WorldWideScience

Sample records for motor behavior activates

  1. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  2. Is there an association among actual motor competence, perceived motor competence, physical activity, and sedentary behavior in preschool children?

    Lopes, Vítor P.; Barnett, L.M.; Rodrigues, Luis Paulo

    2016-01-01

    The purpose is to explore relationships among moderate to vigorous physical activity (MVPA), sedentary behavior (SB), and actual gross motor competence (MC) and perceived motor competence (PMC) in young children. Data were collected in 101 children (M age = 4.9 ± 0.93 years). MVPA was measured with accelerometry. Gross MC was assessed with the Portuguese version of the Movement Assessment Battery for Children. PMC was evaluated with the Pictorial Scale of Perceived Competence and Social Accep...

  3. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Gap junctions and motor behavior

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  5. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  6. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors.

  7. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  8. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behavior Disorder and Parkinson Disease

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi B

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown......-FP-CIT uptake in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  9. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  10. The Neuronal Network Orchestration behind Motor Behaviors

    Petersen, Peter Christian

    to motoneurons during rhythmic motor behaviors, and specifically the hypothesis that motoneurons receive concurrent excitatory and inhibitory (E/I) inputs. Berg et al. (2007) presented the concurrent hypothesis, which goes against the classical feed forward reciprocal model for spinal motor networks that has...... gained widespread acceptance. We developed an adult turtle preparation where the spinal motor network was intact, which also allowed us to perform intracellular recordings from motoneurons during rhythmic motor activity. We estimated the synaptic excitatory and inhibitory conductances by two individual...... (Buzsáki and Mizuseki, 2014). Roxin et al. (2011) detailed the firing rate distribution in networks in the balanced regime, and found it to be similar to a lognormal distribution and describing the data from the population studies very well. Our experimental observations and analysis are in agreement...

  11. Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behavior in childhood.

    Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee

    2017-11-01

    One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.

  12. Neuromodulation during motor development and behavior.

    Pflüger, H J

    1999-12-01

    Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.

  13. The roles of physical activity and sedentary behavior on Hispanic children's mental health: a motor skill perspective.

    Gu, Xiangli; Keller, M Jean; Weiller-Abels, Karen H; Zhang, Tao

    2018-01-01

    Motor competence (MC) has been recognized as the foundation for life-time moderate-to-vigorous physical activity (MVPA) as well as an influential factor in reducing sedentary behavior during childhood. Guided by Blair et al.'s health model, the purpose of this study was to examine the behavioral mechanism of mental health including physical, psychosocial, and cognitive health among Hispanic children related to MC and MVPA. A prospective research design was used with two-wave assessments across one academic year. A total of 141 Hispanic kindergarteners (Mean age  = 5.37, SD = 0.48) were recruited in Texas. Nearly all (94.3%) of the participants were from low-income families based on the Income Eligibility Guidelines. The study was approved by the University Research Review Board, and informed consent was obtained from parents/guardians prior to starting the study. Multiple regressions indicated that manipulative skill was a significant predictor of physical and psychosocial health (β = 0.21, β = 0.26, p health (β = 0.22, p mental health outcomes through MVPA (95% CI [0.031, 0.119]) and sedentary behavior (95% CI [0.054, 0.235]), respectively. The results suggest that skill-based activities/games, with instructions, should be encouraged during school-based physical activity and health promotion programs in childhood education. Better understanding of the early effects of MC may contribute to designing strategies to promote Hispanic children's well-being.

  14. EEG SPECTRA, BEHAVIORAL STATES AND MOTOR ACTIVITY IN RATS EXPOSED TO ACETYLCHOLINESTERASE INHIBITOR CHLORPYRIFOS.

    Exposure to organophosphate pesticides (OP) has been associated with sleep disorders: insomnia and ?excessive dreaming'. However neuronal mechanisms of these effects have not been analyzed. OP inhibit acetylcholinesterase activity leading to a hyperativity of the brain cholin...

  15. Influence of lactation on motor activity and elevated plus maze behavior

    Silva M.R.P.

    1997-01-01

    Full Text Available Lactating rats show less noise-induced freezing and fewer inhibitory responses on the 6th day post-delivery when submitted to water and food deprivation in a classical conflict paradigm. Lactating mice go more often to the illuminated chamber in a light-dark cage and stay longer in it than virgin females. The present study was designed to assess the influence of this physiological state, i.e. lactation, on the elevated plus maze (EPM and open-field behavior in adult female rats. Total (TL and central (CL locomotion and rearing (RF frequencies were measured in an open-field. Number of entries into the open and closed arms as well as the time spent in each of these arms were measured in the EPM. Percent time spent and number of entries into the open arms were calculated and compared. In the open-field, TL was significantly decreased (115 ± 10.6 vs 150 ± 11.6 while CL and RF did not differ from those presented by virgin rats. In the EPM, lactating rats displayed a significant reduction in percent time spent (10.9 ± 1.5 vs 17.4 ± 2.3 in the open arms as well as a tendency to a reduction in percent entries into the open arms (35.7 ± 4.7 vs 45.7 ± 4.3. These results show that the physiological state of lactation modulates the open-field and EPM behaviors in rats

  16. 24-h actigraphic monitoring of motor activity, sleeping and eating behaviors in underweight, normal weight, overweight and obese children.

    Martoni, Monica; Carissimi, Alicia; Fabbri, Marco; Filardi, Marco; Tonetti, Lorenzo; Natale, Vincenzo

    2016-12-01

    Within a chronobiological perspective, the present study aimed to describe 24 h of sleep-wake cycle, motor activity, and food intake patterns in different body mass index (BMI) categories of children through 7 days of actigraphic recording. Height and weight were objectively measured for BMI calculation in a sample of 115 Italian primary schoolchildren (10.21 ± 0.48 years, 62.61 % females). According to BMI values, 2.60 % were underweight, 61.70 % were of normal weight, 29.60 % were overweight and 6.10 % were obese. Participants wore a wrist actigraph continuously for 7 days to record motor activity and describe sleep-wake patterns. In addition, participants were requested to push the event-marker button of the actigraph each time they consumed food to describe their circadian eating patterns. BMI group differences were found for sleep quantity (i.e. midpoint of sleep and amplitude), while sleep quality, 24-h motor activity and food intake patterns were similar between groups. Regression analyses showed that BMI was negatively predicted by sleep duration on schooldays. BMI was also predicted by motor activity and by food intake frequencies recorded at particular times of day during schooldays and at the weekend. The circadian perspective seems to provide promising insight into childhood obesity, but this aspect needs to be further explored.

  17. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  18. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  20. Ebselen protects against behavioral and biochemical toxicities induced by 3-nitropropionic acid in rats: correlations between motor coordination, reactive species levels, and succinate dehydrogenase activity.

    Wilhelm, Ethel A; Bortolatto, Cristiani F; Jesse, Cristiano R; Luchese, Cristiane

    2014-12-01

    The protective effect of ebselen was investigated against 3-nitropropionic acid (3-NP)-induced behavioral and biochemical toxicities in rats. Ebselen (10 or 25 mg/kg, intragastrically) was administered to rats 30 min before 3-NP (20 mg/kg, intraperitoneally) once a day for a period of 4 days. Locomotor activity, motor coordination, and body weight gain were determined. The striatal content of reactive oxygen species (ROS), reduced glutathione (GSH), ascorbic acid (AA), and protein carbonyl as well as catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST) activities was determined 24 h after the last dose of 3-NP. Na(+)/ K(+)-ATPase, succinate dehydrogenase (SDH), and δ-aminolevulinic dehydratase (δ-ALA-D) activities were also determined. The results demonstrated that ebselen at a dose of 25 mg/kg, but not at 10 mg/kg, protected against (1) a decrease in locomotor activity, motor coordination impairment, and body weight loss; (2) striatal oxidative damage, which was characterized by an increase in ROS levels, protein carbonyl content, and GR activity, an inhibition of CAT and GPx activities, and a decrease in GSH levels; and (3) an inhibition of SDH and Na(+)/K(+)-ATPase activities, induced by 3-NP. GST activity and AA levels were not modified by ebselen or 3-NP. Ebselen was not effective against the inhibition of δ-ALA-D activity induced by 3-NP. The results revealed a significant correlation between SDH activity and ROS levels, and SDH activity and latency to fall (rotarod test). The present study highlighted the protective effect of ebselen against 3-NP-induced toxicity in rats.

  1. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status.

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p motor tests. Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  2. Sociocultural Influence on Obesity and Lifestyle in Children: A Study of Daily Activities, Leisure Time Behavior, Motor Skills, and Weight Status

    Hilpert, Martin; Brockmeier, Konrad; Dordel, Sigrid; Koch, Benjamin; Weiß, Verena; Ferrari, Nina; Tokarski, Walter; Graf, Christine

    2017-01-01

    Background Juvenile overweight is increasing, and effective preventive measures are needed. After years of arbitrarily assigning these measures disregarding socioeconomic and/or cultural differences, it has become necessary to tailor interventions more specific to these target groups. Providing data for such an intervention is the objective of this study. Methods Influencing variables on children's weight status, motor skills and lifestyle have been analyzed among 997 first graders (53.2% male) involved in the Children's Health InterventionaL Trial (CHILT). Results Median age was 6.9 years; 7.3% were obese, 8.8% were overweight. Children with low socioeconomic status (SES) were more likely to be obese (p = 0.029). Low SES (p ˂ 0.001), migration background (p = 0.001) and low sports activity levels (p = 0.007) contributed most to an increased consumption of television. Migration background (p = 0.003) and male gender (p games. Children with higher SES (p = 0.02), lower BMI (p = 0.035), and males (p = 0.001) performed better in motor tests. Conclusion Children with a low SES and migration background were more likely to exhibit unfavorable health behavior patterns, higher BMI scores, and poorer motor skills. Interventions should integrate motivational and targeting strategies and consider cultural and educational differences to address these vulnerable groups. PMID:28528341

  3. Impact of Nintendo Wii Games on Physical Literacy in Children: Motor Skills, Physical Fitness, Activity Behaviors, and Knowledge

    Amanda M. George

    2016-01-01

    Full Text Available Physical literacy is the degree of fitness, behaviors, knowledge, and fundamental movement skills (agility, balance, and coordination a child has to confidently participate in physical activity. Active video games (AVG, like the Nintendo Wii, have emerged as alternatives to traditional physical activity by providing a non-threatening environment to develop physical literacy. This study examined the impact of AVGs on children’s (age 6–12, N = 15 physical literacy. For six weeks children played one of four pre-selected AVGs (minimum 20 min, twice per week. Pre and post measures of motivation, enjoyment, and physical literacy were completed. Results indicated a near significant improvement in aiming and catching (p = 0.06. Manual dexterity significantly improved in males (p = 0.001, and females felt significantly less pressured to engage in PA (p = 0.008. Overall, there appears to be some positive impact of an AVG intervention on components of physical literacy.

  4. Impact of Nintendo Wii Games on Physical Literacy in Children: Motor Skills, Physical Fitness, Activity Behaviors, and Knowledge.

    George, Amanda M; Rohr, Linda E; Byrne, Jeannette

    2016-01-15

    Physical literacy is the degree of fitness, behaviors, knowledge, and fundamental movement skills (agility, balance, and coordination) a child has to confidently participate in physical activity. Active video games (AVG), like the Nintendo Wii, have emerged as alternatives to traditional physical activity by providing a non-threatening environment to develop physical literacy. This study examined the impact of AVGs on children's (age 6⁻12, N = 15) physical literacy. For six weeks children played one of four pre-selected AVGs (minimum 20 min, twice per week). Pre and post measures of motivation, enjoyment, and physical literacy were completed. Results indicated a near significant improvement in aiming and catching ( p = 0.06). Manual dexterity significantly improved in males ( p = 0.001), and females felt significantly less pressured to engage in PA ( p = 0.008). Overall, there appears to be some positive impact of an AVG intervention on components of physical literacy.

  5. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  6. Long-term post-stroke changes include myelin loss, specific deficits in sensory and motor behaviors and complex cognitive impairment detected using active place avoidance.

    Jin Zhou

    Full Text Available Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1 sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2 complex active place avoidance learning (APA and simple passive avoidance retention (PA. Electroretinogram (ERG, hemispheric loss (infarction, hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001, sensory (p<0.001, beam balance performance (p<0.01 and hindlimb placement behavior (p<0.01. tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05 but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining. No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01 in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and

  7. Adult-onset stereotypical motor behaviors.

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Motor demand-dependent activation of ipsilateral motor cortex.

    Buetefisch, Cathrin M; Revill, Kate Pirog; Shuster, Linda; Hines, Benjamin; Parsons, Michael

    2014-08-15

    The role of ipsilateral primary motor cortex (M1) in hand motor control during complex task performance remains controversial. Bilateral M1 activation is inconsistently observed in functional (f)MRI studies of unilateral hand performance. Two factors limit the interpretation of these data. As the motor tasks differ qualitatively in these studies, it is conceivable that M1 contributions differ with the demand on skillfulness. Second, most studies lack the verification of a strictly unilateral execution of the motor task during the acquisition of imaging data. Here, we use fMRI to determine whether ipsilateral M1 activity depends on the demand for precision in a pointing task where precision varied quantitatively while movement trajectories remained equal. Thirteen healthy participants used an MRI-compatible joystick to point to targets of four different sizes in a block design. A clustered acquisition technique allowed simultaneous fMRI/EMG data collection and confirmed that movements were strictly unilateral. Accuracy of performance increased with target size. Overall, the pointing task revealed activation in contralateral and ipsilateral M1, extending into contralateral somatosensory and parietal areas. Target size-dependent activation differences were found in ipsilateral M1 extending into the temporal/parietal junction, where activation increased with increasing demand on accuracy. The results suggest that ipsilateral M1 is active during the execution of a unilateral motor task and that its activity is modulated by the demand on precision. Copyright © 2014 the American Physiological Society.

  9. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  10. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  11. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl

    Mariam Alaverdashvili

    2017-05-01

    Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are

  12. Effect of the home environment on motor and cognitive behavior of infants.

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Amelioration of sexual behavior and motor activity deficits in a castrated rodent model with a selective androgen receptor modulator SARM-2f.

    Megumi Morimoto

    Full Text Available Sarcopenia and cachexia present characteristic features of a decrease in skeletal muscle mass and strength, anorexia, and lack of motivation. Treatments for these diseases have not yet been established, although selective androgen receptor modulators (SARMs are considered as therapeutic targets. We previously reported that a novel SARM compound, SARM-2f, exhibits anabolic effect on muscles, with less stimulatory effect on prostate weight compared with testosterone, in rat Hershberger assays and cancer cachexia models. In this study, we studied the mechanism of action for SARM-2f selectivity and also assessed whether the muscle increase by this compound might lead to improvement of muscle function and physical activity. First, we examined the tissue distribution of SARM-2f. Tissue concentration was 1.2-, 1.6-, and 1.9-fold as high as the plasma concentration in the levator ani muscle, brain, and prostate, respectively. This result showed that the tissue-selective pharmacological effect did not depend on SARM-2f concentration in the tissues. The ability of SARM-2f to influence androgen receptor (AR-mediated transcriptional activation was examined by reporter assays using human normal prostate epithelial cells (PrEC and skeletal muscle cells (SKMC. SARM-2f exerted higher activity against AR in SKMC than in PrEC. Mammalian two hybrid assays showed different co-factor recruitment patterns between SARM-2f and dihydrotestosterone. Next, we studied the effect of SARM-2f on motivation and physical functions such as sexual behavior and motor activities in castrated rat or mouse models. SARM-2f restored the sexual behavior that was lost by castration in male rats. SARM-2f also increased voluntary running distance and locomotor activities. These results suggest that tissue-specific AR regulation by SARM-2f, but not tissue distribution, might account for its tissue specific androgenic effect, and that the muscle mass increase by SARM-2f leads to improvement

  14. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  15. Pre-motor and motor activities in early handwriting

    van Zwieten, Koos Jaap

    2011-01-01

    Behavioural studies make use of handwritten letters’ characteristics like strokes, roundedness, etcetera. In consequence, Fisher et al. (2010) studying brain activation during rejected love, noticed typical pre-motor activity patterns, as suggested by irregular writing patterns as well, due to basal ganglia dysfunction (Mergl et al., 2004). A short historical text written in a presumably depressed mood was checked on such characteristics in the light of hypothesised finger-, and hand movement...

  16. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  17. Steady State Dynamic Operating Behavior of Universal Motor

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  18. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  19. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  20. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  1. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  2. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. DEVELOPING STUDENT SOCIALIZATION THROUGH MOTOR ACTIVITIES

    Ioan Sabin SOPA

    2016-10-01

    Full Text Available : Starting from the assumption that motor activities are the perfect environment for socialization, communication and social integration of young people, this study aims to analyze the effectiveness of these activities in improving intergroup relations at the university level. In this research, the samples were composed of two groups, the experimental group (n = 25 with students from the Physical Education specialization and control group B (n = 25, composed of students from the Faculty of Sciences. The sociological survey applied on the two samples aimed to analyze the level of socialization, communication and social integration of students. The findings showed that the experimental group is more united, having a higher level of socialization and communication, compared to the control group B, proving once again the socializing effects of motor activities.

  5. Active training paradigm for motor imagery BCI.

    Li, Junhua; Zhang, Liqing

    2012-06-01

    Brain-computer interface (BCI) allows the use of brain activities for people to directly communicate with the external world or to control external devices without participation of any peripheral nerves and muscles. Motor imagery is one of the most popular modes in the research field of brain-computer interface. Although motor imagery BCI has some advantages compared with other modes of BCI, such as asynchronization, it is necessary to require training sessions before using it. The performance of trained BCI system depends on the quality of training samples or the subject engagement. In order to improve training effect and decrease training time, we proposed a new paradigm where subjects participated in training more actively than in the traditional paradigm. In the traditional paradigm, a cue (to indicate what kind of motor imagery should be imagined during the current trial) is given to the subject at the beginning of a trial or during a trial, and this cue is also used as a label for this trial. It is usually assumed that labels for trials are accurate in the traditional paradigm, although subjects may not have performed the required or correct kind of motor imagery, and trials may thus be mislabeled. And then those mislabeled trials give rise to interference during model training. In our proposed paradigm, the subject is required to reconfirm the label and can correct the label when necessary. This active training paradigm may generate better training samples with fewer inconsistent labels because it overcomes mistakes when subject's motor imagination does not match the given cues. The experiments confirm that our proposed paradigm achieves better performance; the improvement is significant according to statistical analysis.

  6. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  7. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  8. Vicarious motor activation during action perception: beyond correlational evidence

    Alessio eAvenanti

    2013-05-01

    Full Text Available Neurophysiological and imaging studies have shown that seeing the actions of other individuals brings about the vicarious activation of motor regions involved in performing the same actions. While this suggests a simulative mechanism mediating the perception of others’ actions, one cannot use such evidence to make inferences about the functional significance of vicarious activations. Indeed, a central aim in social neuroscience is to comprehend how vicarious activations allow the understanding of other people’s behavior, and this requires to use stimulation or lesion methods to establish causal links from brain activity to cognitive functions. In the present work we review studies investigating the effects of transient manipulations of brain activity or stable lesions in the motor system on individuals’ ability to perceive and understand the actions of others. We conclude there is now compelling evidence that neural activity in the motor system is critical for such cognitive ability. More research using causal methods, however, is needed in order to disclose the limits and the conditions under which vicarious activations are required to perceive and understand actions of others as well as their emotions and somatic feelings.

  9. Task-dependent activation of distinct fast and slow(er) motor pathways during motor imagery.

    Keller, Martin; Taube, Wolfgang; Lauber, Benedikt

    2018-02-22

    Motor imagery and actual movements share overlapping activation of brain areas but little is known about task-specific activation of distinct motor pathways during mental simulation of movements. For real contractions, it was demonstrated that the slow(er) motor pathways are activated differently in ballistic compared to tonic contractions but it is unknown if this also holds true for imagined contractions. The aim of the present study was to assess the activity of fast and slow(er) motor pathways during mentally simulated movements of ballistic and tonic contractions. H-reflexes were conditioned with transcranial magnetic stimulation at different interstimulus intervals to assess the excitability of fast and slow(er) motor pathways during a) the execution of tonic and ballistic contractions, b) motor imagery of these contraction types, and c) at rest. In contrast to the fast motor pathways, the slow(er) pathways displayed a task-specific activation: for imagined ballistic as well as real ballistic contractions, the activation was reduced compared to rest whereas enhanced activation was found for imagined tonic and real tonic contractions. This study provides evidence that the excitability of fast and slow(er) motor pathways during motor imagery resembles the activation pattern observed during real contractions. The findings indicate that motor imagery results in task- and pathway-specific subliminal activation of distinct subsets of neurons in the primary motor cortex. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. A framework to describe, analyze and generate interactive motor behaviors.

    Nathanaël Jarrassé

    Full Text Available While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  11. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  12. Neuronal Population Activity in Spinal Motor Circuits

    Berg, Rune W.

    2017-01-01

    The core elements of stereotypical movements such as locomotion, scratching and breathing are generated by networks in the lower brainstem and the spinal cord. Ensemble activities in spinal motor networks had until recently been merely a black box, but with the emergence of ultra-thin Silicon multi......-electrode technology it was possible to reveal the spiking activity of larger parts of the network. A series of experiments revealed unexpected features of spinal networks, such as multiple spiking regimes and lognormal firing rate distributions. The lognormality renders the widespread idea of a typical firing rate...

  13. Differential actigraphy for monitoring asymmetry in upper limb motor activities.

    Rabuffetti, M; Meriggi, P; Pagliari, C; Bartolomeo, P; Ferrarin, M

    2016-09-21

    Most applications of accelerometry-based actigraphy require a single sensor, properly located onto the body, to estimate, for example, the level of activity or the energy expenditure. Some approaches adopt a multi-sensor setup to improve those analyses or to classify different types of activity. The specific case of two symmetrically placed actigraphs allowing, by some kind of differential analysis, for the assessment of asymmetric motor behaviors, has been considered in relatively few studies. This article presents a novel method for differential actigraphy, which requires the synchronized measurements of two triaxial accelerometers (programmable eZ430-Chronos, Texas Instruments, USA) placed symmetrically on both wrists. The method involved the definition of a robust epoch-related activity index and its implementation on-board the adopted programmable platform. Finally, the activity recordings from both sensors allowed us to define a novel asymmetry index AR 24 h ranging from  -100% (only the left arm moves) to  +100% (only the right arm moves) with null value marking a perfect symmetrical behavior. The accuracy of the AR 24 h index was 1.3%. Round-the-clock monitoring on 31 healthy participants (20-79 years old, 10 left handed) provided for the AR 24 h reference data (range  -5% to 21%) and a fairly good correlation to the clinical handedness index (r  =  0.66, p  <  0.001). A subset of 20 participants repeated the monitoring one week apart evidencing an excellent test-retest reliability (r  =  0.70, p  <  0.001). Such figures support future applications of the methodology for the study of pathologies involving motor asymmetries, such as in patients with motor hemisyndromes and, in general, for those subjects for whom a quantification of the asymmetry in daily motor performances is required to complement laboratory tests.

  14. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  15. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    Barela, José Angelo

    2013-01-01

    Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has be...

  16. Misconceptions about mirror-induced motor cortex activation.

    Praamstra, P.; Torney, L.; Rawle, C.J.; Miall, R.C.

    2011-01-01

    Observation of self-produced hand movements through a mirror, creating an illusion of the opposite hand moving, was recently reported to induce ipsilateral motor cortex activation, that is, motor cortex activation for the hand in rest. The reported work goes far beyond earlier work on motor cortex

  17. The correlation between motor proficiency and physical activity in ...

    Lizl-Louise van Niekerk

    eOseretsky Test of Motor Proficiency 2 (BOT-2) for motor proficiency, and the International. Physical Activity ... Pienaar, 2007; Malina, 2012). ..... sults of Hardy, Reinten-Reynolds, Espinel, Zask, and Okely .... Journal of Psychiatric and Mental.

  18. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease

    Asha eKishore

    2014-05-01

    Full Text Available Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration and normal functioning of these net works. Strong topography-specific connections among the basal ganglia, cerebellum and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.

  19. Physiological markers of motor inhibition during human behavior

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  20. Trained, generalized, and collateral behavior changes of preschool children receiving gross-motor skills training.

    Kirby, K C; Holborn, S W

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Ten target behaviors were measured in the training setting to assess direct effects of the program. Generalization probes for two gross-motor behaviors, one fine-motor skill, and two social behaviors were conducted in other settings. Results indicated that the training program improved the gross-motor skills trained and that improvements sometimes generalized to other settings. Contrary...

  1. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors.

    Walcott, Sam

    2014-10-01

    Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.

  2. Processing abstract language modulates motor system activity.

    Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni

    2008-06-01

    Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.

  3. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  4. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  5. Fundamental motor skill proficiency is necessary for children's motor activity inclusion

    José Angelo Barela

    2013-09-01

    Full Text Available Motor development is influenced by many factors such as practice and appropriate instruction, provided by teachers, even in preschool and elementary school. The goal of this paper was to discuss the misconception that maturation underlies children's motor skill development and to show that physical education, even in early years of our school system, is critical to promote proficiency and enrolment of children's in later motor activities. Motor skill development, as a curricular focus, has been marginalized in many of our physical education proposal and in doing so, we have not promote motor competence in our children who lack proficiency to engage and to participate in later motor activities such as sport-related or recreational.

  6. The correlation between motor proficiency and physical activity in ...

    Background: One of the risks associated with low physical activity levels is the insufficient development of motor proficiency, which in turn has an impact on participation in physical activity and sport during adolescence. Objectives: To determine the relationship between motor proficiency and physical activity levels in ...

  7. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  8. Moxidectin interference on motor activity of rats

    Patrícia de Sá e Benevides Rodrigues-Alves

    2009-08-01

    Full Text Available The present study investigated the effects of t moxidectin (MXD in some parameters of rat motor function and neurochemical. The general activity in the open field and the motor coordination in the wooden beam were employed to evaluate the MXD effects. The results showed that, in the open field, even at high doses (2.0 and 20.0 mg/kg, the MXD did not alter the locomotion and the rearing frequencies. However, MXD was able to impair the motor coordination of the animals at wooden beam. Neurochemical studies of striatal GABA and dopamine neurotransmitters showed a reduced levels of dopamine and its metabolite, homovanillic acid, without interference on striatal GABA levels. Since GABAergic receptor stimulation had an inhibitory effect on dopaminergic striatal system, the decreased motor coordination could be attributed to an action of MXD on dopamine system via GABA activation.A moxidectina (MXD é uma droga antiparasitária amplamente empregada em animais domésticos; seu mecanismo de ação, em mamíferos, envolve o neurotransmissor ácido gama-aminobutírico (GABA. Esse neurotransmissor tem papel importante na função motora. Assim, no presente trabalho estudaram-se os efeitos da MXD em alguns parâmetros comportamentais ligados a função motora de ratos e também em sistemas de neurotransmissão central. A atividade geral no campo aberto e a coordenação motora na trave elevada foram empregadas para avaliar os efeitos de diferentes doses de MXD. Os resultados mostraram que: no campo aberto, mesmo as doses maiores (2.0 e 20.0 mg/kg de MXD não alteraram as freqüências de locomoção e levantar. Por outro lado, a MXD foi capaz de prejudicar a coordenação motora dos animais avaliada na trave elevada. Estudos neuroquímicos dos níveis estriatais de GABA e dopamina mostraram redução dos níveis de dopamina e seu metabólito, ácido homavanílico, sem interferência nos níveis de GABA estriatal. Considerando que a estimulação de

  9. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  11. Motor proficiency and physical fitness in active and inactive girls ...

    In modern day society physical activity levels diminish rapidly among girls and may be a direct consequence of girls experiencing motor difficulties. Therefore the aim of the study was to compare motor proficiency levels and physical fitness levels among active and inactive girls (N=97), aged 12 to 13 years. The BOTMP ...

  12. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  13. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  14. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery

    Teresa eSollfrank

    2015-08-01

    Full Text Available A repetitive movement practice by motor imagery (MI can influence motor cortical excitability in the electroencephalogram (EEG. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007. This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during motor imagery. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronisation (ERD of the upper alpha band (10-12 Hz over the sensorimotor cortices thereby potentially improving MI based BCI protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb motor imagery present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (2D vs. 3D. The largest upper alpha band power decrease was obtained during motor imagery after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D visualization modality group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during MI. Realistic visual feedback, consistent with the participant’s motor imagery, might be helpful for accomplishing successful motor imagery and the use of such feedback may assist in making BCI a more natural interface for motor imagery based BCI rehabilitation.

  15. Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke

    Firdaus Fabrice Hannanu

    2017-01-01

    In subacute stroke, fMRI brain activity related to passive movement measured in a sensorimotor network defined by activity during voluntary movement predicted motor recovery better than baseline motor-FMS alone. Furthermore, fMRI sensorimotor network activity measures considered alone allowed excellent clinical recovery prediction and may provide reliable biomarkers for assessing new therapies in clinical trial contexts. Our findings suggest that neural reorganization related to motor recovery from moderate to severe stroke results from balanced changes in ipsilesional MI (BA4a and a set of phylogenetically more archaic sensorimotor regions in the ventral sensorimotor trend, in which OP1 and OP4 processes may complement the ipsilesional dorsal motor cortex in achieving compensatory sensorimotor recovery.

  16. Fast social-like learning of complex behaviors based on motor motifs

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  17. Relations between Playing Activities and Fine Motor Development

    Suggate, Sebastian; Stoeger, Heidrun; Pufke, Eva

    2017-01-01

    Children's fine motor skills (FMS) are being increasingly recognized as an important aspect of preschool development; yet, we know very little about the experiences that foster their development. We utilized a parent-administered children's fine and gross motor activities questionnaire (MAQ) to investigate links with FMS. We recruited a sample of…

  18. Motor activation in SPG4-linked hereditary spastic paraplegia

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS: T...

  19. Gastric myoelectrical and antroduodenal motor activity in patients with achalasia

    Verhagen, M. A.; Samsom, M.; Smout, A. J.

    1998-01-01

    Achalasia is a primary motor disorder of the oesophagus, in which the myenteric plexus is involved. However, abnormalities in other parts of the digestive tract have also been described in achalasia. Whether gastric myoelectrical and duodenal motor activity in these patients is also affected is

  20. Motor performance and physical activity habits of college students in Costa Rica

    Judith Jiménez-Díaz

    2016-01-01

    Full Text Available The purpose of this study was to analyze the motor performance of fundamental motor skills and physical activity habits of students at the University of Costa Rica. A total of 92 males and 48 females (M age = 19.78 yr., SD = 4.72 yr. enrolled in different Sports Activity courses taught at the Rodrigo Facio campus was assessed. The Instrument for the Evaluation of Fundamental Movement Patterns was used to assess motor performance in eight fundamental movement patterns (running, jumping, galloping, catching, throwing, bouncing, and kicking. The physical activity level was obtained from a self-reported questionnaire developed for such purpose. Results show that 28% of the participants were physically active. Participants presented a proficient performance in kicking, running, and galloping, but a non-proficient performance in jumping, hopping, bouncing, throwing and catching. Physical activity behavior was related to the overall performance of the motor skills assessed (Rho = .233; p = .006. In conclusion, college students presented a proficient performance on three of the eight skills assessed. In addition, a relationship was found between physical activity levels and performance. Physical Education teachers are recommended to develop activities to enhance motor performance of fundamental motor skills in college students.

  1. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  2. Brain activation in motor sequence learning is related to the level of native cortical excitability.

    Silke Lissek

    Full Text Available Cortical excitability may be subject to changes through training and learning. Motor training can increase cortical excitability in motor cortex, and facilitation of motor cortical excitability has been shown to be positively correlated with improvements in performance in simple motor tasks. Thus cortical excitability may tentatively be considered as a marker of learning and use-dependent plasticity. Previous studies focused on changes in cortical excitability brought about by learning processes, however, the relation between native levels of cortical excitability on the one hand and brain activation and behavioral parameters on the other is as yet unknown. In the present study we investigated the role of differential native motor cortical excitability for learning a motor sequencing task with regard to post-training changes in excitability, behavioral performance and involvement of brain regions. Our motor task required our participants to reproduce and improvise over a pre-learned motor sequence. Over both task conditions, participants with low cortical excitability (CElo showed significantly higher BOLD activation in task-relevant brain regions than participants with high cortical excitability (CEhi. In contrast, CElo and CEhi groups did not exhibit differences in percentage of correct responses and improvisation level. Moreover, cortical excitability did not change significantly after learning and training in either group, with the exception of a significant decrease in facilitatory excitability in the CEhi group. The present data suggest that the native, unmanipulated level of cortical excitability is related to brain activation intensity, but not to performance quality. The higher BOLD mean signal intensity during the motor task might reflect a compensatory mechanism in CElo participants.

  3. Effect of the Children's Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial.

    Robinson, Leah E; Palmer, Kara K; Bub, Kristen L

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.

  4. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.

    2016-01-01

    Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p motor skills, post hoc comparisons found that all children improved their motor skills (p skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751

  5. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors.

    Claassen, Daniel O; van den Wildenberg, Wery P M; Harrison, Madaline B; van Wouwe, Nelleke C; Kanoff, Kristen; Neimat, Joseph S; Wylie, Scott A

    2015-02-01

    Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of dopamine agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of dopamine agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the dopamine agonist medicated and acutely withdrawn (24 h) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (go reaction time), and mean stop-signal reaction time (SSRT). ICD patients produce faster SSRT than both Healthy Controls, and PD-Controls. Faster SSRT in ICD patients is apparent in both dopamine agonist medication states. Also, we show unique dopamine medication effects on Go Reaction time (GoRT). In dopamine agonist monotherapy patients, dopamine agonist administration speeds GoRT. Conversely, in those with levodopa co-therapy, dopamine agonist administration slows. PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute dopamine agonist withdrawal. In addition, the effect of dopamine agonist on GoRT is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of 'impulsivity,' the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD. Copyright © 2014 Elsevier Inc

  6. Sleep-Active Neurons: Conserved Motors of Sleep

    Bringmann, Henrik

    2018-01-01

    Sleep is crucial for survival and well-being. This behavioral and physiological state has been studied in all major genetically accessible model animals, including rodents, fish, flies, and worms. Genetic and optogenetic studies have identified several neurons that control sleep, making it now possible to compare circuit mechanisms across species. The “motor” of sleep across animal species is formed by neurons that depolarize at the onset of sleep to actively induce this state by directly inhibiting wakefulness. These sleep-inducing neurons are themselves controlled by inhibitory or activating upstream pathways, which act as the “drivers” of the sleep motor: arousal inhibits “sleep-active” neurons whereas various sleep-promoting “tiredness” pathways converge onto sleep-active neurons to depolarize them. This review provides the first overview of sleep-active neurons across the major model animals. The occurrence of sleep-active neurons and their regulation by upstream pathways in both vertebrate and invertebrate species suggests that these neurons are general and ancient components that evolved early in the history of nervous systems. PMID:29618588

  7. Rhythmic activity of feline dorsal and ventral spinocerebellar tract neurons during fictive motor actions

    Fedirchuk, Brent; Stecina, Katinka; Kristensen, Kasper Kyhl

    2013-01-01

    (without phasic afferent feedback). In this study, we compared the activity of DSCT and VSCT neurons during fictive rhythmic motor behaviors. We used decerebrate cat preparations in which fictive motor tasks can be evoked while the animal is paralyzed and there is no rhythmic sensory input from hindlimb......Neurons of the dorsal spinocerebellar tracts (DSCT) have been described to be rhythmically active during walking on a treadmill in decerebrate cats, but this activity ceased following deafferentation of the hindlimb. This observation supported the hypothesis that DSCT neurons primarily relay...

  8. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  9. Early motor skill competence as a mediator of child and adult physical activity

    Paul D. Loprinzi

    2015-01-01

    Full Text Available Objective: In order to effectively promote physical activity (PA during childhood, and across the lifespan, a better understanding of the role of early motor skill development on child and adult PA is needed. Methods: Here, we propose a conceptual model delineating the hypothesized influence of motor skill development on child and adult PA, while providing an overview of the current empirical research related to this model. Results: There is consistent and emerging evidence showing that adequate motor skill competence, particularly locomotor and gross motor skills, is associated with increased PA levels during the preschool, child, and adolescent years, with early motor skill development also influencing enjoyment of PA as well as long-term PA and motor skill performance. The physical education setting appears to be a well-suited environment for motor skill development. Conclusion: Employing appropriate strategies to target motor skill development across the childhood years is of paramount interest in helping shape children's PA behavior, their experiences related to PA, as well as maintain their PA.

  10. Responsiveness of rat fetuses to sibling motor activity: Communication in utero?

    Brumley, Michele R; Hoagland, Riana; Truong, Melissa; Robinson, Scott R

    2018-04-01

    Previous research has revealed that fetuses detect and respond to extrauterine stimuli such as maternal movement and speech, but little attention has been cast on how fetuses may directly influence and respond to each other in the womb. This study investigated whether motor activity of E20 rat fetuses influenced the behavior of siblings in utero. Three experiments showed that; (a) contiguous siblings expressed a higher frequency of synchronized movement than noncontiguous siblings; (b) fetuses that lay between two siblings immobilized with curare showed less movement relative to fetuses between saline or uninjected controls; and (c) fetuses between two siblings behaviorally activated by the opioid agonist U50,488 also showed less activity and specific behavioral changes compared to controls. Our findings suggest that rat fetuses are directly impacted by sibling motor activity, and thus that a rudimentary form of communication between siblings may influence the development of fetuses in utero. © 2018 Wiley Periodicals, Inc.

  11. Motor activation in SPG4-linked hereditary spastic paraplegia

    Scheuer, KH; Nielsen, JE; Krabbe, Katja

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the extent of motor cortical functional reorganisation in patients with SPG4-linked hereditary spastic paraplegia by exploring cortical motor activation related to movements of clinically affected (lower) and unaffected (upper) limbs. METHODS......: Thirteen patients and 13 normal controls matched for age, gender and handedness underwent O15-labelled water positron emission tomography during (1) right ankle flexion-extension, (2) right shoulder flexion-extension and (3) rest. Within-group comparisons of movement vs. rest (simple main effects......, the supplementary motor areas and the right premotor cortex compared to controls. CONCLUSIONS: Motor cortical reorganisation may explain this result, but as no significant differences were recognised in the motor response of the unaffected limb, differences in functional demands should also be considered...

  12. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excita...

  13. Low-Back Pain Patients Learn to Adapt Motor Behavior with Adverse Secondary Consequences

    van Dieën, Jaap H.; Flor, Herta; Hodges, Paul W.

    2017-01-01

    ABSTRACT: We hypothesize that changes in motor behavior in individuals with low-back pain are adaptations aimed at minimizing the real or perceived risk of further pain. Through reinforcement learning, pain and subsequent adaptions result in less dynamic motor behavior, leading to increased loading

  14. Behavioral evidence for left-hemisphere specialization of motor planning

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  15. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  16. Motor-Enriched Learning Activities Can Improve Mathematical Performance in Preadolescent Children

    Beck, Mikkel M.; Lind, Rune R.; Geertsen, Svend S.; Ritz, Christian; Lundbye-Jensen, Jesper; Wienecke, Jacob

    2016-01-01

    accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities can improve mathematical performance. In normal math performers GMM led to larger improvements than FMM and CON. This was not the case for the low math performers. Future studies should further elucidate the neurophysiological mechanisms underlying the observed behavioral effects. PMID:28066215

  17. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  18. Enhancing motor network activity using real-time functional MRI neurofeedback of left premotor cortex

    Theo Ferreira Marins

    2015-12-01

    Full Text Available Neurofeedback by functional Magnetic Resonance Imaging (fMRI is a technique of potential therapeutic relevance that allows individuals to be aware of their own neurophysiological responses and to voluntarily modulate the activity of specific brain regions, such as the premotor cortex (PMC, important for motor recovery after brain injury. We investigated (i whether healthy human volunteers are able to up-regulate the activity of the left PMC during a right hand finger tapping motor imagery (MI task while receiving continuous fMRI-neurofeedback, and (ii whether successful modulation of brain activity influenced non-targeted motor control regions. During the MI task, participants of the neurofeedback group (NFB received ongoing visual feedback representing the level of fMRI responses within their left PMC. Control (CTL group participants were shown similar visual stimuli, but these were non-contingent on brain activity. Both groups showed equivalent levels of behavioral ratings on arousal and motor imagery, before and during the fMRI protocol. In the NFB, but not in CLT group, brain activation during the last run compared to the first run revealed increased activation in the left PMC. In addition, the NFB group showed increased activation in motor control regions extending beyond the left PMC target area, including the supplementary motor area, basal ganglia and cerebellum. Moreover, in the last run, the NFB group showed stronger activation in the left PMC/inferior frontal gyrus when compared to the CTL group. Our results indicate that modulation of PMC and associated motor control areas can be achieved during a single neurofeedback-fMRI session. These results contribute to a better understanding of the underlying mechanisms of MI-based neurofeedback training, with direct implications for rehabilitation strategies in severe brain disorders, such as stroke.

  19. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  20. Social interaction is associated with changes in infants’ motor activity

    Céline Scola

    2015-11-01

    Full Text Available Background: In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods: We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song. Results: The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion: These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants.

  1. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  2. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  3. The Dynamic Association between Motor Skill Development and Physical Activity

    Stodden, David F.; Goodway, Jacqueline D.

    2007-01-01

    Although significant attention has been given to promoting physical activity among children, little attention has been given to the developmental process of how children learn to move or to the changing role that motor skill development plays in children's physical activity levels as they grow. In order to successfully address the obesity…

  4. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  5. Monoaminergic orchestration of motor programs in a complex C. elegans behavior.

    Jamie L Donnelly

    Full Text Available Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

  6. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  7. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  8. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  9. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  10. The lateralization of motor cortex activation to action words

    Olaf eHauk

    2011-11-01

    Full Text Available What determines the laterality of activation in motor cortex for words whose meaning is related to bodily actions? It has been suggested that the neuronal representation of the meaning of action-words is shaped by individual experience. However, core language functions are left-lateralized in the majority of both right- and left-handers. It is still an open question to what degree connections between left-hemispheric core language areas and right-hemispheric motor areas can play a role in semantics. We investigated laterality of brain activation using fMRI in right- and left-handed participants in response to visually presented hand-related action-words, namely uni- and bi-manual actions (such as "throw" and "clap". These stimulus groups were matched with respect to general (hand-action-relatedness, but differed with respect to whether they are usually performed with the dominant hand or both hands. We may expect generally more left-hemispheric motor-cortex activation for hand-related words in both handedness groups, with possibly more bilateral activation for bimanual words as well as left-handers. In our study, both participant groups activated motor cortex bilaterally for bi-manual words. Interestingly, both groups also showed a left-lateralized activation pattern to uni-manual words. We argue that this reflects the effect of left-hemispheric language dominance on the formation of semantic brain circuits on the basis of Hebbian correlation learning.

  11. Force and complexity of tongue task training influences behavioral measures of motor learning

    Kothari, Mohit; Svensson, Peter; Huo, Xueliang

    2012-01-01

    Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pain...... training influences behavioral aspects of tongue motor learning....

  12. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  13. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  14. Do already grasped objects activate motor affordances?

    Iani, Cristina; Ferraro, Luca; Maiorana, Natale Vincenzo; Gallese, Vittorio; Rubichi, Sandro

    2018-04-07

    This study investigated whether in a stimulus-response compatibility (SRC) task affordance effects in response to picture of graspable objects emerge when these objects appear as already grasped. It also assessed whether the observed effects could be explained as due to spatial compatibility between the most salient part in the object/display and the hand of response rather than to action potentiation. To this aim, we conducted three behavioural experiments in which participants were required to discriminate the vertical orientation (upright vs. inverted) of an object presented in the centre of the screen, while ignoring the right-left orientation of its handle. The object could be presented alone, as already grasped, as partially masked (Experiment 1) or with a human hand close to its graspable side (Experiment 2). In addition, to assess the role of perceptual salience, the object could be presented with a human hand or a non-biological (a geometrical shape) distractor located opposite to the object's graspable side. Results showed faster responses when the object's handle was located on the same side of the responding hand with a larger effect when upright objects were shown as already grasped (Experiment 1) or when a hand was displayed close to its handle (Experiment 2), and a smaller reversed effect when the hand or the geometrical shape was located opposite to the handled side (Experiment 3). We interpreted these findings as indicating that handle orientation effects emerging in SRC tasks may result from the interplay between motor affordance and spatial compatibility mechanisms.

  15. Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: a pilot study.

    Ajzenman, Heather F; Standeven, John W; Shurtleff, Tim L

    2013-01-01

    The purpose of this investigation was to determine whether hippotherapy increased function and participation in children with autism spectrum disorder (ASD). We hypothesized improvements in motor control, which might increase adaptive behaviors and participation in daily activities. Six children with ASD ages 5-12 participated in 12 weekly 45-min hippotherapy sessions. Measures pre- and post-hippotherapy included the Vineland Adaptive Behavior Scales-II and the Child Activity Card Sort. Motor control was measured preintervention and postintervention using a video motion capture system and force plates. Postural sway significantly decreased postintervention. Significant increases were observed in overall adaptive behaviors (receptive communication and coping) and in participation in self-care, low-demand leisure, and social interactions. These results suggest that hippotherapy has a positive influence on children with ASD and can be a useful treatment tool for this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  16. Spindles and active vortices in a model of confined filament-motor mixtures.

    Head, David A; Briels, Wj; Gompper, Gerhard

    2011-11-16

    Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic

  17. Spindles and active vortices in a model of confined filament-motor mixtures

    Head David A

    2011-11-01

    Full Text Available Abstract Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue

  18. Abstract Art and Cortical Motor Activation: an EEG study.

    Maria Alessandra eUmilta'

    2012-11-01

    Full Text Available The role of the motor system in the perception of visual art remains to be better understood. Earlier studies on the visual perception of abstract art (from Gestalt theory, as in Arnheim 1954 and 1988, to balance preference studies as in Locher and Stappers, 2002, and more recent work by Locher et al 2007, Redies, 2007, and Taylor et al, 2011, neglected the question, while the field of neuroesthetics (Zeki, 1999; Ramachandran and Hirstein, 1999 mostly concentrated on figurative works. Much recent work has demonstrated the multimodality of vision, encompassing the activation of motor, somatosensory and viscero-motor brain regions. The present study investigated whether the observation of high-resolution digitized static images of abstract paintings by Lucio Fontana is associated with specific cortical motor activation in the beholder’s brain. Mu rhythm suppression was evoked by the observation of original art works but not by control stimuli (as in the case of graphically modified versions of these works. Most interestingly, previous visual exposure to the stimuli did not affect the mu rhythm suppression induced by their observation. The present results clearly show the involvement of the cortical motor system in the viewing of static abstract art works.

  19. Learning-induced Dependence of Neuronal Activity in Primary Motor Cortex on Motor Task Condition.

    Cai, X; Shimansky, Y; He, Jiping

    2005-01-01

    A brain-computer interface (BCI) system such as a cortically controlled robotic arm must have a capacity of adjusting its function to a specific environmental condition. We studied this capacity in non-human primates based on chronic multi-electrode recording from the primary motor cortex of a monkey during the animal's performance of a center-out 3D reaching task and adaptation to external force perturbations. The main condition-related feature of motor cortical activity observed before the onset of force perturbation was a phasic raise of activity immediately before the perturbation onset. This feature was observed during a series of perturbation trials, but were absent under no perturbations. After adaptation has been completed, it usually was taking the subject only one trial to recognize a change in the condition to switch the neuronal activity accordingly. These condition-dependent features of neuronal activity can be used by a BCI for recognizing a change in the environmental condition and making corresponding adjustments, which requires that the BCI-based control system possess such advanced properties of the neural motor control system as capacity to learn and adapt.

  20. [CHANGES IN THE NUMBER OF NEURONS IN THE MOTOR CORTEX OF RATS AND THEIR LOCOMOTOR ACTIVITY IN THE AGE ASPECT].

    Piavchenko, G A; Shmarkova, L I; Nozdrin, V I

    2015-01-01

    Using Laboras hardware-software complex, which is a system of automatic registration of behavioral reactions, the locomotor activity 1-, 8- and 16-month-old male rats (12 animals in each group) was recorded followed by counting the number of neuron cell bodies of in the layer V of the motor cortex in Nissl stained slides. It was found that the number of neurons in the motor cortex varied in different age groups. Maximal number of neurons was observed in 8-month-old animals. Motor activity was found to correlate with the number of neurons.

  1. Disassociation between primary motor cortical activity and movement kinematics during adaptation to reach perturbations.

    Cai, X; Shimansky, Y P; Weber, D J; He, Jiping

    2004-01-01

    The relationship between movement kinematics and motor cortical activity was studied in monkeys performing a center-out reaching task during their adaptation to force perturbations applied to the wrist. The main feature of adaptive changes in movement kinematics was anticipatory deviation of hand paths in the direction opposite to that of the upcoming perturbation. We identified a group of neurons in the dorsal lateral portion of the primary motor cortex where a gradual buildup of spike activity immediately preceding the actual (in perturbation trials) or the "would-be" (in unperturbed/catch trials) perturbation onset was observed. These neurons were actively involved in the adaptation process, which was evident from the gradual increase in the amplitude of their movement-related modulation of spike activity from virtual zero and development of certain directional tuning pattern (DTP). However, the day-to-day dynamics of the kinematics adaptation was dramatically different from that of the neuronal activity. Hence, the adaptive modification of the motor cortical activity is more likely to reflect the development of the internal model of the perturbation dynamics, rather than motor instructions determining the adaptive behavior.

  2. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  3. The effects of an early motor skill intervention on motor skills, levels of physical activity, and socialization in young children with autism spectrum disorder: A pilot study.

    Ketcheson, Leah; Hauck, Janet; Ulrich, Dale

    2017-05-01

    Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor skill intervention on motor skills (Test of Gross Motor Development-2), physical activity (accelerometers), and socialization (Playground Observation of Peer Engagement) in young children with autism spectrum disorder. A total of 20 children with autism spectrum disorder aged 4-6 years participated. The experimental group ( n = 11) participated in an 8-week intervention consisting of motor skill instruction for 4 h/day, 5 days/week. The control group ( n = 9) did not receive the intervention. A repeated-measures analysis of covariance revealed statistically significant differences between groups in all three motor outcomes, locomotor ( F(1, 14) = 10.07, p intervention services delivered to young children with autism spectrum disorder.

  4. Brain activation related to the change between bimanual motor programs

    de Jong, BM; Willemsen, ATM; Paans, AMJ

    By using positron emission tomography, we aimed to identify cerebral foci of neuronal activation associated with the initiation of a specific motor program. To that end, a state of repeatedly alternating in- and antiphase of bimanual flexion and extension movements was compared with similar movement

  5. Recreational Activities and Motor Skills of Children in Kindergarten

    Temple, Viviene A.; Crane, Jeff R.; Brown, Amy; Williams, Buffy-Lynne; Bell, Rick I.

    2016-01-01

    Background: Developmental theorists suggest that physical activity during early childhood promotes fundamental motor skill (FMS) proficiency; and that differences in FMS proficiency are largely related to children's experiences. Aim: To examine associations between participation in different types of recreation/leisure and FMS proficiency of boys…

  6. Sport and Other Motor Activities of Warsaw Students

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  7. Effects of a water activity intervention programme on motor ...

    The aim of this study was to investigate the effect of a specially designed water activity programme on the motor competency levels of children with Down's syndrome. Six institutionalised children classified as having Down\\'s syndrome, from a school for the mentally retarded, took part in the study. The children\\'s ...

  8. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  9. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  10. Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity.

    Robles-Mendoza, Cecilia; Zúñiga-Lagunes, Sebastian R; Ponce de León-Hill, Claudia A; Hernández-Soto, Jesús; Vanegas-Pérez, Cecilia

    2011-10-01

    The axolotl Ambystoma mexicanum is a neotenic salamander considered a good biological model due to its ability to regenerate limbs, tail, brain and heart cells. Nevertheless, severe reduction of A. mexicanum wild populations in the lacustrine area of Xochimilco, the natural habitat of the axolotl, could be related to several environmental pressures as the presence of organophosphate pesticides (OPPs), intensively applied in agricultural activities in Xochimilco. Thus the aim of this study was to evaluate the effect of environmentally realistic chlorpyrifos (CPF) concentrations, a OPP commonly used in this zone, on esterases activity (acetylcholinesterase and carboxylesterase) and bioconcentration of CPF and to relate them with the motor activity of A. mexicanum juveniles. Axolotls were exposed 48 h to 0.05 and 0.1mg CPF/L, and the responses were evaluated at the end of the CPF exposure. Results suggest that CPF is bioconcentrated into axolotls and that the CPF internal concentrations are related with the observed inhibition activity of AChE (>50%) and CbE (≈ 50%). CPF concentration responsible of the inhibition of the 50% of AChE activity (IC50) was estimated in 0.04 mg CPF/L; however IC50 for CbE activity was not possible to calculate since inhibition levels were lower than 50%, results that suggest a higher resistance of CbE enzymatic activity to CPF. However, motor activity was a more sensitive endpoint to CPF poisoning since time that axolotls spent active and walking, frequency and speed of swimming, frequency of prey attack were reduced >90% of control groups. The motor activity alterations in the axolotl could be related with the registered esterases inhibition. Thus important alterations on axolotls were identified even at short time and low concentrations of CPF exposure. Also, it was possible to link biochemical responses as esterases activity with higher levels of biological organization as behavior. This study provides tools for the regulation of the

  11. Characteristics of motorized spindle supported by active magnetic bearings

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  12. 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery.

    Sollfrank, Teresa; Hart, Daniel; Goodsell, Rachel; Foster, Jonathan; Tan, Tele

    2015-01-01

    A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.

  13. Neuron activity in rat hippocampus and motor cortex during discrimination reversal.

    Disterhoft, J F; Segal, M

    1978-01-01

    Chronic unit activity and gross movement were recorded from rats during two discrimination reversals in a classical appetitive conditioning situation. The anticipatory movement decreased in response to the former CS+ tone and increased to the previous CS- tone after each reversal. Hippocampus and motor cortex were differently related to these two kinds of behavioral change. Response rates of hippocampal neurons were more closely related to the increased movement response to the former CS- which now signaled food. Motor cortex neuron responses were more closely correlated with the decrease in movement responses to the former CS+ which became neutral after the reversal. It appeared that hippocampal neurons could have been involved in one cognitive aspect of the situation, motor cortex neurons in another. The data were related to current functional concepts of these brain regions.

  14. Media use, sports activities, and motor fitness in childhood and adolescence.

    Kaiser-Jovy, Sebastian; Scheu, Anja; Greier, Klaus

    2017-07-01

    Physical activity is one of the key determinants of physical, mental, and social health of children and adolescents. Therefore, the early development of health-relevant behavior patterns is of high relevance. To examine the impact of selected socioeconomic factors as well as media consumption, on sports activities and the motor skills of 10- to 14-year-old secondary school students. Body height and body weight were measured. The motor skills were determined with the Deutschen Motorik Test (DMT 6‑18; German Motor Test). Information about media use, media equipment, recreational sports activities, migration status, and the parents' profession was collected by means of a standardized questionnaire. A total of 391 adolescents have been tested (male 235; female 156). Body mass index (BMI) types are evenly distributed on gender. On a weekday, the pupils spend 10.3 h using media (SD ± 9.1 h). On weekends, media use increases up to 12 h per day on average (SD ± 9.7 h). The number of available media is independent from the age of the respondents and the social status of their families. According to bivariate correlations, heavy media use, a high BMI as well as migration status correlate negatively with both sports activities and motor skills. BMI seems to have the strongest influence on athletic performance (b = 0.41). Media use is an important determinant of juvenile sports activity and motor performance, being part of a complex juvenile leisure behavior.

  15. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  16. Effect of the Children’s Health Activity Motor Program on Motor Skills and Self-Regulation in Head Start Preschoolers: An Efficacy Trial

    Leah Elizabeth Robinson

    2016-09-01

    Full Text Available Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 + 6.5 months; 49.5% males were randomly assigned to a treatment (n = 68 or control (n = 45 program. CHAMP participants engaged in 15, 40-minute sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development - 2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time*treatment interaction (p < .001. In regards to motor skills, post hoc comparisons found that all children improved their motor skills (p < .05, but the CHAMP group improved significantly more than the control group (p < .001. Children in CHAMP maintained their self-regulation scores across time while children in the control group scored significantly lower than the CHAMP group at the posttest (p < .05. CHAMP is a mastery climate movement program that may be an approach to enhance skills associated with healthy development in children (i.e., motor skills and self-regulation. This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age

  17. Motor imagery beyond the motor repertoire: Activity in the primary visual cortex during kinesthetic motor imagery of difficult whole body movements.

    Mizuguchi, N; Nakata, H; Kanosue, K

    2016-02-19

    To elucidate the neural substrate associated with capabilities for kinesthetic motor imagery of difficult whole-body movements, we measured brain activity during a trial involving both kinesthetic motor imagery and action observation as well as during a trial with action observation alone. Brain activity was assessed with functional magnetic resonance imaging (fMRI). Nineteen participants imagined three types of whole-body movements with the horizontal bar: the giant swing, kip, and chin-up during action observation. No participant had previously tried to perform the giant swing. The vividness of kinesthetic motor imagery as assessed by questionnaire was highest for the chin-up, less for the kip and lowest for the giant swing. Activity in the primary visual cortex (V1) during kinesthetic motor imagery with action observation minus that during action observation alone was significantly greater in the giant swing condition than in the chin-up condition within participants. Across participants, V1 activity of kinesthetic motor imagery of the kip during action observation minus that during action observation alone was negatively correlated with vividness of the kip imagery. These results suggest that activity in V1 is dependent upon the capability of kinesthetic motor imagery for difficult whole-body movements. Since V1 activity is likely related to the creation of a visual image, we speculate that visual motor imagery is recruited unintentionally for the less vivid kinesthetic motor imagery of difficult whole-body movements. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Physical activity and motor skills in children attending 43 preschools

    Olesen, Line Grønholt; Kristensen, Peter Lund; Ried-Larsen, Mathias

    2014-01-01

    BACKGROUND: Little is known about health characteristics and the physical activity (PA) patterns in children attending preschools. The objective of this study was to describe the gender differences in relation to body mass index (BMI), motor skills (MS) and PA, including PA patterns by the day type......-referenced classification of MS, the Danish sample distribution was significantly well for aiming and catching but poorer for the motor coordination test.The total sample and the least active children were most active on weekdays, during preschool time and in the late afternoon at the weekend. However, a relatively larger...... provide a valuable reference material for studies monitoring future trends in obesity, MS and PA behaviour in Denmark and other countries.Knowledge about sources of variation in PA among preschool children is scarce and our findings need to be replicated in future studies. A potentially important finding...

  19. Motor Unit Action Potential Clustering—Theoretical Consideration for Muscle Activation during a Motor Task

    Michael J. Asmussen

    2018-01-01

    Full Text Available During dynamic or sustained isometric contractions, bursts of muscle activity appear in the electromyography (EMG signal. Theoretically, these bursts of activity likely occur because motor units are constrained to fire temporally close to one another and thus the impulses are “clustered” with short delays to elicit bursts of muscle activity. The purpose of this study was to investigate whether a sequence comprised of “clustered” motor unit action potentials (MUAP can explain spectral and amplitude changes of the EMG during a simulated motor task. This question would be difficult to answer experimentally and thus, required a model to study this type of muscle activation pattern. To this end, we modeled two EMG signals, whereby a single MUAP was either convolved with a randomly distributed impulse train (EMG-rand or a “clustered” sequence of impulses (EMG-clust. The clustering occurred in windows lasting 5–100 ms. A final mixed signal of EMG-clust and EMG-rand, with ratios (1:1–1:10, was also modeled. A ratio of 1:1 would indicate that 50% of MUAP were randomly distributed, while 50% of “clustered” MUAP occurred in a given time window (5–100 ms. The results of the model showed that clustering MUAP caused a downshift in the mean power frequency (i.e., ~30 Hz with the largest shift occurring with a cluster window of 10 ms. The mean frequency shift was largest when the ratio of EMG-clust to EMG-rand was high. Further, the clustering of MUAP also caused a substantial increase in the amplitude of the EMG signal. This model potentially explains an activation pattern that changes the EMG spectra during a motor task and thus, a potential activation pattern of muscles observed experimentally. Changes in EMG measurements during fatiguing conditions are typically attributed to slowing of conduction velocity but could, per this model, also result from changes of the clustering of MUAP. From a clinical standpoint, this type of muscle

  20. Analysis of the motor behavior of a patient submitted to radical mastectomy - doi:10.5020/18061230.2009.p61

    Lucas Flocke Hack

    2012-01-01

    Full Text Available Objective: To analyze the motor behavior of a patient in late postoperative of radical mastectomy during the accomplishment of some daily life activities, her gait and her body posture. Methods: This was an observational and descriptive case report study developed in an academic institution at Novo Hamburgo/RS, Brazil. By means of video recording, the accomplishment of daily life activities, the gait and body posture of a mastectomy patient were evaluated. Results: The most important alterations found were: increased base of support, torso swinging on gait, “S” shape scoliosis, accentuation of the spine physiologic curves and compensatory attitudes for reaching greater amplitudes of arm elevation at the same side of the surgery. Conclusion: We conclude that motor behavior alterations after surgery of radical mastectomy can be reasonably minimized, remaining a small reduction of movement amplitude and of muscular strength on upper limb and torso.

  1. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  2. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  3. Chemical and thermal modulation of molecular motor activities

    Hong, Weili

    Molecular motors of kinesin and dynein families are responsible for various intracellular activities, from long distance movement of organelles, vesicles, protein complexes, and mRNAs to powering mitotic processes. They can take nanometer steps using chemical energy from the hydrolysis of ATP (adenosine triphosphate), and their dysfunction is involved in many neurodegenerative diseases that require long distance transport of cargos. Here I report on the study of the properties of molecular motors at a single-molecule level using optical trappings. I first studied the inhibition properties of kinesin motors by marine natural compound adociasulfates. I showed that adociasulfates compete with microtubules for binding to kinesins and thus inhibit kinesins' activity. Although adociasulfates are a strong inhibitor for all kinesin members, they show a much higher inhibition effect for conventional kinesins than for mitotic kinesins. Thus adociasulfates can be used to specifically inhibit conventional kinesins. By comparing the inhibition of kinesins by two structurally similar adociasulfates, one can see that the negatively charged sulfate residue of adociasulfates can be replaced by other negative residues and thus make it possible for adociasulfate-derived compounds to be more cell permeable. Kinesins and dyneins move cargos towards opposite directions along a microtubule. Cargos with both kinesins and dyneins attached often move bidirectionally due to undergoing a tug-of-war between the oppositely moving kinesin and dynein motors. Here I studied the effect of temperature on microtubule-based kinesin and dynein motor transport. While kinesins' and dyneins' velocities are closely matched above 15 °C, below this temperature the dyneins' velocity decreases much faster than the kinesins'. The kinesins' and dyneins' forces do not measurably change with temperature. The results suggest that temperature has significant effects on bidirectional transport and can be used to

  4. Reprogramming movements: Extraction of motor intentions from cortical ensemble activity when movement goals change

    Peter James Ifft

    2012-07-01

    Full Text Available The ability to inhibit unwanted movements and change motor plans is essential for behaviors of advanced organisms. The neural mechanisms by which the primate motor system rejects undesired actions have received much attention during the last decade, but it is not well understood how this neural function could be utilized to improve the efficiency of brain-machine interfaces (BMIs. Here we employed linear discriminant analysis (LDA and a Wiener filter to extract motor plan transitions from the activity of ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted with multielectrode arrays in primary motor (M1 and primary sensory (S1 cortices, were overtrained to produce reaching movements with a joystick towards visual targets upon their presentation. Then, the behavioral task was modified to include a distracting target that flashed for 50, 150 or 250 ms (25% of trials each followed by the true target that appeared at a different screen location. In the remaining 25% of trials, the initial target stayed on the screen and was the target to be approached. M1 and S1 neuronal activity represented both the true and distracting targets, even for the shortest duration of the distracting event. This dual representation persisted both when the monkey initiated movements towards the distracting target and then made corrections and when they moved directly towards the second, true target. The Wiener filter effectively decoded the location of the true target, whereas the LDA classifier extracted the location of both targets from ensembles of 50-250 neurons. Based on these results, we suggest developing real-time BMIs that inhibit unwanted movements represented by brain activity while enacting the desired motor outcome concomitantly.

  5. Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations.

    Haibo Yu

    2007-02-01

    Full Text Available Although the major structural transitions in molecular motors are often argued to couple to the binding of Adenosine triphosphate (ATP, the recovery stroke in the conventional myosin has been shown to be dependent on the hydrolysis of ATP. To obtain a clearer mechanistic picture for such "mechanochemical coupling" in myosin, equilibrium active-site simulations with explicit solvent have been carried out to probe the behavior of the motor domain as functions of the nucleotide chemical state and conformation of the converter/relay helix. In conjunction with previous studies of ATP hydrolysis with different active-site conformations and normal mode analysis of structural flexibility, the results help establish an energetics-based framework for understanding the mechanochemical coupling. It is proposed that the activation of hydrolysis does not require the rotation of the lever arm per se, but the two processes are tightly coordinated because both strongly couple to the open/close transition of the active site. The underlying picture involves shifts in the dominant population of different structural motifs as a consequence of changes elsewhere in the motor domain. The contribution of this work and the accompanying paper [] is to propose the actual mechanism behind these "population shifts" and residues that play important roles in the process. It is suggested that structural flexibilities at both the small and large scales inherent to the motor domain make it possible to implement tight couplings between different structural motifs while maintaining small free-energy drops for processes that occur in the detached states, which is likely a feature shared among many molecular motors. The significantly different flexibility of the active site in different X-ray structures with variable level arm orientations supports the notation that external force sensed by the lever arm may transmit into the active site and influence the chemical steps (nucleotide

  6. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  7. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States); Lansdell, Theresa A., E-mail: lansdel1@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Lookingland, Keith J., E-mail: lookingl@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Baker, Lisa E., E-mail: lisa.baker@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States)

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  8. School Physical Activity Programming and Gross Motor Skills in Children.

    Burns, Ryan D; Fu, You; Hannon, James C; Brusseau, Timothy A

    2017-09-01

    We examined the effect of a comprehensive school physical activity program (CSPAP) on gross motor skills in children. Participants were 959 children (1st-6th grade; Mean age = 9.1 ± 1.5 years; 406 girls, 553 boys) recruited from 5 low-income schools receiving a year-long CSPAP intervention. Data were collected at the beginning of the school year and at a 36-week follow-up. Gross motor skills were assessed using the Test for Gross Motor Development (3rd ed.) (TGMD-3) instrument. Multi-level mixed effects models were employed to examine the effect of CSPAP on TGMD-3 scores, testing age and sex as effect modifiers and adjusting for clustering of observations within the data structure. There were statistically significant coefficients for time (β = 8.1, 95% CI [3.9, 12.3], p skills and ball skills sub-test scores. Children showed improved gross motor skill scores at the end of the 36-week CSPAP that were modified by age, as younger children displayed greater improvements in TGMD-3 scores compared to older children.

  9. Gross motor development and physical activity in kindergarten age children.

    Colella, Dario; Morano, Milena

    2011-10-01

    Physical activity in kindergarten is a fundamental part of the child's educational process. Body experience and physical activity contribute to the development of self-awareness and the learning of different modes of expression, as well as encouraging the acquisition of physically active lifestyles. Recent scientific evidence has confirmed the role of physical activity in disease prevention and quality of life improvement, and stressed the importance of integrated educational programmes promoting physical activity and healthy eating habits. A key priority of scientific research is to identify the opportunities and methods of motor learning and to increase the daily physical activity levels of children by reducing sedentary time and promoting active play and transport (i.e. walking, cycling). Family, school and community involvement are all needed to assure adherence to the official guidelines on how much physical activity children need to boost their health and stave off obesity.

  10. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  12. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  13. Cluster analysis of activity-time series in motor learning

    Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...

  14. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  15. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  16. Nocturnal motor activity in fibromyalgia patients with poor sleep quality.

    Hyyppä, M T; Kronholm, E

    1995-01-01

    Nocturnal motor activity was examined in long-term rehabilitation patients complaining of poor sleep and having fibromyalgia syndrome (N = 24) or other musculoskeletal disorders (N = 60) and compared with that in 91 healthy controls drawn from a random community sample. Self-reports on sleep complaints and habits were collected. The frequency of nocturnal body movements, the "apnoea" index and ratio of "quiet sleep" to total time in bed were measured using the Static Charge Sensitive Bed (SCSB) (BioMatt). As a group, patients with fibromyalgia syndrome did not differ from patients with other musculoskeletal disorders or from healthy controls in their nocturnal motor activity. The "apnoea" index was a little higher in the fibromyalgia group than in the healthy control group but did not differ from that of the group of other musculoskeletal patients. Further multivariate analyses adjusted for age, BMI, medication and "apnoea" index did not support the assumption that an increased nocturnal motor activity characterizes patients with fibromyalgia syndrome.

  17. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  18. MODELING DRIVER BEHAVIOR IN THE DRIVING OF THEIR MOTOR VEHICLE

    A. V. Skrypnikov

    2015-01-01

    Full Text Available The article holds the gradual formation of images and actions of the driver. As outlined the author's arguments based on the following assumptions: We consider the motion of the mass, mass-produced currently by the domestic industry of automobiles; considered the motion of single cars as the most common and most dangerous cases, allowing to evaluate the influence of parameters on the road driving mode "pure"; drivers tend to reduce travel times and therefore move with the maximum possible speed; drivers choose speed, visually estimating lying in front of part of the way and given the speed at the time of this evaluation; driver behavior, ceteris paribus determined the influence of visibility limitations and conditions visual perception; considered the motion on the ascent and descent, but the determining factor is the direction of descent. Set of operations, branches off the driver, can be represented as a multi-level system comprising three main groups of psycho-physiological processes, activities analyzers (perception of information; the work of the central nervous system (processing and storage; effective activity (responses to the implementation of the decision. On the basis of the received information in human consciousness formed images of the environment, the totality of which is an information model of the object. Comparing it with the standards (memory engrams, the driver generates the mo st appropriate in the circumstances set of actions. Implementation of the decision is the final stage of human response to the external environment and is expressed in the change of the degree of use of traction engine or braking force; change the steering angle as that does not affect the speed of motion, the algorithm of the driver is not taken into account. Analysis of the schemes of algorithms allows to obtain quantitative characteristics of the vehicle: stereotyped figures, logical complexity.

  19. Does Speech Emerge From Earlier Appearing Oral Motor Behaviors?

    Moore, Christopher A.; Ruark, Jacki L.

    1996-01-01

    This investigation was designed to quantify the coordinative organization of mandibular muscles in toddlers during speech and nonspeech behaviors. Seven 15-month-olds were observed during spontaneous production of chewing, sucking, babbling, and speech. Comparison of mandibular coordination across these behaviors revealed that, even for children in the earliest stages of true word production, coordination was quite different from that observed for other behaviors. Production of true words was...

  20. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  1. The role of pre-school children motor behavior in developing their self-concept

    Perić Dušan

    2014-01-01

    Full Text Available The assessment of motor behavior and general intellectual abilities were performed on a sample of 42 pre-school children (22 boys and 20 girls aged 6 (±3 months; moreover, the self-concept of those children was analysed. For the assessment of their motor behavior six movement tasks were chosen and the Mary Gutrich scale was applied for the analysis of the results. The children's intellectual abilities were assessed by the means of Raven's colored progressive matrices so as to enable the groups to homogenise, as well as to eliminate potential parasite factors when drawing conclusions. The self-concept analysis was performed using the pshychological interview during the course of which the children described their impression of their own abilities with regard to the past, present and future. The data related to the self-concept were complemented with the analysis of the children's drawings. The statistical analysis of the data gathered showed that motor behavior plays a significant role in developing one's self-concept, which is especially true of boys. Even though there is no significant statistical difference between boys and girls with respect to the quality of their motor behavior, there are significant differences between them pertaining to the vocabulary they use when describing their own selves, i.e. their self-concept, especially with respect to the present and future. Boys seem to use more extensive motor-related vocabulary when describing themselves, especially those with greater motor skills. Both boys and girls show a tendency to describe themselves as incapable in the past. When describing their present moment capabilities, girls tend to use vocabulary related to play and independence, whereas they mostly use vocabulary related to professions and sex roles when referring to the future. These findings indicate that social factors are of immense importance from a very early age, especially among girls. Moreover, the results show that

  2. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  3. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  4. Probing intracellular motor protein activity using an inducible cargo trafficking assay

    L.C. Kapitein (Lukas); M.A. Schlager (Max); W.A. van der Zwan (Wouter); P. Wulf (Phebe); N. Keijzer (Nanda); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractAlthough purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living

  5. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  6. Motor Neurons

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  7. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  8. Active Fault Tolerant Control for Ultrasonic Piezoelectric Motor

    Boukhnifer, Moussa

    2012-07-01

    Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasonic piezoelectric motor. The distinguished feature of proposed controller architecture is that it shows structurally how the controller design for performance and robustness may be done separately which has the potential to overcome the conflict between performance and robustness in the traditional feedback framework. A fault tolerant control architecture includes two parts: one part for performance and the other part for robustness. The controller design works in such a way that the feedback control system will be solely controlled by the proportional plus double-integral PI2 performance controller for a nominal model without disturbances and H∞ robustification controller will only be activated in the presence of the uncertainties or an external disturbances. The simulation results demonstrate the effectiveness of the proposed fault tolerant control architecture.

  9. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  10. REM sleep behavior disorder: association with motor complications and impulse control disorders in Parkinson's disease.

    Kim, Young Eun; Jeon, Beom S; Yang, Hui-Jun; Ehm, Gwanhee; Yun, Ji Young; Kim, Han-Joon; Kim, Jong-Min

    2014-10-01

    Clinical phenotypes such as old age, longer disease duration, motor disability, akineto-rigid type, dementia and hallucinations are known to be associated with REM sleep behavior disorder (RBD) in Parkinson's disease (PD). However, the relationship between motor fluctuations/impulse control and related behaviors (ICRB) and RBD is not clear. We designed this study to elucidate the clinical manifestations associated with RBD to determine the implications of RBD in PD. In a cross-sectional study, a total of 994 patients with PD were interviewed to determine the presence of RBD and their associated clinical features including motor complications and ICRB. Of the 944 patients, 578 (61.2%) had clinical RBD. When comparing the clinical features between patients with RBD (RBD group) and without RBD (non-RBD group), older age, longer disease duration, higher Hoehn and Yahr stage (H&Y stage), higher levodopa equivalent daily dose (LEDD), and the existence of wearing off, dyskinesia, freezing, and ICRB, especially punding, were associated with the RBD group compared to the non-RBD group (P < .05 in all). Multivariate analysis showed that motor complications including wearing off, peak dose dyskinesia, and diphasic dyskinesia were the only relevant factors for RBD after adjusting for age and disease duration. Motor complications and ICRB are more frequent in patients with RBD than in patients without RBD. In addition, motor complications are related to RBD even after adjusting for age and disease duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  12. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Associations among Elementary School Children's Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study.

    De Meester, An; Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Children's (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus recommended to expand health interventions in children

  14. Graphonomics and its contribution to the field of motor behavior: A position statement.

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  15. Hypnagogic behavior disorder: complex motor behaviors during wake-sleep transitions in 2 young children.

    Pareja, Juan A; Cuadrado, María Luz; García-Morales, Irene; Gil-Nagel, Antonio; Franch, Oriol

    2008-08-01

    A nondescribed behavioral disorder was observed during wake-sleep transitions in 2 young children. Two boys had episodes of abnormal behavior in hypnagogic-and occasionally hypnopompic-periods for 1 year from the time they were 1 year and several months old. The episodes consisted of irregular body movements, which could be either gentle or violent but never made the children get out of bed. They lasted from a few seconds to 2 hours and were associated with poor reactivity and amnesia of the events. Electroencephalography (EEG) recordings showed wake-state features, with brief bursts of hypnagogic hypersynchrony, and did not display seizure activity. A distinctive behavior disorder occurring during wake-sleep transitions with a wake EEG pattern has been identified in very early childhood. The clinical profile does not fit any of the known parasomnias and might belong to a new category of parasomnia.

  16. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  17. Active Motor Training Has Long-term Effects on Infants’ Object Exploration

    Wiesen, Sarah E.; Watkins, Rachel M.; Needham, Amy Work

    2016-01-01

    Long-term changes in infants’ behavior as a result of active motor training were studied. Thirty-two infants completed three visits to the laboratory. At the first visit, infants were 3 months old and completed an object exploration assessment. Then the experimenter demonstrated the motor training procedures appropriate for the infant’s experimental condition, and parents took home custom infant mittens (either sticky or non-sticky) and a bag of lightweight toys to practice with their infants. Over the course of the following 2 weeks, infants participated in 10 sessions of either active (sticky) or passive (non-sticky) mittens training at home with their parents. Infants who participated in active mittens training wore mittens with the palms covered in Velcro, allowing them to pick up and move around small toys. Infants who participated in passive mittens training wore non-sticky mittens, and their parents moved the toys through their visual fields on their behalf. After completing the training, infants returned to the lab for the second visit. At visit two, infants participated in another object exploration assessment as well as a reaching assessment. Parents returned the training materials to the lab at the second visit, and were told not to continue any specific training regimen from this point forward. Two months later, when infants were about 5.5 months of age, they returned to the lab for a third visit. At the third visit, infants completed the same two assessments as during the second visit. The results of this study indicate that infants who participated in active motor training engaged in more sophisticated object exploration when compared to infants who received passive training. These findings are consistent with others in the literature showing that active motor training at 3 months of age facilitates the processes of object exploration and engagement. The current results and others reveal that the effects of early experience can last long after

  18. Effect of STA-MCA bypass based on the motor activation SPECT

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    The effect of STA-MCA bypass for ischemic cerebrovascular diseases (CVDs) on pure motor function using motor activation SPECT was evaluated and analyzed, and this effect with the resting cerebral blood flow and reserved capacity was compared. Motor activation SPECT were carried out on 22 cases with STA-MCA bypass for symptomatic ischemic CVDs. All motors activation SPECT using the finger opposition task on the affected side were performed before bypass, at 1 month, and 3 months after the bypass. Visual inspection was used to determine whether the result of the motor activation SPECT was as negative or positive. The activated region was detected anatomically precisely by superimposing the SPECT on the MRI. Before this study, the same examination was performed on normal controls. In controls, 91% showed the activated area on the sensorimotor cortex after the finger opposition tasks. Before bypass, the resting SPECT revealed reduction of cerebral blood flow (CBF) on the affected side in all cases. All cases also showed a disturbed response to acetazolamide (ACZ). Nine cases were positive in the motor activation SPECT. One month after bypass, the resting CBF increased in 11 cases. Seven showed preoperative positive motor activation. Fifteen cases were positive in the motor activation SPECT. Three months after bypass, 20 cases showed improvement in the resting CBF, and 19 cases were positive in the motor activation SPECT. Ten cases were negative in the preoperative motor activation SPECT. At one month after surgery, ACZ activation SPECT was performed in 12 cases. Five showed improvement of the response to ACZ. At 3 months after surgery, 8 of 12 cases treated with ACZ activation SPECT showed improved response to ACZ. In most of the cases, improved response to ACZ could be seen after response to motor activation improved. STA-MCA bypass is useful not only for resting CBF but also for pure motor function based on motor activation SPECT. (K.H.)

  19. Effect of STA-MCA bypass based on the motor activation SPECT

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    The effect of STA-MCA bypass for ischemic cerebrovascular diseases (CVDs) on pure motor function using motor activation SPECT was evaluated and analyzed, and this effect with the resting cerebral blood flow and reserved capacity was compared. Motor activation SPECT were carried out on 22 cases with STA-MCA bypass for symptomatic ischemic CVDs. All motors activation SPECT using the finger opposition task on the affected side were performed before bypass, at 1 month, and 3 months after the bypass. Visual inspection was used to determine whether the result of the motor activation SPECT was as negative or positive. The activated region was detected anatomically precisely by superimposing the SPECT on the MRI. Before this study, the same examination was performed on normal controls. In controls, 91% showed the activated area on the sensorimotor cortex after the finger opposition tasks. Before bypass, the resting SPECT revealed reduction of cerebral blood flow (CBF) on the affected side in all cases. All cases also showed a disturbed response to acetazolamide (ACZ). Nine cases were positive in the motor activation SPECT. One month after bypass, the resting CBF increased in 11 cases. Seven showed preoperative positive motor activation. Fifteen cases were positive in the motor activation SPECT. Three months after bypass, 20 cases showed improvement in the resting CBF, and 19 cases were positive in the motor activation SPECT. Ten cases were negative in the preoperative motor activation SPECT. At one month after surgery, ACZ activation SPECT was performed in 12 cases. Five showed improvement of the response to ACZ. At 3 months after surgery, 8 of 12 cases treated with ACZ activation SPECT showed improved response to ACZ. In most of the cases, improved response to ACZ could be seen after response to motor activation improved. STA-MCA bypass is useful not only for resting CBF but also for pure motor function based on motor activation SPECT. (K.H.)

  20. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  1. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors

    Claassen, D.O.; van den Wildenberg, W.P.; Harrison, M.B.; van Wouwe, N.C.; Kanoff, K.; Neimat, J.S.; Wylie, S.A.

    2015-01-01

    BACKGROUND: Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. METHODS: We used the stop-signal task in a cohort

  2. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  3. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  4. The relationship between the behavior problems and motor skills of students with intellectual disability.

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  5. Changes in motor unit behavior following isometric fatigue of the first dorsal interosseous muscle

    Rymer, William Z.; Lowery, Madeleine M.; Suresh, Nina L.

    2015-01-01

    The neuromuscular strategies employed to compensate for fatigue-induced muscle force deficits are not clearly understood. This study utilizes surface electromyography (sEMG) together with recordings of a population of individual motor unit action potentials (MUAPs) to investigate potential compensatory alterations in motor unit (MU) behavior immediately following a sustained fatiguing contraction and after a recovery period. EMG activity was recorded during abduction of the first dorsal interosseous in 12 subjects at 20% maximum voluntary contraction (MVC), before and directly after a 30% MVC fatiguing contraction to task failure, with additional 20% MVC contractions following a 10-min rest. The amplitude, duration and mean firing rate (MFR) of MUAPs extracted with a sEMG decomposition system were analyzed, together with sEMG root-mean-square (RMS) amplitude and median frequency (MPF). MUAP duration and amplitude increased immediately postfatigue and were correlated with changes to sEMG MPF and RMS, respectively. After 10 min, MUAP duration and sEMG MPF recovered to prefatigue values but MUAP amplitude and sEMG RMS remained elevated. MU MFR and recruitment thresholds decreased postfatigue and recovered following rest. The increase in MUAP and sEMG amplitude likely reflects recruitment of larger MUs, while recruitment compression is an additional compensatory strategy directly postfatigue. Recovery of MU MFR in parallel with MUAP duration suggests a possible role for metabolically sensitive afferents in MFR depression postfatigue. This study provides insight into fatigue-induced neuromuscular changes by examining the properties of a large population of concurrently recorded single MUs and outlines possible compensatory strategies involving alterations in MU recruitment and MFR. PMID:25761952

  6. Intense Activity of the Raphe Spinal Pathway Depresses Motor Activity via a Serotonin Dependent Mechanism

    Perrier, Jean-François; Rasmussen, Hanne B; Jørgensen, Lone K

    2018-01-01

    Motor fatigue occurring during prolonged physical activity has both peripheral and central origins. It was previously demonstrated that the excitability of motoneurons was decreased when a spillover of serotonin could activate extrasynaptic 5-HT1A receptors at the axon initial segment (AIS...

  7. Schoolyard Characteristics, Physical Activity, and Sedentary Behavior

    Van Kann, Dave H H; de Vries, Sanne I; Schipperijn, Jasper

    2016-01-01

    BACKGROUND: Physical activity (PA) is decreasing among children, while sedentary behavior (SB) is increasing. Schoolyards seem suitable settings to influence children's PA behavior. This study investigated the associations between schoolyard characteristics and moderate-to-vigorous physical activ...

  8. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGAmotor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  11. Differential activation of an identified motor neuron and neuromodulation provide Aplysia's retractor muscle an additional function.

    McManus, Jeffrey M; Lu, Hui; Cullins, Miranda J; Chiel, Hillel J

    2014-08-15

    To survive, animals must use the same peripheral structures to perform a variety of tasks. How does a nervous system employ one muscle to perform multiple functions? We addressed this question through work on the I3 jaw muscle of the marine mollusk Aplysia californica's feeding system. This muscle mediates retraction of Aplysia's food grasper in multiple feeding responses and is innervated by a pool of identified neurons that activate different muscle regions. One I3 motor neuron, B38, is active in the protraction phase, rather than the retraction phase, suggesting the muscle has an additional function. We used intracellular, extracellular, and muscle force recordings in several in vitro preparations as well as recordings of nerve and muscle activity from intact, behaving animals to characterize B38's activation of the muscle and its activity in different behavior types. We show that B38 specifically activates the anterior region of I3 and is specifically recruited during one behavior, swallowing. The function of this protraction-phase jaw muscle contraction is to hold food; thus the I3 muscle has an additional function beyond mediating retraction. We additionally show that B38's typical activity during in vivo swallowing is insufficient to generate force in an unmodulated muscle and that intrinsic and extrinsic modulation shift the force-frequency relationship to allow contraction. Using methods that traverse levels from individual neuron to muscle to intact animal, we show how regional muscle activation, differential motor neuron recruitment, and neuromodulation are key components in Aplysia's generation of multifunctionality. Copyright © 2014 the American Physiological Society.

  12. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. The correlation between motor proficiency and physical activity in Senior Phase learners in the Potchefstroom area

    Lizl-Louise van Niekerk

    2016-12-01

    Conclusion: The motor skills of Senior Phase learners, especially coordination and strength skills, should be developed and maintained in the Physical Education curriculum to enhance physical activity levels.

  14. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  15. REM Sleep Behavior and Motor Findings in Parkinson's Disease: A Cross-sectional Analysis

    Abhimanyu Mahajan

    2014-06-01

    Full Text Available Background: Parkinson's disease (PD represents a major public health challenge that will only grow in our aging population. Understanding the connection between PD and associated prodromal conditions, such as rapid eye movement sleep behavioral disorder (RBD, is critical to identifying prevention strategies. However, the relationship between RBD and severity of motor findings in early PD is unknown. This study aims to examine this relationship. Methods: The study population consisted of 418 PD patients who completed the Movement Disorders Society‐United Parkinson's Disease Rating Scale (MDS‐UPDRS and rapid eye movement sleep (REM disorder questionnaires at the baseline visit of the Michael J. Fox's Parkinson's Progression Markers Initiative (PPMI. Cross‐sectional analysis was carried out to assess the association between REM Sleep Behavior Screening Questionnaire score and MDS UPDRS‐3 (motor score categories. Correlation with a higher score category was described as “worse motor findings”. A score of 5 on the REM disorder questionnaire was defined as predictive of RBD.Results: Out of the 418 PD patients, 113 (27.0% had RBD. With univariate logistic regression analysis, individuals with scores predictive of RBD were 1.66 times more likely to have worse motor findings (p = 0.028. Even with age, gender, and Geriatric Depression Scale scores taken into account, individuals with scores predictive of RBD were 1.69 times more likely to have worse motor findings (p = 0.025.Discussion: PD patients with RBD symptoms had worse motor findings than those unlikely to have RBD. This association provides further evidence for the relationship between RBD and PD.

  16. Sport stacking activities in school children's motor skill development.

    Li, Yuhua; Coleman, Diane; Ransdell, Mary; Coleman, Lyndsie; Irwin, Carol

    2011-10-01

    This study examined the impact of a 12-wk. sport stacking intervention on reaction time (RT), manual dexterity, and hand-eye coordination in elementary school-aged children. 80 Grade 2 students participated in a 15-min. sport stacking practice session every school day for 12 wk., and were tested on psychomotor performance improvement. Tests for choice RT, manual dexterity, and photoelectric rotary pursuit tracking were conducted pre- and post-intervention for both experimental group (n = 36) and the controls (n = 44) who did no sport stacking. Students who had the intervention showed a greater improvement in two-choice RT. No other group difference was found. Such sport stacking activities may facilitate children's central processing and perceptual-motor integration.

  17. T & I--Electric Motors. Kit No. 621. Instructor's Manual and Student Learning Activity Guide.

    Bomar, William

    This instructor's manual and student learning activity guide comprise a kit for trade and industrial education (T & I) activities on electric motors. Purpose stated for the activities is to teach the student the four basic types of electric motors, the advantages and disadvantages of each, the types of jobs each can perform, and how to disassemble…

  18. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Farfán-García, E.D.; Pérez-Rodríguez, M. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); Espinosa-García, C. [Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana (UAM), 09310 Ciudad de México (Mexico); Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G. [Academias de Fisiología Humana, Bioquímica y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Ciudad de México (Mexico); and others

    2016-09-15

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  20. Disruption of motor behavior and injury to the CNS induced by 3-thienylboronic acid in mice

    Farfán-García, E.D.; Pérez-Rodríguez, M.; Espinosa-García, C.; Castillo-Mendieta, N.T.; Maldonado-Castro, M.; Querejeta, E.; Trujillo-Ferrara, J.G.

    2016-01-01

    The scarcity of studies on boron containing compounds (BCC) in the medicinal field is gradually being remedied. Efforts have been made to explore the effects of BCCs due to the properties that boron confers to molecules. Research has shown that the safety of some BCCs is similar to that found for boron-free compounds (judging from the acute toxicological evaluation). However, it has been observed that the administration of 3-thienylboronic acid (3TB) induced motor disruption in CD1 mice. In the current contribution we studied in deeper form the disruption of motor performance produced by the intraperitoneal administration of 3TB in mice from two strains (CD1 and C57BL6). Disruption of motor activity was dependent not only on the dose of 3TB administered, but also on the DMSO concentration in the vehicle. The ability of 3TB to enter the Central Nervous System (CNS) was evidenced by Raman spectroscopy as well as morphological effects on the CNS, such as loss of neurons yielding biased injury to the substantia nigra and striatum at doses ≥ 200 mg/kg, and involving granular cell damage at doses of 400 mg/kg but less injury in the motor cortex. Our work acquaints about the use of this compound in drug design, but the interesting profile as neurotoxic agent invite us to study it regarding the damage on the motor system. - Highlights: • Intraperitoneal 3-thienylboronic acid (3TB) induces tremor in CD1 or C57BL6 mice. • Injury on CNS as well as motor disruption is dose-dependent. • Damage is greater in basal ganglia than in cerebellum or motor cortex. • The DMSO as vehicle plays a key role in the induced effect. • Motor disruption seems to involve basal ganglia and cerebellum damage.

  1. Motor unit activity after eccentric exercise and muscle damage in humans.

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  2. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  3. Evolution of asynchronous motor activity in paired muscles: effects of ecology, morphology, and phylogeny.

    Gerry, Shannon P; Ramsay, Jason B; Dean, Mason N; Wilga, Cheryl D

    2008-08-01

    Many studies of feeding behavior have implanted electrodes unilaterally (in muscles on only one side of the head) to determine the basic motor patterns of muscles controlling the jaws. However, bilateral implantation has the potential to achieve a more comprehensive understanding of modification of the motor activity that may be occurring between the left and right sides of the head. In particular, complex processing of prey is often characterized by bilaterally asynchronous and even unilateral activation of the jaw musculature. In this study, we bilaterally implant feeding muscles in species from four orders of elasmobranchs (Squaliformes, Orectolobiformes, Carcharhiniformes, Rajoidea) in order to characterize the effects of type of prey, feeding behavior, and phylogeny on the degree of asynchronous muscle activation. Electrodes were implanted in three of the jaw adductors, two divisions of the quadratomandibularis and the preorbitalis, as well as in a cranial elevator in sharks, the epaxialis. The asynchrony of feeding events (measured as the degree to which activity of members of a muscle pair is out of phase) was compared across species for capture versus processing and simple versus complex prey, then interpreted in the contexts of phylogeny, morphology, and ecology to clarify determinants of asynchronous activity. Whereas capture and processing of prey were characterized by statistically similar degrees of asynchrony for data pooled across species, events involving complex prey were more asynchronous than were those involving simple prey. The two trophic generalists, Squalus acanthias and Leucoraja erinacea, modulated the degree of asynchrony according to type of prey, whereas the two behavioral specialists, Chiloscyllium plagiosum and Mustelus canis, activated the cranial muscles synchronously regardless of type of prey. These differences in jaw muscle activity would not have been detected with unilateral implantation. Therefore, we advocate bilateral

  4. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    Folleto, J?lia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each sessi...

  5. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  6. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  7. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study.

    Du, Juan; Yang, Fang; Zhang, Zhiqiang; Hu, Jingze; Xu, Qiang; Hu, Jianping; Zeng, Fanyong; Lu, Guangming; Liu, Xinfeng

    2018-05-15

    An accurate prediction of long term outcome after stroke is urgently required to provide early individualized neurorehabilitation. This study aimed to examine the added value of early neuroimaging measures and identify the best approaches for predicting motor outcome after stroke. This prospective study involved 34 first-ever ischemic stroke patients (time since stroke: 1-14 days) with upper limb impairment. All patients underwent baseline multimodal assessments that included clinical (age, motor impairment), neurophysiological (motor-evoked potentials, MEP) and neuroimaging (diffusion tensor imaging and motor task-based fMRI) measures, and also underwent reassessment 3 months after stroke. Bivariate analysis and multivariate linear regression models were used to predict the motor scores (Fugl-Meyer assessment, FMA) at 3 months post-stroke. With bivariate analysis, better motor outcome significantly correlated with (1) less initial motor impairment and disability, (2) less corticospinal tract injury, (3) the initial presence of MEPs, (4) stronger baseline motor fMRI activations. In multivariate analysis, incorporating neuroimaging data improved the predictive accuracy relative to only clinical and neurophysiological assessments. Baseline fMRI activation in SMA was an independent predictor of motor outcome after stroke. A multimodal model incorporating fMRI and clinical measures best predicted the motor outcome following stroke. fMRI measures obtained early after stroke provided independent prediction of long-term motor outcome.

  9. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  10. Feeding behaviors and other motor development in healthy children (2-24 months).

    Carruth, Betty Ruth; Skinner, Jean D

    2002-04-01

    To monitor infant's gross, fine and oral motor development patterns related to feeding. An incomplete block design was used with 57 to 60 (sample = 98) mothers interviewed when their children were 2, 3, 4, 6, 8, 10, 12, 16 and 24 months (within +/- 5 days of birth date). Each mother had 5 to 6 interviews. Selected developmental feeding behaviors were monitored using in-home interviews conducted by trained interviewers (n = 2). At each interview, mothers reported the child's age when behaviors first occurred, and anthropometric measurements were performed. Subjects were healthy white children who lived mostly in homes with educated two-parent families of upper socioeconomic status. Mean behavioral ages were within normal ranges reported in the literature, whereas individuals exhibited a wide diversity in reported ages. Examples of gross motor skills (age in months, +/- SD) included sitting without help (5.50+/-2.08) and crawling (8.00+/-1.55). Mean ages for self-feeding fine motor skills showed children reaching for a spoon when hungry (5.47+/-1.44), using fingers to rake food toward self (8.87+/-2.58) and using fingers to self-feed soft foods (13.52+/-2.83). Oral behaviors included children opening their mouth when food approached (4.46+/-1.37), eating food with tiny lumps (8.70+/-2.03) and chewing and swallowing firmer foods without choking (12.17+/-2.28). Mean ages for feeding behaviors occurred within expected age ranges associated with normal development. However, mothers reported that individual children exhibited a wide age range for achieving these behaviors. Our results should be considered in counseling mothers about infant feeding practices.

  11. Peripheral nerve injury induces glial activation in primary motor cortex

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  12. Motor-enriched learning activities can improve mathematical performance in preadolescent children

    Beck, Mikkel Malling; Lind, Rune Rasmussen; Geertsen, Svend Sparre

    2016-01-01

    Objective: An emerging field of research indicates that physical activity can benefit cognitive functions and academic achievements in children. However, less is known about how academic achievements can benefit from specific types of motor activities (e.g., fine and gross) integrated into learning......-enriched mathematical teaching in Danish preadolescent children (n = 165, age = 7.5 ± 0.02 years). Three groups were included: a control group (CON), which received non-motor enriched conventional mathematical teaching, a fine motor math group (FMM) and a gross motor math group (GMM), which received mathematical.......73 correct answers (p = 0.04) and FMM 2.14 ± 0.72 correct answers (p = 0.008). These effects were not observed in low math-performers. The effects were partly accounted for by visuo-spatial short-term memory and gross motor skills. Conclusion: The study demonstrates that motor enriched learning activities...

  13. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  14. Spontaneous motor unit behavior in human thenar muscles after spinal cord injury

    Zijdewind, Inge; Thomas, CK

    Our first aim was to characterize spontaneous motor unit activity in thenar muscles influenced by chronic cervical spinal cord injury. Thenar surface electromyography (EMG), intramuscular EMG, and abduction and flexion forces were recorded. Subjects were instructed to relax for 2 min. Units still

  15. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems.

    Thompson, Karen J; Jones, Alaine D; Miller, Sandra A

    2014-01-01

    In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital

  17. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age.

  18. A structured assessment of motor function, behavior, and communication in patients with Wolf-Hirschhorn syndrome.

    Nag, Heidi E; Bergsaker, David K; Hunn, Bente S; Schmidt, Susanne; Hoxmark, Lise B

    2017-11-01

    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  20. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  1. Analysis of the low motor activity of students of the specialized educational department

    Gryban G.P.

    2012-02-01

    Full Text Available The paper highlights the results of investigations into the reasons for the low motor activity of students who belong to a special medical group due to their state of health. Deals with the gap between huge amount of mental activity and insufficient motor activity. The absence of dosed motor activity has it's negative impact on students' health, reduces their labor activity and the quality of educational process. The combination of physical exercises provide healthy and training effect on the students who have health condition aberrations.

  2. Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation.

    Masahito Mihara

    Full Text Available Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS, two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

  3. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  4. The effects of yoga practice in school physical education on children's motor abilities and social behavior.

    Folleto, Júlia C; Pereira, Keila Rg; Valentini, Nadia Cristina

    2016-01-01

    In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6-8-year-old children. The study included 16 children from the 1(st) grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach - Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom' teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development.

  5. The Effects of an Early Motor Skill Intervention on Motor Skills, Levels of Physical Activity, and Socialization in Young Children with Autism Spectrum Disorder: A Pilot Study

    Ketcheson, Leah; Hauck, Janet; Ulrich, Dale

    2017-01-01

    Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor…

  6. Associations between gross motor skills and physical activity in Australian toddlers.

    Veldman, Sanne L C; Jones, Rachel A; Santos, Rute; Sousa-Sá, Eduarda; Pereira, João R; Zhang, Zhiguang; Okely, Anthony D

    2018-08-01

    Physical activity can be promoted by high levels of gross motor skills. A systematic review found a positive relationship in children (3-18 years) but only few studies examined this in younger children. The aim of this study was to examine the association between gross motor skills and physical activity in children aged 11-29 months. Cross-sectional study. This study involved 284 children from 30 childcare services in NSW, Australia (Mean age=19.77±4.18months, 53.2% boys). Physical activity was measured using accelerometers (Actigraph GT3X+). Gross motor skills were assessed using the Peabody Developmental Motor Scales Second Edition (PDMS-2). Multilevel linear regression analyses were computed to assess associations between gross motor skills and physical activity, adjusting for sex, age and BMI. Children spent 53.08% of their time in physical activity and 10.39% in moderate to vigorous physical activity (MVPA). Boys had higher total physical activity (pskills score was 96.16. Boys scored higher than girls in object manipulation (pskills and total physical activity or MVPA. Although gross motor skills were not associated with physical activity in this sample, stronger associations are apparent in older children. This study therefore highlights a potential important age to promote gross motor skills. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Repetition priming of motor activity mediated by a central pattern generator: the importance of extrinsic vs. intrinsic program initiators

    Siniscalchi, Michael J.; Jing, Jian; Weiss, Klaudiusz R.

    2016-01-01

    Repetition priming is characterized by increased performance as a behavior is repeated. Although this phenomenon is ubiquitous, mediating mechanisms are poorly understood. We address this issue in a model system, the feeding network of Aplysia. This network generates both ingestive and egestive motor programs. Previous data suggest a chemical coding model: ingestive and egestive inputs to the feeding central pattern generator (CPG) release different modulators, which act via different second messengers to prime motor activity in different ways. The ingestive input to the CPG (neuron CBI-2) releases the peptides feeding circuit activating peptide and cerebral peptide 2, which produce an ingestive pattern of activity. The egestive input to the CPG (the esophageal nerve) releases the peptide small cardioactive peptide. This model is based on research that focused on a single aspect of motor control (radula opening). Here we ask whether repetition priming is observed if activity is triggered with a neuron within the core CPG itself and demonstrate that it is not. Moreover, previous studies demonstrated that effects of modulatory neurotransmitters that induce repetition priming persist. This suggests that it should be possible to “prime” motor programs triggered from within the CPG by first stimulating extrinsic modulatory inputs. We demonstrate that programs triggered after ingestive input activation are ingestive and programs triggered after egestive input activation are egestive. We ask where this priming occurs and demonstrate modifications within the CPG itself. This arrangement is likely to have important consequences for “task” switching, i.e., the cessation of one type of motor activity and the initiation of another. PMID:27466134

  8. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities

    Jan-Christoph Kattenstroth

    2010-07-01

    Full Text Available Aging is associated with a progressive decline of mental and physical abilities. Considering the current demographic changes in many civilizations there is an urgent need for measures permitting an independent lifestyle into old age. The critical role of physical exercise in mediating and maintaining physical and mental fitness is well-acknowledged. Dance, in addition to physical activity, combines emotions, social interaction, sensory stimulation, motor coordination and music, thereby creating enriched environmental conditions for human individuals. Here we demonstrate the impact of multi-year (average 16.5 years amateur dancing (AD in a group of elderly subjects (aged 65 to 84 years as compared to education-, gender- and aged-matched controls (CG having no record of dancing or sporting activities. Besides posture and balance parameters, we tested reaction times, motor behavior, tactile and cognitive performance. In each of the different domains investigated, the AD group had a superior performance as compared to the non-dancer CG group. Analysis of individual performance revealed that the best participants of the AD group were not better than individuals of the CG group. Instead, the AD group lacked individuals showing poor performance, which was frequently observed for the CG group. This observation implies that maintaining a regular schedule of dancing into old age can preserve cognitive, motor and perceptual abilities and prevent them from degradation. We conclude that the far-reaching beneficial effects found in the AD group make dance, beyond its ability to facilitate balance and posture, a prime candidate for the preservation of everyday life competence of elderly individuals.

  9. Motor Skill Improvement in Preschoolers: How Effective Are Activity Cards?

    Lars Donath

    2014-12-01

    Full Text Available Strategies to early develop and implement motor skill promotion in preschoolers are lacking. Thus, we examined the effects of a card-based exercise promotion program in a kindergarten setting. 214 preschool children (5.5 ± 0.6 y, range 4.2–6.7 y were examined in the present intervention study. Body mass index (BMI and waist circumference were measured. Children were randomly assigned to the KIDZ-Box® physical activity intervention program (INT: n = 107 or the control group (CON: n = 107. Children were trained daily for 15 min over 7 month at the preschool for agility, balance, endurance and jump performance, employing the card-based KIDZ-Box® media package. At pre- and post-testing, dynamic balance, jump and agility performance were tested. Cross-sectionally, agility testing differed between sexes (p = 0.01 and BMI (p = 0.02. Trends towards a significant association were found between BMI and side-to-side jumping (p = 0.1 and beam balancing (p = 0.05. Relevant interventional effects favoring the intervention group were slightly found for agility (p = 0.04, ηp2 = 0.02 and moderately for side-to-side jumping (p < 0.001, ηp2 = 0.08. Balance performance did not relevantly improve. As jumping cards have been used frequently by the teachers, jumping improvements are plausible. The activity cards are feasibly applicable but should be employed with more structure during longer training sessions.

  10. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  11. Electrocorticographic activity over sensorimotor cortex and motor function in awake behaving rats.

    Boulay, Chadwick B; Chen, Xiang Yang; Wolpaw, Jonathan R

    2015-04-01

    Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5-30 Hz), low γ (γ1; 40-85 Hz), and high γ (γ2; 100-200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs. Copyright © 2015 the American Physiological Society.

  12. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  13. Rodent ultrasonic vocalizations are bound to active sniffing behavior

    Yevgeniy B Sirotin

    2014-11-01

    Full Text Available During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz. During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, ’50 kHz’ were emitted within stretches of active sniffing (5−10 Hz and were largely absent during periods of passive breathing (1-4 Hz. Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.

  14. Effects of combining 2 weeks of passive sensory stimulation with active hand motor training in healthy adults.

    Aija Marie Ladda

    Full Text Available The gold standard to acquire motor skills is through intensive training and practicing. Recent studies have demonstrated that behavioral gains can also be acquired by mere exposure to repetitive sensory stimulation to drive the plasticity processes. Single application of repetitive electric stimulation (rES of the fingers has been shown to improve tactile perception in young adults as well as sensorimotor performance in healthy elderly individuals. The combination of repetitive motor training with a preceding rES has not been reported yet. In addition, the impact of such a training on somatosensory tactile and spatial sensitivity as well as on somatosensory cortical activation remains elusive. Therefore, we tested 15 right-handed participants who underwent repetitive electric stimulation of all finger tips of the left hand for 20 minutes prior to one hour of motor training of the left hand over the period of two weeks. Overall, participants substantially improved the motor performance of the left trained hand by 34%, but also showed a relevant transfer to the untrained right hand by 24%. Baseline ipsilateral activation fMRI-magnitude in BA 1 to sensory index finger stimulation predicted training outcome for somatosensory guided movements: those who showed higher ipsilateral activation were those who did profit less from training. Improvement of spatial tactile discrimination was positively associated with gains in pinch grip velocity. Overall, a combination of priming rES and repetitive motor training is capable to induce motor and somatosensory performance increase and representation changes in BA1 in healthy young subjects.

  15. [Practice of Behavioral Activation in Cognitive-behavioral Therapy].

    Kitagawa, Nobuki

    2015-01-01

    An approach focusing on behavioral activation (BA) was adopted in the cognitive therapy of A. T. Beck, and it came to be considered that BA can play an important role in cognitive-behavioral therapy (CBT) for depression. Therefore, in recent years, BA based on clinical behavior analysis has been developed as a new treatment (Martell, et al.). The core characteristics are as follows: 1) focusing attention on context in daily life to promote the behavior control of patients and avoidance of a hatred experience ; 2) breaking the vicious circle; 3) promoting the behavior according to the purpose that the patients originally expect; 4) recognizing a relationship between behavior and the situation (contingency), thereby recovering self-efficacy tied to the long-term results that one originally expects. This does not increase pleasant activity at random when the patient is inactive, or give a sense of accomplishment. We know that depression is maintained by conducting functional analysis of detailed life behavior, and encourage the patients to have healthy behavior according to individual values. We help them to complete schedules regardless of mood and reflect on the results patiently. It is considered that those processes are important. BA may be easy to apply in clinical practice and effective for the chronic cases, or the patients in a convalescent stage. Also, in principle in the CBT for major depression, it may be effective that behavioral activation is provided in an early stage, and cognitive reconstruction in a latter stage. However, an approach to carry out functional analysis by small steps with careful activity monitoring is essential when the symptoms are severe. Furthermore, it should be considered that the way of psychoeducation requires caution because we encourage rest in the treatment of depression in our country. In particular, we must be careful not to take an attitude that an inactive behavior pattern is unproductive only based model cases.

  16. When action turns into words. Activation of motor-based knowledge during categorization of manipulable objects

    Gerlach, Christian; Law, Ian; Paulson, Olaf B

    2002-01-01

    Functional imaging studies have demonstrated that processing of man-made objects activate the left ventral premotor cortex, which is known to be concerned with motor function. This has led to the suggestion that the comprehension of man-made objects may rely on motor-based knowledge of object uti...

  17. Eating behavior and physical activity in adolescents

    Leonardo de Sousa Fortes

    2013-10-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the inappropriate eating behaviors of adolescents as a function of habitual level of physical activity. METHODS: Participants were 462 youth of both genders aged 10 to 19 years. The Eating Attitudes Test-26 was used for inappropriate eating behaviors assessment. A short version of the International Physical Activity Questionnaire was used for classifying the habitual level of physical activity. RESULTS: No statistically significant differences were found for the comparison of inappropriate eating behaviors in the multivariate covariance model either for females or males. Moreover, the level of physical activity had no significant influence on the inappropriate eating behaviors of these adolescents. CONCLUSION: In conclusion, inappropriate eating behaviors in both genders were similar regardless of the habitual level of physical activity.

  18. Motor training and physical activity among preschoolers with cerebral palsy: a survey of parents' experiences.

    Myrhaug, Hilde Tinderholt; Østensjø, Sigrid

    2014-05-01

    To describe motor training and physical activity among preschoolers with cerebral palsy (CP) in Norway, and assess associations between child, parent, and motor intervention characteristics, and parent-reported child benefits from interventions. Survey of 360 parents and data from the Norwegian CP follow-up program. The response rate was 34%. During the six months preceding the time of the survey, 75% of the children performed gross-motor training, 73% fine-motor training, 80% manual stretching, and 67% participated regularly in physical activities. The training was highly goal-directed, intensive, frequently incorporated in daily routines, and often with a high level of parental involvement. The use of goals was associated with higher parent-reported child benefits for all types of interventions. Moreover, the positive relationship, which was indicated between frequency of training, parent education, and parent-reported child benefits of gross-motor training, was not seen for fine-motor training. Parent-reported child benefits support goal-directed motor interventions, and the use of everyday activities to increase practice of motor skills.

  19. The correlation between motor proficiency and physical activity in Senior Phase learners in the Potchefstroom area

    Lizl-Louise van Niekerk

    2016-10-01

    Objectives: To determine the relationship between motor proficiency and physical activity levels in adolescent Senior Phase learners in Potchefstroom, South Africa. No literature exists on the relationship between motor proficiency and physical activity levels among South African adolescents. Method: A total of 239 13- to 14-year-old learners were assessed using the Bruininkse Oseretsky Test of Motor Proficiency 2 (BOT-2 for motor proficiency, and the International Physical Activity Questionnaire (IPAQ for physical activity levels. Data analysis included descriptive statistics, Spearman correlation coefficients and effect sizes. Results: Statistically and practically significant correlations were found between the total BOT-2 score and the physical activity levels of the total group, as well as the boys and the girls respectively. Fine motor coordination correlated with physical activity levels in the girls, while manipulation coordination correlated with the physical activity levels of the total group and the boys. The body coordination skill of jumping in place and the strength test items showed strong correlations with physical activity in all the groups. Conclusion: The motor skills of Senior Phase learners, especially coordination and strength skills, should be developed and maintained in the Physical Education curriculum to enhance physical activity levels.

  20. Supporting smartphone-based behavioral activation

    Bardram, Jakob Eyvind; Rohani, Darius A.; Tuxen, Nanna

    2017-01-01

    Behavioral activation has shown to be a simple yet efective therapy for depressive patients. The method relies on extensive collection of patient reported activity data on an hourly basis. We are currently in the process of designing a smartphone-based behavioral activation system for depressive...... disorders. However, it is an open question to what degree patients would use this approach given the high demand for user input. In order to investigate this question, we collected paper-based behavioral activation forms from 5 patients, covering in total 18 weeks, 115 days, and 1,614 hours of self......-reported activity data. In this paper we present an analysis of this data and discuss the implications for the design of a smartphone-based system for behavioral activation....

  1. Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.

    Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry

    2018-04-01

    Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross

  2. Coin Tossing Explains the Activity of Opposing Microtubule Motors on Phagosomes.

    Sanghavi, Paulomi; D'Souza, Ashwin; Rai, Ashim; Rai, Arpan; Padinhatheeri, Ranjith; Mallik, Roop

    2018-05-07

    How the opposing activity of kinesin and dynein motors generates polarized distribution of organelles inside cells is poorly understood and hotly debated [1, 2]. Possible explanations include stochastic mechanical competition [3, 4], coordinated regulation by motor-associated proteins [5-7], mechanical activation of motors [8], and lipid-induced organization [9]. Here, we address this question by using phagocytosed latex beads to generate early phagosomes (EPs) that move bidirectionally along microtubules (MTs) in an in vitro assay [9]. Dynein/kinesin activity on individual EPs is recorded as real-time force generation of the motors against an optical trap. Activity of one class of motors frequently coincides with, or is rapidly followed by opposite motors. This leads to frequent and rapid reversals of EPs in the trap. Remarkably, the choice between dynein and kinesin can be explained by the tossing of a coin. Opposing motors therefore appear to function stochastically and independently of each other, as also confirmed by observing no effect on kinesin function when dynein is inhibited on the EPs. A simple binomial probability calculation based on the geometry of EP-microtubule contact explains the observed activity of dynein and kinesin on phagosomes. This understanding of intracellular transport in terms of a hypothetical coin, if it holds true for other cargoes, provides a conceptual framework to explain the polarized localization of organelles inside cells. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Eating behavior and physical activity in adolescents

    Fortes,Leonardo de Sousa; Morgado,Fabiane Frota da Rocha; Almeida,Sebastião de Sousa; Ferreira,Maria Elisa Caputo

    2013-01-01

    OBJECTIVE: The aim of this study was to compare the inappropriate eating behaviors of adolescents as a function of habitual level of physical activity. METHODS: Participants were 462 youth of both genders aged 10 to 19 years. The Eating Attitudes Test-26 was used for inappropriate eating behaviors assessment. A short version of the International Physical Activity Questionnaire was used for classifying the habitual level of physical activity. RESULTS: No statistically significant differences w...

  4. Phrenic long-term facilitation requires PKCθ activity within phrenic motor neurons.

    Devinney, Michael J; Fields, Daryl P; Huxtable, Adrianne G; Peterson, Timothy J; Dale, Erica A; Mitchell, Gordon S

    2015-05-27

    Acute intermittent hypoxia (AIH) induces a form of spinal motor plasticity known as phrenic long-term facilitation (pLTF); pLTF is a prolonged increase in phrenic motor output after AIH has ended. In anesthetized rats, we demonstrate that pLTF requires activity of the novel PKC isoform, PKCθ, and that the relevant PKCθ is within phrenic motor neurons. Whereas spinal PKCθ inhibitors block pLTF, inhibitors targeting other PKC isoforms do not. PKCθ is highly expressed in phrenic motor neurons, and PKCθ knockdown with intrapleural siRNAs abolishes pLTF. Intrapleural siRNAs targeting PKCζ, an atypical PKC isoform expressed in phrenic motor neurons that underlies a distinct form of phrenic motor plasticity, does not affect pLTF. Thus, PKCθ plays a critical role in spinal AIH-induced respiratory motor plasticity, and the relevant PKCθ is localized within phrenic motor neurons. Intrapleural siRNA delivery has considerable potential as a therapeutic tool to selectively manipulate plasticity in vital respiratory motor neurons. Copyright © 2015 the authors 0270-6474/15/358107-11$15.00/0.

  5. Gender impacts on motor skill proficiency-physical activity relationship in children

    Diana Samara

    2015-12-01

    Full Text Available BACKGROUND Physical activity is the greatest contributor to achievement of adequate physical activity. Children performing adequate daily physical activity will get positive benefits from their activity. Several studies indicate a difference in motor skills between boys and girls. To understand the development of motor skill proficiency and physical activity in boys and girls, a study was conducted to determine the role of gender on motor skill proficiency and physical activity in children aged 6-12 years. METHODS A cross-sectional observational study was conducted and a total of 162 children were included at a primary school in the Grogol area, West Jakarta. Data collection was by questionnaire-based interviews, covering age, gender, and physical activity (watching TV, playing games, and outdoor play. Assessment of motor skills was performed using the Bruininks-Oseretsky Test–Second Edition (BOT-2. Data analysis was performed using SPSS for Windows release 17.0 and level of significance was set at 0.05. RESULTS Multiple linear regression results showed that in boys the strength subset was the most influential factor on TV watching activity, with the higher scores for strength indicating a lower TV watching activity (â=-0.125;p=0.021. Age was the most influential factor on outdoor playing activity in girls, with older girls having lower outdoor playing activity (â=-0.375;p=0.016. CONCLUSIONS This study revealed that gender difference impacts on motor skills and physical activity in children. Higher motor proficiency increases outdoor playing activity only in boys. Primary school pupils should be given opportunities for performing outdoor playing activities to improve their motor proficiency.

  6. Gender impacts on motor skill proficiency-physical activity relationship in children

    Diana Samara

    2012-12-01

    Full Text Available Background Physical activity is the greatest contributor to achievement of adequate physical activity. Children performing adequate daily physical activity will get positive benefits from their activity. Several studies indicate a difference in motor skills between boys and girls. To understand the development of motor skill proficiency and physical activity in boys and girls, a study was conducted to determine the role of gender on motor skill proficiency and physical activity in children aged 6-12 years. Methods A cross-sectional observational study was conducted and a total of 162 children were included at a primary school in the Grogol area, West Jakarta. Data collection was by questionnaire-based interviews, covering age, gender, and physical activity (watching TV, playing games, and outdoor play. Assessment of motor skills was performed using the Bruininks-Oseretsky Test–Second Edition (BOT-2. Data analysis was performed using SPSS for Windows release 17.0 and level of significance was set at 0.05. Results Multiple linear regression results showed that in boys the strength subset was the most influential factor on TV watching activity, with the higher scores for strength indicating a lower TV watching activity (â=-0.125;p=0.021. Age was the most influential factor on outdoor playing activity in girls, with older girls having lower outdoor playing activity (â=-0.375;p=0.016. Conclusions This study revealed that gender difference impacts on motor skills and physical activity in children. Higher motor proficiency increases outdoor playing activity only in boys. Primary school pupils should be given opportunities for performing outdoor playing activities to improve their motor proficiency.

  7. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    2015-01-01

    Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated wit...... run in childhood may be important determinants of physical activity in adolescence.......Purpose Physical activity is associated with several health benefits in children, and physical activity habits developed in childhood tend to persist into adulthood. Physical activity may be the foundation of a healthy lifestyle and motor performance has been shown to be positively associated...... with physical activity in cross-sectional studies. The purpose of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow-up study. Methods Longitudinal analyses were performed using data from 673 participants (44% boys, 6-12 years old) who...

  8. A Perceptual Motor Intervention Improves Play Behavior In Children With Moderate To Severe Cerebral Palsy

    Brigette Oliver Ryalls

    2016-05-01

    Full Text Available For children with moderate or severe cerebral palsy (CP, a foundational early goal is independent sitting. Sitting offers additional opportunities for object exploration, play and social engagement. The achievement of sitting coincides with important milestones in other developmental areas, such as social engagement with others, understanding of spatial relationships, and the use of both hands to explore objects. These milestones are essential skills necessary for play behavior. However, little is known about how sitting and play behavior might be affected by a physical therapy intervention in children with moderate or severe CP. Therefore, our overall purpose in this study was to determine if sitting skill could be advanced in children with moderate to severe CP using a perceptual motor intervention, and if play skills would change significantly as sitting advanced. Thirty children between the ages of 18 months and 6 years who were able to hold prop sitting for at least 10 seconds were recruited for this study. Outcome measures were the sitting subsection of the Gross Motor Function Measure (GMFM, and the Play Assessment of Children with Motor Impairment (PACMI play assessment scale, which is a modified version of the Play in Early Childhood Evaluation System (PIECES. Significant improvements in GMFM sitting scores (p<0.001 and marginally significant improvement in play assessment scores (p=0.067 were found from pre- to post-intervention. Sitting change explained a significant portion of the variance in play change for children over the age of 3 years, who were more severely affected by CP. The results of this study indicate that advances in sitting skill may be a factor in supporting improvements in functional play, along with age and severity of physical impairment.

  9. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  11. Motor unit recruitment and bursts of activity in the surface electromyogram during a sustained contraction.

    Riley, Zachary A; Terry, Mary E; Mendez-Villanueva, Alberto; Litsey, Jane C; Enoka, Roger M

    2008-06-01

    Bursts of activity in the surface electromyogram (EMG) during a sustained contraction have been interpreted as corresponding to the transient recruitment of motor units, but this association has never been confirmed. The current study compared the timing of trains of action potentials discharged by single motor units during a sustained contraction with the bursts of activity detected in the surface EMG signal. The 20 motor units from 6 subjects [recruitment threshold, 35.3 +/- 11.3% maximal voluntary contraction (MVC) force] that were detected with fine wire electrodes discharged 2-9 trains of action potentials (7.2 +/- 5.6 s in duration) when recruited during a contraction that was sustained at a force below its recruitment threshold (target force, 25.4 +/- 10.6% MVC force). High-pass filtering the bipolar surface EMG signal improved its correlation with the single motor unit signal. An algorithm applied to the surface EMG was able to detect 75% of the trains of motor unit action potentials. The results indicate that bursts of activity in the surface EMG during a constant-force contraction correspond to the transient recruitment of higher-threshold motor units in healthy individuals, and these results could assist in the diagnosis and design of treatment in individuals who demonstrate deficits in motor unit activation.

  12. Increased Motor Activity During REM Sleep Is Linked with Dopamine Function in Idiopathic REM Sleep Behaviour Disorder and Parkinson Disease

    Zoetmulder, Marielle; Nikolic, Miki; Biernat, Heidi

    2016-01-01

    STUDY OBJECTIVES: Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by impaired motor inhibition during REM sleep, and dream-enacting behavior. RBD is especially associated with α-synucleinopathies, such as Parkinson disease (PD). Follow-up studies have shown...... in the putamen. In PD patients, EMG-activity was correlated to anti-Parkinson medication. CONCLUSIONS: Our results support the hypothesis that increased EMG-activity during REM sleep is at least partly linked to the nigrostriatal dopamine system in iRBD, and with dopamine function in PD....... the relation between this system and electromyographic (EMG) activity during sleep. The objective of this study was to investigate the relationship between the nigrostriatal dopamine system and muscle activity during sleep in iRBD and PD. METHODS: 10 iRBD patients, 10 PD patients with PD, 10 PD patients...

  13. Making Activity Recognition Robust against Deceptive Behavior.

    Sohrab Saeb

    Full Text Available Healthcare services increasingly use the activity recognition technology to track the daily activities of individuals. In some cases, this is used to provide incentives. For example, some health insurance companies offer discount to customers who are physically active, based on the data collected from their activity tracking devices. Therefore, there is an increasing motivation for individuals to cheat, by making activity trackers detect activities that increase their benefits rather than the ones they actually do. In this study, we used a novel method to make activity recognition robust against deceptive behavior. We asked 14 subjects to attempt to trick our smartphone-based activity classifier by making it detect an activity other than the one they actually performed, for example by shaking the phone while seated to make the classifier detect walking. If they succeeded, we used their motion data to retrain the classifier, and asked them to try to trick it again. The experiment ended when subjects could no longer cheat. We found that some subjects were not able to trick the classifier at all, while others required five rounds of retraining. While classifiers trained on normal activity data predicted true activity with ~38% accuracy, training on the data gathered during the deceptive behavior increased their accuracy to ~84%. We conclude that learning the deceptive behavior of one individual helps to detect the deceptive behavior of others. Thus, we can make current activity recognition robust to deception by including deceptive activity data from a few individuals.

  14. Modelling and Design of Active Thermal Controls for Power Electronics of Motor Drive Applications

    Vernica, Ionut; Blaabjerg, Frede; Ma, Ke

    2017-01-01

    of active thermal control methods for the power devices of a motor drive application. The motor drive system together with the thermal cycling of the power devices have been modelled, and adverse temperature swings could be noticed during the start-up and deceleration periods of the motor. Based...... on the electrical response of the system, the junction temperature of the semiconductor devices is estimated, and consequently three active thermal control methods are proposed and practically designed with respect to the following parameters: switching frequency, deceleration slope and modulation technique....... Finally, experimental results are provided in order to validate the effectiveness of the proposed control methods....

  15. The relationship between actual motor competence and physical activity in children: mediating roles of perceived motor competence and health-related physical fitness.

    Khodaverdi, Zeinab; Bahram, Abbas; Stodden, David; Kazemnejad, Anoshirvan

    2016-08-01

    The purpose of this study was to investigate whether perceived motor competence and components of health-related physical fitness mediated the relationship between actual motor competence and physical activity in 8- to 9-year-old Iranian girls. A convenience sample of 352 girls (mean age = 8.7, SD = 0.3 years) participated in the study. Actual motor competence, perceived motor competence and children's physical activity were assessed using the Test of Gross Motor Development-2, the physical ability sub-scale of Marsh's Self-Description Questionnaire and Physical Activity Questionnaire for Older Children, respectively. Body mass index, the 600 yard run/walk, curl-ups, push-ups, and back-saver sit and reach tests assessed health-related physical fitness. Preacher & Hayes (2004) bootstrap method was used to assess the potential mediating effects of fitness and perceived competence on the direct relationship between actual motor competence and physical activity. Regression analyses revealed that aerobic fitness (b = .28, 95% CI = [.21, .39]), as the only fitness measure, and perceived competence (b = .16, 95% CI = [.12, .32]) were measures that mediated the relationship between actual motor competence and physical activity with the models. Development of strategies targeting motor skill acquisition, children's self-perceptions of competence and cardiorespiratory fitness should be targeted to promote girls' moderate-to-vigorous physical activity.

  16. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  17. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  18. Physical activity and motor competence present a positive reciprocal longitudinal relationship across childhood and early adolescence

    Lima, Rodrigo A.; Pfeiffer, Karin; Larsen, Lisbeth R.

    2017-01-01

    Background: The current study evaluated the reciprocal longitudinal relationship between physical activity (PA) and motor competence (MC) and the potential mediation of cardiorespiratory endurance across 7 years. Methods: This was a 7-year longitudinal study, the Copenhagen School Child Intervent......Background: The current study evaluated the reciprocal longitudinal relationship between physical activity (PA) and motor competence (MC) and the potential mediation of cardiorespiratory endurance across 7 years. Methods: This was a 7-year longitudinal study, the Copenhagen School Child...

  19. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2012-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, pre...

  20. Nutrição aplicada à atividade motora Nutrition applied to motor activity

    Antonio Herbert Lancha Junior

    2011-12-01

    selected organisms evolutionarily more economical. In return for the account of demands, social, financial, among other modern life imposed inactivity as the motor pattern of human behavior that together with the genetic default of the economy resulted in the modern diseases such as obesity, diabetes etc. In this way society has institutionalized human movement creating distinct manifestations described above and their specific needs have to be of academic interest / scientific. Nutritionally, the studies focus on energy balance, the need for carbohydrates, proteins, lipids and micronutrients and other biologically active compounds. These studies define these substances under the criteria of essentiality or ergogenic effect than the physiological. The first determines changes in nutritional needs and the second substances deemed illegal. At present much of the scientific community dedicated to nutrition applied to motor activity, directs his calling in an attempt to discover the specific needs caused by the regular practice of motor activity allowing for regular exercise that triggers the same benefits in health maintenance so full in the four areas described above.

  1. EEG alpha activity reflects motor preparation rather than the mode of action selection

    Marie-Pierre eDeiber

    2012-08-01

    Full Text Available Alpha-band activity (8-13 Hz is suppressed by sensory stimulation and movements, modulated by attention, working memory and mental tasks and may be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None, a posterior alpha power decrease (event-related desynchronization, ERD dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha power increase (event-related synchronization, ERS, suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: 1 a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and 2 an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation. 

  2. Active Learning to Develop Motor Skills and Teamwork

    Johanna Lorena Aristizabal-Almanza

    2017-12-01

    Full Text Available This action-research project was conducted to determine how the use of principles of active learning, specifically collaboration, had an effect on psychomotor performance and achievement in teamwork. The research setting included 20 students of first grade from a private school located in Bogota, Colombia. The students were selected through not randomized sampling based on criteria. The methodological process included observation, interviews, and a scale based on standardized tests to measure skills; the latter was applied before and after the intervention. Data analysis was performed using a triangulation of qualitative data, and through comparative analysis of the initial and final student profile for quantitative inputs. The results showed that, after the intervention with collaborative techniques based on action learning, students achieved a positive variation in their performance. Being part of a team positively affected the achievement of the objectives. Systematical reflection on their practices fostered their capacity to identify strengths and weaknesses to build knowledge in interaction with others. Knowledge construction was nurtured based in their previous experiences. Students showed more accountability and self-directed learning behaviors, according to their age. Overall the experience showed the importance of research and innovation in the classroom in order to provide meaningful data, so teachers and researchers can engage in providing learning experiences based in active learning.

  3. Scaling behavior of online human activity

    Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao

    2012-11-01

    The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.

  4. The role of ECoG magnitude and phase in decoding position, velocity and acceleration during continuous motor behavior

    Jiri eHammer

    2013-11-01

    Full Text Available In neuronal population signals, including the electroencephalogram (EEG and electrocorticogram (ECoG, the low-frequency component (LFC is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy copy of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative low-frequency component of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance.

  5. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  6. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  7. Motor competence and physical activity in 8-year-old school children with generalized joint hypermobility

    Juul-Kristensen, Birgit; Kristensen, Jens Halkjaer; Frausing, Britt

    2009-01-01

    regarding motor competence, self-reported physical activity, and incidence of musculoskeletal pain and injuries. METHODS: A cross-sectional study of 524 children in the second grade from 10 public schools was performed. A positive response rate was obtained for 416 (79.4%) children, and 411 (78.4%) children...... were clinically examined and tested for motor competence, whereas questionnaire response to items comprising musculoskeletal pain and injuries, in addition to daily level and duration of physical activity, corresponded to 377 (71.9%) children. RESULTS: In total, 29% of the children had GJH4, 19% had...... in the motor competence tests. CONCLUSION: Motor competence and physical activity are not reduced in primary school children at 8 years of age with GJH or BJHS. It is recommended that a potential negative influence on the musculoskeletal system over time, as a result of GJH, be investigated by longitudinal...

  8. V1 and v2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion.

    Zhang, Jingming; Lanuza, Guillermo M; Britz, Olivier; Wang, Zhi; Siembab, Valerie C; Zhang, Ying; Velasquez, Tomoko; Alvarez, Francisco J; Frank, Eric; Goulding, Martyn

    2014-04-02

    Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Peripheral nerve injury induces glial activation in primary motor cortex

    Julieta Troncoso; Julieta Troncoso; Efraín Buriticá; Efraín Buriticá

    2015-01-01

    Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to eithe...

  10. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  11. Dopamine D1 receptor activation maintains motor coordination and balance in rats.

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Durand-Rivera, Alfredo; Ramos-Languren, Laura-Elisa; Ríos, Camilo; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2018-02-01

    Dopamine (DA) modulates motor coordination, and its depletion, as in Parkinson's disease, produces motor impairment. The basal ganglia, cerebellum and cerebral cortex are interconnected, have functional roles in motor coordination, and possess dopamine D 1 receptors (D 1 Rs), which are expressed at a particularly high density in the basal ganglia. In this study, we examined whether the activation of D 1 Rs modulates motor coordination and balance in the rat using a beam-walking test that has previously been used to detect motor coordination deficits. The systemic administration of the D 1 R agonist SKF-38393 at 2, 3, or 4 mg/kg did not alter the beam-walking scores, but the subsequent administration of the D 1 R antagonist SCH-23390 at 1 mg/kg did produce deficits in motor coordination, which were reversed by the full agonist SKF-82958. The co-administration of SKF-38393 and SCH-23390 did not alter the beam-walking scores compared with the control group, but significantly prevented the increase in beam-walking scores induced by SCH-23390. The effect of the D 1 R agonist to prevent and reverse the effect of the D 1 R antagonist in beam-walking scores is an indicator that the function of D 1 Rs is necessary to maintain motor coordination and balance in rats. Our results support that D 1 Rs mediate the SCH-23390-induced deficit in motor coordination.

  12. Physical activity and obesity mediate the association between childhood motor function and adolescents' academic achievement.

    Kantomaa, Marko T; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-29

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people's cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents' academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents' academic achievement via physical inactivity (B = -0.023, 95% confidence interval = -0.031, -0.015) and obesity (B = -0.025, 95% confidence interval = -0.039, -0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents' academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement.

  13. Physical activity and obesity mediate the association between childhood motor function and adolescents’ academic achievement

    Kantomaa, Marko T.; Stamatakis, Emmanuel; Kankaanpää, Anna; Kaakinen, Marika; Rodriguez, Alina; Taanila, Anja; Ahonen, Timo; Järvelin, Marjo-Riitta; Tammelin, Tuija

    2013-01-01

    The global epidemic of obesity and physical inactivity may have detrimental implications for young people’s cognitive function and academic achievement. This prospective study investigated whether childhood motor function predicts later academic achievement via physical activity, fitness, and obesity. The study sample included 8,061 children from the Northern Finland Birth Cohort 1986, which contains data about parent-reported motor function at age 8 y and self-reported physical activity, predicted cardiorespiratory fitness (cycle ergometer test), obesity (body weight and height), and academic achievement (grades) at age 16 y. Structural equation models with unstandardized (B) and standardized (β) coefficients were used to test whether, and to what extent, physical activity, cardiorespiratory fitness, and obesity at age 16 mediated the association between childhood motor function and adolescents’ academic achievement. Physical activity was associated with a higher grade-point average, and obesity was associated with a lower grade-point average in adolescence. Furthermore, compromised motor function in childhood had a negative indirect effect on adolescents’ academic achievement via physical inactivity (B = –0.023, 95% confidence interval = –0.031, –0.015) and obesity (B = –0.025, 95% confidence interval = –0.039, –0.011), but not via cardiorespiratory fitness. These results suggest that physical activity and obesity may mediate the association between childhood motor function and adolescents’ academic achievement. Compromised motor function in childhood may represent an important factor driving the effects of obesity and physical inactivity on academic underachievement. PMID:23277558

  14. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  15. Non-stationarity and power spectral shifts in EMG activity reflect motor unit recruitment in rat diaphragm muscle.

    Seven, Yasin B; Mantilla, Carlos B; Zhan, Wen-Zhi; Sieck, Gary C

    2013-01-15

    We hypothesized that a shift in diaphragm muscle (DIAm) EMG power spectral density (PSD) to higher frequencies reflects recruitment of more fatigable fast-twitch motor units and motor unit recruitment is reflected by EMG non-stationarity. DIAm EMG was recorded in anesthetized rats during eupnea, hypoxia-hypercapnia (10% O(2)-5% CO(2)), airway occlusion, and sneezing (maximal DIAm force). Although power in all frequency bands increased progressively across motor behaviors, PSD centroid frequency increased only during sneezing (pmotor units were recruited during different motor behaviors. Motor units augmented their discharge frequencies progressively beyond the non-stationary period; yet, EMG signal became stationary. In conclusion, non-stationarity of DIAm EMG reflects the period of motor unit recruitment, while a shift in the PSD towards higher frequencies reflects recruitment of more fatigable fast-twitch motor units. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A Field-Based Testing Protocol for Assessing Gross Motor Skills in Preschool Children: The Children's Activity and Movement in Preschool Study Motor Skills Protocol

    Williams, Harriet G.; Pfeiffer, Karin A.; Dowda, Marsha; Jeter, Chevy; Jones, Shaverra; Pate, Russell R.

    2009-01-01

    The purpose of this study was to develop a valid and reliable tool for use in assessing motor skills in preschool children in field-based settings. The development of the Children's Activity and Movement in Preschool Study Motor Skills Protocol included evidence of its reliability and validity for use in field-based environments as part of large…

  17. Diminished activation of motor working-memory networks in Parkinson's disease.

    Claudia Rottschy

    Full Text Available Parkinson's disease (PD is characterized by typical extrapyramidal motor features and increasingly recognized non-motor symptoms such as working memory (WM deficits. Using functional magnetic resonance imaging (fMRI, we investigated differences in neuronal activation during a motor WM task in 23 non-demented PD patients and 23 age- and gender-matched healthy controls. Participants had to memorize and retype variably long visuo-spatial stimulus sequences after short or long delays (immediate or delayed serial recall. PD patients showed deficient WM performance compared to controls, which was accompanied by reduced encoding-related activation in WM-related regions. Mirroring slower motor initiation and execution, reduced activation in motor structures such as the basal ganglia and superior parietal cortex was detected for both immediate and delayed recall. Increased activation in limbic, parietal and cerebellar regions was found during delayed recall only. Increased load-related activation for delayed recall was found in the posterior midline and the cerebellum. Overall, our results demonstrate that impairment of WM in PD is primarily associated with a widespread reduction of task-relevant activation, whereas additional parietal, limbic and cerebellar regions become more activated relative to matched controls. While the reduced WM-related activity mirrors the deficient WM performance, the additional recruitment may point to either dysfunctional compensatory strategies or detrimental crosstalk from "default-mode" regions, contributing to the observed impairment.

  18. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  19. Promoting gross motor skills and physical activity in childcare: A translational randomized controlled trial.

    Jones, Rachel A; Okely, Anthony D; Hinkley, Trina; Batterham, Marijka; Burke, Claire

    2016-09-01

    Educator-led programs for physical activity and motor skill development show potential but few have been implemented and evaluated using a randomized controlled design. Furthermore, few educator-led programs have evaluated both gross motor skills and physical activity. Therefore, the aim of this study was to evaluate a gross motor skill and physical activity program for preschool children which was facilitated solely by childcare educators. A six-month 2-arm randomized controlled trial was implemented between April and September 2012 in four early childhood centers in Tasmania, Australia. Educators participated in ongoing professional development sessions and children participated in structured physical activity lessons and unstructured physical activity sessions. In total, 150 children were recruited from four centers which were randomized to intervention or wait-list control group. Six early childhood educators from the intervention centers were trained to deliver the intervention. Gross motor skills were assessed using the Test of Gross Motor Development (2nd edition) and physical activity was measured objectively using GT3X+ Actigraph accelerometers. No statistically significant differences were identified. However, small to medium effect sizes, in favor of the intervention group, were evident for four of the five gross motor skills and the total gross motor skill score and small to medium effect sizes were reported for all physical activity outcomes. This study highlights the potential of educator-led physical activity interventions and supports the need for further translational trials within the early childhood sector. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. A Synergetic Approach to Describe the Stability and Variability of Motor Behavior

    Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter

    At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.

  2. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  3. Chapter 6: Children's Environmental Access in Relation to Motor Competence, Physical Activity, and Fitness

    Erwin, Heather E.; Woods, Amelia Mays; Woods, Martha K.; Castelli, Darla M.

    2007-01-01

    The purpose of this study was to examine levels of physical activity engagement, motor competence, and physical fitness as related to child access to physical activity facilities in the home and school environments. The present investigation attempts to further efforts to examine the relationship between physical activity levels and access.…

  4. Get Kids Moving: Simple Activities To Build Gross-Motor Skills.

    Texas Child Care, 2003

    2003-01-01

    Highlights the importance of activities to build gross motor skills and provides hints for encouraging such activities. Specific areas of activities presented are: (1) running and jumping; (2) music games; (3) action games; (4) races; (5) bed sheets or parachutes; (6) hula hoops; (7) balls; (8) batting; (9) balance; and (10) creative movement. (SD)

  5. EFFECTS OF OUTSCHOOL BODY ACTIVITIES ON QUALITATIVE CHANGES OF MOTORICAL STATUS PUPILS OF PRIMARY SCHOOL STRATURE

    Izudin Tanović

    2011-09-01

    Full Text Available Population of pupil high classes primary school present one of cariks in chain of complex education and systematic social influence in body and health education, which are used a new generations (Mikić,1991. Including that we have a very sensibility population in way of strature and development in phase of adolescental period, it is necessary that throw the classes body education and extra outschool activities, give enough quantity of motorical activities, which will completly satisfied necessy of children this strature and also completly give them normal biopsychosocial growth. Explorations of effects extra outschool activities in frame of school sport sections pupils of primary school tell us that with a correct planning and programming work, which understand correctly choice adequate methods and operators of work could been very significant transformations of anthropological status of pupils (Malacko 2002. The basic target of this explorations was that confirm influence of outschool body activities on level qualitative changes of structure motorical space of pupils primary school strature, under influence applying programme of outschool activities. With help of factory analise, but also of method of congruation, it was explored structure of motorical space in the start but also at the end of this applying experimental programme of outschool body activities , and we concluded that changes which was appear in structure of explored motorical space, tell us on positive influence outschool body activities in sense transformation and progressing of motorical status of explorated sample.

  6. The effect of tumour type and distance on activation in the motor cortex

    Liu, Wen-Ching; Feldman, Susan C.; Zimmerman, Aphrodite; Sinensky, Rebecca; Rao, Satyaveni; Schulder, Michael; Kalnin, Andrew J.; Holodny, Andrei I.

    2005-01-01

    Functional MRI has been widely used to identify the eloquent cortex in neurosurgical/radiosurgical planning and treatment of CNS neoplasms and malformations. In this study we examined the effect of CNS tumours on the blood oxygenation level-dependent (BOLD) activation maps in the primary and supplementary motor cortex. A total of 33 tumour patients and five healthy right-handed adults were enrolled in the study. Patients were divided into four groups based on tumour type and distance from primary motor cortex: (1) intra-axial, near, (2) extra-axial, near, (3) intra-axial, far and (4) extra-axial, far. The intra-axial groups consisted of patients with astrocytomas, glioblastomas and metastatic tumours of mixed histology; all the extra-axial tumours were meningiomas. The motor task was a bilateral, self-paced, finger-tapping paradigm. Anatomical and functional data were acquired with a 1.5 T GE Echospeed scanner. Maps of the motor areas were derived from the BOLD images, using SPM99 software. For each subject we first determined the activation volume in the primary motor area and the supplementary motor area (SMA) and then calculated the percentage difference between the hemispheres. Two factors influenced the activation volumes: tumour type (P<0.04) and distance from the eloquent cortex (P<0.06). Patients in group 1 (intra-axial, near) had the smallest activation area in the primary motor cortex, the greatest percentage difference in the activation volume between the hemispheres, and the largest activation volume in the SMA. Patients in group 4 (extra-axial, far) had the largest activation volume in the primary motor cortex, the least percentage difference in volume between the hemispheres, and the smallest activation volume in the SMA. There was no significant change in the volume of the SMA in any group, compared with controls, suggesting that, although there is a gradual decrease in SMA volume with distance from the primary motor area, the effect on motor

  7. Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior.

    Kam, Julia W Y; Dao, Elizabeth; Blinn, Patricia; Krigolson, Olav E; Boyd, Lara A; Handy, Todd C

    2012-01-01

    Mind wandering episodes have been construed as periods of "stimulus-independent" thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of "response-independent" thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was "on-task" or "mind wandering." We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.

  8. BDNF heightens the sensitivity of motor neurons to excitotoxic insults through activation of TrkB

    Hu, Peter; Kalb, Robert G.; Walton, K. D. (Principal Investigator)

    2003-01-01

    The survival promoting and neuroprotective actions of brain-derived neurotrophic factor (BDNF) are well known but under certain circumstances this growth factor can also exacerbate excitotoxic insults to neurons. Prior exploration of the receptor through which BDNF exerts this action on motor neurons deflects attention away from p75. Here we investigated the possibility that BDNF acts through the receptor tyrosine kinase, TrkB, to confer on motor neurons sensitivity to excitotoxic challenge. We blocked BDNF activation of TrkB using a dominant negative TrkB mutant or a TrkB function blocking antibody, and found that this protected motor neurons against excitotoxic insult in cultures of mixed spinal cord neurons. Addition of a function blocking antibody to BDNF to mixed spinal cord neuron cultures is also neuroprotective indicating that endogenously produced BDNF participates in vulnerability to excitotoxicity. We next examined the intracellular signaling cascades that are engaged upon TrkB activation. Previously we found that inhibition of the phosphatidylinositide-3'-kinase (PI3'K) pathway blocks BDNF-induced excitotoxic sensitivity. Here we show that expression of a constitutively active catalytic subunit of PI3'K, p110, confers excitotoxic sensitivity (ES) upon motor neurons not incubated with BDNF. Parallel studies with purified motor neurons confirm that these events are likely to be occuring specifically within motor neurons. The abrogation of BDNF's capacity to accentuate excitotoxic insults may make it a more attractive neuroprotective agent.

  9. Emergence of gamma motor activity in an artificial neural network model of the corticospinal system.

    Grandjean, Bernard; Maier, Marc A

    2017-02-01

    Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.

  10. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review

    Nan Zeng

    2017-01-01

    Full Text Available Objective. This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Methods. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4–6 years were screened. Results. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80% reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80% showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Conclusions. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  11. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review.

    Zeng, Nan; Ayyub, Mohammad; Sun, Haichun; Wen, Xu; Xiang, Ping; Gao, Zan

    2017-01-01

    This study synthesized literature concerning casual evidence of effects of various physical activity programs on motor skills and cognitive development in typically developed preschool children. Electronic databases were searched through July 2017. Peer-reviewed randomized controlled trials (RCTs) examining the effectiveness of physical activity on motor skills and cognitive development in healthy young children (4-6 years) were screened. A total of 15 RCTs were included. Of the 10 studies assessing the effects of physical activity on motor skills, eight (80%) reported significant improvements in motor performance and one observed mixed findings, but one failed to promote any beneficial outcomes. Of the five studies investigating the influence of physical activity on cognitive development, four (80%) showed significant and positive changes in language learning, academic achievement, attention, and working memory. Notably, one indicated no significant improvements were observed after the intervention. Findings support causal evidence of effects of physical activity on both motor skills and cognitive development in preschool children. Given the shortage of available studies, future research with large representative samples is warranted to explore the relationships between physical activity and cognitive domains as well as strengthen and confirm the dose-response evidence in early childhood.

  12. You can count on the motor cortex: Finger counting habits modulate motor cortex activation evoked by numbers

    Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann

    2012-01-01

    The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748

  13. Effects of functional physical activity on the maintenance of motor function in Alzheimer's disease

    Laís Fajersztajn

    Full Text Available Abstract It is widely known that older adults, even frail individuals, can improve their physical function using appropriately targeted exercise. Nevertheless, older adults with Alzheimer's disease (AD have been excluded from the majority of studies on exercise. The functional-task physical activity program is based on activities of daily living, and may be suited for elderly people with AD because it focuses on the maintenance and stimulation of preserved abilities. In addition, session costs are substantially reduced by adopting a group approach. Furthermore, the group approach may improve the social interaction of the demented patient. Objectives: To determine whether a functional-task physical activity program in groups can maintain motor function in elderly with AD. Methods: 10 elderly diagnosed with mild or moderate AD were assigned into one of two groups: subjects with and without intervention. The intervention consisted of a 12-week function-task physical activity program in groups. Measurements: activities of daily living (Katz and Lawton & Brody questionnaires, mobility (Timed Up and Go Test, Timed Up and Go manual Test and Timed Up and Go Cognitive Test, cognition (Mini-Mental State Examination, behavioral disturbances (Neuropsychiatric Inventory I-brief and functional balance (Berg Balance Scale. Results: A statistically significant difference between the two groups was found regarding the functional balance mean change measured by Berg scale score (p=0.046. A significant improvement of 1.60 points (95%CI[0.22;2.98] was observed in the intervention group on this scale, while the non-intervention group showed -0.40 points (95%CI[-1.78;0.98], no change. Conclusions: It is possible to treat mild and moderate Alzheimer's patients using a group approach. The functional task physical activity program was efficient in functional balance improvement and also appeared to prevent mobility decline.

  14. Activities of daily living in children with hemiparesis: influence of cognitive abilities and motor competence.

    Adler, Caroline; Rauchenzauner, Markus; Staudt, Martin; Berweck, Steffen

    2014-12-01

    The aim of the article is to investigate whether motor competence and cognitive abilities influence the quality of performance of activities of daily living (ADL) in children with hemiparesis. Patients and A total of 20 children with hemiparesis (age, 6-12 years; 11 congenital, 9 acquired during childhood) were studied. Motor competence was assessed with the Assisting Hand Assessment, cognitive abilities with the German version of the Wechsler Intelligence Scale for Children IV, and the quality of ADL performance with the Assessment of Motor and Process Skills (AMPS). The motor skills scale of the AMPS correlated with motor competence, and the process skills scale of the AMPS correlated with cognitive abilities. The quality of ADL performance is influenced not only by motor competence but also by the cognitive abilities of a hemiparetic child. This suggests that, in addition to motor-oriented training programs, an optimal therapy for hemiparetic children should also consider cognitive approaches. Georg Thieme Verlag KG Stuttgart · New York.

  15. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    Patrizia Tortella

    Full Text Available This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  16. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground.

    Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.

  17. Motor Skill Development in Italian Pre-School Children Induced by Structured Activities in a Specific Playground

    Tortella, Patrizia; Haga, Monika; Loras, Håvard

    2016-01-01

    This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985

  18. Motor Development and Physical Activity: A Longitudinal Discordant Twin-Pair Study.

    Aaltonen, Sari; Latvala, Antti; Rose, Richard J; Pulkkinen, Lea; Kujala, Urho M; Kaprio, Jaakko; Silventoinen, Karri

    2015-10-01

    Previous longitudinal research suggests that motor proficiency in early life predicts physical activity in adulthood. Familial effects including genetic and environmental factors could explain the association, but no long-term follow-up studies have taken into account potential confounding by genetic and social family background. The present twin study investigated whether childhood motor skill development is associated with leisure-time physical activity levels in adulthood independent of family background. Altogether, 1550 twin pairs from the FinnTwin12 study and 1752 twin pairs from the FinnTwin16 study were included in the analysis. Childhood motor development was assessed by the parents' report of whether one of the co-twins had been ahead of the other in different indicators of motor skill development in childhood. Leisure-time physical activity (MET·h·d) was self-reported by the twins in young adulthood and adulthood. Statistical analyses included conditional and ordinary linear regression models within twin pairs. Using all activity-discordant twin pairs, the within-pair difference in a sum score of motor development in childhood predicted the within-pair difference in the leisure-time physical activity level in young adulthood (P men and women.

  19. Enhanced activation of motor execution networks using action observation combined with imagination of lower limb movements.

    Michael Villiger

    Full Text Available The combination of first-person observation and motor imagery, i.e. first-person observation of limbs with online motor imagination, is commonly used in interactive 3D computer gaming and in some movie scenes. These scenarios are designed to induce a cognitive process in which a subject imagines himself/herself acting as the agent in the displayed movement situation. Despite the ubiquity of this type of interaction and its therapeutic potential, its relationship to passive observation and imitation during observation has not been directly studied using an interactive paradigm. In the present study we show activation resulting from observation, coupled with online imagination and with online imitation of a goal-directed lower limb movement using functional MRI (fMRI in a mixed block/event-related design. Healthy volunteers viewed a video (first-person perspective of a foot kicking a ball. They were instructed to observe-only the action (O, observe and simultaneously imagine performing the action (O-MI, or imitate the action (O-IMIT. We found that when O-MI was compared to O, activation was enhanced in the ventralpremotor cortex bilaterally, left inferior parietal lobule and left insula. The O-MI and O-IMIT conditions shared many activation foci in motor relevant areas as confirmed by conjunction analysis. These results show that (i combining observation with motor imagery (O-MI enhances activation compared to observation-only (O in the relevant foot motor network and in regions responsible for attention, for control of goal-directed movements and for the awareness of causing an action, and (ii it is possible to extensively activate the motor execution network using O-MI, even in the absence of overt movement. Our results may have implications for the development of novel virtual reality interactions for neurorehabilitation interventions and other applications involving training of motor tasks.

  20. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Rafaela S. Moreira

    2014-03-01

    Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  1. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship

    Stodden, David F.; Goodway, Jacqueline D.; Langendorfer, Stephen J.; Roberton, Mary Ann; Rudisill, Mary E.; Garcia, Clersida; Garcia, Luis E.

    2008-01-01

    Although significant attention has been paid to promoting the importance of physical activity in children, adolescents, and adults, we do not currently understand how to promote sustained physical activity levels throughout the lifespan. We contend that previous research has failed to consider the dynamic and synergistic role that motor skill…

  2. Physical Activity and Motor Skills in Children with and without Visual Impairments

    Houwen, Suzanne; Hartman, Esther; Visscher, Chris

    HOUWEN, S., E. HARTMAN, and C. VISSCHER. Physical Activity and Motor Skills in Children with and without Visual Impairments. Med. Sci. Sports Exerc., Vol. 41, No, 1, pp. 103-109, 2009. Purpose: To examine the physical activity levels of children with and without visual impairments(VI). We further

  3. Is generic physical activity or specific exercise associated with motor abilities?

    Rinne, Marjo; Pasanen, Matti; Miilunpalo, Seppo; Mälkiä, Esko

    2010-09-01

    Evidence of the effect of leisure time physical activity (LTPA) modes on the motor abilities of a mature population is scarce. The purpose of this study was to compare the motor abilities of physically active and inactive men and women and to examine the associations of different exercise modes and former and recent LTPA (R-LTPA) with motor ability and various physical tests. The LTPA of the participants (men n = 69, women n = 79; aged 41-47 yr) was ascertained by a modified Physical Activity Readiness Questionnaire, including questions on the frequency, duration, and intensity of R-LTPA and former LTPA and on exercise modes. Motor abilities in terms of balance, agility, and coordination were assessed with a battery of nine tests supplemented with five physical fitness tests. Multiple statistical methods were used in analyses that were conducted separately for men and women. The MET-hours per week of R-LTPA correlated statistically significantly with the tests of agility and static balance (rs = -0.28, P = 0.022; rs = -0.25, P = 0.043, respectively) among men and with the static balance (rs = 0.41), 2-km walking (rs = 0.36), step squat (rs = 0.36) (P women. In the stepwise regression among men, the most frequent statistically significant predictor was the playing of several games. For women, a history of LTPA for more than 3 yr was the strongest predictor for good results in almost all tests. Participants with long-term and regular LTPA had better motor performance, and especially a variety of games improve components of motor ability. Diverse, regular, and long-term exercise including both specific training and general activity develops both motor abilities and physical fitness.

  4. Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts.

    Dafsari, Haidar Salimi; Petry-Schmelzer, Jan Niklas; Ray-Chaudhuri, K; Ashkan, Keyoumars; Weis, Luca; Dembek, Till A; Samuel, Michael; Rizos, Alexandra; Silverdale, Monty; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Martinez-Martin, Pablo; Antonini, Angelo; Visser-Vandewalle, Veerle; Timmermann, Lars

    2018-03-16

    Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. To investigate the impact of active contact location on NMS in STN-DBS in PD. In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes. Copyright © 2018. Published by Elsevier Inc.

  5. Nonmotorized recreation and motorized recreation in shrub-steppe habitats affects behavior and reproduction of golden eagles (Aquila chrysaetos).

    Spaul, Robert J; Heath, Julie A

    2016-11-01

    Different forms of outdoor recreation have different spatiotemporal activity patterns that may have interactive or cumulative effects on wildlife through human disturbance, physical habitat change, or both. In western North America, shrub-steppe habitats near urban areas are popular sites for motorized recreation and nonmotorized recreation and can provide important habitat for protected species, including golden eagles. Our objective was to determine whether recreation use (i.e., number of recreationists) or recreation features (e.g., trails or campsites) predicted golden eagle territory occupancy, egg-laying, or the probability a breeding attempt resulted in ≥1 offspring (nest survival). We monitored egg-laying, hatching and fledging success, eagle behavior, and recreation activity within 23 eagle territories near Boise, Idaho, USA. Territories with more off-road vehicle (ORV) use were less likely to be occupied than territories with less ORV use (β = -1.6, 85% CI: -2.8 to -0.8). At occupied territories, early season pedestrian use (β = -1.6, 85% CI: -3.8 to -0.2) and other nonmotorized use (β = -3.6, 85% CI: -10.7 to -0.3) reduced the probability of egg-laying. At territories where eagles laid eggs, short, interval-specific peaks in ORV use were associated with decreased nest survival (β = -0.5, 85% CI: -0.8 to -0.2). Pedestrians, who often arrived near eagle nests via motorized vehicles, were associated with reduced nest attendance (β = -11.9, 85% CI: -19.2 to -4.5), an important predictor of nest survival. Multiple forms of recreation may have cumulative effects on local populations by reducing occupancy at otherwise suitable territories, decreasing breeding attempts, and causing nesting failure. Seasonal no-stopping zones for motorized vehicles may be an alternative to trail closures for managing disturbance. This study demonstrates the importance of considering human disturbance across different parts of the annual cycle, particularly where

  6. Behavior of medial gastrocnemius motor units during postural reactions to external perturbations after stroke.

    Pollock, C L; Ivanova, T D; Hunt, M A; Garland, S J

    2015-10-01

    This study investigated the behavior of medial gastrocnemius (GM) motor units (MU) during external perturbations in standing in people with chronic stroke. GM MUs were recorded in standing while anteriorly-directed perturbations were introduced by applying loads of 1% body mass (BM) at the pelvis every 25-40s until 5% BM was maintained. Joint kinematics, surface electromyography (EMG), and force platform measurements were assessed. Although external loads caused a forward progression of the anterior-posterior centre of pressure (APCOP), people with stroke decreased APCOP velocity and centre of mass (COM) velocity immediately following the highest perturbations, thereby limiting movement velocity in response to perturbations. MU firing rate did not increase with loading but the GM EMG magnitude increased, reflecting MU recruitment. MU inter spike interval (ISI) during the dynamic response was negatively correlated with COM velocity and hip angular velocity. The GM utilized primarily MU recruitment to maintain standing during external perturbations. The lack of MU firing rate modulation occurred with a change in postural central set. However, the relationship of MU firing rate with kinematic variables suggests underlying long-loop responses may be somewhat intact after stroke. People with stroke demonstrate alterations in postural control strategies which may explain MU behavior with external perturbations. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Associations among Elementary School Children’s Actual Motor Competence, Perceived Motor Competence, Physical Activity and BMI: A Cross-Sectional Study

    Stodden, David; Brian, Ali; True, Larissa; Cardon, Greet; Tallir, Isabel; Haerens, Leen

    2016-01-01

    Background Positive associations between motor competence and physical activity have been identified by means of variable-centered analyses. To expand the understanding of these associations, this study used a person-centered approach to investigate whether different combinations (i.e., profiles) of actual and perceived motor competence exist (aim 1); and to examine differences in physical activity levels (aim 2) and weight status (aim 3) among children with different motor competence-based profiles. Materials and Methods Children’s (N = 361; 180 boys = 50%; Mage = 9.50±1.24yrs) actual motor competence was measured with the Test of Gross Motor Development-2 and their perceived motor competence via the Self Perception Profile for Children. We assessed physical activity via accelerometers; height through stadiometers, and weight through scales. Cluster analyses (aim 1) and MANCOVAs (aim 2 & 3) were used to analyze the data. Results The analysis generated two predictable groups: one group displaying relatively high levels of both actual (M TGMD-2 percentile = 42.54, SD = 2.33) and perceived motor competence (M = 3.42, SD = .37; high-high), and one group with relatively low levels of both (M percentile = 9.71, SD = 3.21; M PMC = 2.52, SD = .35; low-low). One additional group was also identified as having relatively low levels of actual motor competence (M percentile = 4.22, SD = 2.85) but relatively high levels of perceived motor competence (M = 3.52, SD = .30; low-high). The high-high group demonstrated higher daily physical activity (M = 48.39±2.03) and lower BMI (M = 18.13±.43) than the low-low group (MMVPA = 37.93±2.01; MBMI = 20.22±.42). The low-high group had similar physical activity-levels as the low-low group (M = 36.21±2.18) and did not significantly differ in BMI (M = 19.49±.46) from the other two groups. Conclusions A combination of high actual and perceived motor competence is related to higher physical activity and lower weight status. It is thus

  8. Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Sharma Rakesh

    2004-05-01

    Full Text Available Abstract Functional magnetic resonance imaging (fMRI is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities.

  9. Effects of Multi-Session Repetitive Transcranial Magnetic Stimulation on Motor Control and Spontaneous Brain Activity in Multiple System Atrophy: A Pilot Study

    Zhu Liu

    2018-05-01

    Full Text Available Background: Impaired motor control is one of the most common symptoms of multiple system atrophy (MSA. It arises from dysfunction of the cerebellum and its connected neural networks, including the primary motor cortex (M1, and is associated with altered spontaneous (i.e., resting-state brain network activity. Non-invasive repetitive transcranial magnetic stimulation (rTMS selectively facilitates the excitability of supraspinal networks. Repeated rTMS sessions have been shown to induce long-term changes to both resting-state brain dynamics and behavior in several neurodegenerative diseases. Here, we hypothesized that a multi-session rTMS intervention would improve motor control in patients with MSA, and that such improvements would correlate with changes in resting-state brain activity.Methods: Nine participants with MSA received daily sessions of 5 Hz rTMS for 5 days. rTMS targeted both the cerebellum and the bilateral M1. Before and within 3 days after the intervention, motor control was assessed by the motor item of the Unified Multiple System Atrophy Rating Scale (UMSARS. Resting-state brain activity was recorded by blood-oxygen-level dependency (BOLD functional magnetic resonance imaging. The “complexity” of resting-state brain activity fluctuations was quantified within seven well-known functional cortical networks using multiscale entropy, a technique that estimates the degree of irregularity of the BOLD time-series across multiple scales of time.Results: The rTMS intervention was well-attended and was not associated with any adverse events. Average motor scores were lower (i.e., better performance following the rTMS intervention as compared to baseline (t8 = 2.3, p = 0.003. Seven of nine participants exhibited such pre-to-post intervention improvements. A trend toward an increase in resting-state complexity was observed within the motor network (t8 = 1.86, p = 0.07. Participants who exhibited greater increases in motor network resting

  10. Delay-related cerebral activity and motor preparation

    Mars, R.B.; Coles, M.G.H.; Hulstijn, W.

    2008-01-01

    Flexible goal-oriented behavior requires the ability to carry information across temporal delays. This ability is associated with sustained neural firing. In cognitive terms, this ability has often been associated with the maintenance of sensory material online, as during short-term memory tasks, or

  11. Neurofeedback fMRI-mediated learning and consolidation of regional brain activation during motor imagery

    Yoo, Seung-Schik; Lee, Jong-Hwan; O’Leary, Heather; Panych, Lawrence P.; Jolesz, Ferenc A.

    2009-01-01

    We report the long-term effect of real-time functional MRI (rtfMRI) training on voluntary regulation of the level of activation from a hand motor area. During the performance of a motor imagery task of a right hand, blood-oxygenation-level-dependent (BOLD) signal originating from a primary motor area was presented back to the subject in real-time. Demographically matched individuals also received the same procedure without valid feedback information. Followed by the initial rtfMRI sessions, both groups underwent two-week long, daily-practice of the task. Off-line data analysis revealed that the individuals in the experimental group were able to increase the level of BOLD signal from the regulatory target to a greater degree compared to the control group. Furthermore, the learned level of activation was maintained after the two-week period, with the recruitment of additional neural circuitries such as the hippocampus and the limbo-thalamo-cortical pathway. The activation obtained from the control group, in the absence of proper feedback, was indifferent across the training conditions. The level of BOLD activity from the target regulatory region was positively correlated with a self evaluative score within the experimental group, while the majority of control subjects had difficulty adopting a strategy to attain the desired level of functional regulation. Our results suggest that rtfMRI helped individuals learn how to increase region-specific cortical activity associated with a motor imagery task, and the level of increased activation in motor areas was consolidated after the two-week self-practice period, with the involvement of neural circuitries implicated in motor skill learning. PMID:19526048

  12. Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically.

    Hussin, Ahmed T; Boychuk, Jeffery A; Brown, Andrew R; Pittman, Quentin J; Teskey, G Campbell

    2015-01-01

    Intracortical microstimulation (ICMS) is a technique used for a number of purposes including the derivation of cortical movement representations (motor maps). Its application can activate the output layer 5 of motor cortex and can result in the elicitation of body movements depending upon the stimulus parameters used. The extent to which pyramidal tract projection neurons of the motor cortex are activated transsynaptically or directly by ICMS remains an open question. Given this uncertainty in the mode of activation, we used a preparation that combined patch clamp whole-cell recordings from single layer 5 pyramidal neurons and extracellular ICMS in slices of motor cortex as well as a standard in vivo mapping technique to ask how ICMS activated motor cortex pyramidal neurons. We measured changes in synaptic spike threshold and spiking rate to ICMS in vitro and movement threshold in vivo in the presence or absence of specific pharmacological blockers of glutamatergic (AMPA, NMDA and Kainate) receptors and GABAA receptors. With major excitatory and inhibitory synaptic transmission blocked (with DNQX, APV and bicuculline methiodide), we observed a significant increase in the ICMS current intensity required to elicit a movement in vivo as well as to the first spike and an 85% reduction in spiking responses in vitro. Subsets of neurons were still responsive after the synaptic block, especially at higher current intensities, suggesting a modest direct activation. Taken together our data indicate a mainly synaptic mode of activation to ICMS in layer 5 of rat motor cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  14. Improvement of the thermal behavior of linear motors through insulation layer

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  15. A threat to a virtual hand elicits motor cortex activation.

    González-Franco, Mar; Peck, Tabitha C; Rodríguez-Fornells, Antoni; Slater, Mel

    2014-03-01

    We report an experiment where participants observed an attack on their virtual body as experienced in an immersive virtual reality (IVR) system. Participants sat by a table with their right hand resting upon it. In IVR, they saw a virtual table that was registered with the real one, and they had a virtual body that substituted their real body seen from a first person perspective. The virtual right hand was collocated with their real right hand. Event-related brain potentials were recorded in two conditions, one where the participant's virtual hand was attacked with a knife and a control condition where the knife only struck the virtual table. Significantly greater P450 potentials were obtained in the attack condition confirming our expectations that participants had a strong illusion of the virtual hand being their own, which was also strongly supported by questionnaire responses. Higher levels of subjective virtual hand ownership correlated with larger P450 amplitudes. Mu-rhythm event-related desynchronization in the motor cortex and readiness potential (C3-C4) negativity were clearly observed when the virtual hand was threatened-as would be expected, if the real hand was threatened and the participant tried to avoid harm. Our results support the idea that event-related potentials may provide a promising non-subjective measure of virtual embodiment. They also support previous experiments on pain observation and are placed into context of similar experiments and studies of body perception and body ownership within cognitive neuroscience.

  16. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia

    Stefano Cinque

    2018-02-01

    Full Text Available Alterations in dopamine neurotransmission are generally associated with diseases such as attention-deficit/hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Such diseases typically feature poor decision making and lack of control on executive functions and have been studied through the years using many animal models. Dopamine transporter (DAT knockout (KO and heterozygous (HET mice, in particular, have been widely used to study ADHD. Recently, a strain of DAT KO rats has been developed (1. Here, we provide a phenotypic characterization of reward sensitivity and compulsive choice by adult rats born from DAT–HET dams bred with DAT–HET males, in order to further validate DAT KO rats as an animal model for preclinical research. We first tested DAT KO rats’ sensitivity to rewarding stimuli, provided by highly appetitive food or sweet water; then, we tested their choice behavior with an Intolerance-to-Delay Task (IDT. During these tests, DAT KO rats appeared less sensitive to rewarding stimuli than wild-type (WT and HET rats: they also showed a prominent hyperactive behavior with a rigid choice pattern and a wide number of compulsive stereotypies. Moreover, during the IDT, we tested the effects of amphetamine (AMPH and RO-5203648, a trace amine-associated receptor 1 (TAAR1 partial agonist. AMPH accentuated impulsive behaviors in WT and HET rats, while it had no effect in DAT KO rats. Finally, we measured the levels of tyrosine hydroxylase, dopamine receptor 2 (D2, serotonin transporter, and TAAR1 mRNA transcripts in samples of ventral striatum, finding no significant differences between WT and KO genotypes. Throughout this study, DAT KO rats showed alterations in decision-making processes and in motivational states, as well as prominent motor and oral stereotypies: more studies are warranted to fully characterize and efficiently use them in preclinical research.

  17. Can Kinesiological Activities Change "Pure" Motor Development in Preschool Children during One School Year?

    Krneta, Željko; Casals, Cristina; Bala, Gustav; Madić, Dejan; Pavlović, Slobodan; Drid, Patrik

    2015-07-01

    The purpose of this study was to evaluate the effects of an additional, organized, and more intensive kinesiological treatment on "pure" motor abilities in preschool children. In the present study an experimental treatment was carried out on a sample of 37 preschool boys by applying kinesiological activities. The 60 minute treatment was applied over a period of one school year (9 months), twice a week. A control group of 31 boys were trained according to the regular program for preschool institutions. Treatment effects were assessed by 8 motor ability tests and 5 anthropometric measures. The significant differences between the groups, which were observed after the final measurement and compared to the initial one, proved that the kinesiological treatment had a positive impact on the general development of "pure" motor abilities. The most significant effect of experimental kinesiological treatment was the improvement in whole body force, flexibility and coordination of preschool boys. These findings, obtained only in one school year, point to the importance of physical exercise and the application of additional kinesiological activities with various modalities, to improve motor development, even morphological growth and development in preschool children. The effects of the perennial application of kinesiological activities, under the supervision of kinesiological professionals, could be beneficial and could form the basis for a better biological and motor development in older age.

  18. Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy

    Christian M. Simon

    2017-12-01

    Full Text Available The hallmark of spinal muscular atrophy (SMA, an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.

  19. Aberrant neuromagnetic activation in the motor cortex in children with acute migraine: a magnetoencephalography study.

    Xinyao Guo

    Full Text Available Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65-150 Hz oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems.

  20. Two-day fasting evokes stress, but does not affect mood, brain activity, cognitive, psychomotor, and motor performance in overweight women.

    Solianik, Rima; Sujeta, Artūras

    2018-02-15

    The physiological, cognitive state, and motor behavior changes that occur during acute fasting are not completely understood. Thus, the aim of this study was to estimate the effect of 2-day total fasting on evoked stress, mood, brain activity, and cognitive, psychomotor, and motor function in overweight women. Eleven overweight women (body mass index above 25kg/m 2 ) aged 20-30 years were tested under two conditions allocated randomly: 2-day zero-calorie diet with water provided ad libitum and 2-day usual diet. One week before the experiment, aerobic fitness was evaluated. Subjective stress ratings in relation to the diet, autonomic function, prefrontal cortex activity, cognitive performance, psychomotor coordination, and grip strength were evaluated before and after each diet. The study demonstrated that fasting decreased log-transformed high-frequency (HF) power, without affecting heart rate. The relative maximum oxygen uptake was negatively correlated with subjective stress rating and changes in log-transformed HF. Fasting did not affect mood, brain activity, and cognitive, motor, and psychomotor performance. Thus, 2-day total fasting evoked moderate stress with a shift of the autonomic nervous system balance toward sympathetic activity in overweight women. Better aerobic endurance is likely to facilitate the capacity for dealing with acute fasting. Regardless of the evoked stress, cognitive state and motor behavior remained intact. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Acute food deprivation separates motor-activating from anxiolytic effects of caffeine in a rat open field test model.

    Schulz, Daniela

    2018-03-14

    Similar doses of caffeine have been shown to produce either anxiolytic or anxiogenic effects in rats. The reasons for these conflicting results are not known. We hypothesized that food deprivation stress interacts with the stimulant effects of caffeine to increase anxiety-like behavior. We tested 32 female Sprague Dawley rats in a dim open field for 10 min. Half of the animals were food deprived for 24 h and injected (intraperitoneal) with caffeine (30 mg/kg; n=7) or deionized water (n=8) 20 min before the open field test. The other half was nondeprived and injected with caffeine (30 mg/kg; n=8) or deionized water (n=9). Results showed that nondeprived rats injected with caffeine moved longer distances and at a greater speed in the periphery and moved longer distances and spent more time in the center than rats treated with vehicle, indicative of motor-activating and/or anxiolytic effects of caffeine. Rats that were food deprived and injected with caffeine moved longer distances in the center and tended to spend more time there, indicative of anxiolysis. We conclude that caffeine had two effects on behavior, motor activation and a reduction of anxiety, and that food deprivation separated these effects.

  2. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Kawaguchi, Masahiro [Gifu Univ. (Japan). School of Medicine

    1998-09-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with {sup 99m}Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%{Delta}CBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %{Delta}CBF were up 24.1{+-}4.3% in the contra-lateral sensorimotor area, and 22.3{+-}3.6% in the supplementary motor area, respectively. The average %{Delta}CBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  3. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Kawaguchi, Masahiro

    1998-01-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with 99m Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%ΔCBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %ΔCBF were up 24.1±4.3% in the contra-lateral sensorimotor area, and 22.3±3.6% in the supplementary motor area, respectively. The average %ΔCBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  4. Validation of a motor activity system by a robotically controlled vehicle and using standard reference compounds.

    Patterson, John P; Markgraf, Carrie G; Cirino, Maria; Bass, Alan S

    2005-01-01

    A series of experiments were undertaken to evaluate the accuracy, precision, specificity, and sensitivity of an automated, infrared photo beam-based open field motor activity system, the MotorMonitor v. 4.01, Hamilton-Kinder, LLC, for use in a good laboratory practices (GLP) Safety Pharmacology laboratory. This evaluation consisted of two phases: (1) system validation, employing known inputs using the EM-100 Controller Photo Beam Validation System, a robotically controlled vehicle representing a rodent and (2) biologic validation, employing groups of rats treated with the standard pharmacologic agents diazepam or D-amphetamine. The MotorMonitor's parameters that described the open-field activity of a subject were: basic movements, total distance, fine movements, x/y horizontal ambulations, rearing, and total rest time. These measurements were evaluated over a number of zones within each enclosure. System validation with the EM-100 Controller Photo Beam Validation System showed that all the parameters accurately and precisely measured what they were intended to measure, with the exception of fine movements and x/y ambulations. Biologic validation using the central nervous system depressant diazepam at 1, 2, or 5 mg/kg, i.p. produced the expected dose-dependent reduction in rat motor activity. In contrast, the central nervous system stimulant D-amphetamine produced the expected increases in rat motor activity at 0.1 and 1 mg/kg, i.p, demonstrating the specificity and sensitivity of the system. Taken together, these studies of the accuracy, precision, specificity, and sensitivity show the importance of both system and biologic validation in the evaluation of an automated open field motor activity system for use in a GLP compliant laboratory.

  5. Lost for emotion words: What motor and limbic brain activity reveals about autism and semantic theory

    Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann

    2015-01-01

    Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250

  6. Single to Two Cluster State Transition of Primary Motor Cortex 4-posterior (MI-4p Activities in Humans

    Kazunori Nakada

    2015-11-01

    Full Text Available The human primary motor cortex has dual representation of the digits, namely, area 4 anterior (MI-4a and area 4 posterior (MI-4p. We have previously demonstrated that activation of these two functional subunits can be identified independently by functional magnetic resonance imaging (fMRI using independent component-cross correlation-sequential epoch (ICS analysis. Subsequent studies in patients with hemiparesis due to subcortical lesions and monoparesis due to peripheral nerve injury demonstrated that MI-4p represents the initiation area of activation, whereas MI-4a is the secondarily activated motor cortex requiring a “long-loop” feedback input from secondary motor systems, likely the cerebellum. A dynamic model of hand motion based on the limit cycle oscillator predicts that the specific pattern of entrainment of neural firing may occur by applying appropriate periodic stimuli. Under normal conditions, such entrainment introduces a single phase-cluster. Under pathological conditions where entrainment stimuli have insufficient strength, the phase cluster splits into two clusters. Observable physiological phenomena of this shift from single cluster to two clusters are: doubling of firing rate of output neurons; or decay in group firing density of the system due to dampening of odd harmonics components. While the former is not testable in humans, the latter can be tested by appropriately designed fMRI experiments, the quantitative index of which is believed to reflect group behavior of neurons functionally localized, e.g., firing density in the dynamic theory. Accordingly, we performed dynamic analysis of MI-4p activation in normal volunteers and paretic patients. The results clearly indicated that MI-4p exhibits a transition from a single to a two phase-cluster state which coincided with loss of MI-4a activation. The study demonstrated that motor dysfunction (hemiparesis in patients with a subcortical infarct is not simply due to afferent

  7. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  8. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  9. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Wang, Li [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China); Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong [Third Military Medical University, Department of Medical Image, College of Biomedical Engineering, Chongqing (China); Liu, Chen; Yang, Jun [Third Military Medical University, Department of Radiology, Southwest Hospital, Chongqing (China); Yan, Rubing [Third Military Medical University, Department of Rehabilitation, Southwest Hospital, Chongqing (China); Zheng, Xiaolin [Chongqing University, Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing (China)

    2014-04-15

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  10. Age-specific activation of cerebral areas in motor imagery - a fMRI study

    Wang, Li; Qiu, Mingguo; Zhang, Jingna; Zhang, Ye; Sang, Linqiong; Liu, Chen; Yang, Jun; Yan, Rubing; Zheng, Xiaolin

    2014-01-01

    The objectives of this study were to study the age-specific activation patterns of cerebral areas during motor execution (ME) and motor imaging (MI) of the upper extremities and to discuss the age-related neural mechanisms associated with ME or MI. The functional magnetic resonance imaging technique was used to monitor the pattern and intensity of brain activation during the ME and MI of the upper extremities in 20 elderly (>50 years) and 19 young healthy subjects (<25 years). No major differences were identified regarding the activated brain areas during ME or MI between the two groups; however, a minor difference was noted. The intensity of the activated brain area during ME was stronger in the older group than in the younger group, while the results with MI were the opposite. The posterior central gyrus and supplementary motor area during MI were more active in the younger group than in the older group. The putamen, lingual, and so on demonstrated stronger activation during dominant hand MI in the older group. The results of this study revealed that the brain structure was altered and that neuronal activity was attenuated with age, and the cerebral cortex and subcortical tissues were found to be over-activated to achieve the same level of ME and MI, indicating that the activating effects of the left hemisphere enhanced with age, whereas the inhibitory effects declined during ME, and activation of the right hemisphere became more difficult during MI. (orig.)

  11. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation

    Strey, K.A.; Nichols, N.L.; Baertsch, N.A.; Broytman, O.; Baker-Herman, T.L.

    2012-01-01

    The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory neural drive is restored. The mechanisms underlying iPMF are unknown. Here, we demonstrate in anesthetized rats that spinal mechanisms give rise to iPMF, and that iPMF consists of at least two mechanistically distinct phases: 1) an early, labile phase that requires atypical PKC (PKCζ and/or PKCΙ/λ) activity to transition to a 2) late, stable phase. Early (but not late) iPMF is associated with increased interactions between PKCζ/Ι and the scaffolding protein ZIP/p62 in spinal regions associated with the phrenic motor pool. Although PKCζ/Ι activity is necessary for iPMF, spinal aPKC activity is not necessary for phrenic long-term facilitation (pLTF) following acute intermittent hypoxia, an activity-independent form of spinal respiratory plasticity. Thus, while iPMF and pLTF both manifest as prolonged increases in phrenic burst amplitude, they arise from distinct spinal cellular pathways. Our data are consistent with the hypotheses that: 1) local mechanisms sense and respond to reduced respiratory-related activity in the phrenic motor pool, and 2) inactivity-induced increases in phrenic inspiratory output require local PKCζ/Ι activity to stabilize into a long-lasting iPMF. Although the physiological role of iPMF is unknown, we suspect that iPMF represents a compensatory mechanism, assuring adequate motor output in a physiological system where prolonged inactivity ends life. PMID:23152633

  12. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  13. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  14. EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism.

    Puzzo, Ignazio; Cooper, Nicholas R; Vetter, Petra; Russo, Riccardo

    2010-06-25

    The human mirror neuron system (hMNS) is believed to provide a basic mechanism for social cognition. Event-related desynchronization (ERD) in alpha (8-12Hz) and low beta band (12-20Hz) over sensori-motor cortex has been suggested to index mirror neurons' activity. We tested whether autistic traits revealed by high and low scores on the Autistic Quotient (AQ) in the normal population are linked to variations in the electroencephalogram (EEG) over motor, pre-motor cortex and supplementary motor area (SMA) during action observation. Results revealed that in the low AQ group, the pre-motor cortex and SMA were more active during hand action than static hand observation whereas in the high AQ group the same areas were active both during static and hand action observation. In fact participants with high traits of autism showed greater low beta ERD while observing the static hand than those with low traits and this low beta ERD was not significantly different when they watched hand actions. Over primary motor cortex, the classical alpha and low beta ERD during hand actions relative to static hand observation was found across all participants. These findings suggest that the observation-execution matching system works differently according to the degree of autism traits in the normal population and that this is differentiated in terms of the EEG according to scalp site and bandwidth. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Proposed torque optimized behavior for digital speed control of induction motors

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  16. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Using hierarchical clustering methods to classify motor activities of COPD patients from wearable sensor data

    Reilly John J

    2005-06-01

    Full Text Available Abstract Background Advances in miniature sensor technology have led to the development of wearable systems that allow one to monitor motor activities in the field. A variety of classifiers have been proposed in the past, but little has been done toward developing systematic approaches to assess the feasibility of discriminating the motor tasks of interest and to guide the choice of the classifier architecture. Methods A technique is introduced to address this problem according to a hierarchical framework and its use is demonstrated for the application of detecting motor activities in patients with chronic obstructive pulmonary disease (COPD undergoing pulmonary rehabilitation. Accelerometers were used to collect data for 10 different classes of activity. Features were extracted to capture essential properties of the data set and reduce the dimensionality of the problem at hand. Cluster measures were utilized to find natural groupings in the data set and then construct a hierarchy of the relationships between clusters to guide the process of merging clusters that are too similar to distinguish reliably. It provides a means to assess whether the benefits of merging for performance of a classifier outweigh the loss of resolution incurred through merging. Results Analysis of the COPD data set demonstrated that motor tasks related to ambulation can be reliably discriminated from tasks performed in a seated position with the legs in motion or stationary using two features derived from one accelerometer. Classifying motor tasks within the category of activities related to ambulation requires more advanced techniques. While in certain cases all the tasks could be accurately classified, in others merging clusters associated with different motor tasks was necessary. When merging clusters, it was found that the proposed method could lead to more than 12% improvement in classifier accuracy while retaining resolution of 4 tasks. Conclusion Hierarchical

  18. Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors

    Liu, Kuang-Chen; Friend, James; Yeo, Leslie

    2009-10-01

    Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.

  19. Costly myths. An analysis of idling beliefs and behavior in personal motor vehicles

    Carrico, Amanda R.; Padgett, Paul; Vandenbergh, Michael P.; Gilligan, Jonathan; Wallston, Kenneth A.

    2009-01-01

    Despite the large contribution of individuals and households to climate change, little has been done in the US to reduce the CO 2 emissions attributable to this sector. Motor vehicle idling among individual private citizens is one behavior that may be amenable to large-scale policy interventions. Currently, little data are available to quantify the potential reductions in emissions that could be realized by successful policy interventions. In addition, little is known about the motivations and beliefs that underlie idling. In the fall of 2007, 1300 drivers in the US were surveyed to assess typical idling practices, beliefs and motivations. Results indicate that the average individual idled for over 16 min a day and believed that a vehicle can be idled for at least 3.6 min before it is better to turn it off. Those who held inaccurate beliefs idled, on average, over 1 min longer than the remainder of the sample. These data suggest that idling accounts for over 93 MMt of CO 2 and 10.6 billion gallons (40.1 billion liters) of gasoline a year, equaling 1.6% of all US emissions. Much of this idling is unnecessary and economically disadvantageous to drivers. The policy implications of these findings are discussed. (author)

  20. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia

    Pastore A

    2018-05-01

    Full Text Available Adriana Pastore, Grazia Pierri, Giada Fabio, Silvia Ferramosca, Angelo Gigante, Maria Superbo, Roberta Pellicciari, Francesco Margari Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy Purpose: Typically, the diagnosis of conversion motor disorder (CMD is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD. Patients and methods: Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient–neurologist agreement about the etiological nature of the disorder was also assessed using the k-statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. Results: In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians’ delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. Conclusion: This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our

  1. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus.

    Pan, Yang; Zhang, Libin; Lin, Chenggang; Sun, Jiamin; Kan, Rentao; Yang, Hongsheng

    2015-05-15

    The influence of flow velocity on the motor behavior of the sea cucumber, Apostichopus japonicus was investigated in the laboratory. Cameras were used to record sea cucumber movements and behavior analysis software was used to measure the distance traveled, time spent, upstream or downstream of the start position and the speed of movements. In general, the mean velocity of A. japonicus was below 0.7mms(-1). The maximum velocity recorded for all the sea cucumbers tested was for a large individual (89.25±17.11g), at a flow rate of 4.6±0.5cms(-1). Medium sized (19.68±5.53g) and large individuals moved significantly faster than small individuals (2.65±1.24g) at the same flow rate. A. japonicus moved significantly faster when there was a moderate current (4.6±0.5cms(-1) and 14.7±0.3cms(-1)), compared with the fast flow rate (29.3±3.7cms(-1)) and when there was no flow (0cms(-1)). Sea cucumbers did not show positive rheotaxis in general, but did move in a downstream direction at faster current speeds. Large, medium and small sized individuals moved downstream at the fastest current speed tested, 29.3±3.7cms(-1). When there was no water flow, sea cucumbers tended to move in an irregular pattern. The movement patterns show that the sea cucumber, A. japonicus can move across the direction of flow, and can move both upstream and downstream along the direction of flow. Copyright © 2015. Published by Elsevier Inc.

  2. Differences in psychopathology and behavioral characteristics of patients affected by conversion motor disorder and organic dystonia.

    Pastore, Adriana; Pierri, Grazia; Fabio, Giada; Ferramosca, Silvia; Gigante, Angelo; Superbo, Maria; Pellicciari, Roberta; Margari, Francesco

    2018-01-01

    Typically, the diagnosis of conversion motor disorder (CMD) is achieved by the exclusion of a wide range of organic illnesses rather than by applying positive criteria. New diagnostic criteria are highly needed in this scenario. The main aim of this study was to explore the use of behavioral features as an inclusion criterion for CMD, taking into account the relationship of the patients with physicians, and comparing the results with those from patients affected by organic dystonia (OD). Patients from the outpatient Movement Disorder Service were assigned to either the CMD or the OD group based on Fahn and Williams criteria. Differences in sociodemographics, disease history, psychopathology, and degree of satisfaction about care received were assessed. Patient-neurologist agreement about the etiological nature of the disorder was also assessed using the k -statistic. A logistic regression analysis estimated the discordance status as a predictor to case/control status. In this study, 31 CMD and 31 OD patients were included. CMD patients showed a longer illness life span, involvement of more body regions, higher comorbidity with anxiety, depression, and borderline personality disorder, as well as higher negative opinions about physicians' delivering of proper care. Contrary to our expectations, CMD disagreement with neurologists about the etiological nature of the disorder was not statistically significant. Additional analysis showed that having at least one personality disorder was statistically associated with the discordance status. This study suggests that CMD patients show higher conflicting behavior toward physicians. Contrary to our expectations, they show awareness of their psychological needs, suggesting a possible lack of recognition of psychological distress in the neurological setting.

  3. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  4. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  5. Agriculture--Agricultural Mechanics, Electric Motors. Kit No. 56. Instructor's Manual [and] Student Learning Activity Guide.

    Bomar, William

    An instructor's manual and student activity guide on agricultural mechanics (electric motors) are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  6. Motor competence and cardiorespiratory fitness have greater influence on body fatness than physical activity across time

    Lima, R A; Pfeiffer, K A; Bugge, A

    2017-01-01

    We investigated the longitudinal associations among physical activity (PA), motor competence (MC), cardiorespiratory fitness (VO2peak ), and body fatness across 7 years, and also analyzed the possible mediation effects of PA, MC, and VO2peak on the relationships with body fatness. This was a seven...

  7. The influence of motor activity on the development of cardiac arrhythmias during experimental emotional stress

    Ulyaninskiy, L. S.; Urmancheyeva, T. G.; Stepanyan, Y. P.; Fufacheva, A. A.; Gritsak, A. V.; Kuznetsova, B. A.; Kvitka, A. A.

    1982-01-01

    Experimental emotional stress which can produce various disorders of cardiac rhythm: sinus tachycardia, atrial fibrillation, ventricular, extrasystoles and paroxysmal ventricular tachysystoles was studied. In these conditions the adrenalin content in the blood and myocardium is increased 3 to 4 times. It is found that moderate motor activity leads to a relative decrease of adrenalin in the myocardium and arrest of cardiac arrhythmias.

  8. The Effect of Fine Motor Skill Activities on Kindergarten Student Attention

    Stewart, Roger A.; Rule, Audrey C.; Giordano, Debra A.

    2007-01-01

    This study explored the effect of fine motor skill activities on the development of attention in kindergarteners (n = 68) in five classes at a suburban public school in the Intermountain West through a pretest/posttest experimental group (n = 36) control group (n = 32) design. All children received the regular curriculum which included typical…

  9. Physical activity levels and motor skills of 5 th to 7 th grade students ...

    The physical activity (PA) and motor skill levels (MS) (flexibility, balance, speed, sit-up, hand grip strength, standing long jump) were determined for 5th to 7th grade students from central schools in Nigde Province, Turkey according to age and gender and to investigate the relationships. PAL was determined by means of ...

  10. Human duodenal motor activity in response to acid and different nutrients

    Schwartz, M. P.; Samsom, M.; Smout, A. J.

    2001-01-01

    Duodenal motor activity in response to intraduodenal infusion of small volumes of acid and nutrients of different chemical composition was studied in 10 healthy humans, using a water-perfused catheter incorporating 20 antropyloroduodenal sideholes. Saline and dextrose did not affect motility. Acid

  11. Educational Gymnastics: The Effectiveness of Montessori Practical Life Activities in Developing Fine Motor Skills in Kindergartners

    Bhatia, Punum; Davis, Alan; Shamas-Brandt, Ellen

    2015-01-01

    Research Findings: A quasi-experiment was undertaken to test the effect of Montessori practical life activities on kindergarten children's fine motor development and hand dominance over an 8-month period. Participants were 50 children age 5 in 4 Montessori schools and 50 students age 5 in a kindergarten program in a high-performing suburban…

  12. Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles

    Thomas, CK; Nelson, G; Than, L; Zijdewind, Inge

    The activation order of motor units during electrically evoked contractions of paralyzed or partially paralyzed thenar muscles was determined in seven subjects with chronic cervical spinal cord injury. The median nerve was stimulated percutaneously with pulses of graded intensity to produce

  13. Supplementary motor area and primary auditory cortex activation in an expert break-dancer during the kinesthetic motor imagery of dance to music.

    Olshansky, Michael P; Bar, Rachel J; Fogarty, Mary; DeSouza, Joseph F X

    2015-01-01

    The current study used functional magnetic resonance imaging to examine the neural activity of an expert dancer with 35 years of break-dancing experience during the kinesthetic motor imagery (KMI) of dance accompanied by highly familiar and unfamiliar music. The goal of this study was to examine the effect of musical familiarity on neural activity underlying KMI within a highly experienced dancer. In order to investigate this in both primary sensory and motor planning cortical areas, we examined the effects of music familiarity on the primary auditory cortex [Heschl's gyrus (HG)] and the supplementary motor area (SMA). Our findings reveal reduced HG activity and greater SMA activity during imagined dance to familiar music compared to unfamiliar music. We propose that one's internal representations of dance moves are influenced by auditory stimuli and may be specific to a dance style and the music accompanying it.

  14. Different patterns of motor activity induce differential plastic changes in pyramidal neurons in the motor cortex of rats: A Golgi study.

    Vázquez-Hernández, Nallely; González-Tapia, Diana C; Martínez-Torres, Nestor I; González-Tapia, David; González-Burgos, Ignacio

    2017-09-14

    Rehabilitation is a process which favors recovery after brain damage involving motor systems, and neural plasticity is the only real resource the brain has for inducing neurobiological events in order to bring about re-adaptation. Rats were placed on a treadmill and made to walk, in different groups, at different velocities and with varying degrees of inclination. Plastic changes in the spines of the apical and basal dendrites of fifth-layer pyramidal neurons in the motor cortices of the rats were detected after study with the Golgi method. Numbers of dendritic spines increased in the three experimental groups, and thin, mushroom, stubby, wide, and branched spines increased or decreased in proportion depending on the motor demands made of each group. Along with the numerical increase of spines, the present findings provide evidence that dendritic spines' geometrical plasticity is involved in the differential performance of motor activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. PROMOTING GROSS MOTOR SKILLS IN TODDLERS: THE ACTIVE BEGINNINGS PILOT CLUSTER RANDOMIZED TRIAL.

    Veldman, Sanne L C; Okely, Anthony D; Jones, Rachel A

    2015-12-01

    This study examined the feasibility, acceptability, and potential efficacy of a gross motor skill program for toddlers. An 8-wk. skills program in which children practiced three skills was implemented for 10 min. daily in two randomly designated childcare centers. Two other centers served as the control group. Recruitment and retention rates were collected for feasibility. Data on professional development, children's participation, program duration, and appropriateness of the lessons were collected for acceptability, and the Test of Gross Motor Development-2 and Get Skilled, Get Active (total of 28 points) were used to look at the potential efficacy. The participants were 60 toddlers (M age=2.5 yr., SD=0.4; n=29 boys), and the retention rate was 95%. Overall participation was 76%, and educators rated 98% of the lessons as appropriate. Compared with the control group, the intervention group showed significantly greater improvements in motor skills (pmotor skills among toddlers.

  16. Dopamine D1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit.

    Avila-Luna, Alberto; Gálvez-Rosas, Arturo; Alfaro-Rodríguez, Alfonso; Reyes-Legorreta, Celia; Garza-Montaño, Paloma; González-Piña, Rigoberto; Bueno-Nava, Antonio

    2018-01-15

    The sensorimotor cortex and the striatum are interconnected by the corticostriatal pathway, suggesting that cortical injury alters the striatal function that is associated with skilled movements and motor learning, which are functions that may be modulated by dopamine (DA). In this study, we explored motor coordination and balance in order to investigate whether the activation of D 1 receptors (D 1 Rs) modulates functional recovery after cortical injury. The results of the beam-walking test showed motor deficit in the injured group at 24, 48 and 96h post-injury, and the recovery time was observed at 192h after cortical injury. In the sham and injured rats, systemic administration of the D 1 R antagonist SCH-23390 (1mg/kg) alone at 24, 48, 96 and 192h significantly (Pmotor deficit, while administration of the D 1 R agonist SKF-38393 alone (2, 3 and 4mg/kg) at 24, 48, 96 and 192h post-injury did not produce a significant difference; however, the co-administration of SKF-38393 and SCH-23390 prevented the antagonist-induced increase in the motor deficit. The cortical+striatal injury showed significantly increased the motor deficit at 24, 48, 96 and 192h post-injury (Pmotor recovery, but the activation of D 1 Rs maintained motor coordination, confirming that an intact striatum may be necessary for achieving recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. How emotion context modulates unconscious goal activation during motor force exertion.

    Blakemore, Rebekah L; Neveu, Rémi; Vuilleumier, Patrik

    2017-02-01

    Priming participants with emotional or action-related concepts influences goal formation and motor force output during effort exertion tasks, even without awareness of priming information. However, little is known about neural processes underpinning how emotional cues interact with action (or inaction) goals to motivate (or demotivate) motor behaviour. In a novel functional neuroimaging paradigm, visible emotional images followed by subliminal action or inaction word primes were presented before participants performed a maximal force exertion. In neutral emotional contexts, maximum force was lower following inaction than action primes. However, arousing emotional images had interactive motivational effects on the motor system: Unpleasant images prior to inaction primes increased force output (enhanced effort exertion) relative to control primes, and engaged a motivation-related network involving ventral striatum, extended amygdala, as well as right inferior frontal cortex. Conversely, pleasant images presented before action (versus control) primes decreased force and activated regions of the default-mode network, including inferior parietal lobule and medial prefrontal cortex. These findings show that emotional context can determine how unconscious goal representations influence motivational processes and are transformed into actual motor output, without direct rewarding contingencies. Furthermore, they provide insight into altered motor behaviour in psychopathological disorders with dysfunctional motivational processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  19. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (pmotor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Task-Relevant Information Modulates Primary Motor Cortex Activity Before Movement Onset.

    Calderon, Cristian B; Van Opstal, Filip; Peigneux, Philippe; Verguts, Tom; Gevers, Wim

    2018-01-01

    Monkey neurophysiology research supports the affordance competition hypothesis (ACH) proposing that cognitive information useful for action selection is integrated in sensorimotor areas. In this view, action selection would emerge from the simultaneous representation of competing action plans, in parallel biased by relevant task factors. This biased competition would take place up to primary motor cortex (M1). Although ACH is plausible in environments affording choices between actions, its relevance for human decision making is less clear. To address this issue, we designed an functional magnetic resonance imaging (fMRI) experiment modeled after monkey neurophysiology studies in which human participants processed cues conveying predictive information about upcoming button presses. Our results demonstrate that, as predicted by the ACH, predictive information (i.e., the relevant task factor) biases activity of primary motor regions. Specifically, first, activity before movement onset in contralateral M1 increases as the competition is biased in favor of a specific button press relative to activity in ipsilateral M1. Second, motor regions were more tightly coupled with fronto-parietal regions when competition between potential actions was high, again suggesting that motor regions are also part of the biased competition network. Our findings support the idea that action planning dynamics as proposed in the ACH are valid both in human and non-human primates.

  1. Patterns of motor activity in the isolated nerve cord of the octopus arm.

    Gutfreund, Yoram; Matzner, Henry; Flash, Tamar; Hochner, Binyamin

    2006-12-01

    The extremely flexible octopus arm provides a unique opportunity for studying movement control in a highly redundant motor system. We describe a novel preparation that allows analysis of the peripheral nervous system of the octopus arm and its interaction with the muscular and mechanosensory elements of the arm's intrinsic muscular system. First we examined the synaptic responses in muscle fibers to identify the motor pathways from the axial nerve cord of the arm to the surrounding musculature. We show that the motor axons project to the muscles via nerve roots originating laterally from the arm nerve cord. The motor field of each nerve is limited to the region where the nerve enters the arm musculature. The same roots also carry afferent mechanosensory information from the intrinsic muscle to the axial nerve cord. Next, we characterized the pattern of activity generated in the dorsal roots by electrically stimulating the axial nerve cord. The evoked activity, although far reaching and long lasting, cannot alone account for the arm extension movements generated by similar electrical stimulation. The mismatch between patterns of activity in the isolated cord and in an intact arm may stem from the involvement of mechanosensory feedback in natural arm extension.

  2. Effect of visual feedback on brain activation during motor tasks: an FMRI study.

    Noble, Jeremy W; Eng, Janice J; Boyd, Lara A

    2013-07-01

    This study examined the effect of visual feedback and force level on the neural mechanisms responsible for the performance of a motor task. We used a voxel-wise fMRI approach to determine the effect of visual feedback (with and without) during a grip force task at 35% and 70% of maximum voluntary contraction. Two areas (contralateral rostral premotor cortex and putamen) displayed an interaction between force and feedback conditions. When the main effect of feedback condition was analyzed, higher activation when visual feedback was available was found in 22 of the 24 active brain areas, while the two other regions (contralateral lingual gyrus and ipsilateral precuneus) showed greater levels of activity when no visual feedback was available. The results suggest that there is a potentially confounding influence of visual feedback on brain activation during a motor task, and for some regions, this is dependent on the level of force applied.

  3. Motor performance as predictor of physical activity in children - The CHAMPS Study-DK

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina

    , health-related fitness and performance-related fitness were significantly associated to time spent at moderate to vigorous physical activity level at three years follow up. The clinical relevance of the results indicated cardiorespiratory fitness and shuttle run to be important skills to perceive......Background Physical activity is associated to several health benefits in children and has a tendency to track from childhood to adulthood. An adequate motor performance has been shown positively related to physical activity level in cross sectional studies and may be the foundation of a healthy...... lifestyle, but there is a lack of longitudinal studies. The objective of this study was to explore the longitudinal relationship between motor performance and physical activity in a three-year follow up study. Methods Longitudinal analyses were performed using data from the CHAMPS-Study DK, including 673...

  4. Relationships between levels of motor coordination, attention and physical activity in children: The mediation model

    Jakub Kokštejn

    2012-12-01

    Full Text Available BACKGROUND: Current findings suggest that physical activity of children with developmental difficulties may be limited by low level of motor coordination. Motor difficulties are often connected with children suffering from attention deficit disorder. OBJECTIVE: The aim of the study was to find out the level of physical activity (PA in older school-age children with motor difficulties (MD in comparison with children without MD and to reveal possible mediate impact on attention between the level of motor skills and PA in children of this age. METHODS: Participants were divided into two groups: 15 children with MD (age 13.7 ± 1.6 years and 27 children without MD (age 13.3 ± 1.4 years. Motor functions were assessed by means of test battery MABC-2, weekly physical activity by means of Actigraph accelerometer and attention by both d2 and numeric square tests. To estimate the mediation of the attention level we have used Baron's & Kenny's (1986 analysis. RESULTS: In most of the indicators of PA, children with MD reached lower value than those without MD. The differences of statistical significance were found in the number of steps per week and weekdays (d = 0.50 and 0.64 respectively and in PA of a very high intensity (d =2 .00 in boys with and without MD. In girls with MD we have found out significantly less time spent in vigorous intensity PA (d = 0.86. The study results support the hypothesis of developmental motor deficits to be a risk factor for PA in older school-age children. Significant mediation effect of concentration of attention in the relationship between the level of motor skills and PA was observed in three cases - in the relationship between gross motor skills on the one hand, and energy expenditure per week and weekdays, and vigorous intensity PA per week on the other. The amount of mediation effect of attention concentration ranged between 12-22%. CONCLUSION: The study has indicated that children's participation in PA can be

  5. Generalized Motor Abilities and Timing Behavior in Children with Specific Language Impairment

    Zelaznik, Howard N.; Goffman, Lisa

    2010-01-01

    Purpose: To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Method: Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing…

  6. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  7. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  8. Analysis of the Motor Activities of Professional Polish Soccer Players

    Andrzejewski Marcin

    2016-12-01

    Full Text Available Introduction. The aims of the present study were to determine the activity profiles of a large sample of Polish Premier League soccer players during elite-standard soccer matches depending on their position on the pitch and the intensity range of physical activity. Material and methods. The study sample comprised 1,178 players in 5 outfield positions: external defenders (ED, n = 289, central defenders (CD, n = 307, central midfield players (CM, n = 327, external midfield players (EM, n = 152, and forwards (F, n = 103. Altogether, 81 Polish League games held during four domestic seasons (2010-2011, 2011-2012, 2012-2013, and 2013-2014 were used in the analysis. A semi-automatic computerised player tracking system (Amisco Pro®, version 1.0.2, Nice, France was applied to create the match activity profiles of the teams. Results. The results of statistical analysis revealed that the average total distance covered by all the players (n = 1,178 was 11,313 ± 852 m. With respect to the players’ position on the pitch, the central midfielders travelled the longest average distance (11,894 ± 765 m during the game. The longest distance was covered in the V1 intensity range (62%, followed by V2 (15%, V3 (10%, V4 (8%, V5 (3%, and V6 (2%. Conclusions. The objective of this study was to verify the differences among playing positions and to quantify the demands placed on elite Polish soccer players in each individual position during match play. While analysing elite-level match play in terms of the overall distance covered in different categories of intensity, we found a number of statistically significant differences between different playing positions. The data presented in this study can be regarded as norms for elite soccer players, serve for present and future comparison, and represent the scientific basis for developing position-specific conditioning/training protocols in soccer.

  9. Automatic activation of motor programs by object affordances in patients with Parkinson's disease

    Oguro, Hiroaki; Ward, Robert; Bracewel, Martyn; Hindle, John; Rafal, Robert

    2009-01-01

    Clinical observations of kinesia paradoxica and freezing in patients with Parkinson's disease suggest that the automatic activation of motor programmes by visual stimuli may not require intact basal ganglia function, and that an increased sensitivity to such object affordances may contribute to some symptoms of the disease. Employing a paradigm that measures the degree of interference from object affordances on voluntary actions, we confirm that activation of object affordances are preserved ...

  10. Cluster analysis of activity-time series in motor learning

    Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A

    2002-01-01

    Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...

  11. NaV1.6a is required for normal activation of motor circuits normally excited by tactile stimulation

    Low, Sean E.; Zhou, Weibin; Choong, Xinling; Saint-Amant, Louis; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Hume, Richard I.; Kuwada, John Y.

    2010-01-01

    A screen for zebrafish motor mutants identified two non-complementing alleles of a recessive mutation that were named non-active (navmi89 and navmi130). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first three days of development. Genetic mapping identified the gene encoding NaV1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in NaV1.6a that eliminated channel activity when assayed heterologously. Furthermore the injection of RNA encoding wild type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that NaV1.6a was required for touch-induced activation of the swim locomotor network. PMID:20225246

  12. Progress and perspectives of the Brazilian scientific production in international journals in the field of motor behavior

    Ana Paula Kogake Claudio

    2009-09-01

    Full Text Available In view of the fact that one of the key indicators of scientific production is the number of papers published in international journals, and of the apparent growing interest in the area of motor behavior, we conducted a survey of articles published by Brazilian researchers in this area over the last 10 years (1999-2008 in international journals rated “Qualis International-A” and “Qualis International-B” by CAPES. This quantification was performed to provide a qualified viewpoint regarding the profile of Brazilian scientific production of international repercussion in the area of motor behavior. Articles were identified using the Google Scholar, Pubmed, Science Direct, and Scopus search systems, with the search being restricted to characteristic terms involving motor behavior and to researchers associated with Brazilian universities. The results showed an increase in production over the last 5 years of the period studied, with the peak in 2006. In addition, Brazilian scientific production was concentrated in four public universities. These results suggest that in order to keep growing, the new groups should work in collaboration with productive laboratories, decentralizing the scientific production.

  13. Motor fuel prices in Turkey

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  14. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors.

    Wang, Wei; Duan, Wentao; Ahmed, Suzanne; Sen, Ayusman; Mallouk, Thomas E

    2015-07-21

    The assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure. Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as active matter. In this Account, we focus on the powered assembly and collective behavior of self-propelled colloids. These nano- and microparticles, also called nano- and micromotors or microswimmers, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression

  15. INDIVIDUAL CHARACTERISTICS OF THE STUDENTS ENROLLED IN DIFFERENT TYPES OF MOTOR ACTIVITY OF PHYSICAL EDUCATION

    E. M. Revenko

    2017-01-01

    Full Text Available The aim of this study was to examine intensity of motor and intellectual abilities and motivation for physical activity of students engaged in physical education in different sports groups.Methodology and research methods. Motor abilities of the students were assessed by measuring: hand, strength endurance, speed-power abilities, speed ability and general stamina. Assessment of general intelligence (GI was carried out by R. Amthauer’s test in the adaptation of L. A. Yasjukova. Formal-dynamic characteristics of the individuality (FDCI were studied using the technique of FDCI feedback form proposed by V. M. Rusalov. Assessment of motivation to implement motor activity was performed using the author's questionnaire. The method of statistical information processing has allowed the author to reveal correlation communications between motor abilities and GI of first-year students.Results. Significant differences in the manifestation of the individual students’ characteristics choosing practicing in different types of physical activity are experimentally established. In particular, students who chose table tennis, are inferior to the students who went in for wrestling in the manifestation of certain (power, motor skills, motivation for physical activity, but at the same time show relatively higher rates of certain intellectual abilities.Formal-dynamic traits of individuality are peculiar to students involved in table tennis, reflecting lower psychomotor activity (integrated indicator PDI - Psychomotor Development Index, in comparison with students who prefer fighting. The material presented provides a basis to argue that sports-oriented approach has some potential in the aspect of increase of efficiency of students’ physical education, distinguished by individual characteristics of age specific development.Scientific novelty. Scientific findings on distinct differences in motivation to physical activity, manifestation of motor and mental

  16. Motor speech signature of behavioral variant frontotemporal dementia: Refining the phenotype.

    Vogel, Adam P; Poole, Matthew L; Pemberton, Hugh; Caverlé, Marja W J; Boonstra, Frederique M C; Low, Essie; Darby, David; Brodtmann, Amy

    2017-08-22

    To provide a comprehensive description of motor speech function in behavioral variant frontotemporal dementia (bvFTD). Forty-eight individuals (24 bvFTD and 24 age- and sex-matched healthy controls) provided speech samples. These varied in complexity and thus cognitive demand. Their language was assessed using the Progressive Aphasia Language Scale and verbal fluency tasks. Speech was analyzed perceptually to describe the nature of deficits and acoustically to quantify differences between patients with bvFTD and healthy controls. Cortical thickness and subcortical volume derived from MRI scans were correlated with speech outcomes in patients with bvFTD. Speech of affected individuals was significantly different from that of healthy controls. The speech signature of patients with bvFTD is characterized by a reduced rate (75%) and accuracy (65%) on alternating syllable production tasks, and prosodic deficits including reduced speech rate (45%), prolonged intervals (54%), and use of short phrases (41%). Groups differed on acoustic measures derived from the reading, unprepared monologue, and diadochokinetic tasks but not the days of the week or sustained vowel tasks. Variability of silence length was associated with cortical thickness of the inferior frontal gyrus and insula and speech rate with the precentral gyrus. One in 8 patients presented with moderate speech timing deficits with a further two-thirds rated as mild or subclinical. Subtle but measurable deficits in prosody are common in bvFTD and should be considered during disease management. Language function correlated with speech timing measures derived from the unprepared monologue only. © 2017 American Academy of Neurology.

  17. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses.

    Zaluski, Rodrigo; Kadri, Samir Moura; Alonso, Diego Peres; Martins Ribolla, Paulo Eduardo; de Oliveira Orsi, Ricardo

    2015-05-01

    Bees play a crucial role in pollination and generate honey and other hive products; therefore, their worldwide decline is cause for concern. New broad-spectrum systemic insecticides such as fipronil can harm bees and their use has been discussed as a potential threat to bees' survival. In the present study, the authors evaluate the in vitro toxicity of fipronil and note behavioral and motor activity changes in Africanized adult Apis mellifera that ingest or come into contact with lethal or sublethal doses of fipronil. The effects of sublethal doses on brood viability, population growth, behavior, and the expression of the defensin 1 gene in adult bees were studied in colonies fed with contaminated sugar syrup (8 µg fipronil L(-1) ). Fipronil is highly toxic to bees triggering agitation, seizures, tremors, and paralysis. Bees that are exposed to a lethal or sublethal doses showed reduced motor activity. The number of eggs that hatched, the area occupied by worker eggs, and the number of larvae and pupae that developed were reduced, adult bees showed lethargy, and colonies were abandoned when they were exposed to sublethal doses of fipronil. No change was seen in the bees' expression of defensin 1. The authors conclude that fipronil is highly toxic to honey bees and even sublethal doses may negatively affect the development and maintenance of colonies. © 2015 SETAC.

  18. Analysis of automated quantification of motor activity in REM sleep behaviour disorder

    Frandsen, Rune; Nikolic, Miki; Zoetmulder, Marielle

    2015-01-01

    Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by dream enactment and REM sleep without atonia. Atonia is evaluated on the basis of visual criteria, but there is a need for more objective, quantitative measurements. We aimed to define and optimize a method for establishing...... baseline and all other parameters in automatic quantifying submental motor activity during REM sleep. We analysed the electromyographic activity of the submental muscle in polysomnographs of 29 patients with idiopathic RBD (iRBD), 29 controls and 43 Parkinson's (PD) patients. Six adjustable parameters...... were validated on PD patients. Automatic baseline estimation improved characterization of atonia during REM sleep, as it eliminates inter/intra-observer variability and can be standardized across diagnostic centres. We found an optimized method for quantifying motor activity during REM sleep...

  19. Motor abilities, activities, and participation of institutionalized Brazilian children and adolescents with cerebral palsy

    Tainá Ribas Mélo

    2017-11-01

    Full Text Available Abstract Aim: To assess motor abilities and functioning of institutionalized children and adolescents with cerebral palsy (CP within a contextual model of development. Methods: Eleven institutionalized Brazilian children and adolescents aged 2-19 (14 ± 5 years, 5 males and 6 females, were evaluated through the Gross Motor Function Measure (GMFM-88 and 66 and the Functional Independence Measure (FIM, and classified according to the ICF core set. Results: The evaluated individuals have severe impairments as indicated by their GMFM scores and confirmed by their need for full assistance in basic activities of daily living according to the FIM assessment. The difficulties manifested reflected on the ICF body functions and activities and participation domains. Conclusion: Most institutionalized children and adolescents with CP had GMFM-66 scores comparable to those indicated in literature. The ICF-based assessment identified environmental barriers that might be considered for improvement in order to facilitate activities and participation.

  20. May functional imaging be helpful for behavioral assessment in children? Regions of motor and associative cortico-subcortical circuits can be differentiated by laterality and rostrality

    Julia M. August

    2015-06-01

    Full Text Available Background: Cortico-subcortical circuits are organized into the sensorimotor, associative and limbic loop. These neuronal preconditions play an important role regarding the understanding and treatment of behavioral problems in children. Differencing evidence argues for a lateralized organization of the sensorimotor loop and a bilateral (i.e. non-lateralized organization of the associative loop. However, a firm behavioral-neurobiological distinction of these circuits has been difficult, specifically in children. Objectives: Thus, the aim was a comprehensive functional visualization and differentiation of the sensorimotor and the associative circuit during childhood. As a new approach, laterality and rostrality features were used to distinguish between the two circuits within one single motor task. Methods: 24 healthy boys performed self-paced index finger tapping with each hand separately during functional magnetic resonance imaging at 3 Tesla. Results: A contrast analysis for left against right hand movement revealed lateralized activation in typical sensorimotor regions such as primary sensorimotor cortex, caudal supplementary motor area (SMA, caudal putamen and thalamus. A conjunction analysis confirmed bilateral involvement of known associative regions including pre-SMA, rostral SMA and rostral putamen. Conclusion: A functional visualization of two distinct corticostriatal circuits is provided in childhood. Both, the sensorimotor and associative circuit may be discriminated by their laterality characteristics already in minors. Additionally, the results support the concept of a modified functional subdivision of the SMA in a rostral (associative and caudal (motor part. A further development of this approach might help to nurture behavioral assessment and neurofeedback training in child mental health.

  1. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  2. Motor activation in literal and non literal sentences: does time matter?

    Cristina eCacciari

    2013-05-01

    Full Text Available Despite the impressive amount of evidence showing involvement of the sensorimotor systems in language processing, important questions remain unsolved among which the relationship between non literal uses of language and sensorimotor activation. The literature did not yet provide a univocal answer on whether the comprehension of non literal, abstract motion sentences engages the same neural networks recruited for literal sentences. A previous TMS study using the same experimental materials of the present study showed activation for literal, fictive and metaphoric motion sentences but not for idiomatic ones. To evaluate whether this may depend on insufficient time for elaborating the idiomatic meaning, we conducted a behavioural experiment that used a sensibility judgment task performed by pressing a button either with a hand finger or with a foot. Motor activation is known to be sensitive to the action-congruency of the effector used for responding. Therefore, all other things being equal, significant differences between response emitted with an action-congruent or incongruent effector (foot vs. hand may be attributed to motor activation. Foot-related action verbs were embedded in sentences conveying literal motion, fictive motion, metaphoric motion or idiomatic motion. Mental sentences were employed as a control condition. Foot responses were significantly faster than finger responses but only in literal motion sentences. We hypothesize that motor activation may arise in early phases of comprehension processes (i.e. upon reading the verb for then decaying as a function of the strength of the semantic motion component of the verb.

  3. EMG analysis tuned for determining the timing and level of activation in different motor units.

    Lee, Sabrina S M; Miara, Maria de Boef; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2011-08-01

    Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., synergy force vector was reduced by ~45% when generalizability requirements were imposed. Muscles recruited in the generalizable muscle activation patterns had less sensitive torque-producing characteristics to changes in postures. We

  5. Childhood motor skill proficiency as a predictor of adolescent physical activity.

    Barnett, Lisa M; van Beurden, Eric; Morgan, Philip J; Brooks, Lyndon O; Beard, John R

    2009-03-01

    Cross-sectional evidence has demonstrated the importance of motor skill proficiency to physical activity participation, but it is unknown whether skill proficiency predicts subsequent physical activity. In 2000, children's proficiency in object control (kick, catch, throw) and locomotor (hop, side gallop, vertical jump) skills were assessed in a school intervention. In 2006/07, the physical activity of former participants was assessed using the Australian Physical Activity Recall Questionnaire. Linear regressions examined relationships between the reported time adolescents spent participating in moderate-to-vigorous or organized physical activity and their childhood skill proficiency, controlling for gender and school grade. A logistic regression examined the probability of participating in vigorous activity. Of 481 original participants located, 297 (62%) consented and 276 (57%) were surveyed. All were in secondary school with females comprising 52% (144). Adolescent time in moderate-to-vigorous and organized activity was positively associated with childhood object control proficiency. Respective models accounted for 12.7% (p = .001), and 18.2% of the variation (p = .003). Object control proficient children became adolescents with a 10% to 20% higher chance of vigorous activity participation. Object control proficient children were more likely to become active adolescents. Motor skill development should be a key strategy in childhood interventions aiming to promote long-term physical activity.

  6. Children's Physical Activity Behavior during School Recess

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Troelsen, Jens

    2016-01-01

    participated in go-along group interviews, and recess behavior was observed using an ethnographical participant observation approach. All data were analyzed separated systematically answering the Five W Questions. Children were categorized into Low, Middle and High physical activity groups and these groups...... quantitative GPS and accelerometer measurements with qualitative go-along group interviews and participant observations. Data were collected during three weekdays in a public school in Denmark. Eighty-one children (47 girls) wore an accelerometer (ActiGraph GT3X) and GPS (QStarz BT-Q1000xt), sixteen children...

  7. Generalized motor abilities and timing behavior in children with specific language impairment.

    Zelaznik, Howard N; Goffman, Lisa

    2010-04-01

    To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing tasks, including tapping and drawing circles in time with a metronome or a visual target. Fourteen children with SLI (age 6 to 8 years) and 14 age-matched peers who were typically developing participated. As expected, children with SLI showed poorer performance on a standardized test of gross and fine motor skill than did their normally developing peers. However, timing skill in the manual domain was equivalent to that seen in typically developing children. Consistent with earlier findings, relatively poor gross and fine motor performance is observed in children with SLI. Surprisingly, rhythmic timing is spared.

  8. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2014-10-03

    We utilized functional magnetic resonance imaging (fMRI) to evaluate the common brain region of motor imagery for the right and left upper and lower limbs. The subjects were instructed to repeatedly imagined extension and flexion of the right or left hands/ankles. Brain regions, which included the supplemental motor area (SMA), premotor cortex and parietal cortex, were activated during motor imagery. Conjunction analysis revealed that the left SMA and inferior frontal gyrus (IFG)/ventral premotor cortex (vPM) were commonly activated with motor imagery of the right hand, left hand, right foot, and left foot. This result suggests that these brain regions are activated during motor imagery in an effector independent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  10. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis

    Cheng Alice

    2011-07-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α. Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.

  11. FM-CW radar sensors for vital signs and motor activity monitoring

    Octavian Adrian Postolache

    2011-12-01

    Full Text Available The article summarizes on-going research on vital signs and motor activity monitoring based on radar sensors embedded in wheelchairs, walkers and crutches for in home rehabilitation. Embedded sensors, conditioning circuits, real-time platforms that perform data acquisition, auto-identification, primary data processing and data communication contribute to convert daily used objects in home rehabilitation into smart objects that can be accessed by caregivers during the training sessions through human–machine interfaces expressed by the new generation of smart phones or tablet computers running Android OS or iOS operating systems. The system enables the management of patients in home rehabilitation by providing more accurate and up-to-date information using pervasive computing of vital signs and motor activity records.

  12. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

    Avolio, Edwin

    1992-03-01

    A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

  13. Does Physical Self-Concept Mediate the Relationship between Motor Abilities and Physical Activity in Adolescents and Young Adults?

    Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander

    2017-01-01

    The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914

  14. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation.

    Clark, Brian C; Taylor, Janet L; Hong, S Lee; Law, Timothy D; Russ, David W

    2015-09-01

    Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  16. Clinical application of fMRI: Activation of the motor cortex in an LIS patient

    Mao, H.; Popp, C.A.; Song, A.W.; Kennedy, P.R.

    1999-01-01

    Patients suffering from the Locked-in Syndrome are completely paralyzed over their entire body, while their brain retains full consciousness. Functional magnetic resonance imaging (fMRI) is a method applied to identify those areas of the brain where activities of neurons indicate motor performance, and which might be electronically stimulated and used for controlling electronic aids expressing intended movements of the patient. (orig./CB) [de

  17. Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.

    Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter

    2012-09-01

    The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.

  18. The Potential of Active Video Games (AVG to Improve Motor Efficiency

    Luka Šlosar

    2016-04-01

    Full Text Available The growing interest in video games and the related increase in sedentary lifestyles among adolescents has encouraged researchers to look for alternative strategies replacing the passive time in front of the screen with the active one. The solution was found in active video games (AVG, which require physical activity from the player. Given encouraging results about the impact of AVG on healthy lifestyle, subsequent studies were expanded to cover the area of motor abilities and sports performance. The purpose of our article is to determine whether the use of AVG can improve sport performance, bring progress in sports and rehabilitation.

  19. The effect of a physical activity intervention on preschoolers' fundamental motor skills - A cluster RCT.

    Wasenius, Niko S; Grattan, Kimberly P; Harvey, Alysha L J; Naylor, Patti-Jean; Goldfield, Gary S; Adamo, Kristi B

    2018-07-01

    To assess the effect of a physical activity intervention delivered in the childcare centres (CC), with or without a parent-driven home physical activity component, on children's fundamental motor skills (FMS). Six-month 3-arm cluster randomized controlled trial. Preschoolers were recruited from 18 licensed CC. CC were randomly assigned to a typical curriculum comparison group (COM), childcare intervention alone (CC), or childcare intervention with parental component (CC+HOME). FMS was measured with the Test of Gross Motor Development-2. Linear mixed models were performed at the level of the individual while accounting for clustering. Raw locomotor skills score increased significantly in the CC group (mean difference=2.5 units, 95% Confidence Intervals, CI, 1.0-4.1, p0.05) between group differences were observed in the raw object control skills, sum of raw scores, or gross motor quotient. No significant sex differences were found in any of the measured outcomes. A physical activity intervention delivered in childcare with or without parents' involvement was effective in increasing locomotor skills in preschoolers. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. RATING CHANGES INTRODUCED IN SOME CHARACTERISTIC MORPHOLOGICAL AND BASIC-SPECIFIC MOTOR SKILLS TO YOUNG ACTIVE AND INACTIVE BASKETBALL PLAYERS

    Qazim Elshani; Hazir Salihu

    2016-01-01

    The experiment deals with young people aged 13-14 years, male. Basketball team active and inactive, active group in addition to regular classes; they also practice basketball in clubs within the city. The experiment contains a total of eight morphological variables; five variables are the basic motor tests, while three tests of motor skills, situational. In this research, it applied test method T-group basketball between active and inactive, and morphological variables of specific movement sk...

  1. Perceived sports competence mediates the relationship between childhood motor skill proficiency and adolescent physical activity and fitness: a longitudinal assessment

    van Beurden Eric; Morgan Philip J; Barnett Lisa M; Beard John R

    2008-01-01

    Abstract Background The purpose of this paper was to investigate whether perceived sports competence mediates the relationship between childhood motor skill proficiency and subsequent adolescent physical activity and fitness. Methods In 2000, children's motor skill proficiency was assessed as part of a school-based physical activity intervention. In 2006/07, participants were followed up as part of the Physical Activity and Skills Study and completed assessments for perceived sports competenc...

  2. More active pre-school children have better motor competence at school starting age: an observational cohort study

    Barnett, Lisa M.; Salmon, Jo; Hesketh, Kylie D.

    2016-01-01

    Abstract Background Almost half of young children do not achieve minimum recommendations of 60 daily minutes in physical activity. Physical activity is potentially an important determinant of the development of motor competence in children. This study is one of very few longitudinal studies in this area and the first to investigate early childhood physical activity as a predictor of subsequent motor skill competence. Methods Children were assessed as part of the Melbourne InFANT Program longi...

  3. Understanding physical (in-) activity, overweight, and obesity in childhood: Effects of congruence between physical self-concept and motor competence.

    Utesch, T; Dreiskämper, D; Naul, R; Geukes, K

    2018-04-12

    Both the physical self-concept and actual motor competence are important for healthy future physical activity levels and consequently decrease overweight and obesity in childhood. However, children scoring high on motor competence do not necessarily report high levels of physical self-concept and vice versa, resulting in respective (in-) accuracy also referred to as (non-) veridicality. This study examines whether children's accuracy of physical self-concept is a meaningful predictive factor for their future physical activity. Motor competence, physical self-concept and physical activity were assessed in 3 rd grade and one year later in 4 th grade. Children's weight status was categorized based on WHO recommendations. Polynomial regression with Response surface analyses were conducted with a quasi-DIF approach examining moderating weight status effects. Analyses revealed that children with higher motor competence levels and higher self-perceptions show greater physical activity. Importantly, children who perceive their motor competence more accurately (compared to less) show more future physical activity. This effect is strong for underweight and overweight/obese children, but weak for normal weight children. This study indicates that an accurate self-perception of motor competence fosters future physical activity beyond single main effects, respectively. Hence, the promotion of actual motor competence should be linked with the respective development of accurate self-knowledge.

  4. Individualized behavioral assessments and maternal ratings of mastery motivation in mental age-matched toddlers with and without motor delay.

    Wang, Pei-Jung; Morgan, George A; Hwang, Ai-Wen; Liao, Hua-Fang

    2013-01-01

    Mastery motivation is a precursor of future developmental outcomes. Evidence about whether toddlers with motor delay have lower mastery motivation is inconclusive. The purpose of this study was to examine differences between mental age-matched toddlers with and without motor delay on various mastery motivation indicators. A mental age- and sex-matched case-control study was performed. Twenty-two children with motor delay, aged 23 to 47 months, and 22 children who were developing typically, aged 15 to 29 months, were recruited. Persistence and mastery pleasure were measured with behavioral tasks that were moderately challenging for each child and with maternal ratings using the Dimensions of Mastery Questionnaire (DMQ). The DMQ was rated by each child's mother based on her perception of her child's motivation. Two types of structured tasks (a puzzle and a cause-effect toy selected to be moderately challenging for each child) were administered in a laboratory setting and recorded on videos. Paired t tests or Wilcoxon signed rank tests were used to examine group differences in persistence and mastery pleasure (α=.007, 2-tailed). Children with motor delay were rated lower on DMQ persistence than the typically developing group, but they did not show significantly lower persistence on the structured tasks. There were no significant differences in mastery pleasure between the 2 groups on either measure. Large within-sample variability on the tasks and small sample size makes subgroup analysis (eg, different severities) difficult. Toddlers with motor delay did not show lower persistence and pleasure when given tasks that were moderately challenging; however, their mothers tended to view them as having lower motivation. Clinicians and parents should provide appropriately challenging tasks to increase children's success and motivation.

  5. Risky behavior of drivers of motorized two wheeled vehicles in India.

    Dandona, Rakhi; Kumar, G Anil; Dandona, Lalit

    2006-01-01

    Motorized two-wheeled vehicles (MTV) account for a large proportion of road traffic in India and the riders of these vehicles have a high risk of road traffic injuries. We report on the availability of drivers licenses, use of a helmet, driver behavior, and condition of vehicles for MTV drivers in Hyderabad, a city in India Drivers of a MTV aged >16 years were interviewed at petrol filling stations There were 4,183 MTV drivers who participated in the study. Four hundred sixty one (11%; 95% CI 9.7-12.3%) drivers had not obtained a drivers license and 798 (21.4%) had obtained a license without taking the mandatory driving test. Two thousand nine hundred twenty (69.8%; 95% CI 67.9-71.7%) drivers reported no/very occasional use of a helmet, the significant predictors of which included that those driving borrowed a MTV (odds ratio 7.90; 95% CI 3.40-18.40) or driving moped/scooterette/scooter as compared with motorcycle (3.32; 2.76-3.98), lower education (3.10; 2.66-3.61), age >45 years (2.41; 1.63-3.57), and males (1.57; 1.16-2.13). Two thousand five hundred and eight (59.9%) drivers reported committing a traffic law violation at least once within the last 3 months. Overall, 1,222 (29.2%) drivers reported ever being caught by traffic police for a traffic law violation with data on violations available for 1,205 of these drivers, of whom 680 (56.4%) paid a fine, 310 (25.7%) paid by bribe, and 215 (17.8%) made no payment. The proportion of those who did not make payment for committed violation was significantly higher among females (46.8%) than males (16.3%). Two thousand fifty two (49%) of all MTVs had no rearview mirror These data suggest the need to enact and enforce policy interventions for improving the drivers license system, mandatory use of a helmet, effective traffic law enforcement, and ensuring good vehicle condition to reduce the risk factors that potentially contribute to mortality and morbidity in road traffic crashes in MTV drivers in Indian cities.

  6. Behavioral Senescence and Aging-Related Changes in Motor Neurons and Brain Neuromodulator Levels Are Ameliorated by Lifespan-Extending Reproductive Dormancy in Drosophila

    Dick R. Nässel

    2017-04-01

    Full Text Available The lifespan of Drosophilamelanogaster can be extended substantially by inducing reproductive dormancy (also known as diapause by lowered temperature and short days. This increase of longevity is accompanied by lowered metabolism and increased stress tolerance. We ask here whether behavioral senescence is ameliorated during adult dormancy. To study this we kept flies for seven or more weeks in normal rearing conditions or in diapause conditions and compared to 1-week-old flies in different behavioral assays of sleep, negative geotaxis and exploratory walking. We found that the senescence of geotaxis and locomotor behavior seen under normal rearing conditions was negligible in flies kept in dormancy. The normal senescence of rhythmic activity and sleep patterns during the daytime was also reduced by adult dormancy. Investigating the morphology of specific neuromuscular junctions (NMJs, we found that changes normally seen with aging do not take place in dormant flies. To monitor age-associated changes in neuronal circuits regulating activity rhythms, sleep and walking behavior we applied antisera to tyrosine hydroxylase (TH, serotonin and several neuropeptides to examine changes in expression levels and neuron morphology. In most neuron types the levels of stored neuromodulators decreased during normal aging, but not in diapause treated flies. No signs of neurodegeneration were seen in either condition. Our data suggest that age-related changes in motor neurons could be the cause of part of the behavioral senescence and that this is ameliorated by reproductive diapause. Earlier studies established a link between age-associated decreases in neuromodulator levels and behavioral decline that could be rescued by overexpression of neuromodulator. Thus, it is likely that the retained levels of neuromodulators in dormant flies alleviate behavioral senescence.

  7. The production and perception of emotionally expressive walking sounds: similarities between musical performance and everyday motor activity.

    Bruno L Giordano

    Full Text Available Several studies have investigated the encoding and perception of emotional expressivity in music performance. A relevant question concerns how the ability to communicate emotions in music performance is acquired. In accordance with recent theories on the embodiment of emotion, we suggest here that both the expression and recognition of emotion in music might at least in part rely on knowledge about the sounds of expressive body movements. We test this hypothesis by drawing parallels between musical expression of emotions and expression of emotions in sounds associated with a non-musical motor activity: walking. In a combined production-perception design, two experiments were conducted, and expressive acoustical features were compared across modalities. An initial performance experiment tested for similar feature use in walking sounds and music performance, and revealed that strong similarities exist. Features related to sound intensity, tempo and tempo regularity were identified as been used similarly in both domains. Participants in a subsequent perception experiment were able to recognize both non-emotional and emotional properties of the sound-generating walkers. An analysis of the acoustical correlates of behavioral data revealed that variations in sound intensity, tempo, and tempo regularity were likely used to recognize expressed emotions. Taken together, these results lend support the motor origin hypothesis for the musical expression of emotions.

  8. Translating working memory into action: behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences.

    Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B

    2014-07-01

    The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.

  9. Coordination of fictive motor activity in the larval zebrafish is generated by non-segmental mechanisms.

    Timothy D Wiggin

    Full Text Available The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries. We tested these ideas in the larval zebrafish, an animal that swims in discrete episodes, each of which is composed of coordinated motor bursts that progress rostrocaudally and alternate from side to side. We perturbed the spinal cord using spinal transections or strychnine application and measured the effect on fictive motor output. Spinal transections eliminated episode structure, and reduced both rostrocaudal and side-to-side coordination. Preparations with fewer intact segments were more severely affected, and preparations consisting of midbody and caudal segments were more severely affected than those consisting of rostral segments. In reduced preparations with the same number of intact spinal segments, side-to-side coordination was more severely disrupted than rostrocaudal coordination. Reducing glycine receptor signaling with strychnine reversibly disrupted both rostrocaudal and side-to-side coordination in spinalized larvae without disrupting episodic structure. Both spinal transection and strychnine decreased the stability of the motor rhythm, but this effect was not causal in reducing coordination. These results are inconsistent with a segmented model of the spinal cord and are better explained by a continuous model in which motor neuron coordination is controlled by segment-spanning microcircuits.

  10. Sensory signals and neuronal groups involved in guiding the sea-ward motor behavior in turtle hatchlings of Chelonia agassizi

    Fuentes, A. L.; Camarena, V.; Ochoa, G.; Urrutia, J.; Gutierrez, G.

    2007-05-01

    Turtle hatchlings orient display sea-ward oriented movements as soon as they emerge from the nest. Although most studies have emphasized the role of the visual information in this process, less attention has been paid to other sensory modalities. Here, we evaluated the nature of sensory cues used by turtle hatchlings of Chelonia agassizi to orient their movements towards the ocean. We recorded the time they took to crawl from the nest to the beach front (120m long) in control conditions and in visually, olfactory and magnetically deprived circumstances. Visually-deprived hatchlings displayed a high degree of disorientation. Olfactory deprivation and magnetic field distortion impaired, but not abolished, sea-ward oriented movements. With regard to the neuronal mapping experiments, visual deprivation reduced dramatically c-fos expression in the whole brain. Hatchlings with their nares blocked revealed neurons with c-fos expression above control levels principally in the c and d areas, while those subjected to magnetic field distortion had a wide spread activation of neurons throughout the brain predominantly in the dorsal ventricular ridge The present results support that Chelonia agassizi hatchlings use predominantly visual cues to orient their movements towards the sea. Olfactory and magnetic cues may also be use but their influence on hatchlings oriented motor behavior is not as clear as it is for vision. This conclusion is supported by the fact that in the absence of olfactory and magnetic cues, the brain turns on the expression of c- fos in neuronal groups that, in the intact hatchling, are not normally involved in accomplishing the task.

  11. Collective behavior of minus-ended motors in mitotic microtubule asters gliding toward DNA

    Athale, Chaitanya A; Dinarina, Ana; Nedelec, Francois; Karsenti, Eric

    2014-01-01

    Microtubules (MTs) nucleated by centrosomes form star-shaped structures referred to as asters. Aster motility and dynamics is vital for genome stability, cell division, polarization and differentiation. Asters move either toward the cell center or away from it. Here, we focus on the centering mechanism in a membrane independent system of Xenopus cytoplasmic egg extracts. Using live microscopy and single particle tracking, we find that asters move toward chromatinized DNA structures. The velocity and directionality profiles suggest a random-walk with drift directed toward DNA. We have developed a theoretical model that can explain this movement as a result of a gradient of MT length dynamics and MT gliding on immobilized dynein motors. In simulations, the antagonistic action of the motor species on the radial array of MTs leads to a tug-of-war purely due to geometric considerations and aster motility resembles a directed random-walk. Additionally, our model predicts that aster velocities do not change greatly with varying initial distance from DNA. The movement of asymmetric asters becomes increasingly super-diffusive with increasing motor density, but for symmetric asters it becomes less super-diffusive. The transition of symmetric asters from superdiffusive to diffusive mobility is the result of number fluctuations in bound motors in the tug-of-war. Overall, our model is in good agreement with experimental data in Xenopus cytoplasmic extracts and predicts novel features of the collective effects of motor-MT interactions. (paper)

  12. Effect of preterm birth on motor development, behavior, and school performance of school‐age children: a systematic review

    Rafaela S. Moreira

    2014-03-01

    Full Text Available Objectives: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school‐age children. Sources: this was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target‐population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. Summary of findings: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions. Resumo: Objetivos: examinar e sintetizar o conhecimento da literatura sobre os efeitos do nascimento prematuro no desenvolvimento de crianças em idade escolar. Fontes de dados: revisão sistemática de estudos dos últimos 10 anos indexados nas bases de dados Medline/Pubmed; Medline/BVS; Lilacs/BVS; IBECS/BVS; Cochrane/BVS; Cinahl

  13. Self-powered suspension criterion and energy regeneration implementation scheme of motor-driven active suspension

    Yan, Shuai; Sun, Weichao

    2017-09-01

    Active suspension systems have advantages on mitigating the effects of vehicle vibration caused by road roughness, which are one of the most important component parts in influencing the performances of vehicles. However, high amount of energy consumption restricts the application of active suspension systems. From the point of energy saving, this paper presents a self-powered criterion of the active suspension system to judge whether a motor-driven suspension can be self-powered or not, and then a motor parameter condition is developed as a reference to design a self-powered suspension. An energy regeneration implementation scheme is subsequently proposed to make the active suspension which has the potential to be self-powered achieve energy-saving target in the real application. In this implementation scheme, operating electric circuits are designed based on different working status of the actuator and power source and it is realizable to accumulate energy from road vibration and supply energy to the actuator by switching corresponding electric circuits. To apply the self-powered suspension criterion and energy regeneration implementation scheme, an active suspension system is designed with a constrained H∞ controller and calculation results indicate that it has the capability to be self-powered. Simulation results show that the performances of the self-powered active suspension are nearly the same as those of the active suspension with an external energy source and can achieve energy regeneration at the same time.

  14. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Eric W Fish

    Full Text Available Fragile X syndrome (FXS is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y mice with intracranial self-stimulation (ICSS and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynylpyridine (MPEP, was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  15. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Fish, Eric W; Krouse, Michael C; Stringfield, Sierra J; Diberto, Jeffrey F; Robinson, J Elliott; Malanga, C J

    2013-01-01

    Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  16. Electromyographic activity of hand muscles in a motor coordination game: effect of incentive scheme and its relation with social capital.

    Roberto Censolo

    Full Text Available BACKGROUND: A vast body of social and cognitive psychology studies in humans reports evidence that external rewards, typically monetary ones, undermine intrinsic motivation. These findings challenge the standard selfish-rationality assumption at the core of economic reasoning. In the present work we aimed at investigating whether the different modulation of a given monetary reward automatically and unconsciously affects effort and performance of participants involved in a game devoid of visual and verbal interaction and without any perspective-taking activity. METHODOLOGY/PRINCIPAL FINDINGS: Twelve pairs of participants were submitted to a simple motor coordination game while recording the electromyographic activity of First Dorsal Interosseus (FDI, the muscle mainly involved in the task. EMG data show a clear effect of alternative rewards strategies on subjects' motor behavior. Moreover, participants' stock of relevant past social experiences, measured by a specifically designed questionnaire, was significantly correlated with EMG activity, showing that only low social capital subjects responded to monetary incentives consistently with a standard rationality prediction. CONCLUSIONS/SIGNIFICANCE: Our findings show that the effect of extrinsic motivations on performance may arise outside social contexts involving complex cognitive processes due to conscious perspective-taking activity. More importantly, the peculiar performance of low social capital individuals, in agreement with standard economic reasoning, adds to the knowledge of the circumstances that makes the crowding out/in of intrinsic motivation likely to occur. This may help in improving the prediction and accuracy of economic models and reconcile this puzzling effect of external incentives with economic theory.

  17. Prognostic Value of Cortically Induced Motor Evoked Activity by TMS in Chronic Stroke: Caveats from a Revealing Single Clinical Case

    Amengual, Julià L

    2012-06-08

    AbstractBackgroundWe report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand.Case presentationMultimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations.ConclusionsThe potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

  18. Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: Caveats from a revealing single clinical case

    Amengual Julià L

    2012-06-01

    Full Text Available Abstract Background We report the case of a chronic stroke patient (62 months after injury showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP, and Cortical Silent period (CSP as well as functional magnetic resonance imaging (fMRI of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI Tractography of corticospinal tract (CST. Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG activity (indexed by CSP demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients.

  19. Self-controlled feedback facilitates motor learning in both high and low activity individuals.

    Fairbrother, Jeffrey T; Laughlin, David D; Nguyen, Timothy V

    2012-01-01

    The purpose of this study was to determine if high and low activity individuals differed in terms of the effects of self-controlled feedback on the performance and learning of a movement skill. The task consisted of a blindfolded beanbag toss using the non-preferred arm. Participants were pre-screened according to their physical activity level using the International Physical Activity Questionnaire. An equal number of high activity (HA) and low activity (LA) participants were assigned to self-control (SC) and yoked (YK) feedback conditions, creating four groups: Self-Control-High Activity; Self-Control-Low Activity; Yoked-High Activity; and Yoked-Low Activity. SC condition participants were provided feedback whenever they requested it, while YK condition participants received feedback according to a schedule created by their SC counterpart. Results indicated that the SC condition was more accurate than the YK condition during acquisition and transfer phases, and the HA condition was more accurate than the LA condition during all phases of the experiment. A post-training questionnaire indicated that participants in the SC condition asked for feedback mostly after what they perceived to be "good" trials; those in the YK condition indicated that they would have preferred to receive feedback after "good" trials. This study provided further support for the advantages of self-controlled feedback when learning motor skills, additionally showing benefits for both active and less active individuals. The results suggested that the provision of self-controlled feedback to less active learners may be a potential avenue to teaching motor skills necessary to engage in greater amounts of physical activity.

  20. Self-controlled feedback facilitates motor learning in both high and low activity individuals

    Jeffrey T. Fairbrother

    2012-08-01

    Full Text Available The purpose of this study was to determine if high and low activity individuals differed in terms of the effects of self-controlled feedback on the performance and learning of a movement skill. The task consisted of a blindfolded beanbag toss using the non-preferred arm. Participants were pre-screened according to their physical activity level using the International Physical Activity Questionnaire. An equal number of high activity (HA and low activity (LA participants were assigned to self-control (SC and yoked (YK feedback conditions, creating four groups: Self-Control High Activity (SC-HA; Self-Control Low Activity (SC-LA; Yoked High Activity (YK-HA; and Yoked Low Activity (YK-LA. SC condition participants were provided feedback whenever they requested it, while YK condition participants received feedback according to a schedule created by their SC counterpart. Results indicated that the SC condition was more accurate than the YK condition during acquisition and transfer phases, and the HA condition was more accurate than the LA condition during all phases of the experiment. A post-training questionnaire indicated that participants in the SC condition asked for feedback mostly after what they perceived to be good trials; those in the YK condition indicated that they would have preferred to receive feedback after good trials. This study provided further support for the advantages of self-controlled feedback when learning motor skills, additionally showing benefits for both active and less active individuals. The results suggested that the provision of self-controlled feedback to less active learners may be a potential avenue to teaching motor skills necessary to engage in greater amounts of physical activity.

  1. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

    Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-01-01

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate–glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron–glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP. PMID:28954391

  2. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  3. Gender and motor competence affects perceived likelihood and importance of physical activity outcomes among 14 year olds.

    Hands, B; Parker, H E; Rose, E; Larkin, D

    2016-03-01

    Perceptions of the effects of physical activity could facilitate or deter future participation. This study explored the differences between gender and motor competence at 14 years of age in the perceptions of likelihood and importance of physical activity outcomes. The sample comprised 1582 14-year-old adolescents (769 girls) from the Western Australian Pregnancy Cohort (Raine) Study. Four motor competence groups were formed from a standardized Neuromuscular Developmental Index score (McCarron 1997). Perceptions of the likelihood and the importance of 15 physical activity outcomes were measured by a questionnaire developed for the NSW Schools Fitness and Physical Activity Survey (Booth et al. 1997). Gender (two) × motor competence (four) analyses of variance and Tukey post hoc were conducted on outcome scores (P importance of physical activity outcomes within competition, social friendships and injury domains. Motor competence was significant in the perceived likelihood of physical health (P importance was perceived for academic outcomes for 14 year olds categorized with low compared with high motor competence (P importance. Although level of motor competence at 14 years affected the perceived likelihood of health, social and fun outcomes from future participation in physical activity, adolescents highly valued these outcomes, whereas gender affected competition and winning, outcomes that were less valued. Physical activity that promotes these key and valued outcomes may encourage young people's ongoing involvement in physical activity, especially for those at risk of low participation. © 2015 John Wiley & Sons Ltd.

  4. Auditing the Physical Activity and Parkinson Disease Literature Using the Behavioral Epidemiologic Framework.

    Swank, Chad; Shearin, Staci; Cleveland, Samantha; Driver, Simon

    2017-06-01

    Motor and nonmotor symptoms associated with Parkinson disease place individuals at greater risk of sedentary behaviors and comorbidities. Physical activity is one modifiable means of improving health and reducing the risk of morbidity. We applied a behavioral framework to classify existing research on physical activity and Parkinson disease to describe the current evolution and inform knowledge gaps in this area. Research placed in phase 1 establishes links between physical activity and health-related outcomes; phase 2 develops approaches to quantify physical activity behavior; phase 3 identifies factors associated with implementation of physical activity behaviors; phase 4 assesses the effectiveness of interventions to promote activity; and phase 5 disseminates evidence-based recommendations. Peer-reviewed literature was identified by searching PubMed, Google Scholar, and EBSCO-host. We initially identified 287 potential articles. After further review, we excluded 109 articles, leaving 178 included articles. Of these, 75.84% were categorized into phase 1 (n = 135), 10.11% in phase 2 (n = 18), 9.55% into phase 3 (n = 17), 3.37% into phase 4 (n = 6), and 1.12% into phase 5 (n = 2). By applying the behavioral framework to the physical activity literature for people with Parkinson disease, we suggest this area of research is nascent with more than 75% of the literature in phase 1. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  5. Assessing upper extremity motor function in practice of virtual activities of daily living.

    Adams, Richard J; Lichter, Matthew D; Krepkovich, Eileen T; Ellington, Allison; White, Marga; Diamond, Paul T

    2015-03-01

    A study was conducted to investigate the criterion validity of measures of upper extremity (UE) motor function derived during practice of virtual activities of daily living (ADLs). Fourteen hemiparetic stroke patients employed a Virtual Occupational Therapy Assistant (VOTA), consisting of a high-fidelity virtual world and a Kinect™ sensor, in four sessions of approximately one hour in duration. An unscented Kalman Filter-based human motion tracking algorithm estimated UE joint kinematics in real-time during performance of virtual ADL activities, enabling both animation of the user's avatar and automated generation of metrics related to speed and smoothness of motion. These metrics, aggregated over discrete sub-task elements during performance of virtual ADLs, were compared to scores from an established assessment of UE motor performance, the Wolf Motor Function Test (WMFT). Spearman's rank correlation analysis indicates a moderate correlation between VOTA-derived metrics and the time-based WMFT assessments, supporting the criterion validity of VOTA measures as a means of tracking patient progress during an UE rehabilitation program that includes practice of virtual ADLs.

  6. MPORTANCE OF PHYSICAL ACTIVITY IN OBESE CHILDREN IN RELATION TO MOTOR SKILLS A SYSTEMATIC REVIEW

    Ganesh Sundaram Subramanian

    2014-12-01

    Full Text Available Background: Childhood obesity has reached epidemic proportions worldwide and is associated with increased cardio vascular mortality and morbidity in adult life. In children, obesity correlates strongly with a progressive reduction in the level of physical activity and changes in food habits. Methods: This study is a qualitative research study. A secondary data collection technique was utilized and conducted through a search of articles published between 2005 and 2014 in PubMed and Google scholar databases. The objective of the present study is to provide a systemic review of the available literature and outline the factors in early life that are associated with an increased risk of obesity in children there by leading to poor gross motor skill performance with the help of Anthropometric assessment, Body composition and Motor skills proficiency. Results: Importantly recent studies have demonstrated that exercise training improves vascular endothelial function and stimulation of pressure receptors leading to increased vagal activity in obese children. The current literature highlights the importance of adding exercise programs to clinics, schools and families for the physical and psychological wellbeing of children. Conclusion: Overall findings from the present review showed that normal children with physical exercise are more superior in motor skills compared to other peers. Results of the previous studies indicated that normal children’s are more efficient in bilateral coordination in greater balancing, efficient upper limb coordination and greater strength

  7. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  8. [Transient lower esophageal sphincter relaxation and the related esophageal motor activities].

    Han, Seung Hyo; Hong, Su Jin

    2012-03-01

    Transient lower esophageal sphincter (LES) relaxation (TLESR) is defined as LES relaxation without a swallow. TLESRs are observed in both of the normal individuals and the patients with gastroesophageal reflux disorder (GERD). However, TLESR is widely considered as the major mechanism of the GERD. The new equipments such as high resolution manometry and impedance pH study is helped to understand of TLESR and the related esophageal motor activities. The strong longitudinal muscle contraction was observed during development of TLESR. Most of TLESRs are terminated by TLESR related motor events such as primary peristalsis and secondary contractions. The majority of TLESRs are associated with gastroesophageal reflux. Upper esophageal sphincter (UES) contraction is mainly associated with liquid reflux during recumbent position and UES relaxation predominantly related with air reflux during upright position. The frequency of TLESR in GERD patients seems to be not different compared to normal individuals, but the refluxate of GERD patients tend to be more acidic during TLESR.

  9. Laterality of brain activity during motor imagery is modulated by the provision of source level neurofeedback.

    Boe, Shaun; Gionfriddo, Alicia; Kraeutner, Sarah; Tremblay, Antoine; Little, Graham; Bardouille, Timothy

    2014-11-01

    Motor imagery (MI) may be effective as an adjunct to physical practice for motor skill acquisition. For example, MI is emerging as an effective treatment in stroke neurorehabilitation. As in physical practice, the repetitive activation of neural pathways during MI can drive short- and long-term brain changes that underlie functional recovery. However, the lack of feedback about MI performance may be a factor limiting its effectiveness. The provision of feedback about MI-related brain activity may overcome this limitation by providing the opportunity for individuals to monitor their own performance of this endogenous process. We completed a controlled study to isolate neurofeedback as the factor driving changes in MI-related brain activity across repeated sessions. Eighteen healthy participants took part in 3 sessions comprised of both actual and imagined performance of a button press task. During MI, participants in the neurofeedback group received source level feedback based on activity from the left and right sensorimotor cortex obtained using magnetoencephalography. Participants in the control group received no neurofeedback. MI-related brain activity increased in the sensorimotor cortex contralateral to the imagined movement across sessions in the neurofeedback group, but not in controls. Task performance improved across sessions but did not differ between groups. Our results indicate that the provision of neurofeedback during MI allows healthy individuals to modulate regional brain activity. This finding has the potential to improve the effectiveness of MI as a tool in neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Automatic activation of motor programs by object affordances in patients with Parkinson's disease.

    Oguro, Hiroaki; Ward, Robert; Bracewel, Martyn; Hindle, John; Rafal, Robert

    2009-09-29

    Clinical observations of kinesia paradoxica and freezing in patients with Parkinson's disease suggest that the automatic activation of motor programmes by visual stimuli may not require intact basal ganglia function, and that an increased sensitivity to such object affordances may contribute to some symptoms of the disease. Employing a paradigm that measures the degree of interference from object affordances on voluntary actions, we confirm that activation of object affordances are preserved in Parkinson's disease, but find no evidence that there is an increased sensitivity to the effects of object affordances on voluntary action.

  11. Automatic activation of motor programs by object affordances in patients with Parkinson's disease

    Oguro, Hiroaki; Ward, Robert; Bracewel, Martyn; Hindle, John; Rafal, Robert

    2009-01-01

    Clinical observations of kinesia paradoxica and freezing in patients with Parkinson's disease suggest that the automatic activation of motor programmes by visual stimuli may not require intact basal ganglia function, and that an increased sensitivity to such object affordances may contribute to some symptoms of the disease. Employing a paradigm that measures the degree of interference from object affordances on voluntary actions, we confirm that activation of object affordances are preserved in Parkinson's disease, but find no evidence that there is an increased sensitivity to the effects of object affordances on voluntary action. PMID:19616073

  12. Calorigenic effect of adrenaline in rats under conditions of restricted motor activity

    Tomaszewska, L.; Kaciuba-Uscilko, H.; Kozlowski, S.

    1980-01-01

    In previous studies, it was demonstrated that long term restricted motor activity in rats induces a decrease in body weight, an increase in release of adrenaline, and a decrease in the release of noradrenaline with the urine, as well as a reduction in activity of the thymus gland and level of thyroxin in the blood. At the same time, a decrease was found in the internal body temperature that was accompanied by an increase in the rate of metabolism in the state of rest. An investigation is presented which attempts to clarify whether the calorigenic effect of adrenaline under conditions of increased metabolism in the period of immobility is exposed to changes.

  13. THE MODEL OF MOTOR ACTIVITY OPTIMIZATION OF YOUNGER SCHOOL AGE CHILDREN LIVING IN THE CONDITIONS OF THE NORTHERN CITY

    Zhanna Ildarovna Busheva

    2017-10-01

    Full Text Available Extreme conditions of the North, computerization, Internet and a gadget dependence, high physical and intellectual loads of children activities living in the north negatively affect younger generation health state. It is difficult to overestimate a role of motor activity in expansion of functionality of the developing organism as the lack of locomotion can lead to pathological shifts in an organism. Based on the study of the concept of a ‘motor activity’ and features North of the city the article suggests a model of motor activity optimization of younger school age children living in the conditions of the northern city. It consisted of 6 units related to goal-setting, diagnostic-analytical, concept, process-activity, reflexive-evaluative and effective. The research was conducted on the basis of Surgut city schools and the Surgut region of Khanty-Mansi Autonomous Region-Yugra. During the research we revealed the most priority organization forms of motor activity of younger school age children living in conditions of the northern city. The model of motor activity optimization of younger school age children allows to create necessary optimum volume and to control of motor activity of children of younger school age. Purpose. The purpose of our research was to create model of motor activity optimization of younger school age children living in the conditions of the northern city. Methodology. Analysis and synthesis of the materials as well as the method of simulation are used as the main instruments. Results. A model of motor activity optimization of younger school age children has been elaborated in the course of study and its characteristics have been specified. Practical implications. The results can be of use for teachers at professional educational institutions.

  14. Relationship between habitual physical activity and gross motor skills is multifaceted in 5- to 8-year-old children.

    Laukkanen, A; Pesola, A; Havu, M; Sääkslahti, A; Finni, T

    2014-04-01

    Adequate motor skills are essential for children participating in age-related physical activities, and gross motor skills may play an important role for maintaining sufficient level of physical activity (PA) during life course. The purpose of this study was to examine the relationship between gross motor skills and PA in children when PA was analyzed by both metabolic- and neuromuscular-based methods. Gross motor skills (KTK--Körperkoordinationstest für Kinder and APM inventory--manipulative skill test) of 84 children aged 5-8 years (53 preschoolers, 28 girls; 31 primary schoolers, 18 girls) were measured, and accelerometer-derived PA was analyzed using in parallel metabolic counts and neuromuscular impact methods. The gross motor skills were associated with moderate-to-high neuromuscular impacts, PA of vigorous metabolic intensity, and mean level of PA in primary school girls (0.5 motor skills (0.4 motor skills and PA stressing both metabolic and neuromuscular systems in children. Furthermore, PA highly stressing neuromuscular system interacts with gross motor proficiency in girls especially. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Motor Performance as Predictor of Physical Activity in Children: The CHAMPS Study-DK.

    Larsen, Lisbeth Runge; Kristensen, Peter Lund; Junge, Tina; Rexen, Christina Trifonov; Wedderkopp, Niels

    2015-09-01

    Physical activity (PA) is associated with several health benefits in children, and PA habits developed in childhood tend to persist into adulthood. PA may be the foundation of a healthy lifestyle, and motor performance has been shown to be positively associated with PA in cross-sectional studies. The purpose of this study was to explore the longitudinal relation between motor performance and PA in a 3-yr follow-up study. Longitudinal analyses were performed using data from 673 participants (44% boys, 6-12 yr old) who had been included in the Childhood Health Activity and Motor Performance School study-DK. Baseline motor performance tests consisted of vertical jump, shuttle run, hand grip strength, backward balance, precision throw, and cardiovascular fitness. Composite z-scores were generated to express health-related fitness and performance-related fitness. PA was measured by accelerometer at baseline and at 3-yr follow-up and was expressed as a percentage of time in moderate-to-vigorous PA. Cardiovascular fitness, vertical jump, health-related fitness, and performance-related fitness showed significant positive associations with 3-yr follow-up measures of PA in both sexes. Furthermore, shuttle run showed significant inverse associations with follow-up measures of PA for both sexes. Cardiorespiratory fitness, shuttle run, vertical jump, health-related fitness, and performance-related fitness were significantly associated with time spent in moderate-to-vigorous PA at 3-yr follow-up. The clinical relevance of the results indicates that cardiorespiratory fitness and shuttle run in childhood may be important determinants of PA in adolescence.

  16. Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study.

    Ruffieux, Jan; Mouthon, Audrey; Keller, Martin; Mouthon, Michaël; Annoni, Jean-Marie; Taube, Wolfgang

    2018-01-01

    Aging is associated with a shift from an automatic to a more cortical postural control strategy, which goes along with deteriorations in postural stability. Although balance training has been shown to effectively counteract these behavioral deteriorations, little is known about the effect of balance training on brain activity during postural tasks in older adults. We, therefore, assessed postural stability and brain activity using fMRI during motor imagery alone (MI) and in combination with action observation (AO; i.e., AO+MI) of a challenging balance task in older adults before and after 5 weeks of balance training. Results showed a nonsignificant trend toward improvements in postural stability after balance training, accompanied by reductions in brain activity during AO+MI of the balance task in areas relevant for postural control, which have been shown to be over-activated in older adults during (simulation of) motor performance, including motor, premotor, and multisensory vestibular areas. This suggests that balance training may reverse the age-related cortical over-activations and lead to changes in the control of upright posture toward the one observed in young adults.

  17. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    Gubbels, J.S.; van Assema, P.; Kremers, S.P.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early The current paper provides an overview of studies that have examined behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance examining energy

  18. Optically-Induced Neuronal Activity Is Sufficient to Promote Functional Motor Axon Regeneration In Vivo.

    Patricia J Ward

    Full Text Available Peripheral nerve injuries are common, and functional recovery is very poor. Beyond surgical repair of the nerve, there are currently no treatment options for these patients. In experimental models of nerve injury, interventions (such as exercise and electrical stimulation that increase neuronal activity of the injured neurons effectively enhance axon regeneration. Here, we utilized optogenetics to determine whether increased activity alone is sufficient to promote motor axon regeneration. In thy-1-ChR2/YFP transgenic mice in which a subset of motoneurons express the light-sensitive cation channel, channelrhodopsin (ChR2, we activated axons in the sciatic nerve using blue light immediately prior to transection and surgical repair of the sciatic nerve. At four weeks post-injury, direct muscle EMG responses evoked with both optical and electrical stimuli as well as the ratio of these optical/electrical evoked EMG responses were significantly greater in mice that received optical treatment. Thus, significantly more ChR2+ axons successfully re-innervated the gastrocnemius muscle in mice that received optical treatment. Sections of the gastrocnemius muscles were reacted with antibodies to Synaptic Vesicle Protein 2 (SV2 to quantify the number of re-occupied motor endplates. The number of SV2+ endplates was greater in mice that received optical treatment. The number of retrogradely-labeled motoneurons following intramuscular injection of cholera toxin subunit B (conjugated to Alexa Fluor 555 was greater in mice that received optical treatment. Thus, the acute (1 hour, one-time optical treatment resulted in robust, long-lasting effects compared to untreated animals as well as untreated axons (ChR2-. We conclude that neuronal activation is sufficient to promote motor axon regeneration, and this regenerative effect is specific to the activated neurons.

  19. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping; Deng, Juan

    2017-01-01

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well

  20. Analysis of mechanical behavior and hysteresis heat generating mechanism of PDM motor

    Shi, Changshuai; Zhu, Xiaohua; Tang, Liping [Southwest Petroleum University, Chengdu (China); Deng, Juan [Avic Chengdu Engine (Group) Co.,Ltd, Chengdu (China)

    2017-03-15

    Positive displacement motor (PDM), which is prone to high temperature fatigue failure, can be weakened in its application in deep and superdeep well. In order to study the forced state, deformation regularity and thermal hysteresis of PDM motor, the paper established the three-dimensional thermal-mechanical coupled Finite element model (FEM). Based on the theoretical research, experimental study and numerical simulation, the study found that the displacement of stator lining shows a sinusoidal variation under internal pressure, when adapting the general form of sine function to fitting inner contour line deformation function. Then the paper analyzed the hysteresis heat generating mechanism of the motor, learning that hysteresis thermogenous of stator lining occurs due to the viscoelastic of rubber material and cyclic loading of stator lining. A heartburn happens gradually in the center of the thickest part of the stator lining as temperature increases, which means work efficiency and service life of PDM will be decreased when used in deep or superdeep well. In this paper, we established a theory equation for the choice of interference fit and motor line type optimization design, showing hysteresis heat generating analyzing model and method are reasonable enough to significantly improve PDM’s structure and help better use PDM in deep and surdeep well.

  1. Mandibular Motor Control during the Early Development of Speech and Nonspeech Behaviors

    Steeve, Roger W.; Moore, Christopher A.

    2009-01-01

    Purpose: The mandible is often portrayed as a primary structure of early babble production, but empiricists still need to specify (a) how mandibular motor control and kinematics vary among different types of multisyllabic babble, (b) whether chewing or jaw oscillation relies on a coordinative infrastructure that can be exploited for early types of…

  2. In Vivo Neuromechanics : Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function

    Sartori, Massimo; Yavuz, Utku; Farina, Dario

    2017-01-01

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system.

  3. The Motor Component of Speech in the Verbal Regulation of Behavior.

    Wilder, Larry; Romaniuk, Michael

    Two experiments related to the development of verbal self-control in children were conducted. In the first experiment, 36 adults and 36 four year olds were administered a vocal alone, a motor alone, and a combined-reaction-time task. In the second experiment, 54 kindergarten subjects and 60 fifth-grade subjects were each administered a double…

  4. Brain changes following four weeks of unimanual motor training: Evidence from behavior, neural stimulation, cortical thickness, and functional MRI.

    Sale, Martin V; Reid, Lee B; Cocchi, Luca; Pagnozzi, Alex M; Rose, Stephen E; Mattingley, Jason B

    2017-09-01

    Although different aspects of neuroplasticity can be quantified with behavioral probes, brain stimulation, and brain imaging assessments, no study to date has combined all these approaches into one comprehensive assessment of brain plasticity. Here, 24 healthy right-handed participants practiced a sequence of finger-thumb opposition movements for 10 min each day with their left hand. After 4 weeks, performance for the practiced sequence improved significantly (P left (mean increase: 53.0% practiced, 6.5% control) and right (21.0%; 15.8%) hands. Training also induced significant (cluster p-FWE right hemisphere, 301 voxel cluster; left hemisphere 700 voxel cluster), and sensorimotor cortices and superior parietal lobules (right hemisphere 864 voxel cluster; left hemisphere, 1947 voxel cluster). Transcranial magnetic stimulation over the right ("trained") primary motor cortex yielded a 58.6% mean increase in a measure of motor evoked potential amplitude, as recorded at the left abductor pollicis brevis muscle. Cortical thickness analyses based on structural MRI suggested changes in the right precentral gyrus, right post central gyrus, right dorsolateral prefrontal cortex, and potentially the right supplementary motor area. Such findings are consistent with LTP-like neuroplastic changes in areas that were already responsible for finger sequence execution, rather than improved recruitment of previously nonutilized tissue. Hum Brain Mapp 38:4773-4787, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. Environmental physiology: effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation

    Sacher, G.A.; Rosenberg, R.S.; Duffy, P.H.; Obermeyer, W.; Russell, J.J.

    1979-01-01

    This section contains a summary of research on the effects of energy-related pollutants on daily cycles of energy metabolism, motor activity, and thermoregulation. So far, mice have been exposed to fast neutron-gamma radiation or to the chemical effluents of an atmospheric pressure experimental fluidized-bed combustor. The physiological parameters measured included: O 2 consumption; CO 2 production; motor activity; and deep body temperatures

  6. Motor association cortex activity in Parkinson's disease. A functional MRI study

    Tada, Yukiko

    1998-01-01

    The purpose of this study was to examine the activation of motor association cortex using functional magnetic resonance imaging (fMRI) in patients with Parkinson's disease (PD) and control subjects during performed hand movements. There were 26 patients with PD (12 patients with Hoehn and Yahr stage I-II, 14 patients with stage III) and 8 control subjects. Functional imaging was performed using a 1.5 tesla MRI system equipped with a single-shot, echo-planar pulse sequence. The significant signal changes were observed within the primary sensorimotor area, the supplementary motor area (SMA), and the parietal association area in both PD and control subjects. In PD subjects, the SMA was less activated than in control subjects; there were significant differences in the number of pixels activated in SMA between control and Yahr III group (p<0.01), and between Yahr I-II and Yahr III group (p<0.01). Our results demonstrated that movement related cerebral activity in the SMA is reduced in PD subjects, consistent with previously published data using other methods. It is well known from anatomical studies that one of the major cortical outputs of the basal ganglia is the SMA. This may explain the hypoactivation of the SMA in PD. Studies using fMRI provide a promising method not only for localizing cortical activation related to voluntary movements but also for investigating pathophysiology of movement disorders. (author)

  7. Self-perceptions and physical activity in children with and without motor problems

    Noordstar, J.J.

    2017-01-01

    Self-perceptions influence global self-esteem and intrinsic motivation for achievement behavior (e.g., physical activity). Physical activity is an important component of a healthy lifestyle. Participation in physical activity is preventive against obesity and positively influences mental health

  8. Localization of Brain Electrical Activity Sources and Hemodynamic Activity Foci during Motor Imagery

    Frolov, A. A.; Húsek, Dušan; Mokienko, O.; Bobrov, P.; Chernikova, L.; Konovalov, R.

    2014-01-01

    Roč. 40, č. 3 (2014), s. 273-283 ISSN 0362-1197 Grant - others:GA MŠk(CZ) ED1.1.00/02.0070; GA MŠk(CZ) EE.2.3.20.0073 Program:ED Institutional support: RVO:67985807 Keywords : brain computer interface * independent component analysis * EEG pattern classification * motor imagery * inverse EEG problem Subject RIV: IN - Informatics, Computer Science

  9. Prediction of motor outcomes and activities of daily living function using diffusion tensor tractography in acute hemiparetic stroke patients.

    Imura, Takeshi; Nagasawa, Yuki; Inagawa, Tetsuji; Imada, Naoki; Izumi, Hiroaki; Emoto, Katsuya; Tani, Itaru; Yamasaki, Hiroyuki; Ota, Yuichiro; Oki, Shuichi; Maeda, Tadanori; Araki, Osamu

    2015-05-01

    [Purpose] The efficacy of diffusion tensor imaging in the prediction of motor outcomes and activities of daily living function remains unclear. We evaluated the most appropriate diffusion tensor parameters and methodology to determine whether the region of interest- or tractography-based method was more useful for predicting motor outcomes and activities of daily living function in stroke patients. [Subjects and Methods] Diffusion tensor imaging data within 10 days after stroke onset were collected and analyzed for 25 patients. The corticospinal tract was analyzed. Fractional anisotropy, number of fibers, and apparent diffusion coefficient were used as diffusion tensor parameters. Motor outcomes and activities of daily living function were evaluated on the same day as diffusion tensor imaging and at 1 month post-onset. [Results] The fractional anisotropy value of the affected corticospinal tract significantly correlated with the motor outcome and activities of daily living function within 10 days post-onset and at 1 month post-onset. Tthere were no significant correlations between other diffusion tensor parameters and motor outcomes or activities of daily living function. [Conclusion] The fractional anisotropy value of the affected corticospinal tract obtained using the tractography-based method was useful for predicting motor outcomes and activities of daily living function in stroke patients.

  10. Do Perceptions of Competence Mediate The Relationship Between Fundamental Motor Skill Proficiency and Physical Activity Levels of Children in Kindergarten?

    Crane, Jeff R; Naylor, Patti J; Cook, Ryan; Temple, Viviene A

    2015-07-01

    Perceptions of competence mediate the relationship between motor skill proficiency and physical activity among older children and adolescents. This study examined kindergarten children's perceptions of physical competence as a mediator of the relationship between motor skill proficiency as a predictor variable and physical activity levels as the outcome variable; and also with physical activity as a predictor and motor skill proficiency as the outcome. Participants were 116 children (mean age = 5 years 7 months, 58% boys) from 10 schools. Motor skills were measured using the Test of Gross Motor Development-2 and physical activity was monitored through accelerometry. Perceptions of physical competence were measured using The Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, and the relationships between these variables were examined using a model of mediation. The direct path between object control skills and moderate-vigorous physical activity (MVPA) was significant and object control skills predicted perceived physical competence. However, perceived competence did not mediate the relationship between object control skills and MVPA. The significant relationship between motor proficiency and perceptions of competence did not in turn influence kindergarten children's participation in physical activity. These findings support concepts of developmental differences in the structure of the self-perception system.

  11. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

    Zhang, Hong-Yan; Sillar, Keith T

    2012-03-20

    Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Comparison of Behavioral Problems and Skills of 7-12-Year-Old Students With a Physical/Motor Disability at Mainstream aewnd Special Schools

    Tahereh Hendi

    2018-03-01

    Discussion: Our data demonstrate that behavioral problems of students with a physical/motor disability are fewer in mainstream schools indicating stronger behavior skills than their peers in special schools. In view of our data, we recommend the possibility of integrating the education of special needs students at regular schools.

  13. [Local brain activity in different motor subtypes of Parkinson's disease with fMRI].

    Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao

    2015-02-17

    To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was

  14. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  15. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Effect of a 12-Week Physical Activity Program on Gross Motor Skills in Children.

    Burns, Ryan D; Fu, You; Fang, Yi; Hannon, James C; Brusseau, Timothy A

    2017-12-01

    This study examined the effects of a 12-week Comprehensive School Physical Activity Program (CSPAP) on gross motor skill development in children from low-income families. Participants were 1,460 school-aged children (mean age = 8.4 ± 1.8 years; 730 girls, 730 boys) recruited from three schools receiving U.S. governmental financial assistance. Students were recruited from grades K-6. CSPAP was implemented over one semester during the 2014-2015 school year. Select gross motor skill items were assessed during each student's physical education class at baseline and at a 12-week follow-up using the Test for Gross Motor Development-2nd Edition (TGMD-2). Each student's TGMD-2 score was converted to a percentage of the total possible score. A 7 × 2 × 2 analysis of variance test with repeated measures was employed to examine the effects of age, sex, and time on TGMD-2 percent scores, adjusting for clustering within the data structure. There were greater TGMD-2 percent scores at follow-up compared with baseline (82.4% vs. 72.6%, mean difference = 9.8%, p < .001, Cohen's d = 0.67), and greater improvements were seen in younger children compared with older children (mean difference of change = 4.0%-7.5%, p < .01, Cohen's d = 0.30-0.55).

  17. Frontal infraslow activity marks the motor spasms of anti-LGI1 encephalitis.

    Wennberg, Richard; Steriade, Claude; Chen, Robert; Andrade, Danielle

    2018-01-01

    The clinical and electrographic features of seizures in anti-LGI1 encephalitis are distinct from those seen in other autoimmune encephalitides or non-encephalitic epilepsies. One electroclinical phenomenon specific to the condition consists of lateralized motor spasms, known as faciobrachial dystonic seizures (FBDS). An electrodecremental pattern overriding a "DC shift" has been described as the EEG correlate of these spasms. We sought to further characterize this pre-spasm infraslow activity (ISA). Continuous video-EEG recordings were acquired in four patients with anti-LGI1 encephalitis: each had frequent motor spasms/FBDS as well as frequent subclinical temporal lobe seizures (an independent indicator of anti-LGI1 encephalitis). In artifact-free recordings obtained using clinical amplifiers equipped with a low frequency analog filter of 0.07 Hz, ISA reliably preceded clinical onset of the motor spasms by ∼1.2 s and preceded the electrodecremental pattern by ∼700 ms. Pre-spasm ISA was invariably recorded contralateral to FBDS, with a voltage topographic maximum over the mid frontal region. The pre-movement ISA differed from the Bereitschaftspotential in timing and topography and was an order of magnitude higher in amplitude. Sporadic FBDS that occurred in association with temporal lobe seizures were preceded by identical ISA. The motor spasms of anti-LGI1 encephalitis are preceded by frontal ISA. A paucity of data at the microscale level precludes mechanistic explanations at the macroscale level, or even determination of the relative contributions of neurons and glia in the generation of the ISA. Although fundamental cellular mechanisms await elucidation, the pre-spasm ISA represents a singular and readily identifiable EEG response to this autoimmune brain disorder. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. A comparison of sensory-motor activity during speech in first and second languages.

    Simmonds, Anna J; Wise, Richard J S; Dhanjal, Novraj S; Leech, Robert

    2011-07-01

    A foreign language (L2) learned after childhood results in an accent. This functional neuroimaging study investigated speech in L2 as a sensory-motor skill. The hypothesis was that there would be an altered response in auditory and somatosensory association cortex, specifically the planum temporale and parietal operculum, respectively, when speaking in L2 relative to L1, independent of rate of speaking. These regions were selected for three reasons. First, an influential computational model proposes that these cortices integrate predictive feedforward and postarticulatory sensory feedback signals during articulation. Second, these adjacent regions (known as Spt) have been identified as a "sensory-motor interface" for speech production. Third, probabilistic anatomical atlases exist for these regions, to ensure the analyses are confined to sensory-motor differences between L2 and L1. The study used functional magnetic resonance imaging (fMRI), and participants produced connected overt speech. The first hypothesis was that there would be greater activity in the planum temporale and the parietal operculum when subjects spoke in L2 compared with L1, one interpretation being that there is less efficient postarticulatory sensory monitoring when speaking in the less familiar L2. The second hypothesis was that this effect would be observed in both cerebral hemispheres. Although Spt is considered to be left-lateralized, this is based on studies of covert speech, whereas overt speech is accompanied by sensory feedback to bilateral auditory and somatosensory cortices. Both hypotheses were confirmed by the results. These findings provide the basis for future investigations of sensory-motor aspects of language learning using serial fMRI studies.

  19. Robot-assisted motor activation monitored by time-domain optical brain imaging

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  20. Trends in Automobile Travel, Motor Vehicle Fatalities, and Physical Activity: 2003-2015.

    McDonald, Noreen C

    2017-05-01

    Annual per-capita automobile travel declined by 600 miles from 2003 to 2014 with decreases greatest among young adults. This article tests whether the decline has been accompanied by public health co-benefits of increased physical activity and decreased motor vehicle fatalities. Minutes of auto travel and physical activity derived from active travel, sports, and exercise were obtained from the American Time Use Survey. Fatalities were measured using the Fatality Analysis Reporting System. Longitudinal change was assessed for adults aged 20-59 years by age group and sex. Significance of changes was assessed by absolute differences and unadjusted and adjusted linear trends. Analyses were conducted in 2016. Daily auto travel decreased by 9.2 minutes from 2003 to 2014 for all ages (ptravel showed only modest declines across age groups and, for men aged 20-29 years, varied from 10.9 (95% CI=10.0, 11.7) in 2003 to 9.7 (95% CI=8.7, 10.8) in 2014. Reduced motor vehicle fatalities are a public health co-benefit of decreased driving, especially for male millennials. Despite suggestions to the contrary, individuals did not switch from cars to active modes nor spend more time in sports and exercise. Maintenance of the safety benefits requires additional attention to road safety efforts, particularly as auto travel increases. Copyright © 2017 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Model for a flexible motor memory based on a self-active recurrent neural network.

    Boström, Kim Joris; Wagner, Heiko; Prieske, Markus; de Lussanet, Marc

    2013-10-01

    Using recent recurrent network architecture based on the reservoir computing approach, we propose and numerically simulate a model that is focused on the aspects of a flexible motor memory for the storage of elementary movement patterns into the synaptic weights of a neural network, so that the patterns can be retrieved at any time by simple static commands. The resulting motor memory is flexible in that it is capable to continuously modulate the stored patterns. The modulation consists in an approximately linear inter- and extrapolation, generating a large space of possible movements that have not been learned before. A recurrent network of thousand neurons is trained in a manner that corresponds to a realistic exercising scenario, with experimentally measured muscular activations and with kinetic data representing proprioceptive feedback. The network is "self-active" in that it maintains recurrent flow of activation even in the absence of input, a feature that resembles the "resting-state activity" found in the human and animal brain. The model involves the concept of "neural outsourcing" which amounts to the permanent shifting of computational load from higher to lower-level neural structures, which might help to explain why humans are able to execute learned skills in a fluent and flexible manner without the need for attention to the details of the movement. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    2002-03-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  3. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    2002-01-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  4. The Relationship between Fundamental Motor Skill Proficiency and Participation in Organized Sports and Active Recreation in Middle Childhood

    Stephanie C. Field

    2017-06-01

    Full Text Available Motor skill proficiency in middle childhood is associated with higher physical activity levels at that age and is predictive of adolescent physical activity levels. Much of the previous research in this area has used accelerometry in determining these relationships, and as a result, little is known about what physical activities the children are engaging in. Therefore the aim of this study was to examine rates of participation in physical activities, the relationships between motor proficiency and how often children participate, and if there were gender-based differences in participation, motor skills, or the relationship between these variables. Participants were 400 boys and girls (Mean age = 9 years 6 months in grade 4. Motor skills were assessed using the Test of Gross Motor Development-2 (TGMD-2 and physical activity participation was measured using the Children’s Assessment of Participation and Enjoyment (CAPE. Descriptive statistics, chi-squared analyses, and multivariate analysis of variance (MANOVA were used to examine activity patterns and whether these patterns differed by gender. Correlation coefficients were used to estimate the relationships between fundamental motor skill proficiency and participation. The boys and girls participated in many of the same activities, but girls were more likely to participate in most of the informal physical activities. More boys than girls participated in team sports, boys participated more frequently in team sports, and the boys’ object control and locomotor skill proficiency were significantly associated with participation in team sports. There were some significant associations between motor skills and participation in specific activities; however it is not clear if participation is developing skillfulness or those who are more skilled are engaging and persisting with particular activities.

  5. Recreating the scene: an effective way to provide delayed punishment for inappropriate motor behavior.

    Van Houten, R; Rolider, A

    1988-01-01

    A mediated punishment procedure that involved recreating a behavioral sequence by guiding the subject throu