WorldWideScience

Sample records for motor functional recovery

  1. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Aysegul Gunduz

    2017-01-01

    Full Text Available We conducted a systematic review of studies using non-invasive brain stimulation (NIBS: repetitive transcranial magnetic stimulation (rTMS and transcranial direct current stimulation (tDCS as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury (SCI under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.

  2. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  3. Axial diffusivity changes in the motor pathway above stroke foci and functional recovery after subcortical infarction.

    Science.gov (United States)

    Liu, Gang; Peng, Kangqiang; Dang, Chao; Tan, Shuangquan; Chen, Hongbing; Xie, Chuanmiao; Xing, Shihui; Zeng, Jinsheng

    2018-01-01

    Secondary degeneration of the fiber tract of the motor pathway below infarct foci and functional recovery after stroke have been well demonstrated, but the role of the fiber tract above stroke foci remains unclear. This study aimed to investigate diffusion changes in motor fibers above the lesion and identify predictors of motor improvement within 12 weeks after subcortical infarction. Diffusion tensor imaging and the Fugl-Meyer (FM) scale were conducted 1, 4, and 12 weeks (W) after a subcortical infarct. Proportional recovery model residuals were used to assign patients to proportional recovery and poor recovery groups. Region of interest analysis was used to assess diffusion changes in the motor pathway above and below a stroke lesion. Multivariable linear regression was employed to identify predictors of motor improvement within 12 weeks after stroke. Axial diffusivity (AD) in the underlying white matter of the ipsilesional primary motor area (PMA) and cerebral peduncle (CP) in both proportional and poor recovery groups was lower at W1 compared to the controls and values in the contralesional PMA and CP (all P motor improvement within 12 weeks after stroke in patients with proportional or poor recovery. Increases of AD in the motor pathway above stroke foci may be associated with motor recovery after subcortical infarction. Early measurement of diffusion metrics in the ipsilesional non-ischemic motor pathway has limited value in predicting future motor improvement patterns (proportional or poor recovery).

  4. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  5. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function

    Science.gov (United States)

    Carmel, Jason B.; Martin, John H.

    2014-01-01

    The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay. PMID:24994971

  6. Spatial cognitive rehabilitation and motor recovery after stroke

    Science.gov (United States)

    Barrett, A.M.; Muzaffar, Tufail

    2014-01-01

    Purpose of review Stroke rehabilitation needs to take major steps forward to reduce functional disability for survivors. In this article, we suggest that spatial retraining might greatly increase the efficiency and efficacy of motor rehabilitation, directly addressing the burden and cost of paralysis after stroke. Recent findings Combining motor and cognitive treatment may be practical, as well as addressing needs after moderate–to-severe stroke. Spatial neglect could suppress motor recovery and reduce motor learning, even when patients receive appropriate rehabilitation to build strength, dexterity, and endurance. Spatial neglect rehabilitation acts to promote motor as well as visual-perceptual recovery. These findings, and previous underemphasized studies, make a strong case for combining spatial neglect treatment with traditional exercise training. Spatial neglect therapies might also help people who cannot participate in intensive movement therapies because of limited strength and endurance after stroke. Summary Spatial retraining, currently used selectively after right brain stroke, may be broadly useful after stroke to promote rapid motor recovery. PMID:25364954

  7. Recovery of motor function after stroke.

    Science.gov (United States)

    Sharma, Nikhil; Cohen, Leonardo G

    2012-04-01

    The human brain possesses a remarkable ability to adapt in response to changing anatomical (e.g., aging) or environmental modifications. This form of neuroplasticity is important at all stages of life but is critical in neurological disorders such as amblyopia and stroke. This review focuses upon our new understanding of possible mechanisms underlying functional deficits evidenced after adult-onset stroke. We review the functional interactions between different brain regions that may contribute to motor disability after stroke and, based on this information, possible interventional approaches to motor stroke disability. New information now points to the involvement of non-primary motor areas and their interaction with the primary motor cortex as areas of interest. The emergence of this new information is likely to impact new efforts to develop more effective neurorehabilitative interventions using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) that may be relevant to other neurological disorders such as amblyopia. Copyright © 2010 Wiley Periodicals, Inc.

  8. Motor skill changes and neurophysiologic adaptation to recovery-oriented virtual rehabilitation of hand function in a person with subacute stroke: a case study.

    Science.gov (United States)

    Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S

    2017-07-01

    The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document

  9. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections.

    Directory of Open Access Journals (Sweden)

    Yuetong Ding

    Full Text Available Brachial plexus injury (BPI and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST is genetically absent. In adult mice, we tore off right C5-C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs and reduced peak-to-peak amplitudes in electromyogram (EMG, than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI.

  10. Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient.

    Science.gov (United States)

    Jang, Sung Ho; You, Sung H; Kwon, Yong-Hyun; Hallett, Mark; Lee, Mi Young; Ahn, Sang Ho

    2005-01-01

    Recovery mechanisms supporting upper extremity motor recovery following stroke are well established, but cortical mechanism associated with lower extremity motor recovery is unknown. The aim of this study was to assess cortical reorganization associated with lower extremity motor recovery in a hemiparetic patient. Six control subjects and a 17 year-old woman with left intracerebral hemorrhage due to an arterio-venous malformation rupture were evaluated. The motor function of the paretic (left) hip and knee had recovered slowly to the extent of her being able to overcome gravity for 10 months after the onset of stroke. However, her paretic upper extremity showed no significant motor recovery. Blood oxygenation level dependent (BOLD) functional MRI at 1.5 Tesla was used to determine the acutual location of cortical activation in the predefined regions of interest. Concurrently, Diffusion Tensor Imaging (DTI) in combination with a novel 3D-fiber reconstruction algorithm was utilized to investigate the pattern of the corticospinal pathway connectivity between the areas of the motor stream. All subjects' body parts were secured in the scanner and performed a sequential knee flexion-extension with a predetermined angle of 0-60 degrees at 0.5 Hz. Controls showed anticipated activation in the contralateral sensorimotor cortex (SM1) and the descending corticospinal fibers stemming from motor cortex. In contrast to control normal subjects, the stroke patient showed fMRI activation only in the unaffected (right) primary SM1 during either paretic or nonparetic knee movements. DTT fiber tracing data showed that the corticospinal tract fibers were found only in the unaffected hemisphere but not in the affected hemisphere. Our results indicate that an ipsilateral motor pathway from the unaffected (right) motor cortex to the paretic (right) leg was present in this patient. This study raises the potential that the contralesional (ipsilateral) SM1 is involved in cortical

  11. Running exercise enhances motor functional recovery with inhibition of dendritic regression in the motor cortex after collagenase-induced intracerebral hemorrhage in rats.

    Science.gov (United States)

    Takamatsu, Yasuyuki; Tamakoshi, Keigo; Waseda, Yuya; Ishida, Kazuto

    2016-03-01

    Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation. Copyright © 2015. Published by Elsevier B.V.

  12. Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke?

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Nowak, Dennis Alexander

    2016-10-01

    Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. A standardized review of the pertinent literature was performed. We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study.

    Science.gov (United States)

    Scheidtmann, K; Fries, W; Müller, F; Koenig, E

    2001-09-08

    Functional disability is generally caused by hemiplegia after stroke. Physiotherapy used to be the only way of improving motor function in such patients. However, administration of amphetamines in addition to exercise improves motor recovery in animals, probably by increasing the concentration of norepinephrine in the central nervous system. Our aim was to ascertain whether levodopa could enhance the efficacy of physiotherapy after hemiplegia. We did a prospective, randomised, placebo-controlled, double-blind study in which we enrolled 53 primary stroke patients. For the first 3 weeks patients received single doses of levodopa 100 mg or placebo daily in combination with physiotherapy. For the second 3 weeks patients had only physiotherapy. We quantitatively assessed motor function every week with Rivermead motor assessment (RMA). Six patients were excluded from analyses because of non-neurological complications. Motor recovery was significantly improved after 3 weeks of drug intervention in those on levodopa (RMA improved by 6.4 points) compared with placebo (4.1), and the result was independent of initial degree of impairment (pstroke rehabilitation.

  14. Functional neuroimaging of recovery from motor conversion disorder: A case report

    DEFF Research Database (Denmark)

    Dogonowski, A M; Andersen, Kasper W.; Sellebjerg, F

    2018-01-01

    A patient with motor conversion disorder presented with a functional paresis of the left hand. After exclusion of structural brain damage, she was repeatedly examined with whole-brain functional magnetic resonance imaging, while she performed visually paced finger-tapping tasks. The dorsal premotor...... cortex showed a bilateral deactivation in the acute-subacute phase. Recovery from unilateral hand paresis was associated with a gradual increase in task-based activation of the dorsal premotor cortex bilaterally. The right medial prefrontal cortex displayed the opposite pattern, showing initial task...... that an excessive 'veto' signal generated in medial prefrontal cortex along with decreased premotor activity might constitute the functional substrate of conversion disorder. This notion warrants further examination in a larger group of affected patients....

  15. Functional MRI activation of somatosensory and motor cortices in a hand-grafted patient with early clinical sensorimotor recovery

    International Nuclear Information System (INIS)

    Neugroschl, C.; Denolin, V.; Schuind, F.; Holder, C. van; David, P.; Baleriaux, D.; Metens, T.

    2005-01-01

    The aim of this study was to investigate somatosensory and motor cortical activity with functional MRI (fMRI) in a hand-grafted patient with early clinical recovery. The patient had motor fMRI examinations before transplantation, and motor and passive tactile stimulations after surgery. His normal hand and a normal group were studied for comparison. A patient with complete brachial plexus palsy was studied to assess the lack of a fMRI signal in somatosensory areas in the case of total axonal disconnection. Stimulating the grafted hand revealed significant activation in the contralateral somatosensory cortical areas in all fMRI examinations. The activation was seen as early as 10 days after surgery; this effect cannot be explained by the known physiological mechanisms of nerve regeneration. Although an imagination effect cannot be excluded, the objective clinical recovery of sensory function led us to formulate the hypothesis that a connection to the somatosensory cortex was rapidly established. Additional cases and fundamental studies are needed to assess this hypothesis, but several observations were compatible with this explanation. Before surgery, imaginary motion of the amputated hand produced less intense responses than executed movements of the intact hand, whereas the normal activation pattern for right-handed subjects was found after surgery, in agreement with the good clinical motor recovery. (orig.)

  16. Recovery-related indicators of motor network plasticity according to impairment severity after stroke.

    Science.gov (United States)

    Lee, J; Park, E; Lee, A; Chang, W H; Kim, D-S; Kim, Y-H

    2017-10-01

    Brain connectivity analysis has been widely used to investigate brain plasticity and recovery-related indicators of patients with stroke. However, results remain controversial because of interindividual variability of initial impairment and subsequent recovery of function. In this study, we aimed to investigate the differences in network plasticity and motor recovery-related indicators according to initial severity. We divided participants (16 males and 14 females, aged 54.2 ± 12.0 years) into groups of different severity by Fugl-Mayer Assessment score, i.e. moderate (50-84), severe (20-49) and extremely severe (impairment groups. Longitudinal resting-state functional magnetic resonance imaging data were acquired at 2 weeks and 3 months after onset. The differences in network plasticity and recovery-related indicators between groups were investigated using network distance and graph measurements. As the level of impairment increased, the network balance was more disrupted. Network balance, interhemispheric connectivity and network efficiency were recovered at 3 months only in the moderate impairment group. However, this was not the case in the extremely severe impairment group. A single connection strength between the ipsilesional primary motor cortex and ventral premotor cortex was implicated in the recovery of motor function for the extremely severe impairment group. The connections of the ipsilesional primary motor cortex-ventral premotor cortex were positively associated with motor recovery as the patients were more severely impaired. Differences in plasticity and recovery-related indicators of motor networks were noted according to impairment severity. Our results may suggest meaningful implications for recovery prediction and treatment strategies in future stroke research. © 2017 EAN.

  17. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  18. Functional neuroimaging of recovery from motor conversion disorder: A case report.

    Science.gov (United States)

    Dogonowski, Anne-Marie; Andersen, Kasper W; Sellebjerg, Finn; Schreiber, Karen; Madsen, Kristoffer H; Siebner, Hartwig R

    2018-03-27

    A patient with motor conversion disorder presented with a functional paresis of the left hand. After exclusion of structural brain damage, she was repeatedly examined with whole-brain functional magnetic resonance imaging, while she performed visually paced finger-tapping tasks. The dorsal premotor cortex showed a bilateral deactivation in the acute-subacute phase. Recovery from unilateral hand paresis was associated with a gradual increase in task-based activation of the dorsal premotor cortex bilaterally. The right medial prefrontal cortex displayed the opposite pattern, showing initial task-based activation that gradually diminished with recovery. The inverse dynamics of premotor and medial prefrontal activity over time were found during unimanual finger-tapping with the affected and non-affected hand as well as during bimanual finger-tapping. These observations suggest that reduced premotor and increased medial prefrontal activity reflect an effector-independent cortical dysfunction in conversion paresis which gradually disappears in parallel with clinical remission of paresis. The results link the medial prefrontal and dorsal premotor areas to the generation of intentional actions. We hypothesise that an excessive 'veto' signal generated in medial prefrontal cortex along with decreased premotor activity might constitute the functional substrate of conversion disorder. This notion warrants further examination in a larger group of affected patients. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Transcranial direct current stimulation for motor recovery of upper limb function after stroke.

    Science.gov (United States)

    Lüdemann-Podubecká, Jitka; Bösl, Kathrin; Rothhardt, Sandra; Verheyden, Geert; Nowak, Dennis Alexander

    2014-11-01

    Changes in neural processing after stroke have been postulated to impede recovery from stroke. Transcranial direct current stimulation has the potential to alter cortico-spinal excitability and thereby might be beneficial in stroke recovery. We review the pertinent literature prior to 30/09/2013 on transcranial direct current stimulation in promoting motor recovery of the affected upper limb after stroke. We found overall 23 trials (they included 523 participants). All stimulation protocols pride on interhemispheric imbalance model. In a comparative approach, methodology and effectiveness of (a) facilitation of the affected hemisphere, (b) inhibition of the unaffected hemisphere and (c) combined application of transcranial direct current stimulation over the affected and unaffected hemispheres to treat impaired hand function after stroke are presented. Transcranial direct current stimulation is associated with improvement of the affected upper limb after stroke, but current evidence does not support its routine use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Science.gov (United States)

    Wang, Zun-rong; Wang, Ping; Xing, Liang; Mei, Li-ping; Zhao, Jun; Zhang, Tong

    2017-01-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238). PMID:29239328

  1. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients.

    Science.gov (United States)

    Wang, Zun-Rong; Wang, Ping; Xing, Liang; Mei, Li-Ping; Zhao, Jun; Zhang, Tong

    2017-11-01

    Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms) because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT) was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238).

  2. Leap Motion-based virtual reality training for improving motor functional recovery of upper limbs and neural reorganization in subacute stroke patients

    Directory of Open Access Journals (Sweden)

    Zun-rong Wang

    2017-01-01

    Full Text Available Virtual reality is nowadays used to facilitate motor recovery in stroke patients. Most virtual reality studies have involved chronic stroke patients; however, brain plasticity remains good in acute and subacute patients. Most virtual reality systems are only applicable to the proximal upper limbs (arms because of the limitations of their capture systems. Nevertheless, the functional recovery of an affected hand is most difficult in the case of hemiparesis rehabilitation after a stroke. The recently developed Leap Motion controller can track the fine movements of both hands and fingers. Therefore, the present study explored the effects of a Leap Motion-based virtual reality system on subacute stroke. Twenty-six subacute stroke patients were assigned to an experimental group that received virtual reality training along with conventional occupational rehabilitation, and a control group that only received conventional rehabilitation. The Wolf motor function test (WMFT was used to assess the motor function of the affected upper limb; functional magnetic resonance imaging was used to measure the cortical activation. After four weeks of treatment, the motor functions of the affected upper limbs were significantly improved in all the patients, with the improvement in the experimental group being significantly better than in the control group. The action performance time in the WMFT significantly decreased in the experimental group. Furthermore, the activation intensity and the laterality index of the contralateral primary sensorimotor cortex increased in both the experimental and control groups. These results confirmed that Leap Motion-based virtual reality training was a promising and feasible supplementary rehabilitation intervention, could facilitate the recovery of motor functions in subacute stroke patients. The study has been registered in the Chinese Clinical Trial Registry (registration number: ChiCTR-OCH-12002238.

  3. Exchange of rotor components in functioning bacterial flagellar motor

    International Nuclear Information System (INIS)

    Fukuoka, Hajime; Inoue, Yuichi; Terasawa, Shun; Takahashi, Hiroto; Ishijima, Akihiko

    2010-01-01

    The bacterial flagellar motor is a rotary motor driven by the electrochemical potential of a coupling ion. The interaction between a rotor and stator units is thought to generate torque. The overall structure of flagellar motor has been thought to be static, however, it was recently proved that stators are exchanged in a rotating motor. Understanding the dynamics of rotor components in functioning motor is important for the clarifying of working mechanism of bacterial flagellar motor. In this study, we focused on the dynamics and the turnover of rotor components in a functioning flagellar motor. Expression systems for GFP-FliN, FliM-GFP, and GFP-FliG were constructed, and each GFP-fusion was functionally incorporated into the flagellar motor. To investigate whether the rotor components are exchanged in a rotating motor, we performed fluorescence recovery after photobleaching experiments using total internal reflection fluorescence microscopy. After photobleaching, in a tethered cell producing GFP-FliN or FliM-GFP, the recovery of fluorescence at the rotational center was observed. However, in a cell producing GFP-FliG, no recovery of fluorescence was observed. The transition phase of fluorescence intensity after full or partially photobleaching allowed the turnover of FliN subunits to be calculated as 0.0007 s -1 , meaning that FliN would be exchanged in tens of minutes. These novel findings indicate that a bacterial flagellar motor is not a static structure even in functioning state. This is the first report for the exchange of rotor components in a functioning bacterial flagellar motor.

  4. Navigated transcranial magnetic stimulation for glioma removal: prognostic value in motor function recovery from postsurgical neurological deficits.

    Science.gov (United States)

    Takakura, Tomokazu; Muragaki, Yoshihiro; Tamura, Manabu; Maruyama, Takashi; Nitta, Masayuki; Niki, Chiharu; Kawamata, Takakazu

    2017-10-01

    OBJECTIVE The aim of the present study was to evaluate the usefulness of navigated transcranial magnetic stimulation (nTMS) as a prognostic predictor for upper-extremity motor functional recovery from postsurgical neurological deficits. METHODS Preoperative and postoperative nTMS studies were prospectively applied in 14 patients (mean age 39 ± 12 years) who had intraparenchymal brain neoplasms located within or adjacent to the motor eloquent area in the cerebral hemisphere. Mapping by nTMS was done 3 times, i.e., before surgery, and 1 week and 3 weeks after surgery. To assess the response induced by nTMS, motor evoked potential (nTMS-MEP) was recorded using a surface electromyography electrode attached to the abductor pollicis brevis (APB). The cortical locations that elicited the largest electromyography response by nTMS were defined as hotspots. Hotspots for APB were confirmed as positive responsive sites by direct electrical stimulation (DES) during awake craniotomy. The distances between hotspots and lesions (D HS-L ) were measured. Postoperative neurological deficits were assessed by manual muscle test and dynamometer. To validate the prognostic value of nTMS in recovery from upper-extremity paresis, the following were investigated: 1) the correlation between D HS-L and the serial grip strength change, and 2) the correlation between positive nTMS-MEP at 1 week after surgery and the serial grip strength change. RESULTS From the presurgical nTMS study, MEPs from targeted muscles were identified in 13 cases from affected hemispheres. In one case, MEP was not evoked due to a huge tumor. Among 9 cases from which intraoperative DES mapping for hand motor area was available, hotspots for APB identified by nTMS were concordant with DES-positive sites. Compared with the adjacent group (D HS-L < 10 mm, n = 6), the nonadjacent group (D HS-L ≥ 10 mm, n = 7) showed significantly better recovery of grip strength at 3 months after surgery (p < 0.01). There were

  5. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    OpenAIRE

    Schubring-Giese Maximilian; Leemburg Susan; Luft Andreas Rüdiger; Hosp Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of ...

  6. Examining Differences in Patterns of Sensory and Motor Recovery After Stroke With Robotics.

    Science.gov (United States)

    Semrau, Jennifer A; Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2015-12-01

    Developing a better understanding of the trajectory and timing of stroke recovery is critical for developing patient-centered rehabilitation approaches. Here, we quantified proprioceptive and motor deficits using robotic technology during the first 6 months post stroke to characterize timing and patterns in recovery. We also make comparisons of robotic assessments to traditional clinical measures. One hundred sixteen subjects with unilateral stroke were studied at 4 time points: 1, 6, 12, and 26 weeks post stroke. Subjects performed robotic assessments of proprioceptive (position sense and kinesthesia) and motor function (unilateral reaching task and bimanual object hit task), as well as several clinical measures (Functional Independence Measure, Purdue Pegboard, and Chedoke-McMaster Stroke Assessment). One week post stroke, many subjects displayed proprioceptive (48% position sense and 68% kinesthesia) and motor impairments (80% unilateral reaching and 85% bilateral movement). Interindividual recovery on robotic measures was highly variable. However, we characterized recovery as early (normal by 6 weeks post stroke), late (normal by 26 weeks post stroke), or incomplete (impaired at 26 weeks post stroke). Proprioceptive and motor recovery often followed different timelines. Across all time points, robotic measures were correlated with clinical measures. These results highlight the need for more sensitive, targeted identification of sensory and motor deficits to optimize rehabilitation after stroke. Furthermore, the trajectory of recovery for some individuals with mild to moderate stroke may be much longer than previously considered. © 2015 American Heart Association, Inc.

  7. Protein Synthesis Inhibition in the Peri-Infarct Cortex Slows Motor Recovery in Rats.

    Science.gov (United States)

    Schubring-Giese, Maximilian; Leemburg, Susan; Luft, Andreas Rüdiger; Hosp, Jonas Aurel

    2016-01-01

    Neuroplasticity and reorganization of brain motor networks are thought to enable recovery of motor function after ischemic stroke. Especially in the cortex surrounding the ischemic scar (i.e., peri-infarct cortex), evidence for lasting reorganization has been found at the level of neurons and networks. This reorganization depends on expression of specific genes and subsequent protein synthesis. To test the functional relevance of the peri-infarct cortex for recovery we assessed the effect of protein synthesis inhibition within this region after experimental stroke. Long-Evans rats were trained to perform a skilled-reaching task (SRT) until they reached plateau performance. A photothrombotic stroke was induced in the forelimb representation of the primary motor cortex (M1) contralateral to the trained paw. The SRT was re-trained after stroke while the protein synthesis inhibitor anisomycin (ANI) or saline were injected into the peri-infarct cortex through implanted cannulas. ANI injections reduced protein synthesis within the peri-infarct cortex by 69% and significantly impaired recovery of reaching performance through re-training. Improvement of motor performance within a single training session remained intact, while improvement between training sessions was impaired. ANI injections did not affect infarct size. Thus, protein synthesis inhibition within the peri-infarct cortex impairs recovery of motor deficits after ischemic stroke by interfering with consolidation of motor memory between training sessions but not short-term improvements within one session.

  8. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Science.gov (United States)

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery

    Science.gov (United States)

    Hatem, Samar M.; Saussez, Geoffroy; della Faille, Margaux; Prist, Vincent; Zhang, Xue; Dispa, Delphine; Bleyenheuft, Yannick

    2016-01-01

    Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation. PMID:27679565

  10. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Directory of Open Access Journals (Sweden)

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  11. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi [Hideshima Hospital, Musashino, Tokyo (Japan)

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  12. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi (Hideshima Hospital, Musashino, Tokyo (Japan))

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  13. Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery

    Directory of Open Access Journals (Sweden)

    Samar M Hatem

    2016-09-01

    Full Text Available Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients’ mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed.At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.

  14. The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model.

    Directory of Open Access Journals (Sweden)

    Zheng Ke

    Full Text Available BACKGROUND: Stroke rehabilitation with different exercise paradigms has been investigated, but which one is more effective in facilitating motor recovery and up-regulating brain neurotrophic factor (BDNF after brain ischemia would be interesting to clinicians and patients. Voluntary exercise, forced exercise, and involuntary muscle movement caused by functional electrical stimulation (FES have been individually demonstrated effective as stroke rehabilitation intervention. The aim of this study was to investigate the effects of these three common interventions on brain BDNF changes and motor recovery levels using a rat ischemic stroke model. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and seventeen Sprague-Dawley rats were randomly distributed into four groups: Control (Con, Voluntary exercise of wheel running (V-Ex, Forced exercise of treadmill running (F-Ex, and Involuntary exercise of FES (I-Ex with implanted electrodes placed in two hind limb muscles on the affected side to mimic gait-like walking pattern during stimulation. Ischemic stroke was induced in all rats with the middle cerebral artery occlusion/reperfusion model and fifty-seven rats had motor deficits after stroke. Twenty-four hours after reperfusion, rats were arranged to their intervention programs. De Ryck's behavioral test was conducted daily during the 7-day intervention as an evaluation tool of motor recovery. Serum corticosterone concentration and BDNF levels in the hippocampus, striatum, and cortex were measured after the rats were sacrificed. V-Ex had significantly better motor recovery in the behavioral test. V-Ex also had significantly higher hippocampal BDNF concentration than F-Ex and Con. F-Ex had significantly higher serum corticosterone level than other groups. CONCLUSION/SIGNIFICANCE: Voluntary exercise is the most effective intervention in upregulating the hippocampal BDNF level, and facilitating motor recovery. Rats that exercised voluntarily also showed less

  15. Motor function recovery of people of mature years after stroke by means of physical rehabilitation

    Directory of Open Access Journals (Sweden)

    Khristova T.E.

    2013-02-01

    Full Text Available The results of applying the complex technology of physical rehabilitation are described for patients with cerebral ischemic stroke during the phase of in-patient rehabilitation. The experiment involved 36 male patients aged 45-50 years. The rehabilitation program included treatment by changing position, complex of therapeutic gymnastics (based on sanogenetic approach to the problem of motor function recovery in accordance with the stages of postnatal ontogenesis, magnetic therapy, thermotherapy of large joints of the affected extremities. Findings show that the use of the mentioned methods of treatment leads to increase of the range of motion in the hip and shoulder joints: passive of 15-20%, and active of 10-30%, muscle strength of 10-30%, improvement of motor activity indices (scale of Bobaht and quality of life (scale of Barthel.

  16. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    Science.gov (United States)

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. © The Author(s) 2014.

  17. Validation of the efficiency of a robotic rehabilitation training system for recovery of severe plegie hand motor function after a stroke.

    Science.gov (United States)

    Tanabe, Hirofumi; Ikuta, Munehiro; Morita, Yoshifumi

    2017-07-01

    We have developed a rehabilitation training system called the Useful and Ultimate Rehabilitation System PARKO (UR System PARKO) to promote the recovery of motor function of the severe chronic plegic hand of stroke patients. This system was equipped with two functions to realize two conditions: (1) fixing of all fingers to a hyperextended position and (2) extending the elbow joint while applying resistance load to the fingertips. A clinical test was conducted with two patients to determine the therapeutic effect of the UR System PARKO for severe plegic hand. In both patients, the active ranges of motion of finger extension improved after training with the UR System PARKO. Moreover, the Modified Ashworth scale scores of finger extension increased. Thus, training reduced the spastic paralysis. These results suggest the effectiveness of training with the UR System PARKO for recovery of motor function as reflected in the finger extension of the severe plegic hand.

  18. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  19. Motor skills training promotes motor functional recovery and induces synaptogenesis in the motor cortex and striatum after intracerebral hemorrhage in rats.

    Science.gov (United States)

    Tamakoshi, Keigo; Ishida, Akimasa; Takamatsu, Yasuyuki; Hamakawa, Michiru; Nakashima, Hiroki; Shimada, Haruka; Ishida, Kazuto

    2014-03-01

    We investigated the effects of motor skills training on several types of motor function and synaptic plasticity following intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with collagenase into the left striatum to induce ICH, and they were randomly assigned to the ICH or sham groups. Each group was divided into the motor skills training (acrobatic training) and control (no exercise) groups. The acrobatic group performed acrobatic training from 4 to 28 days after surgery. Motor functions were assessed by motor deficit score, the horizontal ladder test and the wide or narrow beam walking test at several time points after ICH. The number of ΔFosB-positive cells was counted using immunohistochemistry to examine neuronal activation, and the PSD95 protein levels were analyzed by Western blotting to examine synaptic plasticity in the bilateral sensorimotor cortices and striata at 14 and 29 days after ICH. Motor skills training following ICH significantly improved gross motor function in the early phase after ICH and skilled motor coordinated function in the late phase. The number of ΔFosB-positive cells in the contralateral sensorimotor cortex in the acrobatic group significantly increased compared to the control group. PSD95 protein expression in the motor cortex significantly increased in the late phase, and in the striatum, the protein level significantly increased in the early phase by motor skills training after ICH compared to no training after ICH. We demonstrated that motor skills training improved motor function after ICH in rats and enhanced the neural activity and synaptic plasticity in the striatum and sensorimotor cortex. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise.

    Science.gov (United States)

    Macgregor, Lewis J; Hunter, Angus M

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p exercise. Mean motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pexercise. The firing rate of high-threshold motor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures.

  1. Efficacy of Bobath versus orthopaedic approach on impairment and function at different motor recovery stages after stroke: a randomized controlled study.

    Science.gov (United States)

    Wang, Ray-Yau; Chen, Hsiu-I; Chen, Chen-Yin; Yang, Yea-Ru

    2005-03-01

    To investigate the effectiveness of Bobath on stroke patients at different motor stages by comparing their treatment with orthopaedic treatment. A single-blind study, with random assignment to Bobath or orthopaedic group. Physical therapy department of a medical centre. Twenty-one patients with stroke with spasticity and 23 patients with stroke at relative recovery stages participated. Twenty sessions of Bobath programme or orthopaedic treatment programme given in four weeks. Stroke Impairment Assessment Set (SIAS), Motor Assessment Scale (MAS), Berg Balance Scale (BBS) and Stroke Impact Scale (SIS) for impairment and functional limitation level. Participants with spasticity showed greater improvement in tone control (change score: 1.20 +/- 1.03 versus 0.08 +/- 0.67, p = 0.006), MAS (change score: 7.64 +/- 4.03 versus 4.00 +/- 1.95, p = 0.011), and SIS (change score: 7.30 +/- 6.24 versus 1.25 +/- 5.33, p = 0.023) after 20 sessions of Bobath treatment than with orthopaedic treatment. Participants with relative recovery receiving Bobath treatment showed greater improvement in MAS (change score: 6.14 +/- 5.55 versus 2.77 +/- 9.89, p = 0.007), BBS (change score: 19.18 +/- 15.94 versus 6.85 +/- 5.23, p = 0.015), and SIS scores (change score: 8.50 +/- 3.41 versus 3.62 +/- 4.07, p = 0.006) than those with orthopaedic treatment. Bobath or orthopaedic treatment paired with spontaneous recovery resulted in improvements in impairment and functional levels for patient with stroke. Patients benefit more from the Bobath treatment in MAS and SIS scores than from the orthopaedic treatment programme regardless of their motor recovery stages.

  2. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise

    Science.gov (United States)

    Macgregor, Lewis J.

    2018-01-01

    Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part, be caused by reduced high-threshold motor unit firing, which will subsequently increase to recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the knee extensors, with measurements of MVC, rate of torque development and surface electromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both damaged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs. 161.3 ± 52.5 Nm; p motor unit firing rate was reduced (16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p motor units only, 48h post-exercise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; pmotor units was reduced in parallel with impaired muscle function, whilst early recruited motor units remained unaltered. Common drive of motor units increased in offset to the firing rate impairment. These alterations correlated with the recovery of force decrement, but not of pain elevation. This study provides fresh insight into the central mechanisms associated with EIMD recovery, relative to muscle function. These findings may in turn lead to development of novel management and preventative procedures. PMID:29630622

  3. Combined pharmacological and motor training interventions for recovery of upper limb function in subacute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2017-05-01

    Full Text Available Motor deficit, especially in the upper limb, is the primary contributor in post-stroke disability. Recovery of motor function relies on neural plasticity – cortical plastic reorganization – a spontaneous process, which could be enhanced from early phases by rehabilitative strategies. The subacute stage after stroke is the critical period during which the brain is most receptive to rehabilitation strategies. Based on the recent results of 2 trials in stroke rehabilitation using pharmacological intervention with Cerebrolysin in combination with standardized kinesitherapy, we conducted a pilot study of 4 consecutive patients with acute ischemic stroke, treated with Cerebrolysin for 28 days after stroke, and with intensive task-specific kinesitherapy from day 7 to day 28 after stroke. We assessed stroke severity with NIHSS score, upper limb function with ARAT (Action Research Arm Test score, disability with modified Rankin scale and patient’s autonomy with Barthel Index, at day 0 and day 30 after stroke. After 28 days of combined therapy all 4 patients improved, most significant improvement was seen in upper limb function, measured by ARAT score and in autonomy measured by Barthel Index.

  4. Trajectories of Motor Recovery in the First Year After Pediatric Arterial Ischemic Stroke.

    Science.gov (United States)

    Cooper, Anna N; Anderson, Vicki; Hearps, Stephen; Greenham, Mardee; Ditchfield, Michael; Coleman, Lee; Hunt, Rod W; Mackay, Mark T; Monagle, Paul; Gordon, Anne L

    2017-08-01

    Neuromotor impairments are common after pediatric stroke, but little is known about functional motor outcomes. We evaluated motor function and how it changed over the first 12 months after diagnosis. We also examined differences in outcome according to age at diagnosis and whether fine motor (FM) or gross motor (GM) function at 12 months was associated with adaptive behavior. This prospective, longitudinal study recruited children ( N = 64) from The Royal Children's Hospital, Melbourne who were diagnosed with acute arterial ischemic stroke (AIS) between December 2007 and November 2013. Motor assessments were completed at 3 time points after the diagnosis of AIS (1, 6, and 12 months). Children were grouped as follows: neonates ( n = 27), preschool-aged ( n = 19), and school-aged ( n = 18). A larger lesion size was associated with poorer GM outcomes at 12 months ( P = .016). Neonatal AIS was associated with better FM and GM function initially but with a reduction in z scores over time. For the preschool- and school-aged groups, FM remained relatively stable over time. For GM outcomes, the preschool- and the school-aged age groups displayed similar profiles, with gradual recovery over time. Overall, poor FM and GM outcomes at 12 months were associated with poorer adaptive behavior scores. Motor outcomes and the trajectory of recovery post-AIS differed according to a child's age at stroke onset. These findings indicate that an individualized approach to surveillance and intervention may be needed that is informed in part by age at diagnosis. Copyright © 2017 by the American Academy of Pediatrics.

  5. ON THE ROLE OF THE TECHNIQUES FACILITATING MOTOR RECOVERY

    Directory of Open Access Journals (Sweden)

    Corneliu BOTEZ

    2013-06-01

    Full Text Available Movement created a differentiated aparatus – the loco‐ motory one – the basic component of which is the kinetic unit, formed of joint‐movement‐nerves, each one playing a well‐established role, motivated only within an interde‐ pendence relation of the whole kinetic unit. Activation of the motor unit, considered as the smallest functional neu‐ romuscular unit described in 1925 by Liddel and Sher‐ rington, involves a series of complex processes, developed at the level of the three components (pericarion‐cylindrax‐ muscular fibers, the result being muscular contraction. The control of motricity, of the voluntary movements we perform so easily, sometimes wholly automatically, repre‐ sents a real computer performance, the organism organ‐ izing this type of control on successive levels, continuously enriching the phylogenetic scale, along the evolution of species, with new neuronal levels of integration, control and command. The scope of the present study was to evi‐ dence the efficiency of the facilitation techniques as to the following aspects of neuromotor recovery: recovery of the muscular tonus, recovery of the muscular power, increased joint mobility and recovery of movements coordination, by means of facilitation techniques. Materials and method. During January 2010‐January 2012, in the Military Hospital of Iaşi there have been hospitalized 120 patients with ages between 23‐64 years, with various etiologies of functional deficit: lumbosciatica with prolongued muscular contrac‐ tion in 52 cases – 43.33%, hemiplegia + arthroses 8 cases – 6.66%, systemic eritematous lupus 4 cases – 3.34%, post‐ fracture algoneurosistrophy (blocked knee 4 cases – 3.34%, rheumatoid polyarthritis – 24 cases – 20.00%, scapulo‐ humeral periarthritis 28 cases – 23.33%. Results and dis‐ cussion. The highest frequency of patients with neuro‐motor pathology requiring the application of some techniques facilitating

  6. Functional connectivity metrics during stroke recovery

    DEFF Research Database (Denmark)

    Yourganov, Grigori; Schmah, Tanya; Small, Steven L.

    2010-01-01

    We explore functional connectivity in nine subjects measured with 1 5T fMRI-BOLD in a longitudinal study of recovery from unilateral stroke affecting the motor area (Small et al, 2002) We found that several measures of complexity of covariance matrices show strong correlations with behavioral mea...

  7. Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function

    Directory of Open Access Journals (Sweden)

    Aurore Thibaut

    2017-05-01

    Full Text Available What determines motor recovery in stroke is still unknown and finding markers that could predict and improve stroke recovery is a challenge. In this study, we aimed at understanding the neural mechanisms of motor function recovery after stroke using neurophysiological markers by means of cortical excitability (transcranial magnetic stimulation—TMS and brain oscillations (electroencephalography—EEG. In this cross-sectional study, 55 subjects with chronic stroke (62 ± 14 yo, 17 women, 32 ± 42 months post-stroke were recruited in two sites. We analyzed TMS measures (i.e., motor threshold—MT—of the affected and unaffected sides and EEG variables (i.e., power spectrum in different frequency bands and different brain regions of the affected and unaffected hemispheres and their correlation with motor impairment as measured by Fugl-Meyer. Multiple univariate and multivariate linear regression analyses were performed to identify the predictors of good motor function. A significant interaction effect of MT in the affected hemisphere and power in beta bandwidth over the central region for both affected and unaffected hemispheres was found. We identified that motor function positively correlates with beta rhythm over the central region of the unaffected hemisphere, while it negatively correlates with beta rhythm in the affected hemisphere. Our results suggest that cortical activity in the affected and unaffected hemisphere measured by EEG provides new insights on the association between high-frequency rhythms and motor impairment, highlighting the role of an excess of beta in the affected central cortical region in poor motor function in stroke recovery.

  8. Task-specific compensation and recovery following focal motor cortex lesion in stressed rats.

    Science.gov (United States)

    Kirkland, Scott W; Smith, Lori K; Metz, Gerlinde A

    2012-03-01

    One reason for the difficulty to develop effective therapies for stroke is that intrinsic factors, such as stress, may critically influence pathological mechanisms and recovery. In cognitive tasks, stress can both exaggerate and alleviate functional loss after focal ischemia in rodents. Using a comprehensive motor assessment in rats, this study examined if chronic stress and corticosterone treatment affect skill recovery and compensation in a task-specific manner. Groups of rats received daily restraint stress or oral corticosterone supplementation for two weeks prior to a focal motor cortex lesion. After lesion, stress and corticosterone treatments continued for three weeks. Motor performance was assessed in two skilled reaching tasks, skilled walking, forelimb inhibition, forelimb asymmetry and open field behavior. The results revealed that persistent stress and elevated corticosterone levels mainly limit motor recovery. Treated animals dropped larger amounts of food in successful reaches and showed exaggerated loss of forelimb inhibition early after lesion. Stress also caused a moderate, but non-significant increase in infarct size. By contrast, stress and corticosterone treatments promoted reaching success and other quantitative measures in the tray reaching task. Comparative analysis revealed that improvements are due to task-specific development of compensatory strategies. These findings suggest that stress and stress hormones may partially facilitate task-specific and adaptive compensatory movement strategies. The observations support the notion that hypothalamic-pituitary-adrenal axis activation may be a key determinant of recovery and motor system plasticity after ischemic stroke.

  9. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo [Third Military Medical University, Department of Medical Imaging, College of Biomedical Engineering, Chongqing (China); Liu, Hongliang; Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Yang, Jun; Wang, Jian [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China)

    2016-05-15

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  10. Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study

    International Nuclear Information System (INIS)

    Zhang, Ye; Wang, Li; Zhang, Jingna; Sang, Linqiong; Li, Pengyue; Qiu, Mingguo; Liu, Hongliang; Yan, Rubing; Yang, Jun; Wang, Jian

    2016-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has been used to examine the brain mechanisms of stroke patients with hemiplegia, but the relationship between functional connectivity (FC) and treatment-induced motor function recovery has not yet been fully investigated. This study aimed to identify the brain FC changes in stroke patients and study the relationship between FC and motor function assessment using the resting-state fMRI. Seventeen stroke patients with hemiplegia and fifteen healthy control subjects (HCSs) were recruited in this study. We compared the FC between the ipsilesional primary motor cortex (M1) and the whole brain of the patients with the FC of the HCSs and studied the FC changes in the patients before and after conventional rehabilitation and motor imagery therapy. Additionally, correlations between the FC change and motor function of the patients were studied. Compared to the HCSs, the FC in the patient group was significantly increased between the ipsilesional M1 and the ipsilesional inferior parietal cortex, frontal gyrus, supplementary motor area (SMA), and contralesional angular and decreased between the ipsilesional M1 and bilateral M1. After the treatment, the FC between the ipsilesional M1 and contralesional M1 increased while the FC between the ipsilesional M1 and ipsilesional SMA and paracentral lobule decreased. A statistically significant correlation was found between the FC change in the bilateral M1 and the Fugl-Meyer assessment (FMA) score change. Our results revealed an abnormal motor network after stroke and suggested that the FC could serve as a biomarker of motor function recovery in stroke patients with hemiplegia. (orig.)

  11. Neuropharmacology of Poststroke Motor and Speech Recovery.

    Science.gov (United States)

    Keser, Zafer; Francisco, Gerard E

    2015-11-01

    Almost 7 million adult Americans have had a stroke. There is a growing need for more effective treatment options as add-ons to conventional therapies. This article summarizes the published literature for pharmacologic agents used for the enhancement of motor and speech recovery after stroke. Amphetamine, levodopa, selective serotonin reuptake inhibitors, and piracetam were the most commonly used drugs. Pharmacologic augmentation of stroke motor and speech recovery seems promising but systematic, adequately powered, randomized, and double-blind clinical trials are needed. At this point, the use of these pharmacologic agents is not supported by class I evidence. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke

    Science.gov (United States)

    Volz, L. J.; Rehme, A. K.; Michely, J.; Nettekoven, C.; Eickhoff, S. B.; Fink, G. R.; Grefkes, C.

    2016-01-01

    Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis. PMID:26980614

  13. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.

    Science.gov (United States)

    Carmel, Jason B; Kimura, Hiroki; Martin, John H

    2014-01-08

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To test motor skill, rats were trained and tested to walk on a horizontal ladder with irregularly spaced rungs. Eight weeks after injury, produced by pyramidal tract transection, half of the rats received forelimb motor cortex stimulation of the intact hemisphere. Rats with injury and stimulation had significantly improved forelimb control compared with rats with injury alone and achieved a level of proficiency similar to uninjured rats. To test whether recovery of forelimb function was attributable to ipsilateral control, we selectively inactivated the stimulated motor cortex using the GABA agonist muscimol. The dose of muscimol we used produces strong contralateral but no ipsilateral impairments in naive rats. In rats with injury and stimulation, but not those with injury alone, inactivation caused worsening of forelimb function; the initial deficit was reinstated. These results demonstrate that electrical stimulation can promote recovery of motor function when applied late after injury and that motor control can be exerted from the ipsilateral motor cortex. These results suggest that the uninjured motor cortex could be targeted for brain stimulation in people with large unilateral CST lesions.

  14. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Aşkın, Ayhan; Tosun, Aliye; Demirdal, Ümit Seçil

    2017-06-01

    Repetitive transcranial magnetic stimulation (rTMS) was suggested as a preconditioning method that would increase brain plasticity and that it would be optimal to combine rTMS with intensive rehabilitation. To assess the efficacy of inhibitory rTMS on upper extremity motor recovery and functional outcomes in chronic ischemic stroke patients. In this randomized controlled trial, experimental group received low-frequency (LF) rTMS to the primary motor cortex of the unaffected side + physical therapy (PT), and control group received PT. No statistically significant difference was found in baseline demographical and clinical characteristics of the subjects including stroke severity or severity of paralysis prior to intervention. There were statistically significant improvements in all clinical outcome measures except for the Brunnstrom Recovery Stages. Fugl-Meyer Assessment, Box and Block test, motor and total scores of Functional Independence Measurement (FIM), and Functional Ambulation Scale (FAS) scores were significantly increased in both groups, however, these changes were significantly greater in the rTMS group except for FAS score. FIM cognitive scores and standardized mini-mental test scores were significantly increased and distal and hand Modified Ashworth Scale scores were significantly decreased only in the rTMS group (p functional, and cognitive deficits in chronic stroke. Further studies with a larger number of patients with longer follow-up periods are needed to establish its effectiveness in stroke rehabilitation.

  15. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  16. Functional Recovery After Severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Hart, Tessa; Kozlowski, Allan; Whyte, John

    2014-01-01

    recovery was best modeled with linear, cubic, and quadratic components: relatively steep recovery was followed by deceleration of improvement, which attenuated prior to discharge. Slower recovery was associated with older age, longer coma, and interruptions to rehabilitation. Patients admitted at lower...... multi-disciplinary teams were recorded daily in 15-minute units provided to patients and family members, separately. MAIN OUTCOME MEASURES: Motor and Cognitive FIM measured on admission, discharge, and every 2 weeks in between, analyzed with Individual Growth Curve methodology. RESULTS: Inpatient...... functional levels received more treatment and more treatment was associated with slower recovery, presumably because treatment was allocated according to need. Thus, effects of treatment on outcome could not be disentangled from effects of case mix factors. CONCLUSIONS: FIM gain during inpatient recovery...

  17. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Sensorimotor integration for functional recovery and the Bobath approach.

    Science.gov (United States)

    Levin, Mindy F; Panturin, Elia

    2011-04-01

    Bobath therapy is used to treat patients with neurological disorders. Bobath practitioners use hands-on approaches to elicit and reestablish typical movement patterns through therapist-controlled sensorimotor experiences within the context of task accomplishment. One aspect of Bobath practice, the recovery of sensorimotor function, is reviewed within the framework of current motor control theories. We focus on the role of sensory information in movement production, the relationship between posture and movement and concepts related to motor recovery and compensation with respect to this therapeutic approach. We suggest that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is the lack of a unified framework for both experimental identification and treatment of neurological motor deficits. More conclusive analysis of therapeutic effectiveness requires the development of specific outcomes that measure movement quality.

  19. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.; Gerdin, B.

    1989-01-01

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the 14 C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author)

  20. [Arm Motor Function Recovery during Rehabilitation with the Use of Hand Exoskeleton Controlled by Brain-Computer Interface: a Patient with Severe Brain Damage].

    Science.gov (United States)

    Biryukova, E V; Pavlova, O G; Kurganskaya, M E; Bobrov, P D; Turbina, L G; Frolov, A A; Davydov, V I; Sil'tchenko, A V; Mokienko, O A

    2016-01-01

    We studied the dynamics of motor function recovery in a patient with severe brain damage in the course of neurorehabilitation using hand exoskeleton controlled by brain-computer interface. For estimating the motor function of paretic arm, we used the biomechanical analysis of movements registered during the course of rehabilitation. After 15 weekly sessions of hand exoskeleton control, the following results were obtained: a) the velocity profile of goal-directed movements of paretic hand became bell-shaped, b) the patient began to extend and abduct the hand which was flexed and adducted in the beginning of rehabilitation, and c) the patient began to supinate the forearm which was pronated in the beginning of rehabilitation. The first result is an evidence of the general improvement of the quality of motor control, while the second and third results prove that the spasticity of paretic arm has decreased.

  1. Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery

    Directory of Open Access Journals (Sweden)

    Sook-Lei eLiew

    2014-06-01

    Full Text Available Noninvasive brain stimulation (NIBS may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS and direct current (tDCS stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation.

  2. Is the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex important for motor recovery in rats with photochemically induced cortical lesions?

    Science.gov (United States)

    Takata, Kotaro; Yamauchi, Hideki; Tatsuno, Hisashi; Hashimoto, Keiji; Abo, Masahiro

    2006-01-01

    To determine whether the ipsilateral cortex surrounding the lesion or the non-injured contralateral cortex is important for motor recovery after brain damage in the photochemically initiated thrombosis (PIT) model. We induced PIT in the sensorimotor cortex in rats and examined the recovery of motor function using the beam-walking test. In 24 rats, the right sensorimotor cortex was lesioned after 2 days of training for the beam-walking test (group 1). After 10 days, PIT was induced in the left sensorimotor cortex. Eight additional rats (group 2) received 2 days training in beam walking, then underwent the beam-walking test to evaluate function. After 10 days of testing, the left sensorimotor cortex was lesioned and recovery was monitored by the beam-walking test for 8 days. In group 1 animals, left hindlimb function caused by a right sensorimotor cortex lesion recovered within 10 days after the operation. Right hindlimb function caused by the left-side lesion recovered within 6 days. In group 2, right hindlimb function caused by induction of the left-side lesion after a total of 12 days of beam-walking training and testing recovered within 6 days as with the double PIT model. The training effect may be relevant to reorganization and neuromodulation. Motor recovery patterns did not indicate whether motor recovery was dependent on the ipsilateral cortex surrounding the lesion or the cortex of the contralateral side. The results emphasize the need for selection of appropriate programs tailored to the area of cortical damage in order to enhance motor functional recovery in this model. Copyright 2006 S. Karger AG, Basel.

  3. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients.

    Science.gov (United States)

    Daunoraviciene, Kristina; Adomaviciene, Ausra; Grigonyte, Agne; Griškevičius, Julius; Juocevicius, Alvydas

    2018-05-18

    The study aims to determine the effectiveness of robot-assisted training in the recovery of stroke-affected arms using an exoskeleton robot Armeo Spring. To identify the effect of robot training on functional recovery of the arm. A total of 34 stroke patients were divided into either an experimental group (EG; n= 17) or a control group (n= 17). EG was also trained to use the Armeo Spring during occupational therapy. Both groups were clinically assessed before and after treatment. Statistical comparison methods (i.e. one-tailed t-tests for differences between two independent means and the simplest test) were conducted to compare motor recovery using robot-assisted training or conventional therapy. Patients assigned to the EG showed a statistically significant improvement in upper extremity motor function when compared to the CG by FIM (Peffect in the EG and CG was meaningful for shoulder and elbow kinematic parameters. The findings show the benefits of robot therapy in two areas of functional recovery. Task-oriented robotic training in rehabilitation setting facilitates recovery not only of the motor function of the paretic arm but also of the cognitive abilities in stroke patients.

  4. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.

    Science.gov (United States)

    Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise

    2018-03-01

    We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  6. Long-Standing Motor and Sensory Recovery following Acute Fibrin Sealant Based Neonatal Sciatic Nerve Repair

    Directory of Open Access Journals (Sweden)

    Natalia Perussi Biscola

    2016-01-01

    Full Text Available Brachial plexus lesion results in loss of motor and sensory function, being more harmful in the neonate. Therefore, this study evaluated neuroprotection and regeneration after neonatal peripheral nerve coaptation with fibrin sealant. Thus, P2 neonatal Lewis rats were divided into three groups: AX: sciatic nerve axotomy (SNA without treatment; AX+FS: SNA followed by end-to-end coaptation with fibrin sealant derived from snake venom; AX+CFS: SNA followed by end-to-end coaptation with commercial fibrin sealant. Results were analyzed 4, 8, and 12 weeks after lesion. Astrogliosis, microglial reaction, and synapse preservation were evaluated by immunohistochemistry. Neuronal survival, axonal regeneration, and ultrastructural changes at ventral spinal cord were also investigated. Sensory-motor recovery was behaviorally studied. Coaptation preserved synaptic covering on lesioned motoneurons and led to neuronal survival. Reactive gliosis and microglial reaction decreased in the same groups (AX+FS, AX+CFS at 4 weeks. Regarding axonal regeneration, coaptation allowed recovery of greater number of myelinated fibers, with improved morphometric parameters. Preservation of inhibitory synaptic terminals was accompanied by significant improvement in the motor as well as in the nociceptive recovery. Overall, the present data suggest that acute repair of neonatal peripheral nerves with fibrin sealant results in neuroprotection and regeneration of motor and sensory axons.

  7. Effect of skilled and unskilled training on nerve regeneration and functional recovery

    Directory of Open Access Journals (Sweden)

    A.S. Pagnussat

    2012-08-01

    Full Text Available The most disabling aspect of human peripheral nerve injuries, the majority of which affect the upper limbs, is the loss of skilled hand movements. Activity-induced morphological and electrophysiological remodeling of the neuromuscular junction has been shown to influence nerve repair and functional recovery. In the current study, we determined the effects of two different treatments on the functional and morphological recovery after median and ulnar nerve injury. Adult Wistar male rats weighing 280 to 330 g at the time of surgery (N = 8-10 animals/group were submitted to nerve crush and 1 week later began a 3-week course of motor rehabilitation involving either "skilled" (reaching for small food pellets or "unskilled" (walking on a motorized treadmill training. During this period, functional recovery was monitored weekly using staircase and cylinder tests. Histological and morphometric nerve analyses were used to assess nerve regeneration at the end of treatment. The functional evaluation demonstrated benefits of both tasks, but found no difference between them (P > 0.05. The unskilled training, however, induced a greater degree of nerve regeneration as evidenced by histological measurement (P < 0.05. These data provide evidence that both of the forelimb training tasks used in this study can accelerate functional recovery following brachial plexus injury.

  8. Motor and Perceptual Recovery in Adult Patients with Mild Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Mariagiovanna Cantone

    2018-01-01

    Full Text Available Introduction. The relationship between intellectual disability (ID and hand motor coordination and speed-accuracy, as well as the effect of aging on fine motor performance in patients with ID, has been previously investigated. However, only a few data are available on the impact of the nonpharmacological interventions in adult patients with long-term hand motor deficit. Methods. Fifty adults with mild ID were enrolled. A group of thirty patients underwent a two-month intensive ergotherapic treatment that included hand motor rehabilitation and visual-perceptual treatment (group A; twenty patients performing conventional motor rehabilitation alone (group B served as a control group. Data on attention, perceptual abilities, hand dexterity, and functional independence were collected by a blind operator, both at entry and at the end of the study. Results. After the interventions, group A showed significantly better performance than group B in all measures related to hand movement from both sides and to independence in activities of daily living. Discussion. Multimodal integrated interventions targeting visual-perceptual abilities and motor skills are an effective neurorehabilitative approach in adult patients with mild ID. Motor learning and memory-mediated mechanisms of neural plasticity might underlie the observed recovery, suggesting the presence of plastic adaptive changes even in the adult brain with ID.

  9. Motor recovery in post-stroke patients with aphasia: the role of specific linguistic abilities.

    Science.gov (United States)

    Ginex, Valeria; Veronelli, Laura; Vanacore, Nicola; Lacorte, Eleonora; Monti, Alessia; Corbo, Massimo

    2017-09-01

    Aphasia is a serious consequence of stroke but aphasics patients have been routinely excluded from participation in some areas of stroke research. To assess the role of specific linguistic and non-verbal cognitive abilities on the short-term motor recovery of patients with aphasia due to first-ever stroke to the left hemisphere after an intensive rehabilitation treatment. 48 post-acute aphasic patients, who underwent physiotherapy and speech language therapy, were enrolled for this retrospective cohort-study. Four types of possible predictive factors were taken into account: clinical variables, functional status, language and non-verbal cognitive abilities. The motor FIM at discharge was used as the main dependent variable. Patients were classified as follows: 6 amnestic, 9 Broca's, 7 Wernicke's, and 26 global aphasics. Motor FIM at admission (p = 0.003) and at discharge (p = 0.042), all linguistic subtests of Aachener AphasieTest (p = 0.001), and non-verbal reasoning abilities (Raven's CPM, p = 0.006) resulted significantly different across different types of aphasia. Post-hoc analyses showed differences only between global aphasia and the other groups. A Multiple Linear Regression shows that admission motor FIM (p = 0.001) and Token test (p = 0.040), adjusted for clinical, language, and non-verbal reasoning variables, resulted as independent predictors of motor FIM scores at discharge, while Raven's CPM resulted close to statistical significance. Motor function at admission resulted as the variable that most affects the motor recovery of post-stroke patients with aphasia after rehabilitation. A linguistic test requiring also non-linguistic abilities, including attention and working memory (i.e. Token test) is an independent predictor as well.

  10. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  11. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

    Science.gov (United States)

    Johnson, N. N.; Carey, J.; Edelman, B. J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B.

    2018-02-01

    Objective. Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Approach. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Main results. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. Significance. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  12. Strength and fine dexterity recovery profiles after a primary motor cortex insult and effect of a neuronal cell graft.

    Science.gov (United States)

    Vaysse, Laurence; Conchou, Fabrice; Demain, Boris; Davoust, Carole; Plas, Benjamin; Ruggieri, Cyrielle; Benkaddour, Mehdi; Simonetta-Moreau, Marion; Loubinoux, Isabelle

    2015-08-01

    The aim of this study was to set up (a) a large primary motor cortex (M1) lesion in rodent and (b) the conditions for evaluating a long-lasting motor deficit in order to propose a valid model to test neuronal replacement therapies aimed at improving motor deficit recovery. A mitochondrial toxin, malonate, was injected to induce extensive destruction of the forelimb M1 cortex. Three key motor functions that are usually evaluated following cerebral lesion in the clinic-strength, target reaching, and fine dexterity-were assessed in rats by 2 tests, a forelimb grip strength test and a skilled reaching task (staircase) for reaching and dexterity. The potential enhancement of postlesion recovery induced by a neuronal cell transplantation was then explored and confirmed by histological analyses. Both tests showed a severe functional impairment 2 days post lesion, however, reaching remained intact. Deficits in forelimb strength were long lasting (up to 3 months) but spontaneously recovered despite the extensive lesion size. This natural grip strength recovery could be enhanced by cell therapy. Histological analyses confirmed the presence of grafted cells 3 months postgraft and showed partial tissue reconstruction with some living neuronal cells in the graft. In contrast, fine dexterity never recovered in the staircase test even after grafting. These results suggest that cell replacement was only partially effective and that the forelimb M1 area may be a node of the sensorimotor network, where compensation from secondary pathways could account for strength recovery but recovery of forelimb fine dexterity requires extensive tissue reconstruction. (c) 2015 APA, all rights reserved).

  13. Exercise alters resting state functional connectivity of motor circuits in Parkinsonian rats

    Science.gov (United States)

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Peng, Yu-Hao; Maarek, Jean-Michel I.; Holschneider, Daniel P.

    2014-01-01

    Few studies have examined changes in functional connectivity after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise on the resting-state functional connectivity (rsFC) of motor circuits of rats subjected to bilateral 6-hydroxydopamine lesion of the dorsal striatum. Our results showed substantial similarity between lesion-induced changes in rsFC in the rats and alterations in rsFC reported in Parkinson’s disease subjects, including disconnection of the dorsolateral striatum. Exercise in lesioned rats resulted in: (a) normalization of many of the lesion-induced alterations in rsFC, including reintegration of the dorsolateral striatum into the motor network; (b) emergence of the ventrolateral striatum as a new broadly connected network hub; (c) increased rsFC among the motor cortex, motor thalamus, basal ganglia, and cerebellum. Our results showed for the first time that long-term exercise training partially reversed lesion-induced alterations in rsFC of the motor circuits, and in addition enhanced functional connectivity in specific motor pathways in the Parkinsonian rats, which could underlie recovery in motor functions observed in these rats. PMID:25219465

  14. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians.

    Science.gov (United States)

    Cortes, Mar; Black-Schaffer, Randie M; Edwards, Dylan J

    2012-07-01

    An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged more than two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles and can probe local cortical networks as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood, and the results should to be interpreted along with clinical evaluation in this patient population. In this review, we provide an overview of the rationale, implementation, and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity. © 2012 International Neuromodulation Society.

  15. Electrical Stimulation of Motor Cortex in the Uninjured Hemisphere after Chronic Unilateral Injury Promotes Recovery of Skilled Locomotion through Ipsilateral Control

    OpenAIRE

    Carmel, Jason B.; Kimura, Hiroki; Martin, John H.

    2014-01-01

    Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chronic lesion of the CST in the other hemisphere would restore function through ipsilateral control. To ...

  16. Effects of motor imagery combined with functional electrical stimulation on upper limb motor function of patients with acute ischemic stroke

    Directory of Open Access Journals (Sweden)

    Shou-feng LIU

    2015-03-01

    Full Text Available Objective To explore the effects of motor imagery (MI combined with the third generation functional electrical stimulation (FES on upper limb motor function in acute ischemic stroke patients with hemiplegia.  Methods Forty acute ischemic stroke patients, within 48 h of onset, were randomly divided into FES group (N = 20 and combination group (FES combined with motor imagery, N = 20. All patients received basic routine rehabilitation training, for example, good limb positioning, accepting braces, balance training and training in the activities of daily living (ADL. FES group received the third generation FES therapy and the combination group also received motor imagery for 2 weeks. All of the patients were assessed with Fugl-Meyer Assessment (FMA, Action Research Arm Test (ARAT and active range of motion (AROM of wrist dorsiflexion before and after 2 weeks of treatment.  Results After 2 weeks of treatment, the 2 groups had significantly higher FMA score, ARAT score and AROM of wrist dorsiflexion than that in pre-treatment (P = 0.000, for all. Besides, the FMA score (t = - 2.528, P = 0.016, ARAT score (t = - 2.562, P = 0.014 and AROM of wrist dorsiflexion (t = - 2.469, P = 0.018 in the combination group were significantly higher than that in the FES group. There were interactions of treatment methods with observation time points (P < 0.05, for all.  Conclusions Motor imagery combined with the third generation FES can effectively promote the recovery of upper limb motor function and motion range of wrist dorsiflexion in patients with acute ischemic stroke. DOI: 10.3969/j.issn.1672-6731.2015.03.008

  17. Visualization of the functional recovery process of brain and spinal cord after injury

    International Nuclear Information System (INIS)

    Isa, Tadashi

    2009-01-01

    Elucidation of the process of spontaneous functional recovery of central nervous system (CNS) after injury like trauma and stroke is important to develop and conduct the better rehabilitation training to promote the recuperation. Authors have developed a macaque monkey model with an artificial injury of cervical corticospinal tract (CST), where its elaborative motor activity of fingers spontaneously recovers. This paper describes the selective CST injury procedure, its recovery process in finger movement and in CNS images by positron emission tomography (PET), and validation of the obtained images by nerve block. For the injury, CST is cut selectively at monkey's C4/C5 boundary to block the hand motion nerve and to preserve the 2-synapse pathway through the propriospinal neuron, which results in acute loss of grasping a piece of potato food. At 1-3 months after the treatment, the elaborative motor activity of fingers completely recovers. During this recovery period, PET is conducted to trace the brain blood flow change at the upper center of the motion in realizing/grasping food, where the dorsal pathway and cerebellar nuclei are activated at the motion in the untreated animal. At 1-2 months after operation, the blood flow is found increased in the two areas above and the increased area, widened relative to those before operation. At 3 months (at complete functional recovery), the activity in the ipsilateral primary motor area returns to normal level and in the contralateral area, is spread accompanying the increase in the bilateral dorsal premotor and secondary somatosensory areas. Imaging results are validated by nerve block with micro-injection of muscimol into the activated areas during the task motor. Findings are helpful for developing a method to promote the compensation of nervous function after injury. (K.T.)

  18. Use of a Y-tube conduit after facial nerve injury reduces collateral axonal branching at the lesion site but neither reduces polyinnervation of motor endplates nor improves functional recovery.

    Science.gov (United States)

    Hizay, Arzu; Ozsoy, Umut; Demirel, Bahadir Murat; Ozsoy, Ozlem; Angelova, Srebrina K; Ankerne, Janina; Sarikcioglu, Sureyya Bilmen; Dunlop, Sarah A; Angelov, Doychin N; Sarikcioglu, Levent

    2012-06-01

    Despite increased understanding of peripheral nerve regeneration, functional recovery after surgical repair remains disappointing. A major contributing factor is the extensive collateral branching at the lesion site, which leads to inaccurate axonal navigation and aberrant reinnervation of targets. To determine whether the Y tube reconstruction improved axonal regrowth and whether this was associated with improved function. We used a Y-tube conduit with the aim of improving navigation of regenerating axons after facial nerve transection in rats. Retrograde labeling from the zygomatic and buccal branches showed a halving in the number of double-labeled facial motor neurons (15% vs 8%; P facial-facial anastomosis coaptation. However, in both surgical groups, the proportion of polyinnervated motor endplates was similar (≈ 30%; P > .05), and video-based motion analysis of whisking revealed similarly poor function. Although Y-tube reconstruction decreases axonal branching at the lesion site and improves axonal navigation compared with facial-facial anastomosis coaptation, it fails to promote monoinnervation of motor endplates and confers no functional benefit.

  19. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Science.gov (United States)

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  20. Assessing and inducing neuroplasticity with transcranial magnetic stimulation and robotics for motor function.

    Science.gov (United States)

    O'Malley, Marcia K; Ro, Tony; Levin, Harvey S

    2006-12-01

    To describe 2 new ways of assessing and inducing neuroplasticity in the human brain--transcranial magnetic stimulation (TMS) and robotics--and to investigate and promote the recovery of motor function after brain damage. We identified recent articles and books directly bearing on TMS and robotics. Articles using these tools for purposes other than rehabilitation were excluded. From these studies, we emphasize the methodologic and technical details of these tools as applicable for assessing and inducing plasticity. Because both tools have only recently been used for rehabilitation, the majority of the articles selected for this review have been published only within the last 10 years. We used the PubMed and Compendex databases to find relevant peer-reviewed studies for this review. The studies were required to be relevant to rehabilitation and to use TMS or robotics methodologies. Guidelines were applied via independent extraction by multiple observers. Despite the limited amount of research using these procedures for assessing and inducing neuroplasticity, there is growing evidence that both TMS and robotics can be very effective, inexpensive, and convenient ways for assessing and inducing rehabilitation. Although TMS has primarily been used as an assessment tool for motor function, an increasing number of studies are using TMS as a tool to directly induce plasticity and improve motor function. Similarly, robotic devices have been used for rehabilitation because of their suitability for delivery of highly repeatable training. New directions in robotics-assisted rehabilitation are taking advantage of novel measurements that can be acquired via the devices, enabling unique methods of assessment of motor recovery. As refinements in technology and advances in our knowledge continue, TMS and robotics should play an increasing role in assessing and promoting the recovery of function. Ongoing and future studies combining TMS and robotics within the same populations may

  1. Effects of rehabilitation training on apoptosis of nerve cells and the recovery of neural and motor functions in rats with ischemic stroke through the PI3K/Akt and Nrf2/ARE signaling pathways.

    Science.gov (United States)

    Jin, Xiao-Fei; Wang, Shan; Shen, Min; Wen, Xin; Han, Xin-Rui; Wu, Jun-Chang; Tang, Gao-Zhuo; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin

    2017-09-01

    This study was designed in order to investigate the effects between rehabilitation training on the apoptosis of nerve cells and the recovery of neural and motor functions of rats with ischemic stroke by way of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) and nuclear factor E2-related factor 2/antioxidant responsive element (Nrf2/ARE) signaling pathways. In total, 110 healthy adult male Sprague-Dawley (SD) rats were selected in order to take part in this study. Ninety SD rats were used in order to establish the middle cerebral artery occlusion (MCAO), among which 80 rats were randomly assigned as part of the natural recovery, natural recovery+Rp-PI3K (the rats injected with PI3K/Akt inhibitor LY294002), rehabilitation training, and rehabilitation training+Rp-PI3K groups. Meanwhile, 20 rats were selected as part of the sham operation group. The neural and motor functions of these rats were evaluated using a balance beam test and the Bederson score. The mRNA expressions of PI3K, Akt, Nrf2 and HO-1 were measured using an RT-qPCR. The protein expressions of PI3K, p-PI3K, Akt, p-Akt, Nrf2 and HO-1 were also detected by using western blotting and the immunohistochemistry process. The cell cycle and cell apoptosis were detected by using a flow cytometry and TUNEL assay. The sham operation group exhibited lower neural and motor function scores than other groups. At the 7, 14, and 21 d marks of this study, the neural and motor function scores were increased in the natural recovery, natural recovery+Rp-PI3K, and rehabilitation training+Rp-PI3K groups in comparison with the rehabilitation training group but found to be decreased in the natural recovery group in comparison with the natural recovery+Rp-PI3K group. In comparison with the sham operation group, expressions of PI3K, Nrf2 and HO-1, and proportions of p-PI3K/PI3K and p-Akt/Akt were all higher in the natural recovery, rehabilitation training, and rehabilitation training+Rp-PI3K groups. Same trends were

  2. Effect of low-energy extracorporeal shock wave on vascular regeneration after spinal cord injury and the recovery of motor function.

    Science.gov (United States)

    Wang, Lei; Jiang, Yuquan; Jiang, Zheng; Han, Lizhang

    2016-01-01

    Latest studies show that low-energy extracorporeal shock wave therapy (ESWT) can upregulate levels of vascular endothelial growth factor (VEGF). VEGF can ease nervous tissue harm after spinal cord injury (SCI). This study aims to explore whether low-energy ESWT can promote expression of VEGF, protect nervous tissue after SCI, and improve motor function. Ninety adult female rats were divided into the following groups: Group A (simple laminectomy), Group B (laminectomy and low-energy ESWT), Group C (spinal cord injury), and Group D (spinal cord injury and low-energy ESWT). Impinger was used to cause thoracic spinal cord injury. Low-energy ESWT was applied as treatment after injury three times a week, for 3 weeks. After SCI, the Basso, Beattie, and Bresnahan (BBB) scale was used to evaluate motor function over a period of 42 days at different time points. Hematoxylin and eosin (HE) staining was used to evaluate nerve tissue injury. Neuronal nuclear antigen (NeuN) staining was also used to evaluate loss of neurons. Polymerase chain reaction was used to detect messenger RNA (mRNA) expression of VEGF and its receptor fms-like tyrosine kinase 1 (Flt-1). Immunostaining was used to evaluate VEGF protein expression level in myeloid tissue. BBB scores of Groups A and B showed no significant result related to dyskinesia. HE and NeuN staining indicated that only using low-energy ESWT could not cause damage of nervous tissue in Group B. Recovery of motor function at 7, 35, and 42 days after SCI in Group D was better than that in Group C (Pfunction. It can be regarded as one mode of clinical routine adjunctive therapy for spinal injury.

  3. Effect of rotor rectifier on motor performance in slip recovery drives

    Energy Technology Data Exchange (ETDEWEB)

    Al Zahawi, B.A.T.; Jones, B.L.; Drury, W.

    1987-01-01

    The static Kramer system, comprising a slip-ring induction motor and a slip energy recovery circuit, is one of the simplest and most efficient forms of ac variable-speed drive. It is sometimes used to upgrade drives which had originally been designed for fixed speed operation, often with substantial energy savings. In such cases, it is important to know how the inclusion of a rectifier in the slip energy recovery circuit affects motor performance. A satisfactory model for the motor-rectifier combination is also needed to provide a sound basis for assessing alternative forms of recovery systems which aim to overcome the principal shortcomings of the drive, namely the magnitude and variability of its reactive power. Despite its simplicity, the Kramer drive presents a formidable analytical challenge. Rigorous analysis is particularly difficult and there is a need for a simpler form of analysis when calculating ratings and steady-state performance. The approach taken in this paper uses a transformer-type model for the motor, and largely analytical expressions for predicting torque, stator power, stator reactive power and rectifier output voltage. Motor resistances, diode characteristics, and the several possible rectifier overlap modes are included. It is shown that the rectifier has an adverse effect on stator reactive power, power factor, and peak torque, particularly at speeds well below synchronous, requiring some derating of motors designed for resistance control and also requiring additional power factor correction. While the analysis does not cater to variations caused by harmonics at some speeds, it does provide a quick, accurate method of predicting performance over most sections of the operating range. 12 refs., 11 figs.

  4. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats.

    Science.gov (United States)

    Schönfeld, Lisa-Maria; Jahanshahi, Ali; Lemmens, Evi; Bauwens, Matthias; Hescham, Sarah-Anna; Schipper, Sandra; Lagiere, Melanie; Hendrix, Sven; Temel, Yasin

    2017-01-01

    Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.

  5. Effect of sensory and motor connectivity on hand function in pediatric hemiplegia.

    Science.gov (United States)

    Gupta, Disha; Barachant, Alexandre; Gordon, Andrew M; Ferre, Claudio; Kuo, Hsing-Ching; Carmel, Jason B; Friel, Kathleen M

    2017-11-01

    We tested the hypothesis that somatosensory system injury would more strongly affect movement than motor system injury in children with unilateral cerebral palsy (USCP). This hypothesis was based on how somatosensory and corticospinal circuits adapt to injury during development; whereas the motor system can maintain connections to the impaired hand from the uninjured hemisphere, this does not occur in the somatosensory system. As a corollary, cortical injury strongly impairs sensory function, so we hypothesized that cortical lesions would impair hand function more than subcortical lesions. Twenty-four children with unilateral cerebral palsy had physiological and anatomical measures of the motor and somatosensory systems and lesion classification. Motor physiology was performed with transcranial magnetic stimulation and somatosensory physiology with vibration-evoked electroencephalographic potentials. Tractography of the corticospinal tract and the medial lemniscus was performed with diffusion tensor imaging, and lesions were classified by magnetic resonance imaging. Anatomical and physiological results were correlated with measures of hand function using 2 independent statistical methods. Children with disruptions in the somatosensory connectivity and cortical lesions had the most severe upper extremity impairments, particularly somatosensory function. Motor system connectivity was significantly correlated with bimanual function, but not unimanual function or somatosensory function. Both sensory and motor connectivity impact hand function in children with USCP. Somatosensory connectivity could be an important target for recovery of hand function in children with USCP. Ann Neurol 2017;82:766-780. © 2017 American Neurological Association.

  6. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  7. Functional neurologic recovery in two dogs diagnosed with severe

    Directory of Open Access Journals (Sweden)

    Mônica Vicky Bahr Arias

    2015-04-01

    Full Text Available Traumatic injuries to the vertebral column, spinal cord, and cauda equina nerve roots occur frequently in human and veterinary medicine and lead to devastating consequences. Complications include partial or complete loss of motor, sensory, and visceral functions, which are among the main causes of euthanasia in dogs. The present case report describes neurological functional recovery in two dogs that were treated surgically for severe spinal fracture and vertebral luxation. In the first case, a stray, mixed breed puppy was diagnosed with thoracolumbar syndrome and Schiff-Scherrington posture, as well as a T13 caudal epiphyseal fracture with 100% luxation between vertebrae T13 and L1; despite these injuries, the animal did show deep pain sensation in the pelvic limbs. Decompression through hemilaminectomy and spinal stabilization with vertebral body pins and bone cement were performed, and the treatment was supplemented with physiotherapy and acupuncture . In the second case, a mixed breed dog was diagnosed with a vertebral fracture and severe luxation between L6 and L7 after a vehicular trauma, but maintained nociception and perineal reflex. Surgical stabilization of the spine was performed using a modified dorsal segmental fixation technique Both patients showed significant recovery of neurological function. Complete luxation of the spinal canal observed radiographically does not mean a poor prognosis, and in some cases, motor, sensory, and visceral functions all have the potential for recovery. In the first case the determining factor for good prognosis was the presence of deep pain perception, and in the second case the prognosis was determined by the presence of sensitivity and anal sphincter tone during the initial neurological examination

  8. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  9. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury.

    Science.gov (United States)

    Morrison, Sarah A; Lorenz, Douglas; Eskay, Carol P; Forrest, Gail F; Basso, D Michele

    2018-03-01

    To determine the impact of long-term, body weight-supported locomotor training after chronic, incomplete spinal cord injury (SCI), and to estimate the health care costs related to lost recovery potential and preventable secondary complications that may have occurred because of visit limits imposed by insurers. Prospective observational cohort with longitudinal follow-up. Eight outpatient rehabilitation centers that participate in the Christopher & Dana Reeve Foundation NeuroRecovery Network (NRN). Individuals with motor incomplete chronic SCI (American Spinal Injury Association Impairment Scale C or D; N=69; 0.1-45y after SCI) who completed at least 120 NRN physical therapy sessions. Manually assisted locomotor training (LT) in a body weight-supported treadmill environment, overground standing and stepping activities, and community integration tasks. International Standards for Neurological Classification of Spinal Cord Injury motor and sensory scores, orthostatic hypotension, bowel/bladder/sexual function, Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI), Berg Balance Scale, Modified Functional Reach, 10-m walk test, and 6-minute walk test. Longitudinal outcome measure collection occurred every 20 treatments and at 6- to 12-month follow-up after discharge from therapy. Significant improvement occurred for upper and lower motor strength, functional activities, psychological arousal, sensation of bowel movement, and SCI-FAI community ambulation. Extended training enabled minimal detectable changes at 60, 80, 100, and 120 sessions. After detectable change occurred, it was sustained through 120 sessions and continued 6 to 12 months after treatment. Delivering at least 120 sessions of LT improves recovery from incomplete chronic SCI. Because walking reduces rehospitalization, LT delivered beyond the average 20-session insurance limit can reduce rehospitalizations and long-term health costs. Copyright © 2018 American Congress of Rehabilitation Medicine

  10. Supporting Stroke Motor Recovery Through a Mobile Application: A Pilot Study.

    Science.gov (United States)

    Lawson, Sonia; Tang, Ziying; Feng, Jinjuan

    Neuroplasticity and motor learning are promoted with repetitive movement, appropriate challenge, and performance feedback. ARMStrokes, a smartphone application, incorporates these qualities to support motor recovery. Engaging exercises are easily accessible for improved compliance. In a multiple-case, mixed-methods pilot study, the potential of this technology for stroke motor recovery was examined. Exercises calibrated to the participant's skill level targeted forearm, elbow, and shoulder motions for a 6-wk protocol. Visual, auditory, and vibration feedback promoted self-assessment. Pre- and posttest data from 6 chronic stroke survivors who used the app in different ways (i.e., to measure active or passive motion, to track endurance) demonstrated improvements in accuracy of movements, fatigue, range of motion, and performance of daily activities. Statistically significant changes were not obtained with this pilot study. Further study on the efficacy of this technology is supported. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  11. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery.

    Directory of Open Access Journals (Sweden)

    Tatsuya Yamamoto

    Full Text Available We previously reported that secreted phosphoprotein 1 (SPP1 mRNA is expressed in neurons whose axons form the corticospinal tract (CST of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1 was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat. SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.

  12. Structural equation modeling of motor impairment, gross motor function, and the functional outcome in children with cerebral palsy.

    Science.gov (United States)

    Park, Eun-Young; Kim, Won-Ho

    2013-05-01

    Physical therapy intervention for children with cerebral palsy (CP) is focused on reducing neurological impairments, improving strength, and preventing the development of secondary impairments in order to improve functional outcomes. However, relationship between motor impairments and functional outcome has not been proved definitely. This study confirmed the construct of motor impairment and performed structural equation modeling (SEM) between motor impairment, gross motor function, and functional outcomes of regarding activities of daily living in children with CP. 98 children (59 boys, 39 girls) with CP participated in this cross-sectional study. Mean age was 11 y 5 mo (SD 1 y 9 mo). The Manual Muscle Test (MMT), the Modified Ashworth Scale (MAS), range of motion (ROM) measurement, and the selective motor control (SMC) scale were used to assess motor impairments. Gross motor function and functional outcomes were measured using the Gross Motor Function Measure (GMFM) and the Functional Skills domain of the Pediatric Evaluation of Disability Inventory (PEDI) respectively. Measurement of motor impairment was consisted of strength, spasticity, ROM, and SMC. The construct of motor impairment was confirmed though an examination of a measurement model. The proposed SEM model showed good fit indices. Motor impairment effected gross motor function (β=-.0869). Gross motor function and motor impairment affected functional outcomes directly (β=0.890) and indirectly (β=-0.773) respectively. We confirmed that the construct of motor impairment consist of strength, spasticity, ROM, and SMC and it was identified through measurement model analysis. Functional outcomes are best predicted by gross motor function and motor impairments have indirect effects on functional outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Motor recovery by improvement of limb-kinetic apraxia in a chronic stroke patient.

    Science.gov (United States)

    Jang, Sung Ho

    2013-01-01

    We report on a chronic stroke patient who showed motor recovery by improvement of limb-kinetic apraxia (LKA) after undergoing intensive rehabilitation for a period of one month, which was demonstrated by diffusion tensor tractography (DTT) and transcranial magnetic stimulation (TMS). A 50-year-old male patient presented with severe paralysis of the left extremities at the onset of thalamic hemorrhage. At thirty months after onset, the patient exhibited moderate weakness of his left upper and lower extremities. In addition, he exhibited a slow, clumsy, and mutilated movement pattern during grasp-release movements of his left hand. During a one-month period of intensive rehabilitation, which was started at thrity months after onset, the patient showed 22% motor recovery of the left extremities. The slow, clumsy, and mutilated movement pattern of the left hand almost disappeared. DTTs of the corticospinal tract (CST) in both hemispheres originated from the cerebral cortex, including the primary motor cortex, and passed along the known CST pathway. The DTT of the right CST was located anterior to the old hemorrhagic lesion. TMS study performed at thirty and thirty-one months after onset showed normal and similar findings for motor evoked potential in terms of latency and amplitude of the left hand muscle. We think that the motor weakness of the left extremities in this patient was mainly ascribed to LKA and that most of the motor recovery during a one-month period of rehabilitation was attributed to improvement of LKA.

  14. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  15. Sensory-parietal cortical stimulation improves motor recovery in severe capsular infarct.

    Science.gov (United States)

    Kim, Ra Gyung; Cho, Jongwook; Ree, Jinkyue; Kim, Hyung-Sun; Rosa-Neto, Pedro; Kim, Jin-Myung; Lee, Min-Cheol; Kim, Hyoung-Ihl

    2016-12-01

    The prevalence of subcortical white matter strokes in elderly patients is on the rise, but these patients show mixed responses to conventional rehabilitative interventions. To examine whether cortical electrical stimulation can promote motor recovery after white matter stroke, we delivered stimulation to a small or wide region of sensory-parietal cortex for two weeks in a rodent model of circumscribed subcortical capsular infarct. The sham-operated group (SOG) showed persistent and severe motor impairments together with decreased activation in bilateral sensorimotor cortices and striatum. In contrast, sensory-parietal cortex stimulation significantly improved motor recovery: final recovery levels were 72.9% of prelesion levels in the wide stimulation group (WSG) and 37% of prelesion levels in the small stimulation group (SSG). The microPET imaging showed reversal of cortical diaschisis in both groups: in both hemispheres for the WSG, and in the hemisphere ipsilateral to stimulation in the SSG. In addition, we observed activation of the corpus callosum and subcortical corticostriatal structures after stimulation. The results from the c-Fos mapping study were grossly consistent with the microPET imaging. Sensory-parietal cortex stimulation may therefore be a useful strategy for overcoming the limits of rehabilitative training in patients with severe forms of subcortical capsular infarct. © The Author(s) 2015.

  16. Toward a more personalized motor function rehabilitation in Myotonic dystrophy type 1: The role of neuroplasticity.

    Directory of Open Access Journals (Sweden)

    Simona Portaro

    Full Text Available Myotonic dystrophy type 1 (DM1 is the most prevalent adult muscular dystrophy, often accompanied by impairments in attention, memory, visuospatial and executive functions. Given that DM1 is a multi-system disorder, it requires a multi-disciplinary approach, including effective rehabilitation programs, focusing on the central nervous system neuroplasticity, in order to develop patient-tailored rehabilitative procedures for motor function recovery. Herein, we performed a transcranial magnetic stimulation (TMS study aimed at investigating central motor conduction time, sensory-motor plasticity, and cortical excitability in 7 genetically defined DM1 patients. As compared to healthy individuals, DM1 patients showed a delayed central motor conduction time and an abnormal sensory-motor plasticity, with no alteration of cortical excitability. These findings may be useful to define patient-tailored motor rehabilitative programs.

  17. Community-Based Rehabilitation to Improve Stroke Survivors' Rehabilitation Participation and Functional Recovery.

    Science.gov (United States)

    Ru, Xiaojuan; Dai, Hong; Jiang, Bin; Li, Ninghua; Zhao, Xingquan; Hong, Zhen; He, Li; Wang, Wenzhi

    2017-07-01

    The aim of this study was to evaluate the effectiveness of a community-based rehabilitation appropriate technique (CRAT) intervention program in increasing rehabilitation participation and improving functional recovery of stroke survivors. This study followed a quasi-experimental design. In each of 5 centers servicing approximately 50,000 individuals, 2 communities were designated as either the intervention or control community. A CRAT intervention program, including 2-year rehabilitation education and 3-month CRAT treatment, was regularly implemented in the intervention communities, whereas there was no special intervention in the control community. Two sampling surveys, at baseline and after intervention, were administered to evaluate the rehabilitation activity undertaken. In intervention communities, stroke survivor's motor function, daily activity, and social activity were evaluated pretreatment and posttreatment, using the Fugl-Meyer Motor Function Assessment, Barthel index, and Social Functional Activities Questionnaire. The proportion of individuals participating in rehabilitation-related activity was increased significantly (P rehabilitation (P 0.05). Community-based rehabilitation appropriate technique increases rehabilitation participation rates and enhances motor function, daily activity, and social activity of stroke survivors.

  18. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Science.gov (United States)

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  19. Postoperative impairment of motor function at train-of-four ratio ≥0.9 cannot be improved by sugammadex (1 mg kg-1).

    Science.gov (United States)

    Baumüller, E; Schaller, S J; Chiquito Lama, Y; Frick, C G; Bauhofer, T; Eikermann, M; Fink, H; Blobner, M

    2015-05-01

    A train-of-four ratio (TOFR) ≥0.9 measured by quantitative neuromuscular monitoring is accepted as an indication of sufficient neuromuscular recovery for extubation, even though many postsynaptic acetylcholine receptors may still be inhibited. We investigated whether antagonism with sugammadex after spontaneous recovery to TOFR≥0.9 further improves muscle function or subjective well-being. Following recovery to TOFR≥0.9 and emergence from anaesthesia, 300 patients randomly received either sugammadex 1.0 mg kg(-1) or placebo. Fine motor function (Purdue Pegboard Test) and maximal voluntary grip strength were measured before and after surgery (before and after test drug administration). At discharge from the postanaesthesia care unit, well-being was assessed with numerical analogue scales and the Quality-of-Recovery Score 40 (QoR-40). Patients' fine motor function [6 (sd 4) vs 15 (3) pegs (30 s)(-1), Psugammadex or placebo, motor function was significantly improved in both groups but did not reach the preoperative level. There was no difference between groups at any time. Global well-being was unaffected (QoR-40: placebo, 174 vs 185; sugammadex, 175 vs 186, P>0.05). Antagonizing rocuronium at TOF≥0.9 with sugammadex 1.0 mg kg(-) (1) did not improve patients' motor function or well-being when compared with placebo. Our data support the view that TOFR≥0.9 measured by electromyography signifies sufficient recovery of neuromuscular function. The trial is registered at ClinicalTrials.gov (NCT01101139). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Directory of Open Access Journals (Sweden)

    Vincenzo eDi Lazzaro

    2016-01-01

    Full Text Available The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization.We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH and unaffected hemisphere (UH by measuring resting and active motor threshold and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI, to evidence hemispheric asymmetry. Active motor threshold differed significantly between AH and UH only in the male group (p=0.004, not in females (p>0.200, and both LIAMT and LIRMT were significantly higher in males than in females (respectively p=0.033 and p=0.042. LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.

  1. Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats.

    Science.gov (United States)

    Sinis, Nektarios; Horn, Frauke; Genchev, Borislav; Skouras, Emmanouil; Merkel, Daniel; Angelova, Srebrina K; Kaidoglou, Katerina; Michael, Joern; Pavlov, Stoyan; Igelmund, Peter; Schaller, Hans-Eberhard; Irintchev, Andrey; Dunlop, Sarah A; Angelov, Doychin N

    2009-10-01

    The outcome of peripheral nerve injuries requiring surgical repair is poor. Recent work has suggested that electrical stimulation (ES) of denervated muscles could be beneficial. Here we tested whether ES has a positive influence on functional recovery after injury and surgical repair of the facial nerve. Outcomes at 2 months were compared to animals receiving sham stimulation (SS). Starting on the first day after end-to-end suture (facial-facial anastomosis), electrical stimulation (square 0.1 ms pulses at 5 Hz at an ex tempore established threshold amplitude of between 3.0 and 5.0V) was delivered to the vibrissal muscles for 5 min a day, 3 times a week. Restoration of vibrissal motor performance following ES or SS was evaluated using the video-based motion analysis and correlated with the degree of collateral axonal branching at the lesion site, the number of motor endplates in the target musculature and the quality of their reinnervation, i.e. the degree of mono- versus poly-innervation. Neither protocol reduced collateral branching. ES did not improve functional outcome, but rather reduced the number of innervated motor endplates to approximately one-fifth of normal values and failed to reduce the proportion of poly-innervated motor endplates. We conclude that ES is not beneficial for recovery of whisker function after facial nerve repair in rats.

  2. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals

    DEFF Research Database (Denmark)

    Lundell, Henrik; Christensen, Mark Schram; Barthélemy, Dorothy

    2011-01-01

    Recovery of function following lesions in the nervous system requires adaptive changes in surviving circuitries. Here we investigate whether changes in cerebral activation are correlated to spinal cord atrophy and recovery of functionality in individuals with incomplete spinal cord injury (SCI). 19...... hand and the functional ability of the SCI participants measured by the clinical motor score on the other. There was no significant correlation between activation in any other cerebral area and the motor score. Activation in ipsilateral somatosensory cortex (S1), M1 and PMC was negatively correlated...... to the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials...

  3. Exercise promotes motor functional recovery in rats with corticospinal tract injury: anti-apoptosis mechanism

    Directory of Open Access Journals (Sweden)

    Ting-ting Hou

    2015-01-01

    Full Text Available Studies have shown that exercise interventions can improve functional recovery after spinal cord injury, but the mechanism of action remains unclear. To investigate the mechanism, we established a unilateral corticospinal tract injury model in rats by pyramidotomy, and used a single pellet reaching task and horizontal ladder walking task as exercise interventions postoperatively. Functional recovery of forelimbs and forepaws in the rat models was noticeably enhanced after the exercises. Furthermore, TUNEL staining revealed significantly fewer apoptotic cells in the spinal cord of exercised rats, and western blot analysis showed that spinal cord expression of the apoptosis-related protein caspase-3 was significantly lower, and the expression of Bcl-2 was significantly higher, while the expression of Bax was not signifiantly changed after exercise, compared with the non-exercised group. Expression of these proteins decreased with time after injury, towards the levels observed in sham-operated rats, however at 4 weeks postoperatively, caspase-3 expression remained significantly greater than in sham-operated rats. The present findings indicate that a reduction in apoptosis is one of the mechanisms underlying the improvement of functional recovery by exercise interventions after corticospinal tract injury.

  4. Causal Link between the Cortico-Rubral Pathway and Functional Recovery through Forced Impaired Limb Use in Rats with Stroke

    Science.gov (United States)

    Ishida, Akimasa; Isa, Kaoru; Umeda, Tatsuya; Kobayashi, Kazuto; Kobayashi, Kenta; Hida, Hideki

    2016-01-01

    Intensive rehabilitation is believed to induce use-dependent plasticity in the injured nervous system; however, its causal relationship to functional recovery is unclear. Here, we performed systematic analysis of the effects of forced use of an impaired forelimb on the recovery of rats after lesioning the internal capsule with intracerebral hemorrhage (ICH). Forced limb use (FLU) group rats exhibited better recovery of skilled forelimb functions and their cortical motor area with forelimb representation was restored and enlarged on the ipsilesional side. In addition, abundant axonal sprouting from the reemerged forelimb area was found in the ipsilateral red nucleus after FLU. To test the causal relationship between the plasticity in the cortico-rubral pathway and recovery, loss-of-function experiments were conducted using a double-viral vector technique, which induces selective blockade of the target pathway. Blockade of the cortico-rubral tract resulted in deficits of the recovered forelimb function in FLU group rats. These findings suggest that the cortico-rubral pathway is a substrate for recovery induced by intensive rehabilitation after ICH. SIGNIFICANCE STATEMENT The research aimed at determining the causal linkage between reorganization of the motor pathway induced by intensive rehabilitative training and recovery after stroke. We clarified the expansion of the forelimb representation area of the ipsilesional motor cortex by forced impaired forelimb use (FLU) after lesioning the internal capsule with intracerebral hemorrhaging (ICH) in rats. Anterograde tracing showed robust axonal sprouting from the forelimb area to the red nucleus in response to FLU. Selective blockade of the cortico-rubral pathway by the novel double-viral vector technique clearly revealed that the increased cortico-rubral axonal projections had causal linkage to the recovery of reaching movements induced by FLU. Our data demonstrate that the cortico-rubral pathway is responsible for the

  5. Effect of Auditory Constraints on Motor Learning Depends on Stage of Recovery Post Stroke

    Directory of Open Access Journals (Sweden)

    Viswanath eAluru

    2014-06-01

    Full Text Available In order to develop evidence-based rehabilitation protocols post stroke, one must first reconcile the vast heterogeneity in the post-stroke population and develop protocols to facilitate motor learning in the various subgroups. The main purpose of this study is to show that auditory constraints interact with the stage of recovery post stroke to influence motor learning. We characterized the stages of upper limb recovery using task-based kinematic measures in twenty subjects with chronic hemiparesis, and used a bimanual wrist extension task using a custom-made wrist trainer to facilitate learning of wrist extension in the paretic hand under four auditory conditions: 1 without auditory cueing; 2 to non-musical happy sounds; 3 to self-selected music; and 4 to a metronome beat set at a comfortable tempo. Two bimanual trials (15 s each were followed by one unimanual trial with the paretic hand over six cycles under each condition. Clinical metrics, wrist and arm kinematics and electromyographic activity were recorded. Hierarchical cluster analysis with the Mahalanobis metric based on baseline speed and extent of wrist movement stratified subjects into three distinct groups which reflected their stage of recovery: spastic paresis, spastic co-contraction, and minimal paresis. In spastic paresis, the metronome beat increased wrist extension, but also increased muscle co-activation across the wrist. In contrast, in spastic co-contraction, no auditory stimulation increased wrist extension and reduced co-activation. In minimal paresis, wrist extension did not improve under any condition. The results suggest that auditory task constraints interact with stage of recovery during motor learning after stroke, perhaps due to recruitment of distinct neural substrates over the course of recovery. The findings advance our understanding of the mechanisms of progression of motor recovery and lay the foundation for personalized treatment algorithms post stroke.

  6. The influence of vascularization of transplanted processed allograft nerve on return of motor function in rats.

    Science.gov (United States)

    Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y

    2016-02-01

    Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. © 2014

  7. Recovery of motor deficit accompanying sciatica--subgroup analysis of a randomized controlled trial.

    Science.gov (United States)

    Overdevest, Gijsbert M; Vleggeert-Lankamp, Carmen L A M; Jacobs, Wilco C H; Brand, Ronald; Koes, Bart W; Peul, Wilco C

    2014-09-01

    In patients with sciatica due to a lumbar disc herniation, it is generally recommended to reserve surgical treatment for those who suffer from intolerable pain or those who demonstrate persistent symptoms after conservative management. Controversy exists about the necessity of early surgical intervention for those patients that have an additional motor deficit. The aim of this study was to compare the recovery of motor deficit among patients receiving early surgery to those receiving prolonged conservative treatment. Subgroup analysis of a randomized controlled trial. This subgroup analysis focuses on 150 (53%) of 283 patients with sciatica due to a lumbar disc herniation and whose symptoms at baseline (before randomization) were accompanied by a motor deficit. Motor deficit was assessed through manual muscle testing and graded according to the Medical Research Council (MRC) scale. In total, 150 patients with 6 to 12 weeks of sciatica due to a lumbar disc herniation and whose symptoms were accompanied by a moderate (MRC Grade 4) or severe (MRC Grade 3) motor deficit were randomly allocated to early surgery or prolonged conservative treatment. Repeated standardized neurologic examinations were performed at baseline and at 8, 26, and 52 weeks after randomization. This study was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMW) and the Hoelen Foundation The Hague. Sciatica recovered among seven (10%) of the 70 patients assigned to early surgery before surgery could be performed, and of the 80 patients assigned to conservative treatment, 32 patients (40%) were treated surgically because of intolerable pain. Baseline severity of motor deficit was graded moderate in 84% of patients and severe in 16% of patients. Motor deficit recovered significantly faster among patients allocated to early surgery (p=.01), but the difference was no longer significant at 26 (p=.21) or 52 weeks (p=.92). At 1 year, complete recovery of motor

  8. Evaluation of Motor Recovery in Adult Patients with Hemiplegic stroke

    African Journals Online (AJOL)

    Background: Assessment of treatment efficacy through outcomes evaluation is an established practice in stroke rehabilitation. The evaluation of motor recovery is a cornerstone of the assessment of patients with stroke; and an integral component of stroke rehabilitation. Objective: The purpose of this study was to evaluate ...

  9. Music-supported therapy for stroke motor recovery: theoretical and practical considerations.

    Science.gov (United States)

    Chen, Joyce L

    2018-05-08

    Music may confer benefits for well-being and health. What is the state of knowledge and evidence for a role of music in supporting the rehabilitation of movements after stroke? In this brief perspective, I provide background context and information about stroke recovery in general, in order to spark reflection and discussion for how we think music may impact motor recovery, given the current clinical milieu. © 2018 New York Academy of Sciences.

  10. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  11. Evaluation of functional nerve recovery after reconstruction with a new biodegradable poly (DL-lactide-epsilon-caprolactone) nerve guide

    NARCIS (Netherlands)

    Meek, MF; denDunnen, WFA; Robinson, PH; Pennings, AJ; Schakenraad, JM

    The aim of this study was to evaluate functional nerve recovery following reconstruction of a 1 cm gap in the sciatic nerve of a rat, using a new biodegradable p (DLLA-epsilon-CL) nerve guide. To evaluate both motor and sensory nerve recovery, walking track analysis and electrostimulation tests were

  12. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.

    Science.gov (United States)

    Zareen, N; Shinozaki, M; Ryan, D; Alexander, H; Amer, A; Truong, D Q; Khadka, N; Sarkar, A; Naeem, S; Bikson, M; Martin, J H

    2017-11-01

    Cervical injuries are the most common form of SCI. In this study, we used a neuromodulatory approach to promote skilled movement recovery and repair of the corticospinal tract (CST) after a moderately severe C4 midline contusion in adult rats. We used bilateral epidural intermittent theta burst (iTBS) electrical stimulation of motor cortex to promote CST axonal sprouting and cathodal trans-spinal direct current stimulation (tsDCS) to enhance spinal cord activation to motor cortex stimulation after injury. We used Finite Element Method (FEM) modeling to direct tsDCS to the cervical enlargement. Combined iTBS-tsDCS was delivered for 30min daily for 10days. We compared the effect of stimulation on performance in the horizontal ladder and the Irvine Beattie and Bresnahan forepaw manipulation tasks and CST axonal sprouting in injury-only and injury+stimulation animals. The contusion eliminated the dorsal CST in all animals. tsDCS significantly enhanced motor cortex evoked responses after C4 injury. Using this combined spinal-M1 neuromodulatory approach, we found significant recovery of skilled locomotion and forepaw manipulation skills compared with injury-only controls. The spared CST axons caudal to the lesion in both animal groups derived mostly from lateral CST axons that populated the contralateral intermediate zone. Stimulation enhanced injury-dependent CST axonal outgrowth below and above the level of the injury. This dual neuromodulatory approach produced partial recovery of skilled motor behaviors that normally require integration of posture, upper limb sensory information, and intent for performance. We propose that the motor systems use these new CST projections to control movements better after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  14. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    Directory of Open Access Journals (Sweden)

    Jae-Sung Park

    Full Text Available Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF, brain derived neurotrophic factor (BDNF and insulin-like growth factor-1 (IGF-1, in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  15. EFFECT OF MODIFIED CONSTRAINT INDUCED THERAPY ON UPPERLIMB FUNCTIONAL RECOVERY IN YOUNG STROKE SUBJECTS

    Directory of Open Access Journals (Sweden)

    Kiran Prakash Pappala

    2014-10-01

    Full Text Available Background: The aim of this study is to evaluate the effect of modified constraint induced therapy on upper limb functional recovery in young stroke subjects. Most of the stroke rehabilitation units following conventional rehabilitation methods for treatment of the stroke patients where these methods have been proved to be less useful especially in the young stroke subjects. Hence the purpose of this study is to see the effect of modified constraint induced therapy which is a task specific training method for upperlimb in young stroke subjects. Methods: Total of 40 young stroke subjects who is having minimal motor criterion and met other inclusion criteria were recruited from department of physiotherapy, g.s.l.general hospital. Pre and post intervention measures were taken using Wolf motor function test and Jebsen Taylor hand function test. Results: In this study had shown significant improvements in the modified constraint induced therapy group when compared to the conventional rehabilitation alone. P value between groups was < 0.05. Conclusion: In this study concludes that addition of 15 minutes modified constraint induced movement therapy to conventional physiotherapy is a useful adjunct in functional recovery of upper limb among young stroke subjects

  16. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

    Science.gov (United States)

    Hamamoto, Yuichiro; Ogata, Tadanori; Morino, Tadao; Hino, Masayuki; Yamamoto, Haruyasu

    2007-08-15

    An in vivo study to measure rat spinal cord blood flow in real-time at the site of compression using a newly developed device. To evaluate the change in thoracic spinal cord blood flow by compression force and to clarify the association between blood flow recovery and motor deficiency after a spinal cord compression injury. Until now, no real-time measurement of spinal cord blood flow at the site of compression has been conducted. In addition, it has not been clearly determined whether blood flow recovery is related to motor function after a spinal cord injury. Our blood flow measurement system was a combination of a noncontact type laser Doppler system and a spinal cord compression device. The rat thoracic spinal cord was exposed at the 11th vertebra and spinal cord blood flow at the site of compression was continuously measured before, during, and after the compression. The functioning of the animal's hind-limbs was evaluated by the Basso, Beattie and Bresnahan scoring scale and the frequency of voluntary standing. Histologic changes such as permeability of blood-spinal cord barrier, microglia proliferation, and apoptotic cell death were examined in compressed spinal cord tissue. The spinal blood flow decreased on each increase in the compression force. After applying a 5-g weight, the blood flow decreased to compression), while no significant difference was observed between the 20-minute ischemia group and the sham group. In the 20-minute ischemia group, the rats whose spinal cord blood flow recovery was incomplete showed significant motor function loss compared with rats that completely recovered blood flow. Extensive breakdown of blood-spinal cord barrier integrity and the following microglia proliferation and apoptotic cell death were detected in the 40-minute complete ischemia group. Duration of ischemia/compression and blood flow recovery of the spinal cord are important factors in the recovery of motor function after a spinal cord injury.

  17. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy.

    Science.gov (United States)

    Park, Myoung-Ok

    2017-02-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification Systems, and manual function was measured using the Manual Ability Classification System. [Results] Motor skills in daily activities were significantly different on Gross Motor Function Classification System level and Manual Ability Classification System level. According to the results of multiple regression analysis, children categorized as Gross Motor Function Classification System level III scored lower in terms of performance based motor skills than Gross Motor Function Classification System level I children. Also, when analyzed with respect to Manual Ability Classification System level, level II was lower than level I, and level III was lower than level II in terms of performance based motor skills. [Conclusion] The results of this study indicate that performance-based motor skills differ among children categorized based on Gross Motor Function Classification System and Manual Ability Classification System levels of cerebral palsy.

  18. A new method for predicting functional recovery of stroke patients with hemiplegia: logarithmic modelling.

    Science.gov (United States)

    Koyama, Tetsuo; Matsumoto, Kenji; Okuno, Taiji; Domen, Kazuhisa

    2005-10-01

    To examine the validity and applicability of logarithmic modelling for predicting functional recovery of stroke patients with hemiplegia. Longitudinal postal survey. Stroke patients with hemiplegia staying in a long-term rehabilitation facility, who had been referred from acute medical service 30-60 days after onset. Functional Independence Measure (FIM) scores were periodically assessed during hospitalization. For each individual, a logarithmic formula that was scaled by an interval increase in FIM scores during the initial 2-6 weeks was used for predicting functional recovery. For the study, we recruited 18 patients who showed a wide variety of disability levels on admission (FIM scores 25-107). For each patient, the predicted FIM scores derived from the logarithmic formula matched the actual change in FIM scores. The changes predicted the recovery of motor rather than cognitive functions. Regression analysis showed a close fit between logarithmic modelling and actual FIM scores (across-subject R2 = 0.945). Provided with two initial time-point samplings, logarithmic modelling allows accurate prediction of functional recovery for individuals. Because the modelling is mathematically simple, it can be widely applied in daily clinical practice.

  19. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Science.gov (United States)

    Kitamura, Kazuya; Fujiyoshi, Kanehiro; Yamane, Jun-Ichi; Toyota, Fumika; Hikishima, Keigo; Nomura, Tatsuji; Funakoshi, Hiroshi; Nakamura, Toshikazu; Aoki, Masashi; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2011-01-01

    Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  20. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kazuya Kitamura

    Full Text Available Many therapeutic interventions for spinal cord injury (SCI using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF, which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.

  1. Enhancement Of Motor Recovery Through Left Dorsolateral Prefrontal Cortex Stimulation After Acute Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Shahram Oveisgharan

    2017-02-01

    Full Text Available Background: Two previous studies, which investigated transcranial direct current stimulation (tDCS use in motor recovery after acute ischemic stroke, did not show tDCS to be effective in this regard. We speculated that additional left dorsolateral prefrontal cortex ‎(DLPFC ‎stimulation may enhance post stroke motor recovery.  ‎ Methods: In the present randomized clinical trial, 20 acute ischemic stroke patients were recruited. Patients received real motor cortex (M1 stimulation in both arms of the trial. The two arms differed in terms of real vs. sham stimulation over the left DLPFC‎. Motor component of the Fugl-Meyer upper extremity assessment (FM and Action Research Arm Test (ARAT scores were used to assess primary outcomes, and non-linear mixed effects models were used for data analyses. Results: Primary outcome measures improved more and faster among the real stimulation group. During the first days of stimulations, sham group’s FM scores increased 1.2 scores per day, while real group’s scores increased 1.7 scores per day (P = 0.003. In the following days, FM improvement decelerated in both groups. Based on the derived models, a hypothetical stroke patient with baseline FM score of 15 improves to 32 in the sham stimulation group and to 41 in the real stimulation group within the first month after stroke. Models with ARAT scores yielded nearly similar results. Conclusion: The current study results showed that left DLPFC‎ stimulation in conjunction with M1 stimulation resulted in better motor recovery than M1 stimulation alone.

  2. Miconazole enhances nerve regeneration and functional recovery after sciatic nerve crush injury.

    Science.gov (United States)

    Lin, Tao; Qiu, Shuai; Yan, Liwei; Zhu, Shuang; Zheng, Canbin; Zhu, Qingtang; Liu, Xiaolin

    2018-05-01

    Improving axonal outgrowth and remyelination is crucial for peripheral nerve regeneration. Miconazole appears to enhance remyelination in the central nervous system. In this study we assess the effect of miconazole on axonal regeneration using a sciatic nerve crush injury model in rats. Fifty Sprague-Dawley rats were divided into control and miconazole groups. Nerve regeneration and myelination were determined using histological and electrophysiological assessment. Evaluation of sensory and motor recovery was performed using the pinprick assay and sciatic functional index. The Cell Counting Kit-8 assay and Western blotting were used to assess the proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole promoted axonal regrowth, increased myelinated nerve fibers, improved sensory recovery and walking behavior, enhanced stimulated amplitude and nerve conduction velocity, and elevated proliferation and neurotrophic expression of RSC 96 Schwann cells. Miconazole was beneficial for nerve regeneration and functional recovery after peripheral nerve injury. Muscle Nerve 57: 821-828, 2018. © 2017 Wiley Periodicals, Inc.

  3. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery.

    Science.gov (United States)

    Zhang, Shao-jie; Ke, Zheng; Li, Le; Yip, Shea-ping; Tong, Kai-yu

    2013-04-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague-Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely correlated with the neural

  4. EEG patterns from acute to chronic stroke phases in focal cerebral ischemic rats: correlations with functional recovery

    International Nuclear Information System (INIS)

    Zhang, Shao-jie; Ke, Zheng; Tong, Kai-yu; Li, Le; Yip, Shea-ping

    2013-01-01

    Monitoring the neural activities from the ischemic penumbra provides critical information on neurological recovery after stroke. The purpose of this study is to evaluate the temporal alterations of neural activities using electroencephalography (EEG) from the acute phase to the chronic phase, and to compare EEG with the degree of post-stroke motor function recovery in a rat model of focal ischemic stroke. Male Sprague–Dawley rats were subjected to 90 min transient middle cerebral artery occlusion surgery followed by reperfusion for seven days (n = 58). The EEG signals were recorded at the pre-stroke phase (0 h), acute phase (3, 6 h), subacute phase (12, 24, 48, 72 h) and chronic phase (96, 120, 144, 168 h) (n = 8). This study analyzed post-stroke seizures and polymorphic delta activities (PDAs) and calculated quantitative EEG parameters such as the alpha-to-delta ratio (ADR). The ADR represented the ratio between alpha power and delta power, which indicated how fast the EEG activities were. Forelimb and hindlimb motor functions were measured by De Ryck's test and the beam walking test, respectively. In the acute phase, delta power increased fourfold with the occurrence of PDAs, and the histological staining showed that the infarct was limited to the striatum and secondary sensory cortex. In the subacute phase, the alpha power reduced to 50% of the baseline, and the infarct progressed to the forelimb cortical region. ADRs reduced from 0.23 ± 0.09 to 0.04 ± 0.01 at 3 h in the acute phase and gradually recovered to 0.22 ± 0.08 at 168 h in the chronic phase. In the comparison of correlations between the EEG parameters and the limb motor function from the acute phase to the chronic phase, ADRs were found to have the highest correlation coefficients with the beam walking test (r = 0.9524, p < 0.05) and De Ryck's test (r = 0.8077, p < 0.05). This study measured EEG activities after focal cerebral ischemia and showed that functional recovery was closely

  5. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    Directory of Open Access Journals (Sweden)

    Olavo Biraghi Letaif

    2015-10-01

    Full Text Available OBJECTIVES:To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion.METHODS:In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day.RESULTS:The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers.CONCLUSIONS:Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  6. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats.

    Science.gov (United States)

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; Barros Filho, Tarcísio Eloy Pessoa de; Ferreira, Ricardo; Santos, Gustavo Bispo dos; Rocha, Ivan Dias da; Marcon, Raphael Martus

    2015-10-01

    To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  7. Evaluation of 3D tensor tractography of pyramidal tract depicted by 3T MRI in patients with lacunar infarcts. For prediction of motor function outcome

    International Nuclear Information System (INIS)

    Igase, Keiji; Arai, Masamori; Matsubara, Ichiro; Goishi, Jyunji; Sadamoto, Kazuhiko; Kumon, Yoshiaki; Nagato, Shigeyuki; Seno, Toshimoto; Ohnishi, Takanori

    2007-01-01

    3D tensor tractography (DTT) has been applied to central nervous system (CNS) diseases to depict neuronal fibers. In this study with 3 tesla MRI, we have evaluated DTT to predict outcome of motor function in patients with lacunar infarcts. Fifteen patients with New lacunar infarcts, underwent DTTs with at least one in the acute (mean 1.4 days) and another in the subacute phase (mean 18.7 days). Patients were separated to 2 groups, recovery and non-recovery. Patients in former group had almost complete recovery in motor function 3 month later, while those to latter had a residual hemiparesis. Motor function was assessed with MMT score, which was uniquely stratefied into 12 levels by a modified MMT (manual muscle testing) protocol. DTT was implemented with 3 tesla MRI (Signa Excite; GE) and analyzed with dTV. IISR which was produced by the Department of Radiology, Tokyo University. The pyramidal tract was delineated by setting each region of interest (ROI), with the cerebral peduncle as the seed point and the motor cortex as the target point. The number of pyramidal fibers was identified as drawn lines obtained from a result display. The ratio of the number of fibers (RF) was calculated based on the number of fibers in the injured side relative to the number of fibers in the intact side x 100. In acute phase mean RFs the recovery (70.8±21.6%) and non-recovery (63.5±23.4%) groups were not significantly different. RF of recovery group in subacute phase was 100.5±28.3%, which was significantly higher with that in acute phase, meanwhile there was no significance difference between RFs of non-recovery group in two phases. In addition there was a significant correlation (R 2 =0.89) between MMT score 3 month later and RF in subacute phase in all patients group. There seems to be a correlation between long-term recovery of motor function and increased numbers in pyramidal fibers defected by DTT. Therefore, DTT may have a potential use in predicting the outcome of patients

  8. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Schiaveto-de-Souza, A. [Departamento de Morfofisiologia, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS (Brazil); Silva, C.A. da [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Defino, H.L.A. [Departamento de Orthopedia e Traumatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Bel, E.A.Del [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-04-12

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  9. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    International Nuclear Information System (INIS)

    Schiaveto-de-Souza, A.; Silva, C.A. da; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury

  10. Usefulness of MR coronal imaging of the ''pyramidal line''. Predictive value in motor function of stroke patients

    International Nuclear Information System (INIS)

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori

    1997-01-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ''pyramidal line''). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  11. Usefulness of MR coronal imaging of the ``pyramidal line``. Predictive value in motor function of stroke patients

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kenichi; Matsuzaki, Takayuki; Shimazaki, Mitsunori [Hakodate Red Cross Hospital, Hokkaido (Japan)

    1997-06-01

    A coronal image was obtained along a straight line between the front edge of the medulla and the deepest point of the interpeduncular cistern in the midsagittal plane (the ``pyramidal line``). This coronal image along the pyramidal line revealed the pyramidal tract extending from the internal capsule down to the medulla. Using this technique, we studied 25 patients with motor deficit associated with cerebrovascular disease. We predicted the possibility of their recovery in the subacute stage. We were able to predict the recovery in 23 patients (92%). We conclude that a coronal image along the pyramidal line is useful for the understanding of relation between pyramidal tract and lesion and for predicting motor function. (author)

  12. Functional, electrophysiological recoveries of rats with sciatic nerve lesions following transplantation of elongated DRG cells.

    Science.gov (United States)

    Dayawansa, Samantha; Zhang, Jun; Shih, Chung-Hsuan; Tharakan, Binu; Huang, Jason H

    2016-04-01

    Functional data are essential when confirming the efficacy of elongated dorsal root ganglia (DRG) cells as a substitute for autografting. We present the quantitative functional motor, electrophysiological findings of engineered DRG recipients for the first time. Elongated DRG neurons and autografts were transplanted to bridge 1-cm sciatic nerve lesions of Sprague Dawley (SD) rats. Motor recoveries of elongated DRG recipients (n=9), autograft recipients (n=9), unrepaired rats (n=9) and intact rats (n=6) were investigated using the angle board challenge test following 16 weeks of recovery. Electrophysiology studies were conducted to assess the functional recovery at 16 weeks. In addition, elongated DRGs were subjected to histology assessments. At threshold levels (35° angle) of the angle board challenge test, the autograft recipients', DRG recipients' and unrepaired group's performances were equal to each other and were less than the intact group (pDRG recipients' performance was similar to both the intact group and the autograft nerve recipients, and was better (pDRG constructs had intact signal transmission when recorded over the lesion, while the unrepaired rats did not. It was observed that elongated DRG neurons closely resembled an autograft during histological assessments. Performances of autograft and elongated DRG construct recipients were similar. Elongated DRG neurons should be further investigated as a substitute for autografting.

  13. Long-term administration of fluoxetine to improve motor recovery after stroke

    NARCIS (Netherlands)

    Berends, Hanneke I.; IJzerman, Maarten Joost; Movig, Kris L.L.; van Putten, Michel Johannes Antonius Maria

    2011-01-01

    Evaluation of: Chollet F. Tardy J., Albucher J.F. et al. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol. 10(2), 123–130 (2011). In this study, the authors examined the effects of administration of fluoxetine for 90 days on the

  14. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  15. Quantifying motor recovery after stroke using independent vector analysis and graph-theoretical analysis

    Directory of Open Access Journals (Sweden)

    Jonathan Laney

    2015-01-01

    Full Text Available The assessment of neuroplasticity after stroke through functional magnetic resonance imaging (fMRI analysis is a developing field where the objective is to better understand the neural process of recovery and to better target rehabilitation interventions. The challenge in this population stems from the large amount of individual spatial variability and the need to summarize entire brain maps by generating simple, yet discriminating features to highlight differences in functional connectivity. Independent vector analysis (IVA has been shown to provide superior performance in preserving subject variability when compared with widely used methods such as group independent component analysis. Hence, in this paper, graph-theoretical (GT analysis is applied to IVA-generated components to effectively exploit the individual subjects' connectivity to produce discriminative features. The analysis is performed on fMRI data collected from individuals with chronic stroke both before and after a 6-week arm and hand rehabilitation intervention. Resulting GT features are shown to capture connectivity changes that are not evident through direct comparison of the group t-maps. The GT features revealed increased small worldness across components and greater centrality in key motor networks as a result of the intervention, suggesting improved efficiency in neural communication. Clinically, these results bring forth new possibilities as a means to observe the neural processes underlying improvements in motor function.

  16. Effects of gross motor function and manual function levels on performance-based ADL motor skills of children with spastic cerebral palsy

    OpenAIRE

    Park, Myoung-Ok

    2017-01-01

    [Purpose] The purpose of this study was to determine effects of Gross Motor Function Classification System and Manual Ability Classification System levels on performance-based motor skills of children with spastic cerebral palsy. [Subjects and Methods] Twenty-three children with cerebral palsy were included. The Assessment of Motor and Process Skills was used to evaluate performance-based motor skills in daily life. Gross motor function was assessed using Gross Motor Function Classification S...

  17. The sensory side of post-stroke motor rehabilitation.

    Science.gov (United States)

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  18. Evaluation of functional nerve recovery after reconstruction with a poly (DL-lactide-epsilon-caprolactone) nerve guide, filled with modified denatured muscle tissue

    NARCIS (Netherlands)

    Meek, MF; Den Dunnen, WFA; Schakenraad, JM; Robinson, PH

    1996-01-01

    The aim of this study was to compare the speed of functional nerve recovery after reconstruction with a biodegradable p(DLLA-epsilon -CL) nerve guide, as filled with either modified denatured muscle tissue (MDMT) or phosphate-buffered saline (PBS). To evaluate both motor and sensory nerve recovery,

  19. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    George F. Wittenberg

    2017-02-01

    Full Text Available Background and Purpose: The brain changes that underlie therapy-induced improvement in motor function after stroke remain obscure. This study sought to demonstrate the feasibility and utility of measuring motor system physiology in a clinical trial of intensive upper extremity rehabilitation in chronic stroke-related hemiparesis. Methods: This was a substudy of two multi-center clinical trials of intensive robotic and intensive conventional therapy arm therapy in chronic, significantly hemiparetic, stroke patients. Transcranial magnetic stimulation was used to measure motor cortical output to the biceps and extensor digitorum communus muscles. Magnetic resonance imaging (MRI was used to determine the cortical anatomy, as well as to measure fractional anisotropy, and blood oxygenation (BOLD during an eyes-closed rest state. Region-of-interest time-series correlation analysis was performed on the BOLD signal to determine interregional connectivity. Functional status was measured with the upper extremity Fugl-Meyer and Wolf Motor Function Test. Results: Motor evoked potential (MEP presence was associated with better functional outcomes, but the effect was not significant when considering baseline impairment. Affected side internal capsule fractional anisotropy was associated with better function at baseline. Affected side primary motor cortex (M1 activity became more correlated with other frontal motor regions after treatment. Resting state connectivity between affected hemisphere M1 and dorsal premotor area (PMAd predicted recovery. Conclusions: Presence of motor evoked potentials in the affected motor cortex and its functional connectivity with PMAd may be useful in predicting recovery. Functional connectivity in the motor network shows a trends towards increasing after intensive robotic or non-robotic arm therapy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00372411 \\& NCT00333983.

  20. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Science.gov (United States)

    Di Lazzaro, Vincenzo; Pellegrino, Giovanni; Di Pino, Giovanni; Ranieri, Federico; Lotti, Fiorenza; Florio, Lucia; Capone, Fioravante

    2016-01-01

    The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization. We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH) and unaffected hemisphere (UH) by measuring resting and active motor threshold (AMT) and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS) of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI), to evidence hemispheric asymmetry. AMT differed significantly between AH and UH only in the male group (p = 0.004), not in females (p > 0.200), and both LIAMT and LIRMT were significantly higher in males than in females (respectively p = 0.033 and p = 0.042). LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery. PMID:26858590

  1. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  2. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat

    NARCIS (Netherlands)

    Hendriks, William T J; Eggers, R.; Ruitenberg, Marc J; Blits, Bas; Hamers, Frank P T; Verhaagen, J.; Boer, Gerard J

    The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or

  3. Evaluation of Morphological and Functional Nerve Recovery of Rat Sciatic Nerve with a Hyaff11-Based Nerve Guide

    Directory of Open Access Journals (Sweden)

    K. Jansen

    2006-01-01

    Full Text Available Application of a Hyaff11-based nerve guide was studied in rats. Functional tests were performed to study motor nerve recovery. A withdrawal reflex test was performed to test sensory recovery. Morphology was studied by means of histology on explanted tissue samples. Motor nerve recovery was established within 7 weeks. Hereafter, some behavioral parameters like alternating steps showed an increase in occurence, while others remained stable. Sensory function was observed within the 7 weeks time frame. Nerve tissue had bridged the 10-mm gap within 7 weeks. The average nerve fiber surface area increased significantly in time. In situ degradation of the nerve conduit was fully going on at week 7 and tubes had collapsed by then. At weeks 15 and 21, the knitted tube wall structure was completely surrounded by macrophages and giant cells, and matrix was penetrating the tube wall. We conclude that a Hyaff11-based nerve guide can be used to bridge short peripheral nerve defects in rat. However, adaptations need to be made.

  4. The impact of falls on motor and cognitive recovery after discharge from in-patient stroke rehabilitation

    Science.gov (United States)

    Wong, Jennifer S.; Brooks, Dina; Inness, Elizabeth L.; Mansfield, Avril

    2016-01-01

    Background Falls are common among community-dwelling stroke survivors. The aim of this study was to (1) compare motor and cognitive outcomes between individuals who fell in the six months post-discharge from in-patient stroke rehabilitation and those who did not fall, and (2) explore potential mechanisms underlying the relationship between falls and recovery of motor and cognitive function. Methods Secondary analysis of a prospective cohort study of individuals discharged home from in-patient rehabilitation was conducted. Participants were recruited at discharge and completed a six-month falls monitoring period using postcards with follow-up. Non-fallers and fallers were compared at the six-month follow-up assessment on the Berg Balance Scale (BBS), Chedoke-McMaster Stroke Assessment (CMSA), gait speed, and Montreal Cognitive Assessment (MoCA). Measures of balance confidence and physical activity were also assessed. Results 23 fallers were matched to 23 non-fallers on age and functional balance scores at discharge. A total of 43 falls were reported during the study period (8 participants fell more than once). At follow-up, BBS scores (p=0.0066) and CMSA foot scores (p=0.0033) were significantly lower for fallers than non-fallers. The two groups did not differ on CMSA leg scores (p=0.049), gait speed (p=0.47) or MoCA (p=0.23). There was no significant association between change in balance confidence scores and change in physical activity levels among all participants from the first and third questionnaire (r=0.27, p=0.08). Conclusions Performance in balance and motor recovery of the foot were compromised in fallers when compared to non-fallers at six months post-discharge from in-patient stroke rehabilitation. PMID:27062418

  5. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    International Nuclear Information System (INIS)

    Welch, Kevin D.; Pfister, James A.; Lima, Flavia G.; Green, Benedict T.; Gardner, Dale R.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  6. Motor function domains in alternating hemiplegia of childhood.

    Science.gov (United States)

    Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A

    2017-08-01

    To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.

  7. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Directory of Open Access Journals (Sweden)

    A. Schiaveto-de-Souza

    2013-12-01

    Full Text Available Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  8. Movement does not promote recovery of motor output following acute experimental muscle pain

    DEFF Research Database (Denmark)

    Schabrun, Siobhan M.; Palsson, Thorvaldur Skuli; Thapa, Tribikram

    2018-01-01

    Objective.:  To examine the effect of motor activity on the magnitude and duration of altered corticomotor output following experimental muscle pain. Design. : Experimental, pre-post test. Setting. : University laboratory. Subjects. : Twenty healthy individuals. Methods.:  Participants were rando....... Understanding corticomotor depression in the postpain period and what factors promote recovery has relevance for clinical pain syndromes where ongoing motor dysfunction, in the absence of pain, may predispose to symptom persistence or recurrence....

  9. Mechanism of Restoration of Forelimb Motor Function after Cervical Spinal Cord Hemisection in Rats: Electrophysiological Verification

    Directory of Open Access Journals (Sweden)

    Takumi Takeuchi

    2017-01-01

    Full Text Available The objective of this study was to electrophysiologically assess the corticospinal tracts of adult rats and the recovery of motor function of their forelimbs after cervical cord hemisection. Of 39 adult rats used, compound muscle action potentials (CMAPs of the forelimbs of 15 rats were evaluated, before they received left C5 segmental hemisection of the spinal cord, by stimulating the pyramid of the medulla oblongata on one side using an exciting microelectrode. All 15 rats exhibited contralateral electrical activity, but their CMAPs disappeared after hemisection. The remaining 24 rats received hemisection first, and CMAPs of 12 rats were assessed over time to study their recovery time. All of them exhibited electrical activity of the forelimbs in 4 weeks after surgery. The remaining 12 rats received additional right C2 segmental hemisection, and variation of CMAPs between before and after surgery was examined. The right side of the 12 rats that received the additional hemisection exhibited no electrical activity in response to the stimulation of the pyramids on both sides. These results suggest that changes in path between the resected and healthy sides, activation of the ventral corticospinal tracts, and propriospinal neurons were involved in the recovery of motor function after cervical cord injury.

  10. Functional and motor outcome 5 years after stroke is equivalent to outcome at 2 months: follow-up of the collaborative evaluation of rehabilitation in stroke across Europe.

    Science.gov (United States)

    Meyer, Sarah; Verheyden, Geert; Brinkmann, Nadine; Dejaeger, Eddy; De Weerdt, Willy; Feys, Hilde; Gantenbein, Andreas R; Jenni, Walter; Laenen, Annouschka; Lincoln, Nadina; Putman, Koen; Schuback, Birgit; Schupp, Wilfried; Thijs, Vincent; De Wit, Liesbet

    2015-06-01

    Recovery of patients within the first 6 months after stroke is well documented, but there has been little research on long-term recovery. The aim of this study was to analyze functional and motor recovery between admission to rehabilitation centres and 5 years after stroke. This follow-up of the Collaborative Evaluation of Rehabilitation in Stroke Across Europe study, included patients from 4 European rehabilitation centres. Patients were assessed on admission, at 2 and 6 months, and 5 years after stroke, using the Barthel Index, Rivermead Motor Assessment Gross Function, Leg and Trunk function, and Arm function. Linear mixed models were used, corrected for baseline characteristics. To account for the drop-out during follow-up, the analysis is likelihood-based (assumption of missingness at random). A total of 532 patients were included in this study, of which 238 were followed up at 5 years post stroke. Mean age at stroke onset was 69 (±10 SD) years, 53% were men, 84% had ischemic strokes, and 53% had left-sided motor impairment. Linear mixed model analysis revealed a significant deterioration for all 4 outcomes between 6 months and 5 years (Pstroke. Higher age (Pstroke severity on admission (Pstroke severity negatively affected recovery up to 5 years after stroke. © 2015 American Heart Association, Inc.

  11. Motor unit recruitment by size does not provide functional advantages for motor performance.

    Science.gov (United States)

    Dideriksen, Jakob L; Farina, Dario

    2013-12-15

    It is commonly assumed that the orderly recruitment of motor units by size provides a functional advantage for the performance of movements compared with a random recruitment order. On the other hand, the excitability of a motor neuron depends on its size and this is intrinsically linked to its innervation number. A range of innervation numbers among motor neurons corresponds to a range of sizes and thus to a range of excitabilities ordered by size. Therefore, if the excitation drive is similar among motor neurons, the recruitment by size is inevitably due to the intrinsic properties of motor neurons and may not have arisen to meet functional demands. In this view, we tested the assumption that orderly recruitment is necessarily beneficial by determining if this type of recruitment produces optimal motor output. Using evolutionary algorithms and without any a priori assumptions, the parameters of neuromuscular models were optimized with respect to several criteria for motor performance. Interestingly, the optimized model parameters matched well known neuromuscular properties, but none of the optimization criteria determined a consistent recruitment order by size unless this was imposed by an association between motor neuron size and excitability. Further, when the association between size and excitability was imposed, the resultant model of recruitment did not improve the motor performance with respect to the absence of orderly recruitment. A consistent observation was that optimal solutions for a variety of criteria of motor performance always required a broad range of innervation numbers in the population of motor neurons, skewed towards the small values. These results indicate that orderly recruitment of motor units in itself does not provide substantial functional advantages for motor control. Rather, the reason for its near-universal presence in human movements is that motor functions are optimized by a broad range of innervation numbers.

  12. Non-invasive stimulation of the vibrissal pad improves recovery of whisking function after simultaneous lesion of the facial and infraorbital nerves in rats.

    Science.gov (United States)

    Bendella, H; Pavlov, S P; Grosheva, M; Irintchev, A; Angelova, S K; Merkel, D; Sinis, N; Kaidoglou, K; Skouras, E; Dunlop, S A; Angelov, Doychin N

    2011-07-01

    We have recently shown that manual stimulation of target muscles promotes functional recovery after transection and surgical repair to pure motor nerves (facial: whisking and blink reflex; hypoglossal: tongue position). However, following facial nerve repair, manual stimulation is detrimental if sensory afferent input is eliminated by, e.g., infraorbital nerve extirpation. To further understand the interplay between sensory input and motor recovery, we performed simultaneous cut-and-suture lesions on both the facial and the infraorbital nerves and examined whether stimulation of the sensory afferents from the vibrissae by a forced use would improve motor recovery. The efficacy of 3 treatment paradigms was assessed: removal of the contralateral vibrissae to ensure a maximal use of the ipsilateral ones (vibrissal stimulation; Group 2), manual stimulation of the ipsilateral vibrissal muscles (Group 3), and vibrissal stimulation followed by manual stimulation (Group 4). Data were compared to controls which underwent surgery but did not receive any treatment (Group 1). Four months after surgery, all three treatments significantly improved the amplitude of vibrissal whisking to 30° versus 11° in the controls of Group 1. The three treatments also reduced the degree of polyneuronal innervation of target muscle fibers to 37% versus 58% in Group 1. These findings indicate that forced vibrissal use and manual stimulation, either alone or sequentially, reduce target muscle polyinnervation and improve recovery of whisking function when both the sensory and the motor components of the trigemino-facial system regenerate.

  13. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Kevin D., E-mail: kevin.welch@ars.usda.gov [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Pfister, James A. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States); Lima, Flavia G. [Federal University of Goías, School of Veterinary Medicine, Goiânia, Goías (Brazil); Green, Benedict T.; Gardner, Dale R. [USDA/ARS Poisonous Plant Research Laboratory, 1150 E. 1400N., Logan, UT 84341 (United States)

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  14. Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Linard Filli

    2015-01-01

    Full Text Available Axonal regeneration and fiber regrowth is limited in the adult central nervous system, but research over the last decades has revealed a high intrinsic capacity of brain and spinal cord circuits to adapt and reorganize after smaller injuries or denervation. Short-distance fiber growth and synaptic rewiring was found in cortex, brain stem and spinal cord and could be associated with restoration of sensorimotor functions that were impaired by the injury. Such processes of structural plasticity were initially observed in the corticospinal system following spinal cord injury or stroke, but recent studies showed an equally high potential for structural and functional reorganization in reticulospinal, rubrospinal or propriospinal projections. Here we review the lesion-induced plastic changes in the propriospinal pathways, and we argue that they represent a key mechanism triggering sensorimotor recovery upon incomplete spinal cord injury. The formation or strengthening of spinal detour pathways bypassing supraspinal commands around the lesion site to the denervated spinal cord were identified as prominent neural substrate inducing substantial motor recovery in different species from mice to primates. Indications for the existence of propriospinal bypasses were also found in humans after cortical stroke. It is mandatory for current research to dissect the biological mechanisms underlying spinal circuit remodeling and to investigate how these processes can be stimulated in an optimal way by therapeutic interventions (e.g., fiber-growth enhancing interventions, rehabilitation. This knowledge will clear the way for the development of novel strategies targeting the remarkable plastic potential of propriospinal circuits to maximize functional recovery after spinal cord injury.

  15. Corticospinal tract integrity and motor function following neonatal stroke: a case study

    Directory of Open Access Journals (Sweden)

    Gordon Anne L

    2012-07-01

    Full Text Available Abstract Background New MRI techniques enable visualisation of corticospinal tracts and cortical motor activity. The objective of this case study was to describe the magnetic resonance evidence of corticospinal pathway reorganisation following neonatal stroke. Case presentation An 11 year old boy with a neonatal right middle cerebral artery territory ischaemic stroke was studied. Functional MRI was undertaken with a whole hand squeezing task, comparing areas of cortical activation between hands. White matter tracts, seeded from the area of peak activation in the cortex, were visualised using a diffusion weighted imaging probabilistic tractography method. Standardised evaluations of unilateral and bilateral motor function were undertaken. Clinically, the child presented with a left hemiparesis. Functional MRI demonstrated that movement of the hemiparetic hand resulted in activation in the ipsi-lesional (right hemisphere only. Diffusion tractography revealed pathways in the right (lesioned hemisphere tracked perilesionally to the cortical area identified by functional MRI. Conclusion Our case demonstrates that neonatal stroke is associated with maintenance of organization of corticospinal pathways sufficient to maintain some degree of hand function in the affected hemisphere. Functional MRI and diffusion weighted imaging tractography may inform our understanding of recovery, organisation and reorganisation and have the potential to monitor responses to intervention following neonatal stroke.

  16. The Effects of Repeated Rehabilitation “Tune-Ups” on Functional Recovery After Focal Ischemia in Rats

    DEFF Research Database (Denmark)

    Clarke, Jared; Rytter, Hana Malá; Windle, Victoria

    2009-01-01

    of stroke recovery. Methods. Rats were exposed to focal ischemia (endothelin-1 applied to forelimb sensorimotor cortex and dorsolateral striatum) and allowed to recover either in standard housing or in a combination of enriched environment and rehabilitative reaching for 9 weeks. Animals were then exposed...... complexity in the contralesional forelimb motor cortex. Results. Although early enriched rehabilitation significantly improved sensorimotor function in both the beam and staircase tests, “tune-up” therapy had no effect on recovery. Golgi–Cox analysis revealed no effect of treatment on dendritic complexity...

  17. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  18. Principles of proportional recovery after stroke generalize to neglect and aphasia.

    Science.gov (United States)

    Marchi, N A; Ptak, R; Di Pietro, M; Schnider, A; Guggisberg, A G

    2017-08-01

    Motor recovery after stroke can be characterized into two different patterns. A majority of patients recover about 70% of initial impairment, whereas some patients with severe initial deficits show little or no improvement. Here, we investigated whether recovery from visuospatial neglect and aphasia is also separated into two different groups and whether similar proportions of recovery can be expected for the two cognitive functions. We assessed 35 patients with neglect and 14 patients with aphasia at 3 weeks and 3 months after stroke using standardized tests. Recovery patterns were classified with hierarchical clustering and the proportion of recovery was estimated from initial impairment using a linear regression analysis. Patients were reliably clustered into two different groups. For patients in the first cluster (n = 40), recovery followed a linear model where improvement was proportional to initial impairment and achieved 71% of maximal possible recovery for both cognitive deficits. Patients in the second cluster (n = 9) exhibited poor recovery (aphasia after stroke shows the same dichotomy and proportionality as observed in motor recovery. This is suggestive of common underlying principles of plasticity, which apply to motor and cognitive functions. © 2017 EAN.

  19. Motor recovery and synaptic preservation after ventral root avulsion and repair with a fibrin sealant derived from snake venom.

    Directory of Open Access Journals (Sweden)

    Roberta Barbizan

    Full Text Available BACKGROUND: Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. METHODOLOGY/PRINCIPAL FINDINGS: Female Lewis rats (7 weeks old were subjected to VRA and root replantation. The animals were divided into two groups: 1 avulsion only and 2 replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera. Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. CONCLUSIONS/SIGNIFICANCE: In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the

  20. Motor Recovery and Synaptic Preservation after Ventral Root Avulsion and Repair with a Fibrin Sealant Derived from Snake Venom

    Science.gov (United States)

    Barbizan, Roberta; Castro, Mateus V.; Rodrigues, Antônio C.; Barraviera, Benedito; Ferreira, Rui S.; Oliveira, Alexandre L. R.

    2013-01-01

    Background Ventral root avulsion is an experimental model of proximal axonal injury at the central/peripheral nervous system interface that results in paralysis and poor clinical outcome after restorative surgery. Root reimplantation may decrease neuronal degeneration in such cases. We describe the use of a snake venom-derived fibrin sealant during surgical reconnection of avulsed roots at the spinal cord surface. The present work investigates the effects of this fibrin sealant on functional recovery, neuronal survival, synaptic plasticity, and glial reaction in the spinal motoneuron microenvironment after ventral root reimplantation. Methodology/Principal Findings Female Lewis rats (7 weeks old) were subjected to VRA and root replantation. The animals were divided into two groups: 1) avulsion only and 2) replanted roots with fibrin sealant derived from snake venom. Post-surgical motor performance was evaluated using the CatWalk system twice a week for 12 weeks. The rats were sacrificed 12 weeks after surgery, and their lumbar intumescences were processed for motoneuron counting and immunohistochemistry (GFAP, Iba-1 and synaptophysin antisera). Array based qRT-PCR was used to evaluate gene regulation of several neurotrophic factors and receptors as well as inflammatory related molecules. The results indicated that the root reimplantation with fibrin sealant enhanced motor recovery, preserved the synaptic covering of the motoneurons and improved neuronal survival. The replanted group did not show significant changes in microglial response compared to VRA-only. However, the astroglial reaction was significantly reduced in this group. Conclusions/Significance In conclusion, the present data suggest that the repair of avulsed roots with snake venom fibrin glue at the exact point of detachment results in neuroprotection and preservation of the synaptic network at the microenvironment of the lesioned motoneurons. Also such procedure reduced the astroglial reaction and

  1. Association Between Gross-Motor and Executive Function Depends on Age and Motor Task Complexity

    DEFF Research Database (Denmark)

    Spedden, Meaghan E; Malling, Anne Sofie B; Andersen, Ken K

    2017-01-01

    The objective was to examine associations between motor and executive function across the adult lifespan and to investigate the role of motor complexity in these associations. Young, middle-aged and older adults (n = 82; 19-83y) performed two gross-motor tasks with different levels of complexity...... and a Stroop-like computer task. Performance was decreased in older adults. The association between motor and cognitive performance was significant for older adults in the complex motor task (p = 0.03, rs = -0.41), whereas no significant associations were found for young or middle-aged groups, suggesting...... that the link between gross-motor and executive function emerges with age and depends on motor complexity....

  2. Olfaction Is Related to Motor Function in Older Adults.

    Science.gov (United States)

    Tian, Qu; Resnick, Susan M; Studenski, Stephanie A

    2017-08-01

    Among older adults, both olfaction and motor function predict future cognitive decline and dementia, suggesting potential shared causal pathways. However, it is not known whether olfactory and motor function are independently related in late life. We assessed cross-sectional associations of olfaction with motor and cognitive function, using concurrent data on olfactory function, mobility, balance, fine motor function, manual dexterity, and cognition in 163 Baltimore Longitudinal Study of Aging participants aged 60 and older without common neurological diseases (n = 114 with available cognitive data). Using multiple linear regression, we adjusted for age, sex, race, smoking history, height, and weight for mobility and balance, and education for cognition. We used multiple linear regression to test whether olfaction-motor associations were independent of cognition and depressive symptoms. Olfactory scores were significantly associated with mobility (usual gait speed, rapid gait speed, 400-m walk time, and Health ABC Physical Performance Battery score), balance, fine motor function, and manual dexterity (all p function is associated with mobility, balance, fine motor function, and manual dexterity, and independent of cognitive function, with challenging upper and lower extremity motor function tasks. Longitudinal studies are needed to determine if olfactory performance predicts future mobility and functional decline. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Motor cortex stimulation therapy for post-stroke weakness

    International Nuclear Information System (INIS)

    Ogura, Koichiro; Aoshima, Chihiro; Yamanouchi, Takashi; Tachibana, Eiji

    2009-01-01

    Motor cortex stimulation (MCS) delivered concurrently with rehabilitation therapy may enhance motor recovery following stroke. We investigated the effects of MCS on the recovery from upper extremity paresis in patients with chronic stroke. In 12 patients who had moderate arm and finger paresis at more than 4 months after stroke, an electrode was placed through a small craniotomy on the epidural space of the motor cortex that was identified using functional MRI. MCS during occupational therapy for one hour was performed 3 times a day for at least 4 weeks. The mean scores for Fugl-Meyer assessments of the arm improved, from 37 preoperatively to 46 postoperatively. The mean grip strength improved from 3.25 to 9.0 kg. All patients appeared satisfactory in their results because they recognized an improvement of arm function. Although the mechanism of the beneficial effects of MCS on recovery after stroke has not been well known, the neuroplasticity might play a important role. In a few cases of the present series, it was observed that the hand motor cortex area detected on functional MRI had been enlarged after MCS therapy. MCS could become a novel neurosurgical treatment modality for the chronic post-stroke weakness. (author)

  4. Exercise enhanced functional recovery and expression of GDNF after photochemically induced cerebral infarction in the rat.

    Science.gov (United States)

    Ohwatashi, Akihiko; Ikeda, Satoshi; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    Exercise has been considered to affect the functional recovery from central nervous damage. Neurotrophic factors have various effects on brain damage. However, the effects of exercise for expression of GDNF on functional recovery with brain damage are not well known. We investigated the difference in functional recovery between non-exercise and beam-walking exercise groups, and the expression of GDNF in both groups after photochemical infarction. Adult male Wistar rats (N = 64) were used. Animals were divided into two groups: non-exercise (N = 35), and beam-walking exercise (N = 29). All rats underwent surgical photochemical infarction. The rats of the beam-walking group were trained every day to walk on a narrow beam after a one-day recovery period and those of the non-exercise group were left to follow a natural course. Animals were evaluated for hind limb function every day using a beam-walking task with an elevated narrow beam. The number of GDNF-like immunoreactive cells in the temporal cortex surrounding the lesion was counted 1, 3, 5, and 7 days after the infarction. Functional recovery of the beam-walking exercise group was significantly earlier than that of the non-exercise group. At 3 days after infarction, the number of GDNF-positive cells in the temporal cortex surrounding the infarction was significantly increased in the beam-walking exercise group compared with that in the non-exercise group. In the exercise group, motor function was remarkably recovered with the increased expression of GDNF-like immunoreactive cells. Our results suggested that a rehabilitative approach increased the expression of GDNF and facilitated functional recovery from cerebral infarction.

  5. Using non-invasive brain stimulation to augment motor training-induced plasticity

    Directory of Open Access Journals (Sweden)

    Pascual-Leone Alvaro

    2009-03-01

    Full Text Available Abstract Therapies for motor recovery after stroke or traumatic brain injury are still not satisfactory. To date the best approach seems to be the intensive physical therapy. However the results are limited and functional gains are often minimal. The goal of motor training is to minimize functional disability and optimize functional motor recovery. This is thought to be achieved by modulation of plastic changes in the brain. Therefore, adjunct interventions that can augment the response of the motor system to the behavioural training might be useful to enhance the therapy-induced recovery in neurological populations. In this context, noninvasive brain stimulation appears to be an interesting option as an add-on intervention to standard physical therapies. Two non-invasive methods of inducing electrical currents into the brain have proved to be promising for inducing long-lasting plastic changes in motor systems: transcranial magnetic stimulation (TMS and transcranial direct current stimulation (tDCS. These techniques represent powerful methods for priming cortical excitability for a subsequent motor task, demand, or stimulation. Thus, their mutual use can optimize the plastic changes induced by motor practice, leading to more remarkable and outlasting clinical gains in rehabilitation. In this review we discuss how these techniques can enhance the effects of a behavioural intervention and the clinical evidence to date.

  6. Effects of somatosensory electrical stimulation on motor function and cortical oscillations.

    Science.gov (United States)

    Tu-Chan, Adelyn P; Natraj, Nikhilesh; Godlove, Jason; Abrams, Gary; Ganguly, Karunesh

    2017-11-13

    Few patients recover full hand dexterity after an acquired brain injury such as stroke. Repetitive somatosensory electrical stimulation (SES) is a promising method to promote recovery of hand function. However, studies using SES have largely focused on gross motor function; it remains unclear if it can modulate distal hand functions such as finger individuation. The specific goal of this study was to monitor the effects of SES on individuation as well as on cortical oscillations measured using EEG, with the additional goal of identifying neurophysiological biomarkers. Eight participants with a history of acquired brain injury and distal upper limb motor impairments received a single two-hour session of SES using transcutaneous electrical nerve stimulation. Pre- and post-intervention assessments consisted of the Action Research Arm Test (ARAT), finger fractionation, pinch force, and the modified Ashworth scale (MAS), along with resting-state EEG monitoring. SES was associated with significant improvements in ARAT, MAS and finger fractionation. Moreover, SES was associated with a decrease in low frequency (0.9-4 Hz delta) ipsilesional parietomotor EEG power. Interestingly, changes in ipsilesional motor theta (4.8-7.9 Hz) and alpha (8.8-11.7 Hz) power were significantly correlated with finger fractionation improvements when using a multivariate model. We show the positive effects of SES on finger individuation and identify cortical oscillations that may be important electrophysiological biomarkers of individual responsiveness to SES. These biomarkers can be potential targets when customizing SES parameters to individuals with hand dexterity deficits. NCT03176550; retrospectively registered.

  7. Recovery of Motor Function After Stroke

    OpenAIRE

    Sharma, Nikhil; Cohen, Leonardo G.

    2010-01-01

    The human brain possesses a remarkable ability to adapt in response to changing anatomical (e.g., aging) or environmental modifications. This form of neuroplasticity is important at all stages of life but is critical in neurological disorders such as amblyopia and stroke. This review focuses upon our new understanding of possible mechanisms underlying functional deficits evidenced after adult-onset stroke. We review the functional interactions between different brain regions that may contribu...

  8. Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies.

    Science.gov (United States)

    Hesse, S

    2004-01-01

    The gait-lab at Klinik Berlin developed and evaluated novel physical and pharmacological strategies promoting the repetitive practise of hemiparetic gait in line with the slogan: who wants to relearn walking, has to walk. Areas of research are treadmill training with partial body weight support, enabling wheelchair-bound subjects to repetitively practice gait, the electromechanical gait trainer GT I reducing the effort on the therapists as compared to the manually assisted locomotor therapy, and the future HapticWalker which will allow the additional practise of stair climbing up and down and of perturbations. Further means to promote gait practice after stroke was the application of botulinum toxin A for the treatment of lower limb spasticity and the early use of walking aids. New areas of research are also the study of D-Amphetamine, which failed to promote motor recovery in acute stroke patients as compared to placebo, and the development of a computerized arm trainer, Bi-Manu-T rack, for the bilateral treatment of patients with a severe upper limb paresis.

  9. Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial.

    Science.gov (United States)

    Chollet, François; Tardy, Jean; Albucher, Jean-François; Thalamas, Claire; Berard, Emilie; Lamy, Catherine; Bejot, Yannick; Deltour, Sandrine; Jaillard, Assia; Niclot, Philippe; Guillon, Benoit; Moulin, Thierry; Marque, Philippe; Pariente, Jérémie; Arnaud, Catherine; Loubinoux, Isabelle

    2011-02-01

    Hemiplegia and hemiparesis are the most common deficits caused by stroke. A few small clinical trials suggest that fluoxetine enhances motor recovery but its clinical efficacy is unknown. We therefore aimed to investigate whether fluoxetine would enhance motor recovery if given soon after an ischaemic stroke to patients who have motor deficits. In this double-blind, placebo-controlled trial, patients from nine stroke centres in France who had ischaemic stroke and hemiplegia or hemiparesis, had Fugl-Meyer motor scale (FMMS) scores of 55 or less, and were aged between 18 years and 85 years were eligible for inclusion. Patients were randomly assigned, using a computer random-number generator, in a 1:1 ratio to fluoxetine (20 mg once per day, orally) or placebo for 3 months starting 5-10 days after the onset of stroke. All patients had physiotherapy. The primary outcome measure was the change on the FMMS between day 0 and day 90 after the start of the study drug. Participants, carers, and physicians assessing the outcome were masked to group assignment. Analysis was of all patients for whom data were available (full analysis set). This trial is registered with ClinicalTrials.gov, number NCT00657163. 118 patients were randomly assigned to fluoxetine (n=59) or placebo (n=59), and 113 were included in the analysis (57 in the fluoxetine group and 56 in the placebo group). Two patients died before day 90 and three withdrew from the study. FMMS improvement at day 90 was significantly greater in the fluoxetine group (adjusted mean 34·0 points [95% CI 29·7-38·4]) than in the placebo group (24·3 points [19·9-28·7]; p=0·003). The main adverse events in the fluoxetine and placebo groups were hyponatraemia (two [4%] vs two [4%]), transient digestive disorders including nausea, diarrhoea, and abdominal pain (14 [25%] vs six [11%]), hepatic enzyme disorders (five [9%] vs ten [18%]), psychiatric disorders (three [5%] vs four [7%]), insomnia (19 [33%] vs 20 [36%]), and partial

  10. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  11. Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery After Spinal Cord Injury.

    Science.gov (United States)

    Papastefanaki, Florentia; Jakovcevski, Igor; Poulia, Nafsika; Djogo, Nevena; Schulz, Florian; Martinovic, Tamara; Ciric, Darko; Loers, Gabrielle; Vossmeyer, Tobias; Weller, Horst; Schachner, Melitta; Matsas, Rebecca

    2015-06-01

    Failure of the mammalian central nervous system (CNS) to regenerate effectively after injury leads to mostly irreversible functional impairment. Gold nanoparticles (AuNPs) are promising candidates for drug delivery in combination with tissue-compatible reagents, such as polyethylene glycol (PEG). PEG administration in CNS injury models has received interest for potential therapy, but toxicity and low bioavailability prevents clinical application. Here we show that intraspinal delivery of PEG-functionalized 40-nm-AuNPs at early stages after mouse spinal cord injury is beneficial for recovery. Positive outcome of hind limb motor function was accompanied by attenuated inflammatory response, enhanced motor neuron survival, and increased myelination of spared or regrown/sprouted axons. No adverse effects, such as body weight loss, ill health, or increased mortality were observed. We propose that PEG-AuNPs represent a favorable drug-delivery platform with therapeutic potential that could be further enhanced if PEG-AuNPs are used as carriers of regeneration-promoting molecules.

  12. The sensory side of post-stroke motor rehabilitation

    OpenAIRE

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J.

    2016-01-01

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body...

  13. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    OpenAIRE

    Furlan, Leonardo; Conforto, Adriana Bastos; Cohen, Leonardo G.; Sterr, Annette

    2016-01-01

    Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivor...

  14. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    Science.gov (United States)

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  15. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  16. Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients.

    Science.gov (United States)

    Choi, Jun Hwan; Han, Eun Young; Kim, Bo Ryun; Kim, Sun Mi; Im, Sang Hee; Lee, So Young; Hyun, Chul Woong

    2014-08-01

    To investigate the effectiveness of commercial gaming-based virtual reality (VR) therapy on the recovery of paretic upper extremity in subacute stroke patients. Twenty patients with the first-onset subacute stroke were enrolled and randomly assigned to the case group (n=10) and the control group (n=10). Primary outcome was measured by the upper limb score through the Fugl-Meyer Assessment (FMA-UL) for the motor function of both upper extremities. Secondary outcomes were assessed for motor function of both upper extremities including manual function test (MFT), box and block test (BBT), grip strength, evaluated for activities of daily living (Korean version of Modified Barthel Index [K-MBI]), and cognitive functions (Korean version of the Mini-Mental State Examination [K-MMSE] and continuous performance test [CPT]). The case group received commercial gaming-based VR therapy using Wii (Nintendo, Tokyo, Japan), and the control group received conventional occupational therapy (OT) for 30 minutes a day during the period of 4 weeks. All patients were evaluated before and after the 4-week intervention. There were no significant differences in the baseline between the two groups. After 4 weeks, both groups showed significant improvement in the FMA-UL, MFT, BBT, K-MBI, K-MMSE, and correct detection of auditory CPT. However, grip strength was improved significantly only in the case group. There were no significant intergroup differences before and after the treatment. These findings suggested that the commercial gaming-based VR therapy was as effective as conventional OT on the recovery of upper extremity motor and daily living function in subacute stroke patients.

  17. Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Huseyinsinoglu, Burcu Ersoz; Ozdincler, Arzu Razak; Krespi, Yakup

    2012-08-01

    To compare the effects of the Bobath Concept and constraint-induced movement therapy on arm functional recovery among stroke patients with a high level of function on the affected side. A single-blinded, randomized controlled trial. Outpatient physiotherapy department of a stroke unit. A total of 24 patients were randomized to constraint-induced movement therapy or Bobath Concept group. The Bobath Concept group was treated for 1 hour whereas the constraint-induced movement therapy group received training for 3 hours per day during 10 consecutive weekdays. Main measures were the Motor Activity Log-28, the Wolf Motor Function Test, the Motor Evaluation Scale for Arm in Stroke Patients and the Functional Independence Measure. The two groups were found to be homogeneous based on demographic variables and baseline measurements. Significant improvements were seen after treatment only in the 'Amount of use' and 'Quality of movement' subscales of the Motor Activity Log-28 in the constraint-induced movement therapy group over the the Bobath Concept group (P = 0.003; P = 0.01 respectively). There were no significant differences in Wolf Motor Function Test 'Functional ability' (P = 0.137) and 'Performance time' (P = 0.922), Motor Evaluation Scale for Arm in Stroke Patients (P = 0.947) and Functional Independence Measure scores (P = 0.259) between the two intervention groups. Constraint-induced movement therapy and the Bobath Concept have similar efficiencies in improving functional ability, speed and quality of movement in the paretic arm among stroke patients with a high level of function. Constraint-induced movement therapy seems to be slightly more efficient than the Bobath Concept in improving the amount and quality of affected arm use.

  18. Evaluation of Esophageal Motor Function With High-resolution Manometry

    Science.gov (United States)

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  19. Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection.

    Science.gov (United States)

    Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang

    2013-03-01

    Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.

  20. Task-relevant cognitive and motor functions are prioritized during prolonged speed-accuracy motor task performance.

    Science.gov (United States)

    Solianik, Rima; Satas, Andrius; Mickeviciene, Dalia; Cekanauskaite, Agne; Valanciene, Dovile; Majauskiene, Daiva; Skurvydas, Albertas

    2018-06-01

    This study aimed to explore the effect of prolonged speed-accuracy motor task on the indicators of psychological, cognitive, psychomotor and motor function. Ten young men aged 21.1 ± 1.0 years performed a fast- and accurate-reaching movement task and a control task. Both tasks were performed for 2 h. Despite decreased motivation, and increased perception of effort as well as subjective feeling of fatigue, speed-accuracy motor task performance improved during the whole period of task execution. After the motor task, the increased working memory function and prefrontal cortex oxygenation at rest and during conflict detection, and the decreased efficiency of incorrect response inhibition and visuomotor tracking were observed. The speed-accuracy motor task increased the amplitude of motor-evoked potentials, while grip strength was not affected. These findings demonstrate that to sustain the performance of 2-h speed-accuracy task under conditions of self-reported fatigue, task-relevant functions are maintained or even improved, whereas less critical functions are impaired.

  1. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    Science.gov (United States)

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  2. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    2010-07-01

    Full Text Available Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit.In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  3. ‎ Late Recovery from Stuttering: The Role of Hand ‎Dominancy, Fine Motor and ‎Inhibition Control

    Directory of Open Access Journals (Sweden)

    Hiwa Mohammadi

    2016-02-01

    Full Text Available Objective: There are controversial reports about factors that affect recovery from stuttering. In the ‎present study, the effect of hand dominancy, fine motor and inhibition control on late ‎recovery from stuttering was investigated among a group of Kurdish-Persian children who ‎stuttered in Iran.‎Method: Twenty-two Kurdish-Persian children aged 7-14 years who stuttered were followed for 6 ‎years. Based on the evaluation of three experienced speech therapists and parental judgments, ‎these children were classified into recovered or persistent groups. Data about fine motor ‎control of hand and inhibition control were obtained, using Purdue Pegboard and Victoria ‎Strop Color Word Tests, respectively. Risk factors including sex, age, and family history of ‎stuttering, handedness, inhibitory control and fine motor control of hand were compared ‎between the groups and modeled to predict recovery from stuttering using logistic regression.‎Results: From the 22 participants, 5 (22.7% recovered from stuttering. The recovered and persistent ‎groups did not show significant differences in the interference effect. By dividing the scores ‎of the Purdue Pegboard tests to the right and left hand, we created a new Handedness Index ‎‎(HI. HI was significantly higher in the recovered group. The score of right hand was higher ‎than the left in the recovered group, but no difference was found between the two hands in ‎the persistent group. Among the investigated risk factors, only HI could predict the recovery ‎from or persistency of stuttering with 94% sensitivity and 84% specificity.‎Conclusion: Handedness Index can predict the recovery from stuttering significantly among children who ‎stutter.‎

  4. Relationship between muscle strength and motor function in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Milene F. Nunes

    2016-07-01

    Full Text Available ABSTRACT Measuring muscle strength and motor function is part of Duchenne muscular dystrophy (DMD assessment. However, the relationship between these variables is controversial. Objective To investigate the relationship between muscle strength and motor function and between these variables and age. Method Muscle strength was measured by Medical Research Council (MRC scale and motor function, by Motor Function Measure (MFM, in 40 non-ambulatory patients. Spearman tests investigated the relationships between muscle strength, motor function and age. Results Total MRC and MFM scores were strongly related to each other (r = 0.94; p 0.05. Strong and moderate relationships between partial muscle strength and motor function scores were found. Higher correlation coefficients were found between total scores and Dimensions 2 (axial/ proximal control and 3 (distal control of MFM. Conclusion Muscle strength and motor function are strongly correlated and seem to decrease proportionally in DMD.

  5. Relation between hand function and gross motor function in full term infants aged 4 to 8 months

    Science.gov (United States)

    Nogueira, Solange F.; Figueiredo, Elyonara M.; Gonçalves, Rejane V.; Mancini, Marisa C.

    2015-01-01

    Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object) and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time) of manipulation to an object were extracted from video synchronized with the Qualisys(r) movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (pgross motor function (pgross motor function (R2=0.84; pgross motor function (R2=0.13; p=0.02) from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development. PMID:25714437

  6. Assessment of the pyramidal tract by diffusion tensor analysis in brain hemorrhage patients for motor function prognosis

    International Nuclear Information System (INIS)

    Kawamo, Michiaki; Abe, Takumi; Izumiyama, Hitoshi

    2008-01-01

    In patients with brain hemorrhage, the entire visualized pyramidal tract was established as an area of interest (ROI). Its Fractional Anisotropy (FA) value was determined by diffusion tensor analysis (DTA), and its relationship to motor function at the onset and three months later was investigated. In 30 patients with brain hemorrhage accompanying paralysis, MRI was performed during the subacute phase (6-14 days after onset). In addition, using a workstation, DTA was performed in order to visualize the pyramidal tract. The FA of the ROI was measured on the affected and unaffected sides, and as previously reported, the ratio of FA in the affected and unaffected sides was calculated. Subsequently, we examined the relationship between the FA ratio and motor function prognosis. Motor function prognosis was assessed based on the sum of the Brunnstrom stage at the onset and three months later. A strong correlation coefficient existed between the FA ratio of the entire pyramidal tract and the sum of the Brunnstrom stage three months after onset (0.74, p<0.001), and prognosis of motor function tended to improve in patients with FA ratios of 0.95 or higher. Patients with mild paralysis were identified in order to ascertain the degree of improvement in paralysis, and a significant correlation between the FA ratio of the entire pyramidal tract and the degree of improvement in the Brunnstrom stage was observed (correlation coefficient 0.77, p<0.001). When compared to putamen hemorrhage, the FA ratio affected the prognosis of paralysis more in thalamic hemorrhage. The results suggest that in patients with an FA ratio of 1.0, the recovery rate of paralysis three months after onset is markedly high. In brain hemorrhage patients, a reduction in the FA ratio of the entire pyramidal tract was correlated with the functional prognosis of motor paralysis, and in thalamic hemorrhage, it may be possible to predict motor function based on FA ratios. Hence, the DTA of the pyramidal tract

  7. Effects of mirror therapy through functional activites and motor standards in motor function of the upper limb after stroke

    OpenAIRE

    Medeiros, Candice Simões Pimenta de; Fernandes, Sabrina Gabrielle Gomes; Lopes, Johnnatas Mikael; Cacho, Enio Walker Azevedo; Cacho, Roberta de Oliveira

    2014-01-01

    The study aimed to evaluate the effects of mirror therapy through functional activities and motor standards in upper limb function of chronic stroke subjects. Six patients with paresis of the arm within at least six months after stroke were randomly to a group of functional activities (GAF - n=3) and group of motor standards (GPM - n=3). Both groups performed 15 sessions of mirror therapy for 30 minutes, but the first one (GAF) were instructed to do the bilateral and symmetrical movements bas...

  8. Celecoxib accelerates functional recovery after sciatic nerve crush in the rat

    Directory of Open Access Journals (Sweden)

    Fernández-Garza Nancy E

    2008-11-01

    Full Text Available Abstract The inflammatory response appears to be essential in the modulation of the degeneration and regeneration process after peripheral nerve injury. In injured nerves, cyclooxygenase-2 (COX-2 is strongly upregulated around the injury site, possibly playing a role in the regulation of the inflammatory response. In this study we investigated the effect of celecoxib, a COX-2 inhibitor, on functional recovery after sciatic nerve crush in rats. Unilateral sciatic nerve crush injury was performed on 10 male Wistar rats. Animals on the experimental group (n = 5 received celecoxib (10 mg/kg ip immediately before the crush injury and daily for 7 days after the injury. Control group (n = 5 received normal saline at equal regimen. A sham group (n = 5, where sciatic nerve was exposed but not crushed, was also evaluated. Functional recovery was then assessed by calculating the sciatic functional index (SFI on days 0,1,7,14 and 21 in all groups, and registering the day of motor and walking onset. In comparison with control group, celecoxib treatment (experimental group had significant beneficial effects on SFI, with a significantly better score on day 7. Anti-inflammatory drug celecoxib should be considered in the treatment of peripheral nerve injuries, but further studies are needed to explain the mechanism of its neuroprotective effects.

  9. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    Science.gov (United States)

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  10. Relation between hand function and gross motor function in full term infants aged 4 to 8 months

    Directory of Open Access Journals (Sweden)

    Solange F. Nogueira

    2015-02-01

    Full Text Available Background: In children, reaching emerges around four months of age, which is followed by rapid changes in hand function and concomitant changes in gross motor function, including the acquisition of independent sitting. Although there is a close functional relationship between these domains, to date they have been investigated separately. Objective: To investigate the longitudinal profile of changes and the relationship between the development of hand function (i.e. reaching for and manipulating an object and gross motor function in 13 normally developing children born at term who were evaluated every 15 days from 4 to 8 months of age. Method: The number of reaches and the period (i.e. time of manipulation to an object were extracted from video synchronized with the Qualisys(r movement analysis system. Gross motor function was measured using the Alberta Infant Motor Scale. ANOVA for repeated measures was used to test the effect of age on the number of reaches, the time of manipulation and gross motor function. Hierarchical regression models were used to test the associations of reaching and manipulation with gross motor function. Results: Results revealed a significant increase in the number of reaches (p<0.001, the time of manipulation (p<0.001 and gross motor function (p<0.001 over time, as well as associations between reaching and gross motor function (R2=0.84; p<0.001 and manipulation and gross motor function (R2=0.13; p=0.02 from 4 to 6 months of age. Associations from 6 to 8 months of age were not significant. Conclusion: The relationship between hand function and gross motor function was not constant, and the age span from 4 to 6 months was a critical period of interdependency of hand function and gross motor function development.

  11. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children

    Science.gov (United States)

    Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    Objective To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. Methods This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Results Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pperformance in mathematics and reading comprehension. Conclusions The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations. PMID:27560512

  12. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  13. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    Science.gov (United States)

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Bridging the gap between theory and practice: dynamic systems theory as a framework for understanding and promoting recovery of function in children and youth with acquired brain injuries.

    Science.gov (United States)

    Levac, Danielle; DeMatteo, Carol

    2009-11-01

    A theoretical framework can help physiotherapists understand and promote recovery of function in children and youth with acquired brain injuries (ABI). Physiotherapy interventions for this population have traditionally been based in hierarchical-maturational theories of motor development emphasizing the role of the central nervous system (CNS) in controlling motor behaviour. In contrast, Dynamic Systems Theory (DST) views movement as resulting from the interaction of many subsystems within the individual, features of the functional task to be accomplished, and the environmental context in which the movement takes place. DST is now a predominant theoretical framework in pediatric physiotherapy. The purpose of this article is to describe how DST can be used to understand and promote recovery of function after pediatric ABI. A DST-based approach for children and youth with ABI does not treat the impaired CNS in isolation but rather emphasizes the role of all subsystems, including the family and the environment, in influencing recovery. The emphasis is on exploration, problem solving, and practice of functional tasks. A case scenario provides practical recommendations for the use of DST to inform physiotherapy interventions and clinical decision making in the acute phase of recovery from ABI. Future research is required to evaluate the effectiveness of interventions based in this theoretical framework.

  15. Movement rehabilitation: are the principles of re-learning in the recovery of function the same as those of original learning?

    Science.gov (United States)

    Newell, Karl M; Verhoeven, F Martijn

    2017-01-01

    This paper addresses the change in movement dynamics in rehabilitation through discussing issues that pertain to the question as to whether the principles of re-learning in functional recovery are the same as those of original learning. The many varieties of disease and injury states lead to significant differences in the constraints to action and these impairments in turn influence the pathway of change in re-learning and/or recovery of function. These altered constraints channel the effectiveness of many conditions and strategies of practice that influence learning and performance. Nevertheless, it is proposed that there is a small set of principles for the change in dynamics of motor learning, which drive the continuously evolving stability and instability of movement forms through the lifespan. However, this common set of dynamical principles is realized in individual pathways of change in the movement dynamics of learning, re-learning and recovery of function. The inherent individual differences of humans and environments insure that the coordination, control and skill of movement rehabilitation are challenged in distinct ways by the changing constraints arising from the many manifestations of disease and injury. Implications for rehabilitation The many varieties of disease and injury states lead to significant differences in the constraints to action that in turn influence the pathway of change in re-learning and/or recovery of function, and the effectiveness of the many conditions/strategies of practice to influence learning and performance. There are a small set of principles for the change in dynamics of motor learning that drive the continuously evolving ebb and flow of stability and instability of movement forms through the lifespan. The inherent individual differences of humans and environments insure that the coordination, control and skill of movement rehabilitation are uniquely challenged by the changing constraints arising from the many

  16. Functions of myosin motors tailored for parasitism

    DEFF Research Database (Denmark)

    Mueller, Christina; Graindorge, Arnault; Soldati-Favre, Dominique

    2017-01-01

    Myosin motors are one of the largest protein families in eukaryotes that exhibit divergent cellular functions. Their roles in protozoans, a diverse group of anciently diverged, single celled organisms with many prominent members known to be parasitic and to cause diseases in human and livestock......, are largely unknown. In the recent years many different approaches, among them whole genome sequencing, phylogenetic analyses and functional studies have increased our understanding on the distribution, protein architecture and function of unconventional myosin motors in protozoan parasites. In Apicomplexa......, myosins turn out to be highly specialized and to exhibit unique functions tailored to accommodate the lifestyle of these parasites....

  17. Evaluation of esophageal motor function in clinical practice.

    Science.gov (United States)

    Gyawali, C P; Bredenoord, A J; Conklin, J L; Fox, M; Pandolfino, J E; Peters, J H; Roman, S; Staiano, A; Vaezi, M F

    2013-02-01

    Esophageal motor function is highly coordinated between central and enteric nervous systems and the esophageal musculature, which consists of proximal skeletal and distal smooth muscle in three functional regions, the upper and lower esophageal sphincters, and the esophageal body. While upper endoscopy is useful in evaluating for structural disorders of the esophagus, barium esophagography, radionuclide transit studies, and esophageal intraluminal impedance evaluate esophageal transit and partially assess motor function. However, esophageal manometry is the test of choice for the evaluation of esophageal motor function. In recent years, high-resolution manometry (HRM) has streamlined the process of acquisition and display of esophageal pressure data, while uncovering hitherto unrecognized esophageal physiologic mechanisms and pathophysiologic patterns. New algorithms have been devised for analysis and reporting of esophageal pressure topography from HRM. The clinical value of HRM extends to the pediatric population, and complements preoperative evaluation prior to foregut surgery. Provocative maneuvers during HRM may add to the assessment of esophageal motor function. The addition of impedance to HRM provides bolus transit data, but impact on clinical management remains unclear. Emerging techniques such as 3-D HRM and impedance planimetry show promise in the assessment of esophageal sphincter function and esophageal biomechanics. © 2013 Blackwell Publishing Ltd.

  18. Perceptual-motor functioning in children with phenylketonuria.

    Science.gov (United States)

    Koff, E; Boyle, P; Pueschel, S M

    1977-10-01

    Children with treated phenylketonuria (PKU) have been described as being at high risk for perceptual-motor dysfunction. In this study, the Wechsler Intelligence Scale for Children (WISC) and the Bender Gestalt test were administered to 19 school age children with treated PKU and of average intelligence who have been off diet from five months to six years four months. Perceptual-motor performance was evaluated, and school functioning was rated by classroom teachers. Substantial impairment of perceptual-motor functioning as measured by the Bender Gestalt test and lower WISC performance IQs than verbal IQs were observed in children of average intelligence. Quality of dietary control was found to be associated with performance on the Bender Gestalt test. These findings suggest the possibility of a specific deficit that could seriously interfere with academic progress, but which is not signalled by obvious impairment of overall intellectual functioning.

  19. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  20. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    Science.gov (United States)

    Geertsen, Svend Sparre; Thomas, Richard; Larsen, Malte Nejst; Dahn, Ida Marie; Andersen, Josefine Needham; Krause-Jensen, Matilde; Korup, Vibeke; Nielsen, Claus Malta; Wienecke, Jacob; Ritz, Christian; Krustrup, Peter; Lundbye-Jensen, Jesper

    2016-01-01

    To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests. This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls). Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C). Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension. Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all Pmotor skills (all Pmotor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the causality of these associations.

  1. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation

    Directory of Open Access Journals (Sweden)

    Yang-teng eFan

    2015-10-01

    Full Text Available Most neuroimaging research in stroke rehabilitation mainly focuses on the neural mechanisms underlying the natural history of post-stroke recovery. However, connectivity mapping from resting-state fMRI is well suited for different neurological conditions and provides a promising method to explore plastic changes for treatment-induced recovery from stroke. We examined the changes in resting-state functional connectivity (RS-FC of the ipsilesional primary motor cortex (M1 in 10 post-acute stroke patients before and immediately after 4 weeks of robot-assisted bilateral arm therapy (RBAT. Motor performance, functional use of the affected arm, and daily function improved in all participants. Reduced interhemispheric RS-FC between the ipsilesional and contralesional M1 (M1-M1 and the contralesional-lateralized connections were noted before treatment. In contrast, greater M1-M1 functional connectivity and disturbed resting-state networks were observed after RBAT relative to pre-treatment. Increased changes in M1-M1 RS-FC after RBAT were coupled with better motor and functional improvements. Mediation analysis showed the pre-to-post difference in M1-M1 RS-FC was a significant mediator for the relationship between motor and functional recovery. These results show neuroplastic changes and functional recoveries induced by RBAT in post-acute stroke survivors and suggest that interhemispheric functional connectivity in the motor cortex may be a neurobiological marker for recovery after stroke rehabilitation.

  2. Music-supported therapy (MST) in improving post-stroke patients' upper-limb motor function: a randomised controlled pilot study.

    Science.gov (United States)

    Tong, Yanna; Forreider, Brian; Sun, Xinting; Geng, Xiaokun; Zhang, Weidong; Du, Huishan; Zhang, Tong; Ding, Yuchuan

    2015-05-01

    Music-supported therapy (MST) is a new approach for motor rehabilitation of stroke patients. Recently, many studies have demonstrated that MST improved the motor functions of post-stroke patients. However, the underlying mechanism for this effect is still unclear. It may result from repeated practice or repeated practice combined with musical stimulation. Currently, few studies have been designed to clarify this discrepancy. In this study, the application of "mute" musical instruments allowed for the study of music as an independent factor. Thirty-three post-stroke patients with no substantial previous musical training were included. Participants were assigned to either audible music group (MG) or mute music group (CG), permitting observation of music's independent effect. All subjects received the conventional rehabilitation treatments. Patients in MG (n = 15) received 20 extra sessions of audible musical instrument training over 4 weeks. Patients in CG (n = 18) received "mute" musical instrument training of the same protocol as that of MG. Wolf motor function test (WMFT) and Fugl-Meyer assessment (FMA) for upper limbs were utilised to evaluate motor functions of patients in both groups before and after the treatment. Three patients in CG dropped out. All participants in both groups showed significant improvements in motor functions of upper limbs after 4  weeks' treatment. However, significant differences in the WMFT were found between the two groups (WMFT-quality: P = 0.025; WMFT-time: P = 0.037), but not in the FMA (P = 0.448). In short, all participants showed significant improvement after 4 weeks' treatment, but subjects in MG demonstrated greater improvement than those in CG. This study supports that MST, when combined with conventional treatment, is effective for the recovery of motor skills in post-stroke patients. Additionally, it suggests that apart from the repetitive practices of MST, music may play a unique role in improving

  3. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  4. Impacts of Sensation, Perception, and Motor Abilities of the Ipsilesional Upper Limb on Hand Functions in Unilateral Stroke: Quantifications From Biomechanical and Functional Perspectives.

    Science.gov (United States)

    Hsu, Hsiu-Yun; Ke, Chia-Wen; Kuan, Ta-Shen; Yang, Hsiu-Ching; Tsai, Ching-Liang; Kuo, Li-Chieh

    2018-02-01

    The presence of subtle losses in hand dexterity after stroke affects the regaining of independence with regard to activities of daily living. Therefore, awareness of ipsilesional upper extremity (UE) function may be of importance when developing a comprehensive rehabilitation program. However, current hand function tests seem to be unable to identify asymptomatic UE impairments. To assess the motor coordination as well as the sensory perception of an ipsilesional UE using biomechanical analysis of performance-oriented tasks and conducting a Manual Tactile Test (MTT). Case-controlled study. A university hospital. A total of 21 patients with unilateral stroke, along with 21 matched healthy control subjects, were recruited. Each participant was requested to perform a pinch-holding-up activity (PHUA) test, object-transport task, and reach-to-grasp task via motion capture, as well as the MTT. The kinetic data of the PHUA test, kinematics analysis of functional movements, and time requirement of MTT were analyzed. Patients with ipsilesional UE had an inferior ability to scale and produce pinch force precisely when conducting the PHUA test compared to the healthy controls (P perception (P sensation-perception-motor system in the ipsilesional UE. Integration of sensorimotor training programs for ipsilesional UE in future neuro-rehabilitation strategies may provide more beneficial effects to regain patients' motor recovery and to promote daily living activity independence than focusing on paretic arm motor training alone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Motor Skills and Exercise Capacity Are Associated with Objective Measures of Cognitive Functions and Academic Performance in Preadolescent Children.

    Directory of Open Access Journals (Sweden)

    Svend Sparre Geertsen

    Full Text Available To investigate associations between motor skills, exercise capacity and cognitive functions, and evaluate how they correlate to academic performance in mathematics and reading comprehension using standardised, objective tests.This cross-sectional study included 423 Danish children (age: 9.29±0.35 years, 209 girls. Fine and gross motor skills were evaluated in a visuomotor accuracy-tracking task, and a whole-body coordination task, respectively. Exercise capacity was estimated from the Yo-Yo intermittent recovery level 1 children's test (YYIR1C. Selected tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB were used to assess different domains of cognitive functions, including sustained attention, spatial working memory, episodic and semantic memory, and processing speed. Linear mixed-effects models were used to investigate associations between these measures and the relationship with standard tests of academic performance in mathematics and reading comprehension.Both fine and gross motor skills were associated with better performance in all five tested cognitive domains (all P<0.001, whereas exercise capacity was only associated with better sustained attention (P<0.046 and spatial working memory (P<0.038. Fine and gross motor skills (all P<0.001, exercise capacity and cognitive functions such as working memory, episodic memory, sustained attention and processing speed were all associated with better performance in mathematics and reading comprehension.The data demonstrate that fine and gross motor skills are positively correlated with several aspects of cognitive functions and with academic performance in both mathematics and reading comprehension. Moreover, exercise capacity was associated with academic performance and performance in some cognitive domains. Future interventions should investigate associations between changes in motor skills, exercise capacity, cognitive functions, and academic performance to elucidate the

  6. [The rehabilitation treatment of patients with motor and cognitive disorders after stroke].

    Science.gov (United States)

    Sakharov, V Iu; Isanova, V A

    2014-01-01

    Objective. To study the possibility of using the rehabilitative pneumatic suit "Atlant" in stroke outpatients. Material and methods. We studied 11 stroke patients who wore the pneumatic suit in the early rehabilitation period. A comparison group included 13 patients. The high effectiveness of complex treatment with using the suit "Atlant" was shown. The motor activity was improved in 71.4% of patients, the recovery of speech was found in 33.3% patients. Conclusion. Continuity of rehabilitation in outpatients with stroke promotes the recovery of functional activity, motor, cognitive and speech functions and positively impacts on the emotional state of the patient.

  7. Combinatorial Motor Training Results in Functional Reorganization of Remaining Motor Cortex after Controlled Cortical Impact in Rats.

    Science.gov (United States)

    Combs, Hannah L; Jones, Theresa A; Kozlowski, Dorothy A; Adkins, DeAnna L

    2016-04-15

    Cortical reorganization subsequent to post-stroke motor rehabilitative training (RT) has been extensively examined in animal models and humans. However, similar studies focused on the effects of motor training after traumatic brain injury (TBI) are lacking. We previously reported that after a moderate/severe TBI in adult male rats, functional improvements in forelimb use were accomplished only with a combination of skilled forelimb reach training and aerobic exercise, with or without nonimpaired forelimb constraint. Thus, the current study was designed to examine the relationship between functional motor cortical map reorganization after experimental TBI and the behavioral improvements resulting from this combinatorial rehabilitative regime. Adult male rats were trained to proficiency on a skilled reaching task, received a unilateral controlled cortical impact (CCI) over the forelimb area of the caudal motor cortex (CMC). Three days post-CCI, animals began RT (n = 13) or no rehabilitative training (NoRT) control procedures (n = 13). The RT group participated in daily skilled reach training, voluntary aerobic exercise, and nonimpaired forelimb constraint. This RT regimen significantly improved impaired forelimb reaching success and normalized reaching strategies, consistent with previous findings. RT also enlarged the area of motor cortical wrist representation, derived by intracortical microstimulation, compared to NoRT. These findings indicate that sufficient RT can greatly improve motor function and improve the functional integrity of remaining motor cortex after a moderate/severe CCI. When compared with findings from stroke models, these findings also suggest that more intense RT may be needed to improve motor function and remodel the injured cortex after TBI.

  8. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    Science.gov (United States)

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed

  9. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  10. Nogo-66 receptor antagonist peptide (NEP1-40) administration promotes functional recovery and axonal growth after lateral funiculus injury in the adult rat

    NARCIS (Netherlands)

    Cao, Y.; Shumsky, J. S.; Sabol, M. A.; Kushner, R. A.; Strittmatter, S.; Hamers, F. P. T.; Lee, D. H. S.; Rabacchi, S. A.; Murray, M.

    2008-01-01

    Objective. The myelin protein Nogo inhibits axon regeneration by binding to its receptor (NgR) on axons. Intrathecal delivery of an NgR antagonist (NEP1-40) promotes growth of injured corticospinal axons and recovery of motor function following a dorsal hemisection. The authors used a similar design

  11. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  12. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  13. Development of fine motor skills in preterm infants.

    Science.gov (United States)

    Bos, Arend F; Van Braeckel, Koenraad N J A; Hitzert, Marrit M; Tanis, Jozien C; Roze, Elise

    2013-11-01

    Fine motor skills are related to functioning in daily life and at school. We reviewed the status of knowledge, in preterm children, on the development of fine motor skills, the relation with gross motor skills, and risk factors for impaired fine motor skills. We searched the past 15 years in PubMed, using ['motor skills' or 'fine motor function' and 'preterm infant'] as the search string. Impaired gross and fine motor skills are among the most frequently occurring problems encountered by preterm children who do not develop cerebral palsy. The prevalence is around 40% for mild to moderate impairment and 20% for moderate impairment. Fine motor skill scores on the Movement Assessment Battery for Children are about 0.62 of a standard deviation lower compared with term children. Risk factors for fine motor impairments include moderately preterm birth (odds ratio [OR] 2.0) and, among very preterm children (development of and recovery from brain injury could guide future intervention attempts aimed at improving fine motor skills of preterm children. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.

  14. Effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke

    Directory of Open Access Journals (Sweden)

    Priyanka Shah

    2016-01-01

    Full Text Available Background: Motor imagery is beneficial to treat upper and lower limbs motor impairments in stroke patients, but the effects of imagery in the trunk recovery have not been reported. Hence, the aim is to test the effects of truncal motor imagery practice on trunk performance, functional balance, and daily activities in acute stroke patients. Methods: This pilot randomized clinical trial was conducted in acute stroke unit. Acute stroke patients with hemodynamic stability, aged between 30 and 70 years, first time stroke, and scoring <20 on trunk impairment scale (TIS were included in the study. Patients in the experimental group practiced trunk motor imagery in addition to physical training. Control group was given conventional physical therapy. The treatment intensity was 90 min/day, 6 days a week for 3 weeks duration. Trunk control test, TIS, brunel balance assessment (BBA, and Barthel index (BI were considered as the outcome measures. Results: Among 23 patients included in the study, 12 and 11 patients, respectively, in the control and experimental groups completed the intervention. Repeated measures ANOVA, i.e., timeFNx01 group factor analysis and effect size showed statistically significant improvements (P = 0.001 in the scores of TIS (1.64, BBA (1.83, and BI (0.67. Conclusion: Motor imagery of trunk in addition to the physical practice showed benefits in improving trunk performance, functional balance, and daily living in acute stroke.

  15. Motor skills and functional characteristics of students of different somatotypes

    Directory of Open Access Journals (Sweden)

    M.M. Kolokoltsev

    2018-02-01

    Full Text Available He purpose of the article is to study correlation of motor and functional characteristics of students of different somatotypes. Material : it was examined first year students (n=577, 17-18 years old. All students were trained in discipline “Physical education”. It was carried out somatotyping. It was considered motor skills and functional characteristics of students. Results : it was determined the reliable differences in values of parameters of motor tests and functional characteristics of students’ organism. It is determined that by the end of the first year of study the positive dynamics is registered: in sthenics (in two of seven motor tests; in asthenics (in four tests. It wasn’t found the reliable positive changes in group of hypersthenics. Students of sthenic and asthenic somatotypes have higher functional reserves of cardiorespiratory system, than girls of hypersthenics somatotype. Conclusions: constitutional features of motor skills and functional parameters of students of different somatotypes allow to concretize provisions of methodology of planning the individual differentiated training in discipline Physical education.

  16. Motor function and incident dementia: a systematic review and meta-analysis.

    Science.gov (United States)

    Kueper, Jacqueline Kathleen; Speechley, Mark; Lingum, Navena Rebecca; Montero-Odasso, Manuel

    2017-09-01

    cognitive and mobility decline are interrelated processes, whereby mobility decline coincides or precedes the onset of cognitive decline. to assess whether there is an association between performance on motor function tests and incident dementia. electronic database, grey literature and hand searching identified studies testing for associations between baseline motor function and incident dementia in older adults. of 2,540 potentially relevant documents, 37 met the final inclusion criteria and were reviewed qualitatively. Three meta-analyses were conducted using data from 10 studies. Three main motor domains-upper limb motor function, parkinsonism and lower limb motor function-emerged as associated with increased risk of incident dementia. Studies including older adults without neurological overt disease found a higher risk of incident dementia associated with poorer performance on composite motor function scores, balance and gait velocity (meta-analysis pooled HR = 1.94, 95% CI: 1.41, 2.65). Mixed results were found across different study samples for upper limb motor function, overall parkinsonism (meta-analysis pooled OR = 3.05, 95% CI: 1.31, 7.08), bradykinesia and rigidity. Studies restricted to older adults with Parkinson's Disease found weak or no association with incident dementia even for motor domains highly associated in less restrictive samples. Tremor was not associated with an increased risk of dementia in any population (meta-analysis pooled HR = 0.80, 95% CI 0.31, 2.03). lower limb motor function was associated with increased risk of developing dementia, while tremor and hand grip strength were not. Our results support future research investigating the inclusion of quantitative motor assessment, specifically gait velocity tests, for clinical dementia risk evaluation. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  17. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation

    Directory of Open Access Journals (Sweden)

    Leonardo Furlan

    2016-01-01

    Full Text Available Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.

  18. GABA Levels Are Decreased After Stroke and GABA Changes During Rehabilitation Correlate With Motor Improvement

    Science.gov (United States)

    Blicher, Jakob Udby; Near, Jamie; Næss-Schmidt, Erhard; Stagg, Charlotte J.; Johansen-Berg, Heidi; Nielsen, Jørgen Feldbæk; Østergaard, Leif; Ho, Yi-Ching Lynn

    2017-01-01

    Background and Objective γ-Aminobutyric acid (GABA) is the dominant inhibitory neurotransmitter in the brain and is important in motor learning. We aimed to measure GABA content in primary motor cortex poststroke (using GABA-edited magnetic resonance spectroscopy [MRS]) and in relation to motor recovery during 2 weeks of constraint-induced movement therapy (CIMT). Methods Twenty-one patients (3-12 months poststroke) and 20 healthy subjects were recruited. Magnetic resonance imaging structural T1 and GABA-edited MRS were performed at baseline and after CIMT, and once in healthy subjects. GABA:creatine (GABA:Cr) ratio was measured by GABA-edited MRS. Motor function was measured using Wolf Motor Function Test (WMFT). Results Baseline comparison between stroke patients (n = 19) and healthy subjects showed a significantly lower GABA:Cr ratio in stroke patients (P GABA relative to N-acetylaspartic acid (NAA; P = .03). After 2 weeks of CIMT patients improved significantly on WMFT, but no consistent change across the group was observed for the GABA:Cr ratio (n = 17). However, the extent of improvement on WMFT correlated significantly with the magnitude of GABA:Cr changes (P GABA:Cr ratio being associated with better improvements in motor function. Conclusions In patients 3 to 12 months poststroke, GABA levels are lower in the primary motor cortex than in healthy subjects. The observed association between GABA and recovery warrants further studies on the potential use of GABA MRS as a biomarker in poststroke recovery. PMID:25055837

  19. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Science.gov (United States)

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  20. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Science.gov (United States)

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  1. Functional MRI of motor speech area combined with motor stimulation during resting period

    International Nuclear Information System (INIS)

    Lim, Yeong Su; Park, Hark Hoon; Chung, Gyung Ho; Lee, Sang Yong; Chon, Su Bin; Kang, Shin Hwa

    1999-01-01

    To evaluate functional MR imaging of the motor speech area with and without motor stimulation during the rest period. Nine healthy, right-handed volunteers(M:F=7:2, age:21-40years) were included in this study. Brain activity was mapped using a multislice, gradient echo single shot EPI on a 1.5T MR scanner. The paradigm consisted on a series of alternating rest and activation tasks, performed six times. Each volunteer in the first study(group A) was given examples of motor stimulation during the rest period, while each in the second study(group B) was not given examples of a rest period. Motor stimulation in group A was achieved by continuously flexing five fingers of the right hand. In both groups, maximum internal word generation was achieved during the activation period. Using fMRI analysis software(Stimulate 5.0) and a cross-correlation method(backgroud threshold, 200; correlation threshold, 0.3; ceiling, 1.0; floor, 0.3; minimal count, 3), functional images were analysed. After correlating the activated foci and a time-signal intensity curve, the activated brain cortex and number of pixels were analysed and compared between the two tasks. The t-test was used for statistical analysis. In all nine subjects in group A and B, activation was observed in and adjacent to the left Broca's area. The mean number of activated pixels was 31.6 in group A and 27.8 in group B, a difference which was not statistically significant(P>0.1). Activities in and adjacent to the right Broca's area were seen in seven of group A and four of group B. The mean number of activated pixels was 14.9 in group A and 18 in group B. Eight of nine volunteers in group A showed activity in the left primary motor area with negative correlation to the time-signal intensity curve. The mean number of activated pixels for this group was 17.5. In three volonteers, activation in the right primary motor area was also observed, the mean number of activated pixels in these cases was 10.0. During the rest

  2. Visual-motor integration functioning in a South African middle ...

    African Journals Online (AJOL)

    Visual-motor integration functioning has been identified as playing an integral role in different aspects of a child's development. Sensory-motor development is not only foundational to the physical maturation process, but is also imperative for progress with formal learning activities. Deficits in visual-motor integration have ...

  3. Treatment of functional motor disorders

    NARCIS (Netherlands)

    Gelauff, Jeannette M.; Dreissen, Yasmine E. M.; Tijssen, Marina A. J.; Stone, Jon

    OPINION STATEMENT: For the treatment of functional motor disorder, we recommend a three-stage approach. Firstly, patients must be assessed and given an unambiguous diagnosis, with an explanation that helps them understand that they have a genuine disorder, with the potential for reversibility. A key

  4. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  5. Neuromodulation of lower limb motor control in restorative neurology.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com

    2013-10-18

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  7. Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats

    International Nuclear Information System (INIS)

    Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin

    2013-01-01

    Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a

  8. Brief Assessment of Motor Function: Content Validity and Reliability of the Upper Extremity Gross Motor Scale

    Science.gov (United States)

    Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn

    2011-01-01

    Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…

  9. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Directory of Open Access Journals (Sweden)

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  10. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  11. BDNF genotype interacts with motor-function to influence rehabilitation responsiveness post-stroke

    Directory of Open Access Journals (Sweden)

    Christine T Shiner

    2016-05-01

    Full Text Available Background. Persistent motor impairment is common but highly heterogeneous post-stroke. Genetic polymorphisms, including those identified on the brain derived neurotrophic factor (BDNF and apolipoprotein E (APOE genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness.Objective. To determine whether BDNF and APOE genotypes influence motor improvement facilitated by post-stroke upper-limb rehabilitation. Methods. BDNF Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months post-stroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor-function was assessed pre- and post-therapy using a suite of functional measures. Results. Motor-function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor-function at baseline, or following the intervention. However, a significant interaction between the level of residual motor-function and BDNF genotype was identified (p=0.029, whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor-function. There was no significant association between APOE genotype and therapy outcomes. Conclusions. This study identified a novel interaction between the BDNF Val66Met polymorphism, motor-function status and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher but not lower residual motor-function. BDNF genotype should be considered in the design and interpretation of clinical trials.

  12. Motor functions and adaptive behaviour in children with childhood apraxia of speech.

    Science.gov (United States)

    Tükel, Şermin; Björelius, Helena; Henningsson, Gunilla; McAllister, Anita; Eliasson, Ann Christin

    2015-01-01

    Undiagnosed motor and behavioural problems have been reported for children with childhood apraxia of speech (CAS). This study aims to understand the extent of these problems by determining the profile of and relationships between speech/non-speech oral, manual and overall body motor functions and adaptive behaviours in CAS. Eighteen children (five girls and 13 boys) with CAS, 4 years 4 months to 10 years 6 months old, participated in this study. The assessments used were the Verbal Motor Production Assessment for Children (VMPAC), Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) and Adaptive Behaviour Assessment System (ABAS-II). Median result of speech/non-speech oral motor function was between -1 and -2 SD of the mean VMPAC norms. For BOT-2 and ABAS-II, the median result was between the mean and -1 SD of test norms. However, on an individual level, many children had co-occurring difficulties (below -1 SD of the mean) in overall and manual motor functions and in adaptive behaviour, despite few correlations between sub-tests. In addition to the impaired speech motor output, children displayed heterogeneous motor problems suggesting the presence of a global motor deficit. The complex relationship between motor functions and behaviour may partly explain the undiagnosed developmental difficulties in CAS.

  13. Disentangling the relationship between children's motor ability, executive function and academic achievement.

    Directory of Open Access Journals (Sweden)

    Mirko Schmidt

    Full Text Available Even though positive relations between children's motor ability and their academic achievement are frequently reported, the underlying mechanisms are still unclear. Executive function has indeed been proposed, but hardly tested as a potential mediator. The aim of the present study was therefore to examine the mediating role of executive function in the relationship between motor ability and academic achievement, also investigating the individual contribution of specific motor abilities to the hypothesized mediated linkage to academic achievement. At intervals of ten weeks, 236 children aged between 10 and 12 years were tested in terms of their motor ability (t1: cardiovascular endurance, muscular strength, motor coordination, core executive functions (t2: updating, inhibition, shifting, and academic achievement (t3: mathematics, reading, spelling. Structural equation modelling revealed executive function to be a mediator in the relation between motor ability and academic achievement, represented by a significant indirect effect. In separate analyses, each of the three motor abilities were positively related to children's academic achievement. However, only in the case of children's motor coordination, the mediation by executive function accounted for a significance percentage of variance of academic achievement data. The results provide evidence in support of models that conceive executive function as a mechanism explaining the relationship that links children's physical activity-related outcomes to academic achievement and strengthen the advocacy for quality physical activity not merely focused on health-related physical fitness outcomes, but also on motor skill development and learning.

  14. The Gemin associates of survival motor neuron are required for motor function in Drosophila.

    Science.gov (United States)

    Borg, Rebecca; Cauchi, Ruben J

    2013-01-01

    Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2-8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3(ΔN) mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3(ΔN) overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3(ΔN), we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3(ΔN)-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3(ΔN). Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.

  15. Recovery from distal ulnar motor conduction block injury: serial EMG studies.

    Science.gov (United States)

    Montoya, Liliana; Felice, Kevin J

    2002-07-01

    Acute conduction block injuries often result from nerve compression or trauma. The temporal pattern of clinical, electrophysiologic, and histopathologic changes following these injuries has been extensively studied in experimental animal models but not in humans. Our recent evaluation of a young man with an injury to the deep motor branch of the ulnar nerve following nerve compression from weightlifting exercises provided the opportunity to follow the course and recovery of a severe conduction block injury with sequential nerve conduction studies. The conduction block slowly and completely resolved, as did the clinical deficit, over a 14-week period. The reduction in conduction block occurred at a linear rate of -6.1% per week. Copyright 2002 Wiley Periodicals, Inc.

  16. Accurate motor mapping in awake common marmosets using micro-electrocorticographical stimulation and stochastic threshold estimation

    DEFF Research Database (Denmark)

    Kosugi, Akito; Takemi, Mitsuaki; Tia, Banty

    2018-01-01

    OBJECTIVE: Motor map has been widely used as an indicator of motor skills and learning, cortical injury, plasticity, and functional recovery. Cortical stimulation mapping using epidural electrodes is recently adopted for animal studies. However, several technical limitations still remain. Test-re...

  17. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Young Ock Kim

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in permanent loss of motor function below the injured site. Neuroinflammatory reaction following SCI can aggravate neural injury and functional impairment. Ginseng is well known to possess anti-inflammatory effects. The present study investigated the neuroprotective effects of Panax ginseng C.A. Mayer (P. ginseng after SCI. A spinal contusion was made at the T11-12 spinal cord in adult male Sprague-Dawley rats (n=47 using the NYU impactor. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB score in P. ginseng (0.1, 0.5, 1, 3, and 5 mg/kg or vehicle (saline treated after SCI. We also assessed the protein expression of cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS at the lesion site by western blot and then measured the cavity area using luxol fast blue/cresyl violet staining. P. ginseng treated group in SCI showed a significant improvement in locomotor function after the injury. The protein expression of COX-2 and iNOS at the lesion site and the cavity area were decreased following SCI by P. ginseng treatment. These results suggest that P. ginseng may improve the recovery of motor function after SCI which provides neuroprotection by alleviating posttraumatic inflammatory responses.

  18. Forced, not voluntary, exercise improves motor function in Parkinson's disease patients.

    Science.gov (United States)

    Ridgel, Angela L; Vitek, Jerrold L; Alberts, Jay L

    2009-01-01

    Animal studies indicate forced exercise (FE) improves overall motor function in Parkinsonian rodents. Global improvements in motor function following voluntary exercise (VE) are not widely reported in human Parkinson's disease (PD) patients. The aim of this study was to compare the effects of VE and FE on PD symptoms, motor function, and bimanual dexterity. Ten patients with mild to moderate PD were randomly assigned to complete 8 weeks of FE or VE. With the assistance of a trainer, patients in the FE group pedaled at a rate 30% greater than their preferred voluntary rate, whereas patients in the VE group pedaled at their preferred rate. Aerobic intensity for both groups was identical, 60% to 80% of their individualized training heart rate. Aerobic fitness improved for both groups. Following FE, Unified Parkinson's Disease Rating Scale (UPDRS) motor scores improved 35%, whereas patients completing VE did not exhibit any improvement. The control and coordination of grasping forces during the performance of a functional bimanual dexterity task improved significantly for patients in the FE group, whereas no changes in motor performance were observed following VE. Improvements in clinical measures of rigidity and bradykinesia and biomechanical measures of bimanual dexterity were maintained 4 weeks after FE cessation. Aerobic fitness can be improved in PD patients following both VE and FE interventions. However, only FE results in significant improvements in motor function and bimanual dexterity. Biomechanical data indicate that FE leads to a shift in motor control strategy, from feedback to a greater reliance on feedforward processes, which suggests FE may be altering central motor control processes.

  19. Predicting functional recovery after acute ankle sprain.

    Directory of Open Access Journals (Sweden)

    Sean R O'Connor

    Full Text Available Ankle sprains are among the most common acute musculoskeletal conditions presenting to primary care. Their clinical course is variable but there are limited recommendations on prognostic factors. Our primary aim was to identify clinical predictors of short and medium term functional recovery after ankle sprain.A secondary analysis of data from adult participants (N = 85 with an acute ankle sprain, enrolled in a randomized controlled trial was undertaken. The predictive value of variables (age, BMI, gender, injury mechanism, previous injury, weight-bearing status, medial joint line pain, pain during weight-bearing dorsiflexion and lateral hop test recorded at baseline and at 4 weeks post injury were investigated for their prognostic ability. Recovery was determined from measures of subjective ankle function at short (4 weeks and medium term (4 months follow ups. Multivariate stepwise linear regression analyses were undertaken to evaluate the association between the aforementioned variables and functional recovery.Greater age, greater injury grade and weight-bearing status at baseline were associated with lower function at 4 weeks post injury (p<0.01; adjusted R square=0.34. Greater age, weight-bearing status at baseline and non-inversion injury mechanisms were associated with lower function at 4 months (p<0.01; adjusted R square=0.20. Pain on medial palpation and pain on dorsiflexion at 4 weeks were the most valuable prognostic indicators of function at 4 months (p< 0.01; adjusted R square=0.49.The results of the present study provide further evidence that ankle sprains have a variable clinical course. Age, injury grade, mechanism and weight-bearing status at baseline provide some prognostic information for short and medium term recovery. Clinical assessment variables at 4 weeks were the strongest predictors of recovery, explaining 50% of the variance in ankle function at 4 months. Further prospective research is required to highlight the factors

  20. Recovery from an acute relapse is associated with changes in motor resting-state connectivity in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Blinkenberg, Morten; Paulson, Olaf B.

    2016-01-01

    Resting-state functional MRI (rs-fMRI) of the brain has been successfully used to identify altered functional connectivity in the motor network in multiple sclerosis (MS).1 In clinically stable patients with MS, we recently demonstrated increased coupling between the basal ganglia and the motor...... network.1 Accordingly, rs-fMRI in MS is particularly suited to investigate functional reorganisation of the motor network in the remission phase after a relapse because the resting-state connectivity pattern is not influenced by interindividual differences in motor ability and task performance....... In this prospective rs-fMRI study, we mapped acute changes in resting-state motor connectivity in 12 patients with relapsing forms of MS presenting with an acute relapse involving an upper limb paresis. Previous functional MRI (fMRI) studies have shown that the activation of sensorimotor areas was stronger and more...

  1. The relationship between motor function, cognition, independence and quality of life in myelomeningocele patients.

    Science.gov (United States)

    Luz, Carolina Lundberg; Moura, Maria Clara Drummond Soares de; Becker, Karine Kyomi; Teixeira, Rosani Aparecida Antunes; Voos, Mariana Callil; Hasue, Renata Hydee

    2017-08-01

    Motor function, cognition, functional independence and quality of life have been described in myelomeningocele patients, but no study has investigated their relationships. We aimed to investigate the relationships between motor function, cognition, functional independence, quality of life, age, and lesion level in myelomeningocele patients, and investigate the influence of hydrocephalus on these variables. We assessed 47 patients with the Gross Motor Function Measure (motor function), Raven's Colored Progressive Matrices (cognition), Pediatric Evaluation of Disability Inventory (functional independence) and the Autoquestionnaire Qualité de vie Enfant Imagé (quality of life). Spearman's correlation tests determined relationships between the variables. The Friedman ANOVAs determined the influence of hydrocephalus. Motor function was strongly related to mobility and lesion level, and moderately related to cognition, self-care and social function. Cognition and quality of life were moderately related to functional independence. Age correlated moderately with functional independence and quality of life. Hydrocephalus resulted in poorer motor/cognitive outcomes and lower functional independence.

  2. Investigating the Efficacy of Novel TrkB Agonists to Augment Stroke Recovery

    Science.gov (United States)

    Warraich, Zuha

    Stroke remains the leading cause of adult disability in developed countries. Most survivors live with residual motor impairments that severely diminish independence and quality of life. After stroke, the only accepted treatment for these patients is motor rehabilitation. However, the amount and kind of rehabilitation required to induce clinically significant improvements in motor function is rarely given due to the constraints of our current health care system. Research reported in this dissertation contributes towards developing adjuvant therapies that may augment the impact of motor rehabilitation and improve functional outcome. These studies have demonstrated reorganization of maps within motor cortex as a function of experience in both healthy and brain-injured animals by using intracortical microstimulation technique. Furthermore, synaptic plasticity has been identified as a key neural mechanism in directing motor map plasticity, evidenced by restoration of movement representations within the spared cortical tissue accompanied by increase in synapse number translating into motor improvement after stroke. There is increasing evidence that brain-derived neurotrophic factor (BDNF) modulates synaptic and morphological plasticity in the developing and mature nervous system. Unfortunately, BDNF itself is a poor candidate because of its short half-life, low penetration through the blood brain barrier, and activating multiple receptor units, p75 and TrkB on the neuronal membrane. In order to circumvent this problem efficacy of two recently developed novel TrkB agonists, LM22A-4 and 7,8-dihydroxyflavone, that actively penetrate the blood brain barrier and enhance functional recovery. Findings from these dissertation studies indicate that administration of these pharmacological compounds, accompanied by motor rehabilitation provide a powerful therapeutic tool for stroke recovery.

  3. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  4. Functional recovery measures for spinal cord injury : An evidence-based review for clinical practice and research - Functional recovery outcome measures work group

    NARCIS (Netherlands)

    Anderson, Kim; Aito, Sergio; Atkins, Michal; Biering-Sorensen, Fin; Charlifue, Susan; Curt, Armin; Ditunno, John; Glass, Clive; Marino, Ralph; Marshall, Ruth; Mulcahey, Mary Jane; Post, Marcel; Savic, Gordana; Scivoletto, Giorgio; Catz, Amiram

    2008-01-01

    Background/Objective: The end goal of clinical care and clinical research involving spinal cord injury (SCI) is to improve the overall ability of persons living with SCI to function on a daily basis. Neurologic recovery does not always translate into functional recovery. Thus, sensitive outcome

  5. Infant motor and cognitive abilities and subsequent executive function.

    Science.gov (United States)

    Wu, Meng; Liang, Xi; Lu, Shan; Wang, Zhengyan

    2017-11-01

    Although executive function (EF) is widely considered crucial to several aspects of life, the mechanisms underlying EF development remain largely unexplored, especially for infants. From a behavioral or neurodevelopmental perspective, motor and general cognitive abilities are linked with EF. EF development is a multistage process that starts with sensorimotor interactive behaviors, which become basic cognitive abilities and, in turn, mature EF. This study aims to examine how infant motor and general cognitive abilities are linked with their EF at 3 years of age. This work also aims to explore the potential processes of EF development from early movement. A longitudinal study was conducted with 96 infants (55 girls and 41 boys). The infants' motor and general cognitive abilities were assessed at 1 and 2 years of age with Bayley Scales of Infant and Toddler Development, Second and Third Editions, respectively. Infants' EFs were assessed at 3 years of age with Working Memory Span task, Day-Night task, Wrapped Gift task, and modified Gift-in-Bag task. Children with higher scores for cognitive ability at 2 years of age performed better in working memory, and children with higher scores for gross motor ability at 2 years performed better in cognitive inhibitory control (IC). Motor ability at 1 year and fine/gross motor ability at 2 years indirectly affected cognitive IC via general cognitive ability at 2 years and working memory. EF development is a multistage process that originates from physical movement to simple cognitive function, and then to complex cognitive function. Infants and toddlers can undergo targeted motor training to promote EF development. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Early and late changes in the distal forelimb representation of the supplementary motor area after injury to frontal motor areas in the squirrel monkey.

    Science.gov (United States)

    Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J

    2008-09-01

    Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.

  7. Right vs. left sensorimotor cortex suction-ablation in the rat: no difference in beam-walking recovery.

    Science.gov (United States)

    Goldstein, L B

    1995-03-13

    The ability of rats to traverse a narrow elevated beam has been used to quantitate recovery of hindlimb motor function after unilateral injury to the sensorimotor cortex. We tested the hypothesis that the rate of spontaneous beam-walking recovery varies with the side of the cortex lesion. Groups of rats that were trained at the beam-walking task underwent suction-ablation of either the right or left hindlimb sensorimotor cortex. There was no difference in hindlimb motor function between the groups on the first post-operative beam-waking trial carried out the day after cortex ablation and no difference between the groups in overall recovery rates over the next two weeks. Subsequent analyses of lesion surface parameters showed no differences in lesion size or extent. Regardless of the side of the lesion, there were also no differences between the right and left hemispheres in norepinephrine content of the lesioned or contralateral cortex. We conclude that the side of sensorimotor cortex ablation injury does not differentially affect the rate of spontaneous motor recovery as measured with the beam-walking task.

  8. Motor imagery learning modulates functional connectivity of multiple brain systems in resting state.

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning.

  9. Dynamics of functional failures and recovery in complex road networks

    Science.gov (United States)

    Zhan, Xianyuan; Ukkusuri, Satish V.; Rao, P. Suresh C.

    2017-11-01

    We propose a new framework for modeling the evolution of functional failures and recoveries in complex networks, with traffic congestion on road networks as the case study. Differently from conventional approaches, we transform the evolution of functional states into an equivalent dynamic structural process: dual-vertex splitting and coalescing embedded within the original network structure. The proposed model successfully explains traffic congestion and recovery patterns at the city scale based on high-resolution data from two megacities. Numerical analysis shows that certain network structural attributes can amplify or suppress cascading functional failures. Our approach represents a new general framework to model functional failures and recoveries in flow-based networks and allows understanding of the interplay between structure and function for flow-induced failure propagation and recovery.

  10. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    OpenAIRE

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has ...

  11. ''Playstation eyetoy games'' improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial.

    Science.gov (United States)

    Yavuzer, G; Senel, A; Atay, M B; Stam, H J

    2008-09-01

    To evaluate the effects of ''Playstation EyeToy Games'' on upper extremity motor recovery and upper extremity-related motor functioning of patients with subacute stroke. The authors designed a randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 3 months. A total of 20 hemiparetic inpatients (mean age 61.1 years), all within 12 months post-stroke, received 30 minutes of treatment with ''Playstation EyeToy Games'' per day, consisting of flexion and extension of the paretic shoulder, elbow and wrist as well as abduction of the paretic shoulder or placebo therapy (watching the games for the same duration without physical involvement into the games) in addition to conventional program, 5 days a week, 2-5 hours/day for 4 weeks. Brunnstrom's staging and self-care sub-items of the functional independence measure (FIM) were performed at 0 month (baseline), 4 weeks (post-treatment), and 3 months (follow-up) after the treatment. The mean change score (95% confidence interval) of the FIM self-care score (5.5 [2.9-8.0] vs 1.8 [0.1-3.7], P=0.018) showed significantly more improvement in the EyeToy group compared to the control group. No significant differences were found between the groups for the Brunnstrom stages for hand and upper extremity. ''Playstation EyeToy Games'' combined with a conventional stroke rehabilitation program have a potential to enhance upper extremity-related motor functioning in subacute stroke patients.

  12. Mechanisms of motor recovery after subtotal spinal cord injury: insights from the study of mice carrying a mutation (WldS) that delays cellular responses to injury.

    Science.gov (United States)

    Zhang, Z; Guth, L; Steward, O

    1998-01-01

    Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.

  13. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  14. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  15. Motor function deficits in schizophrenia: an fMRI and VBM study

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash [Institute of Nuclear Medicine and Allied Sciences (INMAS), NMR Research Center, Delhi (India); Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N. [RML Hospital, PGIMER, New Delhi (India)

    2014-05-15

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  16. Motor function deficits in schizophrenia: an fMRI and VBM study

    International Nuclear Information System (INIS)

    Singh, Sadhana; Modi, Shilpi; Kumar, Pawan; Singh, Namita; Khushu, Subash; Goyal, Satnam; Bhatia, Triptish; Deshpande, Smita N.

    2014-01-01

    To investigate whether the motor functional alterations in schizophrenia (SZ) are also associated with structural changes in the related brain areas using functional magnetic resonance imaging (fMRI) and voxel-based morphometry (VBM). A sample of 14 right-handed SZ patients and 14 right-handed healthy control subjects matched for age, sex, and education were examined with structural high-resolution T1-weighted MRI; fMRI images were obtained during right index finger-tapping task in the same session. fMRI results showed reduced functional activation in the motor areas (contralateral precentral and postcentral gyrus) and ipsilateral cerebellum in SZ subjects as compared to healthy controls (n = 14). VBM analysis also revealed reduced grey matter in motor areas and white matter reduction in cerebellum of SZ subjects as compared to controls. The present study provides an evidence for a possible association between structural alterations in the motor cortex and disturbed functional activation in the motor areas in persons affected with SZ during a simple finger-tapping task. (orig.)

  17. Organization of the human motor system as studied by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mattay, Venkata S.; Weinberger, Daniel R.

    1999-01-01

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI), because of its superior resolution and unlimited repeatability, can be particularly useful in studying functional aspects of the human motor system, especially plasticity, and somatotopic and temporal organization. In this survey, while describing studies that have reliably used BOLD fMRI to examine these aspects of the motor system, we also discuss studies that investigate the neural substrates underlying motor skill acquisition, motor imagery, production of motor sequences; effect of rate and force of movement on brain activation and hemispheric control of motor function. In the clinical realm, in addition to the presurgical evaluation of neurosurgical patients, BOLD fMRI has been used to explore the mechanisms underlying motor abnormalities in patients with neuropsychiatric disorders and the mechanisms underlying reorganization or plasticity of the motor system following a cerebral insult

  18. Apolipoprotein E Mimetic Promotes Functional and Histological Recovery in Lysolecithin-Induced Spinal Cord Demyelination in Mice.

    Science.gov (United States)

    Gu, Zhen; Li, Fengqiao; Zhang, Yi Ping; Shields, Lisa B E; Hu, Xiaoling; Zheng, Yiyan; Yu, Panpan; Zhang, Yongjie; Cai, Jun; Vitek, Michael P; Shields, Christopher B

    2013-04-01

    Considering demyelination is the pathological hallmark of multiple sclerosis (MS), reducing demyelination and/or promoting remyelination is a practical therapeutic strategy to improve functional recovery for MS. An apolipoprotein E (apoE)-mimetic peptide COG112 has previously demonstrated therapeutic efficacy on functional and histological recovery in a mouse experimental autoimmune encephalomyelitis (EAE) model of human MS. In the current study, we further investigated whether COG112 promotes remyelination and improves functional recovery in lysolecithin induced focal demyelination in the white matter of spinal cord in mice. A focal demyelination model was created by stereotaxically injecting lysolecithin into the bilateral ventrolateral funiculus (VLF) of T8 and T9 mouse spinal cords. Immediately after lysolecithin injection mice were treated with COG112, prefix peptide control or vehicle control for 21 days. The locomotor function of the mice was measured by the beam walking test and Basso Mouse Scale (BMS) assessment. The nerve transmission of the VLF of mice was assessed in vivo by transcranial magnetic motor evoked potentials (tcMMEPs). The histological changes were also examined by by eriochrome cyanine staining, immunohistochemistry staining and electron microscopy (EM) method. The area of demyelination in the spinal cord was significantly reduced in the COG112 group. EM examination showed that treatment with COG112 increased the thickness of myelin sheaths and the numbers of surviving axons in the lesion epicenter. Locomotor function was improved in COG112 treated animals when measured by the beam walking test and BMS assessment compared to controls. TcMMEPs also demonstrated the COG112-mediated enhancement of amplitude of evoked responses. The apoE-mimetic COG112 demonstrates a favorable combination of activities in suppressing inflammatory response, mitigating demyelination and in promoting remyelination and associated functional recovery in animal model

  19. Neurofeedback training of alpha-band coherence enhances motor performance.

    Science.gov (United States)

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State

    Science.gov (United States)

    Zhang, Hang; Long, Zhiying; Ge, Ruiyang; Xu, Lele; Jin, Zhen; Yao, Li; Liu, Yijun

    2014-01-01

    Background Learning motor skills involves subsequent modulation of resting-state functional connectivity in the sensory-motor system. This idea was mostly derived from the investigations on motor execution learning which mainly recruits the processing of sensory-motor information. Behavioral evidences demonstrated that motor skills in our daily lives could be learned through imagery procedures. However, it remains unclear whether the modulation of resting-state functional connectivity also exists in the sensory-motor system after motor imagery learning. Methodology/Principal Findings We performed a fMRI investigation on motor imagery learning from resting state. Based on previous studies, we identified eight sensory and cognitive resting-state networks (RSNs) corresponding to the brain systems and further explored the functional connectivity of these RSNs through the assessments, connectivity and network strengths before and after the two-week consecutive learning. Two intriguing results were revealed: (1) The sensory RSNs, specifically sensory-motor and lateral visual networks exhibited greater connectivity strengths in precuneus and fusiform gyrus after learning; (2) Decreased network strength induced by learning was proved in the default mode network, a cognitive RSN. Conclusions/Significance These results indicated that resting-state functional connectivity could be modulated by motor imagery learning in multiple brain systems, and such modulation displayed in the sensory-motor, visual and default brain systems may be associated with the establishment of motor schema and the regulation of introspective thought. These findings further revealed the neural substrates underlying motor skill learning and potentially provided new insights into the therapeutic benefits of motor imagery learning. PMID:24465577

  1. Effects of intrathecal baclofen therapy on motor and cognitive functions in a rat model of cerebral palsy.

    Science.gov (United States)

    Nomura, Sadahiro; Kagawa, Yoshiteru; Kida, Hiroyuki; Maruta, Yuichi; Imoto, Hirochika; Fujii, Masami; Suzuki, Michiyasu

    2012-02-01

    ITB treatment. Management of spasticity with ITB therapy improved the walking ability in the rat CP model. Intrathecal baclofen therapy-which reduces harmful sensory and motor stimulations caused by spasticity to more optimal levels-contributed to motor function recovery; however, it had no effect on intellectual recovery as assessed by memory performance in the rat CP model.

  2. Motor sequence learning-induced neural efficiency in functional brain connectivity.

    Science.gov (United States)

    Karim, Helmet T; Huppert, Theodore J; Erickson, Kirk I; Wollam, Mariegold E; Sparto, Patrick J; Sejdić, Ervin; VanSwearingen, Jessie M

    2017-02-15

    Previous studies have shown the functional neural circuitry differences before and after an explicitly learned motor sequence task, but have not assessed these changes during the process of motor skill learning. Functional magnetic resonance imaging activity was measured while participants (n=13) were asked to tap their fingers to visually presented sequences in blocks that were either the same sequence repeated (learning block) or random sequences (control block). Motor learning was associated with a decrease in brain activity during learning compared to control. Lower brain activation was noted in the posterior parietal association area and bilateral thalamus during the later periods of learning (not during the control). Compared to the control condition, we found the task-related motor learning was associated with decreased connectivity between the putamen and left inferior frontal gyrus and left middle cingulate brain regions. Motor learning was associated with changes in network activity, spatial extent, and connectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Functional magnetic resonance imaging of the primary motor cortex

    Indian Academy of Sciences (India)

    Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed ...

  4. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  5. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  6. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  7. Sleep parameters, functional status and time post-stroke are associated with off-line motor skill learning in people with chronic stroke

    Directory of Open Access Journals (Sweden)

    Catherine eSiengsukon

    2015-10-01

    Full Text Available Background: Mounting evidence demonstrates that individuals with stroke benefit from sleep to enhance learning of a motor task. While stage NREM2 sleep and REM sleep have been associated with off-line motor skill learning in neurologically-intact individuals, it remains unknown which sleep parameters or specific sleep stages are associated with off-line motor skill learning in individuals with stroke. Methods: Twenty individuals with chronic stroke (> 6 months following stroke and 10 neurologically slept for three consecutive nights in a sleep laboratory with polysomnography. Participants practiced a tracking task the morning before the third night and underwent a retention test the morning following the third night. Off-line learning on the tracking task was assessed. Pearson’s correlations assessed for associations between the magnitude of off-line learning and sleep variables, age, upper extremity motor function, stroke severity, depression and time since stroke occurrence.Results: Individuals with stroke performed with significantly less error on the tracking task following a night of sleep (p=.006 while the control participants did not (p=.816. Increased sleep efficiency (r= -.285, less time spent in stage NREM3 sleep (r=.260, and more time spent in stage REM sleep (r= -.266 was weakly-to-moderately associated with increased magnitude of off-line motor learning. Furthermore, higher upper-extremity motor function (r = -.400, lower stroke severity (r = .360, and less time since stroke occurrence (r=.311 were moderately associated with increased magnitude of off-line motor learning. Conclusion: This study is the first study to provide insight into which sleep stages and individual characteristics may be associated with off-line learning in people with stroke. Future work should continue to understand which factors or combination of factors promote off-line motor learning in people with neurologic injury to best promote motor recovery in

  8. Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.

    Science.gov (United States)

    Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin

    2013-08-01

    Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  9. Decreased function of survival motor neuron protein impairs endocytic pathways.

    Science.gov (United States)

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  10. Relationships Between Gross Motor Skills and Social Function in Young Boys With Autism Spectrum Disorder.

    Science.gov (United States)

    Holloway, Jamie M; Long, Toby M; Biasini, Fred

    2018-05-02

    The purpose of this study was to examine the relationship between gross motor skills and social function in young boys with autism spectrum disorder. Twenty-one children with autism spectrum disorder participated in the study. The Peabody Developmental Motor Scales Second Edition and the Miller Function and Participation Scales were used to assess gross motor skills. The Social Skills Improvement System Rating Scales was used to assess social function. Moderately high correlations were found between overall gross motor and social skills (r = 0.644) and between the core stability motor subtest and overall social skills (r = -0.672). Specific motor impairments in stability, motor accuracy, and object manipulation scores were predictive of social function. This study suggests that motor skills and social function are related in young boys with autism. Implications for physical therapy intervention are also discussed.

  11. Computers in the Cop Car: Impact of the Mobile Digital Terminal Technology on Motor Vehicle Theft Clearance and Recovery Rates in a Texas City.

    Science.gov (United States)

    Nunn, Samuel

    1993-01-01

    Assessed the impact of the Mobile Digital Terminal technology (computers used to communicate with remote crime databases) on motor vehicle theft clearance (arresting a perpetrator) and recovery rates in Fort Worth (Texas), using a time series analysis. Impact has been ambiguous, with little evidence of improved clearance or recovery. (SLD)

  12. Evaluation of esophageal motor function in clinical practice

    NARCIS (Netherlands)

    Gyawali, C. P.; Bredenoord, A. J.; Conklin, J. L.; Fox, M.; Pandolfino, J. E.; Peters, J. H.; Roman, S.; Staiano, A.; Vaezi, M. F.

    2013-01-01

    Esophageal motor function is highly coordinated between central and enteric nervous systems and the esophageal musculature, which consists of proximal skeletal and distal smooth muscle in three functional regions, the upper and lower esophageal sphincters, and the esophageal body. While upper

  13. Reflex-based grasping, skilled forelimb reaching, and electrodiagnostic evaluation for comprehensive analysis of functional recovery-The 7-mm rat median nerve gap repair model revisited.

    Science.gov (United States)

    Stößel, Maria; Rehra, Lena; Haastert-Talini, Kirsten

    2017-10-01

    The rat median nerve injury and repair model gets increasingly important for research on novel bioartificial nerve grafts. It allows follow-up evaluation of the recovery of the forepaw functional ability with several sensitive techniques. The reflex-based grasping test, the skilled forelimb reaching staircase test, as well as electrodiagnostic recordings have been described useful in this context. Currently, no standard values exist, however, for comparison or comprehensive correlation of results obtained in each of the three methods after nerve gap repair in adult rats. Here, we bilaterally reconstructed 7-mm median nerve gaps with autologous nerve grafts (ANG) or autologous muscle-in-vein grafts (MVG), respectively. During 8 and 12 weeks of observation, functional recovery of each paw was separately monitored using the grasping test (weekly), the staircase test, and noninvasive electrophysiological recordings from the thenar muscles (both every 4 weeks). Evaluation was completed by histomorphometrical analyses at 8 and 12 weeks postsurgery. The comprehensive evaluation detected a significant difference in the recovery of forepaw functional motor ability between the ANG and MVG groups. The correlation between the different functional tests evaluated precisely displayed the recovery of distinct levels of forepaw functional ability over time. Thus, this multimodal evaluation model represents a valuable preclinical model for peripheral nerve reconstruction approaches.

  14. A Comparison of the Relation of Depression, and Cognitive, Motor and Functional Deficits in Chronic Stroke Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Amin Ghaffari

    2017-10-01

    Full Text Available Aim and background: One of the most important psychological disorders after stroke is depression, which leads to reduced quality of life, optimal rehabilitation failure, loss of cognitive tasks and decrease in the recovery process. In this research, relation between patterns of depression and cognitive, motor and function deficits in people with chronic stroke was studied. Methods and materials: In a pilot cross-sectional study, 40 patients with chronic stroke (more than 6 months were enrolled. Depression (Beck Depression Inventory, cognition (attention test TMT-A & B and Wechsler memory, motor (Motorcity index, basic activities of daily living (Barthel scale and instrumental activities of daily living (Lawton scale were evaluated. Results: The results of the study revealed a significant positive correlation between post stroke depression and verbal memory (r=0.440،P<.05, attention (r=0.615،P<.05, motor function(r-0.368،P<.05, independence in basic activities of daily living (r=0.781،P<.05 and instrumental activities of daily living (r=0.741, P<.05. Conclusion: According to the findings, further studies of factors affecting post stroke depression (PSD clinical and practical aspects are necessary. Cognitive rehabilitation programs with motor rehabilitation can decrease depression and gain independence in activities of daily living and more participation in society activities.

  15. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    Directory of Open Access Journals (Sweden)

    Thais Botossi Scalha

    2011-08-01

    Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.

  16. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    Science.gov (United States)

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  18. The influence of viscosity on the functioning of molecular motors

    NARCIS (Netherlands)

    Klok, Martin; Janssen, Leon P.B.M.; Browne, Wesley R.; Feringa, Ben L.

    2009-01-01

    Light driven molecular motors based on sterically overcrowded alkenes achieve repetitive unidirectional rotation through a sequential series of photochemical and thermal steps. The influence of highly viscous environments on the functioning of unidirectional light driven molecular motors is

  19. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Science.gov (United States)

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  20. Resource-recovery facilities: Production and cost functions, and debt-financing issues

    International Nuclear Information System (INIS)

    Simonsen, W.S.

    1991-01-01

    Some of the fiscal questions relating to resource-recovery, or trash-burning, facilities are addressed. Production and cost functions for resource-recovery facilities are estimated using regression analysis. Whether or not there are returns to scale are addressed using the production and cost-function framework. Production functions are also estimated using data envelopment analysis (DEA), and results are compared to the regression results. DEA is a linear-program-based technique that can provide information about the production process. The data used to estimate the production and cost functions were collected from the Resource Recovery Yearbook. Once the decision is made to construct a resource-recovery facility, it needs to be financed. The high cost of these facilities usually prohibits financing construction out of regular operating revenues. Therefore, the issues a government faces when debt is used to finance a resource-recovery facility are analyzed. The most important public policy finding is that increasing economies of scale do not seem to be present for resource-recovery facilities

  1. Effects of hippotherapy on gross motor function and functional performance of children with cerebral palsy.

    Science.gov (United States)

    Park, Eun Sook; Rha, Dong Wook; Shin, Jung Soon; Kim, Soohyeon; Jung, Soojin

    2014-11-01

    The purpose of our study was to investigate the effects of hippotherapy on gross motor function and functional performance in children with spastic cerebral palsy (CP). We recruited 34 children (M:F=15:19, age: 3-12 years) with spastic CP who underwent hippotherapy for 45 minutes twice a week for 8 weeks. Twenty-one children with spastic CP were recruited for control group. The distribution of gross motor function classification system level and mean age were not significantly different between the two groups. Outcome measures, including the Gross Motor Function Measure (GMFM)-66, GMFM-88 and the Pediatric Evaluation of Disability Inventory: Functional Skills Scale (PEDI-FSS), were assessed before therapy and after the 8-weeks intervention as outcome measures. There were no significant differences between intervention and control groups in mean baseline total scores of GMFM-66, GMFM-88 or PEDI-FSS. After the 8-weeks intervention, mean GMFM-66 and GMFM-88 scores were significantly improved in both groups. However, the hippotherapy group had significantly greater improvement in dimension E and GMFM-66 total score than the control group. The total PEDI-FSS score and the sub-scores of its 3 domains were significantly improved in the hippotherapy group, but not in the control group. The results of our study demonstrate the beneficial effects of hippotherapy on gross motor function and functional performance in children with CP compared to control group. The significant improvement in PEDI-FSS scores suggests that hippotherapy may be useful to maximize the functional performance of children with CP.

  2. Global motion perception is associated with motor function in 2-year-old children.

    Science.gov (United States)

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, Pmotor scores (r 2 =0.06, pmotor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.

    Science.gov (United States)

    Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M

    2018-05-10

    Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.

  4. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    Science.gov (United States)

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.

  5. Salvianolic Acid B Ameliorates Motor Dysfuntion in Spinal Cord ...

    African Journals Online (AJOL)

    Department of Surgery, The First Affiliated Hospital of Dalian Medical ... During the treatment, footprint analysis (FA), inclined plane test (IPT), Basso- ... Conclusion: The beneficial effect of motor function recovery was observed in SCI rats ... paralysis. The other 10 rats without SCI were housed in two cages as healthy control.

  6. Ultrasound-guided plasma rich in growth factors injections and scaffolds hasten motor nerve functional recovery in an ovine model of nerve crush injury.

    Science.gov (United States)

    Sánchez, Mikel; Anitua, E; Delgado, D; Prado, R; Sánchez, P; Fiz, N; Guadilla, J; Azofra, J; Pompei, O; Orive, G; Ortega, M; Yoshioka, T; Padilla, S

    2017-05-01

    In the present study we evaluated the motor recovery process of peripheral nerve injury (PNI), based on electrophysiological and histomorphometric criteria, after treatment with plasma rich in growth factors (PRGF) injections and scaffolds in an ovine model. Three groups of sheep underwent a nerve crush lesion: the first group (n = 3) was left to recover spontaneously (SR); the second group was administered saline injections (SI; n = 5) and a third group (n = 6) received PRGF injections and scaffolds immediately after the crush injury. At post-intervention week 8, 70% of sheep in the PRGF group were CMAP-positive, with no electrophysiological response in the rest of the groups. Histomorphometric analysis 12 weeks after the surgical intervention revealed that the average axonal density of the SR (1184 ± 864 axons/µm 2 ) and SI (3109 ± 2450 axons/µm 2 ) groups was significantly inferior to the control (8427 ± 2433 axons/µm 2 ) and also inferior to the PRGF group (5276 ± 4148 axons/µm 2 ), showing no significant differences between the control and PRGF groups. The axonal size of the SR and SI groups was significantly smaller compared with the control group (18 ± 4 µm 2 ), whereas the axonal size of the PRGF group (6 ± 5 µm 2 ) did not show statistical differences from the control. Morphometry of the target muscles indicated that the PRGF group had the lowest percentage volume reduction 12 weeks after the crush injury. The PRGF group had larger muscle fibre areas than the SI and SR groups, although the differences did not reach statistical significance. Overall, these data suggest that the PRGF injections and scaffolds hastened functional axon recovery and dampened atrophy of the target muscles in an ovine model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke.

    Science.gov (United States)

    Peters, Denise M; Fridriksson, Julius; Stewart, Jill C; Richardson, Jessica D; Rorden, Chris; Bonilha, Leonardo; Middleton, Addie; Gleichgerrcht, Ezequiel; Fritz, Stacy L

    2018-01-01

    Advances in neuroimaging have enabled the mapping of white matter connections across the entire brain, allowing for a more thorough examination of the extent of white matter disconnection after stroke. To assess how cortical disconnection contributes to motor impairments, we examined the relationship between structural brain connectivity and upper and lower extremity motor function in individuals with chronic stroke. Forty-three participants [mean age: 59.7 (±11.2) years; time poststroke: 64.4 (±58.8) months] underwent clinical motor assessments and MRI scanning. Nonparametric correlation analyses were performed to examine the relationship between structural connectivity amid a subsection of the motor network and upper/lower extremity motor function. Standard multiple linear regression analyses were performed to examine the relationship between cortical necrosis and disconnection of three main cortical areas of motor control [primary motor cortex (M1), premotor cortex (PMC), and supplementary motor area (SMA)] and motor function. Anatomical connectivity between ipsilesional M1/SMA and the (1) cerebral peduncle, (2) thalamus, and (3) red nucleus were significantly correlated with upper and lower extremity motor performance (P ≤ 0.003). M1-M1 interhemispheric connectivity was also significantly correlated with gross manual dexterity of the affected upper extremity (P = 0.001). Regression models with M1 lesion load and M1 disconnection (adjusted for time poststroke) explained a significant amount of variance in upper extremity motor performance (R 2  = 0.36-0.46) and gait speed (R 2  = 0.46), with M1 disconnection an independent predictor of motor performance. Cortical disconnection, especially of ipsilesional M1, could significantly contribute to variability seen in locomotor and upper extremity motor function and recovery in chronic stroke. Hum Brain Mapp 39:120-132, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Plasma profile recovery by function parameterisation

    International Nuclear Information System (INIS)

    McCarthy, P.J.; Sexton, M.C.

    1986-11-01

    The use of Function Parameterisation for the recovery of plasma profiles as a function of flux surface area from spatial point data directly combined with external magnetic measurements is demonstrated in the case of ASDEX electron temperature and density profiles. The extrapolated temperature on the magnetic axis is shown to be more reliable than that obtained from a conventional fitting procedure. (orig.)

  9. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis.

    Science.gov (United States)

    Wang, Junjuan; Wang, Jiaqiu; Lu, Ping; Cai, Youzhi; Wang, Yafei; Hong, Lan; Ren, Hao; Heng, Boon Chin; Liu, Hua; Zhou, Jing; Ouyang, Hongwei

    2015-09-01

    FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Stressful life events predict delayed functional recovery following treatment for mania in bipolar disorder.

    Science.gov (United States)

    Yan-Meier, Leslie; Eberhart, Nicole K; Hammen, Constance L; Gitlin, Michael; Sokolski, Kenneth; Altshuler, Lori

    2011-04-30

    Identifying predictors of functional recovery in bipolar disorder is critical to treatment efforts to help patients re-establish premorbid levels of role adjustment following an acute manic episode. The current study examined the role of stressful life events as potential obstacles to recovery of functioning in various roles. 65 patients with bipolar I disorder participated in a longitudinal study of functional recovery following clinical recovery from a manic episode. Stressful life events were assessed as predictors of concurrent vs. delayed recovery of role functioning in 4 domains (friends, family, home duties, work/school). Despite clinical recovery, a subset of patients experienced delayed functional recovery in various role domains. Moreover, delayed functional recovery was significantly associated with presence of one or more stressors in the prior 3 months, even after controlling for mood symptoms. Presence of a stressor predicted longer time to functional recovery in life domains, up to 112 days in work/school. Interventions that provide monitoring, support, and problem-solving may be needed to help prevent or mitigate the effects of stress on functional recovery. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Structural and functional evaluation of cortical motor areas in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, Mirco; Pesaresi, Ilaria; Piazza, Selina; Diciotti, Stefano; Cecchi, Paolo; Fabbri, Serena; Carlesi, Cecilia; Mascalchi, Mario; Siciliano, Gabriele

    2012-03-01

    The structural and functional data gathered with Magnetic Resonance Imaging (MRI) techniques about the brain cortical motor damage in Amyotrophic Lateral Sclerosis (ALS) are controversial. In fact some structural MRI studies showed foci of gray matter (GM) atrophy in the precentral gyrus, even in the early stage, while others did not. Most functional MRI (fMRI) studies in ALS reported hyperactivation of extra-primary motor cortices, while contradictory results were obtained on the activation of the primary motor cortex. We aimed to investigate the cortical motor circuitries in ALS patients by a combined structural and functional approach. Twenty patients with definite ALS and 16 healthy subjects underwent a structural examination with acquisition of a 3D T1-weighted sequence and fMRI examination during a maximal force handgrip task executed with the right-hand, the left-hand and with both hands simultaneously. The T1-weighted images were analyzed with Voxel-Based Morphometry (VBM) that showed several clusters of reduced cortical GM in ALS patients compared to controls including the pre and postcentral gyri, the superior, middle and inferior frontal gyri, the supplementary motor area, the superior and inferior parietal cortices and the temporal lobe, bilaterally but more extensive on the right side. In ALS patients a significant hypoactivation of the primary sensory motor cortex and frontal dorsal premotor areas as compared to controls was observed. The hypoactivated areas matched with foci of cortical atrophy demonstrated by VBM. The fMRI analysis also showed an enhanced activation in the ventral premotor frontal areas and in the parietal cortex pertaining to the fronto-parietal motor circuit which paralleled with disease progression rate and matched with cortical regions of atrophy. The hyperactivation of the fronto-parietal circuit was asymmetric and prevalent in the left hemisphere. VBM and fMRI identified structural and functional markers of an extended

  12. Methylphenidate improves motor functions in children diagnosed with Hyperkinetic Disorder

    Directory of Open Access Journals (Sweden)

    Iversen Synnøve

    2009-05-01

    Full Text Available Abstract Background A previous study showed that a high percentage of children diagnosed with Hyperkinetic Disorder (HKD displayed a consistent pattern of motor function problems. The purpose of this study was to investigate the effect of methylphenidate (MPH on such motor performance in children with HKD Methods 25 drug-naïve boys, aged 8–12 yr with a HKD-F90.0 diagnosis, were randomly assigned into two groups within a double blind cross-over design, and tested with a motor assessment instrument, during MPH and placebo conditions. Results The percentage of MFNU scores in the sample indicating 'severe motor problems' ranged from 44–84%, typically over 60%. Highly significant improvements in motor performance were observed with MPH compared to baseline ratings on all the 17 subtests of the MFNU 1–2 hr after administration of MPH. There were no significant placebo effects. The motor improvement was consistent with improvement of clinical symptoms. Conclusion The study confirmed our prior clinical observations showing that children with ADHD typically demonstrate marked improvements of motor functions after a single dose of 10 mg MPH. The most pronounced positive MPH response was seen in subtests measuring either neuromotor inhibition, or heightened muscular tone in the gross movement muscles involved in maintaining the alignment and balance of the body. Introduction of MPH generally led to improved balance and a generally more coordinated and controlled body movement.

  13. Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae

    Directory of Open Access Journals (Sweden)

    Xu Li

    2016-08-01

    Full Text Available Maternal alcohol consumption during pregnancy can cause a series of developmental disorders in the fetus called FAS (fetal alcohol syndrome. In the present study we exposed zebrafish embryos to 1% and 2% alcohol and observed the morphology of heart and blood vessels during and after exposure to investigate motor function alterations, and damage and recovery to the cardiovascular system. The results showed that alcohol exposure could induce heart deformation, slower heart rate, and incomplete blood vessels and pericardium. After stopping exposure, larvae exposed to 1% alcohol could recover only in heart morphology, but larvae in 2% alcohol could not recover either morphology or function of cardiovascular system. The edema-like characteristics in the 2% alcohol group became more conspicuous afterwards, with destruction in the dorsal aorta, coarctation in segmental arteries and a decrease in motor function, implying more serious unrecoverable cardiovascular defects in the 2% group. The damaged blood vessels in the 2% alcohol group resulted in an alteration in permeability and a decrease of blood volume, which were the causes of edema in pathology. These findings contribute towards a better understanding of ethanol-induced cardiovascular abnormalities and co-syndrome in patients with FAS, and warns against excessive maternal alcohol consumption during pregnancy.

  14. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence.

    Science.gov (United States)

    Subramanian, Sandeep K; Massie, Crystal L; Malcolm, Matthew P; Levin, Mindy F

    2010-02-01

    Recovery of the upper limb (UL) after a stroke occurs well into the chronic stage. Stroke survivors can benefit from adaptive plasticity to improve UL movement through motor relearning. The provision of feedback has been shown to decrease the use of compensatory UL movement patterns. However, the effectiveness of feedback in improving UL motor recovery after a stroke has not yet been systematically reviewed. The objective of this review was to systematically examine the role of extrinsic feedback on implicit motor learning after stroke, focusing on UL movement and functional recovery. The authors retrieved 9 studies that examined the role of feedback on UL motor recovery. Of these, 6 were randomized controlled trials (RCTs), 1 was a single-subject design, 1 was a pre-post design, and 1 was a cohort study. The studies were rated on the basis of Sackett's levels of evidence and PEDro (Physiotherapy Evidence Database) scores for RCTs. Levels of evidence were limited (level 2b) for UL motor learning of the less-affected extremity and strong (level 1a) for the more-affected extremity. The results suggest that people with stroke may be capable of using extrinsic feedback for implicit motor learning and improving UL motor recovery. Emergent questions regarding the advantages of using different media for feedback delivery and the optimal type and schedule of feedback to enhance motor learning in patient populations still need to be addressed.

  15. Advanced dc motor controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.

    1981-01-01

    A motor generation set is connected to run from the dc source and generate a voltage in the traction motor armature circuit that normally opposes the source voltage. The functional feasibility of the concept is demonstrated with tests on a Proof of Principle System. An analog computer simulation is developed, validated with the results of the tests, applied to predict the performance of a full scale Functional Model dc Controller. The results indicate high efficiencies over wide operating ranges and exceptional recovery of regenerated energy. The new machine integrates both motor and generator on a single two bearing shaft. The control strategy produces a controlled bidirectional plus or minus 48 volts dc output from the generator permitting full control of a 96 volt dc traction motor from a 48 volt battery, was designed to control a 20 hp traction motor. The controller weighs 63.5 kg (140 lb.) and has a peak efficiency of 90% in random driving modes and 96% during the SAE J 227a/D driving cycle.

  16. Effectiveness of temporary deafferentation of the arm on somatosensory and motor functions following stroke: a systematic review.

    Science.gov (United States)

    Opsommer, Emmanuelle; Zwissig, Camille; Korogod, Natalya; Weiss, Thomas

    2016-12-01

    After stroke, regaining functional use of the upper limb can be challenging. Temporary deafferentation (TD) is a novel approach used in neurorehabilitation to voluntarily reduce the somatosensory input in a body part by temporary anesthesia; which has been shown to improve sensorimotor functions in the affected limb. The primary objective of this systematic review was to present the best available evidence related to the effects of TD of the affected arm on the recovery of motor function and activity of the upper limb (arm and hand) following stroke. Further, this review aimed to assess the effects of TD on sensory function, activities of daily living (ADL) and quality of life following stroke, the acceptability and safety of the intervention as well as adverse events. Adult patients (18 years and older) with a clinical diagnosis of stroke, either hemorrhagic or ischemic. Reports of rehabilitation that included the use of a pneumatic tourniquet, regional anesthesia or nerve block to achieve TD of an arm, or the use of TD as a stand-alone intervention. Primary outcomes were motor function and activity of the upper limb using assessment scales, motor tests and global motor functions.Secondary outcomes included measures of sensory function, ADL, impact of stroke and quality of life and pain.Additional outcomes were neurophysiological changes as studied with functional magnetic resonance imaging, magnetoencephalography and/or transcranial magnetic stimulation.Acceptability and safety of the intervention as well as adverse events were also included. We included any experimental and epidemiological studies. There were no randomized controlled trials. We included non-randomized controlled trials, quasi-experimental, before and after studies and case-control studies. We searched for both published and unpublished studies in major databases and all reference lists of relevant articles in English, German or French languages. We included studies published from January 1980 to

  17. [Clinico-electromyographic evaluation of the state of motor units of the hand muscles replanted after traumatic amputation].

    Science.gov (United States)

    Rezkov, G I

    1991-01-01

    Needle electromyography was used to study motor units of the muscles leading away the thumb and little finger, replanted after traumatic amputation of the large segment of the upper limb in 34 patients. A direct relationship was discovered between the time of the appearance of action potentials of motor units (PMU), recovery of the movements, and trauma level. The appearance of clear PMU associated with movement recovery was recorded not earlier than 6-7 months after trauma. Analysis of PMU is a reliable criterion for the recovery of the own movements of the muscles and function of the neuromotor apparatus in patients with the replanted upper limb segment.

  18. Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study.

    Science.gov (United States)

    Redgrave, Jessica N; Moore, Lucy; Oyekunle, Tosin; Ebrahim, Maryam; Falidas, Konstantinos; Snowdon, Nicola; Ali, Ali; Majid, Arshad

    2018-03-23

    Invasive vagus nerve stimulation (VNS) has the potential to enhance the effects of physiotherapy for upper limb motor recovery after stroke. Noninvasive, transcutaneous auricular branch VNS (taVNS) may have similar benefits, but this has not been evaluated in stroke recovery. We sought to determine the feasibility of taVNS delivered alongside upper limb repetitive task-specific practice after stroke and its effects on a range of outcome measures evaluating limb function. Thirteen participants at more than 3 months postischemic stroke with residual upper limb dysfunction were recruited from the community of Sheffield, United Kingdom (October-December 2016). Participants underwent 18 × 1-hour sessions over 6 weeks in which they made 30-50 repetitions of 8-10 arm movements concurrently with taVNS (NEMOS; Cerbomed, Erlangen, Germany, 25 Hz, .1-millisecond pulse width) at maximum tolerated intensity (mA). An electrocardiogram and rehabilitation outcome scores were obtained at each visit. Qualitative interviews determined the acceptability of taVNS to participants. Median time after stroke was 1.16 years, and baseline median/interquartile range upper limb Fugl-Meyer (UFM) score was 63 (54.5-99.5). Participants attended 92% of the planned treatment sessions. Three participants reported side effects, mainly fatigue, but all performed mean of more than 300 arm repetitions per session with no serious adverse events. There was a significant change in the UFM score with a mean increase per participant of 17.1 points (standard deviation 7.8). taVNS is feasible and well-tolerated alongside upper limb repetitive movements in poststroke rehabilitation. The motor improvements observed justify a phase 2 trial in patients with residual arm weakness. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  19. Impairments of Motor Function While Multitasking in HIV.

    Science.gov (United States)

    Kronemer, Sharif I; Mandel, Jordan A; Sacktor, Ned C; Marvel, Cherie L

    2017-01-01

    Human immunodeficiency virus (HIV) became a treatable illness with the introduction of combination antiretroviral therapy (CART). As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND). The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing). Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  20. Effects of active and passive training apparatus combined with rehabilitation training on lower limb function of stroke patients during recovery period

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Stroke patients always spontaneously do some learning and training of motor functions;however, learning and training are not prompt and right, while patients do not have enough activity amounts.Active and passive motor training apparatus is aimed directly at lower limb training so as to stimulate nerve function through stimulating muscular movement. Based on motor mileage, motor time, various power supplies and velocity of active and passive training apparatus, we can understand the training condition and adjust training program.OBJECTIVE: To observe the effects of grade-III rehabilitation training combining with active and passive training apparatus on lower limb function, muscle strength and activity of daily living (ADL) in stroke patients during recovery period.DESIGN: Contrast observation.SETTING: Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine.PARTICIPANTS: A total of 80 patients with stroke-induced hemiplegia after stabilizing vital signs for 2 weeks were selected from Department of Rehabilitation, Jilin Academic Institute of Traditional Chinese Medicine from January to June 2007. There were 47 males and 33 females, and their ages ranged from 41 to 75 years. All patients met the diagnostic criteria of the Fourth National Cerebrovascular Disease Academic Meeting in 1995 and were diagnosed as cerebral hemorrhage or cerebral infarction through CT or MRI examinations in clinic. Patients and their parents provided the confirmed consent. Based on therapeutic orders of hospitalization, patients were randomly divided into treatment group and control group with 40 patients in each group.METHODS: Patients in the control group received physical therapy and occupational therapy combining with rehabilitative treatment based on grade-Ⅲ rehabilitative treatment program, which was set by the National Cerebrovascular Disease Topic Group. In addition, patients in the treatment group were trained with active and passive

  1. Alcohol hangover: type and time-extension of motor function impairments.

    Science.gov (United States)

    Karadayian, Analía G; Cutrera, Rodolfo A

    2013-06-15

    Alcohol hangover is defined as the unpleasant next-day state following an evening of excessive alcohol consumption. Hangover begins when ethanol is absent in plasma and is characterized by physical and psychological symptoms. During hangover cognitive functions and subjective capacities are affected along with inefficiency, reduced productivity, absenteeism, driving impairments, poor academic achievement and reductions in motor coordination. The aim of this work was to study the type and length of motor and exploratory functions from the beginning to the end of the alcohol hangover. Male Swiss mice were injected i.p. either with saline (control group) or with ethanol (3.8 g/kg BW) (hangover group). Motor performance, walking deficiency, motor strength, locomotion and exploratory activity were evaluated at a basal point (ZT0) and every 2 h up to 20 h after blood alcohol levels were close to zero (hangover onset). Motor performance was 80% decreased at the onset of hangover (pwalking deficiencies from the beginning to 16 h after hangover onset (popen field test and the exploratory activity on T-maze and hole board tests were reduced during 16 h after hangover onset (ptime-extension between 16 to 20 h for hangover motor and exploratory impairments. As a whole, this study shows the long lasting effects of alcohol hangover. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. L-acetylcarnitine enhances functional muscle re-innervation.

    Science.gov (United States)

    Pettorossi, V E; Brunetti, O; Carobi, C; Della Torre, G; Grassi, S

    1991-01-01

    The efficacy of L-acetylcarnitine and L-carnitine treatment on motor re-innervation was analyzed by evaluating different muscular parameters describing functional muscle recovery after denervation and re-innervation. The results show that L-acetylcarnitine markedly enhances functional muscle re-innervation, which on the contrary is unaffected by L-carnitine. The medial gastrocnemius muscle was denervated by cutting the nerve at the muscle entry point. After 20 days the sectioned nerve was resutured into the medial gastrocnemius muscle, and the extent of re-innervation was monitored 45 days later. L-acetylcarnitine-treated animals show significantly higher twitch and tetanic tensions of re-innervated muscle. Furthermore the results, obtained by analysing the twitch time to peak and tetanic contraction-relaxation times, suggest that L-acetylcarnitine mostly affects the functional re-innervation of slow motor units. The possible mechanisms by which L-acetylcarnitine facilitates such motor and nerve recovery are discussed.

  3. Recovery of facial expressions using functional electrical stimulation after full-face transplantation.

    Science.gov (United States)

    Topçu, Çağdaş; Uysal, Hilmi; Özkan, Ömer; Özkan, Özlenen; Polat, Övünç; Bedeloğlu, Merve; Akgül, Arzu; Döğer, Ela Naz; Sever, Refik; Çolak, Ömer Halil

    2018-03-06

    We assessed the recovery of 2 face transplantation patients with measures of complexity during neuromuscular rehabilitation. Cognitive rehabilitation methods and functional electrical stimulation were used to improve facial emotional expressions of full-face transplantation patients for 5 months. Rehabilitation and analyses were conducted at approximately 3 years after full facial transplantation in the patient group. We report complexity analysis of surface electromyography signals of these two patients in comparison to the results of 10 healthy individuals. Facial surface electromyography data were collected during 6 basic emotional expressions and 4 primary facial movements from 2 full-face transplantation patients and 10 healthy individuals to determine a strategy of functional electrical stimulation and understand the mechanisms of rehabilitation. A new personalized rehabilitation technique was developed using the wavelet packet method. Rehabilitation sessions were applied twice a month for 5 months. Subsequently, motor and functional progress was assessed by comparing the fuzzy entropy of surface electromyography data against the results obtained from patients before rehabilitation and the mean results obtained from 10 healthy subjects. At the end of personalized rehabilitation, the patient group showed improvements in their facial symmetry and their ability to perform basic facial expressions and primary facial movements. Similarity in the pattern of fuzzy entropy for facial expressions between the patient group and healthy individuals increased. Synkinesis was detected during primary facial movements in the patient group, and one patient showed synkinesis during the happiness expression. Synkinesis in the lower face region of one of the patients was eliminated for the lid tightening movement. The recovery of emotional expressions after personalized rehabilitation was satisfactory to the patients. The assessment with complexity analysis of sEMG data can be

  4. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    Science.gov (United States)

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  5. Motor function and respiratory capacity in patients with late-onset pompe disease

    DEFF Research Database (Denmark)

    Illes, Zsolt; Mike, Andrea; Trauninger, Anita

    2014-01-01

    Introduction: The relationship between skeletal muscle strength and respiratory dysfunction in Pompe disease has not been examined by quantitative methods. We investigated correlations among lower extremity proximal muscle strength, respiratory function, and motor performance. Methods: Concentric...... strength of the knee extensor and flexor muscles were measured with a dynamometer, and pulmonary function was evaluated using spirometry in 7 adult patients. The six-minute walk test and the four-step stair-climb test were used for assessing aerobic endurance and anaerobic power, respectively. Results......: Anaerobic motor performance correlated with strength of both thigh muscles. Respiratory function did not correlate with either muscle strength or motor function performance. Conclusions: Respiratory and lower extremity proximal muscles could be differentially affected by the disease in individual patients...

  6. Effects of occupational therapy services on fine motor and functional performance in preschool children.

    Science.gov (United States)

    Case-Smith, J

    2000-01-01

    This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.

  7. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview.

    Science.gov (United States)

    Navarro, Xavier

    2016-02-01

    Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Functional significance of ipsilesional motor deficits after unilateral stroke.

    Science.gov (United States)

    Chestnut, Caitilin; Haaland, Kathleen Y

    2008-01-01

    To determine whether ipsilesional motor skills, which have been related to independent functioning, are present chronically after unilateral stroke and are more common in people with apraxia than in those without apraxia. Observational cohort comparing the performance of an able-bodied control group, stroke patients with left- or right-hemisphere damage matched for lesion volume, and left-hemisphere stroke patients with and without ideomotor limb apraxia. Primary care Veterans Affairs and private medical center. Volunteer right-handed sample; stroke patients with left- or right-hemisphere damage about 4 years poststroke; a control group of demographically matched, able-bodied adults. Not applicable. Total time to perform the (1) Williams doors test and the (2) timed manual performance test (TMPT), which includes parts of the Jebsen-Taylor Hand Function Test. Ipsilesional motor deficits were present after left- or right-hemisphere stroke when using both measures, but deficits were consistently more common in patients with limb apraxia only for the TMPT. These findings add to a growing literature that suggests that ipsilesional motor deficits may have a functional impact in unilateral stroke patients, especially in patients with ideomotor limb apraxia.

  9. Neuromodulation of lower limb motor control in restorative neurology

    OpenAIRE

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. F...

  10. Reticulospinal Systems for Tuning Motor Commands

    Directory of Open Access Journals (Sweden)

    Robert M. Brownstone

    2018-04-01

    Full Text Available The pontomedullary reticular formation (RF is a key site responsible for integrating descending instructions to execute particular movements. The indiscrete nature of this region has led not only to some inconsistencies in nomenclature, but also to difficulties in understanding its role in the control of movement. In this review article, we first discuss nomenclature of the RF, and then examine the reticulospinal motor command system through evolution. These command neurons have direct monosynaptic connections with spinal interneurons and motoneurons. We next review their roles in postural adjustments, walking and sleep atonia, discussing their roles in movement activation or inhibition. We propose that knowledge of the internal organization of the RF is necessary to understand how the nervous system tunes motor commands, and that this knowledge will underlie strategies for motor functional recovery following neurological injuries or diseases.

  11. Ocular Motor Score (OMS): a clinical tool to evaluating ocular motor functions in children. Intrarater and inter-rater agreement.

    Science.gov (United States)

    Olsson, Monica; Teär Fahnehjelm, Kristina; Rydberg, Agneta; Ygge, Jan

    2015-08-01

    Ocular motor score (OMS) is a new clinical test protocol for evaluating ocular motor functions in children and young adults. OMS is a set of 15 important and relevant non-invasive ocular motor function parameters derived from clinical practice. The aim of the study was to evaluate OMS according to intrarater and inter-rater agreement. Forty children aged 4-10 years, 23 girls median age 6.5 (range 4.3-9.3) and 17 boys median age 5.8 (range 4.1-9.8) were included. The ocular motor functions were assessed and scored according to the OMS protocol. The examinations were videotaped. To obtain the intrarater agreement, the first author examined and scored the children twice, first in the clinic and 2 weeks later by watching the videotape. To obtain the inter-rater agreement, three other raters independently scored the ocular motor function of the children by watching the videotapes. The overall observed intrarater agreement was 88%, and the observed inter-rater agreement between the three raters was 80%. For none of the subtests was there an observed intrarater agreement lower than 65%. Three of the subtests had an observed inter-rater agreement of 65% or below. Overall there was high observed intra- and inter-rater agreement for the OMS test protocol. Subtests such as saccades and smooth pursuit were more difficult for raters to score similarly according the clinical OMS test protocol. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  12. Gastrointestinal motor function in patients with portal hypertension

    DEFF Research Database (Denmark)

    Madsen, Jan Lysgård; Brinch, K; Hansen, Erik Feldager

    2000-01-01

    BACKGROUND: Existing data on gastric emptying and small-intestinal transit rates in portal-hypertensive patients are scarce and contradictory, and so far, the motor function of the colon has not been assessed in these patients. In this study we evaluated the propulsive effect of all main segments...... of the gastrointestinal tract in patients with well-characterized portal hypertension. METHODS: Eight patients with a postsinusoidal hepatic pressure gradient of at least 13 mmHg and eight age- and sex-matched healthy controls participated in the study. Gastric emptying, small-intestinal transit, and colonic transit...... the test meal between patients and controls. CONCLUSIONS: These data suggest that the colonic transit is often accelerated in patients with portal hypertension, whereas the motor function of the stomach and the small intestine is unaffected....

  13. Monocyte Locomotion Inhibitory Factor Produced by E. histolytica Improves Motor Recovery and Develops Neuroprotection after Traumatic Injury to the Spinal Cord

    Science.gov (United States)

    Bermeo, Gabriela; García, Elisa; Flores-Romero, Adrian; Rico-Rosillo, Guadalupe; Marroquín, Rubén; Flores, Carmina; Blanco-Favela, Francisco; Silva-García, Raúl

    2013-01-01

    Monocyte locomotion inhibitory factor (MLIF) is a pentapeptide produced by Entamoeba histolytica that has a potent anti-inflammatory effect. Either MLIF or phosphate buffered saline (PBS) was administered directly onto the spinal cord (SC) immediately after injury. Motor recovery was evaluated. We also analyzed neuroprotection by quantifying the number of surviving ventral horn motor neurons and the persistence of rubrospinal tract neurons. To evaluate the mechanism through which MLIF improved the outcome of SC injury, we quantified the expression of inducible nitric oxide synthase (iNOS), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) genes at the site of injury. Finally, the levels of nitric oxide and of lipid peroxidation were also determined in peripheral blood. Results showed that MLIF improved the rate of motor recovery and this correlated with an increased survival of ventral horn and rubrospinal neurons. These beneficial effects were in turn associated with a reduction in iNOS gene products and a significant upregulation of IL-10 and TGF-β expression. In the same way, MLIF reduced the concentration of nitric oxide and the levels of lipid peroxidation in systemic circulation. The present results demonstrate for the first time the neuroprotective effects endowed by MLIF after SC injury. PMID:24294606

  14. Motor Cortex Stimulation Regenerative Effects in Peripheral Nerve Injury: An Experimental Rat Model.

    Science.gov (United States)

    Nicolas, Nicolas; Kobaiter-Maarrawi, Sandra; Georges, Samuel; Abadjian, Gerard; Maarrawi, Joseph

    2018-06-01

    Immediate microsurgical nerve suture remains the gold standard after peripheral nerve injuries. However, functional recovery is delayed, and it is satisfactory in only 2/3 of cases. Peripheral electrical nerve stimulation proximal to the lesion enhances nerve regeneration and muscle reinnervation. This study aims to evaluate the effects of the motor cortex electrical stimulation on peripheral nerve regeneration after injury. Eighty rats underwent right sciatic nerve section, followed by immediate microsurgical epineural sutures. Rats were divided into 4 groups: Group 1 (control, n = 20): no electrical stimulation; group 2 (n = 20): immediate stimulation of the sciatic nerve just proximal to the lesion; Group 3 (n = 20): motor cortex stimulation (MCS) for 15 minutes after nerve section and suture (MCSa); group 4 (n = 20): MCS performed over the course of two weeks after nerve suture (MCSc). Assessment included electrophysiology and motor functional score at day 0 (baseline value before nerve section), and at weeks 4, 8, and 12. Rats were euthanized for histological study at week 12. Our results showed that MCS enhances functional recovery, nerve regeneration, and muscle reinnervation starting week 4 compared with the control group (P < 0.05). The MCS induces higher reinnervation rates even compared with peripheral stimulation, with better results in the MCSa group (P < 0.05), especially in terms of functional recovery. MCS seems to have a beneficial effect after peripheral nerve injury and repair in terms of nerve regeneration and muscle reinnervation, especially when acute mode is used. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Patient-specific prediction of functional recovery after stroke.

    Science.gov (United States)

    Douiri, Abdel; Grace, Justin; Sarker, Shah-Jalal; Tilling, Kate; McKevitt, Christopher; Wolfe, Charles DA; Rudd, Anthony G

    2017-07-01

    Background and aims Clinical predictive models for stroke recovery could offer the opportunity of targeted early intervention and more specific information for patients and carers. In this study, we developed and validated a patient-specific prognostic model for monitoring recovery after stroke and assessed its clinical utility. Methods Four hundred and ninety-five patients from the population-based South London Stroke Register were included in a substudy between 2002 and 2004. Activities of daily living were assessed using Barthel Index) at one, two, three, four, six, eight, 12, 26, and 52 weeks after stroke. Penalized linear mixed models were developed to predict patients' functional recovery trajectories. An external validation cohort included 1049 newly registered stroke patients between 2005 and 2011. Prediction errors on discrimination and calibration were assessed. The potential clinical utility was evaluated using prognostic accuracy measurements and decision curve analysis. Results Predictive recovery curves showed good accuracy, with root mean squared deviation of 3 Barthel Index points and a R 2 of 83% up to one year after stroke in the external cohort. The negative predictive values of the risk of poor recovery (Barthel Index <8) at three and 12 months were also excellent, 96% (95% CI [93.6-97.4]) and 93% [90.8-95.3], respectively, with a potential clinical utility measured by likelihood ratios (LR+:17 [10.8-26.8] at three months and LR+:11 [6.5-17.2] at 12 months). Decision curve analysis showed an increased clinical benefit, particularly at threshold probabilities of above 5% for predictive risk of poor outcomes. Conclusions A recovery curves tool seems to accurately predict progression of functional recovery in poststroke patients.

  16. Impairments of Motor Function While Multitasking in HIV

    Directory of Open Access Journals (Sweden)

    Cherie L. Marvel

    2017-04-01

    Full Text Available Human immunodeficiency virus (HIV became a treatable illness with the introduction of combination antiretroviral therapy (CART. As a result, patients with regular access to CART are expected to live decades with HIV. Long-term HIV infection presents unique challenges, including neurocognitive impairments defined by three major stages of HIV-associated neurocognitive disorders (HAND. The current investigation aimed to study cognitive and motor impairments in HIV using a novel multitasking paradigm. Unlike current standard measures of cognitive and motor performance in HIV, multitasking increases real-world validity by mimicking the dual motor and cognitive demands that are part of daily professional and personal settings (e.g., driving, typing and writing. Moreover, multitask assessments can unmask compensatory mechanisms, normally used under single task conditions, to maintain performance. This investigation revealed that HIV+ participants were impaired on the motor component of the multitask, while cognitive performance was spared. A patient-specific positive interaction between motor performance and working memory recall was driven by poor HIV+ multitaskers. Surprisingly, HAND stage did not correspond with multitask performance and a variety of commonly used assessments indicated normal motor function among HIV+ participants with poor motor performance during the experimental task. These results support the use of multitasks to reveal otherwise hidden impairment in chronic HIV by expanding the sensitivity of clinical assessments used to determine HAND stage. Future studies should examine the capability of multitasks to predict performance in personal, professional and health-related behaviors and prognosis of patients living with chronic HIV.

  17. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Effect of the extract of Daigo lactic acid bacteria fermentation on the composition of the microflora and intestinal motor function in experimental dysbiosis

    Directory of Open Access Journals (Sweden)

    T. S. Popova

    2016-01-01

    Full Text Available In experiments on rats, the efficacy of the extract of Daigo lactic acid bacteria fermentation was investigated as the means for the prophylaxis and correction of an impaired microflora composition, and small intestine motor activity changes at dysbiosis. Experimental dysbiosis induced by a 7-day oral administration of antimicrobials (Amoxycillinum and Metronidazolum was manifested by considerable disturbances in qualitative and  quantitative composition of the jejunum and cecum microflora. A preventive administration of Daigo prior to the exposure to antimicrobials eliminated the dysbiosis signs. Daygo administration after modeling the dysbiosis led to the recovery of intestinal motor function,normalized the numbers of conditionally-pathogenic microorganisms in a jejunum, and decreased the numbers of opportunistic microorganisms in the cecum.

  19. Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats.

    Science.gov (United States)

    Bueno-Nava, Antonio; Gonzalez-Pina, Rigoberto; Alfaro-Rodriguez, Alfonso; Nekrassov-Protasova, Vladimir; Durand-Rivera, Alfredo; Montes, Sergio; Ayala-Guerrero, Fructuoso

    2010-10-01

    The sensorimotor cortex and the cerebellum are interconnected by the corticopontocerebellar (CPC) pathway and by neuronal groups such as the serotonergic system. Our aims were to determine the levels of cerebellar serotonin (5-HT) and lipid peroxidation (LP) after cortical iron injection and to analyze the motor function produced by the injury. Rats were divided into the following three groups: control, injured and recovering. Motor function was evaluated using the beam-walking test as an assessment of overall locomotor function and the footprint test as an assessment of gait. We also determined the levels of 5-HT and LP two and twenty days post-lesion. We found an increase in cerebellar 5-HT and a concomitant increase in LP in the pons and cerebellum of injured rats, which correlated with their motor deficits. Recovering rats showed normal 5-HT and LP levels. The increase of 5-HT in injured rats could be a result of serotonergic axonal injury after cortical iron injection. The LP and motor deficits could be due to impairments in neuronal connectivity affecting the corticospinal and CPC tracts and dysmetric stride could be indicative of an ataxic gait that involves the cerebellum.

  20. Task-Based Mirror Therapy Augmenting Motor Recovery in Poststroke Hemiparesis: A Randomized Controlled Trial.

    Science.gov (United States)

    Arya, Kamal Narayan; Pandian, Shanta; Kumar, Dharmendra; Puri, Vinod

    2015-08-01

    To establish the effect of the task-based mirror therapy (TBMT) on the upper limb recovery in stroke. A pilot, randomized, controlled, assessor-blinded trial was conducted in a rehabilitation institute. A convenience sample of 33 poststroke (mean duration, 12.5 months) hemiparetic subjects was randomized into 2 groups (experimental, 17; control, 16). The subjects were allocated to receive either TBMT or standard motor rehabilitation-40 sessions (5/week) for a period of 8 weeks. The TBMT group received movements using various goal-directed tasks and a mirror box. The movements were performed by the less-affected side superimposed on the affected side. The main outcome measures were Brunnstrom recovery stage (BRS) and Fugl-Meyer assessment (FMA)-FMA of upper extremity (FMA-UE), including upper arm (FMA-UA) and wrist-hand (FMA-WH). The TBMT group exhibited highly significant improvement on mean scores of FMA-WH (P hemiparesis. MT using tasks may be used as an adjunct in stroke rehabilitation. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Effects of blueberries on inflammation, motor performance and cognitive function

    Science.gov (United States)

    Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...

  2. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1.

    Science.gov (United States)

    Lee, Kyoung-Hee

    2015-06-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.

  3. Gross and fine motor function in fibromyalgia and chronic fatigue syndrome.

    Science.gov (United States)

    Rasouli, Omid; Fors, Egil A; Borchgrevink, Petter Chr; Öhberg, Fredrik; Stensdotter, Ann-Katrin

    2017-01-01

    This paper aimed to investigate motor proficiency in fine and gross motor function, with a focus on reaction time (RT) and movement skill, in patients with fibromyalgia (FM) and chronic fatigue syndrome (CFS) compared to healthy controls (HC). A total of 60 individuals (20 CFS, 20 FM, and 20 HC), age 19-49 years, participated in this study. Gross motor function in the lower extremity was assessed using a RT task during gait initiation in response to an auditory trigger. Fine motor function in the upper extremity was measured during a precision task (the Purdue Pegboard test) where the number of pins inserted within 30 s was counted. No significant differences were found between FM and CFS in any parameters. FM and CFS groups had significantly longer RT than HC in the gait initiation ( p =0.001, and p =0.004 respectively). In the Purdue Pegboard test, 20% in the FM group, 15% in the CFS groups, and 0% of HC group, scored below the threshold of the accepted performance. However, there were no significant differences between FM, CFS, and HC in this task ( p =0.12). Compared to controls, both CFS and FM groups displayed significantly longer RT in the gait initiation task. Generally, FM patients showed the worst results in both tests, although no group differences were found in fine motor control, according to the Purdue Pegboard test.

  4. Action in Perception: Prominent Visuo-Motor Functional Symmetry in Musicians during Music Listening.

    Directory of Open Access Journals (Sweden)

    Iballa Burunat

    Full Text Available Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.

  5. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  6. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  7. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ana L. Faria

    2018-05-01

    Full Text Available Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control. Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  8. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury PRINCIPAL...TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord...care. However, despite these drastic interventions, the cervical injured patient is still susceptible to death due to respiratory complications

  9. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Liew, Sook-Lei; Rana, Mohit; Cornelsen, Sonja; Fortunato de Barros Filho, Marcos; Birbaumer, Niels; Sitaram, Ranganatha; Cohen, Leonardo G; Soekadar, Surjo R

    2016-08-01

    Two thirds of stroke survivors experience motor impairment resulting in long-term disability. The anatomical substrate is often the disruption of cortico-subcortical pathways. It has been proposed that reestablishment of cortico-subcortical communication relates to functional recovery. In this study, we applied a novel training protocol to augment ipsilesional cortico-subcortical connectivity after stroke. Chronic stroke patients with severe motor impairment were provided online feedback of blood-oxygenation level dependent signal connectivity between cortical and subcortical regions critical for motor function using real-time functional magnetic resonance imaging neurofeedback. In this proof of principle study, 3 out of 4 patients learned to voluntarily modulate cortico-subcortical connectivity as intended. Our results document for the first time the feasibility and safety for patients with chronic stroke and severe motor impairment to self-regulate and augment ipsilesional cortico-subcortical connectivity through neurofeedback using real-time functional magnetic resonance imaging. © The Author(s) 2015.

  10. Roentgenological characteristics of motor-evacuatory stomach function after selective proximal vagotomy (SPV)

    International Nuclear Information System (INIS)

    Rustamov, Eh.A.; Manafov, S.S.

    1988-01-01

    An x-ray picture of motor-evacuatory stomach function was studied in patients with pyloroduodenal ulcers after SPV with and without drainage (435 patients aged 16 to 80). Methods of investigation included polyprojectional radioscopy and panoramic and spot films at various time intervals after barium suspension intake. Stomach investigation was performed before operation as well as 2-3 weeks, 3-6 mos, 1-2 yrs, 3-5 yrs, and 7-10 yrs after it. Motor-evacuatory stomach function was studied over time. The least changes in motor-evacuatory fucntion were observed after SPV without drainage as a result of preserving pyloric contractility

  11. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included)

    In English, one or 2 pages.

    Functional ecology of tropical forest recovery

    Currently in the

  12. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  13. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  14. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    Directory of Open Access Journals (Sweden)

    Murer Kurt

    2011-06-01

    Full Text Available Abstract Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the

  15. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  16. Effect of Obesity on Motor Functional Outcome of Rehabilitating Traumatic Brain Injury Patients.

    Science.gov (United States)

    Le, David; Shafi, Shahid; Gwirtz, Patricia; Bennett, Monica; Reeves, Rustin; Callender, Librada; Dunklin, Cynthia; Cleveland, Samantha

    2015-08-01

    The aim of this study was to determine the association between obesity and functional motor outcome of patients undergoing inpatient rehabilitation after traumatic brain injury. This retrospective study at an urban acute inpatient rehabilitation center screened data from 761 subjects in the Traumatic Brain Injury Model System who were admitted from January 2010 to September 2013. Inclusion criteria consisted of age of 18 years or older and an abnormal Functional Independence Measure motor score. Body mass index was used to determine obesity in the study population. Patients with a body mass index of 30.0 kg/m or greater were considered obese. A total of 372 subjects met the criteria for inclusion in the study. Of these, 54 (13.2%) were obese. Both obese and nonobese patients showed similar improvement in Functional Independence Measure motor score (mean [SD], 30.4 [12.8] for the obese patients, P = 0.115, and 27.3 [13.1] for the nonobese patients). The mean (SD) Functional Independence Measure motor scores at discharge for the obese and nonobese patients were 63.0 (12.6) and 62.3 (10.1) (P = 0.6548), respectively. Obesity had no adverse impact on motor functional outcomes of the traumatic brain injury patients who underwent inpatient rehabilitation. Therefore, obesity should not be considered an obstacle in inpatient rehabilitation after traumatic brain injury, if patients are able to participate in necessary therapy.

  17. Functional MRI in human motor control studies and clinical applications

    International Nuclear Information System (INIS)

    Toma, Keiichiro

    2002-01-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  18. Functional MRI in human motor control studies and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Toma, Keiichiro [Kyoto Univ. (Japan). Graduate School of Medicine; Nakai, Toshiharu [Inst. of Biomedical Research and Innovation, Kobe (Japan)

    2002-07-01

    Functional magnetic resonance imaging (fMRI) has been a useful tool for the noninvasive mapping of brain function associated with various motor and cognitive tasks. Because fMRI is based on the blood oxygenation level dependent (BOLD) effect, it does not directly record neural activity. With the fMRI technique, distinguishing BOLD signals creased by cortical projection neurons from those created by intracortical neurons appears to be difficult. Two major experimental designs are used in fMRI studies: block designs and event-related designs. Block-designed fMRI presupposes the steady state of regional cerebral blood flow and has been applied to examinations of brain activation caused by tasks requiring sustained or repetitive movements. By contrast, the more recently developed event-related fMRI with time resolution of a few seconds allows the mapping of brain activation associated with a single movement according to the transient aspects of the hemodynamic response. Increasing evidence suggests that multiple motor areas are engaged in a networked manner to execute various motor acts. In order to understand functional brain maps, it is important that one understands sequential and parallel organizations of anatomical connections between multiple motor areas. In fMRI studies of complex motor tasks, elementary parameters such as movement length, force, velocity, acceleration and frequency should be controlled, because inconsistency in those parameters may alter the extent and intensity of motor cortical activation, confounding interpretation of the findings obtained. In addition to initiation of movements, termination of movements plays an important role in the successful achievement of complex movements. Brain areas exclusively related to the termination of movements have been, for the first time, uncovered with an event-related fMRI technique. We propose the application of fMRI to the elucidation of the pathophysiology of movement disorders, particularly dystonia

  19. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.

    Science.gov (United States)

    Okabe, Naohiko; Himi, Naoyuki; Maruyama-Nakamura, Emi; Hayashi, Norito; Narita, Kazuhiko; Miyamoto, Osamu

    2017-01-01

    Task-specific rehabilitative training is commonly used for chronic stroke patients. Axonal remodeling is believed to be one mechanism underlying rehabilitation-induced functional recovery, and significant roles of the corticospinal pathway have previously been demonstrated. Brainstem-spinal pathways, as well as the corticospinal tract, have been suggested to contribute to skilled motor function and functional recovery after brain injury. However, whether axonal remodeling in the brainstem-spinal pathways is a critical component for rehabilitation-induced functional recovery is not known. In this study, rats were subjected to photothrombotic stroke in the caudal forelimb area of the primary motor cortex and received rehabilitative training with a skilled forelimb reaching task for 4 weeks. After completion of the rehabilitative training, the retrograde tracer Fast blue was injected into the contralesional lower cervical spinal cord. Fast blue-positive cells were counted in 32 brain areas located in the cerebral cortex, hypothalamus, midbrain, pons, and medulla oblongata. Rehabilitative training improved motor performance in the skilled forelimb reaching task but not in the cylinder test, ladder walk test, or staircase test, indicating that rehabilitative skilled forelimb training induced task-specific recovery. In the histological analysis, rehabilitative training significantly increased the number of Fast blue-positive neurons in the ipsilesional rostral forelimb area and secondary sensory cortex. However, rehabilitative training did not alter the number of Fast blue-positive neurons in any areas of the brainstem. These results indicate that rehabilitative skilled forelimb training enhances axonal remodeling selectively in the corticospinal pathway, which suggests a critical role of cortical plasticity, rather than brainstem plasticity, in task-specific recovery after subtotal motor cortex destruction.

  20. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  1. Similar profile of cognitive impairment and recovery for Aboriginal Australians in treatment for episodic or chronic alcohol use.

    Science.gov (United States)

    Dingwall, Kylie M; Maruff, Paul; Cairney, Sheree

    2011-08-01

    The cognitive impairment and recovery associated with chronic alcohol abuse and subsequent abstinence is well understood. However, the recovery profile following heavy episodic or 'binge' use, which is common among some Australian Aboriginal users, has not been investigated thoroughly and no empirical studies have examined chronic use in this population. The aim of this study was to identify and compare cognitive impairment and recovery associated with chronic and episodic alcohol use among Aboriginal Australians. Longitudinal case-control design. Residential alcohol treatment programmes in northern Australia. Forty chronic alcohol users, 24 episodic users and 41 healthy controls [mean age = 34.24; standard deviation (SD) = 9.73]. Cognitive assessments of visual motor, attention, memory, learning and executive functions at baseline (start of treatment), then 4 weeks and 8 weeks later. Reassessment of 31% of participants an average of 11 months later (SD = 4.4) comparing those who remained abstinent (n = 5), those who relapsed (n = 11) and healthy controls (n = 19). At baseline, chronic and episodic alcohol users showed impaired visual motor, learning, memory and executive functions. With the exception of visual motor impairment, all deficits had improved to normal levels within 4 weeks. Visual motor deficits had normalized within 11 months. Performances did not differ at any time between chronic and episodic alcohol groups. In Aboriginal Australians, episodic drinking is associated with similar patterns of impairment and recovery as chronic alcohol use. Most cognitive deficits appear to recover within the first month of abstinence, while persisting visual motor problems recover within 1 year. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.

  2. Functional compensation of motor function in pre-symptomatic Huntington's disease

    DEFF Research Database (Denmark)

    Klöppel, Stefan; Draganski, Bogdan; Siebner, Hartwig R

    2009-01-01

    the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned...... with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition...

  3. Enriched housing enhances recovery of limb placement ability and reduces aggrecan-containing perineuronal nets in the rat somatosensory cortex after experimental stroke.

    Directory of Open Access Journals (Sweden)

    Alexandre Madinier

    Full Text Available Stroke causes life long disabilities where few therapeutic options are available. Using electrical and magnetic stimulation of the brain and physical rehabilitation, recovery of brain function can be enhanced even late after stroke. Animal models support this notion, and housing rodents in an enriched environment (EE several days after experimental stroke stimulates lost brain function by multisensory mechanisms. We studied the dynamics of functional recovery of rats with a lesion to the fore and hind limb motor areas induced by photothrombosis (PT, and with subsequent housing in either standard (STD or EE. In this model, skilled motor function is not significantly enhanced by enriched housing, while the speed of recovery of sensori-motor function substantially improves over the 9-week study period. In particular, this stroke lesion completely obliterates the fore and hind limb placing ability when visual and whisker guidance is prevented, a deficit that persists for up to 9 weeks of recovery, but that is markedly restored within 2 weeks by enriched housing. Enriched housing after stroke also leads to a significant loss of perineuronal net (PNN immunoreactivity; detection of aggrecan protein backbone with AB1031 antibody was decreased by 13-22%, and labelling of a glycan moiety of aggrecan with Cat-315 antibody was reduced by 25-30% in the peri-infarct area and in the somatosensory cortex, respectively. The majority of these cells are parvalbumin/GABA inhibitory interneurons that are important in sensori-information processing. We conclude that damage to the fore and hind limb motor areas provides a model of loss of limb placing response without visual guidance, a deficit also seen in more than 50% of stroke patients. This loss is amenable to recovery induced by multiple sensory stimulation and correlates with a decrease in aggrecan-containing PNNs around inhibitory interneurons. Modulating the PNN structure after ischemic damage may provide new

  4. Intrasurgical mapping of complex motor function in the superior frontal gyrus.

    Science.gov (United States)

    Martino, J; Gabarrós, A; Deus, J; Juncadella, M; Acebes, J J; Torres, A; Pujol, J

    2011-04-14

    A lesion to the superior frontal gyrus (SFG) has been associated with long-lasting deficits in complex motor functions. The aim of this study was to analyze the functional role of the SFG by means of electrical cortical stimulation. Direct intraoperative electrical stimulation was used in a group of 21 subjects with lesions within or close to the SFG while they performed three motor tasks that require high skills or bimanual synergy. The results were compared to functional magnetic resonance imaging (fMRI). Ninety-four of the 98 (94.9%) labels identified were located on the convexity surface of the SFG and only four (4.1%) labels were located on the middle surface of the SFG. Areas of blockage of the three tasks were identified in six of the 12 (50%) hemispheres with lesions that had infiltrated the SFG, compared to all 10 of the 10 hemispheres (100%) with lesions that spared the SFG. The difference between these two proportions was statistically significant (P=0.015). fMRI activation was mainly located on the medial aspect of the SFG. We show that the convexity surface of the SFG has an important role in bilateral control of complex movements and in bimanual coordination. The infiltration of the posterior part of the SFG by a lesion disturbs some of the complex hand motor functions, which may be assumed by the contralesional homologous area. Finally, the current study emphasizes the discrepancies between fMRI and intraoperative electrical stimulation maps in complex hand motor function. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Functional reorganization of human motor cortex after unaffected side C7 nerve root transposition

    International Nuclear Information System (INIS)

    Gao Gejun; Feng Xiaoyuan; Xu Wendong; Gu Yudong; Tang Weijun; Sun Guixin; Li Ke; Li Yuan; Geng Daoying

    2006-01-01

    Objective: To assess the characteristics of neuronal activity in human motor cortex after the seventh cervical nerve root transposition of the unaffected side by using functional MRI (fMRI). Methods: Thirteen patients who accepted the seventh cervical nerve root transposition of the unaffected side, due to total brachial plexus traction injury diagnosed by manifestation and operation, were examined retrospectively by using fMRI. 10 patients were injured on the left side and 3 on the right side. According to functional recovery of the affected hand, all subjects can be divided into 2 groups. The patients of the first group could not move the affected hand voluntarily. The patients of the second group could move the affected hand self-determined. 12 healthy volunteer's were also involved in this study as control. The fMRI examinations were performed by using echo-planer BOLD sequence. Then the SPM 99 software was used for post-processing. Results: The neuronal activation induced by the movement of both unaffected and affected upper' limb was seen in the contralateral PMC in all patients; Neuronal activation in the ipsilateral PMC evoked by movement of the unaffected extremity was seen in 10 cases, and induced by movement of the affected limb was seen in 7 cases. In the first group, the sharp of clusters in the contralateral PMC resulted by movement of the unaffected extremity showed normal in 9 eases, the average size of clusters resulted by the unaffected hand was 3159 (voxel), and resulted by the unaffected shoulder was 1746(voxel). The sharp of clusters in the contralateral PMC resulted by the affected shoulder or hand were revealed enlargement in 6 cases of each. In the second group, 1 case showed neuronal activation induced by movement of the affected limb in the PMC in both sides of motor cortex, and 2 cases showed neuronal activation in the contralateral PMC. Conclusions: Peripheral nerve injury was able to cause changes of motor cortex in human brain

  6. Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning

    Science.gov (United States)

    Van Colen, Carl; Rossi, Francesca; Montserrat, Francesc; Andersson, Maria G. I.; Gribsholt, Britta; Herman, Peter M. J.; Degraer, Steven; Vincx, Magda; Ysebaert, Tom; Middelburg, Jack J.

    2012-01-01

    Hypoxia represents one of the major causes of biodiversity and ecosystem functioning loss for coastal waters. Since eutrophication-induced hypoxic events are becoming increasingly frequent and intense, understanding the response of ecosystems to hypoxia is of primary importance to understand and predict the stability of ecosystem functioning. Such ecological stability may greatly depend on the recovery patterns of communities and the return time of the system properties associated to these patterns. Here, we have examined how the reassembly of a benthic community contributed to the recovery of ecosystem functioning following experimentally-induced hypoxia in a tidal flat. We demonstrate that organism-sediment interactions that depend on organism size and relate to mobility traits and sediment reworking capacities are generally more important than recovering species richness to set the return time of the measured sediment processes and properties. Specifically, increasing macrofauna bioturbation potential during community reassembly significantly contributed to the recovery of sediment processes and properties such as denitrification, bedload sediment transport, primary production and deep pore water ammonium concentration. Such bioturbation potential was due to the replacement of the small-sized organisms that recolonised at early stages by large-sized bioturbating organisms, which had a disproportionately stronger influence on sediment. This study suggests that the complete recovery of organism-sediment interactions is a necessary condition for ecosystem functioning recovery, and that such process requires long periods after disturbance due to the slow growth of juveniles into adult stages involved in these interactions. Consequently, repeated episodes of disturbance at intervals smaller than the time needed for the system to fully recover organism-sediment interactions may greatly impair the resilience of ecosystem functioning. PMID:23185440

  7. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  8. Hemispheric surgery for refractory epilepsy in children and adolescents: outcome regarding seizures, motor skills and adaptive function.

    Science.gov (United States)

    Hamad, Ana Paula; Caboclo, Luís Otávio; Centeno, Ricardo; Costa, Livia Vianez; Ladeia-Frota, Carol; Junior, Henrique Carrete; Gomez, Nicolas Garofalo; Marinho, Murilo; Yacubian, Elza Márcia Targas; Sakamoto, Américo Ceiki

    2013-11-01

    The aim of the study was to report the seizure outcome, motor skills and adaptive motor functions in a series of children and adolescents who underwent hemispheric surgery, analysing the risk-benefits of surgery. The clinical course, seizure and motor function outcomes of 15 patients who underwent hemispheric surgery were reviewed. The mean age at surgery was 9.5, with 1-9 years follow-up. The underlying pathologies were Rasmussen encephalitis, vascular disorders, and hemimegalencephaly. All the patients presented with severe epilepsy and different degrees of hemiparesis, although motor functionality was preserved in 80% of the patients. At last follow-up, 67% were seizure free, and 20% rarely experienced seizures. Antiepileptic drugs were reduced in 60%, and complete withdrawal from such drugs was successful in 20% of the patients. The motor outcome following the surgery varied between the patients. Despite the motor deficit after surgery, the post-operative motor function showed unchanged for gross motor function in most (60%), while 27% improved. Similar results were obtained for the ability to handle objects in daily life activities. Sixty percent of the children were capable of handling objects, with somewhat reduced coordination and/or motor speed. Pre-surgical motor function continues to play a role in the pre-surgical evaluation process in order to provide a baseline for outcome. Hemispheric surgery, once regarded as a radical intervention and last treatment resource, may become routinely indicated for refractory hemispheric epilepsy in children and adolescents, with oftentime favourable motor outcomes. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Environmental exposure to manganese and motor function of children in Mexico.

    Science.gov (United States)

    Hernández-Bonilla, D; Schilmann, A; Montes, S; Rodríguez-Agudelo, Y; Rodríguez-Dozal, S; Solís-Vivanco, R; Ríos, C; Riojas-Rodríguez, H

    2011-10-01

    Occupational manganese (Mn) exposure has been associated with motor deficits in adult workers, but data on the potential effects of environmental exposure to Mn on the developing motor function for a children population is scarce. The aim of this study was to evaluate the association between exposure to Mn and motor function of school aged children. We conducted a cross-sectional study selecting 195 children (100 exposed and 95 unexposed) between 7 and 11 years old. The following tests were used to evaluate the motor function: Grooved pegboard, finger tapping, and Santa Ana test. Mn exposure was assessed by blood (MnB) and hair concentrations (MnH). We constructed linear regression models to evaluate the association between exposure to Mn and the different test scores adjusting for age, sex, maternal education, hemoglobin and blood lead. The median concentration of MnH and MnB was significantly higher in exposed (12.6 μg/g and 9.5 μg/L) compared to unexposed children (0.6 μg/g and 8.0 μg/L). The exposed children on average performed the grooved pegboard test faster, but made more errors, although these results did not reach statistical significance with neither one of the Mn exposure biomarkers. MnB showed an inverse association on the execution of the finger tapping test (average in 5 trials β -0.4, p=0.02), but no association was observed with MnH. A subtle negative association of Mn exposure on motor speed and coordination was shown. In adults, the main effect of environmental Mn exposure has been associated with motor skills, but these results suggest that such alterations are not the main effect on children. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.

    Science.gov (United States)

    Povysheva, Tatyana; Shmarov, Maksim; Logunov, Denis; Naroditsky, Boris; Shulman, Ilya; Ogurcov, Sergey; Kolesnikov, Pavel; Islamov, Rustem; Chelyshev, Yuri

    2017-07-01

    OBJECTIVE The most actively explored therapeutic strategy for overcoming spinal cord injury (SCI) is the delivery of genes encoding molecules that stimulate regeneration. In a mouse model of amyotrophic lateral sclerosis and in preliminary clinical trials in patients with amyotrophic lateral sclerosis, the combined administration of recombinant adenoviral vectors (Ad5-VEGF+Ad5-ANG) encoding the neurotrophic/angiogenic factors vascular endothelial growth factor ( VEGF) and angiogenin ( ANG) was found to slow the development of neurological deficits. These results suggest that there may be positive effects of this combination of genes in posttraumatic spinal cord regeneration. The objective of the present study was to determine the effects of Ad5-VEGF+Ad5-ANG combination therapy on motor function recovery and reactivity of astrocytes in a rat model of SCI. METHODS Spinal cord injury was induced in adult Wistar rats by the weight-drop method. Rats (n = 51) were divided into 2 groups: the experimental group (Ad5-VEGF+Ad5-ANG) and the control group (Ad5-GFP [green fluorescent protein]). Recovery of motor function was assessed using the Basso, Beattie, and Bresnahan scale. The duration and intensity of infectivity and gene expression from the injected vectors were assessed by immunofluorescent detection of GFP. Reactivity of glial cells was assessed by changes in the number of immunopositive cells expressing glial fibrillary acidic protein (GFAP), S100β, aquaporin 4 (AQP4), oligodendrocyte transcription factor 2, and chondroitin sulfate proteoglycan 4. The level of S100β mRNA expression in the spinal cord was estimated by real-time polymerase chain reaction. RESULTS Partial recovery of motor function was observed 30 days after surgery in both groups. However, Basso, Beattie, and Bresnahan scores were 35.9% higher in the Ad5-VEGF+Ad5-ANG group compared with the control group. Specific GFP signal was observed at distances of up to 5 mm in the rostral and caudal

  11. Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement

    Science.gov (United States)

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…

  12. Early uneven ear input induces long-lasting differences in left-right motor function.

    Science.gov (United States)

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  13. Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors

    International Nuclear Information System (INIS)

    Mueller, W.M.; Zerrin Yetkin, F.; Hammeke, T.A.

    1997-01-01

    Objective. The purpose of this study was to determine the usefulness of functional magnetic resonance imaging (FMRI) to map cerebral functions in patients with frontal or parietal tumors. Methods. Charts and images of patients with cerebral tumors or vascular malformations who underwent FMRI with an echo-planar technique were reviewed. The FMRI maps of motor (11 patients), tactile sensory (12 patients) and language tasks (4 patients) were obtained. The location of the FMRI activation and the positive responses to intraoperative cortical stimulation were compared. The reliability of the paradigms for mapping the rolandic cortex was evaluated. Results. Rolandic cortex was activated by tactile tasks in hall 12 patients and by motor tasks in 10 of 11 patients. Language tasks elicited activation in each of the four patients. Activation was obtained within edematous brain and adjacent to tumors. FMRI in three cases with intraoperative electro-cortical mapping results showed activation for a language, tactile, or motor task within the same gyrus in which stimulation elicited a related motor, sensory, or language function. In patients with >2 cm between the margin of the tumor, as revealed by magnetic resonance imaging, and the activation, no decline in motor function occurred from surgical resection. Conclusions. FMRI of tactile, motor, and language tasks is feasible in patients with cerebral tumors. FMRI shows promise as a means of determining the risk of a postoperative motor deficit from surgical resection of frontal or parietal tumors. (authors)

  14. Motor relearning program and Bobath method improve motor function of the upper extremities in patients with stroke

    Institute of Scientific and Technical Information of China (English)

    Jinjing Liu; Fengsheng Li; Guihua Liu

    2006-01-01

    BACKGROUND: In the natural evolution of cerebrovascular disease, unconscious use of affected extremity during drug treatment and daily life can improve the function of affected upper extremity partially, but it is very slow and alsc accompanied by the formation of abnormal mode. Therefore, functional training should be emphasized in recovering the motor function of extremity.OBJECTIVE: To observe the effects of combination of motor relearning program and Bobath method on motor function of upper extremity of patients with stroke.DESIGN: Comparison of therapeutic effects taking stroke patients as observation subjects.SETTING: Department of Neurology, General Hospital of Beijing Jingmei Group.PARTICIPANTS: Totally 120 stroke patients, including 60 males and 60 females, averaged (59±3) years, who hospitalized in the Department of Neurology, General Hospital of Beijing Jingmei Group between January 2005 and June 2006 were recruited. The involved patients met the following criteria: Stroke attack within 2 weeks;diagnosis criteria of cerebral hemorrhage or infarction made in the 4th National Cerebrovascular Disease Conference; confirmed by skull CT or MRI; Informed consents of therapeutic regimen were obtained. The patients were assigned into 2 groups according to their wills: rehabilitation group and control group, with 30 males and 30 females in each group. Patients in rehabilitation group averaged (59±2)years old, and those in the control group averaged (58±2)years old.METHODS: ① Patients in two groups received routine treatment in the Department of Neurology. When the vital signs of patients in the rehabilitation group were stable, individualized treatment was conducted by combined application of motor relearning program and Bobath method. Meanwhile, training of activity of daily living was performed according to the disease condition changes of patients at different phases, including the nursing and instruction of body posture, the maintenance of good extremity

  15. Effect of Hippotherapy on Motor Proficiency and Function in Children with Cerebral Palsy Who Walk.

    Science.gov (United States)

    Champagne, Danielle; Corriveau, Hélène; Dugas, Claude

    2017-02-01

    To evaluate the effects of hippotherapy on physical capacities of children with cerebral palsy. Thirteen children (4-12 years old) with cerebral palsy classified in Gross Motor Function Classification System Level I or II were included in this prospective quasi-experimental ABA design study. Participants received 10 weeks of hippotherapy (30 min per week). Gross motor function and proficiency were measured with the Bruininks-Oseretski Motor Proficiency short form [BOT2-SF]) and the Gross Motor Function Measure-88 [GMFM-88] (Dimension D and E) twice before the program (T1 and T1'), immediately after (T2), and 10 weeks following the end of the program (T3). Mean scores for dimensions D and E of the GMFM-88 Dimension scores (p = .005) and three out of the eight items of the BOT2-SF (fine motor precision (p = .013), balance (p = .025), and strength (p = .012) improved between baseline and immediately after intervention; mean scores immediately following and 10 weeks following intervention did not differ. Hippotherapy provided by a trained therapist who applies an intense and graded session for 10 weeks can improve body functions and performance of gross motor and fine motor activities in children with cerebral palsy.

  16. Motor performance of children with mild intellectual disability and borderline intellectual functioning

    NARCIS (Netherlands)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and

  17. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  18. Motor ability and adaptive function in children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Hui-Yi Wang

    2011-10-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a common neuropsychiatric disorder. Previous studies have reported that children with ADHD exhibit deficits of adaptive function and insufficient motor ability. The objective of this study was to investigate the association between adaptive function and motor ability in children with ADHD compared with a group of normal children. The study group included 25 children with ADHD (19 boys and 6 girls, aged from 4.6 years to 8.6 years (mean±standard deviation, 6.5±1.2. A group of 24 children without ADHD (normal children were selected to match the children with ADHD on age and gender. The Movement Assessment Battery for Children, which includes three subtests, was used to assess the motor ability of the children of both groups. The Chinese version of Adaptive Behavior Scales, which consists of 12 life domains, was used to assess adaptive function of the children with ADHD. Compared with the normal children, children with ADHD exhibited poorer motor ability on all the three subtests of motor assessment. In the ADHD group, nine (36% children had significant motor impairments and seven (28% were borderline cases. A total of 10 (40% children with ADHD had definite adaptive problems in one or more adaptive domains. With statistically controlling of IQ for the ADHD group, those children with impaired motor ability had significantly poorer behaviors in the adaptive domain of home living (p=0.035. Moreover, children with ADHD who had severely impaired manual dexterity performed worse than the control group in the adaptive domains of home living (r=−0.47, p=0.018, socialization (r=−0.49, p=0.013, and self-direction (r=−0.41, p=0.040. In addition, children with poorer ball skills had worse home living behavior (r=−0.56, p=0.003. Children who had more impaired balance exhibited poorer performance in social behavior (r=−0.41, p=0.040. This study found significant correlation between motor ability and

  19. Sleep disturbance and neurocognitive function during the recovery from a sport-related concussion in adolescents.

    Science.gov (United States)

    Kostyun, Regina O; Milewski, Matthew D; Hafeez, Imran

    2015-03-01

    Sleep disturbances are a hallmark sign after a sport-related concussion (SRC). Poor sleep has been shown to adversely affect baseline neurocognitive test scores, but it is not comprehensively understood how neurocognitive function is affected by disrupted sleep during recovery from a concussion. To identify the correlation between adolescent athletes' neurocognitive function and their self-reported sleep quantity and sleep disturbance symptoms during recovery from SRC. Cross-sectional study; Level of evidence, 3. Immediate Post-Concussion Assessment and Cognition Testing (ImPACT) data were retrospectively collected for 545 adolescent athletes treated for SRC at a sports medicine concussion clinic. Patients were stratified into groups based on 2 criteria: self-reported sleep duration and self-reported sleep disturbance symptoms during postinjury ImPACT testing. Sleep duration was classified as short (9 hours). Sleep disturbance symptoms were self-reported as part of the Post-Concussion Symptom Scale (PCSS) as either sleeping less than normal, sleeping more than normal, or having trouble falling asleep. One-way analyses of variance were conducted to examine the effects that sleep duration as well as self-reported sleep disturbance symptoms had on composite scores. A total of 1067 ImPACT tests were analyzed: test 1, 545; test 2, 380; and test 3, 142. Sleeping fewer than 7 hours the night before testing correlated with higher PCSS scores (P sleeping longer than 9 hours correlated with worse visual memory (P = .01), visual motor speed (P sleep disturbance symptoms, patients demonstrated worse composite scores during ImPACT testing when they self-reported sleeping more than normal (ImPACT test 1: verbal memory, P sleep had been disrupted. Adolescent patients who perceive that their sleep is somehow disrupted after SRC may report a greater number of concussion symptoms during their recovery. In addition, the study results suggest that sleeping more than normal may

  20. Primary motor cortex functionally contributes to language comprehension: An online rTMS study.

    Science.gov (United States)

    Vukovic, Nikola; Feurra, Matteo; Shpektor, Anna; Myachykov, Andriy; Shtyrov, Yury

    2017-02-01

    Among various questions pertinent to grounding human cognitive functions in a neurobiological substrate, the association between language and motor brain structures is a particularly debated one in neuroscience and psychology. While many studies support a broadly distributed model of language and semantics grounded, among other things, in the general modality-specific systems, theories disagree as to whether motor and sensory cortex activity observed during language processing is functional or epiphenomenal. Here, we assessed the role of motor areas in linguistic processing by investigating the responses of 28 healthy volunteers to different word types in semantic and lexical decision tasks, following repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex. We found that early rTMS (delivered within 200ms of word onset) produces a left-lateralised and meaning-specific change in reaction speed, slowing down behavioural responses to action-related words, and facilitating abstract words - an effect present only during semantic, but not lexical, decision. We interpret these data in light of action-perception theory of language, bolstering the claim that motor cortical areas play a functional role in language comprehension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    Science.gov (United States)

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  2. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    Science.gov (United States)

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  3. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study

    Directory of Open Access Journals (Sweden)

    Cristina Rosazza

    2018-06-01

    Full Text Available Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery.Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI tasks of arm and leg movement and Diffusion Tensor Imaging (DTI before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients.Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery.Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative

  4. Tracking the Re-organization of Motor Functions After Disconnective Surgery: A Longitudinal fMRI and DTI Study.

    Science.gov (United States)

    Rosazza, Cristina; Deleo, Francesco; D'Incerti, Ludovico; Antelmi, Luigi; Tringali, Giovanni; Didato, Giuseppe; Bruzzone, Maria G; Villani, Flavio; Ghielmetti, Francesco

    2018-01-01

    Objective: Mechanisms of motor plasticity are critical to maintain motor functions after cerebral damage. This study explores the mechanisms of motor reorganization occurring before and after surgery in four patients with drug-refractory epilepsy candidate to disconnective surgery. Methods: We studied four patients with early damage, who underwent tailored hemispheric surgery in adulthood, removing the cortical motor areas and disconnecting the corticospinal tract (CST) from the affected hemisphere. Motor functions were assessed clinically, with functional MRI (fMRI) tasks of arm and leg movement and Diffusion Tensor Imaging (DTI) before and after surgery with assessments of up to 3 years. Quantifications of fMRI motor activations and DTI fractional anisotropy (FA) color maps were performed to assess the lateralization of motor network. We hypothesized that lateralization of motor circuits assessed preoperatively with fMRI and DTI was useful to evaluate the motor outcome in these patients. Results: In two cases preoperative DTI-tractography did not reconstruct the CST, and FA-maps were strongly asymmetric. In the other two cases, the affected CST appeared reduced compared to the contralateral one, with modest asymmetry in the FA-maps. fMRI showed different degrees of lateralization of the motor network and the SMA of the intact hemisphere was mostly engaged in all cases. After surgery, patients with a strongly lateralized motor network showed a stable performance. By contrast, a patient with a more bilateral pattern showed worsening of the upper limb function. For all cases, fMRI activations shifted to the intact hemisphere. Structural alterations of motor circuits, observed with FA values, continued beyond 1 year after surgery. Conclusion: In our case series fMRI and DTI could track the longitudinal reorganization of motor functions. In these four patients the more the paretic limbs recruited the intact hemisphere in primary motor and associative areas, the

  5. ifn-γ-dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury

    Science.gov (United States)

    Ishii, H; Tanabe, S; Ueno, M; Kubo, T; Kayama, H; Serada, S; Fujimoto, M; Takeda, K; Naka, T; Yamashita, T

    2013-01-01

    Transfer of type-1 helper T-conditioned (Th1-conditioned) cells promotes functional recovery with enhanced axonal remodeling after spinal cord injury (SCI). This study explored the molecular mechanisms underlying the beneficial effects of pro-inflammatory Th1-conditioned cells after SCI. The effect of Th1-conditioned cells from interferon-γ (ifn-γ) knockout mice (ifn-γ−/− Th1 cells) on the recovery after SCI was reduced. Transfer of Th1-conditioned cells led to the activation of microglia (MG) and macrophages (MΦs), with interleukin 10 (IL-10) upregulation. This upregulation of IL-10 was reduced when ifn-γ−/− Th1 cells were transferred. Intrathecal neutralization of IL-10 in the spinal cord attenuated the effects of Th1-conditioned cells. Further, IL-10 is robustly secreted from Th1-conditioned cells in an ifn-γ-dependent manner. Th1-conditioned cells from interleukin 10 knockout (il-10−/−) mice had no effects on recovery from SCI. These findings demonstrate that ifn-γ-dependent secretion of IL-10 from Th1 cells, as well as native MG/MΦs, is required for the promotion of motor recovery after SCI. PMID:23828573

  6. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: preliminary considerations.

    Science.gov (United States)

    De Luca, Rosaria; Russo, Margherita; Naro, Antonino; Tomasello, Provvidenza; Leonardi, Simona; Santamaria, Floriana; Desireè, Latella; Bramanti, Alessia; Silvestri, Giuseppe; Bramanti, Placido; Calabrò, Rocco Salvatore

    2018-02-02

    Cognitive impairment occurs frequently in post-stroke patients. This study aimed to determine the effects of a virtual reality training (VRT) with BTs-Nirvana (BTsN) on the recovery of cognitive functions in stroke patients, using the Interactive-Semi-Immersive Program (I-SIP). We enrolled 12 subjects (randomly divided into two groups: experimental group (EG); and control group (CG)), who attended the Laboratory of Robotic and Cognitive Rehabilitation of IRCCS Neurolesi of Messina from January to June 2016. The EG underwent a VRT with BTsN, whereas CG received a standard cognitive treatment. Both the groups underwent the same conventional physiotherapy program. Each treatment session lasted 45 minutes and was repeated three times a week for 8 weeks. All the patients were evaluated by a specific clinical-psychometric battery before (T0), immediately (T1), and one month (T2) after the end of the training. At T1, the EG presented a greater improvement in the trunk control test (p = 0.03), the Montreal Cognitive Assessment (p = 0.01), the selective attention assessment scores (p = 0.01), the verbal memory (p = 0.03), and the visuospatial and constructive abilities (p = 0.01), as compared to CG. Moreover, such amelioration persisted at T2 only in the EG. According to these preliminary data, VRT with I-SIP can be considered a useful complementary treatment to potentiate functional recovery, with regard to attention, visual-spatial deficits, and motor function in patients affected by stroke.

  7. On the functional organization and operational principles of the motor cortex

    DEFF Research Database (Denmark)

    Capaday, Charles; Ethier, Christian; Van Vreeswijk, Carl

    2013-01-01

    of the movements evoked by activation of each point on its own. This operational principle may simplify the synthesis of motor commands. We will discuss two possible mechanisms that may explain linear summation of outputs. We have observed that the final posture of the arm when pointing to a given spatial location......Recent studies on the functional organization and operational principles of the motor cortex (MCx), taken together, strongly support the notion that the MCx controls the muscle synergies subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles...... appear to be controlled as a coupled functional system, rather than singly and separately. The recurrent pattern of intrinsic synaptic connections between motor cortical points is likely part of the explanation for this operational principle. So too is the reduplicated, non-contiguous and intermingled...

  8. Beneficial effects of endogenous and exogenous melatonin on neural reconstruction and functional recovery in an animal model of spinal cord injury.

    Science.gov (United States)

    Park, Sookyoung; Lee, Sang-Kil; Park, Kanghui; Lee, Youngjeon; Hong, Yunkyung; Lee, Seunghoon; Jeon, Je-Cheol; Kim, Joo-Heon; Lee, Sang-Rae; Chang, Kyu-Tae; Hong, Yonggeun

    2012-01-01

    The purpose of this study was to investigate the beneficial effects of endogenous and exogenous melatonin on functional recovery in an animal model of spinal cord injury (SCI). Eight-week-old male Sprague-Dawley (SD, 250-260 g) rats were used for contusion SCI surgery. All experimental groups were maintained under one of the following conditions: 12/12-hr light/dark (L/D) or 24:0-hr constant light (LL). Melatonin (10 mg/kg) was injected subcutaneously for 4 wk, twice daily (07:00, 19:00). Locomotor recovery, inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein gene expression, and muscle atrophy-related genes, including muscle atrophy F-box (MAFbx) and muscle-specific ring-finger protein 1 (MuRF1) gene expression were evaluated. Furthermore, autophagic signaling such as Beclin-1 and LC3 protein expression was examined in the spinal cord and in skeletal muscle. The melatonin treatment resulted in increased hind-limb motor function and decreased iNOS mRNA expression in the L/D condition compared with the LL condition (P endogenous melatonin had neuroprotective effects. Furthermore, the MAFbx, MuRF1 mRNA level, and converted LC3 II protein expression were decreased in the melatonin-treated SCI groups under the LL (P exogenous melatonin treatment. Therefore, it seems that both endogenous and exogenous melatonin contribute to neural recovery and to the prevention of skeletal muscle atrophy, promoting functional recovery after SCI. Finally, this study supports the benefit of endogenous melatonin and use of exogenous melatonin as a therapeutic intervention for SCI. © 2011 John Wiley & Sons A/S.

  9. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    Directory of Open Access Journals (Sweden)

    Sahil eBajaj

    2015-03-01

    Full Text Available Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (< 0.1 Hz, even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP or both mental practice and physical therapy (MP + PT within 14-51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1, the right primary motor area (RM1, the left pre-motor cortex (LPMC, the right pre-motor cortex (RPMC and the supplementary motor area (SMA. We discovered that (i the network activity dominated in the frequency range 0.06 Hz – 0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii the flow did not increase significantly after MP alone and (iv the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke

  10. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  11. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  12. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    Science.gov (United States)

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Human brain mapping of language-related function on 1.5T magnetic resonance system: focused on motor language function

    International Nuclear Information System (INIS)

    Jung, Hee Young; Kim, Jae Hyoung; Shin, Taemin; Piao, Xiang Hao; Kim, Jae Soo; Lee, Gyung Kyu; Park, Il Soon; Park, Ji Hoon; Kang, Su Jin; You, Jin Jong; Chung, Sung Hoon

    1998-01-01

    To investigate the feasibility of functional MR imaging of motor language function and its usefulness in the determination of hemispheric language dominance. In order to activate the motor center of language, six subjects ( 5 right-handed, 1 left-handed: 3 males: 3 females) generated words. They were requested to do this silently, without physical articulation, in response to English letters presented visually. Gradient-echo images (TR/TE/flip angle, 80/60/40 deg; 64 x 128 matrix; 10 mm thickness) were obtained in three axial planes including the inferior frontal gyrus. Functional maps were created by the postprocessing of gradient-echo images, including subtraction and statistics. Areas of activation were topographically analyzed and numbers of activated pixels in each region were compared between right and left sides. The reproducibility of functional maps was tested by repetition of functional imaging in the same subjects. Our results suggest that functional MR imaging can depict the activation of motor language function in the brain and can be used a useful non-invasive method for determining the hemispheric dominance of language. (author). 26 refs., 3 figs

  14. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  15. Relationship between communication skills and gross motor function in preschool-aged children with cerebral palsy.

    Science.gov (United States)

    Coleman, Andrea; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2013-11-01

    To explore the communication skills of children with cerebral palsy (CP) at 24 months' corrected age with reference to typically developing children, and to determine the relationship between communication ability, gross motor function, and other comorbidities associated with CP. Prospective, cross-sectional, population-based cohort study. General community. Children with CP (N=124; mean age, 24mo; functional severity on Gross Motor Function Classification System [GMFCS]: I=47, II=14, III=22, IV=19, V=22). Not applicable. Parents reported communication skills on the Communication and Symbolic Behavior Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Two independent physiotherapists classified motor type, distribution, and GMFCS. Data on comorbidities were obtained from parent interviews and medical records. Children with mild CP (GMFCS I/II) had mean CSBS-DP scores that were 0.5 to 0.6 SD below the mean for typically developing peers, while those with moderate-severe impairment (GMFCS III-V) were 1.4 to 2.6 SD below the mean. GMFCS was significantly associated with performance on the CSBS-DP (F=18.55, Pgross motor ability accounting for 38% of the variation in communication. Poorer communication was strongly associated with gross motor function and full-term birth. Preschool-aged children with CP, with more severe gross motor impairment, showed delayed communication, while children with mild motor impairment were less vulnerable. Term-born children had significantly poorer communication than those born prematurely. Because a portion of each gross motor functional severity level is at risk, this study reinforces the need for early monitoring of communication development for all children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Impairment of complex upper limb motor function in de novo parkinson's disease.

    NARCIS (Netherlands)

    Ponsen, M.M.; Daffertshofer, A.; Wolters, E.C.M.J.; Beek, P.J.; Berendse, H.W.

    2008-01-01

    The aim of the present study was to evaluate complex upper limb motor function in newly diagnosed, untreated Parkinson's disease (PD) patients. Four different unimanual upper limb motor tasks were applied to 13 newly diagnosed, untreated PD patients and 13 age- and sex-matched controls. In a

  17. Technology-aided assessment of sensori-motor function in early infancy

    Directory of Open Access Journals (Sweden)

    Alessandro G Allievi

    2014-10-01

    Full Text Available There is a pressing need for new techniques capable of providing accurate information about sensori-motor function during the first 2 years of childhood. Here we review current clinical methods and challenges for assessing motor function in early infancy, and discuss the potential benefits of applying technology-assisted methods. We also describe how the use of these tools with neuroimaging, and in particular functional magnetic resonance imaging (fMRI, can shed new light on the intra-cerebral processes underlying neurodevelopmental impairment. This knowledge is of particular relevance in the early infant brain which has an increased capacity for compensatory neural plasticity. Such tools could bring a wealth of knowledge about the underlying pathophysiological processes of diseases such as cerebral palsy; act as biomarkers to monitor the effects of possible therapeutic interventions; and provide clinicians with much needed early diagnostic information.

  18. Impact of a Community-Based Programme for Motor Development on Gross Motor Skills and Cognitive Function in Preschool Children from Disadvantaged Settings

    Science.gov (United States)

    Draper, Catherine E.; Achmat, Masturah; Forbes, Jared; Lambert, Estelle V.

    2012-01-01

    The aims of the studies were to assess the impact of the Little Champs programme for motor development on (1) the gross motor skills, and (2) cognitive function of children in the programme. In study 1, 118 children from one Early Childhood Development Centre (ECDC) were tested using the Test of Gross Motor Development-2, and in study 2, 83…

  19. The Inpatient Assessment and Management of Motor Functional Neurological Disorders: An Interdisciplinary Perspective.

    Science.gov (United States)

    McKee, Kathleen; Glass, Sean; Adams, Caitlin; Stephen, Christopher D; King, Franklin; Parlman, Kristin; Perez, David L; Kontos, Nicholas

    2018-01-08

    Motor functional neurologic disorders (FND)-previously termed "hysteria" and later "conversion disorder"-are exceedingly common and frequently encountered in the acute hospital setting. Despite their high prevalence, patients with motor FND can be challenging to diagnose accurately and manage effectively. To date, there is limited guidance on the inpatient approach to the neuropsychiatric evaluation of patients with functional (psychogenic) neurologic symptoms. The authors outline an inpatient multidisciplinary approach, involving neurology, psychiatry, and physical therapy, for the assessment and acute inpatient management of motor FND. A vignette of a patient with motor FND is presented followed by a discussion of general assessment principles. Thereafter, a detailed description of the neurologic and psychiatric assessments is outlined. Delivery of a "rule-in" diagnosis is emphasized and specific guidance for what can be accomplished postdiagnosis in the hospital is suggested. We encourage an interdisciplinary approach beginning at the early stages of the diagnostic assessment once an individual is suspected of having motor FND. Practical suggestions for the inpatient assessment of motor FND are presented. It is also important to individualize the diagnostic assessment. Future research should be conducted to test best practices for motor FND management in the acute inpatient hospital setting. Copyright © 2018 Academy of Consultation-Liaison Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Fine motor skills and executive function both contribute to kindergarten achievement

    Science.gov (United States)

    Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.

    2012-01-01

    This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276

  1. Motor Performance of Children with Mild Intellectual Disability and Borderline Intellectual Functioning

    Science.gov (United States)

    Vuijk, P. J.; Hartman, E.; Scherder, E.; Visscher, C.

    2010-01-01

    Background: There is a relatively small body of research on the motor performance of children with mild intellectual disabilities (MID) and borderline intellectual functioning (BIF). Adequate levels of motor skills may contribute to lifelong enjoyment of physical activity, participation in sports and healthy lifestyles. The present study compares…

  2. Heavy particle irradiation, neurochemistry and behavior: thresholds, dose-response curves and recovery of function

    Science.gov (United States)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2004-01-01

    Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.

  3. Functional resting-state connectivity of the human motor network: differences between right- and left-handers.

    Science.gov (United States)

    Pool, Eva-Maria; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2015-04-01

    Handedness is associated with differences in activation levels in various motor tasks performed with the dominant or non-dominant hand. Here we tested whether handedness is reflected in the functional architecture of the motor system even in the absence of an overt motor task. Using resting-state functional magnetic resonance imaging we investigated 18 right- and 18 left-handers. Whole-brain functional connectivity maps of the primary motor cortex (M1), supplementary motor area (SMA), dorsolateral premotor cortex (PMd), pre-SMA, inferior frontal junction and motor putamen were compared between right- and left-handers. We further used a multivariate linear support vector machine (SVM) classifier to reveal the specificity of brain regions for classifying handedness based on individual resting-state maps. Using left M1 as seed region, functional connectivity analysis revealed stronger interhemispheric functional connectivity between left M1 and right PMd in right-handers as compared to left-handers. This connectivity cluster contributed to the individual classification of right- and left-handers with 86.2% accuracy. Consistently, also seeding from right PMd yielded a similar handedness-dependent effect in left M1, albeit with lower classification accuracy (78.1%). Control analyses of the other resting-state networks including the speech and the visual network revealed no significant differences in functional connectivity related to handedness. In conclusion, our data revealed an intrinsically higher functional connectivity in right-handers. These results may help to explain that hand preference is more lateralized in right-handers than in left-handers. Furthermore, enhanced functional connectivity between left M1 and right PMd may serve as an individual marker of handedness. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  5. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  6. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  7. Parental questionnaire as a screening instrument for motor function at age five.

    Science.gov (United States)

    Nordbye-Nielsen, Kirsten; Kesmodel, Ulrik Schiøler

    2014-12-01

    No standardised method is used to determine motor function in children in general practice in Denmark. Our aim was to evaluate the correlation between a parental questionnaire assessing motor function at the age of five years and the clinical test Movement Assessment Battery for Children (M-ABC), and to assess whether one or more questions could be used to screen for motor problems at the age of five years. This study was based on a parental questionnaire containing ten questions. The M-ABC was used as the gold standard. n = 755 children. The Mann-Whitney rank sum test, Pearson's χ(2)-test, logistic regression analyses and sensitivity and specificity were used to assess the correlation between the questionnaire and the M-ABC test. The best screening tool was six questions in combination: sensitivity 39.8%, specificity 87.1%. Asking if a health professional ever expressed concern about the childs motor development had a sensitivity of 17.0% and a specificity of 93.9%. A parental questionnaire used as a screening instrument to identify children with motor problems has a reasonable specificity, but a low sensitivity. The six questions can be used to identify children who do not have motor function difficulties with a relatively high certainty, and it can fairly well identify children with motor function problems. This study was primarily supported by the Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA. Additional support was obtained from The Danish Health and Medicines Authority, the Lundbeck Foundation, Ludvig & Daara Elsass Foundation, the Augustinus Foundation, and Aase & Ejnar Danielsens Foundation. The Danish National Research Foundation has established the Danish Epidemiology Science Centre that initiated and created the Danish National Birth Cohort. The cohort is furthermore a result of a major grant from this Foundation. Additional support for the Danish National Birth Cohort is obtained from the Pharmacy Foundation, the Egmont

  8. Robot training for hand motor recovery in subacute stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Roldán, Giovana Femat; Sánchez-Villavicencio, Israel; Palafox, Lorena; Leder, Ronald; Sucar, Luis Enrique; Hernández-Franco, Jorge

    2016-01-01

    Evidence of superiority of robot training for the hand over classical therapies in stroke patients remains controversial. During the subacute stage, hand training is likely to be the most useful. To establish whether robot active assisted therapies provides any additional motor recovery for the hand when administered during the subacute stage (robot based therapies for hand recovery will show significant differences at subacute stages. A randomized clinical trial. A between subjects randomized controlled trial was carried out on subacute stroke patients (n = 17) comparing robot active assisted therapy (RT) with a classical occupational therapy (OT). Both groups received 40 sessions ensuring at least 300 repetitions per session. Treatment duration was (mean ± std) 2.18 ± 1.25 months for the control group and 2.44 ± 0.88 months for the study group. The primary outcome was motor dexterity changes assessed with the Fugl-Meyer (FMA) and the Motricity Index (MI). Both groups (OT: n = 8; RT: n = 9) exhibited significant improvements over time (Non-parametric Cliff's delta-within effect sizes: dwOT-FMA = 0.5, dwOT-MI = 0.5, dwRT-FMA = 1, dwRT-MI = 1). Regarding differences between the therapies; the Fugl-Meyer score indicated a significant advantage for the hand training with the robot (FMA hand: WRS: W = 8, p hand prehension for RT with respect to OT but failed to reach significance (MI prehension: W = 17.5, p = 0.080). No harm occurred. Robotic therapies may be useful during the subacute stages of stroke - both endpoints (FM hand and MI prehension) showed the expected trend with bigger effect size for the robotic intervention. Additional benefit of the robotic therapy over the control therapy was only significant when the difference was measured with FM, demanding further investigation with larger samples. Implications of this study are important for decision making during therapy administration and resource allocation. Copyright © 2016 Hanley

  9. Effects of Virtual Reality Training using Xbox Kinect on Motor Function in Stroke Survivors: A Preliminary Study.

    Science.gov (United States)

    Park, Dae-Sung; Lee, Do-Gyun; Lee, Kyeongbong; Lee, GyuChang

    2017-10-01

    Although the Kinect gaming system (Microsoft Corp, Redmond, WA) has been shown to be of therapeutic benefit in rehabilitation, the applicability of Kinect-based virtual reality (VR) training to improve motor function following a stroke has not been investigated. This study aimed to investigate the effects of VR training, using the Xbox Kinect-based game system, on the motor recovery of patients with chronic hemiplegic stroke. This was a randomized controlled trial. Twenty patients with hemiplegic stroke were randomly assigned to either the intervention group or the control group. Participants in the intervention group (n = 10) received 30 minutes of conventional physical therapy plus 30 minutes of VR training using Xbox Kinect-based games, and those in the control group (n = 10) received 30 minutes of conventional physical therapy only. All interventions consisted of daily sessions for a 6-week period. All measurements using Fugl-Meyer Assessment (FMA-LE), the Berg Balance Scale (BBS), the Timed Up and Go test (TUG), and the 10-meter Walk Test (10mWT) were performed at baseline and at the end of the 6 weeks. The scores on the FMA-LE, BBS, TUG, and 10mWT improved significantly from baseline to post intervention in both the intervention and the control groups after training. The pre-to-post difference scores on BBS, TUG, and 10mWT for the intervention group were significantly more improved than those for the control group (P <.05). Evidence from the present study supports the use of additional VR training with the Xbox Kinect gaming system as an effective therapeutic approach for improving motor function during stroke rehabilitation. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  10. A lightweight electronically commutated dc motor for electric passenger vehicles

    Science.gov (United States)

    Echolds, E. F.; Walla, P. S.

    1982-01-01

    A functional model breadboard converter and a rare-earth-cobalt, permanent magnet motor; as well as an engineering model converter and PM motor suitable for vehicle installations were developed and tested. The converter and motor achieved an 88% peak efficiency, a maximum output of 26 kW at 26,000 rpm, and a continuous rating of 15 kW. The system also generated power to the source during braking, with a demonstrated peak power available at the converter terminals of approximately 26 kW at 88% efficiency. Major conclusions include: (1) the SAE J227a(D) driving cycle efficiency for the converter/motor is 86% to 88% when energy available for recovery at the converter terminals is included; (2) the converter initial cost is approximately five times that of the permanent magnet motor, but can be reduced by means of LSI logic and integrated liquid cooled semiconductor packages; and (3) an electronically commutated motor with a liquid cooled converter will operate reliably without service or maintenance for the life of a passenger vehicle.

  11. A lightweight electronically commutated dc motor for electric passenger vehicles

    Science.gov (United States)

    Echolds, E. F.; Walla, P. S.

    1982-09-01

    A functional model breadboard converter and a rare-earth-cobalt, permanent magnet motor; as well as an engineering model converter and PM motor suitable for vehicle installations were developed and tested. The converter and motor achieved an 88% peak efficiency, a maximum output of 26 kW at 26,000 rpm, and a continuous rating of 15 kW. The system also generated power to the source during braking, with a demonstrated peak power available at the converter terminals of approximately 26 kW at 88% efficiency. Major conclusions include: (1) the SAE J227a(D) driving cycle efficiency for the converter/motor is 86% to 88% when energy available for recovery at the converter terminals is included; (2) the converter initial cost is approximately five times that of the permanent magnet motor, but can be reduced by means of LSI logic and integrated liquid cooled semiconductor packages; and (3) an electronically commutated motor with a liquid cooled converter will operate reliably without service or maintenance for the life of a passenger vehicle.

  12. Renal Function Recovery with Total Artificial Heart Support.

    Science.gov (United States)

    Quader, Mohammed A; Goodreau, Adam M; Shah, Keyur B; Katlaps, Gundars; Cooke, Richard; Smallfield, Melissa C; Tchoukina, Inna F; Wolfe, Luke G; Kasirajan, Vigneshwar

    2016-01-01

    Heart failure patients requiring total artificial heart (TAH) support often have concomitant renal insufficiency (RI). We sought to quantify renal function recovery in patients supported with TAH at our institution. Renal function data at 30, 90, and 180 days after TAH implantation were analyzed for patients with RI, defined as hemodialysis supported or an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73 m. Between January 2008 and December 2013, 20 of the 46 (43.5%) TAH recipients (age 51 ± 9 years, 85% men) had RI, mean preoperative eGFR of 48 ± 7 ml/min/1.73 m. Renal function recovery was noted at each follow-up interval: increment in eGFR (ml/min/1.73 m) at 30, 90, and 180 days was 21 ± 35 (p = 0.1), 16.5 ± 18 (p = 0.05), and 10 ± 9 (p = 0.1), respectively. Six patients (30%) required preoperative dialysis. Of these, four recovered renal function, one remained on dialysis, and one died. Six patients (30%) required new-onset dialysis. Of these, three recovered renal function and three died. Overall, 75% (15 of 20) of patients' renal function improved with TAH support. Total artificial heart support improved renal function in 75% of patients with pre-existing significant RI, including those who required preoperative dialysis.

  13. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Directory of Open Access Journals (Sweden)

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  14. The threshold of cortical electrical stimulation for mapping sensory and motor functional areas.

    Science.gov (United States)

    Guojun, Zhang; Duanyu, Ni; Fu, Paul; Lixin, Cai; Tao, Yu; Wei, Du; Liang, Qiao; Zhiwei, Ren

    2014-02-01

    This study aimed to investigate the threshold of cortical electrical stimulation (CES) for functional brain mapping during surgery for the treatment of rolandic epilepsy. A total of 21 patients with rolandic epilepsy who underwent surgical treatment at the Beijing Institute of Functional Neurosurgery between October 2006 and March 2008 were included in this study. Their clinical data were retrospectively collected and analyzed. The thresholds of CES for motor response, sensory response, and after discharge production along with other threshold-related factors were investigated. The thresholds (mean ± standard deviation) for motor response, sensory response, and after discharge production were 3.48 ± 0.87, 3.86 ± 1.31, and 4.84 ± 1.38 mA, respectively. The threshold for after discharge production was significantly higher than those of both the motor and sensory response (both pstimulation frequency of 50 Hz and a pulse width of 0.2 ms, the threshold of sensory and motor responses were similar, and the threshold of after discharge production was higher than that of sensory and motor response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. De Gross Motor Function Measure (GMFM): een onderzoek naar de betrouwbaarheid van de Nederlandse vertaling.

    NARCIS (Netherlands)

    Veenhof, C.; Ketelaar, M.; Petegem-van Beek, E. van

    2003-01-01

    This article is about the psychometric characteristics of the Dutch translation of the Gross Motor Function Measure (GMFM). It describes the reliability of the instrument. The article "Gross Motor Function Measure" (GMFM): a validity study of the Dutch translation focusses on the responsiveness of

  16. De Gross Motor Function Measure (GMFM): een onderzoek naar de responsiviteit van de Nederlandse vertaling.

    NARCIS (Netherlands)

    Veenhof, C.; Ketelaar, M.; Petegem-van Beek, E. van; Vermeer, A.

    2003-01-01

    This article is about the psychometric characteristics of the Dutch translation of the Gross Motor Function Measure (GMFM). It describes the responsiveness to change. The article "Gross Motor Function Measure (GMFM): a reliability study of the Dutch translation" focuses on the reliability of the

  17. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    Science.gov (United States)

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  18. Laterality of cerebral hemispheres on CT scan and gross motor function in severely handicapped children

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Nobuaki; Hamano, Kenzo; Nakamoto, Natsue; Okada, Yusuke [Tsukuba Univ., Ibaraki (Japan); Takeya, Toshiki

    1997-06-01

    The relation between brain damage and gross motor function in severely handicapped children (spastic type) was studied. The subjects were fifteen cases with laterality in their cerebral hemisphere CT scans (laterality group) and 28 cases with no laterality (control group). All cases were divided into four groups according to the level of gross motor function. The grade of brain damage was estimated based on CT scan analysis using the following parameters and index: maximum frontal extracerebral space (ES), maximum width of Sylvian fissure (SY), Evans` ratio, and cella media index. In the laterality group, the parameters and index were measured for both cerebral hemispheres, respectively. In the more severely disturbed hemisphere of the laterality group, ES and SY were significantly enlarged compared with those of the cases with the same level of motor function in the control group (p<0.01). In the less severely disturbed hemisphere of the laterality group, the ES, SY, Evans` ratio and cell media index were not significantly enlarged compared to cases with the same level of motor function as the control group. These findings may indicate that gross motor function of severely handicapped children is closely related to the less severely disturbed cerebral hemisphere. (author)

  19. Laterality of cerebral hemispheres on CT scan and gross motor function in severely handicapped children

    International Nuclear Information System (INIS)

    Iwasaki, Nobuaki; Hamano, Kenzo; Nakamoto, Natsue; Okada, Yusuke; Takeya, Toshiki.

    1997-01-01

    The relation between brain damage and gross motor function in severely handicapped children (spastic type) was studied. The subjects were fifteen cases with laterality in their cerebral hemisphere CT scans (laterality group) and 28 cases with no laterality (control group). All cases were divided into four groups according to the level of gross motor function. The grade of brain damage was estimated based on CT scan analysis using the following parameters and index: maximum frontal extracerebral space (ES), maximum width of Sylvian fissure (SY), Evans' ratio, and cella media index. In the laterality group, the parameters and index were measured for both cerebral hemispheres, respectively. In the more severely disturbed hemisphere of the laterality group, ES and SY were significantly enlarged compared with those of the cases with the same level of motor function in the control group (p<0.01). In the less severely disturbed hemisphere of the laterality group, the ES, SY, Evans' ratio and cell media index were not significantly enlarged compared to cases with the same level of motor function as the control group. These findings may indicate that gross motor function of severely handicapped children is closely related to the less severely disturbed cerebral hemisphere. (author)

  20. The potential of electrical stimulation to promote functional recovery after peripheral nerve injury--comparisons between rats and humans.

    Science.gov (United States)

    Gordon, T; Brushart, T M; Amirjani, N; Chan, K M

    2007-01-01

    The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons. We translated these findings to human patients by examining the number of reinnervated motor units in the median nerve-innervated thenar muscles before and after carpel tunnel release surgery in a randomized controlled trial. Motor unit number estimates (MUNE) in patients with moderate and severe carpal tunnel syndrome were significantly lower than normal. This number increased significantly by 6-8 months after surgery and reached normal values by 12 months in contrast to a non-significant increase in the control unstimulated group. Tests including the Purdue Pegboard Test verified the more rapid functional recovery after stimulation. The data indicate a feasible strategy to promote axonal regeneration in humans that has the potential to improve functional outcomes, especially in combination with strategies to sustain the regenerative capacity of neurons and the support of Schwann cells over distance and time.

  1. Frequency response function of motors for switching noise energy with a new experimental approach

    International Nuclear Information System (INIS)

    Kim, Hyunsu; Yoon, Jong-Yun

    2017-01-01

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor

  2. Frequency response function of motors for switching noise energy with a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsu [Ensemble Center for Automotive Research, Seoul (Korea, Republic of); Yoon, Jong-Yun [Incheon National University, Incheon (Korea, Republic of)

    2017-06-15

    Switching energy in electrical vehicles can create serious noise from the motors. However, the characteristics of switching noise in vehicle motors are not clear due to the complexity of measuring them. This study proposes a new experimental method to investigate the switching noise energy of a vehicle motor based on frequency response functions. A function generator-amplifier system is used to gen- erate the switching energy instead of the complex battery-inverter system that has previously been used to examine the noise energy characteristics. Even though newly adapted experimental method is simple, the switching noise energy was explicitly investigated under various input signals. Thus, this simple new method can be used to investigate the dynamic characteristics of noise energy in a vehicle motor.

  3. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Han Tong; Cui Shimin; Tong Xiaoguang; Liu Li; Xue Kai; Liu Meili; Liang Siquan; Zhang Yunting; Zhi Dashi

    2011-01-01

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ = 7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS u c = 2.664, P=0.008; Zubrod -ECOG -WHO u c =2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate

  4. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

    Science.gov (United States)

    Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2017-10-01

    To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. Functional thresholds are frequently above AD thresholds in younger children. These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. State of motor function of stomach in patients with cervix uteri carcinoma in combined radiotherapy

    International Nuclear Information System (INIS)

    Zhidovtseva, M.I.; Shutilova, A.A.; Dynnik, M.S.; Lugovskaya, K.A.; Duma, V.A.

    1978-01-01

    Data on studying stomach motor function in patients with carvix uteri carcinoma of 2 and 3 stages in combined radiotherapy are given. The patients were examined before radiotherapy and directly after it as well as in 1-2 years using the X-ray method for 50 patients and electrogastrography for 68 patients. Revealed changes in stomach motor function, being considered as a response to irradiation, were manifested more often in decreasing motility, evacuatory function and bioelectric stomach activity. These functional changes result in disturbance of general state of patients, appearance of symptomatology of stomach dysfunction and serve as indications for the prescription of correcting therapy, which includes diet and preparations strengthening stomach motor activity

  6. Effect of hippotherapy on gross motor function in children with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Kwon, Jeong-Yi; Chang, Hyun Jung; Yi, Sook-Hee; Lee, Ji Young; Shin, Hye-Yeon; Kim, Yun-Hee

    2015-01-01

    To examine whether hippotherapy has a clinically significant effect on gross motor function in children with cerebral palsy (CP). Randomized controlled trial. Outpatient therapy center. Ninety-two children with CP, aged 4-10 years, presenting variable function (Gross Motor Function Classification System [GMFCS] levels I-IV). Hippotherapy (30 minutes twice weekly for 8 consecutive weeks). Gross Motor Function Measure (GMFM)-88, GMFM-66, and Pediatric Balance Scale. Pre- and post-treatment measures were completed by 91 children (45 in the intervention group and 46 in the control group). Differences in improvement on all three measures significantly differed between groups after the 8-week study period. Dimensions of GMFM-88 improved significantly after hippotherapy varied by GMFCS level: dimension E in level I, dimensions D and E in level II, dimensions C and D in level III, and dimensions B and C in level IV. Hippotherapy positively affects gross motor function and balance in children with CP of various functional levels.

  7. An Examination of the Relationship between Motor Coordination and Executive Functions in Adolescents

    Science.gov (United States)

    Rigoli, Daniela; Piek, Jan P.; Kane, Robert; Oosterlaan, Jaap

    2012-01-01

    Aim: Research suggests important links between motor coordination and executive functions. The current study examined whether motor coordination predicts working memory, inhibition, and switching performance, extending previous research by accounting for attention-deficit-hyperactivity disorder (ADHD) symptomatology and other confounding factors,…

  8. Gross motor function in children with spastic Cerebral Palsy and Cerebral Visual Impairment : A comparison between outcomes of the original and the Cerebral Visual Impairment adapted Gross Motor Function Measure-88 (GMFM-88-CVI)

    NARCIS (Netherlands)

    Salavati, M.; Rameckers, E. A. A.; Waninge, A.; Krijnen, W. P.; Steenbergen, B.; van der Schans, C. P.

    Purpose: To investigate whether the adapted version of the Gross Motor Function Measure 88 (GMFM-88) for children with Cerebral Palsy (CP) and Cerebral Visual Impairment (CVI) results in higher scores. This is most likely to be a reflection of their gross motor function, however it may be the result

  9. An experimental evaluation of a new designed apparatus (NDA) for the rapid measurement of impaired motor function in rats.

    Science.gov (United States)

    Jarrahi, M; Sedighi Moghadam, B; Torkmandi, H

    2015-08-15

    Assessment of the ability of rat to balance by rotarod apparatus (ROTA) is frequently used as a measure of impaired motor system function. Most of these methods have some disadvantages, such as failing to sense motor coordination rather than endurance and as the sensitivity of the method is low, more animals are needed to obtain statistically significant results. We have designed and tested a new designed apparatus (NDA) to measure motor system function in rats. Our system consists of a glass box containing 4 beams which placed with 1cm distance between them, two electrical motors for rotating the beams, and a camera to record the movements of the rats. The RPM of the beams is adjustable digitally between 0 and 50 rounds per minute. We evaluated experimentally the capability of the NDA for the rapid measurement of impaired motor function in rats. Also we demonstrated that the sensitivity of the NDA increases by faster rotation speeds and may be more sensitive than ROTA for evaluating of impaired motor system function. Compared to a previous version of this task, our NDA provides a more efficient method to test rodents for studies of motor system function after impaired motor nervous system. In summary, our NDA will allow high efficient monitoring of rat motor system function and may be more sensitive than ROTA for evaluating of impaired motor system function in rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients.

    Science.gov (United States)

    Ackerley, Suzanne J; Byblow, Winston D; Barber, P Alan; MacDonald, Hayley; McIntyre-Robinson, Andrew; Stinear, Cathy M

    2016-05-01

    Recovery of upper limb function is important for regaining independence after stroke. To test the effects of priming upper limb physical therapy with intermittent theta burst stimulation (iTBS), a form of noninvasive brain stimulation. Eighteen adults with first-ever chronic monohemispheric subcortical stroke participated in this randomized, controlled, triple-blinded trial. Intervention consisted of priming with real or sham iTBS to the ipsilesional primary motor cortex immediately before 45 minutes of upper limb physical therapy, daily for 10 days. Changes in upper limb function (Action Research Arm Test [ARAT]), upper limb impairment (Fugl-Meyer Scale), and corticomotor excitability, were assessed before, during, and immediately, 1 month and 3 months after the intervention. Functional magnetic resonance images were acquired before and at one month after the intervention. Improvements in ARAT were observed after the intervention period when therapy was primed with real iTBS, but not sham, and were maintained at 1 month. These improvements were not apparent halfway through the intervention, indicating a dose effect. Improvements in ARAT at 1 month were related to balancing of corticomotor excitability and an increase in ipsilesional premotor cortex activation during paretic hand grip. Two weeks of iTBS-primed therapy improves upper limb function at the chronic stage of stroke, for at least 1 month postintervention, whereas therapy alone may not be sufficient to alter function. This indicates a potential role for iTBS as an adjuvant to therapy delivered at the chronic stage. © The Author(s) 2015.

  11. A Strategy for Embedding Functional Motor and Early Numeracy Skill Instruction into Physical Education Activities

    Science.gov (United States)

    Whinnery, Stacie B.; Whinnery, Keith W.; Eddins, Daisy

    2016-01-01

    This article addresses the challenges educators face when attempting to find a balance between both functional and academic skill instruction for students with severe, multiple disabilities including motor impairments. The authors describe a strategy that employs embedded instruction of early numeracy and functional motor skills during physical…

  12. A functional magnetic resonance imaging study

    Indian Academy of Sciences (India)

    MADU

    systems and ultra fast imaging techniques, such as echo planar imaging (EPI ) ... is used to understand brain organization, assessing of neurological status, and ..... J C 1998 Functional MRI studies of motor recovery after stroke;. NeuroImage 7 ...

  13. Novel test of motor and other dysfunctions in mouse neurological disease models.

    Science.gov (United States)

    Barth, Albert M I; Mody, Istvan

    2014-01-15

    Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). We investigated 3 groups of mice with various neurological deficits: (1) unilateral motor cortical stroke; (2) effects of moderate ethanol doses; and (3) aging (96-99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Commercial Building Motor Protection Response Report

    Energy Technology Data Exchange (ETDEWEB)

    James, Daniel P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kueck, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-06-17

    When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. The response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.

  15. Functional BOLD MRI: comparison of different field strengths in a motor task

    International Nuclear Information System (INIS)

    Meindl, T.; Born, C.; Britsch, S.; Reiser, M.; Schoenberg, S.

    2008-01-01

    The purpose was to evaluate the benefit of an increased field strength for functional magnetic resonance imaging in a motor task. Six right-handed volunteers were scanned at 1.5 T and 3.0 T using a motor task. Each experiment consisted of two runs with four activation blocks, each with right- and left-hand tapping. Analysis was done using BrainVoyagerQX registered . Differences between both field strengths concerning signal to noise (SNR), blood oxygen level-dependent (BOLD) signal change, functional sensitivity and BOLD contrast to noise (CNR) were tested using a paired t test. Delineation of activations and artifacts were graded by two independent readers. Results were further validated by means of a phantom study. The sensorimotor and premotor cortex, the supplementary motor area, subcortical and cerebellar structures were activated at each field strength. Additional activations of the right premotor cortex and right superior temporal gyrus were found at 3.0 T. Signal-to-noise, percentage of BOLD signal change, BOLD CNR and functional sensitivity improved at 3.0 T by a factor of up to 2.4. Functional imaging at 3.0 T results in detection of additional activated areas, increased SNR, BOLD signal change, functional sensitivity and BOLD CNR. (orig.)

  16. Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation.

    Science.gov (United States)

    Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling

    2013-06-01

    Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.

  17. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  18. Functional Communication Profiles in Children with Cerebral Palsy in Relation to Gross Motor Function and Manual and Intellectual Ability.

    Science.gov (United States)

    Choi, Ja Young; Park, Jieun; Choi, Yoon Seong; Goh, Yu Ra; Park, Eun Sook

    2018-07-01

    The aim of the present study was to investigate communication function using classification systems and its association with other functional profiles, including gross motor function, manual ability, intellectual functioning, and brain magnetic resonance imaging (MRI) characteristics in children with cerebral palsy (CP). This study recruited 117 individuals with CP aged from 4 to 16 years. The Communication Function Classification System (CFCS), Viking Speech Scale (VSS), Speech Language Profile Groups (SLPG), Gross Motor Function Classification System (GMFCS), Manual Ability Classification System (MACS), and intellectual functioning were assessed in the children along with brain MRI categorization. Very strong relationships were noted among the VSS, CFCS, and SLPG, although these three communication systems provide complementary information, especially for children with mid-range communication impairment. These three communication classification systems were strongly related with the MACS, but moderately related with the GMFCS. Multiple logistic regression analysis indicated that manual ability and intellectual functioning were significantly related with VSS and CFCS function, whereas only intellectual functioning was significantly related with SLPG functioning in children with CP. Communication function in children with a periventricular white matter lesion (PVWL) varied widely. In the cases with a PVWL, poor functioning was more common on the SLPG, compared to the VSS and CFCS. Very strong relationships were noted among three communication classification systems that are closely related with intellectual ability. Compared to gross motor function, manual ability seemed more closely related with communication function in these children. © Copyright: Yonsei University College of Medicine 2018.

  19. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  20. Assessment of motor recovery and MRI correlates in a porcine spinal cord injury model

    Directory of Open Access Journals (Sweden)

    Igor Šulla

    2014-01-01

    Full Text Available The study concentrated on behavioral and magnetic resonance imaging (MRI characteristics in a porcine spinal cord injury model. Six adult minipigs weighing 32–35 kg were narcotized by thiopental, intubated, and placed on a volume-cycled ventilator. Anaesthesia was maintained by 1.5% sevoflurane with oxygen. Following location of the 1st lumbar vertebra animals were fastened in an immobilization frame. The spinal cord, exposed through a laminectomy, was compressed by a 5 mm thick circular rod with a peak force of 0.8 kg at a velocity of 3 cm·s-1. The next day the minipigs were paraplegic but improved rapidly to paraparesis. On the 12th postoperative day they were euthanasied. Neural tissue changes were evaluated by post mortem MRI, which showed damage to the spinal cord white and/or gray matter in the epicentre of compression with longitudinal spreading over one segment cranially and caudally. Statistical analyses performed by Spearman’s rho test revealed positive correlations between damaged areas and the whole area of the spinal cord white/gray matter (P = 0.047; rs = 0.742 and (P = 0.002; rs = 0.943, respectively. The study confirmed the reliability and reproducibility of the utilised model of spinal cord trauma. The structural changes in the epicentre of injury did not impede the rapid but incomplete recovery of motor functions.

  1. Personality, functioning, and recovery from major depression.

    Science.gov (United States)

    Casey, P; Meagher, D; Butler, E

    1996-04-01

    The effect of personality on the effectiveness of electroconvulsive therapy in those with severe depressive illness has been investigated in a few studies, and the results are conflicting, with some demonstrating no effect and others the opposite. These studies, however, used hospital readmission as the only outcome measure, and the methods of personality assessment varied. To study this question in further detail, 40 patients were assessed while receiving inpatient electroconvulsive therapy, at the time of discharge, every 6 weeks for 6 months, and at 1 year after discharge. A number of outcome variables were assessed, including both symptomatic and social functioning measures as well as readmission to hospital. Premorbid personality was also assessed after discharge. The results demonstrate that personality is a predictor of social function at the time of discharge from hospital. In those patients with personality disorders, social recovery is slower than in those with normal personalities. Personality status did not distinguish the speed of symptomatic recovery or of readmission. The significance of these findings is discussed.

  2. Functional recovery of older people with hip fracture: does malnutrition make a difference?

    Science.gov (United States)

    Li, Hsiao-Juan; Cheng, Huey-Shinn; Liang, Jersey; Wu, Chi-Chuan; Shyu, Yea-Ing Lotus

    2013-08-01

    To report a study of the effects of protein-energy malnutrition on the functional recovery of older people with hip fracture who participated in an interdisciplinary intervention. It is not clear whether protein-energy malnutrition is associated with worse functional outcomes or it affects the interdisciplinary intervention program on the functional recovery of older people with hip fracture. A randomized experimental design. Data were collected between 2002-2006 from older people with hip fracture (N = 162) in Taiwan. The generalized estimating equations approach was used to evaluate the effect of malnutrition on the functional recovery of older people with hip fracture. The majority of older patients with hip fracture were malnourished (48/80, 60% in the experimental group vs. 55/82, 67% in the control group) prior to hospital discharge. The results of the generalized estimating equations analysis demonstrated that subjects suffering from protein-energy malnutrition prior to hospital discharge appeared to have significantly worse performance trajectories for their activities of daily living, instrumental activities of daily living, and recovery of walking ability compared with those without protein-energy malnutrition. In addition, it was found that the intervention is more effective on the performance of activities of daily living and recovery of walking ability in malnourished patients than in non-malnourished patients. Healthcare providers should develop a nutritional assessment/management system in their interdisciplinary intervention program to improve the functional recovery of older people with hip fracture. © 2012 Blackwell Publishing Ltd.

  3. A novel method for assessing the development of speech motor function in toddlers with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Katherine eSullivan

    2013-03-01

    Full Text Available There is increasing evidence to show that indicators other than socio-cognitive abilities might predict communicative function in Autism Spectrum Disorders (ASD. A potential area of research is the development of speech motor function in toddlers. Utilizing a novel measure called ‘articulatory features’, we assess the abilities of toddlers to produce sounds at different timescales as a metric of their speech motor skills. In the current study, we examined 1 whether speech motor function differed between toddlers with ASD, developmental delay, and typical development; and 2 whether differences in speech motor function are correlated with standard measures of language in toddlers with ASD. Our results revealed significant differences between a subgroup of the ASD population with poor verbal skills, and the other groups for the articulatory features associated with the shortest time scale, namely place of articulation, (p<0.05. We also found significant correlations between articulatory features and language and motor ability as assessed by the Mullen and the Vineland scales for the ASD group. Our fin