07

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  5. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.

    Directory of Open Access Journals (Sweden)

    Suh Young Jeong

    Full Text Available Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2, which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  6. Control of permanent magnet synchronous motors

    CERN Document Server

    Vaez-Zadeh, Sadegh

    2018-01-01

    This is the first comprehensive, coherent, and up-to-date book devoted solely to the control of permanent magnet synchronous (PMS) motors, as the fastest growing AC motor. It covers a deep and detailed presentation of major PMS motor modeling and control methods. The readers can find rich materials on the fundamentals of PMS motor control in addition to new motor control methods, which have mainly been developed in the last two decades, including recent advancements in the field in a systematic manner. These include extensive modeling of PMS motors and a full range of vector control and direct torque control schemes, in addition to predictive control, deadbeat control, and combined control methods. All major sensorless control and parameter estimation methods are also studied. The book covers about 10 machine models in various reference frames and 70 control and estimation schemes with sufficient analytical and implementation details including about 200 original figures. A great emphasis is placed on energy-s...

  7. Error Sonification of a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Riener Robert

    2011-12-01

    Full Text Available Visual information is mainly used to master complex motor tasks. Thus, additional information providing augmented feedback should be displayed in other modalities than vision, e.g. hearing. The present work evaluated the potential of error sonification to enhance learning of a rowing-type motor task. In contrast to a control group receiving self-controlled terminal feedback, the experimental group could not significantly reduce spatial errors. Thus, motor learning was not enhanced by error sonification, although during the training the participant could benefit from it. It seems that the motor task was too slow, resulting in immediate corrections of the movement rather than in an internal representation of the general characteristics of the motor task. Therefore, further studies should elaborate the impact of error sonification when general characteristics of the motor tasks are already known.

  8. Motor Integrated Variable Speed Drives

    DEFF Research Database (Denmark)

    Singh, Yash Veer

    rectifier at the front end is presented in this thesis and requirements of a buffer stage in the form of ESI is explained in detail. An equivalent circuit and linear model are developed to give the transfer function and control of the ESI based three-phase rectifier. In this thesis a power converter...... with ESI is designed and tested with standard induction motor to verify functionality of a working drive. One modified version of the ESI based converter has also been looked into to reduce losses of converter, but because of difficulties in reducing the bus-bar inductance in that design, further...

  9. Motor performance of preschool children

    OpenAIRE

    Słonka Karina; Dyas Manuela; Słonka Tadeusz; Szurmik Tomasz

    2017-01-01

    Słonka Karina, Dyas Manuela, Słonka Tadeusz, Szurmik Tomasz. Motor performance of preschool children. Journal of Education, Health and Sport. 2017;7(8):1308-1323. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.1045272 http://ojs.ukw.edu.pl/index.php/johs/article/view/5028 https://pbn.nauka.gov.pl/sedno-webapp/works/836989 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 1223 (26.01.2017...

  10. Environmental diagnosis of the washing machine motor

    DEFF Research Database (Denmark)

    Erichsen, Hanne K. Linnet

    1997-01-01

    An environmental diagnosis of the washing machine focusing on the motor is performed. The goal of the diagnosis is to designate environmental focus points in the product. The LCA of the washing machine showed impact potentials from the life cycle of the product (see: LCA of a washing machine). Th...... up 2%, Manually disassembling and recycling of metals, Reuse of motor in a new washing machine, aluminium wire instead of copper wire in the motor....

  11. Rotary steerable motor system for underground drilling

    Science.gov (United States)

    Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT

    2008-06-24

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  12. MOTOR FUEL TAXES AND THE ENVIRONMENTAL PROTECTION

    OpenAIRE

    Michal Ptak

    2011-01-01

    Motor fuel taxes are primarily revenue-raising taxes. However, due to high fuel consumption these taxes can be quite an efficient source of general budget revenue in many countries. It seems that the taxes on motor fuels may also be useful instruments for environmental policy or climate change policy. Environmental objectives can be achieved through change of behavior of drivers. The paper presents theoretical basis for taxes levied on motor fuels. Attention is paid to the problem of external...

  13. Circuit Regulates Speed Of dc Motor

    Science.gov (United States)

    Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.

    1990-01-01

    Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.

  14. Design of motors for inverter operation

    Energy Technology Data Exchange (ETDEWEB)

    Haring, T. [ABB Motors OY, Vaasa (Finland)

    2000-07-01

    This paper describes very practical principles of how an induction motor should be designed for converter application. The main focus targets the efficiency of the motor and drive. The results presented are based on actual test motors and FEM-calculation simulations. FEM-calculation together with a time-stepping function is a powerful tool for estimating magnetic flux densities, iron losses, current densities and corresponding losses in windings, in other words a tool for optimisation of the motor design. Time-stepping is rather time consuming because all the circuit equations must be solved for each time-step, but it provides a way to estimate the iron losses; hysteresis and eddy current losses as well as current distribution and current losses. The calculation tool also provides the possibility to check if an existing motor is feasible for a converter drive. Alternatively if a motor is only to be supplied by a converter there are many more degrees of freedom in the electrical design and the motor may be optimised for that converter drive by incorporationg rather simple design changes. Additionally a design compromise, ''a general purpose motor'' useable for DOL and feasible for converter drive can be produced following the principles presented herewith. The converter types which are considered are indirect types and mainly voltage source converters since they are the most common on the market and are ''general purpose converters'' and providing a certain freedom to select the motor for the drive. Current source converters require ''matching'' with the motor and therefore need a precise knowledge of the motor equivalent circuit, making the selection of the motor more complicated. (orig.)

  15. 78 FR 77790 - Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; General Motors...

    Science.gov (United States)

    2013-12-24

    ... vehicle. The antenna module translates the radio frequency signal received from the key into a digital... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Petition for Exemption From the Federal Motor Vehicle Theft Prevention Standard; General Motors Corporation AGENCY: National...

  16. The correlation between motor impairments and event-related desynchronization during motor imagery in ALS patients

    Directory of Open Access Journals (Sweden)

    Kasahara Takashi

    2012-06-01

    Full Text Available Abstract Background The event-related desynchronization (ERD in EEG is known to appear during motor imagery, and is thought to reflect cortical processing for motor preparation. The aim of this study is to examine the modulation of ERD with motor impairment in ALS patients. ERD during hand motor imagery was obtained from 8 ALS patients with a variety of motor impairments. ERD was also obtained from age-matched 11 healthy control subjects with the same motor task. The magnitude and frequency of ERD were compared between groups for characterization of ALS specific changes. Results The ERD of ALS patients were significantly smaller than those of control subjects. Bulbar function and ERD were negatively correlated in ALS patients. Motor function of the upper extremities did was uncorrelated with ERD. Conclusions ALS patients with worsened bulbar scales may show smaller ERD. Motor function of the upper extremities did was uncorrelated with ERD.

  17. Ultrafast Excited State Dynamics in Molecular Motors : Coupling of Motor Length to Medium Viscosity

    NARCIS (Netherlands)

    Conyard, Jamie; Stacko, Peter; Chen, Jiawen; McDonagh, Sophie; Hall, Christopher R.; Laptenok, Sergey P.; Browne, Wesley R.; Feringa, Ben L.; Meech, Stephen R.

    2017-01-01

    Photochemically driven molecular motors convert the energy of incident radiation to intramolecular rotational motion. The motor molecules considered here execute four step unidirectional rotational motion. This comprises a pair of successive light induced isomerizations to a metastable state

  18. Neuronal mechanisms of motor learning and motor memory consolidation in healthy old adults.

    Science.gov (United States)

    Berghuis, K M M; Veldman, M P; Solnik, S; Koch, G; Zijdewind, I; Hortobágyi, T

    2015-06-01

    It is controversial whether or not old adults are capable of learning new motor skills and consolidate the performance gains into motor memory in the offline period. The underlying neuronal mechanisms are equally unclear. We determined the magnitude of motor learning and motor memory consolidation in healthy old adults and examined if specific metrics of neuronal excitability measured by magnetic brain stimulation mediate the practice and retention effects. Eleven healthy old adults practiced a wrist extension-flexion visuomotor skill for 20 min (MP, 71.3 years), while a second group only watched the templates without movements (attentional control, AC, n = 11, 70.5 years). There was 40 % motor learning in MP but none in AC (interaction, p learn a new motor skill and consolidate the learned skill into motor memory, processes that are most likely mediated by disinhibitory mechanisms. These results are relevant for the increasing number of old adults who need to learn and relearn movements during motor rehabilitation.

  19. Modeling an electric motor in 1-D

    Science.gov (United States)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  20. Electric motor predictive and preventive maintenance guide

    International Nuclear Information System (INIS)

    Oliver, J.A.

    1992-07-01

    Electric motor performance is vital to the reliable and efficient operation of power plants. The failure of one or more critical motors could cause lost capacity and excessive repair and maintenance cost. However, existing maintenance recommendations proposed by vendors for electric motors have sometimes encouraged many overly conservative maintenance practices. These practices have lead to excessive maintenance activities and costs which have provided no extra margin of operability. EPRI has sponsored RP2814-35 to develop a guide which provides power plants with information and guidance for establishing an effective maintenance program which will aid in preventing unexpected motor failures and assist in planning motor maintenance efforts. The guide includes a technical description which summarizes technical data relative to the four basic types of motors and their components in general use in power plants. The significant causes of motor failures are investigated and described in detail and methods to optimize service life and minimize maintenance cost through appropriate preventive maintenance and conditioning program are presented. This guide provides a foundation for an effective electric motor maintenance program and simplifies the selection of predictive and preventive maintenance tasks. Its use will enable maintenance personnel in nuclear and fossil plants to plan motor repairs during scheduled outages and avoid costly unexpected failures

  1. Premium Efficiency Motors And Market Penetration Policy

    Energy Technology Data Exchange (ETDEWEB)

    Benhaddadi, Mohamed; Olivier, Guy

    2010-09-15

    This paper illustrates the induced enormous energy saving potential, permitted by using high-efficiency motors. Furthermore, the most important barriers to larger high-efficiency motors utilization are identified, and some incentives recommendations are given to overcome identified impediments. The authors consider that there is a strong case to enhance incentives policies for larger market penetration. The US Energy Policy Act and the Canadian Energy Efficient Act have lead to North American leadership on motor efficiency implementation. North America is not on the leading edge for energy saving and conservation. Motor efficiency is an exception that should be at least maintained.

  2. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  3. Introduction to the permanent magnet motor market

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, Toshihiro; Hamada, Kaneyuki [Yaskawa Electric Corp. (Japan)

    2000-07-01

    According to the Kyoto summit on global warming (COP3) in December 1997, the green-house gas emission level has to be reduced to 92-94% of the 1990 green-house gas level by the year 2014-2018. This would require conserving energy. An efficient means of achieving this voluntary goal is by employing high-efficiency drives, since motors consume 70% of all electricity for industrial use in Japan. As adjustable speed drives become popular, interior permanent magnet (IPM) motors, lately, have been recognized for high-efficiency performance. Due to the progress in permanent magnet technology combined with modern control methods, especially vector control with and without speed-sensors, the IPM motor is gaining in popularity. Compact size and high-efficiency performance is furthering the IPM motor as the preferred motor in many applications. This paper describes the principle and operation of IPM motors and compares its performance with that of an induction motor. Important features and practical control methods for IPM motors are presented. Various application examples highlighting the advantages of employing an IPM motor system are discussed. The applications include, but are not limited to, machine tools, fans, pumps, elevators, cranes, etc. (orig.)

  4. Linear Motor for Drive of Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Milan Krasl

    2006-01-01

    Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.

  5. Parkinson's disease motor subtypes and mood.

    Science.gov (United States)

    Burn, David J; Landau, Sabine; Hindle, John V; Samuel, Michael; Wilson, Kenneth C; Hurt, Catherine S; Brown, Richard G

    2012-03-01

    Parkinson's disease is heterogeneous, both in terms of motor symptoms and mood. Identifying associations between phenotypic variants of motor and mood subtypes may provide clues to understand mechanisms underlying mood disorder and symptoms in Parkinson's disease. A total of 513 patients were assessed using the Hospital Anxiety and Depression Scale, and separately classified into anxious, depressed, and anxious-depressed mood classes based on latent class analysis of a semistructured interview. Motor subtypes assessed related to age-of-onset, rate of progression, presence of motor fluctuations, lateralization of motor symptoms, tremor dominance, and the presence of postural instability and gait symptoms and falls. The directions of observed associations tended to support previous findings with the exception of lateralization of symptoms, for which there were no consistent or significant results. Regression models examining a range of motor subtypes together indicated increased risk of anxiety in patients with younger age-of-onset and motor fluctuations. In contrast, depression was most strongly related to axial motor symptoms. Different risk factors were observed for depressed patients with and without anxiety, suggesting heterogeneity within Parkinson's disease depression. Such association data may suggest possible underlying common risk factors for motor subtype and mood. Combined with convergent evidence from other sources, possible mechanisms may include cholinergic system damage and white matter changes contributing to non-anxious depression in Parkinson's disease, while situational factors related to threat and unpredictability may contribute to the exacerbation and maintenance of anxiety in susceptible individuals. Copyright © 2011 Movement Disorder Society.

  6. Mechatronical Design Studies on Small Brushless Motors

    Directory of Open Access Journals (Sweden)

    W. Amrhein

    2003-01-01

    Full Text Available Brushless DC- and AC-permanent-magnet motors controlled by powerful micro-controller electronics have opened up a significant share of the small motor market in the last years. Based on the mechanical low cost construction of single-phase motor the paper presents electronic drive concepts to improve the performance and for special applications also the lifetime of brushless motors. The tangential and radial forces acting on the rotor are controlled by special phase current curves to reduce the torque ripple and to avoid expendable machinery parts like ball or sliding bearings.

  7. The motor theory of speech perception revisited.

    Science.gov (United States)

    Massaro, Dominic W; Chen, Trevor H

    2008-04-01

    Galantucci, Fowler, and Turvey (2006) have claimed that perceiving speech is perceiving gestures and that the motor system is recruited for perceiving speech. We make the counter argument that perceiving speech is not perceiving gestures, that the motor system is not recruitedfor perceiving speech, and that speech perception can be adequately described by a prototypical pattern recognition model, the fuzzy logical model of perception (FLMP). Empirical evidence taken as support for gesture and motor theory is reconsidered in more detail and in the framework of the FLMR Additional theoretical and logical arguments are made to challenge gesture and motor theory.

  8. The Model of Brushless Dc Motor Drive

    Directory of Open Access Journals (Sweden)

    Aurelijus Pitrėnas

    2013-05-01

    Full Text Available The research considered the operation, control, mathematical and simulation models of BLDC motor. A simplified idealized simulation model was designed and tested using Matlab Simulink software package. The simulation model uses Hall effect sensor signals for determining the rotor position. Simulation was done for Maxon, EC-4 pole 22 BL A series motor. The obtained model testing results deviate from the data supplied by the motor manufacturer by as little as 0.2–10.6%; consequently, the implemented model is suitable for BLDC motor control study and research.Article in Lithuanian

  9. Electronically commutated DC motor. Elektronisch kommutierter Gleichstrommotor

    Energy Technology Data Exchange (ETDEWEB)

    Gruenleitner, H; Schalk, K; Koegler, G

    1981-08-13

    The purpose of the invention is to create a controlled and electronically commutated DC motor, so that the braking current regulator does not act with the frequency motor current regulator, where an additional switch is not required to decouple the braking current transistor while running, and where the reference value of braking current need not be greater than the reference value of motor current. According to the invention, this problem is solved by a connection, by which, while running, the braking current regulator is interlocked out by means of the output signal of the motor current regulator. A cheap diode and the associated wiring are all that is required for the interlock.

  10. Mechanics of torque generation in the bacterial flagellar motor.

    Science.gov (United States)

    Mandadapu, Kranthi K; Nirody, Jasmine A; Berry, Richard M; Oster, George

    2015-08-11

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.

  11. Analisa Perbandingan Efisiensi Motor Dc Kompon Pendek Dengan Motor Dc Kompon Panjang Akibat Penambahan Kutub

    OpenAIRE

    Sitompul, Fuad Rahim

    2015-01-01

    Motor listrik merupakan perangkat elekromagnetis yang mengubah energi listrik menjadi energi mekanik. Motor DC memerlukan tegangan searah pada kumparan medan untuk diubah menjadi energi mekanik. Energi mekanik ini digunakan sebagai penggerak peralatan listrik seperti pompa,penggerak kipas angin, lift dan lain-lain. Karena penggunaannya yang cukup luas maka kinerjanya harus baik. Kinerja suatu motor DC dikatakan baik jika efisiensi motor tersebut tinggi. Hal itu dapat dicapai dengan mengatur b...

  12. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    OpenAIRE

    Barela, José Angelo

    2013-01-01

    Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has be...

  13. Imaging the ocular motor nerves

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Teresa [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: T.A.Ferreira@lumc.nl; Verbist, Berit [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: B.M.Verbist@lumc.nl; Buchem, Mark van [Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: M.A.van_Buchem@lumc.nl; Osch, Thijs van [C.J. Gorter for High-Field MRI, Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: M.J.P.van_Osch@lumc.nl; Webb, Andrew [C.J. Gorter for High-Field MRI, Department of Radiology, Leiden University Medical Center (Netherlands)], E-mail: A.Webb@lumc.nl

    2010-05-15

    The ocular motor nerves (OMNs) comprise the oculomotor, trochlear and the abducens nerves. According to their course, they are divided into four or five anatomic segments: intra-axial, cisternal, cavernous and intra-orbital and, for the abducens nerve, an additional interdural segment. Magnetic resonance imaging is the imaging method of choice in the evaluation of the normal and pathologic ocular motor nerves. CT still plays a limited but important role in the evaluation of the intraosseous portions at the skull base and bony foramina. We describe for each segment of these cranial nerves, the normal anatomy, the most appropriate image sequences and planes, their imaging appearance and pathologic conditions. Magnetic resonance imaging with high magnetic fields is a developing and promising technique. We describe our initial experience with a Phillips 7.0 T MRI scanner in the evaluation of the brainstem segments of the OMNs. As imaging becomes more refined, an understanding of the detailed anatomy is increasingly necessary, as the demand on radiology to diagnose smaller lesions also increases.

  14. Esophageal motor disorders: recent advances.

    Science.gov (United States)

    Dogan, Ibrahim; Mittal, Ravinder K

    2006-07-01

    The aim of this article is to highlight literature published during the last year in the context of previous knowledge. A number of novel techniques - high-resolution manometry, esophageal electrical impedance and intra-luminal ultrasound imaging - have improved our understanding of esophageal function in health and disease. Several studies address the function of longitudinal muscle layer of the esophagus in normal subjects and patients with motor disorders of the esophagus. Esophageal electrical impedance recordings reveal abnormal transit in patients with diffuse esophageal spasm, achalasia and patients with normal manometry. Loss of the mammalian Sprouty2 gene leads to enteric neuronal hyperplasia and esophageal achalasia. Several studies showed excellent long-term results of medical and surgical treatment of achalasia of the esophagus. For the first time, mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients are reported. Novel pharmacologic strategies in the treatment of reflux disease are highlighted. Several novel techniques, perfected during recent years, have improved our understanding of esophageal function and dysfunction. A number of important observations, reviewed here, provide important insight into the pathogenesis of esophageal motor disorders and treatment of gastroesophageal reflux disease.

  15. Bone and motor organ diseases

    International Nuclear Information System (INIS)

    Fujiwara, Saeko

    1992-01-01

    Osteosarcoma arising from X-ray radiation therapy has first been reported in the 1920s. The 1950-1965 ABCC-RERF Life Span Study using the sample population of approximately 76,000 persons have revealed no evidence of correlation between osteosarcoma and A-bomb radiation. There is a relative paucity of data supporting the statistical correlation between A-bomb radiation and osseous cancer. This paper deals with the correlation between A-bomb exposure and bone and motor organ diseases. In prenatally exposed children using the Nagasaki's sample (n=74) and the Hiroshima's sample (n=219), there was no difference in skeletal abnormalities between the exposed and control groups in both cities. In the ABCC-study using 264 A-bomb survivors, the incidence of osteoporosis was found to be high in women aged 50 years or older at the time of A-bombing who were exposed at 2,000 m or less from the hypocenter. The RERF Adult Health Study using approximately 14,000 persons have revealed no evidence of correlation between the incidence of lumbar vertebral bone fractures and radiation doses. There was no correlation between the prevalence of rheumatoid arthritis and distance from the hypocenter in A-bomb survivors. Continuing studies are expected to confirm the delayed effects of A-bomb radiation on the bone and motor organs with aging in A-bomb survivors. (N.K.)

  16. Automation of motor dexterity assessment.

    Science.gov (United States)

    Heyer, Patrick; Castrejon, Luis R; Orihuela-Espina, Felipe; Sucar, Luis Enrique

    2017-07-01

    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p home-based virtual rehabilitation and telerehabilitation alternatives.

  17. Phrenic motor neuron TrkB expression is necessary for acute intermittent hypoxia-induced phrenic long-term facilitation

    OpenAIRE

    Dale, Erica A.; Fields, Daryl P.; Devinney, Michael J.; Mitchell, Gordon S.

    2016-01-01

    Phrenic long-term facilitation (pLTF) is a form of hypoxia-induced spinal respiratory motor plasticity that requires new synthesis of brain derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, tropomyosin receptor kinase B (TrkB). Since the cellular location of relevant TrkB receptors is not known, we utilized intrapleural siRNA injections to selectively knock down TrkB receptor protein within phrenic motor neurons. TrkB receptors within phrenic motor neurons are n...

  18. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Science.gov (United States)

    2010-07-01

    ... practicable, conflicts between motorized and non-motorized rivercraft users and between both types of...-motorized rivercraft may be permitted subject to restrictions on size, type of craft, numbers, duration... Service where such activity may be permitted subject to restrictions on size, type of craft, numbers...

  19. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  20. 75 FR 67770 - General Motors Company, Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Science.gov (United States)

    2010-11-03

    ..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From Aerotek Automotive, Ryder and Premier Manufacturing Support Services, Lake Orion, MI; Amended... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake...

  1. Repetitive Transcranial Magnetic Stimulation to the Primary Motor Cortex Interferes with Motor Learning by Observing

    Science.gov (United States)

    Brown, Liana E.; Wilson, Elizabeth T.; Gribble, Paul L.

    2009-01-01

    Neural representations of novel motor skills can be acquired through visual observation. We used repetitive transcranial magnetic stimulation (rTMS) to test the idea that this "motor learning by observing" is based on engagement of neural processes for learning in the primary motor cortex (M1). Human subjects who observed another person learning…

  2. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  3. Cerebellar motor learning versus cerebellar motor timing: the climbing fibre story

    Science.gov (United States)

    Llinás, Rodolfo R

    2011-01-01

    Abstract Theories concerning the role of the climbing fibre system in motor learning, as opposed to those addressing the olivocerebellar system in the organization of motor timing, are briefly contrasted. The electrophysiological basis for the motor timing hypothesis in relation to the olivocerebellar system is treated in detail. PMID:21486816

  4. 77 FR 4396 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2012-01-27

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic... exemption. SUMMARY: This document grants in full the petition of Toyota Motor North America, Inc's., (Toyota.... SUPPLEMENTARY INFORMATION: In a petition dated September 30, 2011, Toyota requested an exemption from the parts...

  5. 78 FR 3081 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2013-01-15

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic.... SUMMARY: This document grants in full Toyota Motor North America, Inc.'s (Toyota) petition for an... a petition dated October 16, 2012, Toyota requested an exemption from the parts-marking requirements...

  6. 76 FR 12221 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota

    Science.gov (United States)

    2011-03-04

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Toyota AGENCY: National Highway Traffic.... SUMMARY: This document grants in full the petition of Toyota Motor North America, Inc's., (Toyota... INFORMATION: In a petition dated January 24, 2011, Toyota requested an exemption from the parts-marking...

  7. A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners

    Science.gov (United States)

    Africa, Eileen K.; van Deventer, Karel J.

    2017-01-01

    Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…

  8. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  9. 77 FR 29752 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Science.gov (United States)

    2012-05-18

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar Land Rover AGENCY: National... part 543, Exemption from the Theft Prevention Standard. This petition is granted, because the agency... be as effective in reducing and deterring motor vehicle theft as compliance with the parts-marking...

  10. 76 FR 12220 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Science.gov (United States)

    2011-03-04

    ... From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar Land Rover AGENCY: National... 543, Exemption from the Theft Prevention Standard. This petition is granted because the agency has... effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of...

  11. 50 CFR 35.5 - Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Commercial enterprises, roads, motor... Rules § 35.5 Commercial enterprises, roads, motor vehicles, motorized equipment, motorboats, aircraft... private rights, there shall be no commercial enterprise and no permanent road within a wilderness unit...

  12. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  13. No Role for Motor Affordances in Visual Working Memory

    Science.gov (United States)

    Pecher, Diane

    2013-01-01

    Motor affordances have been shown to play a role in visual object identification and categorization. The present study explored whether working memory is likewise supported by motor affordances. Use of motor affordances should be disrupted by motor interference, and this effect should be larger for objects that have motor affordances than for…

  14. Mountain Plains Learning Experience Guide: Electric Motor Repair.

    Science.gov (United States)

    Ziller, T.

    This Electric Motor Repair Course is designed to provide the student with practical information for winding, repairing, and troubleshooting alternating current and direct current motors, and controllers. The course is comprised of eight units: (1) Electric Motor Fundamentals, (2) Rewinding, (3) Split-phase Induction Motors, (4) Capacitor Motors,…

  15. 41 CFR 109-38.5103 - Motor vehicle utilization standards.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Motor vehicle... AVIATION, TRANSPORTATION, AND MOTOR VEHICLES 38-MOTOR EQUIPMENT MANAGEMENT 38.51-Utilization of Motor Equipment § 109-38.5103 Motor vehicle utilization standards. (a) The following average utilization standards...

  16. 49 CFR 574.9 - Requirements for motor vehicle dealers.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Requirements for motor vehicle dealers. 574.9... RECORDKEEPING § 574.9 Requirements for motor vehicle dealers. (a) Each motor vehicle dealer who sells a used motor vehicle for purposes other than resale, who leases a motor vehicle for more than 60 days, that is...

  17. Induction motor for superconducting synchronous/asynchronous motor

    International Nuclear Information System (INIS)

    Litz, D.C.; Haller, H.E. III.

    1975-01-01

    An induction motor structure for use on the outside of a superconducting rotor comprising a cylindrical shell of solid and laminated, magnetic iron with squirrel cage windings embedded in the outer circumference of said shell is described. The sections of the shell between the superconducting windings of the rotor are solid magnetic iron. The sections of the shell over the superconducting windings are made of laminations of magnetic iron. These laminations are parallel to the axis of the machine and are divided in halves with the laminations in each half oriented in diagonal opposition so that the intersection of the laminations forms a V. This structure presents a relatively high reluctance to leakage flux from the superconducting windings in the synchronous operating mode, while presenting a low reluctance path to the stator flux during asynchronous operation

  18. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    Science.gov (United States)

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  19. Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy.

    Directory of Open Access Journals (Sweden)

    Kathrin Doppler

    Full Text Available Multifocal motor neuropathy is an immune mediated disease presenting with multifocal muscle weakness and conduction block. IgM auto-antibodies against the ganglioside GM1 are detectable in about 50% of the patients. Auto-antibodies against the paranodal proteins contactin-1 and neurofascin-155 and the nodal protein neurofascin-186 have been detected in subgroups of patients with chronic inflammatory demyelinating polyneuropathy. Recently, auto-antibodies against neurofascin-186 and gliomedin were described in more than 60% of patients with multifocal motor neuropathy. In the current study, we aimed to validate this finding, using a combination of different assays for auto-antibody detection. In addition we intended to detect further auto-antibodies against paranodal proteins, specifically contactin-1 and neurofascin-155 in multifocal motor neuropathy patients' sera. We analyzed sera of 33 patients with well-characterized multifocal motor neuropathy for IgM or IgG anti-contactin-1, anti-neurofascin-155 or -186 antibodies using enzyme-linked immunosorbent assay, binding assays with transfected human embryonic kidney 293 cells and murine teased fibers. We did not detect any IgM or IgG auto-antibodies against contactin-1, neurofascin-155 or -186 in any of our multifocal motor neuropathy patients. We conclude that auto-antibodies against contactin-1, neurofascin-155 and -186 do not play a relevant role in the pathogenesis in this cohort with multifocal motor neuropathy.

  20. Is Spinal Muscular Atrophy a disease of the motor neurons only: pathogenesis and therapeutic implications?

    Science.gov (United States)

    Simone, Chiara; Ramirez, Agnese; Bucchia, Monica; Rinchetti, Paola; Rideout, Hardy; Papadimitriou, Dimitra; Re, Diane B.; Corti, Stefania

    2016-01-01

    Spinal Muscular Atrophy (SMA) is a genetic neurological disease that causes infant mortality; no effective therapies are currently available. SMA is due to homozygous mutations and/or deletions in the Survival Motor Neuron 1 (SMN1) gene and subsequent reduction of the SMN protein, leading to the death of motor neurons. However, there is increasing evidence that in addition to motor neurons, other cell types are contributing to SMA pathology. In this review, we will discuss the involvement of non-motor neuronal cells, located both inside and outside the central nervous system, in disease onset and progression. These contribution of non-motor neuronal cells to disease pathogenesis has important therapeutic implications: in fact, even if SMN restoration in motor neurons is needed, it has been shown that optimal phenotypic amelioration in animal models of SMA requires a more widespread SMN correction. It will be crucial to take this evidence into account before clinical translation of the novel therapeutic approaches that are currently under development. PMID:26681261

  1. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Christian M. Simon

    2017-12-01

    Full Text Available The hallmark of spinal muscular atrophy (SMA, an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.

  2. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  3. 75 FR 26794 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2010-05-12

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation... United Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor... reviewed the certification for workers of the subject firm. The workers assemble the Toyota Corolla and the...

  4. 76 FR 10396 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Science.gov (United States)

    2011-02-24

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...

  5. Studies of viral DNA packaging motors with optical tweezers: a comparison of motor function in bacteriophages φ29, λ, and T4

    Science.gov (United States)

    Smith, Douglas E.; Fuller, Derek N.; Raymer, Dorian M.; Rickgauer, Peter; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Catalano, Carlos E.; Kottadiel, Vishal; Rao, Venigalla B.

    2007-09-01

    A key step in the assembly of many viruses is the packaging of double-stranded DNA into a viral procapsid (an empty protein shell) by the action of an ATP-powered portal motor complex. We have developed methods to measure the packaging of single DNA molecules into single viral proheads in real time using optical tweezers. We can measure DNA binding and initiation of translocation, the DNA translocation dynamics, and the filling of the capsid against resisting forces. In addition to studying bacteriophage φ29, we have recently extended these methods to study the E. coli bacteriophages λ and T4, two important model systems in molecular biology. The three systems have different capsid sizes/shapes, genome lengths, and biochemical and structural differences in their packaging motors. Here, we compare and contrast these three systems. We find that all three motors translocate DNA processively and generate very large forces, each exceeding 50 piconewtons, ~20x higher force than generated by the skeletal muscle myosin 2 motor. This high force generation is required to overcome the forces resisting the confinement of the stiff, highly charged DNA at high density within the viral capsids. However, there are also striking differences between the three motors: they exhibit different DNA translocation rates, degrees of static and dynamic disorder, responses to load, and pausing and slipping dynamics.

  6. 33 CFR 127.311 - Motor vehicles.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.311 Motor vehicles. (a) The operator... storage tank or loading flange. (b) During transfer operations, no person may— (1) Stop or park a motor...

  7. Analysing Simple Electric Motors in the Classroom

    Science.gov (United States)

    Yap, Jeff; MacIsaac, Dan

    2006-01-01

    Electromagnetic phenomena and devices such as motors are typically unfamiliar to both teachers and students. To better visualize and illustrate the abstract concepts (such as magnetic fields) underlying electricity and magnetism, we suggest that students construct and analyse the operation of a simply constructed Johnson electric motor. In this…

  8. Oscillation control system for electric motor drive

    Science.gov (United States)

    Slicker, J.M.; Sereshteh, A.

    1988-08-30

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  9. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  10. Microcomputer-based stepping-motor controller

    International Nuclear Information System (INIS)

    Johnson, K.

    1983-04-01

    A microcomputer-controlled stepping motor is described. A Motorola MC68701 microcomputer unit is interfaced to a Cybernetic CY500 stored-program controller that outputs through Motorola input/output isolation modules to the stepping motor. A complex multifunction controller with enhanced capabilities is thus available with a minimum number of parts

  11. Vital Signs-Motor Vehicle Crash Injuries

    Centers for Disease Control (CDC) Podcasts

    2014-10-07

    This podcast is based on the October 2014 CDC Vital Signs report. Motor vehicle crashes are costly and preventable. Learn what can be done to help prevent motor vehicle injuries.  Created: 10/7/2014 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/7/2014.

  12. Motor Vehicle Crash Injuries PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    2014-10-07

    This 60 second Public Service Announcement is based on the October 2014 CDC Vital Signs report. Motor vehicle crashes are costly and preventable. Learn what can be done to help prevent motor vehicle injuries.  Created: 10/7/2014 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 10/7/2014.

  13. Dual wound dc brush motor gearhead

    Science.gov (United States)

    Henson, Barrie W.

    1986-01-01

    The design requirements, the design, development tests and problems, the qualification and life test and the findings of the strip examination of a dual wound DC brushed motor gearhead are described. It is the only space qualified dual wound dc brushed motor gearhead in Europe.

  14. Gravity Compensation Technique Uses Small dc Motor

    Science.gov (United States)

    Hollow, Richard

    1988-01-01

    Small dc servomotor powered by simple constant-current source and with suitable gearing used to cancel effect of gravity upon load. Lead-screw positioning system has load counterbalanced by small supplementary motor powered by constant current source. Motor lighter and more compact alternative to counterbalance. Used in variety of mechanical systems where load positioned or accelerated in vertical plane.

  15. Computerized Torque Control for Large dc Motors

    Science.gov (United States)

    Willett, Richard M.; Carroll, Michael J.; Geiger, Ronald V.

    1987-01-01

    Speed and torque ranges in generator mode extended. System of shunt resistors, electronic switches, and pulse-width modulation controls torque exerted by large, three-phase, electronically commutated dc motor. Particularly useful for motor operating in generator mode because it extends operating range to low torque and high speed.

  16. Advanced dc-Traction-Motor Control System

    Science.gov (United States)

    Vittone, O.

    1985-01-01

    Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.

  17. Linear motor with contactless energy transfer

    NARCIS (Netherlands)

    2014-01-01

    An integrated electromagnetic energy conversions device is provided that includes a synchronous or brushless linear (SoBL) motor, and a transformer, where the transformer is integrated electromagnetically and topologically with the SoBL motor, where an electromagnetic field orientation of the

  18. Motor subtype changes in early Parkinson's disease.

    Science.gov (United States)

    Eisinger, Robert S; Hess, Christopher W; Martinez-Ramirez, Daniel; Almeida, Leonardo; Foote, Kelly D; Okun, Michael S; Gunduz, Aysegul

    2017-10-01

    Distinct motor subtypes of Parkinson's disease (PD) have been described through both clinical observation and through data-driven approaches. However, the extent to which motor subtypes change during disease progression remains unknown. Our objective was to determine motor subtypes of PD using an unsupervised clustering methodology and evaluate subtype changes with disease duration. The Parkinson's Progression Markers Initiative database of 423 newly diagnosed PD patients was utilized to retrospectively identify unique motor subtypes through a data-driven, hierarchical correlational clustering approach. For each patient, we assigned a subtype to each motor assessment at each follow-up visit (time points) and by using published criteria. We examined changes in PD subtype with disease duration using both qualitative and quantitative methods. Five distinct motor subtypes were identified based on the motor assessment items and these included: Tremor Dominant (TD), Axial Dominant, Appendicular Dominant, Rigidity Dominant, and Postural and Instability Gait Disorder Dominant. About half of the patients had consistent subtypes at all time points. Most patients met criteria for TD subtype soon after diagnosis. For patients with inconsistent subtypes, there was an overall trend to shift away from a TD phenotype with disease duration, as shown by chi-squared test, p motor subtypes in PD can shift with increasing disease duration. Shifting subtypes is a factor that should be accounted for in clinical practice or in clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  20. Motor automaticity in Parkinson’s disease

    Science.gov (United States)

    Wu, Tao; Hallett, Mark; Chan, Piu

    2017-01-01

    Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020

  1. Simulation of linear Switched Reluctance Motor drives

    OpenAIRE

    Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro

    2011-01-01

    This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.

  2. A linear motor as seismic horizontal vibrator

    NARCIS (Netherlands)

    Drijkoningen, G.; Veltman, A.; Hendrix, W.H.A.; Brouwer, J.; Hemstede, A.

    2006-01-01

    In this paper we propose to use the concept of linear synchronous motors to act as a seismic shear-wave vibratory source. We show that a linear motor, even with a design that is not focussed on application of seismic surveying, gives seismic records that are convincing and comparable with an

  3. Neuromodulation of vertebrate motor neuron membrane properties

    DEFF Research Database (Denmark)

    Hultborn, Hans; Kiehn, Ole

    1992-01-01

    The short-term function of motor neurons is to integrate synaptic inputs converging onto the somato-dendritic membrane and to transform the net synaptic drive into spike trains. A set of voltage-gated ion channels determines the electro-responsiveness and thereby the motor neuron's input-output f...

  4. Speed controller for an alternating - current motor

    International Nuclear Information System (INIS)

    Bolie, V.W.

    1984-01-01

    A controller for a multi-phase ac motor that is subject to a large inertial load, e.g. an induction motor driving a heavy spinning rotor of a neutron chopper that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal Esub(L) having a meandering line frequency, includes a sensor which provides a feedback pulse train representative of the actual speed of the motor which is compared (by counting clock pulses between feedback pulses) with a reference clock signal in a computing unit to provide a motor control signal Esub(c). The motor control signal is a weighted linear sum of a speed error signal, a phase error signal, and a drift error signal, the magnitudes of which are recalculated and updated with each revolution of the motor shaft. The speed error signal is constant for large speed errors but highly sensitive to small speed errors. The stator windings of the motor are driven by variable-frequency power amplifiers which are controlled by the motor control signal Esub(c) via PROMs which store digital representations of sine and cosine waveforms in quadrature. (author)

  5. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  6. Validating the Rett Syndrome Gross Motor Scale.

    Directory of Open Access Journals (Sweden)

    Jenny Downs

    Full Text Available Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98. The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  7. A Novel Approach to Diagnosing Motor Skills

    Science.gov (United States)

    Aguirre, Aitor; Lozano-Rodero, Alberto; Matey, Luis M.; Villamañe, Mikel; Ferrero, Begoña

    2014-01-01

    The combination of virtual reality interactive systems and educational technologies have been used in the training of procedural tasks, but there is a lack of research with regard to providing specific assistance for acquiring motor skills. In this paper we present a novel approach to evaluating motor skills with an interactive intelligent…

  8. Lateralization of cortical negative motor areas.

    Science.gov (United States)

    Borggraefe, Ingo; Catarino, Claudia B; Rémi, Jan; Vollmar, Christian; Peraud, Aurelia; Winkler, Peter A; Noachtar, Soheyl

    2016-10-01

    The lateral and mesial aspects of the central and frontal cortex were studied by direct electrical stimulation of the cortex in epilepsy surgery candidates in order to determine the localization of unilateral and bilateral negative motor responses. Results of electrical cortical stimulation were examined in epilepsy surgery candidates in whom invasive electrodes were implanted. The exact localization of subdural electrodes was defined by fusion of 3-dimensional reconstructed MRI and CT images in 13 patients and by analysis of plane skull X-rays and intraoperative visual localization of the electrodes in another 7 patients. Results of electrical stimulation of the cortex were evaluated in a total of 128 patients in whom invasive electrodes were implanted for planning resective epilepsy surgery. Twenty patients, in whom negative motor responses were obtained, were included in the study. Bilateral upper limb negative motor responses were more often elicited from stimulation of the mesial frontal cortex whereas stimulation of the lateral central cortex leads to contralateral upper limb negative motor responses (pfrontal gyrus whereas contralateral negative motor responses localized predominantly in the anterior part of the precentral gyrus (pgyrus and the mesial fronto-central cortex showing functional differences with regard to unilateral and bilateral upper limb representation. The lateral fronto-central negative motor area serves predominantly contralateral upper limb motor control whereas the mesial frontal negative motor area represents bilateral upper limb movement control. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Improved motor sequence retention by motionless listening.

    Science.gov (United States)

    Lahav, Amir; Katz, Tal; Chess, Roxanne; Saltzman, Elliot

    2013-05-01

    This study examined the effect of listening to a newly learned musical piece on subsequent motor retention of the piece. Thirty-six non-musicians were trained to play an unfamiliar melody on a piano keyboard. Next, they were randomly assigned to participate in three follow-up listening sessions over 1 week. Subjects who, during their listening sessions, listened to the same initial piece showed significant improvements in motor memory and retention of the piece despite the absence of physical practice. These improvements included increased pitch accuracy, time accuracy, and dynamic intensity of key pressing. Similar improvements, though to a lesser degree, were observed in subjects who, during their listening sessions, were distracted by another task. Control subjects, who after learning the piece had listened to nonmusical sounds, showed impaired motoric retention of the piece at 1 week from the initial acquisition day. These results imply that motor sequences can be established in motor memory without direct access to motor-related information. In addition, the study revealed that the listening-induced improvements did not generalize to the learning of a new musical piece composed of the same notes as the initial piece learned, limiting the effects to musical motor sequences that are already part of the individual's motor repertoire.

  10. Tidal dynamics in the sand motor lagoon

    NARCIS (Netherlands)

    De Vries, S.; Radermacher, M.; De Schipper, M.A.; Stive, M.J.F.

    2015-01-01

    The Sand Motor is a mega-nourishment characterized by a very large sand volume of around 20 million m3 placed along the Dutch coast. The Sand Motor is a pilot project to evaluate the performance of an alternative nourishment strategy with respect to different functions of the coastal system. Within

  11. 48 CFR 908.7101 - Motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Motor vehicles. 908.7101 Section 908.7101 Federal Acquisition Regulations System DEPARTMENT OF ENERGY COMPETITION ACQUISITION PLANNING REQUIRED SOURCES OF SUPPLIES AND SERVICES Acquisition of Special Items 908.7101 Motor vehicles. ...

  12. Timing and motor control in drumming

    DEFF Research Database (Denmark)

    Dahl, Sofia; Grossbach, Michael; Altenmüller, Eckart

    the stick movement becomes increasingly difficult, sometimes resulting in irregularities in timing and/or striking force. Timing irregularities can also be a revealing sign of motor control problems, such as focal dystonia (Jabusch, Vauth & Altenmüller, 2004). The "breakdown" in motor control can therefore...

  13. Motor Intentionality and the Case of Schneider

    DEFF Research Database (Denmark)

    Jensen, Rasmus Thybo

    2009-01-01

    I argue that Merleau-Ponty’s use of the case of Schneider in his arguments for the existence of non-conconceptual and non-representational motor intentionality contains a problematic methodological ambiguity. Motor intentionality is both to be revealed by its perspicuous preservation and by its...

  14. Design methods in solid rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    A compilation of lectures summarizing the current state-of-the-art in designing solid rocket motors and and their components is presented. The experience of several countries in the use of new technologies and methods is represented. Specific sessions address propellant grains, cases, nozzles, internal thermal insulation, and the general optimization of solid rocket motor designs.

  15. Permanent magnet motor technology design and applications

    CERN Document Server

    Gieras, Jacek F

    2009-01-01

    Demonstrates the construction of permanent magnet (PM) motor drives and supplies ready-to-implement solutions to common roadblocks along the way. This book also supplies fundamental equations and calculations for determining and evaluating system performance, efficiency, reliability, and cost. It explores modern computer-aided design of PM motors.

  16. Validating the Rett Syndrome Gross Motor Scale.

    Science.gov (United States)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  17. DC motors and servo-motors controlled by Raspberry Pi 2B

    Directory of Open Access Journals (Sweden)

    Šustek Michal

    2017-01-01

    Full Text Available The expanding capabilities of today’s microcontrollers and other devices lead to an increased utilization of these technologies in diverse fields. The automation and issue of remote control of moving objects belong to these fields. In this project, a microcontroller Raspberry Pi 2B was chosen for controlling DC motors and servo-motors. This paper provides basic insight into issue of controlling DC motors and servo-motors, connection between Raspberry and other components on breadboard and programming syntaxes for controlling motors in Python programming language.

  18. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  19. Tongue motor training support system.

    Science.gov (United States)

    Sasaki, Makoto; Onishi, Kohei; Nakayama, Atsushi; Kamata, Katsuhiro; Stefanov, Dimitar; Yamaguchi, Masaki

    2014-01-01

    In this paper, we introduce a new tongue-training system that can be used for improvement of the tongue's range of motion and muscle strength after dysphagia. The training process is organized in game-like manner. Initially, we analyzed surface electromyography (EMG) signals of the suprahyoid muscles of five subjects during tongue-training motions. This test revealed that four types tongue training motions and a swallowing motion could be classified with 93.5% accuracy. Recognized EMG signals during tongue motions were designed to allow control of a mouse cursor via intentional tongue motions. Results demonstrated that simple PC games could be played by tongue motions, achieving in this way efficient, enjoyable and pleasant tongue training. Using the proposed method, dysphagia patients can choose games that suit their preferences and/or state of mind. It is expected that the proposed system will be an efficient tool for long-term tongue motor training and maintaining patients' motivation.

  20. Integration of motors and drives

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.C. [Brook Hansen (United Kingdom)

    2000-07-01

    This paper examines the benefits of adopting a second-generation integrated motor and inverter. Removing the barriers to ensure that variable speed drives are more readily applied results in on-going cost savings to the user through energy savings plus process control benefits. In addition, the use of an integrated product instead of two separate components results in cost and time-savings to the installer. The simplification of integration, by transferring the guarantees of performance in efficiency, torque overload and stiffness, speed accuracy, noise and EMC compliance, allows optimisation by the design team to be realised by users and ease of application since the primary design team guarantees the product performance. The introduction of second generation compact product assists user conversion from present inefficient mechanical solutions. This technology is currently applicable in power ratings below 22 kW, which includes the vast majority of practical applications. (orig.)