WorldWideScience

Sample records for motor dysfunction involving

  1. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    Science.gov (United States)

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  2. Apraxia and motor dysfunction in corticobasal syndrome.

    Directory of Open Access Journals (Sweden)

    James R Burrell

    Full Text Available BACKGROUND: Corticobasal syndrome (CBS is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM, is associated with motor system dysfunction and limb apraxia in CBS. METHODS: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R, with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM. RESULTS: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/- 6.6 years were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices. CONCLUSIONS: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and

  3. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters.

    Science.gov (United States)

    Abboud, R; Noronha, C; Diwadkar, V A

    2017-07-01

    Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Objective markers for upper motor neuron involvement in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Iwata, Nobue K.

    2007-01-01

    A reliable objective marker of upper motor neuron (UMN) involvement is critical for early diagnosis and monitoring disease course in patients with amyotrophic lateral sclerosis (ALS). Lower motor neuron (LMN) involvement can be identified by electromyography, whereas UMN dysfunction has been currently distinguished solely by neurological examination. In the search for diagnostic tests to evaluate UMN involvement in ALS, numerous reports on new markers using neurophysiological and imaging techniques are accumulating. Transcranial magnetic stimulation evaluates the neurophysiological integrity of UMN. Although the diagnostic reliability and sensitivity of various parameters of central motor conduction measurement differ, central motor conduction time measurement using brainstem stimulation is potentially useful for determining UMN dysfunction by distinguishing lesions above the pyramidal decussation. MR-based techniques also have the potential to be used as diagnostic markers and are continuously improving as a modality to pursue early diagnosis and monitoring of the disease progression. Conventional MRI reveals hyperintensity along the corticospinal tract, hypointensity in the motor cortex, and atrophy of the precentral gyrus. There is a lack of agreement regarding sensitivity and specificity in detecting UMN abnormalities. Recent advances in magnetizing transfer imaging (MTI) provide more sensitive and accurate detection of corticospinal tract abnormality than conventional MRI. Reduction in N-acetyl-aspartate by proton magnetic spectroscopy in the motor cortex or the brainstem of the patients with ALS is reported with different techniques. Its diagnostic value in clinical assessment is uncertain and remains to be established. Diffusion tensor imaging (DTI) reveals the structural integrity of neuronal fibers, and has great diagnostic promise for ALS. It shows reduced diffusion anisotropy in the corticospinal tract with good correlation with physiological index

  5. Relationship between oral motor dysfunction and oral bacteria in bedridden elderly.

    Science.gov (United States)

    Tada, Akio; Shiiba, Masashi; Yokoe, Hidetaka; Hanada, Nobuhiro; Tanzawa, Hideki

    2004-08-01

    The purpose of this study was to analyze the relationship between oral bacterial colonization and oral motor dysfunction. Oral motor dysfunction (swallowing and speech disorders) and detection of oral bacterial species from dental plaque in 55 elderly persons who had remained hospitalized for more than 3 months were investigated and statistically analyzed. The detection rates of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Streptococcus agalactiae, and Stenotrophomonas maltophilia were significantly higher in subjects with than in those without a swallowing disorder. A similar result was found with regard to the presence of a speech disorder. About half of subjects who had oral motor dysfunction and hypoalbuminemia had colonization by MRSA and/or Pseudomonas aeruginosa. These results suggest that the combination of oral motor dysfunction and hypoalbminemia elevated the risk of opportunistic microorganisms colonization in the oral cavity of elderly patients hospitalized over the long term.

  6. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    International Nuclear Information System (INIS)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-01-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function

  7. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-09-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function.

  8. Remote Traumatic Brain Injury Is Associated with Motor Dysfunction in Older Military Veterans.

    Science.gov (United States)

    Gardner, Raquel C; Peltz, Carrie B; Kenney, Kimbra; Covinsky, Kenneth E; Diaz-Arrastia, Ramon; Yaffe, Kristine

    2017-09-01

    Traumatic brain injury (TBI) has been identified as a risk factor for Parkinson's disease (PD). Motor dysfunction among TBI-exposed elders without PD has not been well characterized. We sought to determine whether remote TBI is a risk factor for motor dysfunction on exam and functionally relevant motor dysfunction in day-to-day life among independently living elders without PD. This is a cross-sectional cohort study of independently living retired military veterans aged 50 or older with (n = 78) and without (n = 85) prior TBI-all without diagnosed PD. To characterize multidimensional aspects of motor function on exam, the Unified Parkinson's Disease Rating Scale (UPDRS) Motor Examination was performed by a board-certified neurologist and used to calculate a modified UPDRS (mUPDRS) global motor score and four domain scores (tremor, rigidity, bradykinesia, and posture/gait). Functionally relevant motor dysfunction was assessed via self-report of falls within the past year. In analyses adjusted for demographics and comorbidities that differed between groups, compared with veterans without TBI, those with moderate-to-severe TBI were more likely to have fallen in past year (33% vs. 14%, risk ratio 2.5 [95% confidence interval 1.1-5.4]), had higher (worse) mUPDRS global motor (p = .03) and posture/gait scores (p = .02), but not higher tremor (p = .70), rigidity (p = .21), or bradykinesia scores (p = .22). Mild TBI was not associated with worse motor function. Remote moderate-to-severe TBI is a risk factor for motor dysfunction-defined as recent falls and impaired posture/gait-among older veterans. TBI-exposed older adults may be ideal candidates for aggressive fall-screening and prevention strategies. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Medical and surgical management of esophageal and gastric motor dysfunction.

    Science.gov (United States)

    Awad, R A

    2012-09-01

    he occurrence of esophageal and gastric motor dysfunctions happens, when the software of the esophagus and the stomach is injured. This is really a program previously established in the enteric nervous system as a constituent of the newly called neurogastroenterology. The enteric nervous system is composed of small aggregations of nerve cells, enteric ganglia, the neural connections between these ganglia, and nerve fibers that supply effectors tissues, including the muscle of the gut wall. The wide range of enteric neuropathies that includes esophageal achalasia and gastroparesis highlights the importance of the enteric nervous system. A classification of functional gastrointestinal disorders based on symptoms has received attention. However, a classification based solely in symptoms and consensus may lack an integral approach of disease. As an alternative to the Rome classification, an international working team in Bangkok presented a classification of motility disorders as a physiology-based diagnosis. Besides, the Chicago Classification of esophageal motility was developed to facilitate the interpretation of clinical high-resolution esophageal pressure topography studies. This review covers exclusively the medical and surgical management of the esophageal and gastric motor dysfunction using evidence from well-designed studies. Motor control of the esophagus and the stomach, motor esophageal and gastric alterations, treatment failure, side effects of PPIs, overlap of gastrointestinal symptoms, predictors of treatment, burden of GERD medical management, data related to conservative treatment vs. antireflux surgery, and postsurgical esophagus and gastric motor dysfunction are also taken into account.

  10. Motor dysfunction in complex regional pain syndrome : the role of sensory processing and sensory-motor integration

    NARCIS (Netherlands)

    Bank, Paulina Johanna Maria

    2014-01-01

    In the chronic stage of Complex Regional Pain Syndrome (CRPS), motor disturbances are common and cause significant disability. The motor dysfunction of CRPS is a poorly understood phenomenon that is characterized predominantly by a decrease or loss of voluntary muscle control. This thesis aims to

  11. At the interface of sensory and motor dysfunctions and Alzheimer’s Disease

    Science.gov (United States)

    Albers, Mark W.; Gilmore, Grover C.; Kaye, Jeffrey; Murphy, Claire; Wingfield, Arthur; Bennett, David A.; Boxer, Adam L.; Buchman, Aron S.; Cruickshanks, Karen J.; Devanand, Davangere P.; Duffy, Charles J.; Gall, Christine M.; Gates, George A.; Granholm, Ann-Charlotte; Hensch, Takao; Holtzer, Roee; Hyman, Bradley T.; Lin, Frank R.; McKee, Ann C.; Morris, John C.; Petersen, Ronald C.; Silbert, Lisa C.; Struble, Robert G.; Trojanowski, John Q.; Verghese, Joe; Wilson, Donald A.; Xu, Shunbin; Zhang, Li I.

    2014-01-01

    Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer’s disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled “Sensory and Motor Dysfunctions in Aging and Alzheimer’s Disease”. The scientific sessions of the workshop focused on age-related and neuropathological changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the CNS are affected by Alzheimer pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses. PMID:25022540

  12. [Oral motor dysfunction, feeding problems and nutritional status in children with cerebral palsy].

    Science.gov (United States)

    Hou, Mei; Fu, Ping; Zhao, Jian-hui; Lan, Kun; Zhang, Hong

    2004-10-01

    This study was undertaken to investigate the clinical features of oral motor dysfunction and feeding problems as well as the nutritional status of children with cerebral palsy (CP). Fifty-nine CP children, 39 boys and 20 girls, mean age 31 months (20 to 72 months), were recruited. Their parents were interviewed for high risk factors and feeding history. Each case was assessed for oral motor and feeding problems based on oral motor and feeding skill score; for nutritional status by measurement of weight, height; neurologically for type of cerebral palsy and for developmental age by Gesell's developmental scale. Equal number of age and sex matched controls were included for comparison of nutritional status, oral motor and feeding skill score. Among 59 patients, 51 cases had oral motor dysfunction and 55 cases had feeding problems including all athtosis, spastic tetraplegia, and 16 had spastic diplegia. The scores of both the mean oral motor function and feeding skill of CP children were significantly lower than those of the controls (P children with cerebral palsy consisted of liquid and semisolid diet. Body weight and height below the 25th percentile were found in 13 cases and 19 cases, respectively. The majority of the children with cerebral palsy had oral motor dysfunction and feeding problems which appeared in early age and disturbed the growth and nutritional status. Thorough assessment for oral motor function, feeding problems and nutritional status of CP children is indicated in order to start timely rehabilitation and nutritional interventions which can significantly improve their nutritional status and quality of life.

  13. Amelioration of non-motor dysfunctions after transplantation of human dopamine neurons in a model of Parkinson's disease.

    Science.gov (United States)

    Lelos, M J; Morgan, R J; Kelly, C M; Torres, E M; Rosser, A E; Dunnett, S B

    2016-04-01

    Patients suffering from Parkinson's disease (PD) display cognitive and neuropsychiatric dysfunctions, especially with disease progression. Although these impairments have been reported to impact more heavily upon a patient's quality of life than any motor dysfunctions, there are currently no interventions capable of adequately targeting these non-motor deficits. Utilizing a rodent model of PD, we investigated whether cell replacement therapy, using intrastriatal transplants of human-derived ventral mesencephalic (hVM) grafts, could alleviate cognitive and neuropsychiatric, as well as motor, dysfunctions. Rats with unilateral 6-hydroxydopamine lesions to the medial forebrain bundle were tested on a complex operant task that dissociates motivational, visuospatial and motor impairments sensitive to the loss of dopamine. A subset of lesioned rats received intrastriatal hVM grafts of ~9 weeks gestation. Post-graft, rats underwent repeated drug-induced rotation tests and were tested on two versions of the complex operant task, before post-mortem analysis of the hVM tissue grafts. Post-graft behavioural testing revealed that hVM grafts improved non-motor aspects of task performance, specifically visuospatial function and motivational processing, as well as alleviating motor dysfunctions. We report the first evidence of human VM cell grafts alleviating both non-motor and motor dysfunctions in an animal model of PD. This intervention, therefore, is the first to improve cognitive and neuropsychiatric symptoms long-term in a model of PD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin.

    Science.gov (United States)

    Gupta, Richa; Shukla, Rajendra K; Pandey, Ankita; Sharma, Tanuj; Dhuriya, Yogesh K; Srivastava, Pranay; Singh, Manjul P; Siddiqi, Mohammad Imran; Pant, Aditya B; Khanna, Vinay K

    2018-02-06

    Given increasing risk of cadmium-induced neurotoxicity, the study was conducted to delineate the molecular mechanisms associated with cadmium-induced motor dysfunctions and identify targets that govern dopaminergic signaling in the brain involving in vivo, in vitro, and in silico approaches. Selective decrease in dopamine (DA)-D2 receptors on cadmium exposure was evident which affected the post-synaptic PKA/DARPP-32/PP1α and β-arrestin/Akt/GSK-3β signaling concurrently in rat corpus striatum and PC12 cells. Pharmacological inhibition of PKA and Akt in vitro demonstrates that both pathways are independently modulated by DA-D2 receptors and associated with cadmium-induced motor deficits. Ultrastructural changes in the corpus striatum demonstrated neuronal degeneration and loss of synapse on cadmium exposure. Further, molecular docking provided interesting evidence that decrease in DA-D2 receptors may be due to direct binding of cadmium at the competitive site of dopamine on DA-D2 receptors. Treatment with quercetin resulted in the alleviation of cadmium-induced behavioral and neurochemical alterations. This is the first report demonstrating that cadmium-induced motor deficits are associated with alteration in postsynaptic dopaminergic signaling due to a decrease in DA-D2 receptors in the corpus striatum. The results further demonstrate that quercetin has the potential to alleviate cadmium-induced dopaminergic dysfunctions.

  15. Myopathic involvement and mitochondrial pathology in Kennedy disease and in other motor neuron diseases.

    Science.gov (United States)

    Orsucci, D; Rocchi, A; Caldarazzo Ienco, E; Alì, G; LoGerfo, A; Petrozzi, L; Scarpelli, M; Filosto, M; Carlesi, C; Siciliano, G; Bonuccelli, U; Mancuso, M

    2014-01-01

    Kennedy disease (spinal and bulbar muscular atrophy, or SBMA) is a motor neuron disease caused by a CAG expansion in the androgen-receptor (AR) gene. Increasing evidence shows that SBMA may have a primary myopathic component and that mitochondrial dysfunction may have some role in the pathogenesis of this disease. In this article, we review the role of mitochondrial dysfunction and of the mitochondrial genome (mtDNA) in SBMA, and we present the illustrative case of a patient who presented with increased CK levels and exercise intolerance. Molecular analysis led to definitive diagnosis of SBMA, whereas muscle biopsy showed a mixed myopathic and neurogenic process with "mitochondrial features" and multiple mtDNA deletions, supporting some role of mitochondria in the pathogenesis of the myopathic component of Kennedy disease. Furthermore, we briefly review the role of mitochondrial dysfunction in two other motor neuron diseases (namely spinal muscular atrophy and amyotrophic lateral sclerosis). Most likely, in most cases mtDNA does not play a primary role and it is involved subsequently. MtDNA deletions may contribute to the neurodegenerative process, but the exact mechanisms are still unclear. It will be important to develop a better understanding of the role of mitochondrial dysfunction in motoneuron diseases, since it may lead to the development of more effective strategies for the treatment of this devastating disorder.

  16. Imaging of muscular denervation secondary to motor cranial nerve dysfunction

    International Nuclear Information System (INIS)

    Connor, S.E.J.; Chaudhary, N.; Fareedi, S.; Woo, E.K.

    2006-01-01

    The effects of motor cranial nerve dysfunction on the computed tomography (CT) and magnetic resonance imaging (MRI) appearances of head and neck muscles are reviewed. Patterns of denervation changes are described and illustrated for V, VII, X, XI and XII cranial nerves. Recognition of the range of imaging manifestations, including the temporal changes in muscular appearances and associated muscular grafting or compensatory hypertrophy, will avoid misinterpretation as local disease. It will also prompt the radiologist to search for underlying cranial nerve pathology, which may be clinically occult. The relevant cranial nerve motor division anatomy will be described to enable a focussed search for such a structural abnormality

  17. Imaging of muscular denervation secondary to motor cranial nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Connor, S.E.J. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)]. E-mail: sejconnor@tiscali.co.uk; Chaudhary, N. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Fareedi, S. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Woo, E.K. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)

    2006-08-15

    The effects of motor cranial nerve dysfunction on the computed tomography (CT) and magnetic resonance imaging (MRI) appearances of head and neck muscles are reviewed. Patterns of denervation changes are described and illustrated for V, VII, X, XI and XII cranial nerves. Recognition of the range of imaging manifestations, including the temporal changes in muscular appearances and associated muscular grafting or compensatory hypertrophy, will avoid misinterpretation as local disease. It will also prompt the radiologist to search for underlying cranial nerve pathology, which may be clinically occult. The relevant cranial nerve motor division anatomy will be described to enable a focussed search for such a structural abnormality.

  18. Optimal Acupuncture Therapeutic Projects for Cerebral Infarction-related Motor Dysfunction of Lower Limbs

    Institute of Scientific and Technical Information of China (English)

    范刚启; 赵扬; 沈卫平; 曹树平; 吕莉君

    2007-01-01

    Objective: to select the optimal acupuncture therapeutic projects on cerebral infarction-related motor dysfunction of lower limbs. Methods: to optimize the combination projects on 4 factors and 3 levels affecting the acupuncture effect on cerebral infarction by using orthogonal design targeting on patients with cerebral infarction-related motor dysfunction of lower limbs, and Fugl-Meyer score of limb motor function was taken as indexes. Results: The relatively optimal Fugl-Meyer score of lower limb function can be obtained within 3-day duration of cerebral infarction. Conclusions: As far as the considered factors and levels are concerned, the previously mentioned project is the optimal acupuncture therapeutic project for cerebral infarction-related motor dysfunction of lower limbs.%目的:优选脑梗塞下肢运动功能障碍针刺治疗方案.方法:以脑梗塞下肢功能障碍患者为观察对象,以Fugl-Meyer肢体运动功能积分为指标,应用正交设计法,对影响脑梗塞针刺疗效的4因素3水平搭配组合方案进行优选.结果:在脑梗塞病程3 d内,可获得相对最佳的下肢功能Fugl-Meyer积分效应.结论:对于所考察的因素和水平来说,前述方案即为脑梗塞下肢运动功能障碍的针刺治疗优选方案.

  19. Executive dysfunction and motor symptoms in Parkinson's disease Disfunções executivas e sintomas motores na doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Indira Silveira Campos-Sousa

    2010-04-01

    Full Text Available The aim of this study is to analyze executive function and motor symptoms in patients with idiopathic Parkinson's disease (PD. The sample consisted of 44 subjects with PD between the ages of 45 to 75, who were examined consecutively. The subjects were divided into two groups according to the duration of the disease. The control group was composed of spouses, family and accompanying members. Patients included were submitted to motor dysfunction evaluation using the UPDRS. The executive functions modalities analyzed included: operational memory, inhibitory control, planning, cognitive flexibility and inductive reasoning. Significant differences between the experimental and control groups were found in all the executive domains studied. Evidence of tremor, rigidity and bradykinesia correlation with executive dysfunction were not observed. Patients with PD, even in the initial phase of the disease, presented executive dysfunction. The cardinal motor signs of the disease were not correlated with the cognitive dysfunction found.O objetivo do estudo é avaliar as funções executivas e sintomas motores em pacientes portadores de doença de Parkinson. A amostra se constituiu de 44 portadores de doença de Parkinson com idade entre 45 e 75 anos, examinados consecutivamente, os quais foram divididos em dois grupos de acordo com o tempo de duração da doença. O grupo controle foi composto de acompanhantes ou cônjuges. Os sujeitos selecionados foram submetidos à avaliação motora utilizando-se a escala UPDRS e à avaliação das funções executivas nas modalidades: raciocínio indutivo, memória operacional, controle inibitório, planejamento e flexibilidade cognitiva. Os resultados apontaram diferenças significantes entre os grupos experimentais e controle nas modalidades analisadas. Não encontramos evidência de associação entre tremor, rigidez e bradicinesia com as funções executivas. Conclui-se que os pacientes com doença de Parkinson

  20. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Science.gov (United States)

    Caligiore, Daniele; Mannella, Francesco; Arbib, Michael A; Baldassarre, Gianluca

    2017-03-01

    Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i) reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii) suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii) furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  1. Dysfunctions of the basal ganglia-cerebellar-thalamo-cortical system produce motor tics in Tourette syndrome.

    Directory of Open Access Journals (Sweden)

    Daniele Caligiore

    2017-03-01

    Full Text Available Motor tics are a cardinal feature of Tourette syndrome and are traditionally associated with an excess of striatal dopamine in the basal ganglia. Recent evidence increasingly supports a more articulated view where cerebellum and cortex, working closely in concert with basal ganglia, are also involved in tic production. Building on such evidence, this article proposes a computational model of the basal ganglia-cerebellar-thalamo-cortical system to study how motor tics are generated in Tourette syndrome. In particular, the model: (i reproduces the main results of recent experiments about the involvement of the basal ganglia-cerebellar-thalamo-cortical system in tic generation; (ii suggests an explanation of the system-level mechanisms underlying motor tic production: in this respect, the model predicts that the interplay between dopaminergic signal and cortical activity contributes to triggering the tic event and that the recently discovered basal ganglia-cerebellar anatomical pathway may support the involvement of the cerebellum in tic production; (iii furnishes predictions on the amount of tics generated when striatal dopamine increases and when the cortex is externally stimulated. These predictions could be important in identifying new brain target areas for future therapies. Finally, the model represents the first computational attempt to study the role of the recently discovered basal ganglia-cerebellar anatomical links. Studying this non-cortex-mediated basal ganglia-cerebellar interaction could radically change our perspective about how these areas interact with each other and with the cortex. Overall, the model also shows the utility of casting Tourette syndrome within a system-level perspective rather than viewing it as related to the dysfunction of a single brain area.

  2. Motor dysfunction and touch-slang in user interface data.

    Science.gov (United States)

    Klein, Yoni; Djaldetti, Ruth; Keller, Yosi; Bachelet, Ido

    2017-07-05

    The recent proliferation in mobile touch-based devices paves the way for increasingly efficient, easy to use natural user interfaces (NUI). Unfortunately, touch-based NUIs might prove difficult, or even impossible to operate, in certain conditions e.g. when suffering from motor dysfunction such as Parkinson's Disease (PD). Yet, the prevalence of such devices makes them particularly suitable for acquiring motor function data, and enabling the early detection of PD symptoms and other conditions. In this work we acquired a unique database of more than 12,500 annotated NUI multi-touch gestures, collected from PD patients and healthy volunteers, that were analyzed by applying advanced shape analysis and statistical inference schemes. The proposed analysis leads to a novel detection scheme for early stages of PD. Moreover, our computational analysis revealed that young subjects may be using a 'slang' form of gesture-making to reduce effort and attention cost while maintaining meaning, whereas older subjects put an emphasis on content and precise performance.

  3. Sensory and motor dysfunction assessed by anorectal manometry in uterine cervical carcinoma patients with radiation-induced late rectal complication

    International Nuclear Information System (INIS)

    Kim, Gwi Eon; Lim, John Jihoon; Park, Won; Park, Hee Chul; Chung, Eun Ji; Seong, Jinsil; Suh, Chang Ok; Lee, Yong Chan; Park, Hyo Jin

    1998-01-01

    Purpose: To investigate the effects of radiation on anorectal function in patients with carcinoma of the uterine cervix. Methods and Materials: Anorectal manometry was carried out on 24 patients (complication group) with late radiation proctitis. All of the manometric data from these patients were compared with those from 24 age-matched female volunteers (control group), in whom radiation treatment had not yet been performed. Results: Regardless of the severity of proctitis symptoms, 25% of patients demonstrated all their manometric data within the normal range, but 75% of patients exhibited one or more abnormal manometric parameters for sensory or motor functions. Six patients (25%) had an isolated sensory dysfunction, eight patients (33.3%) had an isolated motor dysfunction, and four patients (16.7%) had combined disturbances of both sensory and motor functions. The maximum tolerable volume, the minimal threshold volume, and the urgent volume in the complication group were significantly reduced compared with those in the control group. The mean squeeze pressure in the complication group was significantly reduced, whereas the mean resting pressure and anal sphincter length were unchanged. Conclusions: Physiologic changes of the anorectum in patients with late radiation proctitis seem to be caused by a variety of sensory and/or motor dysfunctions in which many different mechanisms are working together. The reduced rectal reservoir capacity and impaired sensory functions were crucial factors for functional disorder in such patients. In addition, radiation damage to the external anal sphincter muscle was considered to be an important cause of motor dysfunction

  4. On the use of information theory for detecting upper limb motor dysfunction: An application to Parkinson’s disease

    Science.gov (United States)

    de Oliveira, M. Elias; Menegaldo, L. L.; Lucarelli, P.; Andrade, B. L. B.; Büchler, P.

    2011-11-01

    Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunctions. Several potential early diagnostic markers of PD have been proposed. Since they have not been validated in presymptomatic PD, the diagnosis and monitoring of the disease is based on subjective clinical assessment of cognitive and motor symptoms. In this study, we investigated interjoint coordination synergies in the upper limb of healthy and parkinsonian subjects during the performance of unconstrained linear-periodic movements in a horizontal plane using the mutual information (MI). We found that the MI is a sensitive metric in detecting upper limb motor dysfunction, thus suggesting that this method might be applicable to quantitatively evaluating the effects of the antiparkinsonian medication and to monitor the disease progression.

  5. Garcinia kola seeds may prevent cognitive and motor dysfunctions in a type 1 diabetes mellitus rat model partly by mitigating neuroinflammation.

    Science.gov (United States)

    Seke Etet, Paul F; Farahna, Mohammed; Satti, Gwiria M H; Bushara, Yahia M; El-Tahir, Ahmed; Hamza, Muaawia A; Osman, Sayed Y; Dibia, Ambrose C; Vecchio, Lorella

    2017-04-15

    Background We reported recently that extracts of seeds of Garcinia kola, a plant with established hypoglycemic properties, prevented the loss of inflammation-sensible neuronal populations like Purkinje cells in a rat model of type 1 diabetes mellitus (T1DM). Here, we assessed G. kola extract ability to prevent the early cognitive and motor dysfunctions observed in this model. Methods Rats made diabetic by single injection of streptozotocin were treated daily with either vehicle solution (diabetic control group), insulin, or G. kola extract from the first to the 6th week post-injection. Then, cognitive and motor functions were assessed using holeboard and vertical pole behavioral tests, and animals were sacrificed. Brains were dissected out, cut, and processed for Nissl staining and immunohistochemistry. Results Hyperglycemia (209.26 %), body weight loss (-12.37 %), and T1DM-like cognitive and motor dysfunctions revealed behavioral tests in diabetic control animals were not observed in insulin and extract-treated animals. Similar, expressions of inflammation markers tumor necrosis factor (TNF), iba1 (CD68), and Glial fibrillary acidic protein (GFAP), as well as decreases of neuronal density in regions involved in cognitive and motor functions (-49.56 % motor cortex, -33.24 % medial septal nucleus, -41.8 % /-37.34 % cerebellar Purkinje /granular cell layers) were observed in diabetic controls but not in animals treated with insulin or G. kola. Conclusions Our results indicate that T1DM-like functional alterations are mediated, at least partly, by neuroinflammation and neuronal loss in this model. The prevention of the development of such alterations by early treatment with G. kola confirms the neuroprotective properties of the plant and warrant further mechanistic studies, considering the potential for human disease.

  6. Early neonatal loss of inhibitory synaptic input to the spinal motor neurons confers spina bifida-like leg dysfunction in a chicken model

    Directory of Open Access Journals (Sweden)

    Md. Sakirul Islam Khan

    2017-12-01

    Full Text Available Spina bifida aperta (SBA, one of the most common congenital malformations, causes lifelong neurological complications, particularly in terms of motor dysfunction. Fetuses with SBA exhibit voluntary leg movements in utero and during early neonatal life, but these disappear within the first few weeks after birth. However, the pathophysiological sequence underlying such motor dysfunction remains unclear. Additionally, because important insights have yet to be obtained from human cases, an appropriate animal model is essential. Here, we investigated the neuropathological mechanisms of progression of SBA-like motor dysfunctions in a neural tube surgery-induced chicken model of SBA at different pathogenesis points ranging from embryonic to posthatch ages. We found that chicks with SBA-like features lose voluntary leg movements and subsequently exhibit lower-limb paralysis within the first 2 weeks after hatching, coinciding with the synaptic change-induced disruption of spinal motor networks at the site of the SBA lesion in the lumbosacral region. Such synaptic changes reduced the ratio of inhibitory-to-excitatory inputs to motor neurons and were associated with a drastic loss of γ-aminobutyric acid (GABAergic inputs and upregulation of the cholinergic activities of motor neurons. Furthermore, most of the neurons in ventral horns, which appeared to be suffering from excitotoxicity during the early postnatal days, underwent apoptosis. However, the triggers of cellular abnormalization and neurodegenerative signaling were evident in the middle- to late-gestational stages, probably attributable to the amniotic fluid-induced in ovo milieu. In conclusion, we found that early neonatal loss of neurons in the ventral horn of exposed spinal cord affords novel insights into the pathophysiology of SBA-like leg dysfunction.

  7. Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: an overview for neurorehabilitation clinicians.

    Science.gov (United States)

    Cortes, Mar; Black-Schaffer, Randie M; Edwards, Dylan J

    2012-07-01

    An improved understanding of motor dysfunction and recovery after stroke has important clinical implications that may lead to the design of more effective rehabilitation strategies for patients with hemiparesis. Transcranial magnetic stimulation (TMS) is a safe and painless tool that has been used in conjunction with other existing diagnostic tools to investigate motor pathophysiology in stroke patients. Since TMS emerged more than two decades ago, its application in clinical and basic neuroscience has expanded worldwide. TMS can quantify the corticomotor excitability properties of clinically affected and unaffected muscles and can probe local cortical networks as well as remote but functionally related areas. This provides novel insight into the physiology of neural circuits underlying motor dysfunction and brain reorganization during the motor recovery process. This important tool needs to be used with caution by clinical investigators, its limitations need to be understood, and the results should to be interpreted along with clinical evaluation in this patient population. In this review, we provide an overview of the rationale, implementation, and limitations of TMS to study stroke motor physiology. This knowledge may be useful to guide future rehabilitation treatments by assessing and promoting functional plasticity. © 2012 International Neuromodulation Society.

  8. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction.

    Science.gov (United States)

    Jeong, Jeong-Won; Lee, Jessica; Kamson, David O; Chugani, Harry T; Juhász, Csaba

    2015-09-01

    To examine whether an objective segmenation of corticospinal tract (CST) associated with hand and leg movements can be used to detect central motor weakness in the corresponding extremities in a pediatric population. This retrospective study included diffusion tensor imaging (DTI) of 25 children with central paresis affecting at least one limb (age: 9.0±4.2years, 15 boys, 5/13/7 children with left/right/both hemispheric lesions including ischemia, cyst, and gliosis), as well as 42 pediatric control subjects with no motor dysfunction (age: 9.0±5.5years, 21 boys, 31 healthy/11 non-lesional epilepsy children). Leg- and hand-related CST pathways were segmented using DTI-maximum a posteriori (DTI-MAP) classification. The resulting CST volumes were then divided by total supratentorial white matter volume, resulting in a marker called "normalized streamline volume ratio (NSVR)" to quantify the degree of axonal loss in separate CST pathways associated with leg and hand motor functions. A receiver operating characteristic curve was applied to measure the accuracy of this marker to identify extremities with motor weakness. NSVR values of hand/leg CST selectively achieved the following values of accuracy/sensitivity/specificity: 0.84/0.84/0.57, 0.82/0.81/0.55, 0.78/0.75/0.55, 0.79/0.81/0.54 at a cut-off of 0.03/0.03/0.03/0.02 for right hand CST, left hand CST, right leg CST, and left leg CST, respectively. Motor weakness of hand and leg was most likely present at the cut-off values of hand and leg NSVR (i.e., 0.029/0.028/0.025/0.020 for left-hand/right-hand/left-leg/right-leg). The control group showed a moderate age-related increase in absolute CST volumes and a biphasic age-related variation of the normalized CST volumes, which were lacking in the paretic children. This study demonstrates that DTI-MAP classification may provide a new imaging tool to quantify axonal loss in children with central motor dysfunction. Using this technique, we found that early-life brain

  9. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis

    Directory of Open Access Journals (Sweden)

    G. Olivito

    2017-01-01

    In the present study, the network-based statistics (NBS approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes.

  10. Neuroprotective Effect of Matricaria chamomilla Extract on Motor Dysfunction Induced by Transient Global Cerebral Ischemia and Reperfusion in Rat

    Directory of Open Access Journals (Sweden)

    Azam Moshfegh

    2017-09-01

    Full Text Available Background Stroke can cause paralysis, muscle weakness, and loss of balance that may affect walking and routine activities. Objectives The aim of this study was to evaluate the effect of ethyl alcohol extract of Matricaria chamomilla on cerebral ischemia-induced motor dysfunctions in rats. Methods In this experimental study, forty two male Wistar rats were divided into 6 groups consisting of control group, sham group, ischemia/reperfusion group and three treatment groups [treated with 50, 100, and 200 mg/kg doses of M. chamomilla extract and undergoing ischemia/reperfusion(I/R]. Motor coordination and balance were evaluated using Rotarod test. Total antioxidant capacity, malondialdehyde (MDA, and nitric oxide (NO levels of serum and brain were also determined. Results The extract of M. chamomilla significantly improved I/R-induced motor dysfunction. Induction of I/R led to increase serum MDA, while the extract of M, chamomlla significantly reduced it. Administration all doses of M. chamomilla extract to the ischemic rats did not reduce the hippocampus MDA levels (P > 0.05. The extract of M. chamomilla at dose of 200 mg/kg slightly decreased cortex MDA (P > 0.01. It had no significant effects on the total antioxidant capacity of the brain (hippocampus and cortex and serum. Injection of Matricaria chamomilla extract also did not change serum NO level. Conclusions Our findings suggested that the Matricaria chamomilla extract could improve motor dysfunction.

  11. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease

    Science.gov (United States)

    Fisher, Karen M.; Zaaimi, Boubker; Williams, Timothy L.; Baker, Stuart N.

    2012-01-01

    In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15–30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15–30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control

  12. Neurogenic bowel dysfunction in patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Richard A Awad

    2011-01-01

    Exciting new features have been described concerning neurogenic bowel dysfunction, including interactions between the central nervous system, the enteric nervous system, axonal injury, neuronal loss, neurotransmission of noxious and non-noxious stimuli, and the fields of gastroenterology and neurology. Patients with spinal cord injury, myelomeningocele, multiple sclerosis and Parkinson's disease present with serious upper and lower bowel dysfunctions characterized by constipation, incontinence, gastrointestinal motor dysfunction and altered visceral sensitivity. Spinal cord injury is associated with severe autonomic dysfunction, and bowel dysfunction is a major physical and psychological burden for these patients. An adult myelomeningocele patient commonly has multiple problems reflecting the multisystemic nature of the disease. Multiple sclerosis is a neurodegenerative disorder in which axonal injury, neuronal loss, and atrophy of the central nervous system can lead to permanent neurological damage and clinical disability. Parkinson's disease is a multisystem disorder involving dopaminergic, noradrenergic, serotoninergic and cholinergic systems, characterized by motor and non-motor symptoms. Parkinson's disease affects several neuronal structures outside the substantia nigra, among which is the enteric nervous system. Recent reports have shown that the lesions in the enteric nervous system occur in very early stages of the disease, even before the involvement of the central nervous system. This has led to the postulation that the enteric nervous system could be critical in the pathophysiology of Parkinson's disease, as it could represent the point of entry for a putative environmental factor to initiate the pathological process. This review covers the data related to the etiology, epidemiology, clinical expression, pathophysiology, genetic aspects, gastrointestinal motor dysfunction, visceral sensitivity, management, prevention and prognosis of neurogenic bowel

  13. Nitric oxide bioavailability dysfunction involves in atherosclerosis.

    Science.gov (United States)

    Chen, Jing-Yi; Ye, Zi-Xin; Wang, Xiu-Fen; Chang, Jian; Yang, Mei-Wen; Zhong, Hua-Hua; Hong, Fen-Fang; Yang, Shu-Long

    2018-01-01

    The pathological characteristics of atherosclerosis (AS) include lipid accumulation, fibrosis formation and atherosclerotic plaque produced in artery intima, which leads to vascular sclerosis, lumen stenosis and irritates the ischemic changes of corresponding organs. Endothelial dysfunction was closely associated with AS. Nitric oxide (NO) is a multifunctional signaling molecule involved in the maintenance of metabolic and cardiovascular homeostasis. NO is also a potent endogenous vasodilator and enters for the key processes that suppresses the formation vascular lesion even AS. NO bioavailability indicates the production and utilization of endothelial NO in organisms, its decrease is related to oxidative stress, lipid infiltration, the expressions of some inflammatory factors and the alteration of vascular tone, which plays an important role in endothelial dysfunction. The enhancement of arginase activity and the increase in asymmetric dimethylarginine and hyperhomocysteinemia levels all contribute to AS by intervening NO bioavailability in human beings. Diabetes mellitus, obesity, chronic kidney disease and smoking, etc., also participate in AS by influencing NO bioavailability and NO level. Here, we reviewed the relationship between NO bioavailability and AS according the newest literatures. Copyright © 2017. Published by Elsevier Masson SAS.

  14. Treadmill Exercise Improves Motor Dysfunction and Hyperactivity of the Corticostriatal Glutamatergic Pathway in Rats with 6-OHDA-Induced Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Hyperactivity in the corticostriatal glutamatergic pathway (CGP induces basal ganglia dysfunction, contributing to parkinsonian syndrome (PS. Physical exercise can improve PS. However, the effect of exercise on the CGP, and whether this pathway is involved in the improvement of PS, remains unclear. Parkinson’s disease (PD was induced in rats by 6-hydroxydopamine injection into the right medial forebrain bundle. Motor function was assessed using the cylinder test. Striatal neuron (SN spontaneous and evoked firing activity was recorded, and the expression levels of Cav1.3 and CaMKII in the striatum were measured after 4 weeks of treadmill exercise. The motor function in PD rats was improved by treadmill exercise. SN showed significantly enhanced excitability, and treadmill exercise reduced SN excitability in PD rats. In addition, firing activity was evoked in SNs by stimulation of the primary motor cortex, and SNs exhibited significantly decreased stimulus threshold, increased firing rates, and reduced latency. The expression of Cav1.3 and p-CaMKII (Thr286 in the striatum were enhanced in PD rats. However, these effects were reversed by treadmill exercise. These findings suggest that treadmill exercise inhibits CGP hyperactivity in PD rats, which may be related to improvement of PS.

  15. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  16. Effect of surface sensory and motor electrical stimulation on chronic poststroke oropharyngeal dysfunction.

    Science.gov (United States)

    Rofes, L; Arreola, V; López, I; Martin, A; Sebastián, M; Ciurana, A; Clavé, P

    2013-11-01

    Chronic poststroke oropharyngeal dysfunction (OD) is a common condition, leading to severe complications, including death. Treatments for chronic poststroke OD are scarce. The aim of our study was to assess and compare the efficacy and safety of treatment with surface electrical stimulation (e-stim) at sensory and motor intensities in patients with chronic poststroke OD. Twenty chronic poststroke patients with OD were randomly assigned to (i) sensory e-stim (treatment intensity: 75% of motor threshold) or (ii) motor e-stim (treatment intensity: motor threshold). Patients were treated during 10 days, 1 h/day. Videofluoroscopy was performed at the beginning and end of the study to assess signs of impaired efficacy and safety of swallow and timing of swallow response. Patients presented advanced age (74.95 ± 2.18), 75% were men. The mean days poststroke was 336.26 ± 89.6. After sensory stimulation, the number of unsafe swallows was reduced by 66.7% (p swallows was reduced by 62.5% (p = 0.002), the laryngeal vestibule closure time by 38.26% (p = 0.009) and maximal vertical hyoid extension time by 24.8% (p = 0.008). Moreover, the motor stimulus reduced the pharyngeal residue by 66.7% (p = 0.002), the upper esophageal sphincter opening time by 39.39% (p = 0.009), and increased bolus propulsion force by 211.1% (p = 0.008). No serious adverse events were detected during the treatment. Surface e-stim is a safe and effective treatment for chronic poststroke dysphagic patients. © 2013 John Wiley & Sons Ltd.

  17. Bladder, Bowel, and Sexual Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Ryuji Sakakibara

    2011-01-01

    Full Text Available Bladder dysfunction (urinary urgency/frequency, bowel dysfunction (constipation, and sexual dysfunction (erectile dysfunction (also called “pelvic organ” dysfunctions are common nonmotor disorders in Parkinson's disease (PD. In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and “prokinetic” drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

  18. Bladder, bowel, and sexual dysfunction in Parkinson's disease.

    Science.gov (United States)

    Sakakibara, Ryuji; Kishi, Masahiko; Ogawa, Emina; Tateno, Fuyuki; Uchiyama, Tomoyuki; Yamamoto, Tatsuya; Yamanishi, Tomonori

    2011-01-01

    Bladder dysfunction (urinary urgency/frequency), bowel dysfunction (constipation), and sexual dysfunction (erectile dysfunction) (also called "pelvic organ" dysfunctions) are common nonmotor disorders in Parkinson's disease (PD). In contrast to motor disorders, pelvic organ autonomic dysfunctions are often nonresponsive to levodopa treatment. The brain pathology causing the bladder dysfunction (appearance of overactivity) involves an altered dopamine-basal ganglia circuit, which normally suppresses the micturition reflex. By contrast, peripheral myenteric pathology causing slowed colonic transit (loss of rectal contractions) and central pathology causing weak strain and paradoxical anal sphincter contraction on defecation (PSD, also called as anismus) are responsible for the bowel dysfunction. In addition, hypothalamic dysfunction is mostly responsible for the sexual dysfunction (decrease in libido and erection) in PD, via altered dopamine-oxytocin pathways, which normally promote libido and erection. The pathophysiology of the pelvic organ dysfunction in PD differs from that in multiple system atrophy; therefore, it might aid in differential diagnosis. Anticholinergic agents are used to treat bladder dysfunction in PD, although these drugs should be used with caution particularly in elderly patients who have cognitive decline. Dietary fibers, laxatives, and "prokinetic" drugs such as serotonergic agonists are used to treat bowel dysfunction in PD. Phosphodiesterase inhibitors are used to treat sexual dysfunction in PD. These treatments might be beneficial in maximizing the patients' quality of life.

  19. Targeting the Full Length of the Motor End Plate Regions in the Mouse Forelimb Increases the Uptake of Fluoro-Gold into Corresponding Spinal Cord Motor Neurons

    Directory of Open Access Journals (Sweden)

    Andrew Paul Tosolini

    2013-05-01

    Full Text Available Lower motor neuron dysfunction is one of the most debilitating motor conditions. In this regard, transgenic mouse models of various lower motor neuron dysfunctions provide insight into the mechanisms underlying these pathologies and can also aid the development of new therapies. Viral-mediated gene therapy can take advantage of the muscle-motor neuron topographical relationship to shuttle therapeutic genes into specific populations of motor neurons in these mouse models. In this context, motor end plates (MEPs are highly specialised regions on the skeletal musculature that offer direct access to the pre-synaptic nerve terminals, henceforth to the spinal cord motor neurons. The aim of this study was two-folded. First it was to characterise the exact position of the MEP regions for several muscles of the mouse forelimb using acetylcholinesterase histochemistry. This MEP-muscle map was then used to guide a series of intramuscular injections of Fluoro-Gold (FG in order to characterise the distribution of the innervating motor neurons. This analysis revealed that the MEPs are typically organised in an orthogonal fashion across the muscle fibres and extending throughout the full width of each muscle. Furthermore, targeting the full length of the MEP regions gave rise to a seemingly greater number of labelled motor neurons that are organised into columns spanning through more spinal cord segments than previously reported. The present analysis suggests that targeting the full width of the muscles’ MEP regions with FG increases the somatic availability of the tracer. This process ensures a greater uptake of the tracer by the pre-synaptic nerve terminals, hence maximising the labelling in spinal cord motor neurons. This investigation should have positive implications for future studies involving the somatic delivery of therapeutic genes into motor neurons for the treatment of various motor dysfunctions.

  20. Motor cortical processing is causally involved in object recognition.

    Science.gov (United States)

    Decloe, Rebecca; Obhi, Sukhvinder S

    2013-12-14

    Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action.

  1. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  2. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  3. Motor cortical processing is causally involved in object recognition

    Science.gov (United States)

    2013-01-01

    Background Motor activity during vicarious experience of actions is a widely reported and studied phenomenon, and motor system activity also accompanies observation of graspable objects in the absence of any actions. Such motor activity is thought to reflect simulation of the observed action, or preparation to interact with the object, respectively. Results Here, in an initial exploratory study, we ask whether motor activity during observation of object directed actions is involved in processes related to recognition of the object after initial exposure. Single pulse Transcranial Magnetic Stimulation (TMS) was applied over the thumb representation of the motor cortex, or over the vertex, during observation of a model thumb typing on a cell-phone, and performance on a phone recognition task at the end of the trial was assessed. Disrupting motor processing over the thumb representation 100 ms after the onset of the typing video impaired the ability to recognize the phone in the recognition test, whereas there was no such effect for TMS applied over the vertex and no TMS trials. Furthermore, this effect only manifested for videos observed from the first person perspective. In an additional control condition, there was no evidence for any effects of TMS to the thumb representation or vertex when observing and recognizing non-action related shape stimuli. Conclusion Overall, these data provide evidence that motor cortical processing during observation of object-directed actions from a first person perspective is causally linked to the formation of enduring representations of objects-of-action. PMID:24330638

  4. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  5. Respiratory chain deficiency in aged spinal motor neurons☆

    Science.gov (United States)

    Rygiel, Karolina A.; Grady, John P.; Turnbull, Doug M.

    2014-01-01

    Sarcopenia, muscle wasting, and strength decline with age, is an important cause of loss of mobility in the elderly individuals. The underlying mechanisms are uncertain but likely to involve defects of motor nerve, neuromuscular junction, and muscle. Loss of motor neurons with age and subsequent denervation of skeletal muscle has been recognized as one of the contributing factors. This study investigated aspects of mitochondrial biology in spinal motor neurons from elderly subjects. We found that protein components of complex I of mitochondrial respiratory chain were reduced or absent in a proportion of aged motor neurons–a phenomenon not observed in fetal tissue. Further investigation showed that complex I-deficient cells had reduced mitochondrial DNA content and smaller soma size. We propose that mitochondrial dysfunction in these motor neurons could lead to the cell loss and ultimately denervation of muscle fibers. PMID:24684792

  6. Postural control and central motor pathway involvement in type 2 ...

    African Journals Online (AJOL)

    Mona Mokhtar El Bardawil

    2013-04-18

    Apr 18, 2013 ... Postural control and central motor pathway involvement in type 2 .... with a high power 90 mm circular coil, capable of generating. 2 T maximum field ..... advanced glycation end products, oxidative damage and microvascular ...

  7. Mapping the involvement of BA 4a and 4p during Motor Imagery.

    Science.gov (United States)

    Sharma, Nikhil; Jones, P S; Carpenter, T A; Baron, Jean-Claude

    2008-05-15

    Motor Imagery (MI) is an attractive but intriguing means to access the motor network. There are marked inconsistencies in the functional imaging literature regarding the degree, extent and distribution of the primary motor cortex (BA 4) involvement during MI as compared to Executed Movement (EM), which may in part be related to the diverse role of BA 4 and its two subdivisions (i.e., 4a and 4p) in motor processes as well as to methodological issues. Here we used fMRI with monitoring of compliance to show that in healthy volunteers optimally screened for their ability to perform MI the contralateral BA 4 is involved during MI of a finger opposition sequence (2, 3, 4, 5; paced at 1 Hz), albeit less than during EM of the same sequence, and in a location sparing the hand area. Furthermore, both 4a and 4p subdivisions were found to be involved in MI, but the relative involvement of BA 4p appeared more robust and closer to that seen with EM. We suggest that during MI the role of BA 4 and its subdivisions may be non-executive, perhaps related to spatial encoding, though clearly further studies are needed. Finally, we report a similar hemispheric activation balance within BA 4 with both tasks, which extends the commonalities between EM and MI.

  8. Olfactory Dysfunction as an Early Biomarker in Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    Michelle E.Fullard; James F.Morley; John E.Duda

    2017-01-01

    Olfactory dysfunction is common in Parkinson's disease (PD) and often predates the diagnosis by years,reflecting early deposition of Lewy pathology,the histologic hallmark of PD,in the olfactory bulb.Clinical tests are available that allow for the rapid characterization of olfactory dysfunction,including tests of odor identification,discrimination,detection,and recognition thresholds,memory,and tests assessing the build-up of odor intensity across increasing suprathreshold stimulus concentrations.The high prevalence of olfactory impairment,along with the ease and low cost of assessment,has fostered great interest in olfaction as a potential biomarker for PD.Hyposmia may help differentiate PD from other causes of parkinsonism,and may also aid in the identification of "pre-motor" PD due to the early pathologic involvement of olfactory pathways.Olfactory function is also correlated with other non-motor features of PD and may serve as a predictor of cognitive decline.In this article,we summarize the existing literature on olfaction in PD,focusing on the potential for olfaction as a biomarker for early or differential diagnosis and prognosis.

  9. [Surgical treatment of gliomas involving the supplementary motor area in the superior frontal gyrus].

    Science.gov (United States)

    Liu, Wei; Lai, Jian-jun; Qu, Yuan-ming

    2004-07-07

    To explore surgical treatment of gliomas involving the supplementary motor area (SMA) in the superior frontal gyrus. Clinical data and follow-up outcome of 16 patients with low graded astrocytomas involving the supplementary motor area were analyzed. SMA syndrome was developed in 6 patients in whom the posterior tumor resection line was at a distance of more than 1 cm from the precentral sulcus and resolved after 12 months. Hemiplegia occurred however in 8 patients in whom the resection line was less than 1 cm to precentral sulcus and only resolved in 3 patients during follow period 12 months. When the resection is performed at a distance of less than 1 cm from the precentral sulcus, surgery for gliomas of involving the supplementary motor area in the superior frontal gyrus may be result in permanent morbidity.

  10. Cognitive Dysfunctions in Epileptic Syndromes

    Directory of Open Access Journals (Sweden)

    Semih Ayta

    2014-05-01

    Full Text Available Some children with epilepsy display a low level of intelligence, learning disabilities, attention deficit hyperactivity disorder, mood disorders and anxiety. Besides specific learning disabilities like reading, writing, arithmetics, learning problems may involve other major areas of intellectual functions such as speech and language, attention, memory, fine motor coordination. Even in the presence of common pathology that leads to epilepsy and mental dysfunctions, seizures cause additional cognitive problems. Age at seizure onset, type of seizures and epileptic syndromes are some variables that determine the effect of epilepsy on cognition. As recurrent seizures may have some negative impact on the developing brain, the use of antiepileptic drugs should be considered not only to aim reducing seizures but also to prevent possible seizure-induced cortical dysfunctions. Epilepsy is a disorder requiring a complicated psychological adjustment for the patients and indeed is a disease that affects the whole family. Thus, the management of epilepsy must include educational, psychotherapeutic and behavioral interventions as well as drug treatment.

  11. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children

    NARCIS (Netherlands)

    Allotey, J.; Zamora, J.; Cheong-See, F.; Kalidindi, M.; Arroyo-Manzano, D.; Asztalos, E.; van der Post, J. A. M.; Mol, B. W.; Moore, D.; Birtles, D.; Khan, K. S.; Thangaratinam, S.

    2018-01-01

    BackgroundPreterm birth may leave the brain vulnerable to dysfunction. Knowledge of future neurodevelopmental delay in children born with various degrees of prematurity is needed to inform practice and policy. ObjectiveTo quantify the long-term cognitive, motor, behavioural and academic performance

  12. [Pure trigeminal motor neuropathy presenting with temporo-mandibular joint dysfunction in a patient with HIV and HCV infections].

    Science.gov (United States)

    Anheim, M; Echaniz-Laguna, A; Rey, D; Tranchant, C

    2006-01-01

    Pure trigeminal motor neuropathy (PTMN) is a rarely described condition. We report the case of a 41-year-old woman infected with the human immunodeficiency virus (HIV1) and hepatitis C virus who presented with weakness of left temporalis and masseter muscles and painful left temporomandibular joint dysfunction (TMD) a few months after cerebral toxoplasmosis revealing acquired immunodeficiency syndrome (AIDS). Magnetic resonance imaging revealed severe wasting and fat replacement of the left temporalis, pterygoid and masseter muscles and showed neither abnormalities in the left motor nucleus of the trigeminal nerve nor compression of the left trigeminal nerve. Electromyographic examination gave evidence of denervation in the left temporalis, masseter and pterygoid muscles and blink reflex studies were normal, confirming the diagnosis of PTMN which was probably secondary to HIV and HCV co-infection.

  13. Unilateral implicit motor learning deficit in developmental dyslexia.

    Science.gov (United States)

    Yang, Yang; Hong-Yan, Bi

    2011-02-01

    It has been suggested that developmental dyslexia involves various literacy, sensory, motor skill, and processing speed deficits. Some recent studies have shown that individuals with developmental dyslexia exhibit implicit motor learning deficits, which may be related to cerebellar functioning. However, previous studies on implicit motor learning in developmental dyslexics have produced conflicting results. Findings from cerebellar lesion patients have shown that patients' implicit motor learning performance varied when different hands were used to complete tasks. This suggests that dyslexia may have different effects on implicit motor learning between the two hands if cerebellar dysfunction is involved. To specify this question, we used a one-handed version of a serial reaction time task to compare the performance of 27 Chinese children with developmental dyslexics with another 27 age-matched children without reading difficulties. All the subjects were students from two primary schools, Grades 4 to 6. The results showed that children with developmental dyslexic responded more slowly than nondyslexic children, and exhibited no implicit motor learning in the condition of left-hand response. In contrast, there was no significant difference in reaction time between two groups of children when they used the right hand to respond. This finding indicates that children with developmental dyslexia exhibited normal motor skill and implicit motor learning ability provided the right hand was used. Taken together, these results suggested that Chinese children with developmental dyslexia exhibit unilateral deficits in motor skill and implicit motor learning in the left hand. Our findings lend partial support to the cerebellar deficit theory of developmental dyslexia.

  14. [Motor capacities involved in the psychomotor skills of the cardiopulmonary resuscitation technique: recommendations for the teaching-learning process].

    Science.gov (United States)

    Miyadahira, A M

    2001-12-01

    It is a bibliographic study about the identification of the motor capacities involved in the psychomotor skills of the cardiopulmonary resuscitation (CPR) which aims to obtain subsidies to the planning of the teaching-learning process of this skill. It was found that: the motor capacities involved in the psychomotor skill of the CPR technique are predominantly cognitive and motor, involving 9 perceptive-motor capacities and 8 physical proficiency capacities. The CPR technique is a psychomotor skill classified as open, done in series and categorized as a thin and global skill and the teaching-learning process of the CPR technique has an elevated degree of complexity.

  15. [Non-motor symptoms of Parkinson's disease

    NARCIS (Netherlands)

    Weerkamp, N.J.; Nijhof, A.; Tissingh, G.

    2012-01-01

    Parkinson's disease has traditionally been viewed as a disease with only motor features. Nowadays, a wide variety of non-motor symptoms and signs are also recognised as being characteristic of the disease. Non-motor symptoms, most importantly autonomic dysfunction, neuropsychiatric symptoms and

  16. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition.

    Science.gov (United States)

    Guillot, Aymeric; Di Rienzo, Franck; Macintyre, Tadhg; Moran, Aidan; Collet, Christian

    2012-01-01

    There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson's disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.

  17. Imagining is not doing but involves specific motor commands: a review of experimental data related to motor inhibition

    Directory of Open Access Journals (Sweden)

    Aymeric eGuillot

    2012-09-01

    Full Text Available There is now compelling evidence that motor imagery (MI and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.

  18. High-Definition and Non-Invasive Brain Modulation of Pain and Motor Dysfunction in Chronic TMD

    Science.gov (United States)

    Donnell, Adam; Nascimento, Thiago; Lawrence, Mara; Gupta, Vikas; Zieba, Tina; Truong, Dennis Q.; Bikson, Marom; Datta, Abhi; Bellile, Emily; DaSilva, Alexandre F.

    2015-01-01

    Background Temporomandibular disorders (TMD) have a relatively high prevalence and in many patients pain and masticatory dysfunction persist despite a range of treatments. Non-invasive brain neuromodulatory methods, namely transcranial direct current stimulation (tDCS), can provide relatively long-lasting pain relief in chronic pain patients. Objective To define the neuromodulatory effect of five daily 2×2 motor cortex high-definition tDCS (HD-tDCS) sessions on clinical pain and motor measures in chronic TMD patients. It is predicted that M1 HD-tDCS will selectively modulate clinical measures, by showing greater analgesic after-effects compared to placebo, and active treatment will increase pain free jaw movement more than placebo. Methods Twenty-four females with chronic myofascial TMD pain underwent five daily, 20-minute sessions of active or sham 2 milliamps (mA) HD-tDCS. Measurable outcomes included pain-free mouth opening, visual analog scale (VAS), sectional sensory-discriminative pain measures tracked by a mobile application, short form of the McGill Pain Questionnaire, and the Positive and Negative Affect Schedule. Follow-up occurred at one-week and four-weeks post treatment. Results There were significant improvements for clinical pain and motor measurements in the active HD-tDCS group compared to the placebo group for: responders with pain relief above 50% in the VAS at four-week follow-up (p=0.04); pain-free mouth opening at one-week follow-up (ppain area, intensity and their sum measures contralateral to putative M1 stimulation during the treatment week (ppain and motor measures during stimulation, and up to four weeks post-treatment in chronic myofascial TMD pain patients. PMID:26226938

  19. Antagonist of peroxisome proliferator-activated receptor γ induces cerebellar amyloid-β levels and motor dysfunction in APP/PS1 transgenic mice

    International Nuclear Information System (INIS)

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Wang, Zhao

    2009-01-01

    Recent evidences show that peroxisome proliferator-activated receptor γ (PPARγ) is involved in the modulation of the amyloid-β (Aβ) cascade causing Alzheimer's disease (AD) and treatment with PPARγ agonists protects against AD pathology. However, the function of PPARγ steady-state activity in Aβ cascade and AD pathology remains unclear. In this study, an antagonist of PPARγ, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARγ activity in cerebellum. The results show that inhibition of PPARγ significantly induced Aβ levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Aβ. Since cerebellum is spared from significant Aβ accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARγ steady-state activity in protection of cerebellum against AD pathology.

  20. Accidents involving off-road motor vehicles in a northern community.

    Science.gov (United States)

    Hasselback, P; Wilding, H R

    1987-01-01

    The increasing number of accidents associated with off-road motor vehicles used for recreational purposes prompted this prospective study. During 1985 the records of victims of all motor vehicle accidents who were seen at the Hudson Bay Union Hospital, Hudson Bay, Sask., were studied; patients involved in on-road vehicle accidents were included for comparison. Emphasis was placed on age, vehicle type, mechanism of accident, injury severity and the use of safety features. Almost half of the victims of off-road vehicle accidents were under 16 years of age. The poor adherence to government legislation and manufacturer recommendations was evident in the number of people who did not wear helmets or use headlights. PMID:3651929

  1. Motor dysfunction of complex regional pain syndrome is related to impaired central processing of proprioceptive information.

    Science.gov (United States)

    Bank, Paulina J M; Peper, C Lieke E; Marinus, Johan; Beek, Peter J; van Hilten, Jacobus J

    2013-11-01

    Our understanding of proprioceptive deficits in complex regional pain syndrome (CRPS) and its potential contribution to impaired motor function is still limited. To gain more insight into these issues, we evaluated accuracy and precision of joint position sense over a range of flexion-extension angles of the wrist of the affected and unaffected sides in 25 chronic CRPS patients and in 50 healthy controls. The results revealed proprioceptive impairment at both the patients' affected and unaffected sides, characterized predominantly by overestimation of wrist extension angles. Precision of the position estimates was more prominently reduced at the affected side. Importantly, group differences in proprioceptive performance were observed not only for tests at identical percentages of each individual's range of wrist motion but also when controls were tested at wrist angles that corresponded to those of the patient's affected side. More severe motor impairment of the affected side was associated with poorer proprioceptive performance. Based on additional sensory tests, variations in proprioceptive performance over the range of wrist angles, and comparisons between active and passive displacements, the disturbances of proprioceptive performance most likely resulted from altered processing of afferent (and not efferent) information and its subsequent interpretation in the context of a distorted "body schema." The present results point at a significant role for impaired central processing of proprioceptive information in the motor dysfunction of CRPS and suggest that therapeutic strategies aimed at identification of proprioceptive impairments and their restoration may promote the recovery of motor function in CRPS patients. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    Science.gov (United States)

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; pmotor dysfunction (90% vs. 35%; pesophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  3. Memory Dysfunction

    Science.gov (United States)

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  4. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart, Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed....

  5. Some simple demonstration experiments involving homopolar motors

    OpenAIRE

    Stewart,Seán M.

    2007-01-01

    The ready availability of very strong permanent magnets in the form of rare-earth magnetic alloys such as neodymium-iron-boron has lead to renewed interest in one of the oldest types of electric motors - the homopolar motor. The ease with which a demonstration homopolar motor can now be built and operated when neodymium magnets are used is quite remarkable. In this paper some simple homopolar motors employing neodymium magnets suitable for demonstrational purposes are described and discussed.

  6. External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.

    Science.gov (United States)

    Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N

    2018-04-01

    Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.

  7. Clinical features and dysfunctions of iron metabolism in Parkinson disease patients with hyper echogenicity in substantia nigra: a cross-sectional study.

    Science.gov (United States)

    Yu, Shu-Yang; Cao, Chen-Jie; Zuo, Li-Jun; Chen, Ze-Jie; Lian, Teng-Hong; Wang, Fang; Hu, Yang; Piao, Ying-Shan; Li, Li-Xia; Guo, Peng; Liu, Li; Yu, Qiu-Jin; Wang, Rui-Dan; Chan, Piu; Chen, Sheng-di; Wang, Xiao-Min; Zhang, Wei

    2018-01-17

    Transcranial ultrasound is a useful tool for providing the evidences for the early diagnosis and differential diagnosis of Parkinson disease (PD). However, the relationship between hyper echogenicity in substantia nigra (SN) and clinical symptoms of PD patients remains unknown, and the role of dysfunction of iron metabolism on the pathogenesis of SN hyper echogenicity is unclear. PD patients was detected by transcranial sonography and divided into with no hyper echogenicity (PDSN-) group and with hyper echogenicity (PDSN+) group. Motor symptoms (MS) and non-motor symptoms (NMS) were evaluated, and the levels of iron and related proteins in serum and cerebrospinal fluid (CSF) were detected for PD patients. Data comparison between the two groups and correlation analyses were performed. PDSN+ group was significantly older, and had significantly older age of onset, more advanced Hohen-Yahr stage, higher SCOPA-AUT score and lower MoCA score than PDSN- group (P hyper echogenicity in SN are older, at more advanced disease stage, have severer motor symptoms, and non-motor symptoms of cognitive impairment and autonomic dysfunction. Hyper echogenicity of SN in PD patients is related to dysfunction of iron metabolism, involving increased iron transport from peripheral system to central nervous system, reduction of intracellular iron release and excessive iron deposition in brain.

  8. The involvement of audio-motor coupling in the music-supported therapy applied to stroke patients.

    Science.gov (United States)

    Rodriguez-Fornells, Antoni; Rojo, Nuria; Amengual, Julià L; Ripollés, Pablo; Altenmüller, Eckart; Münte, Thomas F

    2012-04-01

    Music-supported therapy (MST) has been developed recently to improve the use of the affected upper extremity after stroke. MST uses musical instruments, an electronic piano and an electronic drum set emitting piano sounds, to retrain fine and gross movements of the paretic upper extremity. In this paper, we first describe the rationale underlying MST, and we review the previous studies conducted on acute and chronic stroke patients using this new neurorehabilitation approach. Second, we address the neural mechanisms involved in the motor movement improvements observed in acute and chronic stroke patients. Third, we provide some recent studies on the involvement of auditory-motor coupling in the MST in chronic stroke patients using functional neuroimaging. Finally, these ideas are discussed and focused on understanding the dynamics involved in the neural circuit underlying audio-motor coupling and how functional connectivity could help to explain the neuroplastic changes observed after therapy in stroke patients. © 2012 New York Academy of Sciences.

  9. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Science.gov (United States)

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  10. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  11. Damage to the medial motor system in stroke patients with motor neglect

    Directory of Open Access Journals (Sweden)

    Raffaella eMigliaccio

    2014-06-01

    Full Text Available Background and objectives. Motor neglect (MN is a clinically important condition whereby patients with unilateral brain lesions fail to move their contralateral limbs, despite normal muscle strength, reflexes, and sensation. MN has been associated with various lesion sites, including the parietal and frontal cortex, the internal capsule, the lenticulostriate nuclei, and the thalamus. In the present study, we explored the hypothesis that MN depends on a dysfunction of the medial motor system by performing a detailed anatomical analysis in four patients with MN.Methods. Ten patients participated in the study: four with MN, four with left visual neglect but without MN, and three patients with left hemiplegia without MN. We used specific scales for clinical and neuropsychological assessment. We drew the lesion borders directly onto the original brain images of each patient, and plotted the lesions on anatomical atlases for grey and white matter. Results. Lesion locations were highly heterogeneous in our MN patients, and included frontal and parietal sites, basal ganglia and white matter. The only consistently damaged structure across all MN patients was the cingulum bundle, a major pathway of the medial motor system important for motor initiative, and a key connection with limbic structures crucial for motivational aspects of actions. Three MN patients with additional damage to lateral fronto-parietal networks had also signs of contralesional visual neglect. The cingulum bundle was intact in all the control patients with visual neglect or hemiplegia.Conclusions. Cingulum damage may induce MN through unilateral dysfunction of the medial motor system. Additional lateral fronto-parietal dysfunction can result in the association with visual neglect.

  12. [History of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)].

    Science.gov (United States)

    Takashima, Hiroshi

    2013-01-01

    We established a new disease autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSNP) in 1997, in Okinawa, Japan. This disease is characterized by proximal dominant neurogenic atrophy with fasciculations, painful muscle cramp, obvious sensory nerve involvement, areflexia, high incidence of elevated creatine kinase levels, hyperlipidemia and hyperglycemia. (MIM %604484). HMSNP is so called or HMSNO (HMSN OKINAWA type),. These clinical features resembled those of Kennedy-Alter-Sung syndrome. Most HMSNP patients have severe muscle atrophy and finally the tracheostomy and artificial ventilation are required. Therefore, we initially thought to classify HMSNP into a subtype of motor neuron disease (MND) like familial amyotrophic lateral sclerosis (FALS) or spinal muscular atrophy (SMA). However, the general consensus for MND was no sensory involvement. Therefore, as the disease showed severe sensory involvement, we categorized HMSNP in subtype of HMSN at that time. We also reported the pathology of HMSNP, showing severely decreased anterior horn cells, decreased posterior horn cells, and loss of posterior funiculus in the spinal cord.

  13. How Can a Ketogenic Diet Improve Motor Function?

    Directory of Open Access Journals (Sweden)

    Charlotte Veyrat-Durebex

    2018-01-01

    Full Text Available A ketogenic diet (KD is a normocaloric diet composed by high fat (80–90%, low carbohydrate, and low protein consumption that induces fasting-like effects. KD increases ketone body (KBs production and its concentration in the blood, providing the brain an alternative energy supply that enhances oxidative mitochondrial metabolism. In addition to its profound impact on neuro-metabolism and bioenergetics, the neuroprotective effect of specific polyunsaturated fatty acids and KBs involves pleiotropic mechanisms, such as the modulation of neuronal membrane excitability, inflammation, or reactive oxygen species production. KD is a therapy that has been used for almost a century to treat medically intractable epilepsy and has been increasingly explored in a number of neurological diseases. Motor function has also been shown to be improved by KD and/or medium-chain triglyceride diets in rodent models of Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and spinal cord injury. These studies have proposed that KD may induce a modification in synaptic morphology and function, involving ionic channels, glutamatergic transmission, or synaptic vesicular cycling machinery. However, little is understood about the molecular mechanisms underlying the impact of KD on motor function and the perspectives of its use to acquire the neuromuscular effects. The aim of this review is to explore the conditions through which KD might improve motor function. First, we will describe the main consequences of KD exposure in tissues involved in motor function. Second, we will report and discuss the relevance of KD in pre-clinical and clinical trials in the major diseases presenting motor dysfunction.

  14. A COMPUTATIONAL MODEL OF MOTOR NEURON DEGENERATION

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L.F.

    2014-01-01

    SUMMARY To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. PMID:25088365

  15. A computational model of motor neuron degeneration.

    Science.gov (United States)

    Le Masson, Gwendal; Przedborski, Serge; Abbott, L F

    2014-08-20

    To explore the link between bioenergetics and motor neuron degeneration, we used a computational model in which detailed morphology and ion conductance are paired with intracellular ATP production and consumption. We found that reduced ATP availability increases the metabolic cost of a single action potential and disrupts K+/Na+ homeostasis, resulting in a chronic depolarization. The magnitude of the ATP shortage at which this ionic instability occurs depends on the morphology and intrinsic conductance characteristic of the neuron. If ATP shortage is confined to the distal part of the axon, the ensuing local ionic instability eventually spreads to the whole neuron and involves fasciculation-like spiking events. A shortage of ATP also causes a rise in intracellular calcium. Our modeling work supports the notion that mitochondrial dysfunction can account for salient features of the paralytic disorder amyotrophic lateral sclerosis, including motor neuron hyperexcitability, fasciculation, and differential vulnerability of motor neuron subpopulations. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Loewe, Kristian; Machts, Judith; Kaufmann, Jörn; Petri, Susanne; Heinze, Hans-Jochen; Borgelt, Christian; Harris, Joseph Allen; Vielhaber, Stefan; Schoenfeld, Mircea Ariel

    2017-01-09

    Recent studies suggest that amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) lie on a single clinical continuum. However, previous neuroimaging studies have found only limited involvement of temporal lobe regions in ALS. To better delineate possible temporal lobe involvement in ALS, the present study aimed to examine changes in functional connectivity across the whole brain, particularly with regard to extra-motor regions, in a group of 64 non-demented ALS patients and 38 healthy controls. To assess between-group differences in connectivity, we computed edge-level statistics across subject-specific graphs derived from resting-state functional MRI data. In addition to expected ALS-related decreases in functional connectivity in motor-related areas, we observed extensive changes in connectivity across the temporo-occipital cortex. Although ALS patients with comorbid FTD were deliberately excluded from this study, the pattern of connectivity alterations closely resembles patterns of cerebral degeneration typically seen in FTD. This evidence for subclinical temporal dysfunction supports the idea of a common pathology in ALS and FTD.

  17. Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats.

    Science.gov (United States)

    Salehi, Mohammad Saied; Mirzaii-Dizgah, Iraj; Vasaghi-Gharamaleki, Behnoosh; Zamiri, Mohammad Javad

    2016-11-09

    Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.

  18. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  19. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  20. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  1. Proprioceptive dysfunction in focal dystonia: from experimental evidence to rehabilitation strategies.

    Directory of Open Access Journals (Sweden)

    Laura eAvanzino

    2014-12-01

    Full Text Available Dystonia has historically been considered a disorder of the basal ganglia, mainly affecting planning and execution of voluntary movements. This notion comes from the observation that most lesions responsible for secondary dystonia involve the basal ganglia. However, what emerges from recent research is that dystonia is linked to the dysfunction of a complex neural network that comprises basal ganglia-thalamic-frontal cortex, but also the inferior parietal cortex and the cerebellum. While dystonia is clearly a motor problem, it turned out that sensory aspects are also fundamental, especially those related to proprioception.We outline experimental evidence for proprioceptive dysfunction in focal dystonia from intrinsic sensory abnormalities to impaired sensorimotor integration, that is the process by which sensory information is used to plan and execute volitional movements. Particularly, we will focus on proprioceptive aspects of dystonia, including: i processing of vibratory input, ii temporal discrimination of two passive movements, iii multimodal integration of visual-tactile and proprioceptive inputs and, iv motor control in the absence of visual feedback. We suggest that these investigations contribute not only to a better understanding of dystonia pathophysiology, but also to develop rehabilitation strategies aimed at facilitating the processing of proprioceptive input.

  2. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Motor control and the management of musculoskeletal dysfunction.

    Science.gov (United States)

    van Vliet, Paulette M; Heneghan, Nicola R

    2006-08-01

    This paper aims to develop understanding of three important motor control issues--feedforward mechanisms, cortical plasticity and task-specificity and assess the implications for musculoskeletal practice. A model of control for the reach-to-grasp movement illustrates how the central nervous system integrates sensorimotor processes to control complex movements. Feedforward mechanisms, an essential element of motor control, are altered in neurologically intact patients with chronic neck pain and low back pain. In healthy subjects, cortical mapping studies using transcranial magnetic stimulation have demonstrated that neural pathways adapt according to what and how much is practised. Neuroplasticity has also been demonstrated in a number of musculoskeletal conditions, where cortical maps are altered compared to normal. Behavioural and neurophysiological studies indicate that environmental and task constraints such as the goal of the task and an object's shape and size, are determinants of the motor schema for reaching and other movements. Consideration of motor control issues as well as signs and symptoms, may facilitate management of musculoskeletal conditions and improve outcome. Practice of entire everyday tasks at an early stage and systematic variation of the task is recommended. Training should be directed with the aim of re-educating feedforward mechanisms where necessary and the amount of practice should be sufficient to cause changes in cortical activity.

  4. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  5. MotorSense: Using Motion Tracking Technology to Support the Identification and Treatment of Gross-Motor Dysfunction.

    Science.gov (United States)

    Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît

    2017-01-01

    MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.

  6. Motor Skills Training Improves Sensorimotor Dysfunction and Increases Microtubule-Associated Protein 2 mRNA Expression in Rats with Intracerebral Hemorrhage.

    Science.gov (United States)

    Tamakoshi, Keigo; Kawanaka, Kentaro; Onishi, Hideaki; Takamatsu, Yasuyuki; Ishida, Kazuto

    2016-08-01

    In this study, we examined the effects of motor skills training on the sensorimotor function and the expression of genes associated with synaptic plasticity after intracerebral hemorrhage (ICH) in rats. Male Wistar rats were subjected to ICH or sham operation. ICH was caused by the injection of collagenase into the left striatum. Rats were randomly assigned to no training, acrobatic training, and sham groups. The acrobatic group performed 5 types of acrobatic tasks from 4 to 28 days after surgery. The forelimb sensorimotor function was evaluated over time using forepaw grasping, forelimb placing, and postural instability tests. At 14 and 29 days after the lesion, we analyzed the mRNA expression levels of microtubule-associated protein 2 (MAP2), brain-derived neurotrophic factor, and growth-associated protein 43 in the bilateral sensorimotor cortex (forelimb area) by real-time reverse transcription-polymerase chain reaction. Motor skills training in ICH rats improved the sensorimotor dysfunction significantly from the early phase. The mRNA expression level of MAP2 was upregulated in the ipsilesional sensorimotor cortex by motor skills training at 29 days after the lesion. Our results suggest that sensorimotor functional recovery following motor skills training after ICH is promoted by dendritic growth in the ipsilesional sensorimotor cortex. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement.

    Science.gov (United States)

    Ishiura, Hiroyuki; Sako, Wataru; Yoshida, Mari; Kawarai, Toshitaka; Tanabe, Osamu; Goto, Jun; Takahashi, Yuji; Date, Hidetoshi; Mitsui, Jun; Ahsan, Budrul; Ichikawa, Yaeko; Iwata, Atsushi; Yoshino, Hiide; Izumi, Yuishin; Fujita, Koji; Maeda, Kouji; Goto, Satoshi; Koizumi, Hidetaka; Morigaki, Ryoma; Ikemura, Masako; Yamauchi, Naoko; Murayama, Shigeo; Nicholson, Garth A; Ito, Hidefumi; Sobue, Gen; Nakagawa, Masanori; Kaji, Ryuji; Tsuji, Shoji

    2012-08-10

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal-dominant neurodegenerative disorder characterized by widespread fasciculations, proximal-predominant muscle weakness, and atrophy followed by distal sensory involvement. To date, large families affected by HMSN-P have been reported from two different regions in Japan. Linkage and haplotype analyses of two previously reported families and two new families with the use of high-density SNP arrays further defined the minimum candidate region of 3.3 Mb in chromosomal region 3q12. Exome sequencing showed an identical c.854C>T (p.Pro285Leu) mutation in the TRK-fused gene (TFG) in the four families. Detailed haplotype analysis suggested two independent origins of the mutation. Pathological studies of an autopsied patient revealed TFG- and ubiquitin-immunopositive cytoplasmic inclusions in the spinal and cortical motor neurons. Fragmentation of the Golgi apparatus, a frequent finding in amyotrophic lateral sclerosis, was also observed in the motor neurons with inclusion bodies. Moreover, TAR DNA-binding protein 43 kDa (TDP-43)-positive cytoplasmic inclusions were also demonstrated. In cultured cells expressing mutant TFG, cytoplasmic aggregation of TDP-43 was demonstrated. These findings indicate that formation of TFG-containing cytoplasmic inclusions and concomitant mislocalization of TDP-43 underlie motor neuron degeneration in HMSN-P. Pathological overlap of proteinopathies involving TFG and TDP-43 highlights a new pathway leading to motor neuron degeneration. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    Science.gov (United States)

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  9. Usability and Acceptability of ASSESS MS: Assessment of Motor Dysfunction in Multiple Sclerosis Using Depth-Sensing Computer Vision.

    Science.gov (United States)

    Morrison, Cecily; D'Souza, Marcus; Huckvale, Kit; Dorn, Jonas F; Burggraaff, Jessica; Kamm, Christian Philipp; Steinheimer, Saskia Marie; Kontschieder, Peter; Criminisi, Antonio; Uitdehaag, Bernard; Dahlke, Frank; Kappos, Ludwig; Sellen, Abigail

    2015-06-24

    Sensor-based recordings of human movements are becoming increasingly important for the assessment of motor symptoms in neurological disorders beyond rehabilitative purposes. ASSESS MS is a movement recording and analysis system being developed to automate the classification of motor dysfunction in patients with multiple sclerosis (MS) using depth-sensing computer vision. It aims to provide a more consistent and finer-grained measurement of motor dysfunction than currently possible. To test the usability and acceptability of ASSESS MS with health professionals and patients with MS. A prospective, mixed-methods study was carried out at 3 centers. After a 1-hour training session, a convenience sample of 12 health professionals (6 neurologists and 6 nurses) used ASSESS MS to capture recordings of standardized movements performed by 51 volunteer patients. Metrics for effectiveness, efficiency, and acceptability were defined and used to analyze data captured by ASSESS MS, video recordings of each examination, feedback questionnaires, and follow-up interviews. All health professionals were able to complete recordings using ASSESS MS, achieving high levels of standardization on 3 of 4 metrics (movement performance, lateral positioning, and clear camera view but not distance positioning). Results were unaffected by patients' level of physical or cognitive disability. ASSESS MS was perceived as easy to use by both patients and health professionals with high scores on the Likert-scale questions and positive interview commentary. ASSESS MS was highly acceptable to patients on all dimensions considered, including attitudes to future use, interaction (with health professionals), and overall perceptions of ASSESS MS. Health professionals also accepted ASSESS MS, but with greater ambivalence arising from the need to alter patient interaction styles. There was little variation in results across participating centers, and no differences between neurologists and nurses. In typical

  10. Motor deficits in schizophrenia quantified by nonlinear analysis of postural sway.

    Directory of Open Access Journals (Sweden)

    Jerillyn S Kent

    Full Text Available Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA. The schizophrenia group (n = 27 exhibited greater sway area compared to controls (n = 37. Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia.

  11. Purinergic Receptors in Neurological Diseases With Motor Symptoms: Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Ágatha Oliveira-Giacomelli

    2018-04-01

    Full Text Available Since proving adenosine triphosphate (ATP functions as a neurotransmitter in neuron/glia interactions, the purinergic system has been more intensely studied within the scope of the central nervous system. In neurological disorders with associated motor symptoms, including Parkinson's disease (PD, motor neuron diseases (MND, multiple sclerosis (MS, amyotrophic lateral sclerosis (ALS, Huntington's Disease (HD, restless leg syndrome (RLS, and ataxias, alterations in purinergic receptor expression and activity have been noted, indicating a potential role for this system in disease etiology and progression. In neurodegenerative conditions, neural cell death provokes extensive ATP release and alters calcium signaling through purinergic receptor modulation. Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly or indirectly induced. This review analyzes currently available data, which suggests involvement of the purinergic system in neuro-associated motor dysfunctions and underlying mechanisms. Possible targets for pharmacological interventions are also discussed.

  12. Lower motor neuron involvement examined by quantitative electromyography in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Krarup, Christian

    2011-01-01

    in clinically non-involved muscles. The aim of the study was to determine the relative importance of ongoing (active) denervation, fasciculations, chronic partial denervation with reinnervation at weak effort and loss of motor units at maximal voluntary contraction (MVC) in ALS. Methods EMG was carried out...... with early ALS including clinically non-involved regions. These findings suggest that the maintenance of force is due to compensatory reinnervation in early disease and that this capacity may decline at later stages of ALS. Significance These findings support a recent consensus report (the Awaji criteria...

  13. Is gut the "motor" for producing hepatocellular dysfunction after trauma and hemorrhagic shock?

    Science.gov (United States)

    Wang, P; Ba, Z F; Cioffi, W G; Bland, K I; Chaudry, I H

    1998-02-01

    Although studies suggest that the gut may be the "motor" responsible for producing sepsis and multiple organ failure after injury, it is not known whether enterectomy prior to the onset of hemorrhage alters proinflammatory cytokines TNF and IL-6 and, if so, whether hepatocellular dysfunction and damage are prevented or attenuated under such conditions. Under methoxyflurane anesthesia, an enterectomy in the rat was performed by excision of the duodenum, jejunum, and ileum. The rats were then bled to and maintained at a mean arterial pressure of 40 mm Hg until 40% of the maximal shed volume was returned in the form of Ringer's lactate. The animals were then resuscitated with four times the volume of shed blood with Ringer's lactate over 1 h. At 1.5 h after the completion of resuscitation, hepatocellular function [i.e., the maximal velocity (Vmax) and transport efficiency (Km) of indocyanine green (ICG) clearance] was assessed by an in vivo ICG clearance technique. Blood samples were taken for the measurement of TNF, IL-6, and liver enzymes (i.e., SGPT and SGOT). Cardiac output and microvascular blood flow were determined by ICG dilution and laser Doppler flowmetry, respectively. The increase in circulating levels of TNF but not IL-6 was prevented by enterectomy prior to hemorrhage. The reduced Vmax and K(m) and elevated SGPT and SGOT following hemorrhage and resuscitation, however, were not significantly affected by prior enterectomy. Moreover, enterectomy before hemorrhage further reduced hepatic perfusion. Since enterectomy prior to the onset of hemorrhage does not prevent or attenuate the reduced ICG clearance and elevated liver enzymes despite downregulation of TNF production, it appears that the small intestine does not play a significant role in producing hepatocellular dysfunction and injury following trauma and hemorrhagic shock.

  14. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language.

    Science.gov (United States)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    2015-09-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of motor cortex engagement during emotion perception. Participants observed pictures of body expressions and categorized them as happy, fearful or neutral while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed a reduction of excitability for happy and fearful emotional bodies that was specific to the right hemisphere and correlated with participants' disposition to feel personal distress. This 'orienting' inhibitory response to emotional bodies was also paralleled by a general drop in categorization accuracy when stimulating the right but not the left motor cortex. Conversely, at 300 ms, greater excitability for negative, positive and neutral movements was found in both hemispheres. This later motor facilitation marginally correlated with participants' tendency to assume the psychological perspectives of others and reflected simulation of the movement implied in the neutral and emotional body expressions. These findings highlight the motor system's involvement during perception of emotional bodies. They suggest that fast orienting reactions to emotional cues--reflecting neural processing necessary for visual perception--occur before motor features of the observed emotional expression are simulated in the motor system and that distinct empathic dispositions influence these two neural motor phenomena. Implications for theories of embodied simulation are discussed.

  15. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  16. Arm coordination in octopus crawling involves unique motor control strategies.

    Science.gov (United States)

    Levy, Guy; Flash, Tamar; Hochner, Binyamin

    2015-05-04

    To cope with the exceptional computational complexity that is involved in the control of its hyper-redundant arms [1], the octopus has adopted unique motor control strategies in which the central brain activates rather autonomous motor programs in the elaborated peripheral nervous system of the arms [2, 3]. How octopuses coordinate their eight long and flexible arms in locomotion is still unknown. Here, we present the first detailed kinematic analysis of octopus arm coordination in crawling. The results are surprising in several respects: (1) despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation; (2) body and crawling orientation are monotonically and independently controlled; and (3) contrasting known animal locomotion, octopus crawling lacks any apparent rhythmical patterns in limb coordination, suggesting a unique non-rhythmical output of the octopus central controller. We show that this uncommon maneuverability is derived from the radial symmetry of the arms around the body and the simple pushing-by-elongation mechanism by which the arms create the crawling thrust. These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction. Our findings suggest that the soft molluscan body has affected in an embodied way [4, 5] the emergence of the adaptive motor behavior of the octopus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Joint action modulates motor system involvement during action observation in 3-year-olds

    NARCIS (Netherlands)

    Meyer, M.; Hunnius, S.; Elk, M. van; Ede, F.L. van; Bekkering, H.

    2011-01-01

    When we are engaged in a joint action, we need to integrate our partner's actions with our own actions. Previous research has shown that in adults the involvement of one's own motor system is enhanced during observation of an action partner as compared to during observation of an individual actor.

  18. iPSC-derived Insights into Motor Neuron Disease and Inflammatory Neuropathies

    NARCIS (Netherlands)

    Härschnitz, O.

    2017-01-01

    The proper function of the motor circuit is essential for normal interaction as a human being with external cues. While the motor circuit consists of a variety of cell types, one of its core components is the motor neuron itself. Dysfunction of motor neurons is a hallmark of many neuromuscular

  19. Injury patterns among obese children involved in motor vehicle collisions.

    Science.gov (United States)

    Haricharan, Ramanath N; Griffin, Russell L; Barnhart, Douglas C; Harmon, Carroll M; McGwin, Gerald

    2009-06-01

    The purpose of this study was to compare injury patterns among obese children to their nonobese counterparts involved in motor vehicle collisions. A nationwide data collection program containing occupant, collision, and injury details from police-reported tow-away crashes between 1997 and 2006 were used. Risk ratios (RRs) and associated 95% confidence intervals (CIs) were adjusted for age, sex, restraint, seat track position, vehicle curb weight, and total velocity change. An estimated 9 million children aged 2 to 17 years (20.2% obese) were involved in motor vehicle collisions during the study period. Among 2-to-5-year-olds, obesity increased the risk of severe head (RR, 3.67; 95% CI, 1.03-13.08) and thoracic (2.27; 1.01-5.08) injuries. Among 6-to-9-year-olds, obesity increased risk of thoracic (2.31; 1.08-4.95) and lower extremity (LE) injuries (1.89; 1.03-3.47). Among 10-to-13-year-olds, obesity increased the risk of severe thoracic (1.98; 1.08-3.65) and LE (6.06; 2.23-16.44) injuries. Among 14-to-17-year-olds, obesity increased risk of severe LE injuries (1.44; 1.04-2.00) but decreased risk of abdominal (0.20; 0.07-0.60) and head (0.33; 0.18-0.60) injuries, very similar to the pattern reported in obese adults. The pattern of obesity-associated injuries changes from a higher risk of head and thoracic injuries among young children to a pattern in late teenagers that is similar to obese adults.

  20. Temporomandibular joint dysfunction in Parkinson's Disease: an integrative literature review

    Directory of Open Access Journals (Sweden)

    Taysa Vannoska de Almeida Silva

    Full Text Available ABSTRACT Temporomandibular joint dysfunction is a set of disorders involving the masticatory muscles, temporomandibular joint and associated structures. It is known that the progression of motor symptoms in Parkinson's disease is an indication that these people are more prone to the development of this dysfunction. Thus, this study aims to investigate the signs and symptoms of temporomandibular dysfunction in people with Parkinson's disease. The search was performed in the databases: MEDLINE/ PubMed, LILACs, CINAHL, SCOPUS, Web of Science and PEDro, without timing or language restriction. Specific descriptors were used for each database and keywords, evaluated by the instruments: Critical Appraisal Skill Program and Agency for Health care and Research and Quality. A total of 4,209 articles were found but only 5 were included. After critical analysis of the methodology of the articles, one did not reach the minimum score required by the evaluation instruments, thus, it was excluded. The selected articles addressed, as signs and symptoms of temporomandibular joint dysfunction, the following: myofascial pain, bruxism, limitation of mouth opening, dislocation of the articular disc and asymmetry in the distribution of occlusal contacts. Further studies are needed in order to determine the relationship between cause and effect of the analyzed variables, so as to contribute to more specific and effective therapeutic interventions.

  1. Sensory-motor axonal polyneuropathy involving cranial nerves: An uncommon manifestation of disulfiram toxicity.

    Science.gov (United States)

    Santos, Telma; Martins Campos, António; Morais, Hugo

    2017-01-01

    Disulfiram (tetraethylthiuram disulfide) has been used for the treatment of alcohol dependence. An axonal sensory-motor polyneuropathy with involvement of cranial pairs due to disulfiram is exceedingly rare. The authors report a unique case of an extremely severe axonal polyneuropathy involving cranial nerves that developed within weeks after a regular dosage of 500mg/day disulfiram. To the authors best knowledge, such a severe and rapidly-progressive course has never been described with disulfiram dosages of only 500mg/day. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gross Motor Skills in Children With Idiopathic Clubfoot and the Association Between Gross Motor Skills, Foot Involvement, Gait, and Foot Motion.

    Science.gov (United States)

    Lööf, Elin; Andriesse, Hanneke; André, Marie; Böhm, Stephanie; Iversen, Maura D; Broström, Eva W

    2017-02-24

    Little is known regarding gross motor skills (GMS) in children with idiopathic clubfoot (IC). This study describes GMS, specifically foot involvement and asymmetries, and analyses the association between GMS, gait, and foot status in children with IC. Gross motor tasks and gait were analyzed in children with IC and typically developed (TD) children. GMS were assessed using videotapes and the Clubfoot Assessment Protocol (CAP). The Gait Deviation Index (GDI) and GDI-Kinetic were calculated from gait analyses. Children were divided into bilateral, unilateral clubfoot, or TD groups. To analyze asymmetries, feet within each group were further classified into superior or inferior foot, depending on their CAP scores. Correlations identified associations between CAP and GDI, GDI-Kinetic, passive foot motion, and Dimeglio Classification Scores at birth in the clubfeet. In total, 75 children (mean age, 5 years) were enrolled (bilateral n=22, unilateral clubfoot n=25, TD=28). Children with clubfeet demonstrated significantly lower GMS, gait, and foot motion compared with TD children. One leg standing and hopping deviated in 84% and 91%, respectively, in at least one foot in children with clubfoot. Gross motor asymmetries were evident in both children with bilateral and unilateral involvement. In children with unilateral clubfoot, contralateral feet showed few deviations in GMS compared with TD; however, differences existed in gait and foot motion. The association between GMS and gait, foot motion, and initial foot status varied between poor and moderate. Gross motor deficits and asymmetries are present in children with both bilateral and unilateral IC. Development of GMS of the contralateral foot mirrors that of TD children, but modifies to the clubfoot in gait and foot motion. The weak association with gait, foot motion, and initial clubfoot severity indicates that gross motor measurements represent a different outcome entity in clubfoot treatment. We therefore, recommend

  3. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  4. Neurological soft signs are associated with attentional dysfunction in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pitzianti, Mariabernarda; D'Agati, Elisa; Casarelli, Livia; Pontis, Marco; Kaunzinger, Ivo; Lange, Klaus W; Tucha, Oliver; Curatolo, Paolo; Pasini, Augusto

    2016-11-01

    Inattention is one of the core symptoms of Attention Deficit Hyperactivity Disorder (ADHD). Most of patients with ADHD show motor impairment, consisting in the persistence of neurological soft signs (NSS). Our aim was to evaluate attentional and motor functioning in an ADHD sample and healthy children (HC) and possible link between attentional dysfunction and motor impairment in ADHD. Twenty-seven drug-naive patients with ADHD and 23 HC were tested with a test battery, measuring different aspects of attention. Motor evaluation has provided three primary variables: overflow movements (OM), dysrhythmia and total speed of timed activities. Compared to HC, patients were impaired in a considerable number of attentional processes and showed a greater number of NSS. Significant correlations between disturbances of attention and motor abnormalities were observed in ADHD group. Our findings suggest that attentional processes could be involved in the pathophysiology of the NSS and add scientific evidence to the predictive value of NSS as indicators of the severity of functional impairment in ADHD. Given the marked improvement or complete resolution of NSS following treatment with methylphenidate, we suggest that evaluation of NSS is useful to monitor the effectiveness of pharmacological treatment with MPH in ADHD.

  5. Lipotoxicity Mediated Cell Dysfunction and Death Involves Lysosomal Membrane Permeabilization and Cathepsin L Activity

    Science.gov (United States)

    Almaguel, Frankis G.; Liu, Jo-Wen; Pacheco, Fabio J.; De Leon, Daisy; Casiano, Carlos A.; De Leon, Marino

    2010-01-01

    Lipotoxicity, which is triggered when cells are exposed to elevated levels of free fatty acids, involves cell dysfunction and apoptosis and is emerging as an underlying factor contributing to various pathological conditions including disorders of the central nervous system and diabetes. We have shown that palmitic acid (PA)-induced lipotoxicity (PA-LTx) in nerve growth factor-differentiated PC12 (NGFDPC12) cells is linked to an augmented state of cellular oxidative stress (ASCOS) and apoptosis, and that these events are inhibited by docosahexanoic acid (DHA). The mechanisms of PA-LTx in nerve cells are not well understood, but our previous findings indicate that it involves ROS generation, mitochondrial membrane permeabilization (MMP), and caspase activation. The present study used nerve growth factor differentiated PC12 cells (NGFDPC12 cells) and found that lysosomal membrane permeabilization (LMP) is an early event during PA-induced lipotoxicity that precedes MMP and apoptosis. Cathepsin L, but not cathepsin B, is an important contributor in this process since its pharmacological inhibition significantly attenuated LMP, MMP, and apoptosis. In addition, co-treatment of NGFDPC12 cells undergoing lipotoxicity with DHA significantly reduced LMP, suggesting that DHA acts by antagonizing upstream signals leading to lysosomal dysfunction. These results suggest that LMP is a key early mediator of lipotoxicity, and underscore the value of interventions targeting upstream signals leading to LMP for the treatment of pathological conditions associated with lipotoxicity. PMID:20043885

  6. The Case for Motor Involvement in Perceiving Conspecifics

    Science.gov (United States)

    Wilson, Margaret; Knoblich, Gunther

    2005-01-01

    Perceiving other people's behaviors activates imitative motor plans in the perceiver, but there is disagreement as to the function of this activation. In contrast to other recent proposals (e.g., that it subserves overt imitation, identification and understanding of actions, or working memory), here it is argued that imitative motor activation…

  7. Pre-motor and motor activities in early handwriting

    OpenAIRE

    van Zwieten, Koos Jaap

    2011-01-01

    Behavioural studies make use of handwritten letters’ characteristics like strokes, roundedness, etcetera. In consequence, Fisher et al. (2010) studying brain activation during rejected love, noticed typical pre-motor activity patterns, as suggested by irregular writing patterns as well, due to basal ganglia dysfunction (Mergl et al., 2004). A short historical text written in a presumably depressed mood was checked on such characteristics in the light of hypothesised finger-, and hand movement...

  8. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  10. Bilirubin-Induced Neurological Dysfunction: A Clinico-Radiological-Neurophysiological Correlation in 30 Consecutive Children.

    Science.gov (United States)

    van Toorn, Ronald; Brink, Philip; Smith, Johan; Ackermann, Christelle; Solomons, Regan

    2016-12-01

    The clinical expression of bilirubin-induced neurological dysfunction varies according to severity and location of the disease. Definitions have been proposed to describe different bilirubin-induced neurological dysfunction subtypes. Our objective was to describe the severity and clinico-radiological-neurophysiological correlation in 30 consecutive children with bilirubin-induced neurological dysfunction seen over a period of 5 years. Thirty children exposed to acute neonatal bilirubin encephalopathy were included in the study. The mean peak total serum bilirubin level was 625 μmol/L (range 480-900 μmol/L). Acoustic brainstem responses were abnormal in 73% (n = 22). Pallidal hyperintensity was observed on magnetic resonance imaging in 20 children. Peak total serum bilirubin levels correlated with motor severity (P = .03). Children with severe motor impairment were likely to manifest severe auditory neuropathy (P bilirubin-induced neurological dysfunction subtype, and the majority of children had abnormal acoustic brainstem responses and magnetic resonance imaging. © The Author(s) 2016.

  11. A review of the interrelationship between vestibular dysfunction ...

    African Journals Online (AJOL)

    functions, the effect of rehabilitation focused on the functioning of a specific canal, and the effect of different rehabilitation programmes on different vestibular deficiencies are suggested. Keywords: Vestibular dysfunction; Motor development; Learning disabilities; Posture; Rehabilitation and exercises. South African Journal ...

  12. The emerging role of norepinephrine in cognitive dysfunctions of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Elena eVazey

    2012-07-01

    Full Text Available Parkinson’s disease (PD is the second most common neurodegenerative disorder, affecting 1% of the population over age 60. In those patients cognitive dysfunction is a persistent issue that impairs quality of life and productivity. Neuropathological studies demonstrate significant damage in brain regions outside the nigral dopamine (DA system, including early degeneration of locus coeruleus norepinephrine (LC-NE neurons, yet discussion of PD and treatment focus has remained dopaminergic-based. Motor symptoms benefit from DA replacement for many years, but other symptoms including several cognitive deficits continue unabated. Recent interest in non-DA substrates of PD highlights early involvement of LC-NE neurons and provides evidence for a prodromal phase, with cognitive disturbance, even in sporadic PD. We outline insights from basic research in LC-NE function to clinical and pathological evidence highlighting a role for NE in PD cognitive dysfunction. We propose that loss of LC-NE regulation, particularly in higher cortical regions, critically underlies certain cognitive dysfunctions in early PD. As a major unmet need for patients, research and use of NE drugs in PD may provide significant benefits for cognitive processing.

  13. Relationship between Motor Symptoms, Cognition, and Demographic Characteristics in Treated Mild/Moderate Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Jay S Schneider

    Full Text Available Although Parkinson's disease (PD is a progressive neurodegenerative disorder characterized primarily by motor symptoms, PD patients, at all stages of the disease, can experience cognitive dysfunction. However, the relationships between cognitive and motor symptoms and specific demographic characteristics are not well defined, particularly for patients who have progressed to requiring dopaminergic medication.To examine relationships between motor and cognitive symptoms and various demographic factors in mild to moderate, PD patients requiring anti-PD medication.Cognitive function was assessed in 94 subjects with a variety of neuropsychological tests during baseline evaluations as part of an experimental treatment study. Data were analyzed in relation to Unified Parkinson's Disease Rating Scale motor scores and demographic variables.Of the UPDRS subscores analyzed, posture/balance/gait was associated with the highest number of adverse cognitive outcomes followed by speech/facial expression, bradykinesia, and rigidity. No associations were detected between any of the cognitive performance measures and tremor. Motor functioning assessed in the "off" condition correlated primarily with disease duration; neuropsychological performance in general was primarily related to age.In PD patients who have advanced to requiring anti-PD therapies, there are salient associations between axial signs and cognitive performance and in particular, with different aspects of visuospatial function suggesting involvement of similar circuits in these functions. Associations between executive functions and bradykinesia also suggest involvement similar circuits in these functions.

  14. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    Science.gov (United States)

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    Multi-digit synergies, a recently developed, theory-based method to quantify stability of motor action, are shown to reflect basal ganglia dysfunction associated with parkinsonian syndromes. In this study, we tested the hypothesis that multi-digit synergies may capture early and subclinical basal ganglia dysfunction. We chose asymptomatic welders to test the hypothesis because the basal ganglia are known to be most susceptible to neurotoxicity caused by welding-related metal accumulation (such as manganese and iron). Twenty right-handed welders and 13 matched controls were invited to perform single- and multi-finger pressing tasks using the fingers of the right or left hand. Unified Parkinson's Disease Rating Scale and Grooved Pegboard scores were used to gauge gross and fine motor dysfunction, respectively. High-resolution (3T) T1-weighted, T2-weighted, T1 mapping, susceptibility, and diffusion tensor MRIs were obtained to reflect manganese, iron accumulation, and microstructural changes in basal ganglia. The synergy index stabilizing total force and anticipatory synergy adjustments were computed, compared between groups, and correlated with estimates of basal ganglia manganese [the pallidal index, R1 (1/T1)], iron [R2* (1/T2*)], and microstructural changes [fractional anisotropy and mean diffusivity]. There were no significant differences in Unified Parkinson's Disease Rating Scale (total or motor subscale) or Grooved Pegboard test scores between welders and controls. The synergy index during steady-state accurate force production was decreased significantly in the left hand of welders compared to controls (p=0.004) but did not reach statistical significance in the right hand (p=0.16). Anticipatory synergy adjustments, however, were not significantly different between groups. Among welders, higher synergy indices in the left hand were associated significantly with higher fractional anisotropy values in the left globus pallidus (R=0.731, psynergy metrics may serve

  15. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  16. [Intraoperative magnetic resonance imaging-guided functional neuronavigation plus intraoperative neurophysiological monitoring for microsurgical resection of lesions involving hand motor area].

    Science.gov (United States)

    Miao, Xing-lu; Chen, Zhi-juan; Yang, Wei-dong; Wang, Zeng-guang; Yu, Qing; Yue, Shu-yuan; Zhang, Jian-ning

    2013-01-15

    To explore the methods and applications of intraoperative magnetic resonance imaging (iMRI)-guided functional neuronavigation plus intraoperative neurophysiological monitoring (IONM) for microsurgical resection of lesions involving hand motor area. A total of 16 patients with brain lesions adjacent to hand motor area were recruited from January 2011 to April 2012. All of them underwent neuronavigator-assisted microsurgery. Also IONM was conducted to further map hand motor area and epileptogenic focus. High-field iMRI was employed to update the anatomical and functional imaging date and verify the extent of lesion resection. Brain shifting during the functional neuronavigation was corrected by iMRI in 5 patients. Finally, total lesion resection was achieved in 13 cases and subtotal resection in 3 cases. At Months 3-12 post-operation, hand motor function improved (n = 10) or remained unchanged (n = 6). None of them had persistent neurological deficit. The postoperative seizure improvement achieved Enge II level or above in 9 cases of brain lesions complicated with secondary epilepsy. Intraoperative MRI, functional neuronavigation and neurophysiological monitoring technique are complementary in microsurgery of brain lesions involving hand motor area. Combined use of these techniques can obtain precise location of lesions and hand motor functional structures and allow a maximum resection of lesion and minimization of postoperative neurological deficits.

  17. How emotion context modulates unconscious goal activation during motor force exertion.

    Science.gov (United States)

    Blakemore, Rebekah L; Neveu, Rémi; Vuilleumier, Patrik

    2017-02-01

    Priming participants with emotional or action-related concepts influences goal formation and motor force output during effort exertion tasks, even without awareness of priming information. However, little is known about neural processes underpinning how emotional cues interact with action (or inaction) goals to motivate (or demotivate) motor behaviour. In a novel functional neuroimaging paradigm, visible emotional images followed by subliminal action or inaction word primes were presented before participants performed a maximal force exertion. In neutral emotional contexts, maximum force was lower following inaction than action primes. However, arousing emotional images had interactive motivational effects on the motor system: Unpleasant images prior to inaction primes increased force output (enhanced effort exertion) relative to control primes, and engaged a motivation-related network involving ventral striatum, extended amygdala, as well as right inferior frontal cortex. Conversely, pleasant images presented before action (versus control) primes decreased force and activated regions of the default-mode network, including inferior parietal lobule and medial prefrontal cortex. These findings show that emotional context can determine how unconscious goal representations influence motivational processes and are transformed into actual motor output, without direct rewarding contingencies. Furthermore, they provide insight into altered motor behaviour in psychopathological disorders with dysfunctional motivational processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. ALS and other motor neuron diseases.

    Science.gov (United States)

    Tiryaki, Ezgi; Horak, Holli A

    2014-10-01

    This review describes the most common motor neuron disease, ALS. It discusses the diagnosis and evaluation of ALS and the current understanding of its pathophysiology, including new genetic underpinnings of the disease. This article also covers other motor neuron diseases, reviews how to distinguish them from ALS, and discusses their pathophysiology. In this article, the spectrum of cognitive involvement in ALS, new concepts about protein synthesis pathology in the etiology of ALS, and new genetic associations will be covered. This concept has changed over the past 3 to 4 years with the discovery of new genes and genetic processes that may trigger the disease. As of 2014, two-thirds of familial ALS and 10% of sporadic ALS can be explained by genetics. TAR DNA binding protein 43 kDa (TDP-43), for instance, has been shown to cause frontotemporal dementia as well as some cases of familial ALS, and is associated with frontotemporal dysfunction in ALS. The anterior horn cells control all voluntary movement: motor activity, respiratory, speech, and swallowing functions are dependent upon signals from the anterior horn cells. Diseases that damage the anterior horn cells, therefore, have a profound impact. Symptoms of anterior horn cell loss (weakness, falling, choking) lead patients to seek medical attention. Neurologists are the most likely practitioners to recognize and diagnose damage or loss of anterior horn cells. ALS, the prototypical motor neuron disease, demonstrates the impact of this class of disorders. ALS and other motor neuron diseases can represent diagnostic challenges. Neurologists are often called upon to serve as a "medical home" for these patients: coordinating care, arranging for durable medical equipment, and leading discussions about end-of-life care with patients and caregivers. It is important for neurologists to be able to identify motor neuron diseases and to evaluate and treat patients affected by them.

  19. Risk factors for swallowing dysfunction in stroke patients

    Directory of Open Access Journals (Sweden)

    Anna Flávia Ferraz Barros Baroni

    2012-06-01

    Full Text Available CONTEXT: Stroke is a frequent cause of dysphagia. OBJECTIVE: To evaluate in a tertiary care hospital the prevalence of swallowing dysfunction in stroke patients, to analyze factors associated with the dysfunction and to relate swallowing dysfunction to mortality 3 months after the stroke. METHODS: Clinical evaluation of deglutition was performed in 212 consecutive patients with a medical and radiologic diagnosis of stroke. The occurrence of death was determined 3 months after the stroke. RESULTS: It was observed that 63% of the patients had swallowing dysfunction. The variables gender and specific location of the lesion were not associated with the presence or absence of swallowing dysfunction. The patients with swallowing dysfunction had more frequently a previous stroke, had a stroke in the left hemisphere, motor and/or sensitivity alterations, difficulty in oral comprehension, alteration of oral expression, alteration of the level of consciousness, complications such as fever and pneumonia, high indexes on the Rankin scale, and low indexes on the Barthel scale. These patients had a higher mortality rate. CONCLUSIONS: Swallowing evaluation should be done in all patients with stroke, since swallowing dysfunction is associated with complications and an increased risk of death.

  20. Severe pulmonary hypertension associated with the acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome.

    Science.gov (United States)

    Rooney, Kris A; Thomas, Neal J

    2010-01-01

    To evaluate pulmonary hypertension associated with acute motor sensory axonal neuropathy subtype of Guillain-Barré syndrome. Guillain-Barré syndrome consists of a group of autoimmune disorders that generally manifest as symmetric, progressive, ascending paralysis. There are five subtypes of Guillain-Barré syndrome, and autonomic involvement has been described in all subtypes, including cardiovascular, vasomotor, or pseudomotor dysfunction of both the sympathetic and parasympathetic systems. Case report. Tertiary care pediatric intensive care unit. Three-yr-old female patient. None. Serial measurements of pulmonary artery pressure. We report the case of a young girl with acute motor sensory axonal neuropathy who presented with severe cardiovascular collapse secondary to severe pulmonary hypertension. In this patient, multiple factors may have played a role in the development of pulmonary hypertension including autonomic dysfunction, hypoventilation, and immobility as a risk for thrombosis and pulmonary emboli. It is possible that many other individuals suffering from severe forms of Guillain-Barré syndrome, especially those with significant autonomic dysfunction, may actually have undiagnosed and therefore untreated pulmonary hypertension. Therefore, it is recommended that clinicians caring for critically ill children with Guillain-Barré syndrome have a high index of suspicion for pulmonary hypertension and consider echocardiography if there are clinical signs of this potentially fatal process.

  1. Leap motion evaluation for assessment of upper limb motor skills in Parkinson's disease.

    Science.gov (United States)

    Butt, A H; Rovini, E; Dolciotti, C; Bongioanni, P; De Petris, G; Cavallo, F

    2017-07-01

    The main goal of this study is to investigate the potential of the Leap Motion Controller (LMC) for the objective assessment of motor dysfunctioning in patients with Parkinson's disease (PwPD). The most relevant clinical signs in Parkinson's Disease (PD), such as slowness of movements, frequency variation, amplitude variation, and speed, were extracted from the recorded LMC data. Data were clinically quantified using the LMC software development kit (SDK). In this study, 16 PwPD subjects and 12 control healthy subjects were involved. A neurologist assessed the subjects during the task execution, assigning them a score according to the MDS/UPDRS-Section III items. Features of motor performance from both subject groups (patients and healthy controls) were extracted with dedicated algorithms. Furthermore, to find out the significance of such features from the clinical point of view, machine learning based methods were used. Overall, our findings showed the moderate potential of LMC to extract the motor performance of PwPD.

  2. Postoperative cognitive dysfunction : Involvement of neuroinflammation and neuronal functioning

    NARCIS (Netherlands)

    Hovens, Iris B.; Schoemaker, Regien G.; van der Zee, Eddy A.; Absalom, Anthony R.; Heineman, Erik; van Leeuwen, Barbara L.

    Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced inflammatory processes, which may influence neuronal functioning either directly or through modulation of intraneuronal pathways, such as the brain derived neurotrophic factor (BDNF) mediated pathway.

  3. Progression of motor axon dysfunction and ectopic Na(v)1.8 expression in a mouse model of Charcot-Marie-Tooth disease 1B

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Klein, Dennis

    2016-01-01

    Mice heterozygously deficient for the myelin protein P0 gene (P0+/-) develop a slowly progressing neuropathy modeling demyelinating Charcot-Marie-Tooth disease (CMT1B). The aim of the study was to investigate the long-term progression of motor dysfunction in P0+/- mice at 3, 7, 12 and 20months...... pharmacologic block of NaV1.8 in P0+/-. Mathematical modeling indicated an association of altered passive cable properties with a depolarizing shift in resting membrane potential and increase in the persistent Na(+) current in P0+/-. Our data suggest that ectopic NaV1.8 expression precipitates depolarizing...

  4. A case for motor network contributions to schizophrenia symptoms: Evidence from resting-state connectivity.

    Science.gov (United States)

    Bernard, Jessica A; Goen, James R M; Maldonado, Ted

    2017-09-01

    Though schizophrenia (SCZ) is classically defined based on positive symptoms and the negative symptoms of the disease prove to be debilitating for many patients, motor deficits are often present as well. A growing literature highlights the importance of motor systems and networks in the disease, and it may be the case that dysfunction in motor networks relates to the pathophysiology and etiology of SCZ. To test this and build upon recent work in SCZ and in at-risk populations, we investigated cortical and cerebellar motor functional networks at rest in SCZ and controls using publically available data. We analyzed data from 82 patients and 88 controls. We found key group differences in resting-state connectivity patterns that highlight dysfunction in motor circuits and also implicate the thalamus. Furthermore, we demonstrated that in SCZ, these resting-state networks are related to both positive and negative symptom severity. Though the ventral prefrontal cortex and corticostriatal pathways more broadly have been implicated in negative symptom severity, here we extend these findings to include motor-striatal connections, as increased connectivity between the primary motor cortex and basal ganglia was associated with more severe negative symptoms. Together, these findings implicate motor networks in the symptomatology of psychosis, and we speculate that these networks may be contributing to the etiology of the disease. Overt motor deficits in SCZ may signal underlying network dysfunction that contributes to the overall disease state. Hum Brain Mapp 38:4535-4545, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Novel test of motor and other dysfunctions in mouse neurological disease models.

    Science.gov (United States)

    Barth, Albert M I; Mody, Istvan

    2014-01-15

    Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). We investigated 3 groups of mice with various neurological deficits: (1) unilateral motor cortical stroke; (2) effects of moderate ethanol doses; and (3) aging (96-99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A mouse model of non-motor symptoms in Parkinson’s disease: focus on pharmacological interventions targeting affective dysfunctions

    Directory of Open Access Journals (Sweden)

    Alessandra eBonito Oliva

    2014-08-01

    Full Text Available Non-motor symptoms, including psychiatric disorders, are increasingly recognized as a major challenge in the treatment of Parkinson’s disease (PD. These ailments, which often appear in the early stage of the disease, affect a large number of patients and are only partly resolved by conventional antiparkinsonian medications, such as L-DOPA. Here, we investigated non-motor symptoms of PD in a mouse model based on bilateral injection of the toxin 6-hydroxydopamine (6-OHDA in the dorsal striatum. This model presented only subtle gait modifications, which did not affect horizontal motor activity in the open-field test. Bilateral 6-OHDA lesion also impaired olfactory discrimination, in line with the anosmia typically observed in early stage parkinsonism. The effect of 6-OHDA was then examined for mood-related dysfunctions. Lesioned mice showed increased immobility in the forced swim test and tail suspension test, two behavioral paradigms of depression. Moreover, the lesion exerted anxiogenic effects, as shown by reduced time spent in the open arms, in the elevated plus maze test, and by increased thigmotaxis in the open-field test. L-DOPA did not modify depressive- and anxiety-like behaviors, which were instead counteracted by the dopamine D2/D3 receptor agonist, pramipexole. Reboxetine, a noradrenaline reuptake inhibitor, was also able to prevent the depressive and anxiogenic effects produced by the lesion with 6-OHDA. Interestingly, pre-treatment with desipramine prior to injection of 6-OHDA, which is commonly used to preserve noradrenaline neurons, did not modify the effect of the lesion on depressive- and anxiety-like behaviors. Thus, in the present model, mood-related conditions are independent of the reduction of noradrenaline caused by 6-OHDA. Based on these findings we propose that the anti-depressive and anxiolytic action of reboxetine is mediated by promoting dopamine transmission through blockade of dopamine uptake from residual

  7. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  8. THE TRANSFORMATIONAL PROCESSES INVOLVING MOTOR SKILLS THAT OCCUR UNDER THE INFLUENCE OF BASIC PRELIMINARY TRAINING IN YOUNG HANDBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Markovic Sasa

    2011-06-01

    Full Text Available The population from which we extracted a sample of 76 subjects consisted of elementary school students in Kursumlija, all male, aged 12-13, who were divided into a sub-sample consisting of 38 young handball players who took part in the training sessions of a school of handball and another sub-sample consisting of 38 non-athletes, who only took part in their regular physical education classes. The aim of the research was to determine the transformation processes involving motor skills, which occur under the influence of basic preliminary training in young handball players. The subject matter of the study was to examine whether a statistically significant increase in the level of motor skills would occur under the influence of physical exercise as part of basic preliminary training in the final as compared to the initial state. Six motor tests which define the dimensions of explosive and repetitive strength were used. The results of the research indicate that significant transformational processes involving the motor skills of young handball players occurred in the final as compared to the initial measuring, under the influence of basic preliminary training.

  9. [The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders].

    Science.gov (United States)

    Jaber, M

    2017-04-01

    Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD. Despite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD. Several studies have attempted to

  10. Neurological Change after Gamma Knife Radiosurgery for Brain Metastases Involving the Motor Cortex

    Science.gov (United States)

    Park, Chang-Yong; Choi, Hyun-Yong; Lee, Sang-Ryul; Roh, Tae Hoon; Seo, Mi-Ra

    2016-01-01

    Background Although Gamma Knife radiosurgery (GKRS) can provide beneficial therapeutic effects for patients with brain metastases, lesions involving the eloquent areas carry a higher risk of neurologic deterioration after treatment, compared to those located in the non-eloquent areas. We aimed to investigate neurological change of the patients with brain metastases involving the motor cortex (MC) and the relevant factors related to neurological deterioration after GKRS. Methods We retrospectively reviewed clinical, radiological and dosimetry data of 51 patients who underwent GKRS for 60 brain metastases involving the MC. Prior to GKRS, motor deficits existed in 26 patients (50.9%). The mean target volume was 3.2 cc (range 0.001–14.1) at the time of GKRS, and the mean prescription dose was 18.6 Gy (range 12–24 Gy). Results The actuarial median survival time from GKRS was 19.2±5.0 months. The calculated local tumor control rates at 6 and 12 months after GKRS were 89.7% and 77.4%, respectively. During the median clinical follow-up duration of 12.3±2.6 months (range 1–54 months), 18 patients (35.3%) experienced new or worsened neurologic deficits with a median onset time of 2.5±0.5 months (range 0.3–9.7 months) after GKRS. Among various factors, prescription dose (>20 Gy) was a significant factor for the new or worsened neurologic deficits in univariate (p=0.027) and multivariate (p=0.034) analysis. The managements of 18 patients were steroid medication (n=10), boost radiation therapy (n=5), and surgery (n=3), and neurological improvement was achieved in 9 (50.0%). Conclusion In our series, prescription dose (>20 Gy) was significantly related to neurological deterioration after GKRS for brain metastases involving the MC. Therefore, we suggest that careful dose adjustment would be required for lesions involving the MC to avoid neurological deterioration requiring additional treatment in the patients with limited life expectancy. PMID:27867921

  11. Ablation of the Ferroptosis Inhibitor Glutathione Peroxidase 4 in Neurons Results in Rapid Motor Neuron Degeneration and Paralysis.

    Science.gov (United States)

    Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao

    2015-11-20

    Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity.

    Science.gov (United States)

    Gentile, Daniela; Fornai, Matteo; Colucci, Rocchina; Pellegrini, Carolina; Tirotta, Erika; Benvenuti, Laura; Segnani, Cristina; Ippolito, Chiara; Duranti, Emiliano; Virdis, Agostino; Carpi, Sara; Nieri, Paola; Németh, Zoltán H; Pistelli, Laura; Bernardini, Nunzia; Blandizzi, Corrado; Antonioli, Luca

    2018-01-01

    Apigenin can exert beneficial actions in the prevention of obesity. However, its putative action on obesity-associated bowel motor dysfunctions is unknown. This study examined the effects of apigenin on colonic inflammatory and motor abnormalities in a mouse model of diet-induced obesity. Male C57BL/6J mice were fed with standard diet (SD) or high-fat diet (HFD). SD or HFD mice were treated with apigenin (10 mg/Kg/day). After 8 weeks, body and epididymal fat weight, as well as cholesterol, triglycerides and glucose levels were evaluated. Malondialdehyde (MDA), IL-1β and IL-6 levels, and let-7f expression were also examined. Colonic infiltration by eosinophils, as well as substance P (SP) and inducible nitric oxide synthase (iNOS) expressions were evaluated. Motor responses elicited under blockade of NOS and tachykininergic contractions were recorded in vitro from colonic longitudinal muscle preparations. When compared to SD mice, HFD animals displayed increased body weight, epididymal fat weight and metabolic indexes. HFD mice showed increments in colonic MDA, IL-1β and IL-6 levels, as well as a decrease in let-7f expression in both colonic and epididymal tissues. HFD mice displayed an increase in colonic eosinophil infiltration. Immunohistochemistry revealed an increase in SP and iNOS expression in myenteric ganglia of HFD mice. In preparations from HFD mice, electrically evoked contractions upon NOS blockade or mediated by tachykininergic stimulation were enhanced. In HFD mice, Apigenin counteracted the increase in body and epididymal fat weight, as well as the alterations of metabolic indexes. Apigenin reduced also MDA, IL-1β and IL-6 colonic levels as well as eosinophil infiltration, SP and iNOS expression, along with a normalization of electrically evoked tachykininergic and nitrergic contractions. In addition, apigenin normalized let-7f expression in epididymal fat tissues, but not in colonic specimens. Apigenin prevents systemic metabolic alterations

  13. Basal ganglia and beyond: The interplay between motor and cognitive aspects in Parkinson's disease rehabilitation.

    Science.gov (United States)

    Ferrazzoli, Davide; Ortelli, Paola; Madeo, Graziella; Giladi, Nir; Petzinger, Giselle M; Frazzitta, Giuseppe

    2018-07-01

    Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions, affecting the motor behaviour. We summarize evidence that the interplay between motor and cognitive approaches is crucial in PD rehabilitation. Rehabilitation is complementary to pharmacological therapy and effective in reducing the PD disturbances, probably acting by inducing neuroplastic effects. The motor behaviour results from a complex integration between cortical and subcortical areas, underlying the motor, cognitive and motivational aspects of movement. The close interplay amongst these areas makes possible to learn, control and express habitual-automatic actions, which are dysfunctional in PD. The physiopathology of PD could be considered the base for the development of effective rehabilitation treatments. As the volitional action control is spared in early-medium stages of disease, rehabilitative approaches engaging cognition permit to achieve motor benefits and appear to be the most effective for PD. We will point out data supporting the relevance of targeting both motor and cognitive aspects in PD rehabilitation. Finally, we will discuss the role of cognitive engagement in motor rehabilitation for PD. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The Effects of Motor Neurone Disease on Language: Further Evidence

    Science.gov (United States)

    Bak, Thomas H.; Hodges, John R.

    2004-01-01

    It might sound surprising that Motor Neurone Disease (MND), regarded still by many as the very example of a neurodegenerative disease affecting selectively the motor system and sparing the sensory functions as well as cognition, can have a significant influence on language. In this article we hope to demonstrate that language dysfunction is not…

  15. Motor dysfunction in NF1: Mediated by attention deficit or inherent to the disorder?

    Science.gov (United States)

    Haas-Lude, Karin; Heimgärtner, Magdalena; Winter, Sarah; Mautner, Victor-Felix; Krägeloh-Mann, Ingeborg; Lidzba, Karen

    2018-01-01

    Attention deficit and compromised motor skills are both prevalent in Neurofibromatosis type 1 (NF1), but the relationship is unclear. We investigated motor function in children with NF1 and in children with Attention Deficit/Hyperactivity Disorder (ADHD), and explored if, in patients with NF1, attention deficit influences motor performance. Motor performance was measured using the Movement Assessment Battery for Children (M-ABC) in 71 children (26 with NF1 plus ADHD, 14 with NF1 without ADHD, and 31 with ADHD without NF1) aged 6-12 years. There was a significant effect of group on motor performance. Both NF1 groups scored below children with ADHD without NF1. Attention performance mediated motor performance in children with ADHD without NF1, but not in children with NF1. Motor function is not mediated by attention performance in children with NF1. While in ADHD, attention deficit influences motor performance, motor problems in NF1 seem to be independent from attention deficit. This argues for different pathomechanisms in these two groups of developmental disorders. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  16. Motor skill learning and offline-changes in TGA patients with acute hippocampal CA1 lesions.

    Science.gov (United States)

    Döhring, Juliane; Stoldt, Anne; Witt, Karsten; Schönfeld, Robby; Deuschl, Günther; Born, Jan; Bartsch, Thorsten

    2017-04-01

    Learning and the formation of memory are reflected in various memory systems in the human brain such as the hippocampus based declarative memory system and the striatum-cortex based system involved in motor sequence learning. It is a matter of debate how both memory systems interact in humans during learning and consolidation and how this interaction is influenced by sleep. We studied the effect of an acute dysfunction of hippocampal CA1 neurons on the acquisition (on-line condition) and off-line changes of a motor skill in patients with a transient global amnesia (TGA). Sixteen patients (68 ± 4.4 yrs) were studied in the acute phase and during follow-up using a declarative and procedural test, and were compared to controls. Acute TGA patients displayed profound deficits in all declarative memory functions. During the acute amnestic phase, patients were able to acquire the motor skill task reflected by increasing finger tapping speed across the on-line condition, albeit to a lesser degree than during follow-up or compared to controls. Retrieval two days later indicated a greater off-line gain in motor speed in patients than controls. Moreover, this gain in motor skill performance was negatively correlated to the declarative learning deficit. Our results suggest a differential interaction between procedural and declarative memory systems during acquisition and consolidation of motor sequences in older humans. During acquisition, hippocampal dysfunction attenuates fast learning and thus unmasks the slow and rigid learning curve of striatum-based procedural learning. The stronger gains in the post-consolidation condition in motor skill in CA1 lesioned patients indicate a facilitated consolidation process probably occurring during sleep, and suggest a competitive interaction between the memory systems. These findings might be a reflection of network reorganization and plasticity in older humans and in the presence of CA1 hippocampal pathology. Copyright © 2016

  17. Reverse Engineering Tone-Deafness: Disrupting Pitch-Matching by Creating Temporary Dysfunctions in the Auditory-Motor Network

    Directory of Open Access Journals (Sweden)

    Anja Hohmann

    2018-01-01

    Full Text Available Perceiving and producing vocal sounds are important functions of the auditory-motor system and are fundamental to communication. Prior studies have identified a network of brain regions involved in pitch production, specifically pitch matching. Here we reverse engineer the function of the auditory perception-production network by targeting specific cortical regions (e.g., right and left posterior superior temporal (pSTG and posterior inferior frontal gyri (pIFG with cathodal transcranial direct current stimulation (tDCS—commonly found to decrease excitability in the underlying cortical region—allowing us to causally test the role of particular nodes in this network. Performance on a pitch-matching task was determined before and after 20 min of cathodal stimulation. Acoustic analyses of pitch productions showed impaired accuracy after cathodal stimulation to the left pIFG and the right pSTG in comparison to sham stimulation. Both regions share particular roles in the feedback and feedforward motor control of pitched vocal production with a differential hemispheric dominance.

  18. [Construction and clinical evaluation of novel methods for detecting autoinomic dysfunction].

    Science.gov (United States)

    Obayashi, Konen

    2012-05-01

    The autonomic nervous system innervates every organ in the body. Since autonomic disturbances affect patient survival, an understanding of and recognition of these disturbances are important. We adopted several new methods to evaluate autonomic function accurately for detecting the onset of small-fiber neuropathy, such as laser-Doppler flowmetry, ultrasonography, 123I-MIBG scintigraphy, electrogastrography, cystometry, glucose-tolerance test, near-infrared spectrophotoscopy, blood pressure tests, and evaluation of sweating. After these examinations, we applied potential effective treatments to improve the survival and daily activity of these patients. We also evaluated the effect of liver transplantation on autonomic dysfunction of familial amyloidotic polyneuropathy (FAP) patients using our tools. Liver transplantation not only prevents the progression of autonomic dysfunction in these patients but also improves some autonomic symptoms in the early stage after the operation. As all domino-liver transplantation-induced amyloid neuropathies, including our cases, were of the sensory type rather than with autonomic involvement, assessment of the pain threshold by preferential stimulation of A delta fibers is a particularly useful tool for diagnosing the onset of small-fiber neuropathies in these patients in addition to autonomic testing. Analyses and comparison of patients with FAP and domino-liver-transplanted patients with autonomic, sensory and motor dysfunction may give a clue to elucidate the pathogenesis and treatment of neuropathy in FAP. As autonomic disturbances play an important role in the symptomatology of small-fiber neuropathy, liver-transplanted FAP, and domino-liver-transplanted patients, further studies of autonomic dysfunction in these patients may lead to the pathogenesis of the disease.

  19. Cognitive dysfunction in hereditary spastic paraplegias and other motor neuron disorders

    Directory of Open Access Journals (Sweden)

    Ingrid Faber

    Full Text Available ABSTRACT Hereditary spastic paraplegia (HSP is a diverse group of single-gene disorders that share the predominant clinical feature of progressive lower limb spasticity and weakness. More than 70 different genetic subtypes have been described and all modes of inheritance are possible. Intellectual dysfunction in HSP is frequent in recessive forms but rare in dominant families. It may manifest by either mental retardation and/or cognitive decline. The latter may be subtle, restricted to executive dysfunction or may evolve to severe dementia. The cognitive profile is thought to depend largely on the genetic subtype of HSP, although wide phenotypic variability within the same genetic subtype and also within the same family can be found.

  20. Hereditary motor and autonomic neuronopathy 1 maps to chromosome 20q13.2-13.3

    Directory of Open Access Journals (Sweden)

    W. Marques Jr.

    2004-11-01

    Full Text Available The spinal muscular atrophies (SMA or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1 to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.

  1. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease.

    Science.gov (United States)

    Ztaou, Samira; Maurice, Nicolas; Camon, Jeremy; Guiraudie-Capraz, Gaëlle; Kerkerian-Le Goff, Lydia; Beurrier, Corinne; Liberge, Martine; Amalric, Marianne

    2016-08-31

    Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal

  2. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    DEFF Research Database (Denmark)

    Ryge, J.; Winther, Ole; Wienecke, J.

    2010-01-01

    Background: Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of ...

  3. Neural mirroring and social interaction: Motor system involvement during action observation relates to early peer cooperation.

    Science.gov (United States)

    Endedijk, H M; Meyer, M; Bekkering, H; Cillessen, A H N; Hunnius, S

    2017-04-01

    Whether we hand over objects to someone, play a team sport, or make music together, social interaction often involves interpersonal action coordination, both during instances of cooperation and entrainment. Neural mirroring is thought to play a crucial role in processing other's actions and is therefore considered important for social interaction. Still, to date, it is unknown whether interindividual differences in neural mirroring play a role in interpersonal coordination during different instances of social interaction. A relation between neural mirroring and interpersonal coordination has particularly relevant implications for early childhood, since successful early interaction with peers is predictive of a more favorable social development. We examined the relation between neural mirroring and children's interpersonal coordination during peer interaction using EEG and longitudinal behavioral data. Results showed that 4-year-old children with higher levels of motor system involvement during action observation (as indicated by lower beta-power) were more successful in early peer cooperation. This is the first evidence for a relation between motor system involvement during action observation and interpersonal coordination during other instances of social interaction. The findings suggest that interindividual differences in neural mirroring are related to interpersonal coordination and thus successful social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Dynamic causal modeling revealed dysfunctional effective connectivity in both, the cortico-basal-ganglia and the cerebello-cortical motor network in writers' cramp

    Directory of Open Access Journals (Sweden)

    Inken Rothkirch

    Full Text Available Writer's cramp (WC is a focal task-specific dystonia characterized by sustained or intermittent muscle contractions while writing, particularly with the dominant hand. Since structural lesions rarely cause WC, it has been assumed that the disease might be caused by a functional maladaptation within the sensory-motor system. Therefore, our objective was to examine the differences between patients suffering from WC and a healthy control (HC group with regard to the effective connectivity that describes causal influences one brain region exerts over another within the motor network. The effective connectivity within a network including contralateral motor cortex (M1, supplementary motor area (SMA, globus pallidus (GP, putamen (PU and ipsilateral cerebellum (CB was investigated using dynamic causal modeling (DCM for fMRI. Eight connectivity models of functional motor systems were compared. Fifteen WC patients and 18 age-matched HC performed a sequential, five-element finger-tapping task with the non-dominant and non-affected left hand within a 3 T MRI-scanner as quickly and accurately as possible. The task was conducted in a fixed block design repeated 15 times and included 30 s of tapping followed by 30 s of rest. DCM identified the same model in WC and HC as superior for reflecting basal ganglia and cerebellar motor circuits of healthy subjects. The M1-PU, as well as M1-CB connectivity, was more strongly influenced by tapping in WC, but the intracortical M1-SMA connection was more facilitating in controls. Inhibiting influences originating from GP to M1 were stronger in controls compared to WC patients whereby facilitating influences the PU exerts over CB and CB exerts over M1 were not as strong. Although the same model structure explains the given data best, DCM confirms previous research demonstrating a malfunction in effective connectivity intracortically (M1-SMA and in the cortico-basal ganglia circuitry in WC. In addition, DCM analysis

  5. Rethinking Energy in Parkinsonian Motor Symptoms: A Potential Role for Neural Metabolic Deficits

    Directory of Open Access Journals (Sweden)

    Shinichi eAmano

    2015-01-01

    Full Text Available Parkinson’s disease (PD is characterized as a chronic and progressive neurodegenerative disorder that results in a variety of debilitating symptoms, including bradykinesia, resting tremor, rigidity, and postural instability. Research spanning several decades has emphasized basal ganglia dysfunction, predominantly resulting from dopaminergic cell loss, as the primarily cause of the aforementioned parkinsonian features. But, why those particular features manifest themselves remains an enigma. The goal of this paper is to develop a theoretical framework that parkinsonian motor features are behavioral consequence of a long-term adaptation to their inability (inflexibility or lack of capacity to meet energetic demands, due to neural metabolic deficits arising from mitochondrial dysfunction associated with PD. Here, we discuss neurophysiological changes that are generally associated with PD, such as selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, in conjunction with metabolic and mitochondrial dysfunction. We then characterize the cardinal motor symptoms of PD, bradykinesia, resting tremor, rigidity and gait disturbance, reviewing literature to demonstrate how these motor patterns are actually energy efficient from a metabolic perspective. We will also develop three testable hypotheses: (1 neural metabolic deficits precede the increased rate of neurodegeneration and onset of behavioral symptoms in PD, (2 motor behavior of persons with PD are more sensitive to changes in metabolic/bioenergetic state, and (3 improvement of metabolic function could lead to better motor performance in persons with PD. These hypotheses are designed to introduce a novel viewpoint that can elucidate the connections between metabolic, neural and motor function in PD.

  6. Reduced sensory synaptic excitation impairs motor neuron function via Kv2.1 in spinal muscular atrophy.

    Science.gov (United States)

    Fletcher, Emily V; Simon, Christian M; Pagiazitis, John G; Chalif, Joshua I; Vukojicic, Aleksandra; Drobac, Estelle; Wang, Xiaojian; Mentis, George Z

    2017-07-01

    Behavioral deficits in neurodegenerative diseases are often attributed to the selective dysfunction of vulnerable neurons via cell-autonomous mechanisms. Although vulnerable neurons are embedded in neuronal circuits, the contributions of their synaptic partners to disease process are largely unknown. Here we show that, in a mouse model of spinal muscular atrophy (SMA), a reduction in proprioceptive synaptic drive leads to motor neuron dysfunction and motor behavior impairments. In SMA mice or after the blockade of proprioceptive synaptic transmission, we observed a decrease in the motor neuron firing that could be explained by the reduction in the expression of the potassium channel Kv2.1 at the surface of motor neurons. Chronically increasing neuronal activity pharmacologically in vivo led to a normalization of Kv2.1 expression and an improvement in motor function. Our results demonstrate a key role of excitatory synaptic drive in shaping the function of motor neurons during development and the contribution of its disruption to a neurodegenerative disease.

  7. Electrophysiological Signs of Supplementary-Motor-Area Deficits in High-Functioning Autism but Not Asperger Syndrome: An Examination of Internally Cued Movement-Related Potentials

    Science.gov (United States)

    Enticott, Peter G.; Bradshaw, John L.; Iansek, Robert; Tonge, Bruce J.; Rinehart, Nicole J.

    2009-01-01

    Aims: Motor dysfunction is common to both autism and Asperger syndrome, but the underlying neurophysiological impairments are unclear. Neurophysiological examinations of motor dysfunction can provide information about likely sites of functional impairment and can contribute to the debate about whether autism and Asperger syndrome are variants of…

  8. Dysregulation of RNA Mediated Gene Expression in Motor Neuron Diseases.

    Science.gov (United States)

    Gonçalves, Inês do Carmo G; Rehorst, Wiebke A; Kye, Min Jeong

    2016-01-01

    Recent findings indicate an important role for RNA-mediated gene expression in motor neuron diseases, including ALS (amyotrophic lateral sclerosis) and SMA (spinal muscular atrophy). ALS, also known as Lou Gehrig's disease, is an adult-onset progressive neurodegenerative disorder, whereby SMA or "children's Lou Gehrig's disease" is considered a pediatric neurodevelopmental disorder. Despite the difference in genetic causes, both ALS and SMA share common phenotypes; dysfunction/loss of motor neurons that eventually leads to muscle weakness and atrophy. With advanced techniques in molecular genetics and cell biology, current data suggest that these two distinct motor neuron diseases share more than phenotypes; ALS and SMA have similar cellular pathological mechanisms including mitochondrial dysfunction, oxidative stress and dysregulation in RNA-mediated gene expression. Here, we will discuss the current findings on these two diseases with specific focus on RNA-mediated gene regulation including miRNA expression, pre-mRNA processing and RNA binding proteins.

  9. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Li, Ruili; Li, Hongjun [Capital Medical University, Department of Radiology, Beijing Youan Hospital, Beijing (China); Qiu, Bensheng [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui (China)

    2017-11-15

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  10. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    International Nuclear Information System (INIS)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan; Li, Ruili; Li, Hongjun; Qiu, Bensheng

    2017-01-01

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  11. [The mirror neuron system in motor and sensory rehabilitation].

    Science.gov (United States)

    Oouchida, Yutaka; Izumi, Shinichi

    2014-06-01

    The discovery of the mirror neuron system has dramatically changed the study of motor control in neuroscience. The mirror neuron system provides a conceptual framework covering the aspects of motor as well as sensory functions in motor control. Previous studies of motor control can be classified as studies of motor or sensory functions, and these two classes of studies appear to have advanced independently. In rehabilitation requiring motor learning, such as relearning movement after limb paresis, however, sensory information of feedback for motor output as well as motor command are essential. During rehabilitation from chronic pain, motor exercise is one of the most effective treatments for pain caused by dysfunction in the sensory system. In rehabilitation where total intervention unifying the motor and sensory aspects of motor control is important, learning through imitation, which is associated with the mirror neuron system can be effective and suitable. In this paper, we introduce the clinical applications of imitated movement in rehabilitation from motor impairment after brain damage and phantom limb pain after limb amputation.

  12. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  13. Transcranial magnetic stimulation reveals two functionally distinct stages of motor cortex involvement during perception of emotional body language

    NARCIS (Netherlands)

    Borgomaneri, S.; Gazzola, V.; Avenanti, A.

    2015-01-01

    Studies indicate that perceiving emotional body language recruits fronto-parietal regions involved in action execution. However, the nature of such motor activation is unclear. Using transcranial magnetic stimulation (TMS) we provide correlational and causative evidence of two distinct stages of

  14. A causal test of the motor theory of speech perception: a case of impaired speech production and spared speech perception.

    Science.gov (United States)

    Stasenko, Alena; Bonn, Cory; Teghipco, Alex; Garcea, Frank E; Sweet, Catherine; Dombovy, Mary; McDonough, Joyce; Mahon, Bradford Z

    2015-01-01

    The debate about the causal role of the motor system in speech perception has been reignited by demonstrations that motor processes are engaged during the processing of speech sounds. Here, we evaluate which aspects of auditory speech processing are affected, and which are not, in a stroke patient with dysfunction of the speech motor system. We found that the patient showed a normal phonemic categorical boundary when discriminating two non-words that differ by a minimal pair (e.g., ADA-AGA). However, using the same stimuli, the patient was unable to identify or label the non-word stimuli (using a button-press response). A control task showed that he could identify speech sounds by speaker gender, ruling out a general labelling impairment. These data suggest that while the motor system is not causally involved in perception of the speech signal, it may be used when other cues (e.g., meaning, context) are not available.

  15. Muscle dysfunction in cancer patients

    DEFF Research Database (Denmark)

    Christensen, Jesper Frank; Jones, L W; Andersen, J L

    2014-01-01

    dysfunction in cancer patients lies in the correlation to vital clinical end points such as cancer-specific and all-cause mortality, therapy complications and quality of life (QoL). Such associations strongly emphasize the need for effective therapeutic countermeasures to be developed and implemented...... implications of muscle dysfunction in cancer patients. The efficacy of exercise training to prevent and/or mitigate cancer-related muscle dysfunction is also discussed. DESIGN: We identified 194 studies examining muscular outcomes in cancer patients by searching PubMed and EMBASE databases. RESULTS: Muscle...... dysfunction is evident across all stages of the cancer trajectory. The causes of cancer-related muscle dysfunction are complex, but may involve a wide range of tumor-, therapy- and/or lifestyle-related factors, depending on the clinical setting of the individual patient. The main importance of muscle...

  16. [Two cases of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)].

    Science.gov (United States)

    Mori, Chiaki; Saito, Tomoko; Saito, Toshio; Fujimura, Harutoshi; Sakoda, Saburo

    2015-01-01

    We, herein, report two independent cases with hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) inherited in an autosomal dominant fashion. Their common clinical features are slowly progressive proximal dominant muscular atrophy, fasciculations and mild to moderate distal sensory disturbance with areflexia. Nerve conduction study revealed an absence of sensory nerve action potentials, in contrast to almost normal compound muscle action potentials. Gene analysis in both patients elucidated heterozygous mutation (c.854C>T, p.Pro285Leu) in the TFG, which is an identical mutation, already described by Ishiura et al. Okinawa and Shiga are two foci of HMSN-P in Japan. Eventually, one patient is from Okinawa and the other is from a mountain village in Shiga prefecture. When we see a patient who has symptoms suggestive of motor neuron disease with sensory neuropathy, HMSN-P should be considered as a differential diagnosis despite the patient's actual resident place.

  17. Minor neurological dysfunction and cognition in 9-year-olds born at term

    NARCIS (Netherlands)

    Kikkert, Hedwig K; de Jong, Corina; Hadders-Algra, Mijna

    BACKGROUND: In children with developmental disorders, motor problems often co-occur with cognitive difficulties. Associations between specific cognitive deficits underlying learning problems and minor neurological dysfunction (MND) are still unknown. AIMS: To assess associations between specific

  18. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  19. The relevance of pre-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Visanji, Naomi; Marras, Connie

    2015-10-01

    Parkinson's disease (PD) has a wide range of non-motor symptoms including; constipation, sleep disturbance, deficits in vision and olfaction, mood disorders and cardiac autonomic dysfunction. Several of these non-motor symptoms can manifest prior to the onset of motor symptoms. Recognizing these pre-motor symptoms may enable early diagnosis of PD. Currently, no single pre-motor symptom is able to predict the development of PD with 100% sensitivity or specificity. Ongoing studies in several independent at-risk cohorts should reveal the potential of combinations of pre-motor symptoms and multi-stage screening strategies to identify individuals at increased risk of PD. PD progression may be governed by a prion-like spread of a-syn throughout the nervous system. Identifying individuals at the earliest stage will likely be critical to preventing the pathological progression of PD, highlighting the relevance of pre-motor symptoms in the future treatment of the disease.

  20. Motor function declines over time in human immunodeficiency virus and is associated with cerebrovascular disease, while HIV-associated neurocognitive disorder remains stable.

    Science.gov (United States)

    M Elicer, Isabel; Byrd, Desiree; Clark, Uraina S; Morgello, Susan; Robinson-Papp, Jessica

    2018-04-25

    HIV-associated neurocognitive disorders (HAND) remain prevalent in the combined antiretroviral therapy (CART) era, especially the milder forms. Despite these milder phenotypes, we have shown that motor abnormalities persist and have quantified them with the HIV Dementia Motor Scale (HDMS). Our objectives were to replicate, in an independent sample, our prior findings that the HDMS is associated with cognitive impairment in HIV, while adding consideration of age-associated comorbidities such as cerebrovascular disease, and to examine the longitudinal trajectories of cognitive and motor dysfunction. We included all participants enrolled in the Manhattan HIV Brain Bank (MHBB) from January 2007 to May 2017 who had complete baseline data (N = 164). MHBB participants undergo standardized longitudinal assessments including documentation of comorbidities and medications, blood work, the HDMS, and neurocognitive testing. We found that motor dysfunction, cognitive impairment, and cerebrovascular disease were significantly associated with each other at baseline. Cerebrovascular disease independently predicted cognitive impairment in a multivariable model. Longitudinal analysis in a subset of 78 participants with ≥ 4 years of follow-up showed a stable cognition but declining motor function. We conclude that the HDMS is a valid measurement of motor dysfunction in HIV-infected patients and is associated with cognitive impairment and the presence of cerebrovascular disease. Cognitive impairment is mild and stable in CART-treated HIV; however, motor function declines over time, which may be related to the accrual of comorbidities such as cerebrovascular disease. Further research should examine the mechanisms underlying motor dysfunction in HIV and its clinical impact.

  1. Transcranial magnetic stimulation (TMS): compared sensitivity of different motor response parameters in ALS.

    Science.gov (United States)

    Pouget, J; Trefouret, S; Attarian, S

    2000-06-01

    Owing to the low sensitivity of clinical signs in assessing upper motor neuron (UMN) involvement in ALS, there is a need for investigative tools capable of detecting abnormal function of the pyramidal tract. Transcranial magnetic stimulation (TMS) may contribute to the diagnosis by reflecting a UMN dysfunction that is not clinically detectable. Several parameters for the motor responses to TMS can be evaluated with different levels of significance in healthy subjects compared with ALS patients. The central motor conduction time, however, is not sensitive in detecting subclinical UMN defects in individual ALS patients. The amplitude of the motor evoked potential (MEP), expressed as the percentage of the maximum wave, also has a low sensitivity. In some cases, the corticomotor threshold is decreased early in the disease course as a result of corticomotor neuron hyperexcitability induced by glutamate. Later, the threshold increases, indicating a loss of UMN. In our experience, a decreased silent period duration appears to be the most sensitive parameter when using motor TMS in ALS. TMS is also a sensitive technique for investigating the corticobulbar tract, which is difficult to study by other methods. TMS is a widely available, painless and safe technique with a good sensitivity that can visualize both corticospinal and corticobulbar tract abnormalities. The sensitivity can be improved further by taking into account the several MEP parameters, including latency and cortical silent period decreased duration.

  2. Autonomic Dysfunction in Muscular Dystrophy: A Theoretical Framework for Muscle Reflex Involvement

    Directory of Open Access Journals (Sweden)

    Scott Alan Smith

    2014-02-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically inherited disorders whose most prominent clinical feature is progressive degeneration of skeletal muscle. In several forms of the disease, the function of cardiac muscle is likewise affected. The primary defect in this group of diseases is caused by mutations in myocyte proteins important to cellular structure and/or performance. That being stated, a growing body of evidence suggests that the development of autonomic dysfunction may secondarily contribute to the generation of skeletal and cardio-myopathy in muscular dystrophy. Indeed, abnormalities in the regulation of both sympathetic and parasympathetic nerve activity have been reported in a number of muscular dystrophy variants. However, the mechanisms mediating this autonomic dysfunction remain relatively unknown. An autonomic reflex originating in skeletal muscle, the exercise pressor reflex, is known to contribute significantly to the control of sympathetic and parasympathetic activity when stimulated. Given the skeletal myopathy that develops with muscular dystrophy, it is logical to suggest that the function of this reflex might also be abnormal with the pathogenesis of disease. As such, it may contribute to or exacerbate the autonomic dysfunction that manifests. This possibility along with a basic description of exercise pressor reflex function in health and disease are reviewed. A better understanding of the mechanisms that possibly underlie autonomic dysfunction in muscular dystrophy may not only facilitate further research but could also lead to the identification of new therapeutic targets for the treatment of muscular dystrophy.

  3. Theory of mind performance in Parkinson's disease is associated with motor and cognitive functions, but not with symptom lateralization.

    Science.gov (United States)

    Nobis, Lisa; Schindlbeck, Katharina; Ehlen, Felicitas; Tiedt, Hannes; Rewitzer, Charlotte; Duits, Annelien A; Klostermann, Fabian

    2017-09-01

    Next to the typical motor signs, Parkinson's disease (PD) goes along with neuropsychiatric symptoms, amongst others affecting social cognition. Particularly, Theory of Mind (ToM) impairments have mostly been associated with right hemispherical brain dysfunction, so that it might prevail in patients with left dominant PD. Fourty-four PD patients, twenty-four with left and twenty with right dominant motor symptoms, engaged in the Reading the Mind in the Eyes (RME) and the Faux Pas Detection Test (FPD) to assess affective and cognitive ToM. The results were correlated with performance in further cognitive tests, and analyzed with respect to associations with the side of motor symptom dominance and severity of motor symptoms. No association of ToM performance with right hemispheric dysfunction was found. RME results were inversely correlated with motor symptom severity, while FPD performance was found to correlate with the performance in verbal fluency tasks and the overall cognitive evaluation. Affective ToM was found associated with motor symptom severity and cognitive ToM predominantly with executive function, but no effect of PD lateralization on this was identified. The results suggest that deficits in social cognition occur as a sequel of the general corticobasal pathology in PD, rather than as a result of hemisphere-specific dysfunction.

  4. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  5. Cognitive and Motor Aspects of Parkinson's Disease Associated with Dysphagia.

    Science.gov (United States)

    Kim, Ji Sun; Youn, Jinyoung; Suh, Mee Kyung; Kim, Tae-Eun; Chin, Juhee; Park, Suyeon; Cho, Jin Whan

    2015-11-01

    Dysphagia is a common symptom and an important prognostic factor in Parkinson's disease (PD). Although cognitive and motor dysfunctions may contribute to dysphagia in patients with PD, any specific association between such problems and swallowing functions is unclear. Here, we examined the potential relationship between cognitive/motor components and swallowing functions in PD. We evaluated the contributions of cognition and motor function to the components of swallowing via video fluoroscopic swallowing (VFS) experiments. We prospectively enrolled 56 patients without dementia having PD. Parkinson's disease severity was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). All participants received neuropsychological tests covering general mental status, visuospatial function, attention, language, learning and memory, and frontal executive function. The well-validated "modified barium swallow impairment profile" scoring system was applied during VFS studies to quantify swallowing impairments. Finally, correlations between neuropsychological or motor functions and impairment in swallowing components were calculated. The most significant correlations were found between the frontal/executive or learning/memory domains and the oral phase of swallowing, though a minor component of the pharyngeal phase correlated with frontal function as well. Bradykinesia and the UPDRS total score were associated with both the pharyngeal and oral phases. Our findings suggest that cognitive dysfunctions are associated with the oral phase of swallowing in patients with early stage PD while the severity of motor symptoms may be associated with overall swallowing function.

  6. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Gui-Zhen [Department of Health, Linyi People' s Hospital, Shandong University, Shandong (China); Tian, Wei [Department of Nursing, Linyi Oncosurgical Hospital, Shandong (China); Fu, Hai-Tao [Department of Ophthalmology, Linyi People' s Hospital, Shandong University, Shandong (China); Li, Chao-Peng, E-mail: lcpcn@163.com [Eye Institute of Xuzhou, Jiangsu (China); Liu, Ban, E-mail: liuban@126.com [Department of Cardiology, Shanghai Tenth People' s Hospital, Tongji University School of Medicine, Shanghai (China)

    2016-02-26

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  7. Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction

    International Nuclear Information System (INIS)

    Qiu, Gui-Zhen; Tian, Wei; Fu, Hai-Tao; Li, Chao-Peng; Liu, Ban

    2016-01-01

    Microvascular dysfunction is an important characteristic of diabetic retinopathy. Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes. In this study, we investigated the role of lncRNA-MEG3 in diabetes-related microvascular dysfunction. We show that MEG3 expression level is significantly down-regulated in the retinas of STZ-induced diabetic mice, and endothelial cells upon high glucose and oxidative stress. MEG3 knockdown aggravates retinal vessel dysfunction in vivo, as shown by serious capillary degeneration, and increased microvascular leakage and inflammation. MEG3 knockdown also regulates retinal endothelial cell proliferation, migration, and tube formation in vitro. The role of MEG3 in endothelial cell function is mainly mediated by the activation of PI3k/Akt signaling. MEG3 up-regulation may serve as a therapeutic strategy for treating diabetes-related microvascular complications. - Highlights: • LncRNA-MEG3 level is down-regulated upon diabetic stress. • MEG3 knockdown aggravates retinal vascular dysfunction in vivo. • MEG3 regulates retinal endothelial cell function in vitro. • MEG3 regulates endothelial cell function through PI3k/Akt signaling.

  8. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Auditory-motor interactions in pediatric motor speech disorders: neurocomputational modeling of disordered development.

    Science.gov (United States)

    Terband, H; Maassen, B; Guenther, F H; Brumberg, J

    2014-01-01

    Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. The reader will be able to: (1) identify the difficulties in studying disordered speech motor development; (2) describe the differences in speech motor characteristics between SSD and subtype CAS; (3) describe the different types of learning that occur in the sensory-motor system during babbling and early speech acquisition; (4) identify the neural control subsystems involved in speech production; (5) describe the potential role of auditory self-monitoring in developmental speech disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. [Minimal emotional dysfunction and first impression formation in personality disorders].

    Science.gov (United States)

    Linden, M; Vilain, M

    2011-01-01

    "Minimal cerebral dysfunctions" are isolated impairments of basic mental functions, which are elements of complex functions like speech. The best described are cognitive dysfunctions such as reading and writing problems, dyscalculia, attention deficits, but also motor dysfunctions such as problems with articulation, hyperactivity or impulsivity. Personality disorders can be characterized by isolated emotional dysfunctions in relation to emotional adequacy, intensity and responsivity. For example, paranoid personality disorders can be characterized by continuous and inadequate distrust, as a disorder of emotional adequacy. Schizoid personality disorders can be characterized by low expressive emotionality, as a disorder of effect intensity, or dissocial personality disorders can be characterized by emotional non-responsivity. Minimal emotional dysfunctions cause interactional misunderstandings because of the psychology of "first impression formation". Studies have shown that in 100 ms persons build up complex and lasting emotional judgements about other persons. Therefore, minimal emotional dysfunctions result in interactional problems and adjustment disorders and in corresponding cognitive schemata.From the concept of minimal emotional dysfunctions specific psychotherapeutic interventions in respect to the patient-therapist relationship, the diagnostic process, the clarification of emotions and reality testing, and especially an understanding of personality disorders as impairment and "selection, optimization, and compensation" as a way of coping can be derived.

  11. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  12. Decreasing adhesions and avoiding further surgery in a pediatric patient involved in a severe pedestrian versus motor vehicle accident

    Directory of Open Access Journals (Sweden)

    Amanda D. Rice

    2014-02-01

    Full Text Available In this case study, we report the use of manual physical therapy in a pediatric patient experiencing complications from a life-threatening motor vehicle accident that necessitated 19 surgeries over the course of 12 months. Post-surgical adhesions decreased the patient’s quality of life. He developed multiple medical conditions including recurrent partial bowel obstructions and an ascending testicle. In an effort to avoid further surgery for bowel obstruction and the ascending testicle, the patient was effectively treated with a manual physical therapy regimen focused on decreasing adhesions. The therapy allowed return to an improved quality of life, significant decrease in subjective reports of pain and dysfunction, and apparent decreases in adhesive processes without further surgery, which are important goals for all patients, but especially for pediatric patients.

  13. Chemical and thermal modulation of molecular motor activities

    Science.gov (United States)

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  14. Electrophysiological evidence of cerebellar fiber system involvement in the Miller Fisher syndrome.

    Science.gov (United States)

    Lo, Y L; Fook-Chong, S; Chan, L L; Ong, W Y; Ratnagopal, P

    2010-01-15

    In the Miller Fisher syndrome (MFS), ataxia may be due involvement of Ia afferents and the cerebellum. Transcranial magnetic stimulation (TMS) over the cerebellum is known to interfere transiently with normal function. In this study, we utilized a previously described TMS protocol over the cerebellum in combination with ballistic movements to investigate cerebellar dysfunction in MFS patients. The agonist (biceps) reaction time in MFS patients during a motor cancellation task was not significantly reduced during the initial TMS study. However, during the repeat TMS study, significant reduction was seen for all patients, in tandem with clinical recovery. There was significant correlation between anti-GQ1b IgG titers and change in agonist reaction time between the initial and repeat TMS studies. TMS likely affected horizontally orientated parallel fibers in the cerebellar molecular layer. During disease onset, antibody binding may have interfered with facilitation of reaction time during motor cancellation tasks seen in normal subjects. Normalization of reaction time facilitation corresponded to resolution of antibody-mediated interference in the molecular layer. Our study has provided evidence suggesting parallel fiber involvement in MFS, and suggested a role of anti-GQ1b IgG antibody in these changes.

  15. Anorectal dysfunction in constipated women with anorexia nervosa.

    Science.gov (United States)

    Chiarioni, G; Bassotti, G; Monsignori, A; Menegotti, M; Salandini, L; Di Matteo, G; Vantini, I; Whitehead, W E

    2000-10-01

    To evaluate anorectal and colonic function in a group of patients with anorexia nervosa complaining of chronic constipation. Twelve women (age range, 19-29 years) meeting the criteria for anorexia nervosa and complaining of chronic constipation were recruited for the study. A group of 12 healthy women served as controls. Colonic transit time was measured by a radiopaque marker technique. Anorectal manometry and a test of rectal sensation were carried out with use of standard techniques to measure pelvic floor dysfunction. A subgroup of 8 patients was retested after an adequate refeeding program was completed. Eight (66.7%) of 12 patients with anorexia nervosa had slow colonic transit times, while 5 (41.7%) had pelvic floor dysfunction. Colonic transit time normalized in the 8 patients who completed the 4-week refeeding program. However, pelvic floor dysfunction did not normalize in these patients. Patients with anorexia nervosa who complain of constipation have anorectal motor abnormalities. Delayed colonic transit time is probably due to abnormal eating behavior.

  16. Assessing Upper Extremity Motor Dysfunction Using an Augmented Reality Game

    NARCIS (Netherlands)

    Cidota, M.A.; Bank, Paulina J.M.; Ouwehand, P.W.; Lukosch, S.G.

    2017-01-01

    Advances in technology offer new opportunities for a better understanding of how different disorders affect motor function. In this paper, we explore the potential of an augmented reality (AR) game implemented using free hand and body tracking to develop a uniform, cost-effective and objective

  17. Multiple cranial neuropathies without limb involvements: guillain-barre syndrome variant?

    Science.gov (United States)

    Yu, Ju Young; Jung, Han Young; Kim, Chang Hwan; Kim, Hyo Sang; Kim, Myeong Ok

    2013-10-01

    Acute multiple cranial neuropathies are considered as variant of Guillain-Barre syndrome, which are immune-mediated diseases triggered by various cases. It is a rare disease which is related to infectious, inflammatory or systemic diseases. According to previous case reports, those affected can exhibit almost bilateral facial nerve palsy, then followed by bulbar dysfunctions (cranial nerves IX and X) accompanied by limb weakness and walking difficulties due to motor and/or sensory dysfunctions. Furthermore, reported cases of the acute multiple cranial neuropathies show electrophysiological abnormalities compatible with the typical Guillain-Barre syndromes (GBS). We recently experienced a patient with a benign infectious disease who subsequently developed symptoms of variant GBS. Here, we describe the case of a 48-year-old male patient who developed multiple symptoms of cranial neuropathy without limb weakness. His laboratory findings showed a positive result for anti-GQ1b IgG antibody. As compared with previously described variants of GBS, the patient exhibited widespread cranial neuropathy, which included neuropathies of cranial nerves III-XII, without limb involvement or ataxia.

  18. Hemispheric Lateralization of Motor Thresholds in Relation to Stuttering

    Science.gov (United States)

    Alm, Per A.; Karlsson, Ragnhild; Sundberg, Madeleine; Axelson, Hans W.

    2013-01-01

    Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS). This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry) and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15) and in controls (n = 15). In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026), with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049). The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control. PMID:24146930

  19. Hemispheric lateralization of motor thresholds in relation to stuttering.

    Directory of Open Access Journals (Sweden)

    Per A Alm

    Full Text Available Stuttering is a complex speech disorder. Previous studies indicate a tendency towards elevated motor threshold for the left hemisphere, as measured using transcranial magnetic stimulation (TMS. This may reflect a monohemispheric motor system impairment. The purpose of the study was to investigate the relative side-to-side difference (asymmetry and the absolute levels of motor threshold for the hand area, using TMS in adults who stutter (n = 15 and in controls (n = 15. In accordance with the hypothesis, the groups differed significantly regarding the relative side-to-side difference of finger motor threshold (p = 0.0026, with the stuttering group showing higher motor threshold of the left hemisphere in relation to the right. Also the absolute level of the finger motor threshold for the left hemisphere differed between the groups (p = 0.049. The obtained results, together with previous investigations, provide support for the hypothesis that stuttering tends to be related to left hemisphere motor impairment, and possibly to a dysfunctional state of bilateral speech motor control.

  20. Exercise-induced ventricular arrhythmias and vagal dysfunction in Chagas disease patients with no apparent cardiac involvement

    Directory of Open Access Journals (Sweden)

    Henrique Silveira Costa

    2015-04-01

    Full Text Available INTRODUCTION : Exercise-induced ventricular arrhythmia (EIVA and autonomic imbalance are considered as early markers of heart disease in Chagas disease (ChD patients. The objective of the present study was to verify the differences in the occurrence of EIVA and autonomic maneuver indexes between healthy individuals and ChD patients with no apparent cardiac involvement. METHODS : A total of 75 ChD patients with no apparent cardiac involvement, aged 44.7 (8.5 years, and 38 healthy individuals, aged 44.0 (9.2 years, were evaluated using echocardiography, symptom-limited treadmill exercise testing and autonomic function tests. RESULTS : The occurrence of EIVA was higher in the chagasic group (48% than in the control group (23.7% during both the effort and the recovery phases. Frequent ventricular contractions occurred only in the patient group. Additionally, the respiratory sinus arrhythmia index was significantly lower in the chagasic individuals compared with the control group. CONCLUSIONS : ChD patients with no apparent cardiac involvement had a higher frequency of EIVA as well as more vagal dysfunction by respiratory sinus arrhythmia. These results suggest that even when asymptomatic, ChD patients possess important arrhythmogenic substrates and subclinical disease.

  1. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  2. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  3. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study

    Directory of Open Access Journals (Sweden)

    Koeneke Susan

    2007-08-01

    Full Text Available Abstract Background Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1 in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Methods Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools or the external strategy (e.g. pictures of houses or abstract figures. The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself. Single-pulse Transcranial Magnetic Stimulation (TMS was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs at the right hand muscle. Results Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. Conclusion This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  4. Different strategies do not moderate primary motor cortex involvement in mental rotation: a TMS study.

    Science.gov (United States)

    Bode, Stefan; Koeneke, Susan; Jäncke, Lutz

    2007-08-07

    Regions of the dorsal visual stream are known to play an essential role during the process of mental rotation. The functional role of the primary motor cortex (M1) in mental rotation is however less clear. It has been suggested that the strategy used to mentally rotate objects determines M1 involvement. Based on the strategy hypothesis that distinguishes between an internal and an external strategy, our study was designed to specifically test the relation between strategy and M1 activity. Twenty-two subjects were asked to participate in a standard mental rotation task. We used specific picture stimuli that were supposed to trigger either the internal (e.g. pictures of hands or tools) or the external strategy (e.g. pictures of houses or abstract figures). The strategy hypothesis predicts an involvement of M1 only in case of stimuli triggering the internal strategy (imagine grasping and rotating the object by oneself). Single-pulse Transcranial Magnetic Stimulation (TMS) was employed to quantify M1 activity during task performance by measuring Motor Evoked Potentials (MEPs) at the right hand muscle. Contrary to the strategy hypothesis, we found no interaction between stimulus category and corticospinal excitability. Instead, corticospinal excitability was generally increased compared with a resting baseline although subjects indicated more frequent use of the external strategy for all object categories. This finding suggests that M1 involvement is not exclusively linked with the use of the internal strategy but rather directly with the process of mental rotation. Alternatively, our results might support the hypothesis that M1 is active due to a 'spill-over' effect from adjacent brain regions.

  5. Motor and non-motor symptoms in old-age onset Parkinson's disease patients.

    Science.gov (United States)

    Mendonça, Marcelo D; Lampreia, Tania; Miguel, Rita; Caetano, André; Barbosa, Raquel; Bugalho, Paulo

    2017-07-01

    Advancing age is a well-known risk factor for Parkinson's disease (PD). With population ageing it is expected that the total number of patients with PD onset at oldage increases. Information on the motor but particularly on non-motor phenotype of this late-onset population is lacking. We recruited 24 patients with PD onset at or over 75 years. Each patient was matched with 1 control patient with PD onset between the ages of 40 and 65 and matched for disease duration. Both groups were assessed with the UPDRS, the Non-motor symptoms scale (NMSS) and other scales to assess non-motor symptoms. Groups were compared with conditional logistic regression analysis. Old-age onset PD was, on average, 80 years at the time of PD onset while middle-age onset were 59. Disease duration was approximately 5 years in both groups. While no difference was observed in the total UPDRS-III scores, old-age onset PD was associated with higher axial symptoms (7.42 vs. 4.63, p = 0.011) and a higher frequency of dementia (7/24 vs. 0/24, p = 0.009). While no difference in the total number of non-motor symptoms was observed (6.79 vs. 6.22, p = 0.310), old-age onset patients had a higher prevalence of gastrointestinal symptoms (20/24 vs. 12/24, p = 0.037). For the same disease duration, older age onset is associated with worse axial motor dysfunction and dementia in PD patients. Beside gastrointestinal symptoms, non-motor symptoms are not associated with age.

  6. Neuroanatomy and Physiology of Brain Dysfunction in Sepsis.

    Science.gov (United States)

    Mazeraud, Aurelien; Pascal, Quentin; Verdonk, Franck; Heming, Nicholas; Chrétien, Fabrice; Sharshar, Tarek

    2016-06-01

    Sepsis-associated encephalopathy (SAE), a complication of sepsis, is often complicated by acute and long-term brain dysfunction. SAE is associated with electroencephalogram pattern changes and abnormal neuroimaging findings. The major processes involved are neuroinflammation, circulatory dysfunction, and excitotoxicity. Neuroinflammation and microcirculatory alterations are diffuse, whereas excitotoxicity might occur in more specific structures involved in the response to stress and the control of vital functions. A dysfunction of the brainstem, amygdala, and hippocampus might account for the increased mortality, psychological disorders, and cognitive impairment. This review summarizes clinical and paraclinical features of SAE and describes its mechanisms at cellular and structural levels. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  8. [Motor system physiotherapy of the masticatory organ].

    Science.gov (United States)

    Jagucka-Metel, Wioletta; Brzeska, Paulina; Sobolewska, Ewa; Machoy-Mokrzyńska, Anna; Baranowska, Agata

    2013-01-01

    The motor system of the masticatory organ is a complex morphological and functional structure. Its dysfunctions are manifested by various symptoms within the masticatory apparatus and in distant organs. The paper presents a discussion on the physiotherapeutic procedure for the treatment of disorders in the motor system of the masticatory organ. Therapeutic methods are presented, including: massage, trigger point therapy, kinesitherapy, biofeedback, manual therapy, postural re-education, kinesiotaping, physical interventions (TENS, hyaluronidase iontophoresis, ultrasound, laser therapy, and magnetoledotherapy). The paper points out the role of a comprehensive approach to the patient in order to eliminate the cause of disorders, going beyond symptomatic treatment.

  9. Auditory-Motor Interactions in Pediatric Motor Speech Disorders: Neurocomputational Modeling of Disordered Development

    Science.gov (United States)

    Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.

    2014-01-01

    Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630

  10. Hierarchy of Dysfunction Related to Dressing Performance in Stroke Patients: A Path Analysis Study.

    Science.gov (United States)

    Fujita, Takaaki; Nagayama, Hirofumi; Sato, Atsushi; Yamamoto, Yuichi; Yamane, Kazuhiro; Otsuki, Koji; Tsuchiya, Kenji; Tozato, Fusae

    2016-01-01

    Previous reports indicated that various dysfunctions caused by stroke affect the level of independence in dressing. These dysfunctions can be hierarchical, and these effects on dressing performance can be complicated in stroke patients. However, there are no published reports focusing on the hierarchical structure of the relationships between the activities of daily living and balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits. The purpose of this study was to elucidate the hierarchical and causal relationships between dressing performance and these dysfunctions in stroke patients. This retrospective study included 104 first-time stroke patients. The causal relationship between the dressing performance and age, time post stroke, balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits were examined using path analysis. A hypothetical path model was created based on previous studies, and the goodness of fit between the data and model were verified. A modified path model was created that achieved an almost perfect fit to the data. Balance function and abdominal muscle strength have direct effects on dressing performance, with standardized direct effect estimates of 0.78 and 0.15, respectively. Age, motor and sensory functions of the affected lower limb, and strength of abdominal muscle and knee extension on the unaffected side have indirect effects on dressing by influencing balance function. Our results suggest that dressing performance depends strongly on balance function, and it is mainly influenced by the motor function of the affected lower limb.

  11. Hierarchy of Dysfunction Related to Dressing Performance in Stroke Patients: A Path Analysis Study.

    Directory of Open Access Journals (Sweden)

    Takaaki Fujita

    Full Text Available Previous reports indicated that various dysfunctions caused by stroke affect the level of independence in dressing. These dysfunctions can be hierarchical, and these effects on dressing performance can be complicated in stroke patients. However, there are no published reports focusing on the hierarchical structure of the relationships between the activities of daily living and balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits. The purpose of this study was to elucidate the hierarchical and causal relationships between dressing performance and these dysfunctions in stroke patients. This retrospective study included 104 first-time stroke patients. The causal relationship between the dressing performance and age, time post stroke, balance function, motor and sensory functions of the affected lower limb, strength of the abdominal muscles and knee extension on the unaffected side, and visuospatial deficits were examined using path analysis. A hypothetical path model was created based on previous studies, and the goodness of fit between the data and model were verified. A modified path model was created that achieved an almost perfect fit to the data. Balance function and abdominal muscle strength have direct effects on dressing performance, with standardized direct effect estimates of 0.78 and 0.15, respectively. Age, motor and sensory functions of the affected lower limb, and strength of abdominal muscle and knee extension on the unaffected side have indirect effects on dressing by influencing balance function. Our results suggest that dressing performance depends strongly on balance function, and it is mainly influenced by the motor function of the affected lower limb.

  12. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajib Paul

    Full Text Available Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  13. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  14. Multiple Cranial Neuropathies Without Limb Involvements: Guillain-Barre Syndrome Variant?

    OpenAIRE

    Yu, Ju Young; Jung, Han Young; Kim, Chang Hwan; Kim, Hyo Sang; Kim, Myeong Ok

    2013-01-01

    Acute multiple cranial neuropathies are considered as variant of Guillain-Barre syndrome, which are immune-mediated diseases triggered by various cases. It is a rare disease which is related to infectious, inflammatory or systemic diseases. According to previous case reports, those affected can exhibit almost bilateral facial nerve palsy, then followed by bulbar dysfunctions (cranial nerves IX and X) accompanied by limb weakness and walking difficulties due to motor and/or sensory dysfunction...

  15. Biology of Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Anil Kumar Mysore Nagaraj

    2009-05-01

    Full Text Available Sexual activity is a multifaceted activity, involving complex interactions between the nervous system, the endocrine system, the vascular system and a variety of structures that are instrumental in sexual excitement, intercourse and satisfaction. Sexual function has three components i.e., desire, arousal and orgasm. Many sexual dysfunctions can be categorized according to the phase of sexual response that is affected. In actual clinical practice however, sexual desire, arousal and orgasmic difficulties more often than not coexist, suggesting an integration of phases. Sexual dysfunction can result from a wide variety of psychological and physiological causes including derangements in the levels of sex hormones and neurotrensmitters. This review deals with the biology of different phases of sexual function as well as implications of hormones and neurotransmitters in sexual dysfunction

  16. Effect of different modes of therapy on vestibular and balance dysfunction in Parkinson’s disease

    OpenAIRE

    El-Kholy, Wafaa Abdel-Hay; Taha, Hesham Mohamed; Hamada, Soha Mohamed; Sayed, Mona Abdel-Fattah

    2015-01-01

    Background: Patients with Parkinson’s disease (PD) have difficulties in performing various motor tasks such as walking, writing and speaking, together with significant balance dysfunction. Despite gains made in the field of pharmacotherapy and deep brain stimulation, dopaminergic medications may produce a limited improvement in postural stability. Sustained improvement in motor skills can be achieved through physiotherapy. Aim of the work: To measure the effect of different modes of therap...

  17. DIAGNOSIS AND THERAPY OF MOTOR DISTURBANCES IN CHILDREN WITH AUTISM

    Directory of Open Access Journals (Sweden)

    Neli VASILEVA

    2012-09-01

    Full Text Available The paper reveals uncommonly examined aspects concerning the specifics of the motor de­velopment in the children with autistic spectrum disorders and the problems regarding their diagnostics and the­ra­py. An analytical theory of the autistic disorders is des­cribed, connecting autism with disorders in the ba­sic levels of affective behavioral regulation. The re­port in­cludes a classification of the groups of autis­tic children, each of which demonstrates spe­ci­fic motor dysfunctions. Furthermore, the paper ana­ly­zes and recommends methodo­lo­gi­cal approaches to motor therapy which will help improve the de­ve­lop­ment of different motor skills.

  18. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan, E-mail: jelly_66@126.com; Fan, Guo Guang, E-mail: cjr.fanguoguang@vip.163.com; Xu, Ke, E-mail: cjr.xuke@vip.163.com; Wang, Ci, E-mail: xiangxuehai19850224@yahoo.cn

    2014-06-15

    Purpose: To investigate the microstructural integrity of superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP) by using DTI tractography method, and further to detect whether the microstructural integrity of these major cerebellar pathways is related to motor function in children with diffuse periventricular leucomalacia (PVL) born preterm. Materials and methods: 46 children with diffuse PVL (30 males and 16 females; age range 3–48 months; mean age 22.4 ± 6.7 months; mean gestational age 30.5 ± 2.2 weeks) and 40 healthy controls (27 males and 13 females; age range 3.5–48 months; mean age 22.1 ± 5.8 months) were enrolled in this study. DTI outcome measurements, fractional anisotropy (FA), for the SCP, MCP and cortical spinal tract (CST) were calculated. The gross motor function classification system (GMFCS) was used for assessing motor functions. Results: Compared to the controls, patients with diffuse PVL had a significantly lower FA in bilateral SCP, MCP and CST. There was a significant negative correlation between GMFCS levels and FA in bilateral SCP, MCP and CST in the patients group. In addition, significant inverse correlation of FA value was found between not only the contralateral but also the ipsilateral CST and SCP/MCP. Conclusions: These findings suggest that the injury of SCP and MCP may contribute to the motor dysfunction of diffuse PVL. Moreover, the correlations we found between supratentorial and subtentorial injured white matter extend our knowledge about the cerebro-cerebellar white matter interaction in children with diffuse PVL.

  19. Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: A DTI tractography study

    International Nuclear Information System (INIS)

    Wang, Shanshan; Fan, Guo Guang; Xu, Ke; Wang, Ci

    2014-01-01

    Purpose: To investigate the microstructural integrity of superior cerebellar peduncles (SCP) and middle cerebellar peduncles (MCP) by using DTI tractography method, and further to detect whether the microstructural integrity of these major cerebellar pathways is related to motor function in children with diffuse periventricular leucomalacia (PVL) born preterm. Materials and methods: 46 children with diffuse PVL (30 males and 16 females; age range 3–48 months; mean age 22.4 ± 6.7 months; mean gestational age 30.5 ± 2.2 weeks) and 40 healthy controls (27 males and 13 females; age range 3.5–48 months; mean age 22.1 ± 5.8 months) were enrolled in this study. DTI outcome measurements, fractional anisotropy (FA), for the SCP, MCP and cortical spinal tract (CST) were calculated. The gross motor function classification system (GMFCS) was used for assessing motor functions. Results: Compared to the controls, patients with diffuse PVL had a significantly lower FA in bilateral SCP, MCP and CST. There was a significant negative correlation between GMFCS levels and FA in bilateral SCP, MCP and CST in the patients group. In addition, significant inverse correlation of FA value was found between not only the contralateral but also the ipsilateral CST and SCP/MCP. Conclusions: These findings suggest that the injury of SCP and MCP may contribute to the motor dysfunction of diffuse PVL. Moreover, the correlations we found between supratentorial and subtentorial injured white matter extend our knowledge about the cerebro-cerebellar white matter interaction in children with diffuse PVL

  20. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: A clinical and brain imaging review

    NARCIS (Netherlands)

    van der Graaff, M. M.; de Jong, J. M. B. V.; Baas, F.; de Visser, M.

    2009-01-01

    There is an ongoing discussion whether ALS is primarily a disease of upper motor neurons or lower motor neurons. We undertook a review to assess how new insights have contributed to solve this controversy. For this purpose we selected relevant publications from 1995 onwards focussing on (1) primary

  1. The electric motor handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, R.W.; Feltham, P. (eds.)

    2004-05-01

    This handbook outlines the important role that electric motors play in modern society. It covers the field of motor applications from various motor types to their use and repair. It also presents practical applications of electric motors and methods on motor efficiency. More than half of all electricity generated, and 75 per cent of all industrial electricity consumption is consumed by electric motors. Electrical personnel must be aware of all factors involved in electric motors in order to choose and apply the appropriate size of electric motor. These factors include efficiency, sizing and proper application. The efficient use and maximum life expectancy of electric motors depends on proper motor protection, control and maintenance. This handbook includes articles from leading experts on electric motors in modern electrical systems. The content includes: design considerations; proper electric motor sizing techniques; optimal electric motor application; electric motor protection technology; electric motor control principles; electric motor maintenance and troubleshooting; induction electric motors; electric motor bearing currents; electric motor bearing lubrication; electromagnetism; electric motor enclosures; electric motor testing; electric motor repair; DC electric motor; electric motor starters; electric motor brushes; industrial electric motors; electric motor diagrams; AC electric motors; electric motor wiring; electric motor service; electric motor rewinding; electric motor winding; diagram of electric motor wiring; electric motor kit; and, troubleshooting electric motors. A directory of motor manufacturers and suppliers was also included. refs., tabs., figs.

  2. Fundamental Principles underlying Motor Reflexes

    NARCIS (Netherlands)

    K. Zhou (Kuikui)

    2017-01-01

    markdownabstractThe cerebellum has been suggested to be involved in motor control ever since the early 19th century. The motor control ranges from timing and strength of simple reflexes to multiple joint/limb coordination and complex motor sequence acquisition. The current thesis discusses the

  3. Radiation-induced erectile dysfunction: Recent advances and future directions

    Directory of Open Access Journals (Sweden)

    Javed Mahmood, PhD

    2016-07-01

    Full Text Available Prostate cancer is one of the most prevalent cancers and the second leading cause of cancer-related deaths in men in the United States. A large number of patients undergo radiation therapy (RT as a standard care of treatment; however, RT causes erectile dysfunction (radiation-induced erectile dysfunction; RiED because of late side effects after RT that significantly affects quality of life of prostate cancer patients. Within 5 years of RT, approximately 50% of patients could develop RiED. Based on the past and current research findings and number of publications from our group, the precise mechanism of RiED is under exploration in detail. Recent investigations have shown prostate RT induces significant morphologic arterial damage with aberrant alterations in internal pudendal arterial tone. Prostatic RT also reduces motor function in the cavernous nerve which may attribute to axonal degeneration may contributing to RiED. Furthermore, the advances in radiogenomics such as radiation induced somatic mutation identification, copy number variation and genome-wide association studies has significantly facilitated identification of biomarkers that could be used to monitoring radiation-induced late toxicity and damage to the nerves; thus, genomic- and proteomic-based biomarkers could greatly improve treatment and minimize arterial tissue and nerve damage. Further, advanced technologies such as proton beam therapy that precisely target tumor and significantly reduce off-target damage to vital organs and healthy tissues. In this review, we summarize recent advances in RiED research and novel treatment modalities for RiED. We also discuss the possible molecular mechanism involved in the development of RiED in prostate cancer patients. Further, we discuss various readily available methods as well as novel strategies such as stem cell therapies, shockwave therapy, nerve grafting with tissue engineering, and nutritional supplementations might be used to

  4. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    Science.gov (United States)

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Severity of motor dysfunction in children with cerebral palsy seen in ...

    African Journals Online (AJOL)

    GMD) of varying degrees of severity. The Gross Motor Function Classification System (GMFCS) is widely used internationally to classify children with CP into functional severity levels. There are few reports on the use of GMFCS in Nigeria to ...

  6. Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor.

    Science.gov (United States)

    Migliori, Amy D; Smith, Douglas E; Arya, Gaurav

    2014-12-12

    Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Physical therapy performance in respiratory and motor involvement during postoperative in children submitted to abdominal surgeries].

    Science.gov (United States)

    Santo, Caroline C; Gonçalves, Marcela T; Piccolo, Mariana M; Lima, Simone; Rosa, George J da; Paulin, Elaine; Schivinski, Camila S

    2011-01-01

    to verify the physiotherapy performance in the respiratory and motor affections during postoperative period in pediatric patients undergoing abdominal surgery. was a literature review of articles published in the databases Lilacs, Medline and SciELO in the period 1983 to 2010 as well as books, papers presented at scientific meetings and journals of the area, who approached the post-therapy of abdominal surgery in children. The keywords used were: abdominal surgery, children and physiotherapy. 28 articles, one book chapter and one dissertation had been selected that examined the question and proposed that contained all, or at least two of the descriptors listed. Most of the material included covers the incidence of respiratory complications after surgery for pediatric abdominal surgery due to immaturity of the respiratory system of this population, abdominal manipulation of surgical period, the prolonged time in bed, pain at the incision site and waste anesthetic. Some authors also discuss the musculoskeletal and connective tissue arising from the inaction and delay of psychomotor development consequent to periods of hospitalization in early childhood, taking on the role of physiotherapy to prevent motor and respiratory involvement. there are few publications addressing this topic, but the positive aspects of physiotherapy have been described, especially in relation to the prevention of respiratory complications and motor, recognized the constraints and consequences of hospitalizations and surgeries cause in children.

  8. Concurrent word generation and motor performance: further evidence for language-motor interaction.

    Directory of Open Access Journals (Sweden)

    Amy D Rodriguez

    Full Text Available Embodied/modality-specific theories of semantic memory propose that sensorimotor representations play an important role in perception and action. A large body of evidence supports the notion that concepts involving human motor action (i.e., semantic-motor representations are processed in both language and motor regions of the brain. However, most studies have focused on perceptual tasks, leaving unanswered questions about language-motor interaction during production tasks. Thus, we investigated the effects of shared semantic-motor representations on concurrent language and motor production tasks in healthy young adults, manipulating the semantic task (motor-related vs. nonmotor-related words and the motor task (i.e., standing still and finger-tapping. In Experiment 1 (n = 20, we demonstrated that motor-related word generation was sufficient to affect postural control. In Experiment 2 (n = 40, we demonstrated that motor-related word generation was sufficient to facilitate word generation and finger tapping. We conclude that engaging semantic-motor representations can have a reciprocal influence on motor and language production. Our study provides additional support for functional language-motor interaction, as well as embodied/modality-specific theories.

  9. 41 CFR 102-34.290 - What forms do I use to report a crash involving a domestic fleet motor vehicle?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What forms do I use to report a crash involving a domestic fleet motor vehicle? 102-34.290 Section 102-34.290 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT...

  10. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  11. Neuroimaging to Investigate Multisystem Involvement and Provide Biomarkers in Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Pradat, Pierre-François; El Mendili, Mohamed-Mounir

    2014-01-01

    Neuroimaging allows investigating the extent of neurological systems degeneration in amyotrophic lateral sclerosis (ALS). Advanced MRI methods can detect changes related to the degeneration of upper motor neurons but have also demonstrated the participation of other systems such as the sensory system or basal ganglia, demonstrating in vivo that ALS is a multisystem disorder. Structural and functional imaging also allows studying dysfunction of brain areas associated with cognitive signs. From a biomarker perspective, numerous studies using diffusion tensor imaging showed a decrease of fractional anisotropy in the intracranial portion of the corticospinal tract but its diagnostic value at the individual level remains limited. A multiparametric approach will be required to use MRI in the diagnostic workup of ALS. A promising avenue is the new methodological developments of spinal cord imaging that has the advantage to investigate the two motor system components that are involved in ALS, that is, the lower and upper motor neuron. For all neuroimaging modalities, due to the intrinsic heterogeneity of ALS, larger pooled banks of images with standardized image acquisition and analysis procedures are needed. In this paper, we will review the main findings obtained with MRI, PET, SPECT, and nuclear magnetic resonance spectroscopy in ALS. PMID:24949452

  12. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.

    Science.gov (United States)

    Naughton, Carol; O'Toole, Daniel; Kirik, Deniz; Dowd, Eilís

    2017-01-01

    In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV 2/5- GFP or AAV 2/5 -α-synuclein. Post viral motor function was assessed at 8, 10 and 12 weeks in the Corridor, Stepping and Whisker tests of lateralised motor function. At week 12, animals were performance-matched to receive a subsequent intra-striatal challenge of the organic pesticide rotenone (or its vehicle) to yield four final groups (Control, Rotenone, AAV 2/5 -α-synuclein and Combined). Behavioural testing resumed one week after rotenone surgery and continued for 5 weeks. We found that, when administered alone, neither intra-nigral AAV-α-synuclein nor intra-striatal rotenone caused sufficient nigrostriatal neurodegeneration to induce a significant motor impairment in their own right. However, when these were administered sequentially to the same rats, the interaction between the two Parkinsonian challenges significantly exacerbated nigrostriatal neurodegeneration which precipitated a pronounced impairment in motor function. These results indicate that exposing rats with a subclinical α-synuclein-induced pathology to the pesticide, rotenone, profoundly exacerbates their Parkinsonian

  13. Towards Engaging Upper Extremity Motor Dysfunction Assessment Using Augmented Reality Games

    NARCIS (Netherlands)

    Cidota, M.A.; Lukosch, S.G.; Bank, Paulina J.M.; Ouwehand, P.W.

    2017-01-01

    Advances in technology offer new opportunities for a better understanding of how different disorders affect motor function. Our aim is to explore the potential of augmented reality (AR) using free hand and body tracking to develop engaging games for a uniform, cost-effective and objective evaluation

  14. SEXUAL DYSFUNCTION ASSOCIATION WITH THE CHRONIC BACTERIAL PROSTATITIS

    Directory of Open Access Journals (Sweden)

    H. S. Ibishev

    2013-01-01

    Full Text Available The study involved 230 patients aged 20 to 45 years with a diagnosis of chronic bacterial prostatitis. The study found that in patients with chronic bacterial prostatitis clinical picture, in addition to pain, is a lower urinary tract symptoms, neuro-vegetative and sexual dysfunction. In patients with chronic bacterial prostatitis, recorded various sexual disorders, most of which are normalized after antibiotic therapy. Erectile dysfunction, which are recorded in patients with chronic bacterial prostatitis is psychogenic in nature dysfunction.

  15. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease.

    Science.gov (United States)

    Zuo, Li-Jun; Yu, Shu-Yang; Hu, Yang; Wang, Fang; Piao, Ying-Shan; Lian, Teng-Hong; Yu, Qiu-Jin; Wang, Rui-Dan; Li, Li-Xia; Guo, Peng; Du, Yang; Zhu, Rong-Yan; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2016-12-21

    Fatigue is a very common non-motor symptom in Parkinson disease (PD) patients. It included physical fatigue and mental fatigue. The potential mechanisms of mental fatigue involving serotonergic dysfunction and abnormal iron metabolism are still unknown. Therefore, we evaluated the fatigue symptoms, classified PD patients into fatigue group and non-fatigue group, and detected the levels of serotonin, iron and related proteins in CSF and serum. In CSF, 5-HT level is significantly decreased and the levels of iron and transferrin are dramatically increased in fatigue group. In fatigue group, mental fatigue score is negatively correlated with 5-HT level in CSF, and positively correlated with the scores of depression and excessive daytime sleepiness, and disease duration, also, mental fatigue is positively correlated with the levels of iron and transferrin in CSF. Transferrin level is negatively correlated with 5-HT level in CSF. In serum, the levels of 5-HT and transferrin are markedly decreased in fatigue group; mental fatigue score exhibits a negative correlation with 5-HT level. Thus serotonin dysfunction in both central and peripheral systems may be correlated with mental fatigue through abnormal iron metabolism. Depression, excessive daytime sleepiness and disease duration were the risk factors for mental fatigue of PD.

  16. Perceptual-motor functioning in children with phenylketonuria.

    Science.gov (United States)

    Koff, E; Boyle, P; Pueschel, S M

    1977-10-01

    Children with treated phenylketonuria (PKU) have been described as being at high risk for perceptual-motor dysfunction. In this study, the Wechsler Intelligence Scale for Children (WISC) and the Bender Gestalt test were administered to 19 school age children with treated PKU and of average intelligence who have been off diet from five months to six years four months. Perceptual-motor performance was evaluated, and school functioning was rated by classroom teachers. Substantial impairment of perceptual-motor functioning as measured by the Bender Gestalt test and lower WISC performance IQs than verbal IQs were observed in children of average intelligence. Quality of dietary control was found to be associated with performance on the Bender Gestalt test. These findings suggest the possibility of a specific deficit that could seriously interfere with academic progress, but which is not signalled by obvious impairment of overall intellectual functioning.

  17. A valuable animal model of spinal cord injury to study motor dysfunctions, comorbid conditions, and aging associated diseases.

    Science.gov (United States)

    Rouleau, Pascal; Guertin, Pierre A

    2013-01-01

    Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.

  18. Factors associated with the severity of motor impairment in children ...

    African Journals Online (AJOL)

    The purpose of this study was to assess the relation between the severity of gross motor dysfunction (GMD) and certain factors such as the type of CP, aetiology of CP, nutrition, socioeconomic class (SEC), and the frequency of these accompanying impairments like visual, auditory, cognitive and speech impairments.

  19. DIAGNOSIS AND THERAPY OF MOTOR DISTURBANCES IN CHILDREN WITH AUTISM

    OpenAIRE

    VASILEVA Neli

    2015-01-01

    The paper reveals uncommonly examined aspects concerning the specifics of the motor de­velopment in the children with autistic spectrum disorders and the problems regarding their diagnostics and the­ra­py. An analytical theory of the autistic disorders is des­cribed, connecting autism with disorders in the ba­sic levels of affective behavioral regulation. The re­port in­cludes a classification of the groups of autis­tic children, each of which demonstrates spe­ci­fic motor dysfunctions. Furth...

  20. Basal ganglia-dependent processes in recalling learned visual-motor adaptations.

    Science.gov (United States)

    Bédard, Patrick; Sanes, Jerome N

    2011-03-01

    Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory-motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior work has mostly focused on the learning process. A current model suggests that basal ganglia, cerebellum, and their neocortical targets actively participate in forming new IMs but that a cerebellar cortical network would mediate automatization. However, a recent study (Marinelli et al. 2009) reported that patients with Parkinson's disease (PD), who have basal ganglia dysfunction, had similar adaptation rates as controls but demonstrated no savings at recall tests (24 and 48 h). Here, we assessed whether a longer training session, a feature known to increase long-term retention of IM in healthy individuals, could allow PD patients to demonstrate savings. We recruited PD patients and age-matched healthy adults and used a visual-motor adaptation paradigm similar to the study by Marinelli et al. (2009), doubling the number of training trials and assessed recall after a short and a 24-h delay. We hypothesized that a longer training session would allow PD patients to develop an enhanced representation of the IM as demonstrated by savings at the recall tests. Our results showed that PD patients had similar adaptation rates as controls but did not demonstrate savings at both recall tests. We interpret these results as evidence that fronto-striatal networks have involvement in the early to late phase of motor memory formation, but not during initial learning.

  1. Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies.

    Science.gov (United States)

    Palma, Jose-Alberto; Kaufmann, Horacio

    2018-03-01

    Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  2. Changes in neural circuitry associated with depression at pre-clinical, pre-motor and early motor phases of Parkinson's disease.

    Science.gov (United States)

    Borgonovo, Janina; Allende-Castro, Camilo; Laliena, Almudena; Guerrero, Néstor; Silva, Hernán; Concha, Miguel L

    2017-02-01

    Although Parkinson's Disease (PD) is mostly considered a motor disorder, it can present at early stages as a non-motor pathology. Among the non-motor clinical manifestations, depression shows a high prevalence and can be one of the first clinical signs to appear, even a decade before the onset of motor symptoms. Here, we review the evidence of early dysfunction in neural circuitry associated with depression in the context of PD, focusing on pre-clinical, pre-motor and early motor phases of the disease. In the pre-clinical phase, structural and functional changes in the substantia nigra, basal ganglia and limbic structures are already observed. Some of these changes are linked to motor compensation mechanisms while others correspond to pathological processes common to PD and depression and thus could underlie the appearance of depressive symptoms during the pre-motor phase. Studies of the early motor phase (less than five years post diagnosis) reveal an association between the extent of damage in different monoaminergic systems and the appearance of emotional disorders. We propose that the limbic loop of the basal ganglia and the lateral habenula play key roles in the early genesis of depression in PD. Alterations in the neural circuitry linked with emotional control might be sensitive markers of the ongoing neurodegenerative process and thus may serve to facilitate an early diagnosis of this disease. To take advantage of this, we need to improve the clinical criteria and develop biomarkers to identify depression, which could be used to determine individuals at risk to develop PD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The neural career of sensory-motor metaphors.

    Science.gov (United States)

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Mano, Quintino R; Seidenberg, Mark S

    2011-09-01

    The role of sensory-motor systems in conceptual understanding has been controversial. It has been proposed that many abstract concepts are understood metaphorically through concrete sensory-motor domains such as actions. Using fMRI, we compared neural responses with literal action (Lit; The daughter grasped the flowers), metaphoric action (Met; The public grasped the idea), and abstract (Abs; The public understood the idea) sentences of varying familiarity. Both Lit and Met sentences activated the left anterior inferior parietal lobule, an area involved in action planning, with Met sentences also activating a homologous area in the right hemisphere, relative to Abs sentences. Both Met and Abs sentences activated the left superior temporal regions associated with abstract language. Importantly, activation in primary motor and biological motion perception regions was inversely correlated with Lit and Met familiarity. These results support the view that the understanding of metaphoric action retains a link to sensory-motor systems involved in action performance. However, the involvement of sensory-motor systems in metaphor understanding changes through a gradual abstraction process whereby relatively detailed simulations are used for understanding unfamiliar metaphors, and these simulations become less detailed and involve only secondary motor regions as familiarity increases. Consistent with these data, we propose that anterior inferior parietal lobule serves as an interface between sensory-motor and conceptual systems and plays an important role in both domains. The similarity of abstract and metaphoric sentences in the activation of left superior temporal regions suggests that action metaphor understanding is not completely based on sensory-motor simulations but relies also on abstract lexical-semantic codes.

  4. Association Between Infertility and Sexual Dysfunction in Men and Women.

    Science.gov (United States)

    Berger, Michael H; Messore, Marisa; Pastuszak, Alexander W; Ramasamy, Ranjith

    2016-10-01

    The relation between infertility and sexual dysfunction can be reciprocal. Causes of sexual dysfunction that affect fertility include erectile dysfunction, Peyronie's disease (abnormal penile curvature), low libido, ejaculatory disorders in men, and genito-pelvic pain/penetration disorder (GPPPD) and low sexual desire in women. To review the association between infertility and sexual dysfunction and discuss current management strategies to address sexual disorders in couples with infertility. Peer-reviewed publications from PubMed published from 1980 through February 2016 were identified that related to sexual dysfunction and infertility in men and women. Pathophysiology and management approach of erectile dysfunction, Peyronie's disease, low libido, ejaculatory disorders in men, and GPPPD and low sexual desire in women and how each etiology contributes to sexual dysfunction and infertility in the couple. Treating the infertile couple with sexual dysfunction involves addressing underlying conditions such as psychogenic erectile dysfunction, low testosterone, Peyronie's disease in men, and GPPPD and low sexual desire in women. Psychogenic erectile dysfunction can be successfully treated with phosphodiesterase inhibitors. Low testosterone is often identified in men with infertility, but testosterone therapy is contraindicated in men attempting conception. Men with Peyronie's disease have a new treatment option to address their penile curvature-collagenase Clostridium histolyticum injection directly into the penile plaque. GPPPD is a broad disorder that includes vulvodynia and vaginismus and can be treated with topical lubricants and moisturizers. We must address psychosocial factors in women with low sexual desire. Flibanserin and transdermal testosterone (off-label) are novel therapies for women with low sexual desire. Sexual dysfunction in a couple with infertility is a complex issue. Management of infertility and sexual dysfunction should involve appropriate

  5. Motor and Executive Function Profiles in Adult Residents ...

    Science.gov (United States)

    Objective: Exposure to elevated levels of manganese (Mn) may be associated with tremor, motor and executive dysfunction (EF), clinically resembling Parkinson’s disease (PD). PD research has identified tremor-dominant (TD) and non-tremor dominant (NTD) profiles. NTD PD presents with bradykinesia, rigidity, and postural sway, and is associated with EF impairment with lower quality of life (QoL). Presence and impact of tremor, motor, and executive dysfunction profiles on health-related QoL and life satisfaction were examined in air-Mn exposed residents of two Ohio, USA towns. Participants and Methods: From two Ohio towns exposed to air-Mn, 186 residents (76 males) aged 30-75 years were administered measures of EF (Animal Naming, ACT, Rey-O Copy, Stroop Color-Word, and Trails B), motor and tremor symptoms (UPDRS), QoL (BRFSS), life satisfaction (SWLS), and positive symptom distress (SCL-90-R). Air-Mn exposure in the two towns was modeled with 10 years of air-monitoring data. Cluster analyses detected the presence of symptom profiles by grouping together residents with similar scores on these measures. Results: Overall, mean air-Mn concentration for the two towns was 0.53 µg/m3 (SD=.92). Two-step cluster analyses identified TD and NTD symptom profiles. Residents in the NTD group lacked EF impairment; EF impairment represented a separate profile. An unimpaired group also emerged. The NTD and EF impairment groups were qualitatively similar, with relatively lo

  6. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Máximo Zimerman

    2015-10-01

    Interpretations: Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work.

  7. The role of sacroiliac joint dysfunction in the genesis of low back pain: the obvious is not always right.

    Science.gov (United States)

    Weksler, Natan; Velan, Gad J; Semionov, Michael; Gurevitch, Boris; Klein, Moti; Rozentsveig, Vsevolod; Rudich, Tzvia

    2007-12-01

    It is a common practice to the link low back pain with protruding disc even when neurological signs are absent. Because pain caused by sacroiliac joint dysfunction can mimic discogenic or radicular low back pain, we assumed that the diagnosis of sacroiliac joint dysfunction is frequently overlooked. To assess the incidence of sacroiliac joint dysfunction in patients with low back pain and positive disc findings on CT scan or MRI, but without claudication or objective neurological deficits. Fifty patients with low back pain and disc herniation, without claudication or neurological abnormalities such as decreased motor strength, sensory alterations or sphincter incontinence and with positive pain provocation tests for sacroiliac joint dysfunction were submitted to fluoroscopic diagnostic sacroiliac joint infiltration. The mean baseline VAS pain score was 7.8 +/- 1.77 (range 5-10). Thirty minutes after infiltration, the mean VAS score was 1.3 +/- 1.76 (median 0.000E+00 with an average deviation from median = 1.30) (P = 0.0002). Forty-six patients had a VAS score ranging from 0 to 3, 8 weeks after the fluoroscopic guided infiltration. There were no serious complications after treatment. An unanticipated motor block that required hospitalization was seen in four patients, lasting from 12 to 36 h. Sacroiliac joint dysfunction should be considered strongly in the differential diagnosis of low back pain in this group of patients.

  8. Working Memory Deficits After Lesions Involving the Supplementary Motor Area

    Directory of Open Access Journals (Sweden)

    Alba Cañas

    2018-05-01

    Full Text Available The Supplementary Motor Area (SMA—located in the superior and medial aspects of the superior frontal gyrus—is a preferential site of certain brain tumors and arteriovenous malformations, which often provoke the so-called SMA syndrome. The bulk of the literature studying this syndrome has focused on two of its most apparent symptoms: contralateral motor and speech deficits. Surprisingly, little attention has been given to working memory (WM even though neuroimaging studies have implicated the SMA in this cognitive process. Given its relevance for higher-order functions, our main goal was to examine whether WM is compromised in SMA lesions. We also asked whether WM deficits might be reducible to processing speed (PS difficulties. Given the connectivity of the SMA with prefrontal regions related to executive control (EC, as a secondary goal we examined whether SMA lesions also hampered EC. To this end, we tested 12 patients with lesions involving the left (i.e., the dominant SMA. We also tested 12 healthy controls matched with patients for socio-demographic variables. To ensure that the results of this study can be easily transferred and implemented in clinical practice, we used widely-known clinical neuropsychological tests: WM and PS were measured with their respective Wechsler Adult Intelligence Scale indexes, and EC was tested with phonemic and semantic verbal fluency tasks. Non-parametric statistical methods revealed that patients showed deficits in the executive component of WM: they were able to sustain information temporarily but not to mentally manipulate this information. Such WM deficits were not subject to patients' marginal PS impairment. Patients also showed reduced phonemic fluency, which disappeared after controlling for the influence of WM. This observation suggests that SMA damage does not seem to affect cognitive processes engaged by verbal fluency other than WM. In conclusion, WM impairment needs to be considered as part of

  9. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  10. How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise.

    Science.gov (United States)

    Ridderinkhof, K Richard; Brass, Marcel

    2015-01-01

    Kinesthetic Motor Imagery (KMI) is an important technique to acquire and refine motor skills. KMI is widely used by professional athletes as an effective way to improve motor performance without overt motor output. Despite this obvious relevance, the functional mechanisms and neural circuits involved in KMI in sports are still poorly understood. In the present article, which aims at bridging the sport sciences and cognitive neurophysiology literatures, we give a brief overview of relevant research in the field of KMI. Furthermore, we develop a theoretical account that relates KMI to predictive motor control theories assuming that it is based on internal activation of anticipatory images of action effects. This mechanism allows improving motor performance solely based on internal emulation of action. In accordance with previous literature, we propose that this emulation mechanism is implemented in brain regions that partially overlap with brain areas involved in overt motor performance including the posterior parietal cortex, the cerebellum, the basal ganglia and the premotor cortex. Finally, we outline one way to test the heuristic value of our theoretical framework for KMI; we suggest that experience with motor performance improves the ability to correctly infer the goals of others, in particular in penalty blocking in soccer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Motor Carrier Crash Data -

    Data.gov (United States)

    Department of Transportation — Contains data on large trucks and buses involved in Federally reportable crashes as per Title 49 U.S.C. Part 390.5 (crashes involving a commercial motor vehicle, and...

  12. Evaluating the influence of motor control on selective attention through a stochastic model: the paradigm of motor control dysfunction in cerebellar patient.

    Science.gov (United States)

    Veneri, Giacomo; Federico, Antonio; Rufa, Alessandra

    2014-01-01

    Attention allows us to selectively process the vast amount of information with which we are confronted, prioritizing some aspects of information and ignoring others by focusing on a certain location or aspect of the visual scene. Selective attention is guided by two cognitive mechanisms: saliency of the image (bottom up) and endogenous mechanisms (top down). These two mechanisms interact to direct attention and plan eye movements; then, the movement profile is sent to the motor system, which must constantly update the command needed to produce the desired eye movement. A new approach is described here to study how the eye motor control could influence this selection mechanism in clinical behavior: two groups of patients (SCA2 and late onset cerebellar ataxia LOCA) with well-known problems of motor control were studied; patients performed a cognitively demanding task; the results were compared to a stochastic model based on Monte Carlo simulations and a group of healthy subjects. The analytical procedure evaluated some energy functions for understanding the process. The implemented model suggested that patients performed an optimal visual search, reducing intrinsic noise sources. Our findings theorize a strict correlation between the "optimal motor system" and the "optimal stimulus encoders."

  13. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  14. Rational pharmacological approaches for cognitive dysfunction and depression in Parkinson's disease.

    Science.gov (United States)

    Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar

    2015-01-01

    Parkinson's disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) "Parkinson disease"; "Delirium," "Dementia," "Amnestic," "Cognitive disorders," and "Parkinson disease"; "depression," "major depressive disorder," "drug therapy." We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs.

  15. Motor and sensory function of the esophagus: revelations through ultrasound imaging.

    Science.gov (United States)

    Mittal, Ravinder K

    2005-04-01

    Catheter based high frequency intraluminal ultrasound (HFIUS) imaging is a powerful tool to study esophageal sensory and motor function and dysfunction in vivo in humans. It has provided a number of important insights into the longitudinal muscle function of the esophagus. Based on the ultrasound images and intraluminal pressure recordings, it is clear that there is synchrony in the timing as well as the amplitude of contraction between the circular and the longitudinal muscle layers of the esophagus in normal subjects. On the other hand, in patients with spastic disorders of the esophagus, there is an asynchrony of contraction related to the timing and amplitude of contraction of the two muscle layers during peristalsis. Achalasia, diffuse esophageal spasm, and nutcracker esophagus (spastic motor disorders of the esophagus) are associated with hypertrophy of the circular as well as longitudinal muscle layers. A sustained contraction of the longitudinal muscle of the esophagus is temporally related to chest pain and heartburn and may very well be the cause of symptoms. Longitudinal muscle function of the esophagus can be studied in vivo in humans using dynamic ultrasound imaging. Longitudinal muscle dysfunction appears to be important in the motor and sensory disorders of the esophagus.

  16. Movement does not promote recovery of motor output following acute experimental muscle pain

    DEFF Research Database (Denmark)

    Schabrun, Siobhan M.; Palsson, Thorvaldur Skuli; Thapa, Tribikram

    2018-01-01

    Objective.:  To examine the effect of motor activity on the magnitude and duration of altered corticomotor output following experimental muscle pain. Design. : Experimental, pre-post test. Setting. : University laboratory. Subjects. : Twenty healthy individuals. Methods.:  Participants were rando....... Understanding corticomotor depression in the postpain period and what factors promote recovery has relevance for clinical pain syndromes where ongoing motor dysfunction, in the absence of pain, may predispose to symptom persistence or recurrence....

  17. Association between autonomic dysfunction and fatigue in Parkinson disease.

    Science.gov (United States)

    Chou, Kelvin L; Gilman, Sid; Bohnen, Nicolaas I

    2017-06-15

    Fatigue is a disabling non-motor symptom in Parkinson disease (PD). We investigated the relationship between autonomic dysfunction and fatigue in PD while accounting for possible confounding factors. 29 subjects with PD (8F/21M; mean age 61.6±5.9; mean disease duration 4.8±3.0years), underwent clinical assessment and completed several non-motor symptom questionnaires, including a modified version of the Mayo Clinic Composite Autonomic Symptom Score (COMPASS) scale and the Fatigue Severity Scale (FSS). The mean modified COMPASS was 21.6±14.2 (range 1.7-44.2) and the mean FSS score was 3.3±1.6 (range 1.0-6.7). There was a significant bivariate relationship between the modified COMPASS and FSS scores (R=0.69, P<0.0001). Stepwise regression analysis was used to assess the specificity of the association between the modified COMPASS and FSS scores while accounting for possible confounder effects from other variables that were significantly associated with autonomic dysfunction. Results showed that the modified COMPASS (R 2 =0.52, F=28.4, P<0.0001) was highly associated with fatigue, followed by ESS (R 2 =0.13, F=8.4, P=0.008) but no other co-variates. Post-hoc analysis exploring the association between the different modified COMPASS autonomic sub-domain scores and FSS scores found significant regressor effects for the orthostatic intolerance (R 2 =0.45, F=21.2, P<0.0001) and secretomotor sub-domains (R 2 =0.09, F=4.8, P=0.04) but not for other autonomic sub-domains. Autonomic dysfunction, in particular orthostatic intolerance, is highly associated with fatigue in PD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluating the Influence of Motor Control on Selective Attention through a Stochastic Model: The Paradigm of Motor Control Dysfunction in Cerebellar Patient

    Directory of Open Access Journals (Sweden)

    Giacomo Veneri

    2014-01-01

    Full Text Available Attention allows us to selectively process the vast amount of information with which we are confronted, prioritizing some aspects of information and ignoring others by focusing on a certain location or aspect of the visual scene. Selective attention is guided by two cognitive mechanisms: saliency of the image (bottom up and endogenous mechanisms (top down. These two mechanisms interact to direct attention and plan eye movements; then, the movement profile is sent to the motor system, which must constantly update the command needed to produce the desired eye movement. A new approach is described here to study how the eye motor control could influence this selection mechanism in clinical behavior: two groups of patients (SCA2 and late onset cerebellar ataxia LOCA with well-known problems of motor control were studied; patients performed a cognitively demanding task; the results were compared to a stochastic model based on Monte Carlo simulations and a group of healthy subjects. The analytical procedure evaluated some energy functions for understanding the process. The implemented model suggested that patients performed an optimal visual search, reducing intrinsic noise sources. Our findings theorize a strict correlation between the “optimal motor system” and the “optimal stimulus encoders.”

  19. Acute exercise improves motor memory

    DEFF Research Database (Denmark)

    Skriver, Kasper Christen; Roig, Marc; Lundbye-Jensen, Jesper

    2014-01-01

    We have recently shown that a single bout of acute cardiovascular exercise improves motor skill learning through an optimization of long-term motor memory. Here we expand this previous finding, to explore potential exercise-related biomarkers and their association with measures of motor memory...... practice whereas lactate correlated with better retention 1 hour as well as 24 hours and 7 days after practice. Thus, improvements in motor skill acquisition and retention induced by acute cardiovascular exercise are associated with increased concentrations of biomarkers involved in memory and learning...... processes. More mechanistic studies are required to elucidate the specific role of each biomarker in the formation of motor memory....

  20. The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction

    Directory of Open Access Journals (Sweden)

    Christa eEinspieler

    2016-03-01

    Full Text Available Apart from motor and behavioral dysfunctions, deficits in cognitive skills are among the well-documented sequelae of preterm birth. However, early identification of infants at risk for poor cognition is still a challenge, as no clear association between pathological findings based on neuroimaging scans and cognitive functions have been detected as yet. The Prechtl General Movement Assessment (GMA has shown its merits for the evaluation of the integrity of the young nervous system. It is a reliable tool for identifying infants at risk for neuromotor deficits. Recent studies on preterm infants demonstrate that abnormal general movements also reflect impairments of brain areas involved in cognitive development. The aim of this systematic review was to discuss studies that included (i the Prechtl GMA applied in preterm infants, and (ii cognitive outcome measures in six data bases. Seven studies met the inclusion criteria and yielded the following results: (a children born preterm with consistently abnormal general movements up to 8 weeks after term had lower intelligence quotients at school age than children with an early normalization of general movements; (b from 3 to 5 months after term, several qualitative and quantitative aspects of the concurrent motor repertoire, including postural patterns, were predictive of intelligence at 7 to 10 years of age. These findings in 428 individuals born preterm suggest that normal general movements along with a normal motor repertoire during the first months after term are markers for normal cognitive development until at least age 10.

  1. Subacute motor neuron hyperexcitability with mercury poisoning: a case series and literature review.

    Science.gov (United States)

    Zhou, Zhibin; Zhang, Xingwen; Cui, Fang; Liu, Ruozhuo; Dong, Zhao; Wang, Xiaolin; Yu, Shengyuan

    2014-01-01

    Motor neuron hyperexcitability (MNH) indicates a disorder characterized by an ectopic motor nerve discharge on electromyogram (EMG). Here, we present a series of three cases of subacute MNH with mercury poisoning. The first case showed hyperhidrosis, insomnia, generalied myokymia, cramps, tremor, weight loss, and myokymic and neuromyotonic discharges, followed by encephalopathy with confusion, hallucinations, and memory decrease. The second case was similar to the former but without encephalopathic features. The third case showed widespread fasciculation, fatigue, insomnia, weight loss, and autonomic dysfunction, including constipation, micturition difficulty, and impotence, with multiple fibrillation, unstable fasciculation, widened motor neuron potential, and an incremental response at high-rate stimulation in repetitive nerve stimulation. Based on the symptoms, the three cases were diagnosed as Morvan's syndrome, Isaacs' syndrome, and Lambert-Eaton myasthenic syndrome with ALS-like syndrome, respectively. Mercury poisoning in the three cases was confirmed by analysis of blood and urine samples. All cases recovered several months after chelation therapy and were in good condition at follow-up. Very few cases of MNH linked with mercury exposure have been reported in the literature. The mechanism of mercury-induced MNH may be associated with ion channel dysfunction. © 2014 S. Karger AG, Basel.

  2. 2008 South Dakota motor vehicle traffic crash summary

    Science.gov (United States)

    2009-06-01

    The Motor Vehicle Traffic Crash Summary is divided into two main sections, Historical : Trends and 2008 Motor Vehicle Traffic Crash Profile. The Historical Trend section : provides information on alcohol involvement in motor vehicle crashes, severity...

  3. 2009 South Dakota motor vehicle traffic crash summary

    Science.gov (United States)

    2010-06-01

    The Motor Vehicle Traffic Crash Summary is divided into two main sections, Historical : Trends and 2009 Motor Vehicle Traffic Crash Profile. The Historical Trend section : provides information on alcohol involvement in motor vehicle crashes, severity...

  4. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    Science.gov (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction

    Directory of Open Access Journals (Sweden)

    Lakhan Shaheen E

    2011-11-01

    Full Text Available Abstract Obesity is a chronic disease characterized by persistent low-grade inflammation with alterations in gut motility. Motor abnormalities suggest that obesity has effects on the enteric nervous system (ENS, which controls virtually all gut functions. Recent studies have revealed that the gut microbiota can affect obesity and increase inflammatory tone by modulating mucosal barrier function. Furthermore, the observation that inflammatory conditions influence the excitability of enteric neurons may add to the gut dysfunction in obesity. In this article, we discuss recent advances in understanding the role of gut microbiota and inflammation in the pathogenesis of obesity and obesity-related gastrointestinal dysfunction. The potential contribution of sirtuins in protecting or regulating the circuitry of the ENS under inflamed states is also considered.

  6. Electrical stimulation and motor recovery.

    Science.gov (United States)

    Young, Wise

    2015-01-01

    stimulation (FES) has long been used to activate sacral nerves to treat bladder and pelvic dysfunction and to augment motor function. In theory, FES should facilitate synaptic formation and motor recovery after regenerative therapies. Upcoming clinical trials provide unique opportunities to test the theory.

  7. 2010 South Dakota motor vehicle traffic crash summary

    Science.gov (United States)

    2011-01-01

    The Motor Vehicle Traffic Crash Summary is divided into two main sections, Historical Trends and 2010 Motor Vehicle Traffic Crash Profile. The Historical Trend section provides information on alcohol involvement in motor vehicle crashes, severity of ...

  8. Olfactory dysfunction in persian patients suffering from parkinson's disease.

    Science.gov (United States)

    Soltanzadeh, Akbar; Shams, Mehdi; Noorolahi, Hamid; Ghorbani, Askar; Fatehi, Farzad

    2011-01-01

    Looking in literature reveals that aging is accompanied by olfactory dysfunction and hyposmia/anosmia is a common manifestation in some neurodegenerative disorders. Olfactory dysfunction is regarded as non-motor manifestations of Parkinson disease (PD). The main goal of this study was to examine the extent of olfactory dysfunction in Persian PD patients. We used seven types of odors including rosewater, mint, lemon, garlic which were produced by Barij Essence Company in Iran. Additionally, coffee and vinegar were used. Subjects had to distinguish and name between seven previously named odors, stimuli were administered to each nostril separately. Totally, 92 patients and 40 controls were recruited. The mean (standard deviation) (SD) age patients was 64.88 (11.30) versus 61.05 (7.93) in controls. The male: female ratio in patients was 50:42 versus 22:18 in control group. Also, mean UPDRS score (SD) in patients was 24.42 (5.08) and the disease duration (SD) was 3.72 (3.53). Regarding the number of truly detected odors, there were a significant higher number of correct identified odors in control group in comparison with the PD patients. Furthermore, there was a significant negative correlation between number of correct diagnosed smells and UPDRS (Pearson Correlation= -0.27, P = 0.009); conversely, no significant correlation between the duration of Parkinson disease and number of correct diagnosed smells (P > 0.05). Smelling dysfunction is a major problem in Persian PD patients and it requires vigilant investigation for the cause of olfactory dysfunction exclusively in elder group and looking for possible PD disease.

  9. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  10. Daikenchuto ameliorates muscle hypercontractility in a murine T-cell-mediated persistent gut motor dysfunction model.

    Science.gov (United States)

    Akiho, Hirotada; Nakamura, Kazuhiko

    2011-01-01

    Low-grade inflammation and immunological alterations are evident in functional gastrointestinal disorders such as irritable bowel syndrome (IBS). We evaluated the effects of daikenchuto (DKT), a pharmaceutical grade Japanese herbal medicine, on the hypercontractility of intestinal smooth muscle persisting after acute inflammation induced by a T-cell-activating anti-CD3 antibody (αCD3). BALB/c mice were injected with αCD3 (12.5 μg, i.p.), and DKT (2.7 g/kg) was administered orally once daily for 1 week. The contraction of isolated small intestinal muscle strips and muscle cells was examined on day 7 after αCD3 injection. The gene and protein expressions in the small intestines were evaluated by real-time PCR and multiplex immunoassays, respectively, on days 1, 3 and 7 after αCD3 injection. αCD3 injection resulted in significant increases in carbachol-evoked contractility in the muscle strips and isolated smooth muscle cells on day 7. DKT ameliorated the αCD3-induced muscle hypercontractility on day 7 in both the muscle strips and smooth muscle cells. αCD3 injection rapidly up- and downregulated the mRNA and protein expressions of pro- and anti-inflammatory cytokines, respectively. Although the influence of DKT on the mRNA expressions was moderate, the protein expressions of IL-13 and IL-17 were significantly decreased. We observed changes in the intestinal muscle contractility in muscle strips and muscle cells following resolution of inflammation in a T-cell-mediated model of enteropathy. The observed modulation of cytokine expression and function by DKT may lead to the development of new pharmacotherapeutic strategies aimed at a wide variety of gut motor dysfunction disorders. Copyright © 2011 S. Karger AG, Basel.

  11. The role of language areas in motor control dysfunction in Parkinson's disease

    NARCIS (Netherlands)

    Albani, G; Kunig, G; Soelch, CM; Mauro, A; Priano, L; Martignoni, E; Leenders, K.L.

    We evaluated the differences in motor control organization between parkinsonian patients with (seven cases) and without(ten cases) gait disorder. We used positron emission tomography (O-15-H2O-PET) to measure regional cerebral blood flow as a correlate for local neuronal activation. This has been

  12. Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways

    International Nuclear Information System (INIS)

    Ozdoba, C.; Remonda, L.; Loevblad, K.O.; Schroth, G.; Nirkko, A.C.

    2002-01-01

    To investigate cortical, basal ganglia and cerebellar activation in patients with arteriovenous malformations (AVMs) involving the motor pathways, we studied ten patients (six male, four female, mean age 30.3 years, range 7.4-44.1) by whole-brain functional magnetic resonance imaging (fMRI) in a 1.5-T scanner with the EPI-BOLD-technique. In seven cases multiple fMRI studies were available, acquired in the course of the multi-session endovascular interventional treatment. Self-paced right- and left-handed finger-tapping tasks were used to invoke activation. In six patients a super-selective amytal test (Wada test) was performed during diagnostic pre-interventional angiography studies. Abnormal cortical activation patterns, with activation of the primary sensorimotor area, the supplementary motor area and/or the cerebellum shifted to unphysiological locations, were found in four patients. In all cases, localization of the AVM could account for the changes from the normal. After endovascular procedures, fMRI demonstrated shifts in the activation pattern in three patients. In the six patients that had undergone fMRI studies and the Wada test, both methods yielded comparable results. The fact that AVMs are structural anomalies for which the brain can partly compensate ('plasticity') was underlined by these results. fMRI is a valuable tool in the pre-therapeutic evaluation and post-interventional follow-up of patients with cerebral AVMs in whom an operation or an endovascular procedure is planned. (orig.)

  13. Imitation and matching of meaningless gestures: distinct involvement from motor and visual imagery.

    Science.gov (United States)

    Lesourd, Mathieu; Navarro, Jordan; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François

    2017-05-01

    The aim of the present study was to understand the underlying cognitive processes of imitation and matching of meaningless gestures. Neuropsychological evidence obtained in brain damaged patients, has shown that distinct cognitive processes supported imitation and matching of meaningless gestures. Left-brain damaged (LBD) patients failed to imitate while right-brain damaged (RBD) patients failed to match meaningless gestures. Moreover, other studies with brain damaged patients showed that LBD patients were impaired in motor imagery while RBD patients were impaired in visual imagery. Thus, we hypothesize that imitation of meaningless gestures might rely on motor imagery, whereas matching of meaningless gestures might be based on visual imagery. In a first experiment, using a correlational design, we demonstrated that posture imitation relies on motor imagery but not on visual imagery (Experiment 1a) and that posture matching relies on visual imagery but not on motor imagery (Experiment 1b). In a second experiment, by manipulating directly the body posture of the participants, we demonstrated that such manipulation evokes a difference only in imitation task but not in matching task. In conclusion, the present study provides direct evidence that the way we imitate or we have to compare postures depends on motor imagery or visual imagery, respectively. Our results are discussed in the light of recent findings about underlying mechanisms of meaningful and meaningless gestures.

  14. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  15. The resting state fMRI study of patients with Parkinson's disease associated with cognitive dysfunction

    International Nuclear Information System (INIS)

    Feng Jieying; Huang Biao

    2013-01-01

    Parkinson's disease (PD) is the most common neurodegenerative cause of Parkinsonism, but the high morbidity of PD accompanied cognitive dysfunction hasn't drawn enough attention by the clinicians. With the rapid development of the resting state functional MRI (fMRI) technique, the cause of PD patients with cognitive dysfunction may be associated with the damage of functional connectivity of the motor networks and the cognitive networks. The relationship between neuropathologic mechanism of PD patients with cognitive dysfunction and impaired cognitive circuits will be disclosed by building the changes of brain topological structure in patients. The resting state fMRI study can provide the rationale for prevention, diagnosis and treatment of PD. (authors)

  16. Cognitive dysfunction in depression - pathophysiology and novel targets.

    Science.gov (United States)

    Carvalho, Andre F; Miskowiak, Kamilla K; Hyphantis, Thomas N; Kohler, Cristiano A; Alves, Gilberto S; Bortolato, Beatrice; G Sales, Paulo Marcelo; Machado-Vieira, Rodrigo; Berk, Michael; McIntyre, Roger S

    2014-01-01

    Major depressive disorder (MDD) is associated with cognitive dysfunction encompassing several domains, including memory, executive function, processing speed and attention. Cognitive deficits persist in a significant proportion of patients even in remission, compromising psychosocial functioning and workforce performance. While monoaminergic antidepressants may improve cognitive performance in MDD, most antidepressants have limited clinical efficacy. The overarching aims of this review were: (1) to synthesize extant literature on putative biological pathways related to cognitive dysfunction in MDD and (2) to review novel neurotherapeutic targets for cognitive enhancement in MDD. We found that reciprocal and overlapping biological pathways may contribute to cognitive dysfunction in MDD, including an hyperactive hypothalamic-pituitary-adrenal axis, an increase in oxidative and nitrosative stress, inflammation (e.g., enhanced production of pro-inflammatory cytokines), mitochondrial dysfunction, increased apoptosis as well as a diminished neurotrophic support. Several promising neurotherapeutic targets were identified such as minocycline, statins, anti-inflammatory compounds, N-acetylcysteine, omega-3 poliunsaturated fatty acids, erythropoietin, thiazolidinediones, glucagon-like peptide-1 analogues, S-adenosyl-l-methionine (SAMe), cocoa flavonols, creatine monohydrate and lithium. Erythropoietin and SAMe had pro-cognitive effects in randomized controlled trials (RCT) involving MDD patients. Despite having preclinical and/or preliminary evidences from trials suggesting possible efficacy as novel cognitive enhancing agents for MDD, no RCT to date was performed for most of the other therapeutic targets reviewed herein. In conclusion, multiple biological pathways are involved in cognitive dysfunction in MDD. RCTs testing genuinely novel pro-cognitive compounds for MDD are warranted.

  17. Ocular Motor Indicators of Executive Dysfunction in Fragile X and Turner Syndromes

    Science.gov (United States)

    Lasker, Adrian G.; Mazzocco, Michele M. M.; Zee, David S.

    2007-01-01

    Fragile X and Turner syndromes are two X-chromosome-related disorders associated with executive function and visual spatial deficits. In the present study, we used ocular motor paradigms to examine evidence that disruption to different neurological pathways underlies these deficits. We tested 17 females with fragile X, 19 females with Turner…

  18. Minocycline attenuates cardiac dysfunction in tumor-burdened mice.

    Science.gov (United States)

    Devine, Raymond D; Eichenseer, Clayton M; Wold, Loren E

    2016-11-01

    Cardiovascular dysfunction as a result of tumor burden is becoming a recognized complication; however, the mechanisms remain unknown. A murine model of cancer cachexia has shown marked increases of matrix metalloproteinases (MMPs), known mediators of cardiac remodeling, in the left ventricle. The extent to which MMPs are involved in remodeling remains obscured. To this end a common antibiotic, minocycline, with MMP inhibitory properties was used to elucidate MMP involvement in tumor induced cardiovascular dysfunction. Tumor-bearing mice showed decreased cardiac function with reduced posterior wall thickness (PWTs) during systole, increased MMP and collagen expression consistent with fibrotic remodeling. Administration of minocycline preserved cardiac function in tumor bearing mice and decreased collagen RNA expression in the left ventricle. MMP protein levels were unaffected by minocycline administration, with the exception of MMP-9, indicating minocycline inhibition mechanisms are directly affecting MMP activity. Cancer induced cardiovascular dysfunction is an increasing concern; novel therapeutics are needed to prevent cardiac complications. Minocycline is a well-known antibiotic and recently has been shown to possess MMP inhibitory properties. Our findings presented here show that minocycline could represent a novel use for a long established drug in the prevention and treatment of cancer induced cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  20. Motor, emotional and cognitive deficits in adult BACHD mice : A model for Huntington's disease

    NARCIS (Netherlands)

    Abada, Yah-se K.; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Rationale: Huntington's disease (HD) is characterized by progressive motor dysfunction, emotional disturbances and cognitive deficits. It is a genetic disease caused by an elongation of the polyglutamine repeats in the huntingtin gene. Whereas HD is a complex disorder, previous studies in mice

  1. A Haptic Serious Augmented Reality Game for Motor Assessment of Parkinson's Disease Patients

    NARCIS (Netherlands)

    Van der Meulen, E.; Cidota, M.A.; Lukosch, S.G.; Bank, PJM; van der Helm, A.J.C.

    2016-01-01

    n the clinical community there is a need for assessment tools that allow for objective, quantitative and valid measures of motor dysfunction. In this paper, we report on the design and evaluation of a serious game that engages patients with Parkinson's disease in upper extremity (hand/arm)

  2. Age-dependent cognitive dysfunction in untreated hereditary transthyretin amyloidosis.

    Science.gov (United States)

    Martins da Silva, Ana; Cavaco, Sara; Fernandes, Joana; Samões, Raquel; Alves, Cristina; Cardoso, Márcio; Kelly, Jeffery W; Monteiro, Cecília; Coelho, Teresa

    2018-02-01

    Central nervous system (CNS) involvement in hereditary transthyretin (TTR) amyloidosis has been described in patients whose disease course was modified by liver transplant. However, cognitive dysfunction has yet to be investigated in those patients. Moreover, CNS involvement in untreated patients or asymptomatic mutation carriers remains to be studied. A series of 340 carriers of the TTRVal30Met mutation (180 symptomatic and 160 asymptomatic) underwent a neuropsychological assessment, which included the Dementia Rating Scale-2 (DRS-2), auditory verbal learning test, semantic fluency, phonemic fluency, and trail making test. Cognitive deficits were identified at the individual level, after adjusting the neuropsychological test scores for demographic characteristics (sex, age, and education), based on large national normative data. The presence of cognitive dysfunction was determined by deficit in DRS-2 and/or multiple cognitive domains. Participants were also screened for depression based on a self-report questionnaire. The frequency of cognitive dysfunction was higher (p = 0.003) in symptomatic (9%) than in asymptomatic (2%) carriers. Among older carriers (≥ 50 years), the frequency of cognitive dysfunction was higher (p hereditary TTR amyloidosis patients with peripheral polyneuropathy, even in the early stages of the disease.

  3. Motor function and respiratory capacity in patients with late-onset pompe disease

    DEFF Research Database (Denmark)

    Illes, Zsolt; Mike, Andrea; Trauninger, Anita

    2014-01-01

    Introduction: The relationship between skeletal muscle strength and respiratory dysfunction in Pompe disease has not been examined by quantitative methods. We investigated correlations among lower extremity proximal muscle strength, respiratory function, and motor performance. Methods: Concentric...... strength of the knee extensor and flexor muscles were measured with a dynamometer, and pulmonary function was evaluated using spirometry in 7 adult patients. The six-minute walk test and the four-step stair-climb test were used for assessing aerobic endurance and anaerobic power, respectively. Results......: Anaerobic motor performance correlated with strength of both thigh muscles. Respiratory function did not correlate with either muscle strength or motor function performance. Conclusions: Respiratory and lower extremity proximal muscles could be differentially affected by the disease in individual patients...

  4. Seatbelt use to save money: Impact on hospital costs of occupants who are involved in motor vehicle crashes.

    Science.gov (United States)

    Han, Guang-Ming; Newmyer, Ashley; Qu, Ming

    2017-03-01

    Seatbelt use is the single most effective way to save lives in motor vehicle crashes (MVC). However, although safety belt laws have been enacted in many countries, seatbelt usage throughout the world remains below optimal levels, and educational interventions may be needed to further increase seatbelt use. In addition to reducing crash-related injuries and deaths, reduced medical expenditures resulting from seatbelt use are an additional benefit that could make such interventions cost-effective. Accordingly, the objective of this study was to estimate the correlation between seatbelt use and hospital costs of injuries involved in MVC. The data used in this study were from the Nebraska CODES database for motor vehicle crashes that occurred between 2004 and 2013. The hospital cost information and information about other factors were obtained by linking crash reports with hospital discharge data. A multivariable regression model was performed for the association between seatbelt use and hospital costs. Mean hospital costs were significantly lower among motor vehicle occupants using a lap-shoulder seatbelt ($2909), lap-only seatbelt ($2289), children's seatbelt ($1132), or booster ($1473) when compared with those not using any type of seatbelt ($7099). After adjusting for relevant factors, there were still significantly decreased hospital costs for motor vehicle occupants using a lap-shoulder seatbelt (84.7%), lap-only seatbelt (74.1%), shoulder-only seatbelt (40.6%), children's seatbelt (95.9%), or booster (82.8%) compared to those not using a seatbelt. Seatbelt use is significantly associated with reduced hospital costs among injured MVC occupants. The findings in this study will provide important educational information for emergency department nurses who can encourage safety belt use for vehicle occupants. Copyright © 2016. Published by Elsevier Ltd.

  5. Risk Factors for Gross Motor Dysfunction in Infants with Congenital Heart Disease

    Science.gov (United States)

    Long, Suzanne H.; Eldridge, Bev J.; Galea, Mary P.; Harris, Susan R.

    2011-01-01

    Infants with congenital heart disease (CHD) that is severe enough to require early surgery are at risk for cognitive and motor delays, as well as musculoskeletal impairments, and are best managed by an interdisciplinary team during their hospital stay and after discharge. The purpose of this article is to review some of the risk factors associated…

  6. Immediate improvement of motor function after epilepsy surgery in congenital hemiparesis.

    Science.gov (United States)

    Pascoal, Tharick; Paglioli, Eliseu; Palmini, André; Menezes, Rafael; Staudt, Martin

    2013-08-01

    Hemispherectomy often leads to a loss of contralateral hand function. In some children with congenital hemiparesis, however, paretic hand function remains unchanged. An immediate improvement of hand function has never been reported. A 17-year-old boy with congenital hemiparesis and therapy-refractory seizures due to a large infarction in the territory of the middle cerebral artery underwent epilepsy surgery. Intraoperatively, electrical cortical stimulation of the affected hemisphere demonstrated preserved motor projections from the sensorimotor cortex to the (contralateral) paretic hand. A frontoparietal resection was performed, which included a complete disconnection of all motor projections originating in the sensorimotor cortex of the affected hemisphere. Surprisingly, the paretic hand showed a significant functional improvement immediately after the operation. This observation demonstrates that, in congenital hemiparesis, crossed motor projections from the affected hemisphere are not always beneficial, but can be dysfunctional, interfering with ipsilateral motor control over the paretic hand by the contralesional hemisphere. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  7. Motor timing deficits in sequential movements in Parkinson disease are related to action planning: a motor imagery study.

    Directory of Open Access Journals (Sweden)

    Laura Avanzino

    Full Text Available Timing of sequential movements is altered in Parkinson disease (PD. Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization-continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI. We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE, whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task.

  8. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder

    Directory of Open Access Journals (Sweden)

    Thomas Hassa

    2017-01-01

    Full Text Available Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  9. Symptom-specific amygdala hyperactivity modulates motor control network in conversion disorder.

    Science.gov (United States)

    Hassa, Thomas; Sebastian, Alexandra; Liepert, Joachim; Weiller, Cornelius; Schmidt, Roger; Tüscher, Oliver

    2017-01-01

    Initial historical accounts as well as recent data suggest that emotion processing is dysfunctional in conversion disorder patients and that this alteration may be the pathomechanistic neurocognitive basis for symptoms in conversion disorder. However, to date evidence of direct interaction of altered negative emotion processing with motor control networks in conversion disorder is still lacking. To specifically study the neural correlates of emotion processing interacting with motor networks we used a task combining emotional and sensorimotor stimuli both separately as well as simultaneously during functional magnetic resonance imaging in a well characterized group of 13 conversion disorder patients with functional hemiparesis and 19 demographically matched healthy controls. We performed voxelwise statistical parametrical mapping for a priori regions of interest within emotion processing and motor control networks. Psychophysiological interaction (PPI) was used to test altered functional connectivity of emotion and motor control networks. Only during simultaneous emotional stimulation and passive movement of the affected hand patients displayed left amygdala hyperactivity. PPI revealed increased functional connectivity in patients between the left amygdala and the (pre-)supplemental motor area and the subthalamic nucleus, key regions within the motor control network. These findings suggest a novel mechanistic direct link between dysregulated emotion processing and motor control circuitry in conversion disorder.

  10. Neuromodulation of lower limb motor control in restorative neurology

    OpenAIRE

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-01-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. F...

  11. Motor Vehicle Safety

    Science.gov (United States)

    ... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...

  12. Functional imaging in pre-motor Parkinson’s disease

    International Nuclear Information System (INIS)

    Arnaldi, D.; Picco, A.; Ferrara, M.; Nobili, F.; Famà, F.; Buschiazzo, A.; Morbelli, S.; De Carli, F.

    2014-01-01

    Several non motor symptoms (NMS) can precede the onset of the classical motor Parkinson’s disease (PD) syndrome. The existence of pre-motor and even pre-clinical PD stages has been proposed but the best target population to be screened to disclose PD patients in a pre-clinical, thus asymptomatic, stage is still matter of debate. The REM sleep behavior disorder (RBD) often affects PD patients at different stages of the disease and could precede the onset of motor symptoms by several years. However, RBD could also precede other synucleinopathies (namely, dementia with Lewy bodies and multisystem atrophy), and less frequently could be related to other neurological conditions or remain idiopathic. Moreover, not all PD patients exhibit RBD. Despite these caveats, RBD probably represents the best feature to disclose pre-motor PD patients given its high-risk of developing a full motor syndrome. Other clinical clues in the premotor stages of PD undergoing active investigation include hyposmia, depression, and autonomic dysfunction. Effective biomarkers are needed in order to improve the diagnostic accuracy in the pre-motor stage of PD, to monitor disease progression and to plan both pharmacological and non-pharmacological intervention. Functional imaging, in particular radionuclide methodologies, has been often used to investigate dopaminergic and non-dopaminergic features as well as cortical functioning in patients with RBD in its idiopathic form (iRBD) and/or associated with PD. Recently, new tracers to image α-synuclein pathologies are under development. Functional imaging in pre-motor PD, and in particular in iRBD, could improve our knowledge about the underlying mechanisms and the neurodegenerative progress of PD

  13. Conservative nature of oestradiol signalling pathways in the brain lobes of octopus vulgaris involved in reproduction, learning and motor coordination.

    Science.gov (United States)

    De Lisa, E; Paolucci, M; Di Cosmo, A

    2012-02-01

    Oestradiol plays crucial roles in the mammalian brain by modulating reproductive behaviour, neural plasticity and pain perception. The cephalopod Octopus vulgaris is considered, along with its relatives, to be the most behaviourally advanced invertebrate, although the neurophysiological basis of its behaviours, including pain perception, remain largely unknown. In the present study, using a combination of molecular and imaging techniques, we found that oestradiol up-regulated O. vulgaris gonadotrophin-releasing hormone (Oct-GnRH) and O. vulgaris oestrogen receptor (Oct-ER) mRNA levels in the olfactory lobes; in turn, Oct-ER mRNA was regulated by NMDA in lobes involved in learning and motor coordination. Fluorescence resonance energy transfer analysis revealed that oestradiol binds Oct-ER causing conformational modifications and nuclear translocation consistent with the classical genomic mechanism of the oestrogen receptor. Moreover, oestradiol triggered a calcium influx and cyclic AMP response element binding protein phosphorylation via membrane receptors, providing evidence for a rapid nongenomic action of oestradiol in O. vulgaris. In the present study, we demonstrate, for the first time, the physiological role of oestradiol in the brain lobes of O. vulgaris involved in reproduction, learning and motor coordination. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  14. Prospective evaluation of pulmonary function in Parkinson's disease patients with motor fluctuations.

    Science.gov (United States)

    Hampson, Neil B; Kieburtz, Karl D; LeWitt, Peter A; Leinonen, Mika; Freed, Martin I

    2017-03-01

    Spirometry patterns suggesting restrictive and obstructive pulmonary dysfunction have been reported in Parkinson's disease (PD). However, the patterns' precise relation to PD pathophysiology remains unclear. Purpose/Aim. To assess ON- versus OFF-state pulmonary function, the quality of its spirometric evaluation, and the quality of longitudinal spirometric findings in a large sample of PD patients with motor fluctuations. During a placebo-controlled trial of an inhaled levodopa formulation, CVT-301, in PD patients with ≥2 h/d of OFF time, spirometry was performed by American Thoracic Society (ATS) guidelines at screening and throughout the 4-week treatment period. Among 86 patients, mean motor impairment during an OFF state at screening was moderately severe. However, mean spirometry results at screening were within normal ranges, and in a mixed model for repeated measures (MMRM), the results at screening were not dependent on motor state (ON vs. OFF). In the placebo group (n = 43), 76% of ON-state and 81% of OFF-state examinations throughout the study met ATS quality metrics, and in an MMRM analysis, mean findings at these patients' arrivals for treatment-period visits showed no significant 4-week change. Across all 86 patients, flow-volume curves prior to any study-drug administration showed only a 3% incidence of "sawtooth" morphology. In PD patients with motor fluctuations, longitudinal spirometry of acceptable quality was generally obtained. Although mean findings were normal, about a quarter of spirograms did not meet ATS quality criteria. Spirogram morphology may be less indicative of various forms of respiratory dysfunction than has previously been reported in PD.

  15. Research progress of motor function assessments and their clinical applications in Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Wei SHI

    2015-07-01

    Full Text Available Duchenne muscular dystrophy (DMD, clinically featured as progressive skeletal muscle atrophy with gradual loss of muscle strength and activity abilities, is the most common genetic muscular disease in children throughout the world. The core and continuous characteristic of DMD is motor dysfunction. Motor function assessments of DMD are now focusing on muscle strength, walking ability, range of motion and ability of activities, still without unified standards. Confirming the comprehensive, scientific, reasonable and accurate evaluation tools for DMD assessment is the premise of research in motor developmental rules of DMD, which will help to better understand the motor progress of DMD and to supply evidences for choosing treatment methods, confirming timing of intervention, assessing effect of treatments and designing rehabilitation plans. DOI: 10.3969/j.issn.1672-6731.2015.06.002

  16. Motor proficiency in normal children and with learning difficulty: a comparative and correlational study based on the motor proficiency test of Bruininks-Oseretsky

    Directory of Open Access Journals (Sweden)

    Nilson Roberto Moreira

    2008-06-01

    Full Text Available The aim of this investigation is to verify the difference between children with learning disabilities and children without learning disabilities through motor proficiency test of Bruininks and Ozeretsky (1978. The sample was constituted by 30 children, with 8-year average age, 15 males and 15 females, subdivided into two groups of 15 children from both sexes: children without learning disabilities attending 3rd grade and children with learning disabilities attending 2nd grade having failed a term once. All of them came from a middle class background, according to Grafar scale (adapted by Fonseca, 1991. All children presenting any other disabilities were excluded from the sample. Intelligence factor “G” was controlled by using a percentile, higher or equal to 50 (middle and high level, measured by Raven’s (1974 progressive combinations test. In motor proficiency, children with learning disabilities showed significant differences when compared with normal children of the same age, in all components of global, composed and fine motricity. The tests administered showed a strong correlation between the variables of the motor proficiency components. The results lead to the conclusion that there were significant differences in motor proficiency between normal children and children with learning disabilities, who showed specific motor difficulties evincing a more vulnerable motor profile and not the presence of neurological dysfunction signs.

  17. Titanium dioxide nanoparticle-induced dysfunction of cardiac hemodynamics is involved in cardiac inflammation in mice.

    Science.gov (United States)

    Hong, Fashui; Wu, Nan; Zhao, Xiangyu; Tian, Yusheng; Zhou, Yingjun; Chen, Ting; Zhai, Yanyu; Ji, Li

    2016-12-01

    In the past two decades, titanium dioxide nanoparticles (TiO 2 NPs) have been extensively used in medicine, food industry and other daily life, while their possible interactions with the their influence and human body on human health remain not well understood. Thus, the study was designed to examine whether long-term exposure to TiO 2 NPs cause myocardial dysfunction which is involved in cardiac lesions and alter expression of genes and proteins involving inflammatory response in the mouse heart. The findings showed that intragastric feeding for nine consecutive months with TiO 2 NPs resulted in titanium accumulation, infiltration of inflammatory cells and apoptosis of heart, reductions in net increases of body weight, cardiac indices of function (LV systolic pressure, maximal rate of pressure increase over time, maximal rate of pressure decrease over time and coronary flow), and increases in heart indices, cardiac indices of function (LV end-diastolic pressure and heart rate) in mice. TiO 2 NPs also decreased ATP production in the hearts. Furthermore, TiO 2 NPs increased expression of nuclear factor-κB, interleukin-lβ and tumour necrosis factor-α, and reduced expression of anti-inflammatory cytokines including suppressor of cytokine signaling (SOCS) 1 and SOCS3 in the cardiac tissue. These results suggest that TiO 2 NPs may modulate the cardiac function and expression of inflammatory cytokines. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2917-2927, 2016. © 2016 Wiley Periodicals, Inc.

  18. [Posterior tibial tendon dysfunction: what other structures are involved in the development of acquired adult flat foot?].

    Science.gov (United States)

    Herráiz Hidalgo, L; Carrascoso Arranz, J; Recio Rodríguez, M; Jiménez de la Peña, M; Cano Alonso, R; Álvarez Moreno, E; Martínez de Vega Fernández, V

    2014-01-01

    To evaluate the association of posterior tibial tendon dysfunction and lesions of diverse ankle structures diagnosed at MRI with radiologic signs of flat foot. We retrospectively compared 29 patients that had posterior tibial tendon dysfunction (all 29 studied with MRI and 21 also studied with weight-bearing plain-film X-rays) with a control group of 28 patients randomly selected from among all patients who underwent MRI and weight-bearing plain-film X-rays for other ankle problems. In the MRI studies, we analyzed whether a calcaneal spur, talar beak, plantar fasciitis, calcaneal bone edema, Achilles' tendinopathy, spring ligament injury, tarsal sinus disease, and tarsal coalition were present. In the weight-bearing plain-film X-rays, we analyzed the angle of Costa-Bertani and radiologic signs of flat foot. To analyze the differences between groups, we used Fisher's exact test for the MRI findings and for the presence of flat foot and analysis of variance for the angle of Costa-Bertani. Calcaneal spurs, talar beaks, tarsal sinus disease, and spring ligament injury were significantly more common in the group with posterior tibial tendon dysfunction (P<.05). Radiologic signs of flat foot and anomalous values for the angle of Costa-Bertani were also significantly more common in the group with posterior tibial tendon dysfunction (P<.001). We corroborate the association between posterior tibial tendon dysfunction and lesions to the structures analyzed and radiologic signs of flat foot. Knowledge of this association can be useful in reaching an accurate diagnosis. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  19. Delayed detection of motor pathway dysfunction after selective reduction of thoracic spinal cord blood flow in pigs

    NARCIS (Netherlands)

    Lips, Jeroen; de Haan, Peter; Bouma, Gerrit J.; Jacobs, Michael J.; Kalkman, Cor J.

    2002-01-01

    Objective: Clinical monitoring of myogenic motor evoked potentials to transcranial stimulation provides rapid evaluation of motor-pathway function during surgical procedures in which spinal cord ischemia can occur. However, a severe reduction of spinal cord blood flow that remains confined to the

  20. [Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].

    Science.gov (United States)

    Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N

    2017-01-01

    To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.

  1. Accidents in The Netherlands involving heavy motor vehicles : an analysis concerning underrun protection of rear ends, compared to the sides and the front ends. On behalf of RDW Vehicle Technology & Information Centre.

    NARCIS (Netherlands)

    Kampen, L.T.B. van

    1998-01-01

    In this report accident data concerning heavy vehicles (all motor vehicles with a total weight of more than 3500 kg) are studied. Special attention is given to the question whether accidents involving heavy motor vehicles gave specific reason for concern regarding other road users with respect to

  2. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy.

    Science.gov (United States)

    Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha

    2017-10-01

    Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.

  3. The negative cell cycle regulator, Tob (transducer of ErbB-2), is involved in motor skill learning

    International Nuclear Information System (INIS)

    Wang Xinming; Gao Xiang; Zhang Xuehan; Tu Yanyang; Jin Meilei; Zhao Guoping; Yu Lei; Jing Naihe; Li Baoming

    2006-01-01

    Tob (transducer of ErbB-2) is a negative cell cycle regulator with anti-proliferative activity in peripheral tissues. Our previous study identified Tob as a protein involved in hippocampus-dependent memory consolidation (M.L. Jin, X.M. Wang, Y.Y. Tu, X.H. Zhang, X. Gao, N. Guo, Z.Q. Xie, G.P. Zhao, N.H. Jing, B.M. Li, Y.Yu, The negative cell cycle regulator, Tob (Transducer of ErbB-2), is a multifunctional protein involved in hippocampus-dependent learning and memory, Neuroscience 131 (2005) 647-659). Here, we provide evidence that Tob in the central nervous system is engaged in acquisition of motor skill. Tob has a relatively high expression in the cerebellum. Tob expression is up-regulated in the cerebellum after rats receive training on a rotarod-running task. Rats infused with Tob antisense oligonucleotides into the 4th ventricle exhibit a severe deficit in running on a rotating rod or walking across a horizontally elevated beam

  4. Rational Pharmacological Approaches for Cognitive Dysfunction and Depression in Parkinson’s Disease

    Science.gov (United States)

    Sandoval-Rincón, Maritza; Sáenz-Farret, Michel; Miguel-Puga, Adán; Micheli, Federico; Arias-Carrión, Oscar

    2015-01-01

    Parkinson’s disease (PD) is not a single entity but rather a heterogeneous neurodegenerative disorder. The present study aims to conduct a critical systematic review of the literature to describe the main pharmacological strategies to treat cognitive dysfunction and major depressive disorder in PD patients. We performed a search of articles cited in PubMed from 2004 to 2014 using the following MeSH terms (Medical subject headings) “Parkinson disease”; “Delirium,” “Dementia,” “Amnestic,” “Cognitive disorders,” and “Parkinson disease”; “depression,” “major depressive disorder,” “drug therapy.” We found a total of 71 studies related to pharmacological treatment in cognitive dysfunction and 279 studies for pharmacological treatment in major depressive disorder. After fulfillment of all the inclusion and exclusion criteria, 13 articles remained for cognitive dysfunction and 11 for major depressive disorder, which are presented and discussed in this study. Further research into non-motor symptoms of PD may provide insights into mechanisms of neurodegeneration, and provide better quality of life by using rational drugs. PMID:25873910

  5. Bee Venom Protects against Rotenone-Induced Cell Death in NSC34 Motor Neuron Cells

    Directory of Open Access Journals (Sweden)

    So Young Jung

    2015-09-01

    Full Text Available Rotenone, an inhibitor of mitochondrial complex I of the mitochondrial respiratory chain, is known to elevate mitochondrial reactive oxygen species and induce apoptosis via activation of the caspase-3 pathway. Bee venom (BV extracted from honey bees has been widely used in oriental medicine and contains melittin, apamin, adolapin, mast cell-degranulating peptide, and phospholipase A2. In this study, we tested the effects of BV on neuronal cell death by examining rotenone-induced mitochondrial dysfunction. NSC34 motor neuron cells were pretreated with 2.5 μg/mL BV and stimulated with 10 μM rotenone to induce cell toxicity. We assessed cell death by Western blotting using specific antibodies, such as phospho-ERK1/2, phospho-JNK, and cleaved capase-3 and performed an MTT assay for evaluation of cell death and mitochondria staining. Pretreatment with 2.5 μg/mL BV had a neuroprotective effect against 10 μM rotenone-induced cell death in NSC34 motor neuron cells. Pre-treatment with BV significantly enhanced cell viability and ameliorated mitochondrial impairment in rotenone-treated cellular model. Moreover, BV treatment inhibited the activation of JNK signaling and cleaved caspase-3 related to cell death and increased ERK phosphorylation involved in cell survival in rotenone-treated NSC34 motor neuron cells. Taken together, we suggest that BV treatment can be useful for protection of neurons against oxidative stress or neurotoxin-induced cell death.

  6. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  7. Esophageal dysfunction in different stages of Parkinson's disease.

    Science.gov (United States)

    Suttrup, I; Suttrup, J; Suntrup-Krueger, S; Siemer, M-L; Bauer, J; Hamacher, C; Oelenberg, S; Domagk, D; Dziewas, R; Warnecke, T

    2017-01-01

    Dysphagia is a clinically relevant symptom in patients with Parkinson's disease (PD) leading to pronounced reduction in quality of life and other severe complications. Parkinson's disease-related dysphagia may affect the oral and pharyngeal, as well as the esophageal phase of swallowing. To examine the nature and extend of esophageal dysphagia in different stages of PD and their relation to oropharyngeal dysfunction, we examined 65 PD patients (mean age 66.3±9.7 years, mean disease duration 7.9±5.8 years, mean Hoehn & Yahr [H&Y] stage 2.89±0.91) and divided into three groups (early [H&Y I+II; n=21], intermediate [H&Y III; n=25], and advanced stadium [H&Y IV+V; n=19]), using esophageal high-resolution manometry (HRM) to detect esophageal motor disorders. Oropharyngeal impairment was assessed using fiberoptic endoscopic evaluation of swallowing. Major esophageal motor disorders were detected in nearly one third of the PD patients. Minor impairment of the esophageal body was present in 95% of participants and throughout all disease stages with pathological findings especially in peristalsis and intrabolus pressure (IBP). The IBP was found to significantly increase in the advanced stadium. Although dysfunction of the upper and lower esophageal sphincters was observed in individual patients, alterations in these esophageal segments revealed no statistical significance compared with normative data. No clear association was found between the occurrence of oropharyngeal dysphagia and esophageal impairment. Esophageal body impairment in PD is a frequent phenomenon during all disease stages, which possibly reflects α-synucleinopathy in the enteric nervous system. © 2016 John Wiley & Sons Ltd.

  8. Cognitive dysfunction in pediatric multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Suppiej A

    2014-07-01

    Full Text Available Agnese Suppiej,1 Elisa Cainelli1,2 1Child Neurology and Clinical Neurophysiology, Pediatric University Hospital, Padua, Italy; 2Lifespan Cognitive Neuroscience Laboratory (LCNL, Department of General Psychology, University of Padua, Italy Abstract: Cognitive and neuropsychological impairments are well documented in adult ­multiple sclerosis (MS. Research has only recently focused on cognitive disabilities in pediatric cases, highlighting some differences between pediatric and adult cases. Impairments in several functions have been reported in children, particularly in relation to attention, processing speed, visual–motor skills, and language. Language seems to be particularly vulnerable in pediatric MS, unlike in adults in whom it is usually preserved. Deficits in executive functions, which are considered MS-specific in adults, have been inconsistently reported in children. In children, as compared to adults, the relationship between cognitive dysfunctions and the two other main symptoms of MS, fatigue and psychiatric disorders, was poorly explored. Furthermore, data on the correlations of cognitive impairments with clinical and neuroimaging features are scarce in children, and the results are often incongruent; interestingly, involvement of corpus callosum and reduced thalamic volume differentiated patients identified as having a cognitive impairment from those without a cognitive impairment. Further studies about pediatric MS are needed in order to better understand the impact of the disease on brain development and the resulting effect on cognitive functions, particularly with respect to different therapeutic strategies. Keywords: central nervous system, child, deficit, IQ, inflammatory demyelination, neuropsychological

  9. The natural history of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) in 97 Japanese patients.

    Science.gov (United States)

    Fujisaki, Natsumi; Suwazono, Shugo; Suehara, Masahito; Nakachi, Ryo; Kido, Miwako; Fujiwara, Yoshihisa; Oshiro, Saki; Tokashiki, Takashi; Takashima, Hiroshi; Nakagawa, Masanori

    2018-02-01

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is a motor and sensory neuronopathy with autosomal dominant inheritance, adult onset, slowly progressive course, and is associated with TRK-fused gene (TFG) mutation. At advanced stages, respiratory failure and dysphagia becomes life-threatoning, and patients typically die by their 70s. Although there is currently no evidence for effective treatment, a therapy may be found by elucidation of the function of TFG. Recently its pathomechanism has been proposed to be associated with abnormalities in protein transfer from the endoplasmic reticulum. Such pathomechanisms might involve a similar process in amyotrophic lateral sclerosis; thus, its pathomechanisms and treatment strategy might make it a good model for neurodegenerative disorders. It is of great value to clarify the natural history of HMSN-P, in oder to judge the treatment effect. By evaluating 97 patients (79 out of 97 were examined and all confirmed with p.Pro 285 Leu mutation) in this study, it was confirmed that this disease follows a uniform course in the earlier stages, and there are individual differences in the onset between 20 and 30 years. Such uniformity might be due to the proposed single gene abnormality. At advanced stages, there are larger individual differences in the progression, but the reasons for these are unknown. Longer survival might be achieved with a better care for respiratory failure and dysphagia if such cares were undertaken at appropriate times.

  10. Curcumin attenuates surgery-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Wu, Xiang; Chen, Huixin; Huang, Chunhui; Gu, Xinmei; Wang, Jialing; Xu, Dilin; Yu, Xin; Shuai, Chu; Chen, Liping; Li, Shun; Xu, Yiguo; Gao, Tao; Ye, Mingrui; Su, Wei; Liu, Haixiong; Zhang, Jinrong; Wang, Chuang; Chen, Junping; Wang, Qinwen; Cui, Wei

    2017-06-01

    Post-operative cognitive dysfunction (POCD) is associated with elderly patients undergoing surgery. However, pharmacological treatments for POCD are limited. In this study, we found that curcumin, an active compound derived from Curcuma longa, ameliorated the cognitive dysfunction following abdominal surgery in aged mice. Further, curcumin prevented surgery-induced anti-oxidant enzyme activity. Curcumin also increased brain-derived neurotrophic factor (BDNF)-positive area and expression of pAkt in the brain, suggesting that curcumin activated BDNF signaling in aged mice. Furthermore, curcumin neutralized cholinergic dysfunction involving choline acetyltransferase expression induced by surgery. These results strongly suggested that curcumin prevented cognitive impairments via multiple targets, possibly by increasing the activity of anti-oxidant enzymes, activation of BDNF signaling, and neutralization of cholinergic dysfunction, concurrently. Based on these novel findings, curcumin might be a potential agent in POCD prophylaxis and treatment.

  11. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  12. Developmental Trajectory of Motor Deficits in Preschool Children with ADHD.

    Science.gov (United States)

    Sweeney, Kristie L; Ryan, Matthew; Schneider, Heather; Ferenc, Lisa; Denckla, Martha Bridge; Mark Mahone, E

    2018-05-14

    Motor deficits persisting into childhood (>7 years) are associated with increased executive and cognitive dysfunction, likely due to parallel neural circuitry. This study assessed the longitudinal trajectory of motor deficits in preschool children with ADHD, compared to typically developing (TD) children, in order to identify individuals at risk for anomalous neurological development. Participants included 47 children (21 ADHD, 26 TD) ages 4-7 years who participated in three visits (V1, V2, V3), each one year apart (V1=48-71 months, V2=60-83 months, V3=72-95 months). Motor variables assessed included speed (finger tapping and sequencing), total overflow, and axial movements from the Revised Physical and Neurological Examination for Subtle Signs (PANESS). Effects for group, visit, and group-by-visit interaction were examined. There were significant effects for group (favoring TD) for finger tapping speed and total axial movements, visit (performance improving with age for all 4 variables), and a significant group-by-visit interaction for finger tapping speed. Motor speed (repetitive finger tapping) and quality of axial movements are sensitive markers of anomalous motor development associated with ADHD in children as young as 4 years. Conversely, motor overflow and finger sequencing speed may be less sensitive in preschool, due to ongoing wide variations in attainment of these milestones.

  13. Sacral electrical neuromodulation as an alternative treatment option for lower urinary tract dysfunction.

    Science.gov (United States)

    Grünewald, Volker; Höfner, Klaus; Thon, Walter F.; Kuczyk, Markus A.; Jonas, Udo

    1999-01-01

    Temporary electrical stimulation using anal or vaginal electrodes and an external pulse generator has been a treatment modality for urinary urge incontinence for nearly three decades. In 1981 Tanagho and Schmidt introduced chronic electrical stimulation of the sacral spinal nerves using a permanently implanted sacral foramen electrode and a battery powered pulse generator for treatment of different kinds of lower urinary tract dysfunction, refractory to conservative treatment. At our department chronic unilateral electrical stimulation of the S3 sacral spinal nerve has been used for treatment of vesi-courethral dysfunction in 43 patients with a mean postoperative follow up of 43,6 months. Lasting symptomatic improvement by more than 50 % could be achieved in 13 of 18 patients with motor urge incontinence (72,2 %) and in 18 of the 21 patients with urinary retention (85,7 %). Implants offer a sustained therapeutic effect to treatment responders, which is not achieved by temporary neuromodulation. Chronic neuromodulation should be predominantly considered in patients with urinary retention. Furthermore in patients with motor urge incontinence, refusing temporary techniques or in those requiring too much effort to achieve a sustained clinical effect. Despite high initial costs chronic sacral neuromodulation is an economically reasonable treatment option in the long run, when comparing it to the more invasive remaining therapeutic alternatives.

  14. Peripheral neuromuscular dysfunction and falls in an elderly cohort.

    Science.gov (United States)

    Sorock, G S; Labiner, D M

    1992-09-01

    In a prospective study of 169 tenants of senior citizen housing in New Jersey in 1986-1987, the relations between tests of peripheral sensory and motor functions in the lower extremities and the rate of first falls were evaluated. The mean age of the cohort was 79.8 years. Fifty-seven persons fell at least once during the follow-up period (mean, 5.6 months). After adjustment for history of stroke, heart failure, emphysema, and use of a walker or cane, rate ratios for first falls were elevated in subjects with reduced toe joint position sense (rate ratio (RR) = 2.2) and sharp-dull discrimination (RR = 2.0), but to a lesser extent for reduced ankle strength (RR = 1.5). Presence of one or more of these three deficits was defined as a peripheral neuromuscular dysfunction and was associated with first falls after adjustment for multiple covariates (RR = 2.4, 95% confidence interval 1.3-4.5). Having two or all three sensory or motor deficits increased the rate of falling 3.9 times (95% confidence interval 2.1-7.0) compared with persons without these deficits. These data suggest that impaired sensory and motor function of the lower extremities plays an important role in falls in the elderly.

  15. Dysregulation of the Autophagy-Endolysosomal System in Amyotrophic Lateral Sclerosis and Related Motor Neuron Diseases

    Directory of Open Access Journals (Sweden)

    Asako Otomo

    2012-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a heterogeneous group of incurable motor neuron diseases (MNDs characterized by a selective loss of upper and lower motor neurons in the brain and spinal cord. Most cases of ALS are sporadic, while approximately 5–10% cases are familial. More than 16 causative genes for ALS/MNDs have been identified and their underlying pathogenesis, including oxidative stress, endoplasmic reticulum stress, excitotoxicity, mitochondrial dysfunction, neural inflammation, protein misfolding and accumulation, dysfunctional intracellular trafficking, abnormal RNA processing, and noncell-autonomous damage, has begun to emerge. It is currently believed that a complex interplay of multiple toxicity pathways is implicated in disease onset and progression. Among such mechanisms, ones that are associated with disturbances of protein homeostasis, the ubiquitin-proteasome system and autophagy, have recently been highlighted. Although it remains to be determined whether disease-associated protein aggregates have a toxic or protective role in the pathogenesis, the formation of them results from the imbalance between generation and degradation of misfolded proteins within neuronal cells. In this paper, we focus on the autophagy-lysosomal and endocytic degradation systems and implication of their dysfunction to the pathogenesis of ALS/MNDs. The autophagy-endolysosomal pathway could be a major target for the development of therapeutic agents for ALS/MNDs.

  16. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Chao Chen,1,* Jing Duan,1,* Aifang Shen,2,* Wei Wang,1 Hao Song,1 Yanming Liu,1 Xianjie Lu,1 Xiaobing Wang,2 Zhiqing You,1 Zhongchao Han,3,4 Fabin Han1 1Center for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 2Department of Gynecology and Obstetrics, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 3The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Peking Union of Medical College, Tianjin, People's Republic of China; 4National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Human umbilical cord blood-derived mononuclear cells (hUCB-MNCs were reported to have neurorestorative capacity for neurological disorders such as stroke and traumatic brain injury. This study was performed to explore if hUCB-MNC transplantation plays any therapeutic effects for Parkinson's disease (PD in a 6-OHDA-lesioned rat model of PD. hUCB-MNCs were isolated from umbilical cord blood and administered to the striatum of the 6-OHDA-lesioned rats. The apomorphine-induced locomotive turning-overs were measured to evaluate the improvement of motor dysfunctions of the rats after administration of hUCB-MNCs. We observed that transplanted hUCB-MNCs significantly improve the motor deficits of the PD rats and that grafted hUCB-MNCs integrated to the host brains and differentiated to neurons and dopamine neurons in vivo after 16 weeks of transplantation. Our study provided evidence that transplanted hUCB-MNCs play therapeutic effects in a rat PD model by differentiating to neurons and dopamine neurons. Keywords: hUCB-MNCs, Parkinson's disease, transplantation

  17. State of motor function of stomach in patients with cervix uteri carcinoma in combined radiotherapy

    International Nuclear Information System (INIS)

    Zhidovtseva, M.I.; Shutilova, A.A.; Dynnik, M.S.; Lugovskaya, K.A.; Duma, V.A.

    1978-01-01

    Data on studying stomach motor function in patients with carvix uteri carcinoma of 2 and 3 stages in combined radiotherapy are given. The patients were examined before radiotherapy and directly after it as well as in 1-2 years using the X-ray method for 50 patients and electrogastrography for 68 patients. Revealed changes in stomach motor function, being considered as a response to irradiation, were manifested more often in decreasing motility, evacuatory function and bioelectric stomach activity. These functional changes result in disturbance of general state of patients, appearance of symptomatology of stomach dysfunction and serve as indications for the prescription of correcting therapy, which includes diet and preparations strengthening stomach motor activity

  18. IE Information No. 87-08: Degraded motor leads in Limitorque dc motor operators

    International Nuclear Information System (INIS)

    Jordan, E.L.

    1992-01-01

    On May 6, 1986 the NRC received from Portland General Electric Company a 10 CFR 21 report concerning a motor failure which occurred at its Trojan Nuclear Power Plant. The failure involved shorting of the motor leads inside a Limitorque motor operator connected to an auxiliary feedwater flow control valve. Upon inspection it was determined that the failure was the result of insulation degradation of the motor leads that had allowed two leads to short together. Recently, the NRC has also learned of a failure at the Turkey Point Nuclear Power Plant in which the steam supply valve for the auxiliary feedwater turbine failed to operate after a Limitorque motor operator experienced a similar motor lead short circuit. The Trojan and the Turkey Point Limitorque operators were found to contain motors manufactured with Nomex-Kapton insulated leads. On January 12--14, 1987, the NRC conducted an inspection at Peerless-Winsmith, Inc., manufacturer of dc motors for Limitorque Co. During this inspection it was determined that the failed Nomex-Kapton leads were different than the leads which were fitted to the motors, tested, and documented in Limitorque Qualification Report B-0009 for dc motor operators. The leads attached to the tested motors were insulated with Nomex plus an epoxy impregnated braided fiberglass sleeve. The NRC knows of no analysis or testing that has been performed to show the Nomex-Kapton leads are acceptable for use in an application requiring environmental qualification. Further, it should be noted that the failures cited above occurred under normal operating conditions, not under the harsh conditions which could occur in areas where environmental qualification is required

  19. Is there a role for exosomes in foetoplacental endothelial dysfunction in gestational diabetes mellitus?

    NARCIS (Netherlands)

    Saez, Tamara; de Vos, Paul; Sobrevia, Luis; Faas, Marijke M.

    Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with endothelial dysfunction in the foetoplacental vasculature. Foetoplacental endothelial dysfunction is characterized by changes in the L-arginine-adenosine signalling pathway and inflammation. The mechanisms involved in

  20. Early uneven ear input induces long-lasting differences in left-right motor function.

    Science.gov (United States)

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  1. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  2. Cortical Motor Organization, Mirror Neurons, and Embodied Language: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Leonardo Fogassi

    2012-11-01

    Full Text Available The recent conceptual achievement that the cortical motor system plays a crucial role not only in motor control but also in higher cognitive functions has given a new perspective also on the involvement of motor cortex in language perception and production. In particular, there is evidence that the matching mechanism based on mirror neurons can be involved in both pho-nological recognition and retrieval of meaning, especially for action word categories, thus suggesting a contribution of an action–perception mechanism to the automatic comprehension of semantics. Furthermore, a compari-son of the anatomo-functional properties of the frontal motor cortex among different primates and their communicative modalities indicates that the combination of the voluntary control of the gestural communication systems and of the vocal apparatus has been the critical factor in the transition from a gestural-based communication into a predominantly speech-based system. Finally, considering that the monkey and human premotor-parietal motor system, plus the prefrontal cortex, are involved in the sequential motor organization of actions and in the hierarchical combination of motor elements, we propose that elements of such motor organization have been exploited in other domains, including some aspects of the syntactic structure of language.

  3. Body-specific motor imagery of hand actions: neural evidence from right- and left-handers

    Directory of Open Access Journals (Sweden)

    Roel M Willems

    2009-11-01

    Full Text Available If motor imagery uses neural structures involved in action execution, then the neural correlates of imagining an action should differ between individuals who tend to execute the action differently. Here we report fMRI data showing that motor imagery is influenced by the way people habitually perform motor actions with their particular bodies; that is, motor imagery is ‘body-specific’ (Casasanto, 2009. During mental imagery for complex hand actions, activation of cortical areas involved in motor planning and execution was left-lateralized in right-handers but right-lateralized in left-handers. We conclude that motor imagery involves the generation of an action plan that is grounded in the participant’s motor habits, not just an abstract representation at the level of the action’s goal. People with different patterns of motor experience form correspondingly different neurocognitive representations of imagined actions.

  4. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children.

    Science.gov (United States)

    Allotey, J; Zamora, J; Cheong-See, F; Kalidindi, M; Arroyo-Manzano, D; Asztalos, E; van der Post, Jam; Mol, B W; Moore, D; Birtles, D; Khan, K S; Thangaratinam, S

    2018-01-01

    Preterm birth may leave the brain vulnerable to dysfunction. Knowledge of future neurodevelopmental delay in children born with various degrees of prematurity is needed to inform practice and policy. To quantify the long-term cognitive, motor, behavioural and academic performance of children born with different degrees of prematurity compared with term-born children. PubMed and Embase were searched from January 1980 to December 2016 without language restrictions. Observational studies that reported neurodevelopmental outcomes from 2 years of age in children born preterm compared with a term-born cohort. We pooled individual estimates of standardised mean differences (SMD) and odds ratios (OR) with 95% confidence intervals using a random effects model. We included 74 studies (64 061 children). Preterm children had lower cognitive scores for FSIQ (SMD: -0.70; 95% CI: -0.73 to -0.66), PIQ (SMD: -0.67; 95% CI: -0.73 to -0.60) and VIQ (SMD: -0.53; 95% CI: -0.60 to -0.47). Lower scores for preterm children in motor skills, behaviour, reading, mathematics and spelling were observed at primary school age, and this persisted to secondary school age, except for mathematics. Gestational age at birth accounted for 38-48% of the observed IQ variance. ADHD was diagnosed twice as often in preterm children (OR: 1.6; 95% CI: 1.3-1.8), with a differential effect observed according to the severity of prematurity (I 2 = 49.4%, P = 0.03). Prematurity of any degree affects the cognitive performance of children born preterm. The poor neurodevelopment persists at various ages of follow up. Parents, educators, healthcare professionals and policy makers need to take into account the additional academic, emotional and behavioural needs of these children. Adverse effect of preterm birth on a child's neurodevelopment persists up to adulthood. © 2017 Royal College of Obstetricians and Gynaecologists.

  5. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing

    Science.gov (United States)

    McGregor, Heather R.

    2015-01-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153–160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493–1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289–2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989–994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400–404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526–2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769–771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. PMID:25995349

  6. Changes in visual and sensory-motor resting-state functional connectivity support motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2015-07-01

    Motor learning occurs not only through direct first-hand experience but also through observation (Mattar AA, Gribble PL. Neuron 46: 153-160, 2005). When observing the actions of others, we activate many of the same brain regions involved in performing those actions ourselves (Malfait N, Valyear KF, Culham JC, Anton JL, Brown LE, Gribble PL. J Cogn Neurosci 22: 1493-1503, 2010). Links between neural systems for vision and action have been reported in neurophysiological (Strafella AP, Paus T. Neuroreport 11: 2289-2292, 2000; Watkins KE, Strafella AP, Paus T. Neuropsychologia 41: 989-994, 2003), brain imaging (Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V, Seitz RJ, Zilles K, Rizzolatti G, Freund HJ. Eur J Neurosci 13: 400-404, 2001; Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Science 286: 2526-2528, 1999), and eye tracking (Flanagan JR, Johansson RS. Nature 424: 769-771, 2003) studies. Here we used a force field learning paradigm coupled with resting-state fMRI to investigate the brain areas involved in motor learning by observing. We examined changes in resting-state functional connectivity (FC) after an observational learning task and found a network consisting of V5/MT, cerebellum, and primary motor and somatosensory cortices in which changes in FC were correlated with the amount of motor learning achieved through observation, as assessed behaviorally after resting-state fMRI scans. The observed FC changes in this network are not due to visual attention to motion or observation of movement errors but rather are specifically linked to motor learning. These results support the idea that brain networks linking action observation and motor control also facilitate motor learning. Copyright © 2015 the American Physiological Society.

  7. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  8. Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames

    Science.gov (United States)

    2014-01-01

    The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease. PMID:24877117

  9. Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames

    Directory of Open Access Journals (Sweden)

    Matthis Synofzik

    2014-01-01

    Full Text Available The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”. The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability. Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease.

  10. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Shimaa E Ali

    Full Text Available There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L over a period 4-24 h post treatment. Using transmission electron microscopy (TEM, early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM. Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.

  11. Acute behavioural dysfunctions following exposure to γ-rays

    International Nuclear Information System (INIS)

    Kumar, Mayank; Haridas, Seenu; Manda, Kailash

    2014-01-01

    Exposure to ionizing radiations (IR) has been reported to have many ill effects. These are manifested immediately after exposure and may persist or develop long after the incident. The severity and manifestation is dependent on the absorbed dose and type of the IR. These have been reported extensively in human subjects; especially among the victims of the accidental exposure and radiotherapy patients. Additionally, there have been a plethora of studies in animal models which support these findings, and are being used to test radio-mitigative or radio-protective strategies. The vulnerability of neuronal tissue to IR is well known, however the acute dose-dependent behavioural consequences have yet to be understood. Thus, our laboratory has been trying to decipher the dose-dependent behavioural dysfunctions which have occurred 24-72 hours post IR exposure and possible radio-protective strategies. We are utilizing mouse models of studying the behavioural processes, in a test battery conceptualized to study the affective and cognitive skills as well as motor skills of the animals. Additionally, we have observed cellular damage to different areas of the brain and subsequent correlations to behavioural dysfunctions. This has being carried out by using single cell gel electrophoresis (SCGE) and Diffusion Tensor Imaging (DTI). The findings show that after exposure to sub-lethal γ-rays, there are significant changes that occur in all the behavioural parameters. The most sensitive area has been found to be the Hippocampus as visualized by DTI and the SCGE. Consequently, short term and long term memory functions have been shown to be disrupted within 24-72 hours of exposure. Acute dysfunctions of affective functions have also been demonstrated to materialise within 24 hours post exposure. Unexpectedly, the behavioural dysfunctions were seen to be dose independent. Thus, this study provides a foundation to help decipher the acute behavioural manifestations of IR exposure

  12. Parkinson Disease: The Relationship Between Non-motor Symptoms and Motor Phenotype.

    Science.gov (United States)

    Ba, Fang; Obaid, Mona; Wieler, Marguerite; Camicioli, Richard; Martin, W R Wayne

    2016-03-01

    Parkinson disease (PD) presents with motor and non-motor symptoms (NMS). The NMS often precede the onset of motor symptoms, but may progress throughout the disease course. Tremor dominant, postural instability gait difficulty (PIGD), and indeterminate phenotypes can be distinguished using Unified PD Rating scales (UPDRS-III). We hypothesized that the PIGD phenotype would be more likely to develop NMS, and that the non-dopamine-responsive axial signs would correlate with NMS severity. We conducted a retrospective cross-sectional chart review to assess the relationship between NMS and PD motor phenotypes. PD patients were administered the NMS Questionnaire, the UPDRS-III, and the Mini-Mental State Examination score. The relationship between NMS burden and PD subtypes was examined using linear regression models. The prevalence of each NMS among difference PD motor subtypes was analyzed using chi-square test. PD patients with more advanced disease based on their UPDRS-III had higher NMS Questionnaire scores. The axial component of UPDRS-III correlated with higher NMS. There was no correlation between NMS and tremor scores. There was a significant correlation between PIGD score and higher NMS burden. PIGD group had higher prevalence in most NMS domains when compared with tremor dominant and indeterminate groups independent of disease duration and severity. NMS profile and severity vary according to motor phenotype. We conclude that in the PD population, patients with a PIGD phenotype who have more axial involvement, associated with advanced disease and poor motor response, have a higher risk for a higher NMS burden.

  13. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  14. Motor Learning as Young Gymnast's Talent Indicator.

    Science.gov (United States)

    di Cagno, Alessandra; Battaglia, Claudia; Fiorilli, Giovanni; Piazza, Marina; Giombini, Arrigo; Fagnani, Federica; Borrione, Paolo; Calcagno, Giuseppe; Pigozzi, Fabio

    2014-12-01

    Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr.) and juniors (aged 13.3 ± 0.5 years), competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz's battery (1985), and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p talent identification and selection procedures it is better to include the evaluation of coordination and motor learning ability.Motor learning assessment concerns performance improvement and the ability to develop it, rather than evaluating the athlete's current performance.In this manner talent identification processes should be focused on the future performance capabilities of athletes.

  15. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    Science.gov (United States)

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  16. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    Science.gov (United States)

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  18. Relationship between female pelvic floor dysfunction and sexual dysfunction: an observational study.

    Science.gov (United States)

    Bortolami, Arianna; Vanti, Carla; Banchelli, Federico; Guccione, Andrew A; Pillastrini, Paolo

    2015-05-01

    The ability to express one's sexuality and engage in sexual activity requires multisystemic coordination involving many psychological functions as well as the integrity of the nervous, hormonal, vascular, immune, and neuromuscular body structures and functions. The purpose of this study was to investigate the associations among pelvic floor function, sexual function, and demographic and clinical characteristics in a population of women initiating physical therapy evaluation and treatment for pelvic floor-related dysfunctions (urinary incontinence, pelvic organ prolapse, vulvodynia, vaginismus, and constipation). We consented and collected completed demographic data and data related to symptoms and clinical condition on 85 consecutive patients in an outpatient physical therapy clinic. Clinical and anthropometric characteristics were analyzed descriptively. Analysis of variance and linear regression analyses were used to analyze Female Sexual Function Index (FSFI) scale ratings, whereas zero-inflated beta-binomial regression was applied to the pain subscale. Main outcome measure was FSFI score, whereas the secondary outcome measure was the FSFI subscale score related to pain. Women in our sample were 38 years old on average, 33% of whom had given birth and 82% of whom had high tone pelvic floor. Being in the middle-tercile age group and exhibiting low pelvic floor tone (Beta = 6.8; 95% confidence interval [CI] = [1.4; 12.0]) were significantly associated with lower levels of sexual dysfunction. Women with low tone pelvic floor also reported lower pain (odds ratio = 4.0; 95% CI = [1.6; 9.6]), whereas younger aged and physically unsatisfied subjects were more likely not to have sexual activity in the month prior to scale measurement. In female patients with pelvic floor muscle dysfunction undergoing physical therapy and rehabilitation, sexual dysfunction appears to be significantly correlated with age and high pelvic floor muscle tone. © 2015

  19. The role of plastic changes in the motor cortex and spinal cord for motor learning

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Lundbye-Jensen, Jesper

    2010-01-01

    Adaptive changes of the efficacy of neural circuitries at different sites of the central nervous system is the basis of acquisition of new motor skills. Non-invasive human imaging and electrophysiological experiments have demonstrated that the primary motor cortex and spinal cord circuitries...... are key players in the early stages of skill acquisition and consolidation of motor learning. Expansion of the cortical representation of the trained muscles, changes in corticomuscular coupling and changes in stretch reflex activity are thus all markers of neuroplastic changes accompanying early skill...... acquisition. We have shown in recent experiments that sensory feedback from the active muscles play a surprisingly specific role at this stage of learning. Following motor skill training, repeated activation of sensory afferents from the muscle that has been involved in a previous training session, interfered...

  20. Unravelling and Exploiting Astrocyte Dysfunction in Huntington's Disease

    DEFF Research Database (Denmark)

    Khakh, Baljit S.; Beaumont, Vahri; Cachope, Roger

    2017-01-01

    Astrocytes are abundant within mature neural circuits and are involved in brain disorders. Here, we summarize our current understanding of astrocytes and Huntington's disease (HD), with a focus on correlative and causative dysfunctions of ion homeostasis, calcium signaling, and neurotransmitter...

  1. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Science.gov (United States)

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Adaptive behaviour and motor skills in children with upper limb deficiency.

    Science.gov (United States)

    Mano, Hiroshi; Fujiwara, Sayaka; Haga, Nobuhiko

    2018-04-01

    The dysfunction of individuals with upper limb deficiencies affects their daily lives and social participation. To clarify the adaptive behaviours and motor skills of children with upper limb deficiencies. Cross-sectional survey. The subjects were 10 children ranging from 1 to 6 years of age with unilateral upper limb deficiencies at the level distal to the elbow who were using only cosmetic or passive prostheses or none at all. To measure their adaptive behaviour and motor skills, the Vineland Adaptive Behavior Scales, Second Edition was used. They were evaluated on the domains of communication, daily living skills, socialization and motor skills. We also examined the relationship of the scores with age. There were no statistically significant scores for domains or subdomains. The domain standard score of motor skills was significantly lower than the median scores of the domains and was negatively correlated with age. Children with upper limb deficiencies have individual weaknesses in motor skill behaviours, and these weaknesses increase with age. It may be helpful in considering approaches to rehabilitation and the prescription of prostheses to consider the characteristics and course of children's motor skill behaviours. Clinical relevance Even if children with unilateral upper limb deficiencies seem to compensate well for their affected limb function, they have or will experience individual weaknesses in motor skills. We should take this into consideration to develop better strategies for rehabilitation and prostheses prescriptions.

  3. Evaluating the importance of social motor synchronization and motor skill for understanding autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-10-01

    Impairments in social interaction and communicating with others are core features of autism spectrum disorder (ASD), but the specific processes underlying such social competence impairments are not well understood. An important key for increasing our understanding of ASD-specific social deficits may lie with the social motor synchronization that takes place when we implicitly coordinate our bodies with others. Here, we tested whether dynamical measures of synchronization differentiate children with ASD from controls and further explored the relationships between synchronization ability and motor control problems. We found (a) that children with ASD exhibited different and less stable patterns of social synchronization ability than controls; (b) children with ASD performed motor movements that were slower and more variable in both spacing and timing; and (c) some social synchronization that involved motor timing was related to motor ability but less rhythmic synchronization was not. These findings raise the possibility that objective dynamical measures of synchronization ability and motor skill could provide new insights into understanding the social deficits in ASD that could ultimately aid clinical diagnosis and prognosis. Autism Res 2017, 10: 1687-1699. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.

  4. The application of preoperative functional MRI in neurosurgical treatment of intraoperative electrical stimulation for gliomas involving motor areas at 3 T

    International Nuclear Information System (INIS)

    Li Zixiao; Dai Jianping; Li Shaowu; Li Changhong; Gao Peiyi; Jiang Tao; Sun Yilin

    2006-01-01

    Objective: To assess the value of preoperative blood oxygen level dependent (BOLD) 3 T functional magnetic resonance imaging (fMRI) to identify motor cortical areas in neurosurgical treatment of intraoperative electrical stimulation for gliomas involving motor areas. Methods: The study included 26 consecutive preoperative BOLD-fMRI sessions in patients with brain gliomas in or near senorimotor cortices. The bilateral hand movement fMRI paradigm was preformed in all patients. The BOLD data were analyzed by the workstation (Leonardo Syngo 2003A, Siemens)to obtain the BOLD-fMRI images, which were used to guide the preoperative neurosurgical planning. With guidance of preoperative mapping, all patients received microsurgery under anaesthesia retaining consciousness using intraoperative motor functional brain mapping with the method of direct electrical stimulations. The brain lesions were removed as far as possible in the case of eloquent areas preservation. The preoperative and postoperative KPS of all patients were operated to evaluate the state of patients. Results: The preoperative mappings of the hand area on primary sensorimotor cortex using BOLD-fMRI were obtained successfully in twenty-three of twenty-six patients. Under anaesthesia retaining consciousness, the primary motor area was monitored by the method of direct electrical stimulations with the guidance of preoperative BOLD-fMRI. There was good correlation between preoperative fMRI findings and intraoperative cortical stimulation. Furthermore, the preoperative mappings could make up for the un-monitored areas during operative cortical stimulation. For the 21 patients of the pre-KPS from 80.0 to 90.0, the pre-KPS and post-KPS are 85.7 and 95.2 respectively, and for the 5 patients of the pre-KPS from 40. 0 to 70.0, the pre-KPS and post-KPS are 68.0 and 90.0 respectively. Conclusion: The preoperative mapping of the hand area on primary sensorimotor cortex using BOLD-fMRI could non-invasively localize the

  5. Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Abe, K.; Takanashi, M.; Yanagihara, T.; Watanabe, Y.; Tanaka, H.; Fujita, N.; Hirabuki, N.

    2001-01-01

    We studied whether N-acetylaspartate (NAA), a neuronal marker, is reduced in the brain of 14 patients with clinically definite amyotrophic lateral sclerosis (ALS) and whether NAA levels in the motor area and frontal lobe correlate with the clinical features, including frontal lobe function. We also studied 14 normal controls were evaluated. We obtained peak integrals in 1 H magnetic resonance spectroscopy (MRS) for NAA, creatine (Cr), and choline-containing compounds (Cho). Severity of the disease was determined using the manual muscle strength test, and the Norris limb and bulbar scales. In the patients, the NAA/Cr ratio was reduced in the motor area and frontal lobe, while the Cho/Cr ratio was normal throughout the brain. There were significant correlations between the NAA/Cr ratio in the motor area and the Norris limb scale (r = 0.50; P < 0.01) and between the NAA/Cr ratio in the frontal lobe and the number of categories achieved in the Wisconsin Card Sorting test (r = 0.71; P < 0.05), implying frontal lobe dysfunction. These correlations suggest that a reduced NAA/Cr ratio is a marker of cortical neuronal loss and dysfunction in ALS. (orig.)

  6. Decrease in N-acetylaspartate/creatine ratio in the motor area and the frontal lobe in amyotrophic lateral sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K.; Takanashi, M.; Yanagihara, T. [Dept. of Neurology, Osaka University Graduate School of Medicine (Japan); Watanabe, Y.; Tanaka, H.; Fujita, N.; Hirabuki, N. [Dept. of Radiology, Osaka University Graduate School of Medicine (Japan)

    2001-07-01

    We studied whether N-acetylaspartate (NAA), a neuronal marker, is reduced in the brain of 14 patients with clinically definite amyotrophic lateral sclerosis (ALS) and whether NAA levels in the motor area and frontal lobe correlate with the clinical features, including frontal lobe function. We also studied 14 normal controls were evaluated. We obtained peak integrals in {sup 1}H magnetic resonance spectroscopy (MRS) for NAA, creatine (Cr), and choline-containing compounds (Cho). Severity of the disease was determined using the manual muscle strength test, and the Norris limb and bulbar scales. In the patients, the NAA/Cr ratio was reduced in the motor area and frontal lobe, while the Cho/Cr ratio was normal throughout the brain. There were significant correlations between the NAA/Cr ratio in the motor area and the Norris limb scale (r = 0.50; P < 0.01) and between the NAA/Cr ratio in the frontal lobe and the number of categories achieved in the Wisconsin Card Sorting test (r = 0.71; P < 0.05), implying frontal lobe dysfunction. These correlations suggest that a reduced NAA/Cr ratio is a marker of cortical neuronal loss and dysfunction in ALS. (orig.)

  7. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  8. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  9. Esophageal motor disorders: recent advances.

    Science.gov (United States)

    Dogan, Ibrahim; Mittal, Ravinder K

    2006-07-01

    The aim of this article is to highlight literature published during the last year in the context of previous knowledge. A number of novel techniques - high-resolution manometry, esophageal electrical impedance and intra-luminal ultrasound imaging - have improved our understanding of esophageal function in health and disease. Several studies address the function of longitudinal muscle layer of the esophagus in normal subjects and patients with motor disorders of the esophagus. Esophageal electrical impedance recordings reveal abnormal transit in patients with diffuse esophageal spasm, achalasia and patients with normal manometry. Loss of the mammalian Sprouty2 gene leads to enteric neuronal hyperplasia and esophageal achalasia. Several studies showed excellent long-term results of medical and surgical treatment of achalasia of the esophagus. For the first time, mechanisms of gastroesophageal reflux in critically ill mechanically ventilated patients are reported. Novel pharmacologic strategies in the treatment of reflux disease are highlighted. Several novel techniques, perfected during recent years, have improved our understanding of esophageal function and dysfunction. A number of important observations, reviewed here, provide important insight into the pathogenesis of esophageal motor disorders and treatment of gastroesophageal reflux disease.

  10. Diminished activation of motor working-memory networks in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Claudia Rottschy

    Full Text Available Parkinson's disease (PD is characterized by typical extrapyramidal motor features and increasingly recognized non-motor symptoms such as working memory (WM deficits. Using functional magnetic resonance imaging (fMRI, we investigated differences in neuronal activation during a motor WM task in 23 non-demented PD patients and 23 age- and gender-matched healthy controls. Participants had to memorize and retype variably long visuo-spatial stimulus sequences after short or long delays (immediate or delayed serial recall. PD patients showed deficient WM performance compared to controls, which was accompanied by reduced encoding-related activation in WM-related regions. Mirroring slower motor initiation and execution, reduced activation in motor structures such as the basal ganglia and superior parietal cortex was detected for both immediate and delayed recall. Increased activation in limbic, parietal and cerebellar regions was found during delayed recall only. Increased load-related activation for delayed recall was found in the posterior midline and the cerebellum. Overall, our results demonstrate that impairment of WM in PD is primarily associated with a widespread reduction of task-relevant activation, whereas additional parietal, limbic and cerebellar regions become more activated relative to matched controls. While the reduced WM-related activity mirrors the deficient WM performance, the additional recruitment may point to either dysfunctional compensatory strategies or detrimental crosstalk from "default-mode" regions, contributing to the observed impairment.

  11. Motor performance of preschool children

    OpenAIRE

    Karina Słonka; Manuela Dyas; Tadeusz Słonka; Tomasz Szurmik

    2017-01-01

    Introduction: Pre‑school age is a period of intensive development when children shape their posture, habits and motor memory. Movement is child's physiological need.  Motive activity supports not only physical development, but also psychical, intellectual and social.   Aim: The aim of the study is to assess motor ability in preschool children from the city of Opole and District Dobrzeń Wielki. Materials and methods: The research involved 228 children, aged 5 and 6. The method used in...

  12. Aberrant self-grooming as early marker of motor dysfunction in a rat model of Huntington's disease.

    Science.gov (United States)

    Tartaglione, Anna Maria; Armida, Monica; Potenza, Rosa Luisa; Pezzola, Antonella; Popoli, Patrizia; Calamandrei, Gemma

    2016-10-15

    In the study of neurodegenerative diseases, rodent models provide experimentally accessible systems to study multiple pathogenetic aspects. The identification of early and robust behavioural changes is crucial to monitoring disease progression and testing potential therapeutic strategies in animals. Consistent experimental data support the translational value of rodent self-grooming as index of disturbed motor functions and perseverative behaviour patterns in different rodent models of brain disorders. Huntington's disease (HD) is a progressive neurodegenerative disorder, characterized by severe degeneration of basal ganglia, cognitive and psychiatric impairments and motor abnormalities. In the rat species, intrastriatal injection of the excitotoxin quinolinic acid (QA) mimics some of the neuroanatomical and behavioural changes found in HD, including the loss of GABAergic neurons and the appearance of motor and cognitive deficits. We show here that striatal damage induced by unilateral QA injection in dorsal striatum of rats triggers aberrant grooming behaviour as early as three weeks post-lesion in absence of other motor impairments: specifically, both quantitative (frequency and duration) and qualitative (the sequential pattern of movements) features of self-grooming behaviour were significantly altered in QA-lesioned rats placed in either the elevated plus-maze and the open-field. The consistent abnormalities in self-grooming recorded in two different experimental contexts support the use of this behavioural marker in rodent models of striatal damage such as HD, to assess the potential effects of drug and cell replacement therapy in the early stage of disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    International Nuclear Information System (INIS)

    Liu, Penghao; Xie, Qihai; Wei, Tong; Chen, Yichen; Chen, Hong; Shen, Weili

    2015-01-01

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  14. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Penghao [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Xie, Qihai [Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai (China); Wei, Tong [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Yichen [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Chen, Hong, E-mail: hchen100@shsmu.edu.cn [Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai (China); Shen, Weili, E-mail: wlshen@sibs.ac.cn [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (China)

    2015-12-04

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in both strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.

  15. Invited commentary on comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial.

    Science.gov (United States)

    Kwakkel, Gert; van Wegen, Erwin E; Meskers, Carel M

    2015-06-01

    In this issue of Archives of Physical Medicine and Rehabilitation, Jessica McCabe and colleagues report findings from their methodologically sound, dose-matched clinical trial in 39 patients beyond 6 months poststroke. In this phase II trial, the effects of 60 treatment sessions, each involving 3.5 hours of intensive practice plus either 1.5 hours of functional electrical stimulation (FES) or a shoulder-arm robotic therapy, were compared with 5 hours of intensive daily practice alone. Although no significant between-group differences were found on the primary outcome measure of Arm Motor Ability Test and the secondary outcome measure of Fugl-Meyer Arm motor score, 10% to 15% within-group therapeutic gains were on the Arm Motor Ability Test and Fugl-Meyer Arm. These gains are clinically meaningful for patients with stroke. However, the underlying mechanisms that drive these improvements remain poorly understood. The approximately $1000 cost reduction per patient calculated for the use of motor learning (ML) methods alone or combined with FES, compared with the combination of ML and shoulder-arm robotics, further emphasizes the need for cost considerations when making clinical decisions about selecting the most appropriate therapy for the upper paretic limb in patients with chronic stroke. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. Motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment: a diffusion tensor imaging study

    Directory of Open Access Journals (Sweden)

    Jin Hyun Kim

    2015-01-01

    Full Text Available Previous diffusion tensor imaging (DTI studies regarding pediatric patients with motor dysfunction have confirmed the correlation between DTI parameters of the injured corticospinal tract and the severity of motor dysfunction. There is also evidence that DTI parameters can help predict the prognosis of motor function of patients with cerebral palsy. But few studies are reported on the DTI parameters that can reflect the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment. In the present study, 36 pediatric patients with hemiplegic cerebral palsy were included. Before and after rehabilitation treatment, DTI was used to measure the fiber number (FN, fractional anisotropy (FA and apparent diffusion coefficient (ADC of bilateral corticospinal tracts. Functional Level of Hemiplegia scale (FxL was used to assess the therapeutic effect of rehabilitative therapy on clinical hemiplegia. Correlation analysis was performed to assess the statistical interrelationship between the change amount of DTI parameters and FxL. DTI findings obtained at the initial and follow-up evaluations demonstrated that more affected corticospinal tract yielded significantly decreased FN and FA values and significantly increased ADC value compared to the less affected corticospinal tract. Correlation analysis results showed that the change amount of FxL was positively correlated to FN and FA values, and the correlation to FN was stronger than the correlation to FA. The results suggest that FN and FA values can be used to evaluate the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment and FN is of more significance for evaluation.

  17. Prefrontal system dysfunction and credit card debt.

    Science.gov (United States)

    Spinella, Marcello; Yang, Bijou; Lester, David

    2004-10-01

    Credit card use often involves a disadvantageous allocation of finances because they allow for spending beyond means and buying on impulse. Accordingly they are associated with increased bankruptcy, anxiety, stress, and health problems. Mounting evidence from functional neuroimaging and clinical studies implicates prefrontal-subcortical systems in processing financial information. This study examined the relationship of credit card debt and executive functions using the Frontal System Behavior Scale (FRSBE). After removing the influences of demographic variables (age, sex, education, and income), credit card debt was associated with the Executive Dysfunction scale, but not the Apathy or Disinhibition scales. This suggests that processes of conceptualizing and organizing finances are most relevant to credit card debt, and implicates dorsolateral prefrontal dysfunction.

  18. Gastrointestinal Autonomic Dysfunction in Patients with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Joong-Seok Kim

    2015-05-01

    Full Text Available Currently, gastrointestinal dysfunctions in Parkinson’s disease (PD are well-recognized problems and are known to be an initial symptom in the pathological process that eventually results in PD. Gastrointestinal symptoms may result from the involvement of either the central or enteric nervous systems, or these symptoms may be side effects of antiparkinsonian medications. Weight loss, excessive salivation, dysphagia, nausea/gastroparesis, constipation, and defecation dysfunction all may occur. Increased identification and early detection of these symptoms can result in a significant improvement in the quality of life for PD patients.

  19. Dynamic and morphologic evaluation of erectile dysfunction on ...

    African Journals Online (AJOL)

    Background: Penile erection is a complex phenomenon that involves coordinated interaction of the psychologic, hormonal, nervous, arterial, venous, and sinusoidal systems. Erectile dysfunction (ED) is the persistent inability to attain or maintain penile erection sufficient for sexual intercourse. This study aims to determine ...

  20. Erectile dysfunction: prevalence, risk factors and involvement of ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... Abstract. Purpose: To explore the literature regarding prevalance, risk factors and the involvement of ..... Cigarette smoking and other vascular risk factors in vasculogenic impotence. Urology.

  1. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Patricia S. Estes

    2013-05-01

    Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  2. Motor neurons and glia exhibit specific individualized responses to TDP-43 expression in a Drosophila model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Estes, Patricia S; Daniel, Scott G; McCallum, Abigail P; Boehringer, Ashley V; Sukhina, Alona S; Zwick, Rebecca A; Zarnescu, Daniela C

    2013-05-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by complex neuronal and glial phenotypes. Recently, RNA-based mechanisms have been linked to ALS via RNA-binding proteins such as TDP-43, which has been studied in vivo using models ranging from yeast to rodents. We have developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of pathology, including motor neuron loss, locomotor dysfunction and reduced survival. Here we report the phenotypic consequences of expressing wild-type and four different ALS-linked TDP-43 mutations in neurons and glia. We show that TDP-43-driven neurodegeneration phenotypes are dose- and age-dependent. In motor neurons, TDP-43 appears restricted to nuclei, which are significantly misshapen due to mutant but not wild-type protein expression. In glia and in the developing neuroepithelium, TDP-43 associates with cytoplasmic puncta. TDP-43-containing RNA granules are motile in cultured motor neurons, although wild-type and mutant variants exhibit different kinetic properties. At the neuromuscular junction, the expression of TDP-43 in motor neurons versus glia leads to seemingly opposite synaptic phenotypes that, surprisingly, translate into comparable locomotor defects. Finally, we explore sleep as a behavioral readout of TDP-43 expression and find evidence of sleep fragmentation consistent with hyperexcitability, a suggested mechanism in ALS. These findings support the notion that although motor neurons and glia are both involved in ALS pathology, at the cellular level they can exhibit different responses to TDP-43. In addition, our data suggest that individual TDP-43 alleles utilize distinct molecular mechanisms, which will be important for developing therapeutic strategies.

  3. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  4. Intestinal crosstalk: a new paradigm for understanding the gut as the "motor" of critical illness.

    Science.gov (United States)

    Clark, Jessica A; Coopersmith, Craig M

    2007-10-01

    For more than 20 years, the gut has been hypothesized to be the "motor" of multiple organ dysfunction syndrome. As critical care research has evolved, there have been multiple mechanisms by which the gastrointestinal tract has been proposed to drive systemic inflammation. Many of these disparate mechanisms have proved to be important in the origin and propagation of critical illness. However, this has led to an unusual situation where investigators describing the gut as a "motor" revving the systemic inflammatory response syndrome are frequently describing wholly different processes to support their claim (i.e., increased apoptosis, altered tight junctions, translocation, cytokine production, crosstalk with commensal bacteria, etc). The purpose of this review is to present a unifying theory as to how the gut drives critical illness. Although the gastrointestinal tract is frequently described simply as "the gut," it is actually made up of (1) an epithelium; (2) a diverse and robust immune arm, which contains most of the immune cells in the body; and (3) the commensal bacteria, which contain more cells than are present in the entire host organism. We propose that the intestinal epithelium, the intestinal immune system, and the intestine's endogenous bacteria all play vital roles driving multiple organ dysfunction syndrome, and the complex crosstalk between these three interrelated portions of the gastrointestinal tract is what cumulatively makes the gut a "motor" of critical illness.

  5. Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: A Golgi study.

    Science.gov (United States)

    Vázquez-Hernández, Nallely; González-Tapia, Diana C; Martínez-Torres, Nestor I; González-Tapia, David; González-Burgos, Ignacio

    2017-09-14

    Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Eye Gaze Correlates of Motor Impairment in VR Observation of Motor Actions.

    Science.gov (United States)

    Alves, J; Vourvopoulos, A; Bernardino, A; Bermúdez I Badia, S

    2016-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". Identify eye gaze correlates of motor impairment in a virtual reality motor observation task in a study with healthy participants and stroke patients. Participants consisted of a group of healthy subjects (N = 20) and a group of stroke survivors (N = 10). Both groups were required to observe a simple reach-and-grab and place-and-release task in a virtual environment. Additionally, healthy subjects were required to observe the task in a normal condition and a constrained movement condition. Eye movements were recorded during the observation task for later analysis. For healthy participants, results showed differences in gaze metrics when comparing the normal and arm-constrained conditions. Differences in gaze metrics were also found when comparing dominant and non-dominant arm for saccades and smooth pursuit events. For stroke patients, results showed longer smooth pursuit segments in action observation when observing the paretic arm, thus providing evidence that the affected circuitry may be activated for eye gaze control during observation of the simulated motor action. This study suggests that neural motor circuits are involved, at multiple levels, in observation of motor actions displayed in a virtual reality environment. Thus, eye tracking combined with action observation tasks in a virtual reality display can be used to monitor motor deficits derived from stroke, and consequently can also be used for rehabilitation of stroke patients.

  7. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke

    Science.gov (United States)

    Inman, Cory S.; James, G. Andrew; Hamann, Stephan; Rajendra, Justin K.; Pagnoni, Giuseppe; Butler, Andrew J.

    2011-01-01

    Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors’ fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway. PMID:21839174

  8. Childhood Sexual Abuse as a Predictor of Adult Female Sexual Dysfunction: A Study of Couples Seeking Sex Therapy.

    Science.gov (United States)

    Sarwer, David B.; Durlak, Joseph A.

    1996-01-01

    A study of 359 married women who sought sex therapy with their spouses found a connection between adult female sexual dysfunction and childhood sexual abuse. Abuse involving sexual penetration was specifically associated with adult sexual dysfunction. Future research on additional variables that contribute to sexual dysfunction is urged. (CR)

  9. [Biliary dysfunction in obese children].

    Science.gov (United States)

    Aleshina, E I; Gubonina, I V; Novikova, V P; Vigurskaia, M Iu

    2014-01-01

    To examine the state of the biliary system, a study of properties of bile "case-control") 100 children and adolescents aged 8 to 18 years, held checkup in consultative and diagnostic center for chronic gastroduodenitis. BMI children were divided into 2 groups: group 1-60 children with obesity (BMI of 30 to 40) and group 2-40 children with normal anthropometric indices. Survey methods included clinical examination pediatrician, endocrinologist, biochemical parameters (ALT, AST, alkaline phosphatase level, total protein, bilirubin, lipidogram, glucose, insulin, HOMA-index), ultrasound of the abdomen and retroperitoneum, EGD with aspiration of gallbladder bile. Crystallography bile produced by crystallization of biological substrates micromethods modification Prima AV, 1992. Obese children with chronic gastroduodenita more likely than children of normal weight, had complaints and objective laboratory and instrumental evidence of insulin resistance and motor disorders of the upper gastrointestinal and biliary tract, liver enlargement and biliary "sludge". Biochemical parameters of obese children indicate initial metabolic changes in carbohydrate and fat metabolism and cholestasis, as compared to control children. Colloidal properties of bile in obese children with chronic gastroduodenita reduced, as indicated by the nature of the crystallographic pattern. Conclusions: Obese children with chronic gastroduodenitis often identified enlarged liver, cholestasis and biliary dysfunction, including with the presence of sludge in the gallbladder; most often--hypertonic bile dysfunction. Biochemical features of carbohydrate and fat metabolism reflect the features of the metabolic profile of obese children. Crystallography bile in obese children reveals the instability of the colloidal structure of bile, predisposing children to biliary sludge, which is a risk factor for gallstones.

  10. Clubfoot Does Not Impair Gross Motor Development in 5-Year-Olds.

    Science.gov (United States)

    Zapata, Karina A; Karol, Lori A; Jeans, Kelly A; Jo, Chan-Hee

    2018-04-01

    To evaluate the gross motor development of 5-year-olds using the Peabody Developmental Motor Scales, 2nd Edition (PDMS-2), test after initial nonoperative management of clubfoot as infants. The PDMS-2 Stationary, Locomotion, and Object Manipulation subtests were assessed on 128 children with idiopathic clubfeet at the age of 5 years. Children were categorized by their initial clubfoot severity as greater than 13, unilateral or bilateral involvement, and required surgery. Children with treated clubfeet had average gross motor scores (99 Gross Motor Quotient) compared with age-matched normative scores. Children with more severe clubfeet required surgery significantly more than children with less severe scores (P < .01). Peabody scores were not significantly different according to initial clubfoot severity, unilateral versus bilateral involvement, and surgical versus nonsurgical outcomes. Clubfoot does not significantly impair gross motor development in 5-year-olds.

  11. Role of medial premotor areas in action language processing in relation to motor skills.

    Science.gov (United States)

    Courson, Melody; Macoir, Joël; Tremblay, Pascale

    2017-10-01

    The literature reports that the supplementary motor area (SMA) and pre-supplementary motor area (pre-SMA) are involved in motor planning and execution, and in motor-related cognitive functions such as motor imagery. However, their specific role in action language processing remains unclear. In the present study, we investigated the impact of repetitive transcranial magnetic stimulation (rTMS) over SMA and pre-SMA during an action semantic analogy task (SAT) in relation with fine motor skills (i.e., manual dexterity) and motor imagery abilities in healthy non-expert adults. The impact of rTMS over SMA (but not pre-SMA) on reaction times (RT) during SAT was correlated with manual dexterity. Specifically, results show that rTMS over SMA modulated RT for those with lower dexterity skills. Our results therefore demonstrate a causal involvement of SMA in action language processing, as well as the existence of inter-individual differences in this involvement. We discuss these findings in light of neurolinguistic theories of language processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Inhibition of the primary motor cortex and the upgoing thumb sign

    Directory of Open Access Journals (Sweden)

    Antonia Nucera

    2017-09-01

    Full Text Available Background: The upgoing thumb sign has been frequently observed in patients with minor strokes and transient ischemic attacks as an indicator of brain involvement. We assessed the effect of primary motor cortex (M1 inhibition in the development of the upgoing thumb sign. Methods: Used repetitive Transcranial Magnetic Stimulation (rTMS, 1Hz frequency for 15min, 1s ISI, 900 pulses at 60% of resting motor threshold to inhibit the right or left primary motor cortex of 10 healthy individuals. Participants were examined before and after rTMS by a neurologist who was blind to the site of motor cortex inhibition. Results: 10 neurological intact participants (5 women/5 men were recruited for this study. 2 cases were excluded due to pre-existing possible thumb signs. After the inhibition of the primary motor cortex, in 6 subjects out of 8, we observed a thumb sign contralateral to the site of primary motor cortex inhibition. In one subject an ipsilateral thumbs sign was noted. In another case, we did not find an upgoing thumb sign. Conclusion: The upgoing thumb sign is a subtle neurological finding that may be related to the primary motor cortex or corticospinal pathways involvements. Keywords: Corticospinal tract, Upper motor neuron lesions, Primary motor cortex, Transcranial magnetic stimulation

  13. Central Motor Conduction Studies and Diagnostic Magnetic Resonance Imaging in Children with Severe Primary and Secondary Dystonia

    Science.gov (United States)

    McClelland, Verity; Mills, Kerry; Siddiqui, Ata; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: Dystonia in childhood has many causes. Imaging may suggest corticospinal tract dysfunction with or without coexistent basal ganglia damage. There are very few published neurophysiological studies on children with dystonia; one previous study has focused on primary dystonia. We investigated central motor conduction in 62 children (34 males, 28…

  14. Young Athletes program: impact on motor development.

    Science.gov (United States)

    Favazza, Paddy C; Siperstein, Gary N; Zeisel, Susan A; Odom, Samuel L; Sideris, John H; Moskowitz, Andrew L

    2013-07-01

    This study examined the effectiveness of the Young Athletes program to promote motor development in preschool-aged children with disabilities. In the study, 233 children were randomly assigned to a control group or the Young Athletes (YA) intervention group which consisted of 24 motor skill lessons delivered 3 times per week for 8 weeks. Hierarchical Linear Modeling (HLM) showed that children who participated in the YA intervention exhibited mean gains of 7-9 months on the Peabody Developmental Motor Subscales (PDMS) compared with mean gains of 3-5 months for the control group. Children in the YA intervention also exhibited significant gains on the gross motor subscale of the Vineland Teacher Rating Form (VTRF). Teachers and parents reported benefits for children not only in specific motor skills, but also kindergarten readiness skills and social/play skills. The necessity for direct and intentional instruction of motor skills, as well as the challenges of involving families in the YA program, are discussed.

  15. Assessment of the upper motor neuron in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Huynh, William; Simon, Neil G; Grosskreutz, Julian; Turner, Martin R; Vucic, Steve; Kiernan, Matthew C

    2016-07-01

    Clinical signs of upper motor neuron (UMN) involvement are an important component in supporting the diagnosis of amyotrophic lateral sclerosis (ALS), but are often not easily appreciated in a limb that is concurrently affected by muscle wasting and lower motor neuron degeneration, particularly in the early symptomatic stages of ALS. Whilst recent criteria have been proposed to facilitate improved detection of lower motor neuron impairment through electrophysiological features that have improved diagnostic sensitivity, assessment of upper motor neuron involvement remains essentially clinical. As a result, there is often a significant diagnostic delay that in turn may impact institution of disease-modifying therapy and access to other optimal patient management. Biomarkers of pathological UMN involvement are also required to ensure patients with suspected ALS have timely access to appropriate therapeutic trials. The present review provides an analysis of current and recently developed assessment techniques, including novel imaging and electrophysiological approaches used to study corticomotoneuronal pathology in ALS. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Interlimb Coordination: An Important Facet of Gross-Motor Ability

    Science.gov (United States)

    Bobbio, Tatiana; Gabbard, Carl; Cacola, Priscila

    2009-01-01

    Motor development attains landmark significance during early childhood. Although early childhood educators may be familiar with the gross-motor skill category, the subcategory of interlimb coordination needs greater attention than it typically receives from teachers of young children. Interlimb coordination primarily involves movements requiring…

  17. Mitochondrial Dysfunction and Oxidative Stress in Asthma: Implications for Mitochondria-Targeted Antioxidant Therapeutics

    Directory of Open Access Journals (Sweden)

    P. Hemachandra Reddy

    2011-02-01

    Full Text Available Asthma is a complex, inflammatory disorder characterized by airflow obstruction of variable degrees, bronchial hyper-responsiveness, and airway inflammation. Asthma is caused by environmental factors and a combination of genetic and environmental stimuli. Genetic studies have revealed that multiple loci are involved in the etiology of asthma. Recent cellular, molecular, and animal-model studies have revealed several cellular events that are involved in the progression of asthma, including: increased Th2 cytokines leading to the recruitment of inflammatory cells to the airway, and an increase in the production of reactive oxygen species and mitochondrial dysfunction in the activated inflammatory cells, leading to tissue injury in the bronchial epithelium. Further, aging and animal model studies have revealed that mitochondrial dysfunction and oxidative stress are involved and play a large role in asthma. Recent studies using experimental allergic asthmatic mouse models and peripheral cells and tissues from asthmatic humans have revealed antioxidants as promising treatments for people with asthma. This article summarizes the latest research findings on the involvement of inflammatory changes, and mitochondrial dysfunction/oxidative stress in the development and progression of asthma. This article also addresses the relationship between aging and age-related immunity in triggering asthma, the antioxidant therapeutic strategies in treating people with asthma.

  18. Risk of Erectile Dysfunction in Transfusion-naive Thalassemia Men

    Science.gov (United States)

    Chen, Yu-Guang; Lin, Te-Yu; Lin, Cheng-Li; Dai, Ming-Shen; Ho, Ching-Liang; Kao, Chia-Hung

    2015-01-01

    Abstract Based on the mechanism of pathophysiology, thalassemia major or transfusion-dependent thalassemia patients may have an increased risk of developing organic erectile dysfunction resulting from hypogonadism. However, there have been few studies investigating the association between erectile dysfunction and transfusion-naive thalassemia populations. We constructed a population-based cohort study to elucidate the association between transfusion-naive thalassemia populations and organic erectile dysfunction This nationwide population-based cohort study involved analyzing data from 1998 to 2010 obtained from the Taiwanese National Health Insurance Research Database, with a follow-up period extending to the end of 2011. We identified men with transfusion-naive thalassemia and selected a comparison cohort that was frequency-matched with these according to age, and year of diagnosis thalassemia at a ratio of 1 thalassemia man to 4 control men. We analyzed the risks for transfusion-naive thalassemia men and organic erectile dysfunction by using Cox proportional hazards regression models. In this study, 588 transfusion-naive thalassemia men and 2337 controls were included. Total 12 patients were identified within the thalassaemia group and 10 within the control group. The overall risks for developing organic erectile dysfunction were 4.56-fold in patients with transfusion-naive thalassemia men compared with the comparison cohort after we adjusted for age and comorbidities. Our long-term cohort study results showed that in transfusion-naive thalassemia men, there was a higher risk for the development of organic erectile dysfunction, particularly in those patients with comorbidities. PMID:25837766

  19. Upper motor neuron predominant degeneration with frontal and temporal lobe atrophy.

    Science.gov (United States)

    Konagaya, M; Sakai, M; Matsuoka, Y; Konagaya, Y; Hashizume, Y

    1998-11-01

    The autopsy findings of a 78-year-old man mimicking primary lateral sclerosis (PLS) are reported. He showed slowly progressive spasticity, pseudobulbar palsy and character change, and died 32 months after the onset of symptoms. Autopsy revealed severe atrophy of the frontal and temporal lobes, remarkable neuronal loss and gliosis in the precentral gyrus, left temporal lobe pole and amygdala, mild degeneration of the Ammon's horn, degeneration of the corticospinal tract, and very mild involvement of the lower motor neurons. The anterior horn cells only occasionally demonstrated Bunina body by cystatin-C staining, and skein-like inclusions by ubiquitin staining. This is a peculiar case with concomitant involvement in the motor cortex and temporal lobe in motor neuron disease predominantly affecting the upper motor neuron.

  20. Hyperactive external awareness against hypoactive internal awareness in disorders of consciousness using resting-state functional MRI: highlighting the involvement of visuo-motor modulation.

    Science.gov (United States)

    He, Jiang-Hong; Yang, Yi; Zhang, Yi; Qiu, Si-You; Zhou, Zhen-Yu; Dang, Yuan-Yuan; Dai, Yi-Wu; Liu, Yi-Jun; Xu, Ru-Xiang

    2014-08-01

    Resting-state functional MRI (fMRI) has emerged as a valuable tool to characterize the complex states encompassing disorders of consciousness (DOC). Awareness appears to comprise two coexistent, anticorrelated components named the external and internal awareness networks. The present study hypothesizes that DOC interrupts the balance between the internal and external awareness networks. To gain more understanding of this phenomenon, the present study analyzed resting-state fMRI data from 12 patients with DOC versus 12 healthy age-matched controls. The data were explored using independent component analysis and amplitude of low-frequency fluctuation (ALFF) analysis. The results indicated that DOC deactivated midline areas associated with internal awareness. In addition, external awareness was strengthened in DOC because of increased activation in the insula, lingual gyrus, paracentral and supplementary motor area. The activity patterns suggested strengthened external awareness against weakened internal awareness in DOC. In particular, increased activity found in the insula, lingual gyrus, paracentral and supplementary motor area of patients with DOC implied possible involvement of augmented visuo-motor modulation in these patients. DOC is probably related to hyperactive external awareness opposing hypoactive internal awareness. This unique pattern of brain activity may potentially be a prognostic marker for DOC. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Sexual Enhancement Groups for Dysfunctional Women: An Evaluation

    Science.gov (United States)

    Leiblum, Sandra R.; Ersner-Hershfield, Robin

    1977-01-01

    Three groups of women with sexual dysfunction were evaluated pretreatment and posttreatment. Two groups did not involve partner participation, while the third group included partners on two occasions. Results for all groups were similar. The question of whether orgasm through coitus alone is a reasonable goal is raised and challenged. (Author)

  2. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  3. Endothelial Dysfunction in Experimental Models of Arterial Hypertension: Cause or Consequence?

    Directory of Open Access Journals (Sweden)

    Iveta Bernatova

    2014-01-01

    Full Text Available Hypertension is a risk factor for other cardiovascular diseases and endothelial dysfunction was found in humans as well as in various commonly employed animal experimental models of arterial hypertension. Data from the literature indicate that, in general, endothelial dysfunction would not be the cause of experimental hypertension and may rather be secondary, that is, resulting from high blood pressure (BP. The initial mechanism of endothelial dysfunction itself may be associated with a lack of endothelium-derived relaxing factors (mainly nitric oxide and/or accentuation of various endothelium-derived constricting factors. The involvement and role of endothelium-derived factors in the development of endothelial dysfunction in individual experimental models of hypertension may vary, depending on the triggering stimulus, strain, age, and vascular bed investigated. This brief review was focused on the participation of endothelial dysfunction, individual endothelium-derived factors, and their mechanisms of action in the development of high BP in the most frequently used rodent experimental models of arterial hypertension, including nitric oxide deficient models, spontaneous (prehypertension, stress-induced hypertension, and selected pharmacological and diet-induced models.

  4. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    Directory of Open Access Journals (Sweden)

    Valérie Wolff

    2015-01-01

    Full Text Available Cannabis has potential therapeutic use but tetrahydrocannabinol (THC, its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities, Vsucc (complexes II, III, and IV activities, Vtmpd (complex IV activity, together with mitochondrial coupling (Vmax/V0, were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2 production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P<0.0001, Vsucc (−65%; P<0.0001, and Vtmpd (−3.5%; P<0.001. Mitochondrial coupling (Vmax/V0 was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P<0.001. Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P<0.05 and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P<0.001. Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient’s vulnerability to stroke.

  5. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  6. The Influence of Motor Skills on Measurement Accuracy

    Science.gov (United States)

    Brychta, Petr; Sadílek, Marek; Brychta, Josef

    2016-10-01

    This innovative study trying to do interdisciplinary interface at first view different ways fields: kinantropology and mechanical engineering. A motor skill is described as an action which involves the movement of muscles in a body. Gross motor skills permit functions as a running, jumping, walking, punching, lifting and throwing a ball, maintaining a body balance, coordinating etc. Fine motor skills captures smaller neuromuscular actions, such as holding an object between the thumb and a finger. In mechanical inspection, the accuracy of measurement is most important aspect. The accuracy of measurement to some extent is also dependent upon the sense of sight or sense of touch associated with fine motor skills. It is therefore clear that the level of motor skills will affect the precision and accuracy of measurement in metrology. Aim of this study is literature review to find out fine motor skills level of individuals and determine the potential effect of different fine motor skill performance on precision and accuracy of mechanical engineering measuring.

  7. Vascular Endothelial Dysfunction in Inflammatory Bowel Diseases: Pharmacological and Nonpharmacological Targets

    Directory of Open Access Journals (Sweden)

    Antonietta Gerarda Gravina

    2018-01-01

    Full Text Available Inflammatory bowel diseases, including Crohn’s disease and ulcerative colitis, are chronic inflammatory conditions involving primarily the gastrointestinal tract. However, they may be also associated with systemic manifestations and comorbidities. The relationship between chronic inflammation and endothelial dysfunction has been extensively demonstrated. Mucosal immunity and gastrointestinal physiology are modified in inflammatory bowel diseases, and these modifications are mainly sustained by alterations of endothelial function. The key elements involved in this process are cytokines, inflammatory cells, growth factors, nitric oxide, endothelial adhesion molecules, and coagulation cascade factors. In this review, we discuss available data in literature concerning endothelial dysfunction in patients affected by inflammatory bowel disease and we focus our attention on both pharmacological and nonpharmacological therapeutic targets.

  8. Infant Motor Skills After a Cardiac Operation: The Need for Developmental Monitoring and Care.

    Science.gov (United States)

    Uzark, Karen; Smith, Cynthia; Donohue, Janet; Yu, Sunkyung; Romano, Jennifer C

    2017-08-01

    Neurodevelopmental dysfunction is increasingly recognized as a common outcome of congenital heart defects and their treatment in infancy. The effects of the intensive care unit (ICU) experience and environment on these infants are unknown and potentially modifiable, but no validated metric is available for objective evaluation of early motor impairments in the ICU/hospital setting. The purpose of this study was to characterize the motor status of hospitalized infants after cardiac operations, including the development and field-testing of the Congenital Heart Assessment of Sensory and Motor Status (CHASMS) metric. CHASMS item generation was based on review of the literature, focused interviews with parents, and expert consensus. A nurse administered CHASMS to 100 infants aged younger than 10 months old undergoing cardiac operations. Preoperative and postoperative CHASMS scores were compared, and associations between CHASMS scores and patient characteristics were examined. Physical therapists assessed neuromotor skills by using the Test of Infant Motor Performance or the Alberta Infant Motor Scales for correlation with CHASMS scores. CHASMS gross motor scores declined postoperatively in 64% (25 of 39). Lower CHASMS scores, after adjusting for age, were associated with longer duration of mechanical ventilation (p motor CHASMS scores were significantly correlated with Test of Infant Motor Performance (r = 0.70, p Motor Scales scores (r = 0.88, p Motor impairments in infants after cardiac operations are common and may be exacerbated by longer intubation and prolonged exposure to the ICU environment. The feasibility, reliability, and validity of CHASMS were supported for the evaluation of motor skills in this at-risk population. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Occupational Therapy Interventions Effect on Visual-Motor Skills in Children with Learning Disorders

    Directory of Open Access Journals (Sweden)

    Batoul Mandani

    2007-07-01

    Full Text Available Objective: Visual-motor skill is a part of visual perception which can integrate visual processing skills to fine movements. Visual-motor dysfunction is often to cause problems in copying and writing. The purpose of this study is investigation of occupational therapy interventions effect on the visual-motor skill in children with learning disorders. Materials & Methods: In this interventional and experimental study, 23 students with learning disorders (2nd, 3rd, 4th grade were selected and they were divided (through Randomized Block Method into two groups, 11 persons as intervention group and the others as the control group (12 people. Both groups were administered the “Test of Visual-Motor Skills- Revised” (TVMS-R. Then case group received occupational therapy interventions for 16 sessions and two groups were administered by TVMS-R again. Data was analyzed by using paired T-test and independent T-test. Results: Total mark of TVMS-R demonstrated statistically significant difference in visual-motor skills between case and control groups (P<0/001. This test has 8 categories. Total mark of 1, 3,4,6,8 categories demonstrated that occupational therapy had significant effect on visual analysis skills (P<0/005. Total mark of 2, 5, 7 categories demonstrated that occupational therapy had significant effect on visual-spatial skills (P<0/001. Conclusion: Occupational therapy interventions had significant effect on the visual-motor skills and its items (visual-spatial, visual analysis, visual-motor integration and eye fixation skills.

  10. Salvage of cervical motor radiculopathy using peripheral nerve transfer reconstruction.

    Science.gov (United States)

    Afshari, Fardad T; Hossain, Taushaba; Miller, Caroline; Power, Dominic M

    2018-05-10

    Motor nerve transfer surgery involves re-innervation of important distal muscles using either an expendable motor branch or a fascicle from an adjacent functioning nerve. This technique is established as part of the reconstructive algorithm for traumatic brachial plexus injuries. The reproducible outcomes of motor nerve transfer surgery have resulted in exploration of the application of this technique to other paralysing conditions. The objective of this study is to report feasibility and increase awareness about nerve transfer as a method of improving upper limb function in patients with cervical motor radiculopathy of different aetiology. In this case series we report 3 cases with different modes of injury to the spinal nerve roots with significant and residual motor radiculopathy that have been successfully treated with nerve transfer surgery with good functional outcomes. The cases involved iatrogenic nerve root injury, tumour related root compression and degenerative root compression. Nerve transfer surgery may offer reliable reconstruction for paralysis when there has been no recovery following a period of conservative management. However the optimum timing of nerve transfer intervention is not yet identified for patients with motor radiculopathy.

  11. Transcranial direct current stimulation (tDCS) to the supplementary motor area (SMA) influences performance on motor tasks.

    Science.gov (United States)

    Hupfeld, K E; Ketcham, C J; Schneider, H D

    2017-03-01

    The supplementary motor area (SMA) is believed to be highly involved in the planning and execution of both simple and complex motor tasks. This study aimed to examine the role of the SMA in planning the movements required to complete reaction time, balance, and pegboard tasks using anodal transcranial direct current stimulation (tDCS), which passes a weak electrical current between two electrodes, in order to modulate neuronal activity. Twenty healthy adults were counterbalanced to receive either tDCS (experimental condition) or no tDCS (control condition) for 3 days. During administration of tDCS, participants performed a balance task significantly faster than controls. After tDCS, subjects significantly improved their simple and choice reaction time. These results demonstrate that the SMA is highly involved in planning and executing fine and gross motor skill tasks and that tDCS is an effective modality for increasing SMA-related performance on these tasks. The findings may be generalizable and therefore indicate implications for future interventions using tDCS as a therapeutic tool.

  12. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  13. Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control.

    Science.gov (United States)

    Reis, Janine; Swayne, Orlando B; Vandermeeren, Yves; Camus, Mickael; Dimyan, Michael A; Harris-Love, Michelle; Perez, Monica A; Ragert, Patrick; Rothwell, John C; Cohen, Leonardo G

    2008-01-15

    Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and across cerebral hemispheres. These applications have provided insight into the intracortical physiological processes underlying the functional role of different brain regions in various cognitive processes, motor control in health and disease and neuroplastic changes during recovery of function after brain lesions. Used in combination with neuroimaging tools, TMS provides valuable information on functional connectivity between different brain regions, and on the relationship between physiological processes and the anatomical configuration of specific brain areas and connected pathways. More recently, there has been increasing interest in the extent to which these physiological processes are modulated depending on the behavioural setting. The purpose of this paper is (a) to present an up-to-date review of the available electrophysiological data and the impact on our understanding of human motor behaviour and (b) to discuss some of the gaps in our present knowledge as well as future directions of research in a format accessible to new students and/or investigators. Finally, areas of uncertainty and limitations in the interpretation of TMS studies are discussed in some detail.

  14. The Gut as the Motor of Multiple Organ Dysfunction in Critical Illness.

    Science.gov (United States)

    Klingensmith, Nathan J; Coopersmith, Craig M

    2016-04-01

    All elements of the gut - the epithelium, the immune system, and the microbiome - are impacted by critical illness and can, in turn, propagate a pathologic host response leading to multiple organ dysfunction syndrome. Preclinical studies have demonstrated that this can occur by release of toxic gut-derived substances into the mesenteric lymph where they can cause distant damage. Further, intestinal integrity is compromised in critical illness with increases in apoptosis and permeability. There is also increasing recognition that microbes alter their behavior and can become virulent based upon host environmental cues. Gut failure is common in critically ill patients; however, therapeutics targeting the gut have proven to be challenging to implement at the bedside. Numerous strategies to manipulate the microbiome have recently been used with varying success in the ICU. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex

    Science.gov (United States)

    Baarbé, Julianne K.; Yielder, Paul; Haavik, Heidi; Holmes, Michael W. R.

    2018-01-01

    The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs) produced by motor cortex stimulation alone, called cerebellar inhibition (CBI). Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation) would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18–27 years) or sham control (13 participants, 19–24 years). Twelve healthy controls (20–27 years) also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP) vs. healthy controls who disinhibited (98 ± 49% of test MEP, Pneck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain. PMID:29489878

  16. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Science.gov (United States)

    Huge, Volker; Lauchart, Meike; Magerl, Walter; Beyer, Antje; Moehnle, Patrick; Kaufhold, Wibke; Schelling, Gustav; Azad, Shahnaz Christina

    2011-04-29

    Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS). This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months). Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss) and central factors (pain/disability/stress/depression) predicting motor dysfunction and hyperalgesia.

  17. Complex interaction of sensory and motor signs and symptoms in chronic CRPS.

    Directory of Open Access Journals (Sweden)

    Volker Huge

    Full Text Available Spontaneous pain, hyperalgesia as well as sensory abnormalities, autonomic, trophic, and motor disturbances are key features of Complex Regional Pain Syndrome (CRPS. This study was conceived to comprehensively characterize the interaction of these symptoms in 118 patients with chronic upper limb CRPS (duration of disease: 43±23 months. Disease-related stress, depression, and the degree of accompanying motor disability were likewise assessed. Stress and depression were measured by Posttraumatic Stress Symptoms Score and Center for Epidemiological Studies Depression Test. Motor disability of the affected hand was determined by Sequential Occupational Dexterity Assessment and Michigan Hand Questionnaire. Sensory changes were assessed by Quantitative Sensory Testing according to the standards of the German Research Network on Neuropathic Pain. Almost two-thirds of all patients exhibited spontaneous pain at rest. Hand force as well as hand motor function were found to be substantially impaired. Results of Quantitative Sensory Testing revealed a distinct pattern of generalized bilateral sensory loss and hyperalgesia, most prominently to blunt pressure. Patients reported substantial motor complaints confirmed by the objective motor disability testings. Interestingly, patients displayed clinically relevant levels of stress and depression. We conclude that chronic CRPS is characterized by a combination of ongoing pain, pain-related disability, stress and depression, potentially triggered by peripheral nerve/tissue damage and ensuing sensory loss. In order to consolidate the different dimensions of disturbances in chronic CRPS, we developed a model based on interaction analysis suggesting a complex hierarchical interaction of peripheral (injury/sensory loss and central factors (pain/disability/stress/depression predicting motor dysfunction and hyperalgesia.

  18. Motor control assessment of community-dwelling older adults with depressive symptoms

    Directory of Open Access Journals (Sweden)

    Lucas Eduardo Antunes Bicalho

    2017-12-01

    Full Text Available Abstract AIMSThe purpose of this study was to investigate how depressive symptoms mediate different motor control requirements in elderlies and to assess the concurring effects fomented by the interaction between aging and depressive symptoms, providing indirect measures of brain functionality. METHODS Sixty-eight elderlies were paired in terms of age and gender and were equally distributed into depressed and nondepressed groups, according to their score on the Beck Depression Questionnaire. The participants performed the Grooved Pegboard Test placing and withdrawing pegs while execution time and error rate were measured. RESULTS This investigation revealed that depressive symptoms exert a broad effect upon motor control, although that the symptom intensity, as well as the interaction between aging and depression intensity, were exclusively correlated with withdrawal task, suggesting that there is a greater effect upon motor acts with higher frontal lobe requirements. CONCLUSION The discrimination of motor control aspects provides a valuable contribution for the understanding of the underlying neurophysiology of the interaction between aging and depression as it represents an indirect measure of cerebral dysfunction. Further, these findings may still have clinical implications, as they can promote more rational approaches to the elaboration of preventive measures that help maintain the functional capability of depressed elderlies.

  19. Alterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.

    Science.gov (United States)

    Lindenbach, D; Conti, M M; Ostock, C Y; Dupre, K B; Bishop, C

    2015-12-03

    Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly little is known about how M1 neurotransmitter tone or gene expression is altered in PD, dyskinesia or associated animal models. The present study utilized the rat unilateral 6-hydroxydopamine (6-OHDA) model of PD/dyskinesia to characterize structural and functional changes taking place in M1 monoamine innervation and gene expression. 6-OHDA caused dopamine pathology in M1, although the lesion was less severe than in the striatum. Rats with 6-OHDA lesions showed a PD motor impairment and developed dyskinesia when given L-DOPA or the D1 receptor agonist, SKF81297. M1 expression of two immediate-early genes (c-Fos and ARC) was strongly enhanced by either L-DOPA or SKF81297. At the same time, expression of genes specifically involved in glutamate and GABA signaling were either modestly affected or unchanged by lesion and/or treatment. We conclude that M1 neurotransmission and signal transduction in the rat 6-OHDA model of PD/dyskinesia mirror features of human PD, supporting the utility of the model to study M1 dysfunction in PD and the elucidation of novel pathophysiological mechanisms and therapeutic targets. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Spatially dynamic recurrent information flow across long-range dorsal motor network encodes selective motor goals.

    Science.gov (United States)

    Yoo, Peter E; Hagan, Maureen A; John, Sam E; Opie, Nicholas L; Ordidge, Roger J; O'Brien, Terence J; Oxley, Thomas J; Moffat, Bradford A; Wong, Yan T

    2018-03-08

    Performing voluntary movements involves many regions of the brain, but it is unknown how they work together to plan and execute specific movements. We recorded high-resolution ultra-high-field blood-oxygen-level-dependent signal during a cued ankle-dorsiflexion task. The spatiotemporal dynamics and the patterns of task-relevant information flow across the dorsal motor network were investigated. We show that task-relevant information appears and decays earlier in the higher order areas of the dorsal motor network then in the primary motor cortex. Furthermore, the results show that task-relevant information is encoded in general initially, and then selective goals are subsequently encoded in specifics subregions across the network. Importantly, the patterns of recurrent information flow across the network vary across different subregions depending on the goal. Recurrent information flow was observed across all higher order areas of the dorsal motor network in the subregions encoding for the current goal. In contrast, only the top-down information flow from the supplementary motor cortex to the frontoparietal regions, with weakened recurrent information flow between the frontoparietal regions and bottom-up information flow from the frontoparietal regions to the supplementary cortex were observed in the subregions encoding for the opposing goal. We conclude that selective motor goal encoding and execution rely on goal-dependent differences in subregional recurrent information flow patterns across the long-range dorsal motor network areas that exhibit graded functional specialization. © 2018 Wiley Periodicals, Inc.

  1. Effects of TMS on different stages of motor and non-motor verb processing in the primary motor cortex.

    Directory of Open Access Journals (Sweden)

    Liuba Papeo

    Full Text Available The embodied cognition hypothesis suggests that motor and premotor areas are automatically and necessarily involved in understanding action language, as word conceptual representations are embodied. This transcranial magnetic stimulation (TMS study explores the role of the left primary motor cortex in action-verb processing. TMS-induced motor-evoked potentials from right-hand muscles were recorded as a measure of M1 activity, while participants were asked either to judge explicitly whether a verb was action-related (semantic task or to decide on the number of syllables in a verb (syllabic task. TMS was applied in three different experiments at 170, 350 and 500 ms post-stimulus during both tasks to identify when the enhancement of M1 activity occurred during word processing. The delays between stimulus onset and magnetic stimulation were consistent with electrophysiological studies, suggesting that word recognition can be differentiated into early (within 200 ms and late (within 400 ms lexical-semantic stages, and post-conceptual stages. Reaction times and accuracy were recorded to measure the extent to which the participants' linguistic performance was affected by the interference of TMS with M1 activity. No enhancement of M1 activity specific for action verbs was found at 170 and 350 ms post-stimulus, when lexical-semantic processes are presumed to occur (Experiments 1-2. When TMS was applied at 500 ms post-stimulus (Experiment 3, processing action verbs, compared with non-action verbs, increased the M1-activity in the semantic task and decreased it in the syllabic task. This effect was specific for hand-action verbs and was not observed for action-verbs related to other body parts. Neither accuracy nor RTs were affected by TMS. These findings suggest that the lexical-semantic processing of action verbs does not automatically activate the M1. This area seems to be rather involved in post-conceptual processing that follows the retrieval of motor

  2. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    Science.gov (United States)

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Context-Dependent Decay of Motor Memories during Skill Acquisition

    OpenAIRE

    Ingram, James?N.; Flanagan, J.?Randall; Wolpert, Daniel?M.

    2013-01-01

    Summary Current models of motor learning posit that skill acquisition involves both the formation and decay of multiple motor memories that can be engaged in different contexts [1?9]. Memory formation is assumed to be context dependent, so that errors most strongly update motor memories associated with the current context. In contrast, memory decay is assumed to be context independent, so that movement in any context leads to uniform decay across all contexts. We demonstrate that for both obj...

  4. Can motor imagery and hypnotic susceptibility explain Conversion Disorder with motor symptoms?

    Science.gov (United States)

    Srzich, Alexander J; Byblow, Winston D; Stinear, James W; Cirillo, John; Anson, J Greg

    2016-08-01

    Marked distortions in sense of agency can be induced by hypnosis in susceptible individuals, including alterations in subjective awareness of movement initiation and control. These distortions, with associated disability, are similar to those experienced with Conversion Disorder (CD), an observation that has led to the hypothesis that hypnosis and CD share causal mechanisms. The purpose of this review is to explore the relationships among motor imagery (MI), hypnotic susceptibility, and CD, then to propose how MI ability may contribute to hypnotic responding and CD. Studies employing subjective assessments of mental imagery have found little association between imagery abilities and hypnotic susceptibility. A positive association between imagery abilities and hypnotic susceptibility becomes apparent when objective measures of imagery ability are employed. A candidate mechanism to explain motor responses during hypnosis is kinaesthetic MI, which engages a strategy that involves proprioception or the "feel" of movement when no movement occurs. Motor suppression imagery (MSI), a strategy involving inhibition of movement, may provide an alternate objective measurable phenomenon that underlies both hypnotic susceptibility and CD. Evidence to date supports the idea that there may be a positive association between kinaesthetic MI ability and hypnotic susceptibility. Additional evidence supports a positive association between hypnotic susceptibility and CD. Disturbances in kinaesthetic MI performance in CD patients indicate that MI mechanisms may also underlie CD symptoms. Further investigation of the above relationships is warranted to explain these phenomena, and establish theoretical explanations underlying sense of agency. Copyright © 2016. Published by Elsevier Ltd.

  5. Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial.

    Science.gov (United States)

    McCabe, Jessica; Monkiewicz, Michelle; Holcomb, John; Pundik, Svetlana; Daly, Janis J

    2015-06-01

    To compare response to upper-limb treatment using robotics plus motor learning (ML) versus functional electrical stimulation (FES) plus ML versus ML alone, according to a measure of complex functional everyday tasks for chronic, severely impaired stroke survivors. Single-blind, randomized trial. Medical center. Enrolled subjects (N=39) were >1 year postsingle stroke (attrition rate=10%; 35 completed the study). All groups received treatment 5d/wk for 5h/d (60 sessions), with unique treatment as follows: ML alone (n=11) (5h/d partial- and whole-task practice of complex functional tasks), robotics plus ML (n=12) (3.5h/d of ML and 1.5h/d of shoulder/elbow robotics), and FES plus ML (n=12) (3.5h/d of ML and 1.5h/d of FES wrist/hand coordination training). Primary measure: Arm Motor Ability Test (AMAT), with 13 complex functional tasks; secondary measure: upper-limb Fugl-Meyer coordination scale (FM). There was no significant difference found in treatment response across groups (AMAT: P≥.584; FM coordination: P≥.590). All 3 treatment groups demonstrated clinically and statistically significant improvement in response to treatment (AMAT and FM coordination: P≤.009). A group treatment paradigm of 1:3 (therapist/patient) ratio proved feasible for provision of the intensive treatment. No adverse effects. Severely impaired stroke survivors with persistent (>1y) upper-extremity dysfunction can make clinically and statistically significant gains in coordination and functional task performance in response to robotics plus ML, FES plus ML, and ML alone in an intensive and long-duration intervention; no group differences were found. Additional studies are warranted to determine the effectiveness of these methods in the clinical setting. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Helping Preschoolers Prepare for Writing: Developing Fine Motor Skills

    Science.gov (United States)

    Huffman, J. Michelle; Fortenberry, Callie

    2011-01-01

    Early childhood is the most intensive period for the development of physical skills. Writing progress depends largely on the development of fine motor skills involving small muscle movements of the hand. Young children need to participate in a variety of developmentally appropriate activities intentionally designed to promote fine motor control.…

  7. The influence of age and gender on motor and non-motor features of early Parkinson's disease: initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort.

    Science.gov (United States)

    Szewczyk-Krolikowski, Konrad; Tomlinson, Paul; Nithi, Kannan; Wade-Martins, Richard; Talbot, Kevin; Ben-Shlomo, Yoav; Hu, Michele T M

    2014-01-01

    Identifying factors influencing phenotypic heterogeneity in Parkinson's Disease is crucial for understanding variability in disease severity and progression. Age and gender are two most basic epidemiological characteristics, yet their effect on expression of PD symptoms is not fully defined. We aimed to delineate effects of age and gender on the phenotype in an incident cohort of PD patients and healthy controls from the Oxford Parkinson Disease Centre (OPDC). Clinical features, including demographic and medical characteristics and non-motor and motor symptoms, were analyzed in a group of PD patients within 3 years of diagnosis and a group of healthy controls from the OPDC cohort. Disease features were stratified according to age and compared between genders, controlling for effects of common covariates. 490 PD patients and 176 healthy controls were analyzed. Stratification by age showed increased disease severity with age on motor scales. Some non-motor features showed similar trend, including cognition and autonomic features. Comparison across genders highlighted a pattern of increased severity and greater symptom symmetricality in the face, neck and arms in men with women having more postural problems. Amongst the non-motor symptoms, men had more cognitive impairment, greater rate of REM behavior disorder (RBD), more orthostatic hypotension and sexual dysfunction. Age in PD is a strong factor contributing to disease severity even after controlling for the effect of disease duration. Gender-related motor phenotype can be defined by a vertical split into more symmetrical upper-body disease in men and disease dominated by postural symptoms in women. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A review of brain circuitries involved in stuttering

    Directory of Open Access Journals (Sweden)

    Anna eCraig-Mcquaide

    2014-11-01

    Full Text Available Stuttering has been the subject of much research, nevertheless its aetiology remains incompletely understood. This article presents a critical review of the literature on stuttering, with particular reference to the role of the basal ganglia. Neuroimaging and lesion studies of developmental and acquired stuttering, as well as pharmacological and genetic studies are discussed. Evidence that stuttering of structural and functional changes in the basal ganglia in those who stutter indicates that this motor speech disorder is due, at least in part, to abnormal basal ganglia cues for the initiation and termination of articulatory movements. Studies discussed provide evidence of a dysfunctional hyperdopaminergic state of the thalamocortical pathways underlying speech motor control in stuttering. Evidence that stuttering can improve, worsen or recur following deep brain stimulation (DBS for other indications is presented in order to emphasise the role of basal ganglia in stuttering. Further research is needed to fully elucidate the pathophysiology of this speech disorder, which is associated with significant social isolation.

  9. A review of brain circuitries involved in stuttering

    Science.gov (United States)

    Craig-McQuaide, Anna; Akram, Harith; Zrinzo, Ludvic; Tripoliti, Elina

    2014-01-01

    Stuttering has been the subject of much research, nevertheless its etiology remains incompletely understood. This article presents a critical review of the literature on stuttering, with particular reference to the role of the basal ganglia (BG). Neuroimaging and lesion studies of developmental and acquired stuttering, as well as pharmacological and genetic studies are discussed. Evidence of structural and functional changes in the BG in those who stutter indicates that this motor speech disorder is due, at least in part, to abnormal BG cues for the initiation and termination of articulatory movements. Studies discussed provide evidence of a dysfunctional hyperdopaminergic state of the thalamocortical pathways underlying speech motor control in stuttering. Evidence that stuttering can improve, worsen or recur following deep brain stimulation for other indications is presented in order to emphasize the role of BG in stuttering. Further research is needed to fully elucidate the pathophysiology of this speech disorder, which is associated with significant social isolation. PMID:25452719

  10. Aspartic acid in the hippocampus: a biomarker for postoperative cognitive dysfunction.

    Science.gov (United States)

    Hu, Rong; Huang, Dong; Tong, Jianbin; Liao, Qin; Hu, Zhonghua; Ouyang, Wen

    2014-01-15

    This study established an aged rat model of cognitive dysfunction using anesthesia with 2% isoflurane and 80% oxygen for 2 hours. Twenty-four hours later, Y-maze test results showed that isoflurane significantly impaired cognitive function in aged rats. Gas chromatography-mass spectrometry results showed that isoflurane also significantly increased the levels of N,N-diethylacetamide, n-ethylacetamide, aspartic acid, malic acid and arabinonic acid in the hippocampus of isoflurane-treated rats. Moreover, aspartic acid, N,N-diethylacetamide, n-ethylacetamide and malic acid concentration was positively correlated with the degree of cognitive dysfunction in the isoflurane-treated rats. It is evident that hippocampal metabolite changes are involved in the formation of cognitive dysfunction after isoflurane anesthesia. To further verify these results, this study cultured hippocampal neurons in vitro, which were then treated with aspartic acid (100 μmol/L). Results suggested that aspartic acid concentration in the hippocampus may be a biomarker for predicting the occurrence and disease progress of cognitive dysfunction.

  11. Assessment of pelvic floor dysfunctions using dynamic magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Hoda Salah Darwish

    2014-03-01

    Conclusion: Dynamic MRI is an ideal, non invasive technique which does not require patient preparation for evaluation of pelvic floor. It acts as one stop shop for diagnosing single or multiple pelvic compartment involvement in patients with pelvic floor dysfunction.

  12. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    Science.gov (United States)

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  13. Functional imaging of neurocognitive dysfunction in attention deficit hyperactivity disorder

    International Nuclear Information System (INIS)

    Wolf, I.; Tost, H.; Ruf, M.; Ende, G.

    2005-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is a neurobiological disorder of early childhood onset. Defining symptoms are chronic impairments of attention, impulse control and motor hyperactivity that frequently persist until adulthood. Miscellaneous causes of the disorder have been discussed. Accumulating evidence from imaging- and molecular genetic studies strengthened the theory of ADHS being a predominantly inherited disorder of neurobiological origin. In the last 15 years, non-invasive brain imaging methods were successfully implemented in pediatric research. Functional magnetic resonance imaging studies gave major insight into the neurobiological correlates of executive malfunction, inhibitory deficits and psychomotoric soft signs. These findings are in good accordance with brain morphometric data indicating a significant volumetric decrease of major components of striato-thalamo-cortical feedback loops, primarily influencing prefrontal executive functioning (e.g. basal ganglia). Empirical evidence points to a broad array of associated behavioral disturbances like deficient visuomotor abilities and oculomotor dysfunctions. This paper reviews the current empirical evidence derived from prior imaging studies. Special emphasis is given to the relevance of oculomotor dysfunctions in clinical and research settings, as well as their assessment in the MR environment. (orig.) [de

  14. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS

    OpenAIRE

    Brun, Paola; Scarpa, Melania; Marchiori, Chiara; Sarasin, Gloria; Caputi, Valentina; Porzionato, Andrea; Giron, Maria Cecilia; Palù, Giorgio; Castagliuolo, Ignazio

    2017-01-01

    Background We evaluated the effect of Saccharomyces boulardii CNCM I-745 on intestinal neuromuscular anomalies in an IBS-type mouse model of gastrointestinal motor dysfunctions elicited by Herpes Simplex Virus type 1 (HSV-1) exposure. Methods Mice were inoculated intranasally with HSV-1 (102 PFU) or vehicle at time 0 and 4 weeks later by the intragastric (IG) route (108 PFU). Six weeks after IG inoculum, mice were randomly allocated to receive oral gavage with either S. boulardii (107 CFU/day...

  15. Subclinical recurrent neck pain and its treatment impacts motor training-induced plasticity of the cerebellum and motor cortex.

    Directory of Open Access Journals (Sweden)

    Julianne K Baarbé

    Full Text Available The cerebellum processes pain inputs and is important for motor learning. Yet, how the cerebellum interacts with the motor cortex in individuals with recurrent pain is not clear. Functional connectivity between the cerebellum and motor cortex can be measured by a twin coil transcranial magnetic stimulation technique in which stimulation is applied to the cerebellum prior to stimulation over the motor cortex, which inhibits motor evoked potentials (MEPs produced by motor cortex stimulation alone, called cerebellar inhibition (CBI. Healthy individuals without pain have been shown to demonstrate reduced CBI following motor acquisition. We hypothesized that CBI would not reduce to the same extent in those with mild-recurrent neck pain following the same motor acquisition task. We further hypothesized that a common treatment for neck pain (spinal manipulation would restore reduced CBI following motor acquisition. Motor acquisition involved typing an eight-letter sequence of the letters Z,P,D,F with the right index finger. Twenty-seven neck pain participants received spinal manipulation (14 participants, 18-27 years or sham control (13 participants, 19-24 years. Twelve healthy controls (20-27 years also participated. Participants had CBI measured; they completed manipulation or sham control followed by motor acquisition; and then had CBI re-measured. Following motor acquisition, neck pain sham controls remained inhibited (58 ± 33% of test MEP vs. healthy controls who disinhibited (98 ± 49% of test MEP, P<0.001, while the spinal manipulation group facilitated (146 ± 95% of test MEP, P<0.001. Greater inhibition in neck pain sham vs. healthy control groups suggests that neck pain may change cerebellar-motor cortex interaction. The change to facilitation suggests that spinal manipulation may reverse inhibitory effects of neck pain.

  16. Role of silent information regulator 1 in the protective effect of hydrogen sulfide on homocysteine-induced cognitive dysfunction: Involving reduction of hippocampal ER stress.

    Science.gov (United States)

    Tang, Yi-Yun; Wang, Ai-Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-04-16

    Homocysteine (Hcy) causes cognitive deficits and hippocampal endoplasmic reticulum (ER) stress. Our previous study has confirmed that Hydrogen sulfide (H 2 S) attenuates Hcy-induced cognitive dysfunction and hippocampal ER stress. Silent information regulator 1 (Sirt-1) is indispensable in the formation of learning and memory. Therefore, the aim of this study was to explore the role of Sirt-1 in the protective effect of H 2 S against Hcy-induced cognitive dysfunction. We found that NaHS (a donor of H 2 S) markedly up-regulated the expression of Sirt-1 in the hippocampus of Hcy-exposed rats. Sirtinol, a specific inhibitor of Sirt-1, reversed the improving role of NaHS in the cognitive function of Hcy-exposed rats, as evidenced by that sirtinol increased the escape latency and the swim distance in the acquisition trial of morris water maze (MWM) test, decreased the times crossed through and the time spent in the target quadrant in the probe trail of MWM test, and reduced the discrimination index in the novel object recognition test (NORT) in the rats cotreated with NaHS and Hcy. We also found that sirtinol reversed the protection of NaHS against Hcy-induced hippocampal ER-stress, as evidenced by up-regulating the expressions of GRP78, CHOP, and cleaved caspase-12 in the hippocampus of rats cotreated with NaHS and Hcy. These results suggested the contribution of upregulation of hippocampal Sirt-1 to the improving role of H 2 S in the cognitive function of Hcy-exposed rats, which involves suppression of hippocampal ER stress. Our finding provides a new insight into the mechanism underlying the inhibitory role of H 2 S in Hcy-induced cognitive dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Gastric myoelectrical and antroduodenal motor activity in patients with achalasia

    NARCIS (Netherlands)

    Verhagen, M. A.; Samsom, M.; Smout, A. J.

    1998-01-01

    Achalasia is a primary motor disorder of the oesophagus, in which the myenteric plexus is involved. However, abnormalities in other parts of the digestive tract have also been described in achalasia. Whether gastric myoelectrical and duodenal motor activity in these patients is also affected is

  18. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  19. Pelvic Muscle Rehabilitation: A Standardized Protocol for Pelvic Floor Dysfunction

    Directory of Open Access Journals (Sweden)

    Rodrigo Pedraza

    2014-01-01

    Full Text Available Introduction. Pelvic floor dysfunction syndromes present with voiding, sexual, and anorectal disturbances, which may be associated with one another, resulting in complex presentation. Thus, an integrated diagnosis and management approach may be required. Pelvic muscle rehabilitation (PMR is a noninvasive modality involving cognitive reeducation, modification, and retraining of the pelvic floor and associated musculature. We describe our standardized PMR protocol for the management of pelvic floor dysfunction syndromes. Pelvic Muscle Rehabilitation Program. The diagnostic assessment includes electromyography and manometry analyzed in 4 phases: (1 initial baseline phase; (2 rapid contraction phase; (3 tonic contraction and endurance phase; and (4 late baseline phase. This evaluation is performed at the onset of every session. PMR management consists of 6 possible therapeutic modalities, employed depending on the diagnostic evaluation: (1 down-training; (2 accessory muscle isolation; (3 discrimination training; (4 muscle strengthening; (5 endurance training; and (6 electrical stimulation. Eight to ten sessions are performed at one-week intervals with integration of home exercises and lifestyle modifications. Conclusions. The PMR protocol offers a standardized approach to diagnose and manage pelvic floor dysfunction syndromes with potential advantages over traditional biofeedback, involving additional interventions and a continuous pelvic floor assessment with management modifications over the clinical course.

  20. Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders.

    Science.gov (United States)

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Azuma, Junji; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2013-10-01

    Many studies have reported motor impairments in autistic spectrum disorders (ASD). However, the brain mechanism underlying motor impairment in ASD remains unclear. Recent neuroimaging studies have suggested that underconnectivity between the cerebellum and other brain regions contributes to the features of ASD. In this study, we investigated the microstructural integrity of the cerebellar pathways, including the superior, middle, and inferior cerebellar peduncles, of children with and without ASD by using diffusion tensor imaging (DTI) tractography to determine whether the microstructural integrity of the cerebellar pathways is related to motor function in children with ASD. Thirteen children with ASD and 11 age-, gender-, handedness-, and IQ-matched typically developing (TD) controls were enrolled in this study. DTI outcome measurements, such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), for the cerebellar pathways were calculated. The Movement Assessment Battery for Children 2 (M-ABC 2) was used for assessing motor functions. There were no significant differences between the two groups in RD. However, compared to the TD subjects, patients with ASD had a significantly lower FA in the right superior cerebellar peduncle and lower AD in the left superior cerebellar peduncle, in addition to a significantly lower score in ball skills and the total test score of M-ABC 2. There was a significant positive correlation between the total test score of M-ABC 2 and FA in the right superior cerebellar peduncle in the ASD group. These findings suggest that the altered microstructural integrity of the superior cerebellar peduncle may be related to motor impairment in ASD.

  1. Peripheral nerve involvement in Bell's palsy

    Directory of Open Access Journals (Sweden)

    J. A. Bueri

    1984-12-01

    Full Text Available A group of patients with Bell's palsy were studied in order to disclose the presence of subclinical peripheral nerve involvement. 20 patients, 8 male and 12 female, with recent Bell's palsy as their unique disease were examined, in all cases other causes of polyneuropathy were ruled out. Patients were investigated with CSF examination, facial nerve latencies in the affected and in the sound sides, and maximal motor nerve conduction velocities, as well as motor terminal latencies from the right median and peroneal nerves. CSF laboratory examination was normal in all cases. Facial nerve latencies were abnormal in all patients in the affected side, and they differed significantly from those of control group in the clinically sound side. Half of the patients showed abnormal values in the maximal motor nerve conduction velocities and motor terminal latencies of the right median and peroneal nerves. These results agree with previous reports which have pointed out that other cranial nerves may be affected in Bell's palsy. However, we have found a higher frequency of peripheral nerve involvement in this entity. These findings, support the hypothesis that in some patients Bell's palsy is the component of a more widespread disease, affecting other cranial and peripheral nerves.

  2. Cognitive-motor integration deficits in young adult athletes following concussion.

    Science.gov (United States)

    Brown, Jeffrey A; Dalecki, Marc; Hughes, Cindy; Macpherson, Alison K; Sergio, Lauren E

    2015-01-01

    The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.

  3. Neuromodulation of lower limb motor control in restorative neurology.

    Science.gov (United States)

    Minassian, Karen; Hofstoetter, Ursula; Tansey, Keith; Mayr, Winfried

    2012-06-01

    One consequence of central nervous system injury or disease is the impairment of neural control of movement, resulting in spasticity and paralysis. To enhance recovery, restorative neurology procedures modify altered, yet preserved nervous system function. This review focuses on functional electrical stimulation (FES) and spinal cord stimulation (SCS) that utilize remaining capabilities of the distal apparatus of spinal cord, peripheral nerves and muscles in upper motor neuron dysfunctions. FES for the immediate generation of lower limb movement along with current rehabilitative techniques is reviewed. The potential of SCS for controlling spinal spasticity and enhancing lower limb function in multiple sclerosis and spinal cord injury is discussed. The necessity for precise electrode placement and appropriate stimulation parameter settings to achieve therapeutic specificity is elaborated. This will lead to our human work of epidural and transcutaneous stimulation targeting the lumbar spinal cord for enhancing motor functions in spinal cord injured people, supplemented by pertinent human research of other investigators. We conclude that the concept of restorative neurology recently received new appreciation by accumulated evidence for locomotor circuits residing in the human spinal cord. Technological and clinical advancements need to follow for a major impact on the functional recovery in individuals with severe damage to their motor system. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Directory of Open Access Journals (Sweden)

    Yahaya Asizehi ENESI

    2016-07-01

    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  5. Variation in motor output and motor performance in a centrally generated motor pattern

    Science.gov (United States)

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  6. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    Science.gov (United States)

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  7. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2013-06-01

    Full Text Available The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI, based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata and somatodendrites (ventral tegmentum of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs, serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of

  8. Neuromolecular Imaging Shows Temporal Synchrony Patterns between Serotonin and Movement within Neuronal Motor Circuits in the Brain.

    Science.gov (United States)

    Broderick, Patricia A

    2013-06-21

    The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters

  9. Diastolic dysfunction characterizes cirrhotic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Piyush O. Somani

    2014-11-01

    Conclusions: Present study shows that although diastolic dysfunction is a frequent event in cirrhosis, it is usually of mild degree and does not correlate with severity of liver dysfunction. There are no significant differences in echocardiographic parameters between alcoholic and non-alcoholic cirrhosis. HRS is not correlated to diastolic dysfunction in cirrhotic patients. There is no difference in survival at one year between patients with or without diastolic dysfunction. Diastolic dysfunction in cirrhosis is unrelated to circulatory dysfunction, ascites and HRS.

  10. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  11. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  12. Different frontal involvement in ALS and PLS revealed by Stroop event-related potentials and reaction times

    Directory of Open Access Journals (Sweden)

    Ninfa eAmato

    2013-12-01

    Full Text Available BACKGROUND: A growing body of evidence suggests a link between cognitive and pathological changes in amyotrophic lateral sclerosis (ALS and in frontotemporal lobar dementia (FTLD. Cognitive deficits have been investigated much less extensively in primary lateral sclerosis (PLS than in ALS. OBJECTIVE: to investigate bioelectrical activity to Stroop test, assessing frontal function, in ALS, PLS and control groups. METHODS: 32 non-demented ALS patients, 10 non-demented PLS patients and 27 healthy subjects were included. Twenty-nine electroencephalography (EEG channels with binaural reference were recorded during covert Stroop task performance, involving mental discrimination of the stimuli and not vocal or motor response. Group effects on event related potentials (ERPs latency were analyzed using statistical multivariate analysis. Topographic analysis was performed using low resolution brain electromagnetic tomography (LORETA. RESULTS: ALS patients committed more errors in the execution of the task but they were not slower, whereas PLS patients did not show reduced accuracy, despite a slowing of reaction times (RTs. The main ERP components were delayed in ALS, but not in PLS, compared with controls. Moreover, RTs speed but not ERP latency correlated with clinical scores. ALS had decreased frontotemporal activity in the P2, P3 and N4 time windows compared to controls. CONCLUSION: These findings suggest a different pattern of psychophysiological involvement in ALS compared with PLS. The former is increasingly recognized to be a multisystems disorder, with a spectrum of executive and behavioural impairments reflecting frontotemporal dysfunction. The latter seems to mainly involve the motor system, with largely spared cognitive functions. Moreover, our results suggest that the covert version of the Stroop task used in the present study, may be useful to assess cognitive state in the very advanced stage of the disease, when other cognitive tasks are not

  13. Motor Learning as Young Gymnast’s Talent Indicator

    Directory of Open Access Journals (Sweden)

    Alessandra di Cagno

    2014-12-01

    Full Text Available Talent identification plans are designed to select young athletes with the ability to achieve future success in sports. The aim of the study was to verify the predictive value of coordination and precision in skill acquisition during motor learning, as indicators of talent. One hundred gymnasts, both cadets (aged 11.5 ± 0.5 yr. and juniors (aged 13.3 ± 0.5 years, competing at the national level, were enrolled in the study. The assessment of motor coordination involved three tests of the validated Hirtz’s battery (1985, and motor skill learning involved four technical tests, specific of rhythmic gymnastics. All the tests were correlated with ranking and performance scores reached by each gymnast in the 2011, 2012, and 2013 National Championships. Coordination tests were significantly correlated to 2013 Championships scores (p < 0.01 and ranking (p < 0.05 of elite cadet athletes. Precision, in skill acquisition test results, was positively and significantly associated with scores in 2013 (adj. R2 = 0.26, p < 0.01. Gymnasts with the best results in coordination and motor learning tests went on to achieve better competition results in three- year time.

  14. Burden of Sexual Dysfunction.

    Science.gov (United States)

    Balon, Richard

    2017-01-02

    Similar to the burden of other diseases, the burden of sexual dysfunction has not been systematically studied. However, there is growing evidence of various burdens (e.g., economic, symptomatic, humanistic) among patients suffering from sexual dysfunctions. The burden of sexual dysfunction has been studied a bit more often in men, namely the burden of erectile dysfunction (ED), premature ejaculation (PE) and testosterone deficiency syndrome (TDS). Erectile dysfunction is frequently associated with chronic conditions such as cardiovascular disease, diabetes, and depression. These conditions could go undiagnosed, and ED could be a marker of those diseases. The only available report from the United Kingdom estimated the total economic burden of ED at £53 million annually in terms of direct costs and lost productivity. The burden of PE includes significant psychological distress: anxiety, depression, lack of sexual confidence, poor self-esteem, impaired quality of life, and interpersonal difficulties. Some suggest that increase in female sexual dysfunction is associated with partner's PE, in addition to significant interpersonal difficulties. The burden of TDS includes depression, sexual dysfunction, mild cognitive impairment, and osteoporosis. One UK estimate of the economic burden of female sexual dysfunctions demonstrated that the average cost per patient was higher than the per annum cost of ED. There are no data on burden of paraphilic disorders. The burden of sexual dysfunctions is underappreciated and not well studied, yet it is significant for both the patients and the society.

  15. Motor control for a brushless DC motor

    Science.gov (United States)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  16. DISTURBANCE OF NORMAL MOTOR DEVELOPMENT IN THE FIRST YEAR OF LIFE

    OpenAIRE

    Lidija Dimitrijević; Hristina Čolović

    2005-01-01

    The adoption of the basic motor skills in the first year of life (postural head control, lateral transfers into a lying position, sitting, standing, walking, crawling, grasping...) goes on quite spontaneously. A child learns all the motor actions by itself and that is why it is not necessary to “teach” a child to seat, grasp, stand, walk... Teaching a child the basic motor skills stands for a rough, unnecessary and undesirable involvement into spontaneous motor development, and, due to this, ...

  17. Zolpidem improves neuropsychiatric symptoms and motor dysfunction in a patient with Parkinson's disease after deep brain stimulation.

    Science.gov (United States)

    Huang, Hung-Yu; Hsu, Yi-Ting; Wu, Yu-Chin; Chiou, Shang-Ming; Kao, Chia-Hung; Tsai, Mu-Chieh; Tsai, Chon-Haw

    2012-06-01

    To illustrate the beneficial effect of zolpidem on the neuropsychiatric and motor symptoms in a patient with Parkinson disease (PD) after bilateral subthalamic nucleus deep brain stimulation. The 61-year-old housewife was diagnosed to have PD for 12 years with initial presentation of clumsiness and rest tremor of right limbs. She was referred to our hospital in March 2009 due to shortening of drug beneficial period since 3 years ago and on-phase dyskinesia in recent 2 years. Bilateral STN DBS was conducted on 18 June, 2009. Fluctuating spells of mental confusion were developed on the next day after surgery. Electric stimuli via DBS electrodes were delivered with parameters of 2 volts, 60 μs, 130 Hz on bilateral STN 32 days after DBS. The incoherent behaviors and motor fluctuation remained to occur. The beneficial effect of zolpidem on her neuropsychiatric and motor symptoms was detected incidentally in early July 2009. She could chat normally with her caregiver and walk with assistance after taking zolpidem. The beneficial period may last for 2 hours. Zolpidem was then given in dosage of 10 mg three times per day. The neuropsychiatric inventory was scored 56 during zolpidem 'off' and 30 during zolpidem 'on'. To understand the intriguing feature, we conducted FDG-PET during 'off' and 'on' zolpidem conditions. The results revealed that the metabolism was decreased in the right frontal, parietal cortex and caudate nucleus during zolpidem 'off'. These cool spots can be partially restored by zolpidem. Zolpidem ameliorated the neuropsychiatric and parkinsonian motor symptom in the PD patient. Since GABAA benzodiazepine receptors are widely distributed throughout the central nervous system, zolpidem probably acts via modulating structures lying within the cortico-subcortical loop or by direct effect on these cortical regions.

  18. Recovery of motor function after stroke.

    Science.gov (United States)

    Sharma, Nikhil; Cohen, Leonardo G

    2012-04-01

    The human brain possesses a remarkable ability to adapt in response to changing anatomical (e.g., aging) or environmental modifications. This form of neuroplasticity is important at all stages of life but is critical in neurological disorders such as amblyopia and stroke. This review focuses upon our new understanding of possible mechanisms underlying functional deficits evidenced after adult-onset stroke. We review the functional interactions between different brain regions that may contribute to motor disability after stroke and, based on this information, possible interventional approaches to motor stroke disability. New information now points to the involvement of non-primary motor areas and their interaction with the primary motor cortex as areas of interest. The emergence of this new information is likely to impact new efforts to develop more effective neurorehabilitative interventions using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) that may be relevant to other neurological disorders such as amblyopia. Copyright © 2010 Wiley Periodicals, Inc.

  19. Effects of two distinct group motor skill interventions in psychological and motor skills of children with Developmental Coordination Disorder: A pilot study.

    Science.gov (United States)

    Caçola, Priscila; Romero, Michael; Ibana, Melvin; Chuang, Jennifer

    2016-01-01

    Children with Developmental Coordination Disorder (DCD) have an increased risk for mental health difficulties. The present pilot study aimed to determine whether distinct group intervention programs improved several psychological variables (anxiety; adequacy and predilection for physical activity; participation, preferences, and enjoyment for activities) and motor skills from the perspective of a child with DCD as well as parental perceptions of motor skills, rate of function, and strengths and difficulties. Eleven children participated in Program A and thirteen in Program B. Both involved 10 sessions of 1 h each. Program A focused on task-oriented activities in a large group involving motor skill training and collaboration and cooperation among children, while Program B was composed of three groups with a direct goal-oriented approach for training of skills chosen by the children. Results indicated that children improved motor skills after both programs, but showed distinct results in regards to other variables - after Program A, children showed higher anxiety and lower levels of enjoyment, even though parents detected an improvement in rate of function and a decrease in peer problems. With Program B, children decreased anxiety levels, and parents noted a higher control of movement of their children. Regardless of the group approach, children were able to improve motor skills. However, it is possible that the differences between groups may have influenced parents' perception of their children's motor and psychological skills, as well as children's perception of anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The relationship between hamstring length and gluteal muscle strength in individuals with sacroiliac joint dysfunction.

    Science.gov (United States)

    Massoud Arab, Amir; Reza Nourbakhsh, Mohammad; Mohammadifar, Ali

    2011-02-01

    It has been suggested that tight hamstring muscle, due to its anatomical connections, could be a compensatory mechanism for providing sacroiliac (SI) joint stability in patients with gluteal muscle weakness and SIJ dysfunction. The purpose of this study was to determine the relationship between hamstring muscle length and gluteal muscle strength in subjects with sacroiliac joint dysfunction. A total of 159 subjects with and without low back pain (LBP) between the ages of 20 and 65 years participate in the study. Subjects were categorized into three groups: LBP without SIJ involvement (n = 53); back pain with SIJ dysfunction (n = 53); and no low back pain (n = 53). Hamstring muscle length and gluteal muscle strength were measured in all subjects. The number of individuals with gluteal weakness was significantly (P = 0.02) higher in subjects with SI joint dysfunction (66%) compared to those with LBP without SI joint dysfunctions (34%). In pooled data, there was no significant difference (P = 0.31) in hamstring muscle length between subjects with SI joint dysfunction and those with back pain without SI involvement. In subjects with SI joint dysfunction, however, those with gluteal muscle weakness had significantly (P = 0.02) shorter hamstring muscle length (mean = 158±11°) compared to individuals without gluteal weakness (mean = 165±10°). There was no statistically significant difference (P>0.05) in hamstring muscle length between individuals with and without gluteal muscle weakness in other groups. In conclusion, hamstring tightness in subjects with SI joint dysfunction could be related to gluteal muscle weakness. The slight difference in hamstring muscle length found in this study, although statistically significant, was not sufficient for making any definite conclusions. Further studies are needed to establish the role of hamstring muscle in SI joint stability.

  1. National Motor Vehicle Crash Causation Survey (NMVCCS)

    Data.gov (United States)

    Department of Transportation — The National Motor Vehicle Crash Causation Survey (NMVVCS) was a nationwide survey of crashes involving light passenger vehicles, with a focus on the factors related...

  2. Motor rehabilitation after traumatic brain injury and stroke - Advances in assessment and therapy.

    Science.gov (United States)

    Platz, Thomas; Hesse, S.; Mauritz, K.-H.

    1999-01-01

    A long-term goal in motor rehabilitation is that treatment is not selected on the basis of 'schools of thought', but rather, based on knowledge about efficacy and effectiveness of specific interventions for specific situations (e.g. functional syndromes). Motor dysfunction after stroke or TBI can be caused by many different functional syndromes such as paresis, ataxia, deafferentaion, visuo-perceptual deficits, or apraxia. Examples are provided showing that theory-based analysis of motor behavior makes it possible to describe 'syndrome-specific motor deficits'. Its potential implications for motor rehabilitation are that our understanding of altered motor behavior as well as specific therapeutic approaches might be promoted. A methodological prerequisite for clinical trials in rehabilitation is knowledge about test properties of assessment tools in follow-up situations such as test-retest reliability and responsiveness to change. Test-retest reliability assesses whether a test can produce stable measures with test repetition, while sensitivity to change reflects whether a test detects changes that occur over time. Exemplifying these considerations, a reliability and validity study of a kinematic arm movement analysis is summarized. In terms of new therapeutic developments, two examples of clinical therapeutic studies are provided assessing the efficacy of specific inter-ventions for specific situations in arm and gait rehabilitation: the Arm Ability Training for high functioning hemiparetic stroke and TBI patients, and the treadmill training for non-ambulatory hemiparetic patients. In addition, a new technical development, a machine-controlled gait trainer ist introduced.

  3. Evidence That Bimanual Motor Timing Performance Is Not a Significant Factor in Developmental Stuttering

    Science.gov (United States)

    Hilger, Allison I.; Zelaznik, Howard; Smith, Anne

    2016-01-01

    Purpose: Stuttering involves a breakdown in the speech motor system. We address whether stuttering in its early stage is specific to the speech motor system or whether its impact is observable across motor systems. Method: As an extension of Olander, Smith, and Zelaznik (2010), we measured bimanual motor timing performance in 115 children: 70…

  4. Pelvic floor and sexual male dysfunction

    Directory of Open Access Journals (Sweden)

    Antonella Pischedda

    2013-04-01

    Full Text Available The pelvic floor is a complex multifunctional structure that corresponds to the genito- urinary-anal area and consists of muscle and connective tissue. It supports the urinary, fecal, sexual and reproductive functions and pelvic statics. The symptoms caused by pelvic floor dysfunction often affect the quality of life of those who are afflicted, worsening significantly more aspects of daily life. In fact, in addition to providing support to the pelvic organs, the deep floor muscles support urinary continence and intestinal emptying whereas the superficial floor muscles are involved in the mechanism of erection and ejaculation. So, conditions of muscle hypotonia or hypertonicity may affect the efficiency of the pelvic floor, altering both the functionality of the deep and superficial floor muscles. In this evolution of knowledge it is possible imagine how the rehabilitation techniques of pelvic floor muscles, if altered and able to support a voiding or evacuative or sexual dysfunction, may have a role in improving the health and the quality of life.

  5. Prognostic value of motor evoked potentials elicited by multipulse magnetic stimulation in a surgically induced transitory lesion of the supplementary motor area: a case report

    OpenAIRE

    Sala, F; Krzan, M; Jallo, G; Epstein, F; Deletis, V

    2000-01-01

    Surgery involving the supplementary motor area (SMA) places the patient at risk of transient motor deficit. To predict outcome in patients with early postoperative hypokinesis would be relevant to both the patient and the surgical team. A 15 year old girl with a large left thalamic tumour removed through a left transcallosal approach is described. Despite intraoperatively preserved muscle motor evoked potentials (mMEPs) from all limbs, elicited by multipulse electrical st...

  6. The motor evoked potential in AIDS and HAM/TSP: state of the evidence.

    Science.gov (United States)

    Leon-Sarmiento, Fidias E; Elfakhani, Mohamed; Boutros, Nash N

    2009-12-01

    We aimed to better understand the involvement of the corticospinal tract, assessed by non-invasive transcranial stimulation, in order to determine the actual involvement of the motor system in patients with HAM/TSP and AIDS. An exhaustive MEDLINE search for the period of 1985 to 2008 for all articles cross-referenced for 'HTLV-I, HTLV-II, HTLV-III and HIV, HIV1, HIV2, evoked potential, motor evoked potential, high voltage electrical stimulation, transcranial magnetic stimulation, magnetic stimulation, corticomotor physiology, motor pathways, acquired immunodeficiency syndrome, AIDS, SIDA, tropical spastic paraparesis, HTLV-I-associated myelopathy, HAM, TSP, and HAM/TSP' were selected and analysed. Eighteen papers published in English, Spanish, Portuguese, French and Japanese were identified. Only the central motor conduction time has been analyzed in seropositive patients to human retroviruses. The investigations done on HAM/TSP support the involvement of the pyramidal tract mainly at lower levels, following a centripetal pattern; in AIDS, such an involvement seems to be more prominent at brain levels following a centrifugal pattern. The central motor conduction time abnormalities and involvement differences of the corticospinal tract of patients with AIDS and HAM/TSP dissected here would allow to re-orient early neurorehabilitation measures in these retroviruses-associated neurodegenerative disorders. Besides this, more sophisticated and sensitive non-invasive corticospinal stimulation measures that detect early changes in thalamocortical-basal ganglia circuitry will be needed in both clinically established as well as asymptomatic patients at times when the fastest corticospinal fibers remain uninvolved.

  7. [Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is caused by a mutation in TFG].

    Science.gov (United States)

    Ishiura, Hiroyuki; Tsuji, Shoji

    2013-01-01

    Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal dominant neurodegenerative disease characterized by proximal predominant weakness and muscle atrophy accompanied by distal sensory disturbance. Linkage analysis using 4 families identified a region on chromosome 3 showing a LOD score exceeding 4. Further refinement of candidate region was performed by haplotype analysis using high-density SNP data, resulting in a minimum candidate region spanning 3.3 Mb. Exome analysis of an HMSN-P patient revealed a mutation (c.854C>T, p.Pro285Leu) in TRK-fused gene (TFG). The identical mutation was found in the four families, which cosegregated with the disease. The mutation was neither found in Japanese control subjects nor public databases. Detailed haplotype analysis suggested two independent origins of the mutation. These findings indicate that the mutation in TFG causes HMSN-P.

  8. Minor Neurological Dysfunctions (MNDs in Autistic Children without Intellectual Disability

    Directory of Open Access Journals (Sweden)

    Gabriele Tripi

    2018-04-01

    Full Text Available Background: Children with autism spectrum disorder (ASD require neurological evaluation to detect sensory-motor impairment. This will improve understanding of brain function in children with ASD, in terms of minor neurological dysfunctions (MNDs. Methods: We compared 32 ASD children without intellectual disability (IQ ≥ 70 with 32 healthy controls. A standardized and age-specific neurological examination according to Touwen was used to detect the presence of MNDs. Particular attention was paid to severity and type of MNDs. Results: Children with ASD had significantly higher rates of MNDs compared to controls (96.9% versus 15.6%: 81.3% had simple MNDs (p < 0.0001 and 15.6% had complex MNDs (p = 0.053. The prevalence of MNDs in the ASD group was significantly higher (p < 0.0001 than controls. With respect to specific types of MNDs, children with ASD showed a wide range of fine manipulative disability, sensory deficits and choreiform dyskinesia. We also found an excess of associated movements and anomalies in coordination and balance. Conclusions: Results replicate previous findings which found delays in sensory-motor behavior in ASD pointing towards a role for prenatal, natal and neonatal risk factors in the neurodevelopmental theory of autism.

  9. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    Directory of Open Access Journals (Sweden)

    Huzhang Mao

    2016-03-01

    Full Text Available Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate.

  10. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-01-01

    Full Text Available Following the fundamental recognition of its involvement in sensory-motor coordination and learning, the cerebellum is now also believed to take part in the processing of cognition and emotion. This hypothesis is recurrent in numerous papers reporting anatomical and functional observations, and it requires an explanation. We argue that a similar circuit structure in all cerebellar areas may carry out various operations using a common computational scheme. On the basis of a broad review of anatomical data, it is conceivable that the different roles of the cerebellum lie in the specific connectivity of the cerebellar modules, with motor, cognitive and emotional functions (at least partially segregated into different cerebro-cerebellar loops. We here develop a conceptual and operational framework based on multiple interconnected levels (a meta-levels hypothesis: from cellular/molecular to network mechanisms leading to generation of computational primitives, thence to high-level cognitive/emotional processing, and finally to the sphere of mental function and dysfunction. The main concept explored is that of intimate interplay between timing and learning (reminiscent of the timing and learning machine capabilities long attributed to the cerebellum, which reverberates from cellular to circuit mechanisms. Subsequently, integration within large-scale brain loops could generate the disparate cognitive/emotional and mental functions in which the cerebellum has been implicated. We propose, therefore, that the cerebellum operates as a general-purpose co-processor, whose effects depend on the specific brain centers to which individual modules are connected. Abnormal functioning in these loops could eventually contribute to the pathogenesis of major brain pathologies including not just ataxia but also dyslexia, autism, schizophrenia and depression.

  11. Distinguishing Motor Weakness From Impaired Spatial Awareness: A Helping Hand!

    Directory of Open Access Journals (Sweden)

    Suneil A Raju

    2017-05-01

    Full Text Available Our patient, aged 73 years, had background peripheral neuropathy of unknown cause, stable for several years, which caused some difficulty in walking on uneven ground. He attended for a teaching session but now staggered in, a new development. He had apparent weakness of his right arm, but there was difficulty in distinguishing motor weakness from impaired spatial awareness suggestive of parietal lobe dysfunction. With the patient seated, eyes closed, and left arm outstretched, S.A.R. lifted the patient’s right arm and asked him to indicate when both were level. This confirmed motor weakness. Urgent computed tomographic scan confirmed left subdural haematoma and its urgent evacuation rapidly resolved the patient’s symptoms. Intrigued by our patient’s case, we explored further and learnt that in rehabilitation medicine, the awareness of limb position is commonly viewed in terms of joint position sense. We present recent literature evidence indicating that the underlying mechanisms are more subtle.

  12. Distinguishing Motor Weakness From Impaired Spatial Awareness: A Helping Hand!

    Science.gov (United States)

    Raju, Suneil A; Swift, Charles R; Bardhan, Karna Dev

    2017-01-01

    Our patient, aged 73 years, had background peripheral neuropathy of unknown cause, stable for several years, which caused some difficulty in walking on uneven ground. He attended for a teaching session but now staggered in, a new development. He had apparent weakness of his right arm, but there was difficulty in distinguishing motor weakness from impaired spatial awareness suggestive of parietal lobe dysfunction. With the patient seated, eyes closed, and left arm outstretched, S.A.R. lifted the patient's right arm and asked him to indicate when both were level. This confirmed motor weakness. Urgent computed tomographic scan confirmed left subdural haematoma and its urgent evacuation rapidly resolved the patient's symptoms. Intrigued by our patient's case, we explored further and learnt that in rehabilitation medicine, the awareness of limb position is commonly viewed in terms of joint position sense. We present recent literature evidence indicating that the underlying mechanisms are more subtle.

  13. Clinical Characteristics and Functional Motor Outcomes of Enterovirus 71 Neurological Disease in Children.

    Science.gov (United States)

    Teoh, Hooi-Ling; Mohammad, Shekeeb S; Britton, Philip N; Kandula, Tejaswi; Lorentzos, Michelle S; Booy, Robert; Jones, Cheryl A; Rawlinson, William; Ramachandran, Vidiya; Rodriguez, Michael L; Andrews, P Ian; Dale, Russell C; Farrar, Michelle A; Sampaio, Hugo

    2016-03-01

    . Focal paresis was evident in 23 of 57 (40%) at presentation and was the most common persisting clinical and functional problem at 12 months (observed in 5 of 6 patients), with 1 patient also requiring invasive ventilation. Patients initially seen with acute flaccid paralysis or pulmonary edema had significantly greater frequencies of motor dysfunction at follow-up compared with patients initially seen with other syndromes (odds ratio, 15; 95% CI, 3-79; P Enterovirus 71 may cause serious neurological disease in young patients. The distinct clinicoradiological syndromes, predominantly within the spinal cord and brainstem, enable rapid recognition within evolving outbreaks. Long-term functional neurological morbidity is associated with paresis linked to involvement of gray matter in the brainstem or spinal cord.

  14. COGNOS : Care for People With Cognitive Dysfunction A National Observational Study

    NARCIS (Netherlands)

    Mets, Tony; De Deyn, Peter P.; Pals, Philippe; De Lepeleire, Jan; Vandewoude, Maurits; Ventura, Manfredi; Ivanoiu, Adrian; Albert, Adelin; Seghers, An-Katrien

    2013-01-01

    Care plans are intended to improve the independence and functioning of patients with cognitive dysfunction and support the caregivers involved. They are an integral part of the Belgian reimbursement procedure for cholinesterase inhibitors. This nationwide, multicenter, observational study examined

  15. The Study of Object-Oriented Motor Imagery Based on EEG Suppression.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Motor imagery is a conventional method for brain computer interface and motor learning. To avoid the great individual difference of the motor imagery ability, object-oriented motor imagery was applied, and the effects were studied. Kinesthetic motor imagery and visual observation were administered to 15 healthy volunteers. The EEG during cue-based simple imagery (SI, object-oriented motor imagery (OI, non-object-oriented motor imagery (NI and visual observation (VO was recorded. Study results showed that OI and NI presented significant contralateral suppression in mu rhythm (p 0.05. Compared with NI, OI showed significant difference (p < 0.05 in mu rhythm and weak significant difference (p = 0.0612 in beta rhythm over the contralateral hemisphere. The ability of motor imagery can be reflected by the suppression degree of mu and beta frequencies which are the motor related rhythms. Thus, greater enhancement of activation in mirror neuron system is involved in response to object-oriented motor imagery. The object-oriented motor imagery is favorable for improvement of motor imagery ability.

  16. Interference in motor learning - is motor interference sensory?

    DEFF Research Database (Denmark)

    Jensen, Jesper Lundbye; Petersen, Tue Hvass; Rothwell, John C

    mechanisms determine whether or not interference occurs. We hypothesised that interference requires the same neural circuits to be engaged in the two tasks and provoke competing processes of synaptic plasticity. To test this, subjects learned a ballistic ankle plantarflexion task. Early motor memory...... was disrupted by subsequent learning of a precision tracking task with the same agonist muscle group, but not by learning involving antagonist muscles or by voluntary agonist contractions that did not require learning. If the competing task was learned with the same agonist muscle group 4 hours following...

  17. Dysfunction in the hip joints in children with Charcot-Marie-Tooth syndrome (literature review

    Directory of Open Access Journals (Sweden)

    Ivan Yurievich Pozdnikin

    2015-09-01

    Full Text Available A review of the literature on the treatment of children with dysfunction in the hip joints in motor-sensory neuropathy Charcot-Marie-Tooth is presented. Peculiarities of disease diagnosis and the approach used in the treatment of patients are described. The Charcot-Marie-Tooth syndrome is a hereditary neuromuscular disease characterized by progressive atrophy of the distal muscle group of the lower limbs. According to international authors, the incidence of hip joint dysfunction in this condition is at least 10%, ranking second only to foot deformities. In the Russian literature, the problem has not been adequately interpreted. Early diagnosis of dysfunction in the hip joints during Charcot-Marie-Tooth syndrome is complicated by the child's age and is characterized by progression. Conflicting clinical signs and trivial symptoms of the disease also confuse diagnosis, until it becomes clearer in adolescence or the second or third decade of life. Surgical reconstructive operations on the hip joint often occur too late, and they are accompanied by a greater frequency of neurological complications. Practitioner awareness coupled with an early diagnosis of hip subluxation and decentration and complex orthopedic and neurological examinations of children with the disease of Charcot-Marie-Tooth should result in more favorable outcomes.

  18. Ego Function and Dysfunction: A Guide to Understanding Discipline Problems.

    Science.gov (United States)

    Henley, Martin

    1987-01-01

    In this discussion of Fritz Redl's model of ego dysfunction in disturbed children, tasks the mature ego must accomplish are described, such as frustration tolerance, temptation resistance, realism about rules and routines, and exposure to competitive challenges. The model's educational applications involve assessment of discipline problems,…

  19. Mitochondrial Dysfunction in Metabolic Syndrome and Asthma

    Science.gov (United States)

    Mabalirajan, Ulaganathan; Ghosh, Balaram

    2013-01-01

    Though severe or refractory asthma merely affects less than 10% of asthma population, it consumes significant health resources and contributes significant morbidity and mortality. Severe asthma does not fell in the routine definition of asthma and requires alternative treatment strategies. It has been observed that asthma severity increases with higher body mass index. The obese-asthmatics, in general, have the features of metabolic syndrome and are progressively causing a significant burden for both developed and developing countries thanks to the westernization of the world. As most of the features of metabolic syndrome seem to be originated from central obesity, the underlying mechanisms for metabolic syndrome could help us to understand the pathobiology of obese-asthma condition. While mitochondrial dysfunction is the common factor for most of the risk factors of metabolic syndrome, such as central obesity, dyslipidemia, hypertension, insulin resistance, and type 2 diabetes, the involvement of mitochondria in obese-asthma pathogenesis seems to be important as mitochondrial dysfunction has recently been shown to be involved in airway epithelial injury and asthma pathogenesis. This review discusses current understanding of the overlapping features between metabolic syndrome and asthma in relation to mitochondrial structural and functional alterations with an aim to uncover mechanisms for obese-asthma. PMID:23840225

  20. Representational Similarity Analysis Reveals Heterogeneous Networks Supporting Speech Motor Control

    DEFF Research Database (Denmark)

    Zheng, Zane; Cusack, Rhodri; Johnsrude, Ingrid

    The everyday act of speaking involves the complex processes of speech motor control. One important feature of such control is regulation of articulation when auditory concomitants of speech do not correspond to the intended motor gesture. While theoretical accounts of speech monitoring posit...... multiple functional components required for detection of errors in speech planning (e.g., Levelt, 1983), neuroimaging studies generally indicate either single brain regions sensitive to speech production errors, or small, discrete networks. Here we demonstrate that the complex system controlling speech...... is supported by a complex neural network that is involved in linguistic, motoric and sensory processing. With the aid of novel real-time acoustic analyses and representational similarity analyses of fMRI signals, our data show functionally differentiated networks underlying auditory feedback control of speech....

  1. Cardiac microvascular rarefaction in hyperthyroidism-induced left ventricle dysfunction.

    Science.gov (United States)

    Freitas, Felipe; Estato, Vanessa; Carvalho, Vinícius Frias; Torres, Rafael Carvalho; Lessa, Marcos Adriano; Tibiriçá, Eduardo

    2013-10-01

    The pathophysiology underlying hyperthyroidism-induced left ventricle (LV) dysfunction and hypertrophy directly involves the heart and indirectly involves the neuroendocrine systems. The effects of hyperthyroidism on the microcirculation are still controversial in experimental models. We investigated the effects of hyperthyroidism on the cardiac function and microcirculation of an experimental rat model. Male Wistar rats (170-250 g) were divided into two groups: the euthyroid group (n = 10), which was treated with 0.9% saline solution, and the hyperthyroid group (n = 10), which was treated with l-thyroxine (600 μg/kg/day, i.p.) during 14 days. An echocardiographic study was performed to evaluate the alterations in cardiac function, structure and geometry. The structural capillary density and the expression of angiotensin II AT1 receptor in the LV were analyzed using histochemistry and immunohistochemistry, respectively. Hyperthyroidism was found to induce profound cardiovascular alterations, such as systolic hypertension, tachycardia, LV dysfunction, cardiac hypertrophy, and myocardial fibrosis. This study demonstrates the existence of structural capillary rarefaction and the down-regulation of the cardiac angiotensin II AT1 receptor in the myocardium of hyperthyroid rats in comparison with euthyroid rats. Microvascular rarefaction may be involved in the pathophysiology of hyperthyroidism-induced cardiovascular alterations. © 2013 John Wiley & Sons Ltd.

  2. Sacroiliac joint dysfunction.

    Science.gov (United States)

    Ilaslan, Hakan; Arslan, Ahmet; Koç, Omer Nadir; Dalkiliç, Turker; Naderi, Sait

    2010-07-01

    Sacroiliac joint dysfunction is a disorder presenting with low back and groin pain. It should be taken into consideration during the preoperative differential diagnosis of lumbar disc herniation, lumbar spinal stenosis and facet syndrome. Four cases with sacroiliac dysfunction are presented. The clinical and radiological signs supported the evidence of sacroiliac dysfunction, and exact diagnosis was made after positive response to sacroiliac joint block. A percutaneous sacroiliac fixation provided pain relief in all cases. The mean VAS scores reduced from 8.2 to 2.2. It is concluded that sacroiliac joint dysfunction diagnosis requires a careful physical examination of the sacroiliac joints in all cases with low back and groin pain. The diagnosis is made based on positive response to the sacroiliac block. Sacroiliac fixation was found to be effective in carefully selected cases.

  3. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1993-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  4. High efficiency motors; Motores de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Uranga Favela, Ivan Jaime [Energia Controlada de Mexico, S. A. de C. V., Mexico, D. F. (Mexico)

    1992-12-31

    This paper is a technical-financial study of the high efficiency and super-premium motors. As it is widely known, more than 60% of the electrical energy generated in the country is used for the operation of motors, in industry as well as in commerce. Therefore the importance that the motors have in the efficient energy use. [Espanol] El presente trabajo es un estudio tecnico-financiero de los motores de alta eficiencia y los motores super premium. Como es ampliamente conocido, mas del 60% de la energia electrica generada en el pais, es utilizada para accionar motores, dentro de la industria y el comercio. De alli la importancia que los motores tienen en el uso eficiente de la energia.

  5. Undiagnosed post-traumatic stress disorder following motor vehicle accidents.

    Science.gov (United States)

    Green, M M; McFarlane, A C; Hunter, C E; Griggs, W M

    1993-10-18

    To determine the pattern of emergence of post-traumatic stress disorder (PTSD) among motor vehicle accident victims and to examine the influence of PTSD on subsequent levels of disability. A longitudinal study of motor vehicle accident victims one month and 18 months after the accident. Twenty-four motor vehicle accident victims admitted by the trauma team at the Royal Adelaide Hospital. A 52% response rate was achieved. Post-traumatic stress disorder as diagnosed by the Diagnostic Interview Schedule and disability as measured with the Sickness Impact Profile. Eighteen months after their accidents, six of the 24 subjects had clinically significant PTSD and one was considered borderline. None had been previously diagnosed or treated. The group with PTSD had higher scores on all measures of psychological distress one month after the accident and were more likely to use immature psychological defences. There was no association between physical outcome (measured with the modified Glasgow Outcome Scale) at six months and subsequent diagnosis of PTSD. However, the group with PTSD had higher levels of disability on assessment with the Sickness Impact Profile, particularly in the domain of social functioning. The results suggest PTSD was associated with work-related dysfunction equal to that associated with severe physical handicap. The data from this pilot study suggest that PTSD after motor vehicle accidents is an important cause of disability, which may also become the focus for damages in litigation. Thus, there is a need for further investigation of the early patterns of distress and to design preventive programs for victims of road accidents.

  6. Protocol study for a randomised, controlled, double-blind, clinical trial involving virtual reality and anodal transcranial direct current stimulation for the improvement of upper limb motor function in children with Down syndrome.

    Science.gov (United States)

    Lopes, Jamile Benite Palma; Grecco, Luanda André Collange; Moura, Renata Calhes Franco de; Lazzari, Roberta Delasta; Duarte, Natalia de Almeida Carvalho; Miziara, Isabela; Melo, Gileno Edu Lameira de; Dumont, Arislander Jonathan Lopes; Galli, Manuela; Santos Oliveira, Claudia

    2017-08-11

    Down syndrome results in neuromotor impairment that affects selective motor control, compromising the acquisition of motor skills and functional independence. The aim of the proposed study is to evaluate and compare the effects of multiple-monopolar anodal transcranial direct current stimulation and sham stimulation over the primary motor cortex during upper limb motor training involving virtual reality on motor control, muscle activity, cerebral activity and functional independence. A randomised, controlled, double-blind, clinical trial is proposed. The calculation of the sample size will be defined based on the results of a pilot study involving the same methods. The participants will be randomly allocated to two groups. Evaluations will be conducted before and after the intervention as well as 1 month after the end of the intervention process. At each evaluation, three-dimensional analysis of upper limb movement muscle activity will be measured using electromyography, cerebral activity will be measured using an electroencephalogram system and intellectual capacity will be assessed using the Wechsler Intelligence Scale for Children. Virtual reality training will be performed three times a week (one 20 min session per day) for a total of 10 sessions. During the protocol, transcranial stimulation will be administered concomitantly to upper limb motor training. The results will be analysed statistically, with a p value≤0.05 considered indicative of statistical significance. The present study received approval from the Institutional Review Board of Universidade Nove de Julho (Sao Paulo,Brazil) under process number 1.540.113 and is registered with the Brazilian Registry of Clinical Trials (N° RBR3PHPXB). The participating institutions have presented a declaration of participation. The volunteers will be permitted to drop out of the study at any time with no negative repercussions. The results will be published and will contribute evidence regarding the use of

  7. Purchasing motors under consideration of full-cost pricing

    International Nuclear Information System (INIS)

    Mauchle, P.; Ritz, Ch.

    2007-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at how full-cost pricing should be considered when purchasing electric motors. The authors consider it essential that the overall life-cycle costs are carefully considered. This also guarantees economical operation and enables users to avoid unexpected costs throughout the service life of the motor. The aim of this project was to provide industrial companies with suitable tools for calculating the overall life-cycle costs of motors at the time of their acquisition. These tools take the form of a sample 'Call for Tender' for motors along with software for calculating life-cycle costs. The factors involved, such as investment, installation costs, energy and environmental costs as well as operational, maintenance and disposal costs are examined.

  8. Prevalence and risk factors for female sexual dysfunction among Egyptian women.

    Science.gov (United States)

    Ibrahim, Zakia Mahdy; Ahmed, Magdy Refaat; Sayed Ahmed, Waleed Ali

    2013-06-01

    To assess sexual function among married women and determine associated risk factors for sexual dysfunction. Cross-sectional hospital-based study involving 509 non-pregnant married females 20-59 years old who were enrolled into the study after approval of the ethics committee. The study population was recruited among women attending gynecology outpatient clinic or their relatives visiting inpatients of obstetrics and gynecology department at Suez Canal University Hospital. Female and male partner-related data were collected using an interview questionnaire. Sexual dysfunction was assessed using female sexual function index (FSFI). Mean female age was 39.5 years. About half of the participants were premenopausal (48.7 %). Most of the females were circumcised (71.7 %). Desire and Orgasm domains were the most affected with 52.8 % of the participants having sexual dysfunction. Total FSFI score of ≤26.55 was the cutoff value for diagnosis of FSD and female age, postmenopausal status, duration of marriage, circumcision, partner's age, and the presence of male sexual dysfunction were found to be significant associated factors with FSD. FSD is highly prevalent in Egypt and orgasm and desire scores were the most affected domains. Several personal (female age, postmenopausal status, duration of marriage and circumcision) and male partner (age, and the presence of sexual dysfunction) factors were significantly associated.

  9. The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits.

    Science.gov (United States)

    Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi

    2003-06-01

    In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.

  10. Right lower limb apraxia in a patient with left supplementary motor area infarction: intactness of the corticospinal tract confirmed by transcranial magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Min Cheol Chang

    2015-01-01

    Full Text Available We reported a 50-year-old female patient with left supplementary motor area infarction who presented right lower limb apraxia and investigated the possible causes using transcranial magnetic stimulation. The patient was able to walk and climb stairs spontaneously without any assistance at 3 weeks after onset. However, she was unable to intentionally move her right lower limb although she understood what she supposed to do. The motor evoked potential evoked by transcranial magnetic stimulation from the right lower limb was within the normal range, indicating that the corticospinal tract innervating the right lower limb was uninjured. Thus, we thought that her motor dysfunction was not induced by motor weakness, and confirmed her symptoms as apraxia. In addition, these results also suggest that transcranial magnetic stimulation is helpful for diagnosing apraxia.

  11. Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death.

    Science.gov (United States)

    Sellier, Chantal; Campanari, Maria-Letizia; Julie Corbier, Camille; Gaucherot, Angeline; Kolb-Cheynel, Isabelle; Oulad-Abdelghani, Mustapha; Ruffenach, Frank; Page, Adeline; Ciura, Sorana; Kabashi, Edor; Charlet-Berguerand, Nicolas

    2016-06-15

    An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD. © 2016 The Authors.

  12. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease.

    Science.gov (United States)

    Khatri, Dharmendra K; Juvekar, Archana R

    Curcumin, a natural polyphenolic compound extracted from rhizomes of Curcuma longa (turmeric), a plant in the ginger family (Zingiberaceae) has been used worldwide and extensively in Southeast Asia. Curcumin exhibited numerous biological and pharmacological activities including potent antioxidant, cardiovascular disease, anticancer, anti-inflammatory effects and neurodegenerative disorders in cell cultures and animal models. Hence, the present study was designed in order to explore the possible neuroprotective role of curcumin against rotenone induced cognitive impairment, oxidative and mitochondrial dysfunction in mice. Chronic administration of rotenone (1mg/kg i.p.) for a period of three weeks significantly impaired cognitive function (actophotometer, rotarod and open field test), oxidative defense (increased lipid peroxidation, nitrite concentration and decreased activity of superoxide dismutase, catalase and reduced glutathione level) and mitochondrial complex (II and III) enzymes activities as compared to normal control group. Three weeks of curcumin (50, 100 and 200mg/kg, p.o.) treatment significantly improved behavioral alterations, oxidative damage and mitochondrial enzyme complex activities as compared to negative control (rotenone treated) group. Curcumin treated mice also mitigated enhanced acetylcholine esterase enzyme level as compared to negative control group. We found that curcumin restored motor deficits and enhanced the activities of antioxidant enzymes suggesting its antioxidant potential in vivo. The findings of the present study conclude neuroprotective role of curcumin against rotenone induced Parkinson's in mice and offer strong justification for the therapeutic prospective of this compound in the management of PD. Copyright © 2016. Published by Elsevier Inc.

  13. 'Motor challenge' pilot programme; Motor Challenge Pilotprogramm. Schweizer Teilnahme im SAVE-Programm: pilot actions for motor systems industrial energy use challenge

    Energy Technology Data Exchange (ETDEWEB)

    Nipkow, J.

    2003-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a pilot project associated with the Motor Challenge Programme (MCP) initiated by the European Commission (Transport and Energy Committee). The programme is briefly described, which aims to improve the efficiency of electrical motors used in industrial compressed-air, pump and ventilator systems as well as in comprehensive motor driven systems. Switzerland's participation in this pilot project is examined, which was concluded after a period of two years when the Motor Challenge Programme itself was launched in February 2003. The mechanisms of the programme are described, whereby companies may become involved in the programme either as partners (users of drive systems) or as endorsers (suppliers, planners, etc., of such systems). Experience gained with two companies in Switzerland - a food processing group and a major chemical pulp producer - who participated in the programme is presented. Efficiency potentials of around 3 GWh/a were identified; these represent a high proportion of the estimated total of 18 GWh/a in the overall programme. A follow-up project is proposed that is to provide detailed information and initiate further efficiency projects in order to encourage other companies to participate in the MCP programme.

  14. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  15. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  16. Liver involvement in Langerhans cell histiocytosis

    International Nuclear Information System (INIS)

    Wong, Adelaine; Ortiz-Neira, Clara L.; Abou Reslan, Walid; Kaura, Deepak; Sharon, Raphael; Anderson, Ronald; Pinto-Rojas, Alfredo

    2006-01-01

    Liver involvement in Langerhans cell histiocytosis (LCH) typically presents with hepatomegaly and other signs of liver dysfunction. We present an 11-month-old child having only minimally elevated liver enzymes as an indication of liver involvement. Using sonography as the initial diagnostic tool followed by MRI, LCH of the liver was revealed. A review of sonographic, CT, MRI and MR cholangiopancreatography findings in liver LCH is presented. We recommend that physicians consider sonography and MRI screening for liver involvement in patients with newly diagnosed LCH, as periportal involvement may be present with little or no liver function abnormality present, as in this patient. (orig.)

  17. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    Science.gov (United States)

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas

  18. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  19. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  20. Combined Cognitive-Motor Rehabilitation in Virtual Reality Improves Motor Outcomes in Chronic Stroke – A Pilot Study

    Directory of Open Access Journals (Sweden)

    Ana L. Faria

    2018-05-01

    Full Text Available Stroke is one of the most common causes of acquired disability, leaving numerous adults with cognitive and motor impairments, and affecting patients’ capability to live independently. Virtual Reality (VR based methods for stroke rehabilitation have mainly focused on motor rehabilitation but there is increasing interest toward the integration of cognitive training for providing more effective solutions. Here we investigate the feasibility for stroke recovery of a virtual cognitive-motor task, the Reh@Task, which combines adapted arm reaching, and attention and memory training. 24 participants in the chronic stage of stroke, with cognitive and motor deficits, were allocated to one of two groups (VR, Control. Both groups were enrolled in conventional occupational therapy, which mostly involves motor training. Additionally, the VR group underwent training with the Reh@Task and the control group performed time-matched conventional occupational therapy. Motor and cognitive competences were assessed at baseline, end of treatment (1 month and at a 1-month follow-up through the Montreal Cognitive Assessment, Single Letter Cancelation, Digit Cancelation, Bells Test, Fugl-Meyer Assessment Test, Chedoke Arm and Hand Activity Inventory, Modified Ashworth Scale, and Barthel Index. Our results show that both groups improved in motor function over time, but the Reh@Task group displayed significantly higher between-group outcomes in the arm subpart of the Fugl-Meyer Assessment Test. Improvements in cognitive function were significant and similar in both groups. Overall, these results are supportive of the viability of VR tools that combine motor and cognitive training, such as the Reh@Task. Trial Registration: This trial was not registered because it is a small clinical study that addresses the feasibility of a prototype device.

  1. Premotor and Motor Cortices Encode Reward.

    Directory of Open Access Journals (Sweden)

    Pavan Ramkumar

    Full Text Available Rewards associated with actions are critical for motivation and learning about the consequences of one's actions on the world. The motor cortices are involved in planning and executing movements, but it is unclear whether they encode reward over and above limb kinematics and dynamics. Here, we report a categorical reward signal in dorsal premotor (PMd and primary motor (M1 neurons that corresponds to an increase in firing rates when a trial was not rewarded regardless of whether or not a reward was expected. We show that this signal is unrelated to error magnitude, reward prediction error, or other task confounds such as reward consumption, return reach plan, or kinematic differences across rewarded and unrewarded trials. The availability of reward information in motor cortex is crucial for theories of reward-based learning and motivational influences on actions.

  2. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    Science.gov (United States)

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  3. Tetrahydroxystilbene glucoside improves TNF-α-induced endothelial dysfunction: involvement of TGFβ/Smad pathway and inhibition of vimentin expression.

    Science.gov (United States)

    Yao, Wenjuan; Gu, Chengjing; Shao, Haoran; Meng, Guoliang; Wang, Huiming; Jing, Xiang; Zhang, Wei

    2015-01-01

    Endothelial dysfunction plays an important role in the pathogenesis of atherogenesis. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component of the rhizome extract from Polygonum multiflorum (PM), exhibits significant anti-atherosclerotic activity. Here, we used human umbilical vein endothelial cells (HUVECs) induced by tumor necrosis factor-α (TNF-α) in vitro to investigate the cytoprotective effects of TSG on TNF-α-induced endothelial injury and the related mechanisms. Pretreatment with 50 and 100 μM TSG markedly attenuated TNF-α-induced loss of cell viability and release of lactate dehydrogenase (LDH) and inhibited TNF-α-induced cell apoptosis. The inhibition of vimentin expression was involved in the cytoprotection afforded by TSG. Using inhibitors for PI3K and TGFβ or siRNA for Akt and Smad2, we found that vimentin production in HUVECs is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by TNF-α. These results suggest that TSG protects HUVECs against TNF-α-induced cell damage by inhibiting vimentin expression via the interruption of the TGFβ/Smad signaling pathway.

  4. Exercise tolerance and selected motor skills in young females with idiopathic scoliosis treated with different physiotherapeutic methods.

    Science.gov (United States)

    Fabian, Krzysztof Marek; Rożek-Piechura, Krystyna

    2014-01-01

    Scoliosis is a disorder that leads to dysfunction of a number of systems in the body, especially in young females. Physical capacity is one of the most important elements of good health as well as ofbiological development. Adolescence is a time when physical capacity develops intensively, and the condition of the respiratory system is one of many factors that have an impact on the level of physical capacity. This paper aims to evaluate a short-term application of two methods of physiotherapy and their influence on the level of exercise tolerance in young females suffering from idiopathic scoliosis. The study involved a group of 49 young females aged 14-15 years diagnosed with (2040°) thoracic and lumbar scoliosis who were in-patients at the rehabilitation ward of the Regional Paediatric Rehabilitation Hospital in Jastrzębie Zdrój. The group was divided into two subgroups depending on the method of rehabilitation employed: the first subgroup received asymmetric breathing exercise therapy by Dobosiewicz and the second subgroup practised symmetric remedial exercises. Cobb's angle, the degree of skeletal maturity, i.e. the Risser sign and the degree trunk rotation of the apex of the curvature by means of Raimondi's coefficient were determined once in an x-ray image. Basic somatic features, maximal voluntary ventilation (MVV parameter), selected motor skills and exercise tolerance were assessed on two occasions (before beginning and after completion of the rehabilitation treatment). 1. Young females suffering from (20-40°) thoracic and lumbar scoliosis demonstrate respiratory dysfunction, as shown by decreased maximal voluntary ventilation (MVV) in the two subgroups in the present study. Exercises according to Dobosiewicz's method brought about a significantly higher degree of improvement in this parameter. 2. The physiotherapeutic regimen administered to the young girls with scoliosis significantly improved their strength motor skills and exercise tolerance. A

  5. Assessment of temporomandibular joint dysfunction in condylar fracture of the mandible using the Helkimo index

    Directory of Open Access Journals (Sweden)

    S Suhas

    2017-01-01

    Full Text Available Introduction: Condylar fractures of the mandible are functionally important fractures as the condyle of the mandible being a part of the temporomandibular joint (TMJ and can lead to TMJ dysfunction if not properly treated. Materials and Methods: This was a cross-sectional study of a total of 33 treated patients with fracture of the mandibular condyle who underwent examination as per the Helkimo index. Their dysfunction was quantified and clinicoepidemiological characteristics were assessed. It was found that majority of our patients were young males involved in a two-wheeler accident. All patients underwent intermaxillary fixation as the minimum treatment and 30% underwent open reduction and internal fixation in addition. Results: There was no statistically significant association between the degree of clinical dysfunction and factors such as age, mechanism of injury, type of condyle fracture, presence of other mandible fractures, and surgical procedure. However, dislocation of the mandibular condyle was found to be a negative prognostic factor and all these patients had some degree of dysfunction. Conclusion: The overall prevalence of TMJ dysfunction according to the Helkimo index was 90%. About 61% of patients had mild dysfunction (Di1 and 30% had moderate dysfunction (Di2. None of the patients had severe dysfunction. To conclude, the Helkimo index is a simple, effective, inexpensive, reliable screening index to assess TMJ dysfunction in condylar fractures of mandible.

  6. Plasticity in the Human Speech Motor System Drives Changes in Speech Perception

    Science.gov (United States)

    Lametti, Daniel R.; Rochet-Capellan, Amélie; Neufeld, Emily; Shiller, Douglas M.

    2014-01-01

    Recent studies of human speech motor learning suggest that learning is accompanied by changes in auditory perception. But what drives the perceptual change? Is it a consequence of changes in the motor system? Or is it a result of sensory inflow during learning? Here, subjects participated in a speech motor