WorldWideScience

Sample records for motional stark effects

  1. Atomic Models for Motional Stark Effects Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Gu, M F; Holcomb, C; Jayakuma, J; Allen, S; Pablant, N A; Burrell, K

    2007-07-26

    We present detailed atomic physics models for motional Stark effects (MSE) diagnostic on magnetic fusion devices. Excitation and ionization cross sections of the hydrogen or deuterium beam traveling in a magnetic field in collisions with electrons, ions, and neutral gas are calculated in the first Born approximation. The density matrices and polarization states of individual Stark-Zeeman components of the Balmer {alpha} line are obtained for both beam into plasma and beam into gas models. A detailed comparison of the model calculations and the MSE polarimetry and spectral intensity measurements obtained at the DIII-D tokamak is carried out. Although our beam into gas models provide a qualitative explanation for the larger {pi}/{sigma} intensity ratios and represent significant improvements over the statistical population models, empirical adjustment factors ranging from 1.0-2.0 must still be applied to individual line intensities to bring the calculations into full agreement with the observations. Nevertheless, we demonstrate that beam into gas measurements can be used successfully as calibration procedures for measuring the magnetic pitch angle through {pi}/{sigma} intensity ratios. The analyses of the filter-scan polarization spectra from the DIII-D MSE polarimetry system indicate unknown channel and time dependent light contaminations in the beam into gas measurements. Such contaminations may be the main reason for the failure of beam into gas calibration on MSE polarimetry systems.

  2. Imaging motional Stark effect measurements at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Ford, O. P.; Burckhart, A.; McDermott, R.; Pütterich, T.; Wolf, R. C. [Max-Planck Institut für Plasmaphysik, Greifswald/Garching (Germany)

    2016-11-15

    This paper presents an overview of results from the Imaging Motional Stark Effect (IMSE) diagnostic obtained during its first measurement campaign at ASDEX Upgrade since installation as a permanent diagnostic. A brief overview of the IMSE technique is given, followed by measurements of a standard H-mode discharge, which are compared to equilibrium reconstructions showing good agreement where expected. The development of special discharges for the calibration of pitch angle is reported and safety factor profile changes during sawteeth crashes are shown, which can be resolved to a few percent due to the high sensitivity at good time resolution of the new IMSE system.

  3. Improved signal analysis for motional Stark effect data

    International Nuclear Information System (INIS)

    Makowski, M.A.; Allen, S.L.; Ellis, R.; Geer, R.; Jayakumar, R.J.; Moller, J.M.; Rice, B.W.

    2005-01-01

    Nonideal effects in the optical train of the motional Stark effect diagnostic have been modeled using the Mueller matrix formalism. The effects examined are birefringence in the vacuum windows, an imperfect reflective mirror, and signal pollution due to the presence of a circularly polarized light component. Relations for the measured intensity ratio are developed for each case. These relations suggest fitting functions to more accurately model the calibration data. One particular function, termed the tangent offset model, is found to fit the data for all channels better than the currently used tangent slope function. Careful analysis of the calibration data with the fitting functions reveals that a nonideal effect is present in the edge array and is attributed to nonideal performance of a mirror in that system. The result of applying the fitting function to the analysis of our data has been to improve the equilibrium reconstruction

  4. Ab initio modeling of the motional Stark effect on MAST

    International Nuclear Information System (INIS)

    De Bock, M. F. M.; Conway, N. J.; Walsh, M. J.; Carolan, P. G.; Hawkes, N. C.

    2008-01-01

    A multichord motional Stark effect (MSE) system has recently been built on the MAST tokamak. In MAST the π and σ lines of the MSE spectrum overlap due to the low magnetic field typical for present day spherical tokamaks. Also, the field curvature results in a large change in the pitch angle over the observation volume. The measured polarization angle does not relate to one local pitch angle but to an integration over all pitch angles in the observation volume. The velocity distribution of the neutral beam further complicates the measurement. To take into account volume effects and velocity distribution, an ab initio code was written that simulates the MSE spectrum on MAST. The code is modular and can easily be adjusted for other tokamaks. The code returns the intensity, polarized fraction, and polarization angle as a function of wavelength. Results of the code are presented, showing the effect on depolarization and wavelength dependence of the polarization angle. The code is used to optimize the design and calibration of the MSE diagnostic.

  5. The motional stark effect with laser-induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2010-05-01

    The motional Stark effect (MSE) diagnostic is the worldwide standard technique for internal magnetic field pitch angle measurements in magnetized plasmas. Traditionally, it is based on using polarimetry to measure the polarization direction of light emitted from a hydrogenic species in a neutral beam. As the beam passes through the magnetized plasma at a high velocity, in its rest frame it perceives a Lorentz electric field. This field causes the H-alpha emission to be split and polarized. A new technique under development adds laser-induced fluorescence (LIF) to a diagnostic neutral beam (DNB) for an MSE measurement that will enable radially resolved magnetic field magnitude as well as pitch angle measurements in even low-field (experiments. An MSE-LIF system will be installed on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory. It will enable reconstructions of the plasma pressure, q-profile and current as well as, in conjunction with the existing MSE system, measurements of radial electric fields.

  6. Real-time motional Stark effect in jet

    International Nuclear Information System (INIS)

    Alves, D.; Stephen, A.; Hawkes, N.; Dalley, S.; Goodyear, A.; Felton, R.; Joffrin, E.; Fernandes, H.

    2004-01-01

    The increasing importance of real-time measurements and control systems in JET experiments, regarding e.g. Internal Transport Barrier (ITB) and q-profile control, has motivated the development of a real-time motional Stark effect (MSE) system. The MSE diagnostic allows the measurement of local magnetic fields in different locations along the neutral beam path providing, therefore, local measurement of the current and q-profiles. Recently in JET, an upgrade of the MSE diagnostic has been implemented, incorporating a totally new system which allows the use of this diagnostic as a real-time control tool as well as an extended data source for off-line analysis. This paper will briefly describe the technical features of the real-time diagnostic with main focus on the system architecture, which consists of a VME crate hosting three PowerPC processor boards and a fast ADC, all connected via Front Panel Data Port (FPDP). The DSP algorithm implements a lockin-amplifier required to demodulate the JET MSE signals. Some applications for the system will be covered such as: feeding the real-time equilibrium reconstruction code (EQUINOX) and allowing the full coverage analysis of the Neutral Beam time window. A brief comparison between the real-time MSE analysis and the off-line analysis will also be presented

  7. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited)

    Energy Technology Data Exchange (ETDEWEB)

    Pablant, N. A. [University of California-San Diego, La Jolla, California 92093 (United States); Burrell, K. H.; Groebner, R. J.; Kaplan, D. H. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Holcomb, C. T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D{sub {alpha}} emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B{sub {theta}}/B{sub T} and |B| over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0x10{sup 19} m{sup -3}, and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  8. Measurements of the internal magnetic field using the B-Stark motional Stark effect diagnostic on DIII-D (inivited).

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Holcomb, C T; Kaplan, D H

    2010-10-01

    Results are presented from the B-Stark diagnostic installed on the DIII-D tokamak. This diagnostic provides measurements of the magnitude and direction of the internal magnetic field. The B-Stark system is a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of the Stark split D(α) emission from injected neutral beams. This technique may have advantages over MSE polarimetry based diagnostics in future devices, such as the ITER. The B-Stark diagnostic technique and calibration procedures are discussed. The system is shown to provide accurate measurements of B(θ)/B(T) and ∣B∣ over a range of plasma conditions. Measurements have been made with toroidal fields in the range of 1.2-2.1 T, plasma currents in the range 0.5-2.0 MA, densities between 1.7 and 9.0×10(19) m(-3), and neutral beam voltages between 50 and 81 keV. The viewing direction and polarization dependent transmission properties of the collection optics are found using an in situ beam into gas calibration. These results are compared to values found from plasma equilibrium reconstructions and the MSE polarimetry system on DIII-D.

  9. Motional stark effect upgrades on DIII-D

    International Nuclear Information System (INIS)

    Rice, B.W.; Nilson, D.G.; Wroblewski, D.

    1994-04-01

    The measurement and control of the plasma current density profile (or q profile) is critical to the advanced tokamak program on DIII-D. A complete understanding of the stability and transport properties of advanced operating regimes requires detail poloidal field measurements over the entire plasma radius from the core to the edge. In support of this effort, the authors have recently completed an upgrade of the existing MSE diagnostic, increasing the number of channels from 8 to 16. A new viewing geometry has been added to the outer edge of the plasma which improves the radial resolution in this region from 10 cm to < 4 cm. This view requires the use of a reflector that has been designed to minimize polarization amplitude and phase effects. Vacuum-compatible polarizers have also been added to the instrument for in-situ calibration. Future use of the MSE diagnostic for feedback control of the q profile will also be discussed

  10. Motional Stark Effect measurements of the local magnetic field in high temperature fusion plasmas

    Science.gov (United States)

    Wolf, R. C.; Bock, A.; Ford, O. P.; Reimer, R.; Burckhart, A.; Dinklage, A.; Hobirk, J.; Howard, J.; Reich, M.; Stober, J.

    2015-10-01

    The utilization of the Motional Stark Effect (MSE) experienced by the neutral hydrogen or deuterium injected into magnetically confined high temperature plasmas is a well established technique to infer the internal magnetic field distribution of fusion experiments. In their rest frame, the neutral atoms experience a Lorentz electric field, EL = v × B, which results in a characteristic line splitting and polarized line emission. The different properties of the Stark multiplet allow inferring, both the magnetic field strength and the orientation of the magnetic field vector. Besides recording the full MSE spectrum, several types of polarimeters have been developed to measure the polarization direction of the Stark line emission. To test physics models of the magnetic field distribution and dynamics, the accuracy requirements are quite demanding. In view of these requirements, the capabilities and issues of the different techniques are discussed, including the influence of the Zeeman Effect and the sensitivity to radial electric fields. A newly developed Imaging MSE system, which has been tested on the ASDEX Upgrade tokamak, is presented. The sensitivity allows to resolve sawtooth oscillations. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  11. Magnetic field pitch angle diagnostic using the motional Stark effect (invited)

    International Nuclear Information System (INIS)

    Levinton, F.M.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Roberts, D.W.

    1990-01-01

    The Stark effect has been employed in a novel technique for obtaining the pitch angle profile and q(r) using polarimetry measurements of the Doppler shifted H α emission from a hydrogen diagnostic neutral beam. As a neutral beam propagates through a plasma, collisions of the beam particles with the background ions and electrons will excite beam atoms, leading to emission of radiation. The motional Stark effect, which arises from the electric field induced in the atom's rest frame due to the beam motion across the magnetic field (E=V beam xB), causes a wavelength splitting of several angstroms and polarization of the emitted radiation. The Δm=±1 transitions, or σ components, from the beam fluorescence are linearly polarized parallel to the direction of the local magnetic field when viewed transverse to the fields. Since the hydrogen beam provides good spatial localization and penetration, the pitch angle can be obtained anywhere in the plasma. A photoelastic modulator (PEM) is used to modulate the linearly polarized light. Depending on the orientation of the PEM, it can measure the sine or cosine of the angle of polarization. Two PEM's are used to measure both components simultaneously. Results of q(r) for both Ohmic and NBI heated discharges have been obtained in the Princeton Beta Experiment (PBX-M) tokamak, with an uncertainty of ∼6% for q(0)

  12. Design of a New Optical System for Alcator C-Mod Motional Stark Effect Diagnostic

    International Nuclear Information System (INIS)

    Ko, Jinseok; Scott, Steve; Bitter, Manfred; Lerner, Scott

    2009-01-01

    The motional Stark effect (MSE) diagnostic on Alcator C-Mod uses an in-vessel optical system (five lenses and three mirrors) to relay polarized light to an external polarimeter because port access limitations on Alcator C-Mod preclude a direct view of the diagnostic beam. The system experiences unacceptable, spurious drifts of order several degrees in measured pitch angle over the course of a run day. Recent experiments illuminated the MSE diagnostic with polarized light of fixed orientation as heat was applied to various optical elements. A large change in measured angle was observed as two particular lenses were heated, indicating that thermal-stress-induced birefringence is a likely cause of the spurious variability. Several new optical designs have been evaluated to eliminate the affected in-vessel lenses and to replace the focusing they provide with curved mirrors; however, ray tracing calculations imply that this method is not feasible. A new approach is under consideration that utilizes in situ calibrations with in-vessel reference polarized light sources. 2008 American Institute of Physics.

  13. Measurement of the poloidal magnetic field in the PBX-M tokamak using the motional Stark effect

    International Nuclear Information System (INIS)

    Levinton, F.M.; Fonck, R.J.; Gammel, G.M.; Kaita, R.; Kugel, H.W.; Powell, E.T.; Roberts, D.W.

    1989-05-01

    Polarimetry measurements of the Doppler-shifted H/sub α/ emission from a hydrogen neutral beam on the PBX-M tokamak have been employed in a novel technique for obtaining q(0) and poloidal magnetic field profiles. The electric field from the beam particle motion across the magnetic field (E = V/sub beam/ /times/ B) causes a wavelength splitting of several angstroms, and polarization of the emitted radiation (Stark effect). Viewed transverse to the fields, the emission is linearly polarized with the angle of polarization related to the direction of the magnetic field. 14 refs., 5 figs

  14. Direct measurements of safety factor profiles with motional Stark effect for KSTAR tokamak discharges with internal transport barriers

    Science.gov (United States)

    Ko, J.; Chung, J.

    2017-06-01

    The safety factor profile evolutions have been measured from the plasma discharges with the external current drive mechanism such as the multi-ion-source neutral beam injection for the Korea Superconducting Tokamak Advanced Research (KSTAR) for the first time. This measurement has been possible by the newly installed motional Stark effect (MSE) diagnostic system that utilizes the polarized Balmer-alpha emission from the energetic neutral deuterium atoms induced by the Stark effect under the Lorentz electric field. The 25-channel KSTAR MSE diagnostic is based on the conventional photoelastic modulator approach with the spatial and temporal resolutions less than 2 cm (for the most of the channels except 2 to 3 channels inside the magnetic axis) and about 10 ms, respectively. The strong Faraday rotation imposed on the optical elements in the diagnostic system is calibrated out from a separate and well-designed polarization measurement procedure using an in-vessel reference polarizer during the toroidal-field ramp-up phase before the plasma experiment starts. The combination of the non-inductive current drive during the ramp-up and shape control enables the formation of the internal transport barrier where the pitch angle profiles indicate flat or slightly hollow profiles in the safety factor.

  15. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Foley, E. L.; Levinton, F. M. [Nova Photonics, Inc., Princeton, New Jersey 08540 (United States)

    2013-04-15

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  16. Measurements with magnetic field in the National Spherical Torus Experiment using the motional Stark effect with laser induced fluorescence diagnostic

    Science.gov (United States)

    Foley, E. L.; Levinton, F. M.

    2013-04-01

    The motional Stark effect with laser-induced fluorescence diagnostic (MSE-LIF) has been installed and tested on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Lab. The MSE-LIF diagnostic will be capable of measuring radially resolved profiles of magnetic field magnitude or pitch angle in NSTX plasmas. The system includes a diagnostic neutral hydrogen beam and a laser which excites the n = 2 to n = 3 transition. A viewing system has been implemented which will support up to 38 channels from the plasma edge to past the magnetic axis. First measurements of MSE-LIF signals in the presence of small applied magnetic fields in neutral gas are reported.

  17. Overview of equilibrium reconstruction on DIII-D using new measurements from an expanded motional Stark effect diagnostic

    International Nuclear Information System (INIS)

    Holcomb, C; Makowski, M; Allen, S; Meyer, W; Van Zeeland, M

    2008-01-01

    Motional Stark effect (MSE) measurements constrain equilibrium reconstruction of DIII-D tokamak plasmas using the equilibrium code EFIT. In 2007, two new MSE arrays were brought online, bringing the system to three core arrays, two edge arrays, and 64 total channels. We present the first EFIT reconstructions using this expanded system. Safety factor and E R profiles produced by fitting to data from the two new arrays and one of the other three agree well with independent measurements. Comparison of the data from the three arrays that view the core shows that one of the older arrays is inconsistent with the other two unless the measured calibration factors for this array are adjusted. The required adjustments depend on toroidal field and plasma current direction, and on still other uncertain factors that change as the plasma evolves. We discuss possible sources of calibration error for this array

  18. A motional Stark effect diagnostic analysis routine for improved resolution of iota in the core of the large helical device.

    Science.gov (United States)

    Dobbins, T J; Ida, K; Suzuki, C; Yoshinuma, M; Kobayashi, T; Suzuki, Y; Yoshida, M

    2017-09-01

    A new Motional Stark Effect (MSE) analysis routine has been developed for improved spatial resolution in the core of the Large Helical Device (LHD). The routine was developed to reduce the dependency of the analysis on the Pfirsch-Schlüter (PS) current in the core. The technique used the change in the polarization angle as a function of flux in order to find the value of diota/dflux at each measurement location. By integrating inwards from the edge, the iota profile can be recovered from this method. This reduces the results' dependency on the PS current because the effect of the PS current on the MSE measurement is almost constant as a function of flux in the core; therefore, the uncertainty in the PS current has a minimal effect on the calculation of the iota profile. In addition, the VMEC database was remapped from flux into r/a space by interpolating in mode space in order to improve the database core resolution. These changes resulted in a much smoother iota profile, conforming more to the physics expectations of standard discharge scenarios in the core of the LHD.

  19. The importance of the radial electric field (Er) on interpretation of motional Stark effect measurements of the q profile in DIII-D high performance plasmas

    International Nuclear Information System (INIS)

    Rice, B.W.; Lao, L.L.; Burrell, K.H.; Greenfield, C.M.; Lin-Liu, Y.R.

    1997-06-01

    The development of enhanced confinement regimes such as negative central magnetic shear (NCS) and VH-mode illustrates the importance of the q profile and ExB velocity shear in improving stability and confinement in tokamak plasmas. Recently, it was realized that the large values of radial electric field observed in these high performance plasmas, up to 200 kV/m in DIII-D, have an effect on the interpretation of motional Stark effect (MSE) measurements of the q profile. It has also been shown that, with additional MSE measurements, one can extract a direct measurement of E r in addition to the usual poloidal field measurement. During a recent vent on DIII-D, 19 additional MSE channels with new viewing angles were added (for a total of 35 channels) in order to descriminate between the neutral beam v b x B electric field and the plasma E r field. In this paper, the system upgrade will be described and initial measurements demonstrating simultaneous measurement of the q and E r profiles will be presented

  20. The stark effect in intense field. 2

    International Nuclear Information System (INIS)

    Popov, V.S.; Mur, V.D.; Sergeev, A.V.; Weinberg, V.M.

    1987-01-01

    The problem of hydrogen atom in homogeneous electric field is considered. The Stark shifts and widths of atomic levels are computed by summation of divergent perturbation series and by 1/n-expansion - up to E values comparable with the field on the electron orbit. The results of the calculations are presented for the following sequences of states: |n 1 ,0,0>, |0,n 2 ,0>, |n 1 ,n 1 ,0>, as well as for all states with n=2 and 3 (n is the principal quantum number). The Stark shifts and widths of Rydberg states (with n=15-30) in electric field which exceeds the classical ionization threshold are computed. The results of our calculations agree with experiment

  1. Variable scaling method and Stark effect in hydrogen atom

    International Nuclear Information System (INIS)

    Choudhury, R.K.R.; Ghosh, B.

    1983-09-01

    By relating the Stark effect problem in hydrogen-like atoms to that of the spherical anharmonic oscillator we have found simple formulas for energy eigenvalues for the Stark effect. Matrix elements have been calculated using 0(2,1) algebra technique after Armstrong and then the variable scaling method has been used to find optimal solutions. Our numerical results are compared with those of Hioe and Yoo and also with the results obtained by Lanczos. (author)

  2. Stark--Zeeman effect of metastable hydrogen molecules

    International Nuclear Information System (INIS)

    Kagann, R.H.

    1975-01-01

    The Stark effect of the N = 1 rotational level of orthohydrogen and the N = 2 rotational level of parahydrogen in the metastable c 3 PI/sub u/ electronic state has been measured using the molecular beam magnetic resonance method. The Stark effect of the metastable state is 10,000 times larger than that of the ground electronic state. The Stark effect of parahydrogen was found to be weakly dependent on static magnetic field strength, whereas the Stark effect of orthohydrogen was found to be more strongly dependent on the magnetic field strength. The Stark effect of orthohydrogen has been calculated using second-order perturbation theory with a pure Stark effect perturbation. The magnetic field dependence of the Stark effect was calculated using third-order perturbation theory with a mixed Stark--Zeeman effect double perturbation. A comparison of the experimental and theoretical values of α/sub perpendicular/ provides information on the electronic transition moment connecting the c 3 PI/sub u/ state to the a 3 Σ + /sub g/ state. The transition moment is needed to calculate the radiative lifetimes of the various vibrational levels of the c 3 PI/sub u/ state. The transition moment also enters the calculation of the quenching of this metastable state by an external electric field. There is a disagreement between theoretical predictions and the results of an experiment on the electric field quenching of the metastables. A test of the electronic transition moment may help shed light on this question. The experimental determination of the values of the transition moments allows one to test theory by comparing these values to those obtained by calculations employing ab initio wavefunctions

  3. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  4. Measurements of the internal magnetic field on DIII-D using intensity and spacing of the motional Stark multiplet.

    Science.gov (United States)

    Pablant, N A; Burrell, K H; Groebner, R J; Kaplan, D H; Holcomb, C T

    2008-10-01

    We describe a version of a motional Stark effect (MSE) diagnostic based on the relative line intensities and spacing of Stark split D(alpha) emission from the neutral beams. This system, named B-Stark, has been recently installed on the DIII-D tokamak. To find the magnetic pitch angle, we use the ratio of the intensities of the pi(3) and sigma(1) lines. These lines originate from the same upper level and so are not dependent on the level populations. In future devices, such as ITER, this technique may have advantages over diagnostics based on MSE polarimetry. We have done an optimization of the viewing direction for the available ports on DIII-D to choose the installation location. With this placement, we have a near optimal viewing angle of 59.6 degrees from the vertical direction. All hardware has been installed for one chord, and we have been routinely taking data since January 2007. We fit the spectra using a simple Stark model in which the upper level populations of the D(alpha) transition are treated as free variables. The magnitude and direction of the magnetic field obtained using this diagnostic technique compare well with measurements from MSE polarimetry and EFIT.

  5. Stark effect in Rydberg states of helium and barium

    International Nuclear Information System (INIS)

    Lahaije, C.T.W.

    1989-01-01

    This thesis, which deals with the effect of an electric field up to moderate field strengths on atoms with two valence electrons outside closed shells, in casu helium and barium, contains chapter in which the linear Stark effect in the 1 snp 1, 3 p Rydberg states of helium (n around 40) has been studied in a CW laser-atomic beam experiment. The evolution of the angular momentum manifolds into the n-mixing regime was followed and avoided level crossings were observed. Stark manifolds were also calculated by diagonalization of the complete energy matrix in the presence of an electric field. It turned out to be necessary to include up to five n-values in the calculations already at moderate values of the field to reproduce the data within the experimental accuracy (a few MHz), especially in the regime of the avoided crossings. (author). 147 refs.; 30 figs.; 8 tabs

  6. Dynamic Stark broadening as the Dicke narrowing effect

    International Nuclear Information System (INIS)

    Calisti, A.; Mosse, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high-n series emission lines. It is not limited to hydrogen spectra. Results on helium-β and Lyman-α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  7. Dipole transitions and Stark effect in the charge-dyon system

    International Nuclear Information System (INIS)

    Mardoyan, Levon; Nersessian, Armen; Sarkisyan, Hayk; Yeghikyan, Vahagn

    2007-01-01

    We consider the dipole transitions and the linear and quadratic Stark effects in the MICZ-Kepler system interpreted as a charge-dyon system. We show that while the linear Stark effect in the ground state is proportional to the azimuth quantum number (and to the sign of the monopole number), the quadratic Stark effect in the ground state is independent of the signs of the azimuth and monopole numbers

  8. Stark effect measurements on monomers and trimers of reconstituted light-harvesting complex II of plants

    NARCIS (Netherlands)

    Palacios, M.A.; Caffarri, S.; Bassi, R.; Grondelle, van R.; Amerongen, van H.

    2004-01-01

    The electric-field induced absorption changes (Stark effect) of reconstituted light-harvesting complex II (LHCII) in different oligomerisation states - monomers and trimers - with different xanthophyll content have been probed at 77 K. The Stark spectra of the reconstituted control samples,

  9. Stark effect and polarizability of graphene quantum dots

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of graphene quantum dots can be manipulated via lateral electric fields. Treating electrons in such structures as confined massless Dirac fermions, we derive an analytical expression for the quadratic Stark shift valid for arbitrary angular momentum and quantum dot size. Moreover, we...

  10. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  11. Stark effect in finite-barrier quantum wells, wires, and dots

    International Nuclear Information System (INIS)

    Pedersen, Thomas Garm

    2017-01-01

    The properties of confined carriers in low-dimensional nanostructures can be controlled by external electric fields and an important manifestation is the Stark shift of quantized energy levels. Here, a unifying analytic theory for the Stark effect in arbitrary dimensional nanostructures is presented. The crucial role of finite potential barriers is stressed, in particular, for three-dimensional confinement. Applying the theory to CdSe quantum dots, finite barriers are shown to improve significantly the agreement with experiments. (paper)

  12. Quantum-Confined Stark Effect in Ensemble of Colloidal Semiconductor Quantum Dots

    International Nuclear Information System (INIS)

    Zhi-Bing, Wang; Hui-Chao, Zhang; Jia-Yu, Zhang; Su, Huaipeng; Wang, Y. Andrew

    2010-01-01

    The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions are changed under external electric fields. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    International Nuclear Information System (INIS)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-01-01

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented

  14. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad Esquina Con Paseo La Bufa S/N, 98060 Zacatecas, Zac. (Mexico)

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  15. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  16. Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells

    International Nuclear Information System (INIS)

    Drabinska, A; Pakula, K; Baranowski, J M; Wysmolek, A

    2010-01-01

    In this paper we present room temperature electroreflectance studies of GaN quantum wells (QWs) with different well width. The electroreflectance measurements were performed with external voltage applied to the structure therefore it was possible to tune the electric field inside QW up to its completely screening and furthermore even reversing it. The analysis of QW spectral lines showed the Stark shift dependence on applied voltage and well width reaching about 35 meV for highest voltage and widest well width. It was possible to obtain the condition of zero electric field in QW. Both broadening and amplitude of QW lines are minimal for zero electric field and increases for increasing electric field in QW. The energy transition is maximum for zero electric field and for increasing electric field it decreases due to Stark effect. Neither amplitude and broadening parameter nor energy transition does not depend on the direction of electric field. Only parameter that depends on the direction of electric field in QW is phase of the signal. The analysis of Franz-Keldysh oscillations (FKOs) from AlGaN barriers allowed to calculate the real electric field dependence on applied voltage and therefore to obtain the Stark shift dependence on electric field. The Stark shift reached from -12 meV to -35 meV for 450 kV/cm depending on the well width. This conditions were established for highest forward voltages therefore this is the value of electric field and Stark shift caused only by the intrinsic polarization of nitrides.

  17. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru

    2000-08-15

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  18. High-frequency Stark effect and two-quantum transitions

    International Nuclear Information System (INIS)

    Hildebrandt, J

    2007-01-01

    A problem which motivated a great deal of work about 20 years ago, namely, satellite lines occurring for atomic emitters undergoing a harmonic perturbation, is revisited. On a theoretical point of view, two photon mechanisms or equivalent are involved to explain those satellites due to high-frequency electric fields. Although today the activity on these problems is rather low, interest in observing such effects in the domain of x-ray spectroscopy exists, namely for hot and dense plasmas. More generally, satellites can be also seen as connected to turbulence diagnostics. This mainly motivates the design of plasmas and improvements of x-ray spectroscopy techniques. However, up to now, attempts to extend the methods of nonlinear spectroscopy to this domain have been rather disappointing. As a promotion for a resurgence of the field, an improved theory, founded on formalisms of nonlinear optics, is developed to suggest a new interpretation of the experiments. Previous publications are modified and an old problem is closed. Hopefully, this will help us to stimulate new applications of two-photon techniques in plasmas

  19. Stark effect of excitons in corrugated lateral surface superlattices: effect of centre-of-mass quantization

    International Nuclear Information System (INIS)

    Hong Sun

    1998-11-01

    The quantum confined Stark effect (QCSE) of excitons in GaAs/AlAs corrugated lateral surface superlattices (CLSSLs) is calculated. Blue and red shifts in the exciton energies are predicted for the heavy- and light-excitons in the CLSSLs, respectively, comparing with those in the unmodulated quantum well due to the different effective hole masses in the parallel direction. Sensitive dependence of the QCSE on the hole effective mass in the parallel direction is expected because of the ''centre-of-mass'' quantization (CMQ) induced by the periodic corrugated interfaces of the CLSSLs. The effect of the CMQ on the exciton mini-bands and the localization of the excitons in the CLSSLs is discussed. (author)

  20. Influence of the ac Stark effect on stimulated hyper-Raman profiles in sodium vapor

    International Nuclear Information System (INIS)

    Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-08-01

    When pumping near the two-photon 3d resonance in pure sodium vapor and observing the backward hyper-Raman emission to the 3p substates, an asymmetry in ratios of 3p/sub 1/2/, 3p/sub 3/2/ associated emissions was observed dependent upon the direction of the initial laser detuning from the resonance. It has been determined that this asymmetry can be attributed to the ac Stark effect induced by the hyper-Raman emission itself. 3 refs., 3 figs

  1. The AC Stark Effect, Time-Dependent Born-Oppenheimer Approximation, and Franck-Condon Factors

    CERN Document Server

    Hagedorn, G A; Jilcott, S W

    2005-01-01

    We study the quantum mechanics of a simple molecular system that is subject to a laser pulse. We model the laser pulse by a classical oscillatory electric field, and we employ the Born--Oppenheimer approximation for the molecule. We compute transition amplitudes to leading order in the laser strength. These amplitudes contain Franck--Condon factors that we compute explicitly to leading order in the Born--Oppenheimer parameter. We also correct an erroneous calculation in the mathematical literature on the AC Stark effect for molecular systems.

  2. Cross-sectional nanophotoluminescence studies of Stark effects in self-assembled quantum dots

    International Nuclear Information System (INIS)

    Htoon, H.; Keto, J. W.; Baklenov, O.; Holmes, A. L. Jr.; Shih, C. K.

    2000-01-01

    By using a cross-sectional geometry, we show the capability to perform single-dot spectroscopy in self-assembled quantum dots using far-field optics. By using this method, we study the quantum-confined Stark effect in self-assembled quantum dots. For single-stack quantum dots (QDs), we find that the spectra are redshifted with an increase in electric field. For vertically coupled double-stack quantum dots, while most of the QDs are redshifted, some QDs show blueshifted spectra, which can be interpreted as an evidence of coupled QD molecules. (c) 2000 American Institute of Physics

  3. Stark effect of optical properties of excitons in a quantum nanorod with parabolic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, S.K., E-mail: sklyo@uci.edu

    2014-01-15

    We study the quantum Stark effect of optical properties of a quasi-one-dimensional quantum rod with parabolic confinement. Interplays between the competing/cooperative forces from confinement, electron–hole (e–h) attraction, and an external field are examined by studying the binding energy, the oscillator strength, and the root-mean-square (RMS) average of the e–h separation in a nonlinear electric field. In a long rod with weak confinement, the e–h interaction dominates over the confinement effect, yielding an abrupt drop of the exciton binding energy, oscillator strength, and a sudden increase of the RMS average e–h separation as the excitons are dissociated at the threshold field as the field increases. The exciton-dissociation transition is gradual in a short rod, where the confinement force dominates over the e–h attraction. We show that a DC field can induce an optically active excited exciton state in a narrow field range, causing a sharp peak in the oscillator strength and a dip in the RMS average of the e–h separation as the field increases. The Stark effects are also investigated as a function of the linear confinement length (i.e., rod length) at fixed fields. -- Highlights: • Study the dependence of optical properties of nanorods on the rod size and field. • Study the interplay between forces of confinement, Coulomb attraction, and field. • A strong field induces an optically active excited state observed in quantum dots.

  4. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  5. Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk

    Science.gov (United States)

    Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.

    2018-01-01

    In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.

  6. Laser-induced fluorescences due to quadrupole moment transition and Stark effect in a He glow discharge

    International Nuclear Information System (INIS)

    Sakai, Hisashi; Takiyama, Ken; Kimura, Masahiko; Yamasaki, Motokuni; Fujita, Toshiaki; Oda, Toshiatsu; Kawasaki, Ken.

    1993-01-01

    The electric quadrupole moment transition and the Stark effect are investigated in a He hollow cathode discharge with laser-induced fluorescence method. It is shown that the forbidden transition from 2 1 S to 3 1 D in the negative glow is dominantly due to the quadrupole moment transition. This absorption coefficient is obtained from the laser-induced fluorescence intensity measurement in which the collisional transfers are taken into account. The result agrees with the theoretical coefficient. In the cathode dark space the fluorescence due to the Stark effect is also observed. Spatial distribution of the fluorescence is discussed, compared with the electric field distribution in the dark space. (author)

  7. A New Analysis of Stark and Zeeman Effects on Hydrogen Lines in Magnetized DA White Dwarfs

    Directory of Open Access Journals (Sweden)

    Ny Kieu

    2017-11-01

    Full Text Available White dwarfs with magnetic field strengths larger than 10 T are understood to represent more than 10% of the total population of white dwarfs. The presence of such strong magnetic fields is clearly indicated by the Zeeman triplet structure visible on absorption lines. In this work, we discuss the line broadening mechanisms and focus on the sensitivity of hydrogen lines on the magnetic field. We perform new calculations in conditions relevant to magnetized DA stellar atmospheres using models inspired from magnetic fusion plasma spectroscopy. A white dwarf spectrum from the Sloan Digital Sky Survey (SDSS database is analyzed. An effective temperature is provided by an adjustment of the background radiation with a Planck function, and the magnetic field is inferred from absorption lines presenting a Zeeman triplet structure. An order-of-magnitude estimate for the electron density is also performed from Stark broadening analysis.

  8. Stark Broadening and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Dimitrijević Milan S.

    2011-12-01

    Full Text Available White dwarf and pre-white dwarfs are the best types of stars for the application of Stark broadening research results in astrophysics, since in the atmospheres of these stars physical conditions are very favorable for this line broadening mechanism - in hot hydrogen-deficient white dwarfs and pre-white dwarfs Teff = 75 000–180 000 K and log g = 5.5–8 [cgs]. Even for much cooler DA and DB white dwarfs with the typical effective temperatures 10 000-20 000 K, Stark broadening is usually the dominant broadening mechanism. In this review, Stark broadening in white dwarf spectra is considered, and the attention is drawn to the STARK-B database (http://stark-b.obspm.fr/, containing the parameters needed for analysis and synthesis of white dwarf spectra, as well as for the collective efforts to develop the Virtual Atomic and Molecular Data Center.

  9. The Stark effect of 1H and 4He+ in the beam foil source

    International Nuclear Information System (INIS)

    Doobov, M.H.; Hay, H.J.; Sofield, C.J.; Newton, C.S.

    1974-01-01

    The appearance of Stark patterns obtained with a beam-foil source differed from those characteristically obtained from gas discharge sources. In the former source excitation of the hydrogenic ions occurred in a brief time interval ( 14 s) during the passage of a high velocity unidirectional beam of ions which produces non-statistical population distributions for the Stark perturbed states. The relative intensities of Stark perturbed components of the Hsub(β) hydrogen line and the Fsub(α) ionized helium line have been measured in a beam-foil source. In each case an initial population of states of principal quantum number n = 4 due to radiative decay and Stark mixing, and comparing the resultant patterns with the observed patterns. The inferred population distributions indicate that the states of low orbital angular momentum (L) are preferentially populated, and alignment referred to the beam axis is produced such that states with lower z component of L are preferentially populated. (author)

  10. Strong quantum-confined stark effect in germanium quantum-well structures on silicon

    International Nuclear Information System (INIS)

    Kuo, Y.; Lee, Y. K.; Gei, Y.; Ren, S; Roth, J. E.; Miller, D. A.; Harris, J. S.

    2006-01-01

    Silicon is the dominant semiconductor for electronics, but there is now a growing need to integrate such component with optoelectronics for telecommunications and computer interconnections. Silicon-based optical modulators have recently been successfully demonstrated but because the light modulation mechanisms in silicon are relatively weak, long (for example, several millimeters) devices or sophisticated high-quality-factor resonators have been necessary. Thin quantum-well structures made from III-V semiconductors such as GaAs, InP and their alloys exhibit the much stronger Quantum-Confined Stark Effect (QCSE) mechanism, which allows modulator structures with only micrometers of optical path length. Such III-V materials are unfortunately difficult to integrate with silicon electronic devices. Germanium is routinely integrated with silicon in electronics, but previous silicon-germanium structures have also not shown strong modulation effects. Here we report the discovery of the QCSE, at room temperature, in thin germanium quantum-well structures grown on silicon. The QCSE here has strengths comparable to that in III-V materials. Its clarity and strength are particularly surprising because germanium is an indirect gap semiconductor, such semiconductors often display much weak optical effects than direct gap materials (such as the III-V materials typically used for optoelectronics). This discovery is very promising for small, high-speed, low-power optical output devices fully compatible with silicon electronics manufacture. (author)

  11. Stark shift and g-factor tuning in nanowires with Rashba effect

    Energy Technology Data Exchange (ETDEWEB)

    Alhaddad, Iman; Habanjar, Khulud [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Sakr, M.R., E-mail: msakr@alexu.edu.eg [Department of Physics, Faculty of Science, Beirut Arab University, P.O. Box 11, 5020 Riad El Solh, 11072809 - Beirut (Lebanon); Department of Physics, Faculty of Science, Alexandria University, Moharram Bek, Alexandria 21511 (Egypt)

    2015-10-15

    We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields.

  12. Stark shift and g-factor tuning in nanowires with Rashba effect

    International Nuclear Information System (INIS)

    Alhaddad, Iman; Habanjar, Khulud; Sakr, M.R.

    2015-01-01

    We report on the Stark shift of the energy subbands and the possibility of tuning the g-factor of electrons in nanowires subjected to external magnetic field. The electric field is applied along the direction of quantum confinement. Our analysis is based on numerical and perturbation calculations in the weak Rashba regime. For in-plane magnetic fields, the Stark shift is rigid and depends on the square of the electric field. Such rigid shift results in a field independent g-factor. Perpendicular magnetic fields induce a similar Stark shift accompanied by a lateral displacement of the energy spectra that is linear in the electric field. In this case, the g-factor shows square dependence on weak electric fields that varies with the subband index. However, in strong electric fields, the g-factor becomes subband independent and varies linearly with the field. - Highlights: • Energy spectra of electrons in nanowires are calculated in the weak Rashba regime. • For in-plane magnetic field, the Stark shift is rigid and the g-factor cannot be tuned. • Perpendicular magnetic fields add lateral displacement to the Stark shift. • The g-factor can be tuned by external electric field in this case. • The tuning of the g-factor is linear and unique for all subbands at high fields

  13. A study of the ac Stark effect in doped photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Haque, I; Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7 (Canada)

    2007-04-16

    In this paper we present calculations of level populations and susceptibility for an ensemble of five-level atoms doped in a photonic crystal, using the master equation method. The atoms in the ensemble interact with the crystal which acts as a reservoir and are coupled with two strong pump fields and a weak probe field. It is found that, by manipulating the resonance energy associated with one of the decay channels of the atom, the system can be switched between an inverted and a non-inverted state. We have also observed the ac Stark effect in these atoms and have shown that due to the role played by the band structure of the photonic crystal, it is possible to switch between an absorption state and a non-absorption state of the atomic system. This is a very important finding as techniques of rendering material systems transparent to resonant laser radiation are very desirable in the fabrication of novel optical and photonic devices.

  14. Simultaneous influence of Stark effect and excessive line broadening on the Hα line

    Science.gov (United States)

    Cvetanović, Nikola; Ivković, Saša S.; Obradović, Bratislav M.; Kuraica, Milorad M.

    2017-12-01

    The aim of this paper is to study the combined influence of the Stark effect and the excessive Doppler broadening on the Balmer alpha line in hydrogen discharges. Since this line is a good candidate for measuring electric field in various types of discharges with different gas compositions, a simple method for field measurement based on polarization spectroscopy is developed, that includes all the excitation mechanisms. To simultaneously test the flexibility of the fitting procedure and investigate the excessive broadening, we applied the fitting procedure on line profiles obtained at a range of conditions from two different discharges. The range of pressures and voltages was examined in an abnormal glow and in dielectric barrier discharge operating with hydrogen gas. The model fitting function was able to respond and follow the change in the line profile caused by the change of conditions. This procedure can therefore be recommended for electric field measurement. Contribution to the "Topical Issue: Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  15. Deflection of atomic beams with isotope separation by optical resonance radiation using stimulated emission and the ac stark effect

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Liao, P.F.H.

    1977-01-01

    Improved atomic beam deflection and improved isotope separation, even in vapors, is proposed by substituting the A.C. Stark effect for the baseband chirp of the pushing beam in the prior proposal by I. Nebenzahl et al., Applied Physics Letters, Vol. 25, page 327 (September 1974). The efficiency inherent in re-using the photons as in the Nebenzahl et al proposal is retained; but the external frequency chirpers are avoided. The entire process is performed by two pulses of monochromatic coherent light, thereby avoiding the complication of amplifying frequency-modulated light pulses. The A.C. Stark effect is provided by the second beam of coherent monochromatic light, which is sufficiently intense to chirp the energy levels of the atoms or isotopes of the atomic beam or vapor. Although, in general, the A.C. Stark effect will alter the isotope shift somewhat, it is not eliminated. In fact, the appropriate choice of frequencies of the pushing and chirping beams may even relax the requirements with respect to the isotope absorption line shift for effective separation. That is, it may make the isotope absorption lines more easily resolvable

  16. Stark effect in a hydrogenic atom or ion treated by the phase-integral method with adjoined papers by A. Hökback and P. O. Fröman

    CERN Document Server

    Fröman, Nanny

    2008-01-01

    This book treats the Stark effect of a hydrogenic atom or ion in a homogeneous electric field. It begins with a thorough review of previous work in this field since 1926. After the Schrödinger equation has been separated with respect to time dependence, centre of mass motion and internal motion, followed by a discussion of its eigenfunctions, the exact development in time of the probability amplitude for a decaying state is obtained by means of a formula analogous to the Fock-Krylov theorem. From this formula one obtains by means of the phase-integral approximation generated from a particular

  17. Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling

    Science.gov (United States)

    Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang

    2016-01-01

    Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.

  18. Effect of holding period prior to storage on the chemical attributes of Starking Delicious apples during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Aynur Batkan

    2012-06-01

    Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p < 0.05.

  19. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  20. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  1. Stark resonances in disordered systems

    International Nuclear Information System (INIS)

    Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.

    1992-01-01

    By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)

  2. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco); Mathématiques spéciales, CPGE Kénitra, Chakib Arsalane Street (Morocco); Jorio, Anouar; Zorkani, Izeddine [Solid State Physics Laboratory, Faculty of Science, Dhar EL Mehrez, BP 1796 Fes-Atlas (Morocco)

    2013-08-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities.

  3. Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine

    2013-01-01

    In this paper, a simultaneous study of electric field and impurity's position effects on the ground-state shallow-donor binding energy in GaN|InGaN|GaN spherical quantum dot-quantum well (SQD-QW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated using variational approach within the framework of the effective-mass approximation. The numerical results show that: (i) the binding energy is strongly affected by the external electric field and the SQD-QW dimension, (ii) a critical value of spherical system's radius is obtained constituting the limit of three dimension confinement and spherical thin layer confinement and (iii) the Stark shift increases with increasing electric field and it is more pronounced around the position of the impurity corresponding to the binding energy maxima than in the spherical layer extremities

  4. Stark effect-dependent of ground-state donor binding energy in InGaN/GaN parabolic QWW

    International Nuclear Information System (INIS)

    El Ghazi, Haddou; Zorkani, Izeddine; Jorio, Anouar

    2013-01-01

    Using the finite-difference method within the quasi-one-dimensional effective potential model and effective mass approximation, the ground-state binding energy of hydrogenic shallow-donor impurity in wurtzite (WZ) (In,Ga)N/GaN parabolic transversal-section quantum-well wires (PQWWs) subjected to external electric field is investigated. An effective radius of a cylindrical QWW describing the strength of the lateral confinement is introduced. The results show that (i) the position of the largest electron probability density in x–y plane is located at a point and it is pushed along the negative sense by the electric field directed along the positive sense, (ii) the ground-state binding energy is largest for the impurity located at this point and starts to decrease when the impurity is away from this point, (iii) the ground-state binding energy decreases with increase in the external electric field and effective radius, and (iv) the Stark-shift increases with the increase of the external electric field and the effective radius

  5. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    Science.gov (United States)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  6. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    International Nuclear Information System (INIS)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao; Volkan Demir, Hilmi

    2014-01-01

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  7. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Volkan Demir, Hilmi, E-mail: exwsun@ntu.edu.sg, E-mail: volkan@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Department of Electrical and Electronics, Department of Physics, and UNAM-Institute of Material Science and Nanotechnology, Bilkent University, TR-06800 Ankara (Turkey)

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  8. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  9. The effects of ultrasonic pretreatment and structural changes during the osmotic dehydration of the 'Starking' apple (Malus domestica Borkh)

    Energy Technology Data Exchange (ETDEWEB)

    Rosa-Mendoza, M. E.; Fernandez-Munoz, J. L.; Arjona-Roman, J. L.

    2012-11-01

    During the osmotic dehydration (OD) of fruit, the cell membrane displays a high resistance to mass transfer, thereby reducing the dehydration rate. To reduce thermal damage to cell membranes, alternative methods have recently been introduced to reduce the initial moisture content and/or modify the structure of fruit tissue. The aim of this work was to evaluate the effects of an ultrasound (US) pretreatment for OD on the effective diffusion coefficients and to observe the changes in the molecular structure of 'Starking' apple cubes by Fourier-transform infrared spectroscopy (FTIR) during a 3 h process using a 45 dregee Bx sucrose solution at 60 degree centigrade. In the pretreatment step, apple samples were immersed in an ultrasonic bath at 45 kHz for 20 min. The effective diffusion coefficients for water (Dew) and solids (Des) were calculated from the observed osmotic kinetics according to Fick's second law for the transient state. The solids coefficients were higher than the water coefficients in both processes due to the concentration difference (De = 7.7 × 10{sup -}9 and 9.7 × 10{sup -}9 m{sup 2} s{sup -}1 for ODUS). The structural changes were determined by FTIR by measuring the molecular vibration frequency for sucrose. The 1,500-900 cm{sup -}1 region of the infrared spectra was used to monitor the effect of sucrose concentration on fruit structure. We observed that the first bonds formed were C-H and C-O-C stretching (at 920 and 1,129 cm{sup -}1, respectively) in the sucrose skeleton and glycoside bonds among sucrose molecules. The water concentration affected the diffusion coefficient significantly due to its dependence on the physical structure of the food. (Author) 27 refs.

  10. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    Science.gov (United States)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  11. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    International Nuclear Information System (INIS)

    Alekseev, P. S.

    2015-01-01

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T d crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  12. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. S., E-mail: pavel.alekseev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-09-15

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T{sub d} crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  13. Experimental methods in cryogenic spectroscopy: Stark effect measurements in substituted myoglobin

    Science.gov (United States)

    Moran, Bradley M.

    Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin. Experiments are performed at 1 K on samples located within a glassy matrix, using the high-resolution technique spectral hole-burning. The internal electric field distributions can be explored by implementing a unique mathematical treatment for analyzing the effect that externally applied electric fields have on the spectral hole profiles. Precise control of the light field, the temperature, and the externally applied electric field at the site of the sample is crucial. Experimentally, the functionality of custom cryogenic temperature confocal scanning microscope was extended to allow for collection of imaging and spectral data with the ability to modulate the polarization of the light at the sample. Operation of the instrumentation was integrated into a platform allowing for seamless execution of input commands with high temporal inter-instrument resolution for collection of data streams. For the regulated control and cycling of the sample temperature. the thermal characteristics of the research Dewar were theoretically modeled to systematically predict heat flows throughout the system. A high voltage feedthrough for delivering voltages of up to 5000 V to the sample as positioned within the Dewar was developed. The burning of spectral holes with this particular experimental setup is highly repeatable. The quantum mechanical

  14. Orthogonal Electric Field Measurements near the Green Fluorescent Protein Fluorophore through Stark Effect Spectroscopy and pKa Shifts Provide a Unique Benchmark for Electrostatics Models.

    Science.gov (United States)

    Slocum, Joshua D; First, Jeremy T; Webb, Lauren J

    2017-07-20

    Measurement of the magnitude, direction, and functional importance of electric fields in biomolecules has been a long-standing experimental challenge. pK a shifts of titratable residues have been the most widely implemented measurements of the local electrostatic environment around the labile proton, and experimental data sets of pK a shifts in a variety of systems have been used to test and refine computational prediction capabilities of protein electrostatic fields. A more direct and increasingly popular technique to measure electric fields in proteins is Stark effect spectroscopy, where the change in absorption energy of a chromophore relative to a reference state is related to the change in electric field felt by the chromophore. While there are merits to both of these methods and they are both reporters of local electrostatic environment, they are fundamentally different measurements, and to our knowledge there has been no direct comparison of these two approaches in a single protein. We have recently demonstrated that green fluorescent protein (GFP) is an ideal model system for measuring changes in electric fields in a protein interior caused by amino acid mutations using both electronic and vibrational Stark effect chromophores. Here we report the changes in pK a of the GFP fluorophore in response to the same mutations and show that they are in excellent agreement with Stark effect measurements. This agreement in the results of orthogonal experiments reinforces our confidence in the experimental results of both Stark effect and pK a measurements and provides an excellent target data set to benchmark diverse protein electrostatics calculations. We used this experimental data set to test the pK a prediction ability of the adaptive Poisson-Boltzmann solver (APBS) and found that a simple continuum dielectric model of the GFP interior is insufficient to accurately capture the measured pK a and Stark effect shifts. We discuss some of the limitations of this

  15. Stark resonances: asymptotics and distributional Borel sum

    International Nuclear Information System (INIS)

    Caliceti, E.; Grecchi, V.; Maioli, M.

    1993-01-01

    We prove that the Stark effect perturbation theory of a class of bound states uniquely determines the position and the width of the resonances by Distributional Borel Sum. In particular the small field asymptotics of the width is uniquely related to the large order asymptotics of the perturbation coefficients. Similar results apply to all the ''resonances'' of the anharmonic and double well oscillators. (orig.)

  16. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  17. Wannier–Stark electro-optical effect, quasi-guided and photonic modes in 2D macroporous silicon structures with SiO_2 coatings

    International Nuclear Information System (INIS)

    Karachevtseva, L.; Goltviansky, Yu.; Sapelnikova, O.; Lytvynenko, O.; Stronska, O.; Bo, Wang; Kartel, M.

    2016-01-01

    Highlights: • The IR absorption spectra of oxidized macroporous silicon were studied. • The Wannier–Stark electro-optical effect on Si-SiO_2 boundary was confirmed. • An additional electric field of quasi-guided optical modes was evaluated. • The photonic modes and band gaps were measured as peculiarities in absorption spectra. - Abstract: Opportunities to enhance the properties of structured surfaces were demonstrated on 2D macroporous silicon structures with SiO_2 coatings. We investigated the IR light absorption oscillations in macroporous silicon structures with SiO2 coatings 0–800 nm thick. The Wannier–Stark electro-optical effect due to strong electric field on Si-SiO_2boundary and an additional electric field of quasi-guided optical modes were taken into account. The photonic modes and band gaps were also considered as peculiarities in absorbance spectra of macroporous silicon structures with a thick SiO_2 coating. The photonic modes do not coincide with the quasi-guided modes in the silicon matrix and do not appear in absorption spectra of 2D macroporous silicon structures with surface nanocrystals.

  18. Influence of Doppler and 'Stark' effects on the shape of the autoionization peaks in electron energy spectra produced in ion-atom collisions

    International Nuclear Information System (INIS)

    Gleizes, A.; Benoit-Cattin, P.; Bordenave-Montesquieu, A.; Merchez, H.

    1976-01-01

    A detailed study is given of the influence of the Doppler shift and broadening on the spectra of electrons ejected by autoionization in collisions between heavy particles. General formulae have been obtained which permit the validity of results already published by other authors to be discussed. These results have been applied to the spectra of electrons ejected in He + -He collisions at 15 keV. The variation of the width of the autoionization peaks against ejection angle is well explained by Doppler broadening. On the contrary, the shape of these peaks cannot be due to the Doppler effect but rather to the Stark effect which is also studied in various experimental cases; it has been verified that the latter effect disappears in collisions between neutral particles for which symmetric peaks at 15 keV are obtained. (author)

  19. Scattering theory for Stark Hamiltonians

    International Nuclear Information System (INIS)

    Jensen, Arne

    1994-01-01

    An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs

  20. Quantum-confined Stark effect at 1.3 μm in Ge/Si(0.35)Ge(0.65) quantum-well structure.

    Science.gov (United States)

    Rouifed, Mohamed Said; Chaisakul, Papichaya; Marris-Morini, Delphine; Frigerio, Jacopo; Isella, Giovanni; Chrastina, Daniel; Edmond, Samson; Le Roux, Xavier; Coudevylle, Jean-René; Vivien, Laurent

    2012-10-01

    Room-temperature quantum-confined Stark effect in a Ge/SiGe quantum-well structure is reported at the wavelength of 1.3 μm. The operating wavelength is tuned by the use of strain engineering. Low-energy plasma-enhanced chemical vapor deposition is used to grow 20 periods of strain-compensated quantum wells (8 nm Ge well and 12 nm Si(0.35)Ge(0.65) barrier) on Si(0.21)Ge(0.79) virtual substrate. The fraction of light absorbed per well allows for a strong modulation around 1.3 μm. The half-width at half-maximum of the excitonic peak of only 12 meV allows for a discussion on physical mechanisms limiting the performances of such devices.

  1. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    Science.gov (United States)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  2. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  3. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    de Bock, M. F. M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N. J.; Kirk, A.; Meyer, H.; Michael, C. A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H-(high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  4. Measurements of the edge current evolution and comparison with neoclassical calculations during MAST H-modes using motional Stark effect

    NARCIS (Netherlands)

    Bock, de M.F.M.; Citrin, J.; Saarelma, S.; Temple, D.; Conway, N.J.; Kirk, A.; Meyer, H.; Michael, C.A.

    2012-01-01

    Edge localized modes (ELMs), that are present in most tokamak H- (high confinement) modes, can cause significant damage to plasma facing components in fusion reactors. Controlling ELMs is considered necessary and hence it is vital to understand the underlying physics. The stability of ELMs is

  5. Interband Stark effects in InxGa1-xAs/InyAl1-yAs coupled step quantum wells

    International Nuclear Information System (INIS)

    Kim, J.H.; Kim, T.W.; Yoo, K.H.

    2005-01-01

    The effects of an electric field on the interband transitions in In x Ga 1-x As/In y Al 1-y As coupled step quantum wells have been investigated both experimentally and theoretically. A In x Ga 1-x As/In y Al 1-y As coupled step quantum well sample consisted of the two sets of a 50 Aa In 0.53 Ga 0.47 As shallow quantum well and a 50 Aa In 0.65 Ga 0.35 As deep step quantum well bounded by two thick In 0.52 Al 0.48 As barriers separated by a 30 Aa In 0.52 Al 0.48 As embedded potential barrier. The Stark shift of the interband transition energy in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the In x Ga 1-x As/In y Al 1-y As coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that In x Ga 1-x As/In y Al 1-y As coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers

  6. Rabi oscillations and rapid-passage effects in the molecular-beam CO2-laser Stark spectroscopy of CH3F

    International Nuclear Information System (INIS)

    Adam, A.G.; Gough, T.E.; Isenor, N.R.; Scoles, G.

    1985-01-01

    sub-Doppler molecular-beam laser Stark spectroscopy has been employed to produce high-contrast Rabi oscillations in the ν 3 band of CH 3 F. By varying the intensity of the cw CO 2 laser, up to five complete oscillations were observed before the phenomenon was washed out by rapid-passage effects and damping mechanisms. Besides being useful in clarifying key features of coherent ir molecular-beam spectroscopy, the observation of Rabi oscillations provides one of the most accurate means of directly measuring transition dipole moments. Analysis of the present data on three rovibrational transitions, Q(1,1) -1reverse arrow0, P(1,0) 0reverse arrow0, and R(1,1) 0reverse arrow1, has yielded a rotationless transition dipole moment of 0.21 +- 0.01 D for the ν 3 = 1reverse arrow0 vibration. This result is in agreement with values estimated from both band-intensity and absorption-coefficient data in the literature

  7. Effect of holding period prior to storage on the chemical attributes of Starking Delicious apples during refrigerated storage Efeito do período que antecede o armazenamento nos atributos químicos de maças Starking Delicious durante o armazenamento refrigerado

    Directory of Open Access Journals (Sweden)

    Aynur Batkan

    2012-06-01

    Full Text Available In this research, the effects of three different holding periods (6, 12 and 24 hours prior to storage on the quality attributes of Starking Delicious apples were investigated during storage of 8 months at 0.5 ± 1.0 ºC. Changes in weight loss, flesh firmness, pH values, soluble dry matter amount, titratable acidity values, ascorbic acid contents, and total and reducing sugar content were determined. According to the results, the holding period showed statistically significant changes in the quality attributes of the apples (p Neste trabalho, os efeitos de três diferentes tempos de espera (6, 12 e 24 horas antes do armazenamento sobre os atributos de qualidade de maçãs tipo Starking Delicious foram investigados durante o armazenamento de 8 meses a 0,5 ± 1,0 ºC. Alterações na perda de peso, firmeza da polpa, valores de pH, quantidade de matéria seca solúvel, valores de acidez titulável, teor de ácido ascórbico e teor de açúcar redutor e total das amostras foram determinadas. De acordo com os resultados da análise, o tempo de espera causou alterações estatisticamente significativas sobre as nos atributos de qualidade das maçãs (p < 0,05.

  8. Nanometer-scale monitoring of quantum-confined Stark effect and emission efficiency droop in multiple GaN/AlN quantum disks in nanowires

    Science.gov (United States)

    Zagonel, L. F.; Tizei, L. H. G.; Vitiello, G. Z.; Jacopin, G.; Rigutti, L.; Tchernycheva, M.; Julien, F. H.; Songmuang, R.; Ostasevicius, T.; de la Peña, F.; Ducati, C.; Midgley, P. A.; Kociak, M.

    2016-05-01

    We report on a detailed study of the intensity dependent optical properties of individual GaN/AlN quantum disks (QDisks) embedded into GaN nanowires (NW). The structural and optical properties of the QDisks were probed by high spatial resolution cathodoluminescence (CL) in a scanning transmission electron microscope (STEM). By exciting the QDisks with a nanometric electron beam at currents spanning over three orders of magnitude, strong nonlinearities (energy shifts) in the light emission are observed. In particular, we find that the amount of energy shift depends on the emission rate and on the QDisk morphology (size, position along the NW and shell thickness). For thick QDisks (>4 nm), the QDisk emission energy is observed to blueshift with the increase of the emission intensity. This is interpreted as a consequence of the increase of carriers density excited by the incident electron beam inside the QDisks, which screens the internal electric field and thus reduces the quantum confined Stark effect (QCSE) present in these QDisks. For thinner QDisks (energy shifts, marking the transition from unscreened to partially screened QCSE. From the threshold value we estimate the lifetime in the unscreened regime. These observations suggest that, counterintuitively, electrons of high energy can behave ultimately as single electron-hole pair generators. In addition, when we increase the current from 1 to 10 pA the light emission efficiency drops by more than one order of magnitude. This reduction of the emission efficiency is a manifestation of the "efficiency droop" as observed in nitride-based 2D light emitting diodes, a phenomenon tentatively attributed to the Auger effect.

  9. The perturbation theory model of a spherical oscillator in electric field and the vibrational stark effect in polyatomic molecular species

    Science.gov (United States)

    Petreska, Irina; Ivanovski, Gjorgji; Pejov, Ljupčo

    2007-04-01

    The effect of external electrostatic fields on the spherical oscillator energy states was studied using stationary perturbation theory. Besides the spherical oscillator with ideal symmetry, also a variety of the deformed systems were considered in which the deformations may be induced by the external fields, but also by the short-range crystal lattice forces. The perturbation theory analysis was carried out using the field-dependent basis functions. Predicted spectral appearances and band splittings due to the deformations and external field influences were shown to be helpful in interpreting the experimental spectra of molecular oscillator possessing subsets of mutually orthogonal triply degenerate normal modes (such as, e.g. tetrahedral species). To verify the results of the perturbation theory treatments, as well as to provide a further illustration of the usefulness of the employed technique, a numerical HF/aug-cc-pVTZ study of the vibrational states of methane molecule in external electrostatic field was performed.

  10. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  11. Motion induced interplay effects for VMAT radiotherapy.

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-19

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin 6 breathing motion in the superior-inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD 98% and ΔD 2% ) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD 98% and maximum ΔD 2% being  -16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  12. Motion induced interplay effects for VMAT radiotherapy

    Science.gov (United States)

    Edvardsson, Anneli; Nordström, Fredrik; Ceberg, Crister; Ceberg, Sofie

    2018-04-01

    The purpose of this study was to develop a method to simulate breathing motion induced interplay effects for volumetric modulated arc therapy (VMAT), to verify the proposed method with measurements, and to use the method to investigate how interplay effects vary with different patient- and machine specific parameters. VMAT treatment plans were created on a virtual phantom in a treatment planning system (TPS). Interplay effects were simulated by dividing each plan into smaller sub-arcs using an in-house developed software and shifting the isocenter for each sub-arc to simulate a sin6 breathing motion in the superior–inferior direction. The simulations were performed for both flattening-filter (FF) and flattening-filter free (FFF) plans and for different breathing amplitudes, period times, initial breathing phases, dose levels, plan complexities, CTV sizes, and collimator angles. The resulting sub-arcs were calculated in the TPS, generating a dose distribution including the effects of motion. The interplay effects were separated from dose blurring and the relative dose differences to 2% and 98% of the CTV volume (ΔD98% and ΔD2%) were calculated. To verify the simulation method, measurements were carried out, both static and during motion, using a quasi-3D phantom and a motion platform. The results of the verification measurements during motion were comparable to the results of the static measurements. Considerable interplay effects were observed for individual fractions, with the minimum ΔD98% and maximum ΔD2% being  ‑16.7% and 16.2%, respectively. The extent of interplay effects was larger for FFF compared to FF and generally increased for higher breathing amplitudes, larger period times, lower dose levels, and more complex treatment plans. Also, the interplay effects varied considerably with the initial breathing phase, and larger variations were observed for smaller CTV sizes. In conclusion, a method to simulate motion induced interplay effects was

  13. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  14. Estimating network effect in geocenter motion: Theory

    Science.gov (United States)

    Zannat, Umma Jamila; Tregoning, Paul

    2017-10-01

    Geophysical models and their interpretations of several processes of interest, such as sea level rise, postseismic relaxation, and glacial isostatic adjustment, are intertwined with the need to realize the International Terrestrial Reference Frame. However, this realization needs to take into account the geocenter motion, that is, the motion of the center of figure of the Earth surface, due to, for example, deformation of the surface by earthquakes or hydrological loading effects. Usually, there is also a discrepancy, known as the network effect, between the theoretically convenient center of figure and the physically accessible center of network frames, because of unavoidable factors such as uneven station distribution, lack of stations in the oceans, disparity in the coverage between the two hemispheres, and the existence of tectonically deforming zones. Here we develop a method to estimate the magnitude of the network effect, that is, the error introduced by the incomplete sampling of the Earth surface, in measuring the geocenter motion, for a network of space geodetic stations of a fixed size N. For this purpose, we use, as our proposed estimate, the standard deviations of the changes in Helmert parameters measured by a random network of the same size N. We show that our estimate scales as 1/√N and give an explicit formula for it in terms of the vector spherical harmonics expansion of the displacement field. In a complementary paper we apply this formalism to coseismic displacements and elastic deformations due to surface water movements.

  15. Effects of aging on perception of motion

    Science.gov (United States)

    Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela

    1997-09-01

    Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.

  16. Stark effect investigations of excited cadmium, ytterbium, and thulium I-levels using the methods of double resonance and level crossing

    International Nuclear Information System (INIS)

    Rinkleff, R.H.

    1977-01-01

    Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de

  17. DC Stark addressing for quantum memory in Tm:YAG

    Science.gov (United States)

    Gerasimov, Konstantin; Minnegaliev, Mansur; Urmancheev, Ravil; Moiseev, Sergey

    2017-10-01

    We observed a linear DC Stark effect for 3H6 - 3H4 optical transition of Tm3+ ions in Y3Al5O12. We observed that application of electric field pulse suppresses the two-pulse photon echo signal. If we then apply a second electric pulse of opposite polarity the echo signal is restored again, which indicates the linear nature of the observed effect. The effect is present despite the D2 symmetry of the Tm3+ sites that prohibits a linear Stark effect. Experimental data analysis shows that the observed electric field influence can be attributed to defects that break the local crystal field symmetry near Tm3+ ions. Using this effect we demonstrate selective retrieval of light pulses in two-pulse photon echo.

  18. Contextual effects on motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  19. Rydberg State Stark Spectroscopy and Applications to Plasma Diagnostics

    Science.gov (United States)

    1990-03-01

    Bayfield47 provides an excellent review of the AC Stark effect, in which the primary effect is Rabi splitting. Several authors48 , 49, 50 have...purity of the spectrum indicates that the field present is dominantly anisotropic . 53 n:26NEON LINE n=35 0 n= 40 p.- n=45 IL 0 31975 31950 31925 31900...applied (axial) electric field which is anisotropic , so pure polarization spectra can be recorded. The intensity profile of the Am = 0 polarization is

  20. Ground motions and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1984-07-01

    This lecture includes a discussion of types of motion, frequencies of interest, measurements at SLAC, some general comments regarding local sources of ground motion at SLAC, and steps that can be taken to minimize the effects of ground motion on accelerators

  1. Dynamic Stark shift and alignment-to-orientation conversion

    International Nuclear Information System (INIS)

    Kuntz, Matthew C.; Hilborn, Robert C.; Spencer, Alison M.

    2002-01-01

    We have observed alignment-to-orientation conversion in the (5d6p) 1 P state of atomic barium due to the combined effects of a static Zeeman shift and a dynamic Stark shift associated with the electric field of a pulsed laser beam. The measurements yield a value for the frequency-dependent tensor polarizability of the state in reasonable agreement with a simple perturbation theory calculation. With a tunable laser producing the dynamic Stark shift, we can both enhance the magnitude of the effect by tuning close to a resonance and reverse the sign of the orientation by tuning above or below the resonance. This method of producing an oriented atomic state is quite general, and with easily available field strengths can produce large orientations

  2. Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

    Science.gov (United States)

    Gengler, Jamie; Ma, Tongmei; Harrison, Jeremy; Steimle, Timothy

    2006-03-01

    The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) A^7 π -- X^ 7σ^+ band. The sample was prepared by laser ablation of solid Mn in an H2 supersonic expansion. The low rotational temperature (MnH and the analysis of T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, J. Mol. Spec. 156, 296-318 (1992). I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, J. Mol. Spec., 229, 145-149 (2005).

  3. Production of H(2s) fast metastable atoms (0.25-3 keV) on a Cs target. Detection of the α Lyman radiation induced by Stark effect: polarisation. Destruction of H(2s) atoms on an IH target

    International Nuclear Information System (INIS)

    Valance, Antoine.

    1974-01-01

    The production, detection and destruction of the 2S1/2 metastable state of the hydrogen atom were studied. The quasi-resonant charge exchange processes between fast protons and cesium target, in the total cross sections for production of metastable H(2s) atoms and radiative H(2p) atoms showed structures hitherto unobserved. The theoretical study is based on calculation of the adiabatic molecular potential terms of the ionic quasi-molecule (CsH) + , taking a Helmann type pseudopotential to describe the electron with respect to the core of the cesium ion. The probabilities of transition towards the output channels are calculated using a stationary state perturbation method. From the data obtained the interferece phenomena of excited quasi-molecular states can be interpreted coherently in slow collision. The probability of transition along the inelastic output channels displays characteristics of a harmonic oscillatory function inversely proportional to the speed of approach of the particles. The frequency of these oscillations depends very slightly on the impact parameter. The theory proposed involves three Σ states. During detection of the metastable ions the Lyman-α radiation induced in the de-excitation electric field by Stark effect present anisotropic features. The degree of polarization measured as a function of the field strength oscillates around a slow decay toward a limit-1 at strong electric field. A theory not accounting for the hyperfine structure of states mixed by Stark effect showed a double oscillatory structure containing the two frequencies correlated to the 2P1/2 and 2P3/2 states from the 2S1/2 state. Finally the results on the electron detachment reaction between fast metastable atoms and hydroiodic acid target have contributed towards research on polarized proton sources [fr

  4. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock

    Science.gov (United States)

    Beloy, K.; Zhang, X.; McGrew, W. F.; Hinkley, N.; Yoon, T. H.; Nicolodi, D.; Fasano, R. J.; Schäffer, S. A.; Brown, R. C.; Ludlow, A. D.

    2018-05-01

    We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10-20 level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

  5. Stark broadening of hydrogen (1961); Sur l'effet stark dans les plasmas d'hydrogene (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Fidone, I [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France)

    1961-07-01

    The effect of electron impacts on the Stark broadening of hydrogen atoms has been considered using a Debye-Huckel potential instead of a cut-off limit for the integrals giving the shift and the half-width. A slight difference results which in a typical case is of the order of 12 - 15 per cent. The simple adiabatic impact approximation has been used. (author) [French] L'effet des chocs electroniques sur l'elargissement Stark des raies d'hydrogene est calcule avec le potentiel de Debye-Huckel au lieu de l'emploi du cut-off pour les integrales qui donnent le deplacement et l'elargissement de la raie. On obtient une faible difference qui, dans un cas typique, est de l'ordre de grandeur de 12 - 15 pour cent. L'approximation adiabatique a ete employee pour decrire les chocs. (auteur)

  6. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...

  7. The Effect of Shape Memory on Red Blood Cell Motions

    Science.gov (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  8. Ground motion and its effects in accelerator design

    International Nuclear Information System (INIS)

    Fischer, G.E.

    1985-07-01

    The effects of ground motion on accelerator design are discussed. The limitations on performance are discussed for various categories of motion. For example, effects due to ground settlement, tides, seismic disturbances and man-induced disturbances are included in this discussion. 42 figs., 7 tabs

  9. Effects of ship motions on laminar flow in tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh1986@163.co [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yu, L. [Department of Nuclear Science and Engineering, Naval University of Engineering, 717 Jiefang Street, Wuhan 430033 (China); Yang, Y.H. [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2010-01-15

    The thermal-hydraulics of barge-mounted floating nuclear desalination plants is the incentive for this study. Laminar flow in tubes in heaving motion is modeled. The friction factor and heat transfer coefficient are obtained. All the equations of laminar flow in steady state are applicable for heeling motion. The effect of ship motions on the laminar developing region is also analyzed. The ship motions can weaken the boundary layer in the laminar developing region and strengthen the laminar frictional resistance. The effect of ship motions on the instability of laminar flow is also investigated. The ship motions do not affect the instability point, but they can shorten the distance between the instability point and the transition point, and cause the transition from laminar flow to turbulent flow to occur earlier.

  10. Effect of ship motion on spinal loading during manual lifting

    NARCIS (Netherlands)

    Faber, G.S.; Kingma, I.; Delleman, N.; Dieën, J. van

    2008-01-01

    This study investigated the effects of ship motion on peak spinal loading during lifting. All measurements were done on a ship at sea. In 1-min trials, which were repeated over a wide range of sailing conditions, subjects lifted an 18 kg box five times. Ship motion, whole body kinematics, ground

  11. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

    1990-01-01

    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  12. Trampoline effect in extreme ground motion.

    Science.gov (United States)

    Aoi, Shin; Kunugi, Takashi; Fujiwara, Hiroyuki

    2008-10-31

    In earthquake hazard assessment studies, the focus is usually on horizontal ground motion. However, records from the 14 June 2008 Iwate-Miyagi earthquake in Japan, a crustal event with a moment magnitude of 6.9, revealed an unprecedented vertical surface acceleration of nearly four times gravity, more than twice its horizontal counterpart. The vertical acceleration was distinctly asymmetric; the waveform envelope was about 1.6 times as large in the upward direction as in the downward direction, which is not explained by existing models of the soil response. We present a simple model of a mass bouncing on a trampoline to account for this asymmetry and the large vertical amplitude. The finding of a hitherto-unknown mode of strong ground motion may prompt major progress in near-source shaking assessments.

  13. Training Effectiveness of Visual and Motion Simulation

    Science.gov (United States)

    1981-01-01

    and checkride scores. No statistical differeLes between the two groups were found. Creelman (1959) reported that students trained in theSNJ Link with...simulated and aircraft hvurs or sorsies (Dricisom a Burger, 1976; Brown. Matheny, & Fleaman. 1951; Creelman , 1959; Gray et al., 1969- Payne at al., 1976...reirtionohip between flight simulator motion and trainiag requirmumenia. Human Factors. 1979. 2). 493-50)1. Creelman , J.A. Evaluation of approach

  14. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    Science.gov (United States)

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  15. Study of Stark Effect in n-doped 1.55 μm InN0.92yP1-1.92yBiy/InP MQWs

    Science.gov (United States)

    Bilel, C.; Chakir, K.; Rebey, A.; Alrowaili, Z. A.

    2018-05-01

    The effect of an applied electric field on electronic band structure and optical absorption properties of n-doped InN0.92y P1-1.92y Bi y /InP multiple quantum wells (MQWs) was theoretically studied using a self-consistent calculation combined with the 16-band anti-crossing model. The incorporation of N and Bi atoms into an InP host matrix leads to rapid reduction of the band gap energy covering a large infrared range. The optimization of the well parameters, such as the well/barrier widths, N/Bi compositions and doping density, allowed us to obtain InN0.92y P1-1.92y Bi y /InP MQWs operating at the wavelength 1.55 μm. Application of the electric field causes a red-shift of the fundamental transition energy T 1 accompanied by a significant change in the spatial distribution of confined electron density. The Stark effect on the absorption coefficient of n-doped InN0.92y P1-1.92y Bi y /InP MQWs was investigated. The Bi composition of these MQWs was adjusted for each electric field value in order to maintain the wavelength emission at 1.55 μm.

  16. H{sub {beta}} Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: j.m.palomares-linares@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Huebner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sola, A.; Gamero, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-07-15

    In the present work Stark broadening measurements have been carried out on low electron density (n{sub e} < 5{center_dot}10{sup 19} m{sup -3}) and (relatively) low gas temperature (T{sub g} < 1100 K) argon-hydrogen plasma, under low-intermediate pressure conditions (3 mbar-40 mbar). A line fitting procedure is used to separate the effects of the different broadening mechanisms (e.g. Doppler and instrumental broadening) from the Stark broadening. A Stark broadening theory is extrapolated to lower electron density values, below its theoretical validity regime. Thomson scattering measurements are used to calibrate and validate the procedure. The results show an agreement within 20%, what validates the use of this Stark broadening method under such low density conditions. It is also found that Stark broadened profiles cannot be assumed to be purely Lorentzian. Such an assumption would lead to an underestimation of the electron density. This implies that independent information on the gas temperature is needed to find the correct values of n{sub e}. - Highlights: Black-Right-Pointing-Pointer Stark broadening measurements at low density and temperature conditions Black-Right-Pointing-Pointer Calibration with Thomson scattering Black-Right-Pointing-Pointer Indications of the non-Lorentzian shape of the Stark broadening Black-Right-Pointing-Pointer Impossibility of simultaneous diagnostic of gas temperature and electron density.

  17. Effects of Autonomic Conditioning on Motion Sickness Tolerance

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    1994-01-01

    This paper presents case-studies of 9 shuttle crewmembers (prime and alternates) and one U.S. Navy F-18 pilot, as they participated in all preflight training and testing activities in support of a life sciences flight experiment aboard Spacelab-J, and Spacelab-3. The primary objective of the flight experiment was to determine if Autogenic-feedback training (AFT), a physiological self-regulation training technique would be an effective treatment for motion sickness and space motion sickness in these crewmembers. Additional objectives of this study involved the examining human Physiological- responses to motion sickness on Earth and in space, as well as developing predictive criteria for susceptibility to space motion sickness based on ground-based data. Comparisons of these crewmembers are made to a larger set of subjects from previous experiments (treatment and test-only controls subjects). This paper describes all preflight methods, results and proposed changes for future tests.

  18. Runge-Lenz wave packet in multichannel Stark photoionization

    International Nuclear Information System (INIS)

    Texier, F.

    2005-01-01

    In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance with the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial

  19. Stark Broadening of Cr III Spectral Lines: DO White Dwarfs

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2018-04-01

    Full Text Available Using the modified semiempirical method of Dimitrijević and Konjević, Stark widths have been calculated for six Cr III transitions, for an electron density of 10 17 cm ‒ 3 and for temperatures from 5000–80,000 K. Results have been used for the investigation of the influence of Stark broadening on spectral lines in cool DO white dwarf atmospheres. Calculated Stark widths will be implemented in the STARK-B database, which is also a part of the Virtual Atomic and Molecular Data Center (VAMDC.

  20. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    Science.gov (United States)

    Tangi, Malleswararao; Mishra, Pawan; Janjua, Bilal; Prabaswara, Aditya; Zhao, Chao; Priante, Davide; Min, Jung-Wook; Ng, Tien Khee; Ooi, Boon S.

    2018-03-01

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  1. Role of quantum-confined stark effect on bias dependent photoluminescence of N-polar GaN/InGaN multi-quantum disk amber light emitting diodes

    KAUST Repository

    Tangi, Malleswararao

    2018-03-09

    We study the impact of quantum-confined stark effect (QCSE) on bias dependent micro-photoluminescence emission of the quantum disk (Q-disk) based nanowires light emitting diodes (NWs-LED) exhibiting the amber colored emission. The NWs are found to be nitrogen polar (N-polar) verified using KOH wet chemical etching and valence band spectrum analysis of high-resolution X-ray photoelectron spectroscopy. The crystal structure and quality of the NWs were investigated by high-angle annular dark field - scanning transmission electron microscopy. The LEDs were fabricated to acquire the bias dependent micro-photoluminescence spectra. We observe a redshift and a blueshift of the μPL peak in the forward and reverse bias conditions, respectively, with reference to zero bias, which is in contrast to the metal-polar InGaN well-based LEDs in the literature. Such opposite shifts of μPL peak emission observed for N-polar NWs-LEDs, in our study, are due to the change in the direction of the internal piezoelectric field. The quenching of PL intensity, under the reverse bias conditions, is ascribed to the reduction of electron-hole overlap. Furthermore, the blueshift of μPL emission with increasing excitation power reveals the suppression of QCSE resulting from the photo-generated carriers. Thereby, our study confirms the presence of QCSE for NWs-LEDs from both bias and power dependent μPL measurements. Thus, this study serves to understand the QCSE in N-polar InGaN Q-disk NWs-LEDs and other related wide-bandgap nitride nanowires, in general.

  2. Phonon-assisted hopping of an electron on a Wannier-Stark ladder in a strong electric field

    International Nuclear Information System (INIS)

    Emin, D.; Hart, C.F.

    1987-01-01

    With the application of a spatially constant electric field, the degeneracy of electronic energy levels of geometrically equivalent sites of a crystal is generally lifted. As a result, the electric field causes the electronic eigenstates of a one-dimensional periodic chain to become localized. In particular, they are Wannier-Stark states. With sufficiently large electric-field strengths these states become sufficiently well localized that it becomes appropriate to consider electronic transport to occur via a succession of phonon-assisted hops between the localized Wannier-Stark states. In this paper, we present calculations of the drift velocity arising from acoustic- and optical-phonon-assisted hopping motion between Wannier-Stark states. When the intersite electronic transfer energy is sufficiently small so that the Wannier-Stark states are essentially each confined to a single atomic site, the transport reduces to that of a small polaron. In this regime, while the drift velocity initially rises with increasing electric field strength, the drift velocity ultimately falls with increasing electric-field strength at extremely large electric fields. More generally, for common values of the electronic bandwidth and electric field strength, the Wannier-Stark states span many sites. At sufficiently large electric fields, the energy separation between Wannier-Stark states exceeds the energy uncertainty associated with the carrier's interaction with phonons. Then, it is appropriate to treat the electronic transport in terms of phonon-assisted hopping between Wannier-Stark states. The resulting high-field drift velocity falls with increasing field strength in a series of steps. Thus, we find a structured negative differential mobility at large electric fields

  3. Science Translator: An Interview with Louisa Stark.

    Science.gov (United States)

    Stark, Louisa A

    2015-07-01

    The Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. The 2015 awardee, Louisa Stark, has made a major impact on global access to genetics education through her work as director of the University of Utah Genetic Science Learning Center. The Center's Learn.Genetics and Teach.Genetics websites are the most widely used online genetic education resources in the world. In 2014, they were visited by 18 million students, educators, scientists, and members of the public. With over 60 million page views annually, Learn.Genetics is among the most used sites on the Web. Copyright © 2015 by the Genetics Society of America.

  4. Thermally activated dislocation motion including inertial effects in solid solutions

    International Nuclear Information System (INIS)

    Isaac, R.D.

    1977-01-01

    Dislocation motion through an array of obstacles is considered in terms of the potential energy of the dislocation as it moves through the array. The obstacles form a series of potential wells and barriers which can trap the dislocations. The effect of thermal fluctuations and of a viscous drag on the motion of the dislocation is investigated by analogy with Brownian motion in a field of force. The rate of escape of a trapped dislocation is found to depend on the damping coefficient only for a large viscous drag. The probability that a dislocation will be trapped by a well or barrier is found to depend on the damping coefficient for a small viscous drag. This inertial effect determines how far a dislocation will travel after breaking away from an obstacle

  5. Effect of site conditions on ground motion and damage

    Science.gov (United States)

    Borcherdt, R.; Glassmoyer, G.; Andrews, M.; Cranswick, E.

    1989-01-01

    Results of seismologic studies conducted by the U.S. reconnaissance team in conjunction with Soviet colleagues following the tragic earthquakes of December 7, 1988, suggest that site conditions may have been a major factor in contributing to increased damage levels in Leninakan. As the potential severity of these effects in Leninakan had not been previously identified, this chapter presents results intended to provide a preliminary quantification of these effects on both damage and levels of ground motion observed in Leninakan. The article describes the damage distribution geologic setting, ground motion amplification in Leninakan, including analog amplifications and spectral amplifications. Preliminary model estimates for site response are presented. It is concluded that ground motion amplification in the 0.5-2.5-second period range was a major contributing factor to increased damage in Leninakan as compared with Kirovakan. Leninakan is located on thick water saturated alluvial deposits.

  6. Stark-like electron transfer between quantum wells

    International Nuclear Information System (INIS)

    Dubovis, S.A.; Voronko, A.N.; Basharov, A.M.

    2008-01-01

    The Stark-like mechanism of electron transfer between two energy subband localized in remote quantum wells is examined theoretically. Estimations of major parameters of the problem in case of delta-function-wells model are adduced. Schematic model allowing experimental study of Stark-like transfer is proposed

  7. Effects of ship's vibration and motion on plant parameters

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Kitamura, Toshikatsu; Mizushima, Toshihiko; Yamazaki, Hiroshi; Nakahara, Takeshi; Kamiya, Eisei; Kudou, Takahiro; Naitoh, Akira; Tominaga, Mineo.

    1992-03-01

    Present report was written about the study of the effects of ship's vibration and motion on reactor plant performances measured and analyzed to confirm the total balance for control systems of reactor to propulsion. On July 10, 1990, or on the first day of the first voyage for the power up test, the sea trials of MUTSU, nuclear ship made first in Japan, started from the anchoring test. The trial tests had finished through the third voyage between October 30 and November 9 to the fourth voyage between 7 and 14 of December. The trial tests had been conducted over ten items or so containing in-house tests of the measurements of ship's vibration and motion in order to research the effects on reactor performance. We here call the in-house tests the plant correlation tests. In regard to the correlation with ship's vibration, we confirmed that the inherent vibrations of hull and reactor containment arisen from ship structure had precisely been measured and that the plant correlations due to the hull and local vibrations arising from propeller revolutions are very small. Concerning the correlation with ship's motion, it was shown that her rolling motion strongly had affected on the propulsion system such as shaft power and shaft revolutions. About the correlation with reactor systems it was found that her pitching motion had given effect on the water level in pressurizer, primary coolant average temperature, ε-signal of the auto-control of reactor power and primary coolant pressure etc, particularly, most-strongly on the water level in pressurizer; her rolling and pitching motions had given effect on nuclear characteristics such as reactivity and startup rate; in addition the fluctuation of 0.06 Hz, we think the response inherent in (MUTSU) reactor systems, had been observed on her reactor parameters like reactivity and startup rate, and her propulsion systems like shaft horse power. (author)

  8. Experimental simulation of ground motion effects

    International Nuclear Information System (INIS)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L.; Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T.; Minty, M.G.; Gabella, W.; Ng, K.Y.; Teng, L.; Tepikian, S.

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 ∼ 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c

  9. Experimental simulation of ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Syphers, M.J.; Chao, A.W.; Dutt, S.; Yan, Y.T.; Zhang, P.L. [Superconducting Super Collider Lab., Dallas, TX (United States); Ball, M.; Brabson, B.; Budnick, J.; Caussyn, D.D.; Collins, J.; Derenchuk, V.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Huang, H.; Jones, W.P.; Lee, S.Y.; Li, D.; Nagaitsev, S.; Pei, X.; Rondeau, G.; Sloan, T. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States); Minty, M.G. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Gabella, W.; Ng, K.Y. [Fermi National Accelerator Lab., Batavia, IL (United States); Teng, L. [Argonne National Lab., IL (United States); Tepikian, S. [Brookhaven National Lab., Upton, NY (United States)

    1993-05-01

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approximately} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  10. Experimental Simulation of Ground Motion Effects

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-07-11

    Synchro-betatron coupling in a proton storage ring with electron cooling was studied by modulating a transverse dipole field close to the synchrotron frequency. The combination of the electron cooling and transverse field modulation on the synchrotron oscillation is equivalent to a dissipative parametric resonant system. The proton bunch was observed to split longitudinally into two pieces, or beamlets, converging toward strange attractors of the dissipative system. These phenomena might be important to understanding the effect of ground vibration on the SSC beam, where the synchrotron frequency is about 4 {approx} 7 Hz, and the effect of power supply ripple on the RHIC beam, where the synchrotron frequency ramps through 60 Hz at 17 GeV/c.

  11. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  12. Effects of Spine Motion on Foot Slip in Quadruped Bounding

    Directory of Open Access Journals (Sweden)

    Dongliang Chen

    2018-01-01

    Full Text Available Translation and bend of the spine in the sagittal plane during high-speed quadruped running were investigated. The effect of the two spine motions on slip between the foot and the ground was also explored. First, three simplified sagittal plane models of quadruped mammals were studied in symmetric bounding. The first model’s trunk allowed no relative motion, the second model allowed only trunk bend, and the third model allowed both bend and translation. Next, torque was introduced to equivalently replace spine motion and the possibility of foot slip of the three models was analyzed theoretically. The results indicate that the third model has the least possibility of slip. This conclusion was further confirmed by simulation experiments. Finally, the conclusion was verified by the reductive model crawling robot.

  13. Effects prediction guidelines for structures subjected to ground motion

    International Nuclear Information System (INIS)

    1975-07-01

    Part of the planning for an underground nuclear explosion (UNE) is determining the effects of expected ground motion on exposed structures. Because of the many types of structures and the wide variation in ground motion intensity typically encountered, no single prediction method is both adequate and feasible for a complete evaluation. Furthermore, the nature and variability of ground motion and structure damage prescribe effects predictions that are made probabilistically. Initially, prediction for a UNE involves a preliminary assessment of damage to establish overall project feasibility. Subsequent efforts require more detailed damage evaluations, based on structure inventories and analyses of specific structures, so that safety problems can be identified and safety and remedial measures can be recommended. To cover this broad range of effects prediction needs for a typical UNE project, three distinct but interrelated methods have been developed and are described. First, the fundamental practical and theoretical aspects of predicting the effects of dynamic ground motion on structures are summarized. Next, experimentally derived and theoretically determined observations of the behavior of typical structures subjected to ground motion are presented. Then, based on these fundamental considerations and on the observed behavior of structures, the formulation of the three effects prediction procedures is described, along with guidelines regarding their applicability. Example damage predictions for hypothetical UNEs demonstrate these procedures. To aid in identifying the vibration properties of complex structures, one chapter discusses alternatives in vibration testing, instrumentation, and data analysis. Finally, operational guidelines regarding data acquisition procedures, safety criteria, and remedial measures involved in conducting structure effects evaluations are discussed. (U.S.)

  14. Stark shift of impurity doped quantum dots: Role of noise

    Science.gov (United States)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study makes a punctilious investigation of the profiles of Stark shift (SS) of doped GaAs quantum dot (QD) under the supervision of Gaussian white noise. A few physical parameters have been varied and the consequent variations in the SS profiles have been monitored. The said physical parameters comprise of magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for AlxGa1-x As alloy QD), position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The SS profiles unfurl interesting features that heavily depend upon the particular physical quantity concerned, presence/absence of noise and the manner (additive/multiplicative) noise enters the system. The study highlights feasible means of maximizing SS of doped QD in presence of noise by suitable adjustment of several control parameters. The study deems importance in view of technological applications of QD devices where noise plays some prominent role.

  15. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  16. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  17. Effective action and the quantum equation of motion

    International Nuclear Information System (INIS)

    Branchina, V.; Faivre, H.; Zappala, D.

    2004-01-01

    We carefully analyze the use of the effective action in dynamical problems, in particular the conditions under which the equation (δΓ)/(δφ) = 0 can be used as a quantum equation of motion and illustrate in detail the crucial relation between the asymptotic states involved in the definition of Γ and the initial state of the system. Also, by considering the quantum-mechanical example of a double-well potential, where we can get exact results for the time evolution of the system, we show that an approximation to the effective potential in the quantum equation of motion that correctly describes the dynamical evolution of the system is obtained with the help of the wilsonian RG equation (already at the lowest order of the derivative expansion), while the commonly used one-loop effective potential fails to reproduce the exact results. (orig.)

  18. Modeling of hydrogen Stark line shapes with kinetic theory methods

    Science.gov (United States)

    Rosato, J.; Capes, H.; Stamm, R.

    2012-12-01

    The unified formalism for Stark line shapes is revisited and extended to non-binary interactions between an emitter and the surrounding perturbers. The accuracy of this theory is examined through comparisons with ab initio numerical simulations.

  19. Multiphoton Rabi oscillations between highly excited Stark states of potassium

    International Nuclear Information System (INIS)

    He Yonglin

    2011-01-01

    We have applied a nonperturbative resonant theory to study the Rabi frequency of microwave multiphoton transitions between two Rydberg states of potassium in a static electric field. The Stark electric dipole moments used to calculate the Rabi frequency are determined by the Stark states' wave functions, which are obtained by the diagonalization method. The frequencies of the Rabi oscillations are in good agreement with either experimental ones or ones calculated by the time-dependent close-coupling method and the Floquet theory. Furthermore, we are able to show that the size of avoided crossings between the (n+2)s and (n,3) states can be predicted from the Stark electric dipole moment and the difference of the two Stark states' energy at a given resonance.

  20. Stark laws and fair market value exceptions: an introduction.

    Science.gov (United States)

    Siebrasse, Paul B

    2007-01-01

    This article will focus on one aspect of complexity in modern healthcare, namely the implications of Stark laws and other fraud and abuse provisions, including anti-kickback statutes and HIPAA. Also, this article explores the prevalence of fair market value as an exception in the Stark laws and discusses the meanings of those exceptions. Finally, the article explores basic approaches to assessing fair market value, including cost, income, and marketing approaches.

  1. Stark broadening measurements of Xe III spectral lines

    International Nuclear Information System (INIS)

    Pelaez, R J; Cirisan, M; Djurovic, S; Aparicio, J A; Mar, S

    2006-01-01

    This work reports measured Stark widths of doubly ionized xenon lines. Pulsed arc was used as a plasma source. Measured electron densities and temperatures were in the ranges of (0.2 - 1.6) x 10 23 m -3 and 18 300-25 500 K, respectively. Stark halfwidths of lines from 6s-6p, 6s-4f and 5d-6p transitions have been measured and compared with available experimental and theoretical data

  2. Self-motion effects on hydrodynamic pressure sensing: part I. Forward–backward motion

    International Nuclear Information System (INIS)

    Akanyeti, Otar; Chambers, Lily D; Brown, Jennifer; Megill, William M; Ježov, Jaas; Kruusmaa, Maarja; Venturelli, Roberto; Fiorini, Paolo

    2013-01-01

    In underwater locomotion, extracting meaningful information from local flows is as desirable as it is challenging, due to complex fluid-structure interaction. Sensing and motion are tightly interconnected; hydrodynamic signals generated by the external stimuli are modified by the self-generated flow signals. Given that very little is known about self-generated signals, we used onboard pressure sensors to measure the pressure profiles over the head of a fusiform-shape craft while moving forward and backward harmonically. From these measurements we obtained a second-order polynomial model which incorporates the velocity and acceleration of the craft to estimate the surface pressure within the swimming range up to one body length/second (L s −1 ). The analysis of the model reveals valuable insights into the temporal and spatial changes of the pressure intensity as a function of craft's velocity. At low swimming velocities ( −1 ) the pressure signals are more sensitive to the acceleration of the craft than its velocity. However, the inertial effects gradually become less important as the velocity increases. The sensors on the front part of the craft are more sensitive to its movements than the sensors on the sides. With respect to the hydrostatic pressure measured in still water, the pressure detected by the foremost sensor reaches values up to 300 Pa at 1 L s −1 swimming velocity, whereas the pressure difference between the foremost sensor and the next one is less than 50 Pa. Our results suggest that distributed pressure sensing can be used in a bimodal sensing strategy. The first mode detects external hydrodynamic events taking place around the craft, which requires minimal sensitivity to the self-motion of the craft. This can be accomplished by moving slowly with a constant velocity and by analyzing the pressure gradient as opposed to absolute pressure recordings. The second mode monitors the self-motion of the craft. It is shown here that distributed

  3. Stark widths regularities within spectral series of sodium isoelectronic sequence

    Science.gov (United States)

    Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš

    2018-02-01

    Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.

  4. Effect of respiratory motion on internal radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Tianwu [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4 CH-1211 (Switzerland); Geneva Neuroscience Center, Geneva University, Geneva CH-1205 (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB (Netherlands)

    2014-11-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences the absorbed dose for external exposure to radiation. However, to their knowledge, the effect of respiratory motion on internal radiation dosimetry has never been reported before. Methods: Thirteen computational models representing the adult male at different respiratory phases corresponding to the normal respiratory cycle were generated from the 4D dynamic XCAT phantom. Monte Carlo calculations were performed using the MCNP transport code to estimate the specific absorbed fractions (SAFs) of monoenergetic photons/electrons, the S-values of common positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82, Y-86, and I-124), and the absorbed dose of {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) in 28 target regions for both the static (average of dynamic frames) and dynamic phantoms. Results: The self-absorbed dose for most organs/tissues is only slightly influenced by respiratory motion. However, for the lung, the self-absorbed SAF is about 11.5% higher at the peak exhale phase than the peak inhale phase for photon energies above 50 keV. The cross-absorbed dose is obviously affected by respiratory motion for many combinations of source-target pairs. The cross-absorbed S-values for the heart contents irradiating the lung are about 7.5% higher in the peak exhale phase than the peak inhale phase for different positron-emitting radionuclides. For {sup 18}F-FDG, organ absorbed doses are less influenced by respiratory motion. Conclusions: Respiration-induced volume variations of the lungs and the repositioning of internal organs affect the self-absorbed dose of the lungs and cross-absorbed dose between organs in internal radiation dosimetry. The dynamic

  5. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  6. Effect of friction on the motion of plasma filaments

    DEFF Research Database (Denmark)

    Garcia, Odd Erik; Madsen, Jens; Naulin, Volker

    is influenced by the collisional friction with the neutral gas fluid. In magnetically confined plasmas, the motion of filamentary structures in the edge region can be influenced by parallel dynamics in a manner that resembles an effective friction. In the presence of strong ballooning, such a frictional...... an effective friction, is investigated. In the inertial regime the radial filament velocity scales as the square root of its size. In the limit of strong friction regime the velocity scales as the inverse of the structure size. A discussion of these results will be given in the context of irregularities...

  7. Creating motion graphics with After Effects essential and advanced techniques

    CERN Document Server

    Meyer, Chris

    2010-01-01

    * 5th Edition of best-selling After Effects book by renowned authors Trish and Chris Meyer covers the important updates in After Effects CS4 and CS5 * Covers both essential and advanced techniques, from basic layer manipulation and animation through keying, motion tracking, and color management * Companion DVD is packed with project files for version CS5, source materials, and nearly 200 pages of bonus chapters Trish and Chris Meyer share over 17 years of hard-earned, real-world film and video production experience inside this critically acclaimed text. More than a step-by-step review of th

  8. Effect of fluid motion on colony formation in Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-01-01

    Full Text Available Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, culture experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 cm/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.

  9. Effects of Long-Duration Ground Motions on Liquefaction Hazards

    Science.gov (United States)

    Greenfield, Michael W.

    Soil liquefaction during past earthquakes has caused extensive damage to buildings, bridges, dam, pipelines and other elements of infrastructure. Geotechnical engineers use empirical observations from earthquake case histories in conjunction with soil mechanics to predict the behavior of liquefiable soils. However, current empirical databases are insufficient to evaluate the behavior of soils subject to long-duration earthquakes, such as a possible Mw = 9.0 Cascadia Subduction Zone earthquake. The objective of this research is to develop insight into the triggering and effects of liquefaction due to long-duration ground motions and to provide recommendations for analysis and design. Recorded ground motions from 21 case histories with surficial evidence of liquefaction showed marked differences in soil behavior before and after liquefaction was triggered. In some cases, strong shaking continued for several minutes after the soil liquefied, and a variety of behaviors were observed including dilation pulses, continued softening due to soil fabric degradation, and soil stiffening due to pore pressure dissipation and drainage. Supplemental field and laboratory investigations were performed at three sites that liquefied during the 2011 Mw = 9.0 Tohoku earthquake. The recorded ground motions and field investigation data were used in conjunction with laboratory observations, analytical models, and numerical models to evaluate the behavior of liquefiable soils subjected to long-duration ground motions. Observations from the case histories inspired a framework to predict ground deformations based on the differences in soil behavior before and after liquefaction has triggered. This framework decouples the intensity of shaking necessary to trigger liquefaction from the intensity of shaking that drives deformation by identifying the time when liquefaction triggers. The timing-based framework promises to dramatically reduce the uncertainty in deformation estimates compared to

  10. ZEST: A Fast Code for Simulating Zeeman-Stark Line-Shape Functions

    Directory of Open Access Journals (Sweden)

    Franck Gilleron

    2018-03-01

    Full Text Available We present the ZEST code, dedicated to the calculation of line shapes broadened by Zeeman and Stark effects. As concerns the Stark effect, the model is based on the Standard Lineshape Theory in which ions are treated in the quasi-static approximation, whereas the effects of electrons are represented by weak collisions in the framework of a binary collision relaxation theory. A static magnetic field may be taken into account in the radiator Hamiltonian in the dipole approximation, which leads to additional Zeeman splitting patterns. Ion dynamics effects are implemented using the fast Frequency-Fluctuation Model. For fast calculations, the static ion microfield distribution in the plasma is evaluated using analytic fits of Monte-Carlo simulations, which depend only on the ion-ion coupling parameter and the electron-ion screening factor.

  11. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  12. Verification of motion induced thread effect during tomotherapy using gel dosimetry

    International Nuclear Information System (INIS)

    Edvardsson, Anneli; Ljusberg, Anna; Ceberg, Crister; Medin, Joakim; Ambolt, Lee; Nordström, Fredrik; Ceberg, Sofie

    2015-01-01

    The purpose of the study was to evaluate how breathing motion during tomotherapy (Accuray, CA, USA) treatment affects the absorbed dose distribution. The experiments were carried out using gel dosimetry and a motion device simulating respiratory-like motion (HexaMotion, ScandiDos, Uppsala, Sweden). Normoxic polyacrylamide gels (nPAG) were irradiated, both during respiratory-like motion and in a static mode. To be able to investigate interplay effects the static absorbed dose distribution was convolved with the motion function and differences between the dynamic and convolved static absorbed dose distributions were interpreted as interplay effects. The expected dose blurring was present and the interplay effects formed a spiral pattern in the lower dose volume. This was expected since the motion induced affects the preset pitch and the theoretically predicted thread effect may emerge. In this study, the motion induced thread effect was experimentally verified for the first time

  13. Interband optical absorption in the Wannier-Stark ladder under the electron-LO-phonon resonance condition

    International Nuclear Information System (INIS)

    Govorov, A.O.

    1993-08-01

    Interband optical absorption in the Wannier-Stark ladder in the presence of the electron-LO-phonon resonance is investigated theoretically. The electron-LO-phonon resonance occurs when the energy spacing between adjacent Stark-ladder levels coincides with the LO-phonon energy. We propose a model describing the polaron effect in a superlattice. Calculations show that the absorption line shape is strongly modified due to the polaron effect under the electron-LO-phonon resonance condition. We consider optical phenomena in a normal magnetic field that leads to enhancement of polaron effects. (author). 17 refs, 5 figs

  14. Relativistic description of the Fermi motion effects on deuterium targets

    International Nuclear Information System (INIS)

    Kusno, D.

    1979-12-01

    A comprehensive analysis of the inconsistencies of the conventional, non-relativistic approach, which has been used so far in the extraction of neutron data from deuterium targets, is given. A new approach dealing with the smearing effects, due to the nucleon's Fermi motion inside the deuteron, is developed as an alternative to the conventional one. This new approach is a spin-less, relativistic, simple and consistent approach. A new covariant model of the elastic electromagnetic form factors of the deuteron in the impulse approximation is also presented. The treatment includes spin and allows for a possibility of determining completely the two elastic structure functions

  15. Theory of Brownian motion with the Alder-Wainwright effect

    International Nuclear Information System (INIS)

    Okabe, Y.

    1986-01-01

    The Stokes-Boussinesq-Langevin equation, which describes the time evolution of Brownian motion with the Alder-Wainwright effect, can be treated in the framework of the theory of KMO-Langevin equations which describe the time evolution of a real, stationary Gaussian process with T-positivity (reflection positivity) originating in axiomatic quantum field theory. After proving the fluctuation-dissipation theorems for KMO-Langevin equations, the authors obtain an explicit formula for the deviation from the classical Einstein relation that occurs in the Stokes-Boussinesq-Langevin equation with a white noise as its random force. The authors interested in whether or not it can be measured experimentally

  16. Properties of Linear Entropy in k-Photon Jaynes-Cummings Model with Stark Shift and Kerr-Like Medium

    International Nuclear Information System (INIS)

    Liao Qinghong; Wang Yueyuan; Liu Shutian; Ahmad, Muhammad Ashfaq

    2010-01-01

    The time evolution of the linear entropy of an atom in k-photon Jaynes-Cummings model is investigated taking into consideration Stark shift and Kerr-like medium. The effect of both the Stark shift and Kerr-like medium on the linear entropy is analyzed using a numerical technique for the field initially in coherent state and in even coherent state. The results show that the presence of the Kerr-like medium and Stark shift has an important effect on the properties of the entropy and entanglement. It is also shown that the setting of the initial state plays a significant role in the evolution of the linear entropy and entanglement. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Artificial horizon effects on motion sickness and performance.

    Science.gov (United States)

    Tal, Dror; Gonen, Adi; Wiener, Guy; Bar, Ronen; Gil, Amnon; Nachum, Zohar; Shupak, Avi

    2012-07-01

    To investigate whether the projection of Earth-referenced scenes during provocative motion can alleviate motion sickness severity and prevent motion sickness-induced degradation of performance. Exposure to unfamiliar motion patterns commonly results in motion sickness and decreased performance. Thirty subjects with moderate-to-severe motion sickness susceptibility were exposed to the recorded motion profile of a missile boat under moderate sea conditions in a 3-degrees-of-freedom ship motion simulator. During a 120-minute simulated voyage, the study participants were repeatedly put through a performance test battery and completed a motion sickness susceptibility questionnaire, while self-referenced and Earth-referenced visual scenes were projected inside the closed simulator cabin. A significant decrease was found in the maximal motion sickness severity score, from 9.83 ± 9.77 (mean ± standard deviation) to 7.23 ± 7.14 (p pitch, and heave movements of the simulator. Although there was a significant decrease in sickness severity, substantial symptoms still persisted. Decision making, vision, concentration, memory, simple reasoning, and psychomotor skills all deteriorated under the motion conditions. However, no significant differences between the projection conditions could be found in the scores of any of the performance tests. Visual information regarding the vessel's movement provided by an artificial horizon device might decrease motion sickness symptoms. However, although this device might be suitable for passive transportation, the continued deterioration in performance measures indicates that it provides no significant advantage for personnel engaged in the active operation of modern vessels.

  18. Quark motional effects on the interquark potential in baryons

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2008-01-01

    We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group inspired variational method in discretized space, we calculate the ground-state energy of QQq systems and the light-quark spatial distribution. We find that the effective string tension between the two heavy quarks is reduced compared to the static three-quark case. This reduction of the effective string tension originates from the geometrical difference between the interquark distance and the flux-tube length, and is conjectured to be a general property for baryons

  19. Effects of Rotational Motion in Robotic Needle Insertion

    Science.gov (United States)

    Ramezanpour, H.; Yousefi, H.; Rezaei, M.; Rostami, M.

    2015-01-01

    Background Robotic needle insertion in biological tissues has been known as one the most applicable procedures in sampling, robotic injection and different medical therapies and operations. Objective In this paper, we would like to investigate the effects of angular velocity in soft tissue insertion procedure by considering force-displacement diagram. Non-homogenous camel liver can be exploited as a tissue sample under standard compression test with Zwick/Roell device employing 1-D axial load-cell. Methods Effects of rotational motion were studied by running needle insertion experiments in 5, 50 and 200 mm/min in two types of with or without rotational velocity of 50, 150 and 300 rpm. On further steps with deeper penetrations, friction force of the insertion procedure in needle shaft was acquired by a definite thickness of the tissue. Results Designed mechanism of fixture for providing different frequencies of rotational motion is available in this work. Results for comparison of different force graphs were also provided. Conclusion Derived force-displacement graphs showed a significant difference between two procedures; however, tissue bleeding and disorganized micro-structure would be among unavoidable results. PMID:26688800

  20. Stark broadening of the Hα line of hydrogen at low densities: quantal and semiclassical results

    International Nuclear Information System (INIS)

    Stehle, C.; Feautrier, N.

    1984-01-01

    Stark profiles of the Hα lines of hydrogen are computed at low densities in the 'impact' theory. By a comparison with quantal results, it is shown that a simple semiclassical perturbational approach with appropriate cutoffs is sufficient to give accurate profiles in the line centre. Neglecting the natural broadening and the fine-structure effects, the authors prove that the electronic broadening is negligible and that the profile has a Lorentzian shape. An analytical expression of the half width is given. (author)

  1. Asymmetry of Hβ Stark profiles in T-tube hydrogen plasma

    International Nuclear Information System (INIS)

    Djurovic, S.; Nikolic, D.; Savic, I.; Soerge, S.; Demura, A. V.

    2005-01-01

    The whole Balmer H β line profiles are studied in detail experimentally in the T-tube discharge for the wide range of plasma parameters. Besides the common one, two additional parameters are introduced to characterize the asymmetry behavior of the experimental Stark profiles with the reference point chosen in the center of the line. The experimental data are analyzed and benchmarked versus the simple theoretical model based on the effects of microfield nonuniformity and electron impact shifts

  2. Asymmetry of Stark-broadened Layman lines from laser-produced plasmas

    International Nuclear Information System (INIS)

    Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Jr.

    1986-01-01

    This paper discusses three significant causes of spectral line asymmetry: the ion-quadrupole interaction, the quadratic Stark effect and fine structure splitting that are included in the calculation of Lyman line profiles emitted by highly-ionized hydrogenic radiators in a dense, hot plasma. The line asymmetries are shown to be strongly dependent on the plasma density, indicating that the asymmetry may be of use as a density diagnostic

  3. The effect of mild motion sickness and sopite syndrome on multitasking cognitive performance.

    Science.gov (United States)

    Matsangas, Panagiotis; McCauley, Michael E; Becker, William

    2014-09-01

    In this study, we investigated the effects of mild motion sickness and sopite syndrome on multitasking cognitive performance. Despite knowledge on general motion sickness, little is known about the effect of motion sickness and sopite syndrome on multitasking cognitive performance. Specifically, there is a gap in existing knowledge in the gray area of mild motion sickness. Fifty-one healthy individuals performed a multitasking battery. Three independent groups of participants were exposed to two experimental sessions. Two groups received motion only in the first or the second session, whereas the control group did not receive motion. Measurements of motion sickness, sopite syndrome, alertness, and performance were collected during the experiment Only during the second session, motion sickness and sopite syndrome had a significant negative association with cognitive performance. Significant performance differences between symptomatic and asymptomatic participants in the second session were identified in composite (9.43%), memory (31.7%), and arithmetic (14.7%) task scores. The results suggest that performance retention between sessions was not affected by mild motion sickness. Multitasking cognitive performance declined even when motion sickness and soporific symptoms were mild. The results also show an order effect. We postulate that the differential effect of session on the association between symptomatology and multitasking performance may be related to the attentional resources allocated to performing the multiple tasks. Results suggest an inverse relationship between motion sickness effects on performance and the cognitive effort focused on performing a task. Even mild motion sickness has potential implications for multitasking operational performance.

  4. Stark widths of Xe II lines in a pulsed plasma

    International Nuclear Information System (INIS)

    Djurovic, S; Pelaez, R J; Cirisan, M; Aparicio, J A; Mar, S

    2006-01-01

    In this paper, we present a review of experimental work on Stark broadening of singly ionized xenon lines. Eighty lines, from close UV to the red region of the spectrum, have been studied. Stark halfwidths were compared with experimental data from the literature and modified semi-empirical calculations. A pulsed arc with 95% of helium and 5% xenon was used as a plasma source for this study. Measured electron densities N e and temperatures T were in the ranges of 0.2-1.6 x 10 23 m -3 and 18 300-25 500 K, respectively

  5. Stark broadening parameters and transition probabilities of persistent lines of Tl II

    Science.gov (United States)

    de Andrés-García, I.; Colón, C.; Fernández-Martínez, F.

    2018-05-01

    The presence of singly ionized thallium in the stellar atmosphere of the chemically peculiar star χ Lupi was reported by Leckrone et al. in 1999 by analysis of its stellar spectrum obtained with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope. Atomic data about the spectral line of 1307.50 Å and about the hyperfine components of the spectral lines of 1321.71 Å and 1908.64 Å were taken from different sources and used to analyse the isotopic abundance of thallium II in the star χ Lupi. From their results the authors concluded that the photosphere of the star presents an anomalous isotopic composition of Tl II. A study of the atomic parameters of Tl II and of the broadening by the Stark effect of its spectral lines (and therefore of the possible overlaps of these lines) can help to clarify the conclusions about the spectral abundance of Tl II in different stars. In this paper we present calculated values of the atomic transition probabilities and Stark broadening parameters for 49 spectral lines of Tl II obtained by using the Cowan code including core polarization effects and the Griem semiempirical approach. Theoretical values of radiative lifetimes for 11 levels (eight with experimental values in the bibliography) are calculated and compared with the experimental values in order to test the quality of our results. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed. Trends of our calculated Stark width for the isoelectronic sequence Tl II-Pb III-Bi IV are also displayed.

  6. Comparison of three Stark problem solution techniques for the bounded case

    Science.gov (United States)

    Hatten, Noble; Russell, Ryan P.

    2015-01-01

    Three methods of obtaining solutions to the Stark problem—one developed by Lantoine and Russell using Jacobi elliptic and related functions, one developed by Biscani and Izzo using Weierstrass elliptic and related functions, and one developed by Pellegrini, Russell, and Vittaldev using and Taylor series extended to the Stark problem—are compared qualitatively and quantitatively for the bounded motion case. For consistency with existing available code for the series solution, Fortran routines of the Lantoine method and Biscani method are newly implemented and made available. For these implementations, the Lantoine formulation is found to be more efficient than the Biscani formulation in the propagation of a single trajectory segment. However, for applications for which acceptable accuracy may be achieved by orders up to 16, the Pellegrini series solution is shown to be more efficient than either analytical method. The three methods are also compared in the propagation of sequentially connected trajectory segments in a low-thrust orbital transfer maneuver. Separate tests are conducted for discretizations between 8 and 96 segments per orbit. For the series solution, the interaction between order and step size leads to computation times that are nearly invariable to discretization for a given truncation error tolerance over the tested range of discretizations. This finding makes the series solution particularly attractive for mission design applications where problems may require both coarse and fine discretizations. Example applications include the modeling of low-thrust propulsion and time-varying perturbations—problems for which the efficient propagation of relatively short Stark segments is paramount because the disturbing acceleration generally varies continuously.

  7. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  8. Existence of the Stark-Wannier quantum resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, Andrea, E-mail: andrea.sacchetti@unimore.it [Department of Physics, Computer Sciences and Mathematics, University of Modena e Reggio Emilia, Modena (Italy)

    2014-12-15

    In this paper, we prove the existence of the Stark-Wannier quantum resonances for one-dimensional Schrödinger operators with smooth periodic potential and small external homogeneous electric field. Such a result extends the existence result previously obtained in the case of periodic potentials with a finite number of open gaps.

  9. Rydberg-Stark states of Positronium for atom optics

    International Nuclear Information System (INIS)

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Wall, T E; Cassidy, D B

    2015-01-01

    Positronium atoms were produced in Rydberg states by means of a two-step optical excitation process (1s→2p→nd/ns). The n = 11 Rydberg-Stark manifold has been studied using different laser polarizations providing greater control over the electric dipole moment. (paper)

  10. Water confinement effects on fuel assembly motion and damping

    International Nuclear Information System (INIS)

    Brenneman, B.; Shah, S.J.; Williams, G.T.; Strumpell, J.H.

    2003-01-01

    It has been established by other authors that the accelerations of the water confined by the reactor core baffle plates has a significant effect on the responses of all the fuel assemblies during LOCA or seismic transients. This particular effect is a consequence of the water being essentially incompressible, and thus experiencing the same horizontal accelerations as the imposed baffle plate motions. These horizontal accelerations of the fluid induce lateral pressure gradients that cause horizontal buoyancy forces on any submerged structures. These forces are in the same direction as the baffle accelerations and, for certain frequencies at least, tend to reduce the relative displacements between the fuel and baffle plates. But there is another confinement effect - the imposed baffle plate velocities must also be transmitted to the water. If the fuel assembly grid strips are treated as simple hydro-foils, these horizontal velocity components change the fluid angle of attack on each strip, and thus may induce large horizontal lift forces on each grid in the same direction as the baffle plate velocity. There is a similar horizontal lift due to inclined flow over the rods when axial flow is present. These combined forces appear to always reduce the relative displacements between the fuel and baffle plates for any significant axial flow velocity. Modeling this effect is very simple. It was shown in previous papers that the mechanism for the large fuel assembly damping due to axial flow may be the hydrodynamic forces on the grid strips, and that this is very well represented by discrete viscous dampers at each grid elevation. To include the imposed horizontal water velocity effects, on both the grids and rods, these dampers are simply attached to the baffle plate rather than 'ground'. The large flow-induced damping really acts in a relative reference frame rather than an absolute or inertial reference frame, and thus it becomes a flow-induced coupling between the fuel

  11. Effect of quantum nuclear motion on hydrogen bonding

    Science.gov (United States)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  12. Effect of quantum nuclear motion on hydrogen bonding

    International Nuclear Information System (INIS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-01-01

    This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends

  13. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    Directory of Open Access Journals (Sweden)

    Fabrício A. Magalhaes

    2013-12-01

    Full Text Available Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP, based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM. Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4% than for COM (17.8%. Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis.

  14. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Roth, Noam; Roth, Amir [Robin Medical Inc., Baltimore, MD (United States)

    2016-11-15

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  15. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    International Nuclear Information System (INIS)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K.; Roth, Noam; Roth, Amir

    2016-01-01

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  16. Motion and gravity effects in the precision of quantum clocks.

    Science.gov (United States)

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-05-19

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.

  17. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Milan S. Dimitrijević

    2014-08-01

    Full Text Available The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed.

  18. Dynamic simulation of motion effects in IMAT lung SBRT.

    Science.gov (United States)

    Zou, Wei; Yin, Lingshu; Shen, Jiajian; Corradetti, Michael N; Kirk, Maura; Munbodh, Reshma; Fang, Penny; Jabbour, Salma K; Simone, Charles B; Yue, Ning J; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2014-11-01

    Intensity modulated arc therapy (IMAT) has been widely adopted for Stereotactic Body Radiotherapy (SBRT) for lung cancer. While treatment dose is optimized and calculated on a static Computed Tomography (CT) image, the effect of the interplay between the target and linac multi-leaf collimator (MLC) motion is not well described and may result in deviations between delivered and planned dose. In this study, we investigated the dosimetric consequences of the inter-play effect on target and organs at risk (OAR) by simulating dynamic dose delivery using dynamic CT datasets. Fifteen stage I non-small cell lung cancer (NSCLC) patients with greater than 10 mm tumor motion treated with SBRT in 4 fractions to a dose of 50 Gy were retrospectively analyzed for this study. Each IMAT plan was initially optimized using two arcs. Simulated dynamic delivery was performed by associating the MLC leaf position, gantry angle and delivered beam monitor units (MUs) for each control point with different respiratory phases of the 4D-CT using machine delivery log files containing time stamps of the control points. Dose maps associated with each phase of the 4D-CT dose were calculated in the treatment planning system and accumulated using deformable image registration onto the exhale phase of the 4D-CT. The original IMAT plans were recalculated on the exhale phase of the CT for comparison with the dynamic simulation. The dose coverage of the PTV showed negligible variation between the static and dynamic simulation. There was less than 1.5% difference in PTV V95% and V90%. The average inter-fraction and cumulative dosimetric effects among all the patients were less than 0.5% for PTV V95% and V90% coverage and 0.8 Gy for the OARs. However, in patients where target is close to the organs, large variations were observed on great vessels and bronchus for as much as 4.9 Gy and 7.8 Gy. Limited variation in target dose coverage and OAR constraints were seen for each SBRT fraction as well as over all

  19. Effect of rolling motion on the expansion and contraction loss coefficients

    International Nuclear Information System (INIS)

    Yan, B.H.; Gu, H.Y.

    2013-01-01

    Highlights: ► The expansion and contraction loss coefficients in rolling motion are analyzed. ► Effects of rolling motion on the expansion and contraction loss coefficients are different. ► The spanwise and transverse additional forces contribute slightly to the local loss. ► The oscillations of loss coefficients increase as the strengthening of rolling motion. - Abstract: The sudden expansion and sudden contraction loss coefficients in rolling motion are investigated with CFD code FLUENT. The calculation results are validated with experimental and theoretical results in steady state. The effects of rolling motion on the expansion and contraction loss coefficients are different. The effects of spanwise and transverse additional forces on the expansion and contraction loss coefficients are weak. The effect of velocity oscillation on the contraction loss coefficient is more significant than that on the expansion loss coefficient. The oscillation of local loss coefficient also becomes more and more irregular as the strengthening of rolling motion

  20. Communication: Isotopic effects on tunneling motions in the water trimer

    International Nuclear Information System (INIS)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.

    2016-01-01

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H 2 O] 3 and [D 2 O] 3 , at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H 2 O] 3 than in [D 2 O] 3 . Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments

  1. Communication: Isotopic effects on tunneling motions in the water trimer

    Energy Technology Data Exchange (ETDEWEB)

    Videla, Pablo E. [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Rossky, Peter J. [Department of Chemistry, Rice University, Houston, Texas 77251-1892 (United States); Laria, D., E-mail: dhlaria@cnea.gov.ar [Departamento de Química Inorgánica Analítica y Química-Física e INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires (Argentina); Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires (Argentina)

    2016-02-14

    We present results of ring polymer molecular dynamics simulations that shed light on the effects of nuclear quantum fluctuations on tunneling motions in cyclic [H{sub 2}O]{sub 3} and [D{sub 2}O]{sub 3}, at the representative temperature of T = 75 K. In particular, we focus attention on free energies associated with two key isomerization processes: The first one corresponds to flipping transitions of dangling OH bonds, between up and down positions with respect to the O–O–O plane of the cluster; the second involves the interchange between connecting and dangling hydrogen bond character of the H-atoms in a tagged water molecule. Zero point energy and tunneling effects lead to sensible reductions of the free energy barriers. Due to the lighter nature of the H nuclei, these modifications are more marked in [H{sub 2}O]{sub 3} than in [D{sub 2}O]{sub 3}. Estimates of the characteristic time scales describing the flipping transitions are consistent with those predicted based on standard transition-state-approximation arguments.

  2. Effects of thermal motion on electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-01-01

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  3. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2014-06-15

    was 5 s, with the resulting average motion speed of 1.45 cm/s. The motion-perturbed high resolution (2 mm voxel) volumetric dose grids on the MC2 phantom were generated for each beam. From each grid, a coronal dose plane at the detector level was extracted and compared to the corresponding moving MC2 measurement, using gamma analysis with both global (G) and local (L) dose-error normalization. Results: Using the TG-119 criteria of (3%G/3 mm), per beam average gamma analysis passing rates exceeded 95% in all cases. No individual beam had a passing rate below 91%. LDVE correction eliminated systematic disagreement patterns at the beams’ aperture edges. In a representative example, application of LDVE correction improved (2%L/2 mm) gamma analysis passing rate for an IMRT beam from 74% to 98%. Conclusions: The effect of motion on the moving region-of-interest IMRT dose can be estimated with a standard, static phantom QA measurement, provided the motion characteristics are independently known from 4D CT or otherwise. The motion-perturbed absolute dose estimates were validated by the direct planar diode array measurements, and were found to reliably agree with them in a homogeneous phantom.

  4. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.

    Science.gov (United States)

    Wang, Xianwei; Zhang, John Z H; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  5. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianwei [Center for Optics and Optoelectronics Research, College of Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310023 (China); State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); Zhang, John Z. H.; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062 (China); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C≡N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein’s internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  6. Effect of respiratory motion on internal radiation dosimetry

    NARCIS (Netherlands)

    Xie, Tianwu; Zaidi, Habib

    2014-01-01

    Purpose: Estimation of the radiation dose to internal organs is essential for the assessment of radiation risks and benefits to patients undergoing diagnostic and therapeutic nuclear medicine procedures including PET. Respiratory motion induces notable internal organ displacement, which influences

  7. Motion-induced blindness and microsaccades: cause and effect

    NARCIS (Netherlands)

    Bonneh, Y.S.; Donner, T.H.; Sagi, D.; Fried, M.; Heeger, D.J.; Arieli, A.

    2010-01-01

    It has been suggested that subjective disappearance of visual stimuli results from a spontaneous reduction of microsaccade rate causing image stabilization, enhanced adaptation, and a consequent fading. In motion-induced blindness (MIB), salient visual targets disappear intermittently when

  8. Effective motion design applied to energy-efficient handling processes

    Energy Technology Data Exchange (ETDEWEB)

    Brett, Tobias

    2013-10-01

    Industrial robots are available in a large variety of mechanical alternatives regarding size, motor power, link length ratio or payload. The four major types of serial kinematics dominating the market are complemented by various parallel kinematics for special purpose. In contrast, few other path planning alternatives are applied in industrial robotics which are based on similar analytic solution principles. The objective of this thesis is to develop a systematic design method for artifacts in motion, to integrate motion design and mechanical design to enable new processes for production. For each design, a theoretical benchmark is developed, which cannot be attained by conventional robots in principle. A key performance indicator enables to measure the degree of goal achievement towards the benchmark during all design phases. Motion behaviors are identified on a local level by dynamic systems modeling and are integrated into new global behavior featuring a new quality, suitable for exceeding the design benchmark in industrial processes. Two exemplary handling robot designs are presented. The first concept enables motion behavior to consume less electrical power than kinetic energy transferred to and from its payload during motion. The second concept enables motion with four degrees of freedom by single motor stimulation, reducing idle power consumption on factor 4 towards conventional robots.

  9. Effects of Age and Gender on Hand Motion Tasks

    Directory of Open Access Journals (Sweden)

    Wing Lok Au

    2015-01-01

    Full Text Available Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH. Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT speed (r=0.593, p<0.001, hand-grasp (HG speed (r=0.517, p<0.001, and pronation-supination (PS speed (r=0.485, p<0.001. Men performed better in FT rhythm p<0.02, HG speed p<0.02, HG amplitude p<0.02, and HG rhythm p<0.05. Taller subjects performed better in the speed and amplitude components of FT p<0.02 and HG tasks p<0.02. After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men p<0.05. Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

  10. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  11. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  12. Stark-shift of impurity fundamental state in a lens shaped quantum dot

    Science.gov (United States)

    Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2017-05-01

    We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.

  13. Effect of range of motion in heavy load squatting on muscle and tendon adaptations

    DEFF Research Database (Denmark)

    Bloomquist, K; Langberg, Henning; Karlsen, Stine

    2013-01-01

    Manipulating joint range of motion during squat training may have differential effects on adaptations to strength training with implications for sports and rehabilitation. Consequently, the purpose of this study was to compare the effects of squat training with a short vs. a long range of motion...

  14. The effect of spinal manipulative therapy on spinal range of motion

    DEFF Research Database (Denmark)

    Millan, Mario; Leboeuf-Yde, Charlotte; Budgell, Brian

    2012-01-01

    Spinal manipulative therapy (SMT) has been shown to have an effect on spine-related pain, both clinically and in experimentally induced pain. However, it is unclear if it has an immediate noticeable biomechanical effect on spinal motion that can be measured in terms of an increased range of motion...

  15. The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2014-01-01

    Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…

  16. Effect of Ground Motion Directionality on Fragility Characteristics of a Highway Bridge

    Directory of Open Access Journals (Sweden)

    Swagata Banerjee Basu

    2011-01-01

    Full Text Available It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.

  17. The effects of orbital motion on LISA time delay interferometry

    International Nuclear Information System (INIS)

    Cornish, Neil J; Hellings, Ronald W

    2003-01-01

    In an effort to eliminate laser phase noise in laser interferometer spaceborne gravitational wave detectors, several combinations of signals have been found that allow the laser noise to be cancelled out while gravitational wave signals remain. This process is called time delay interferometry (TDI). In the papers that defined the TDI variables, their performance was evaluated in the limit that the gravitational wave detector is fixed in space. However, the performance depends on certain symmetries in the armlengths that are available if the detector is fixed in space, but that will be broken in the actual rotating and flexing configuration produced by the LISA orbits. In this paper we investigate the performance of these TDI variables for the real LISA orbits. First, addressing the effects of rotation, we verify Daniel Shaddock's result that the Sagnac variables α (t), β (t) and γ (t) will not cancel out the laser phase noise, and we also find the same result for the symmetric Sagnac variable ζ (t). The loss of the latter variable would be particularly unfortunate since this variable also cancels out gravitational wave signal, allowing instrument noise in the detector to be isolated and measured. Fortunately, we have found a set of more complicated TDI variables, which we call Δ Sagnac variables, one of which accomplishes the same goal as ζ (t) to good accuracy. Finally, however, as we investigate the effects of the flexing of the detector arms due to non-circular orbital motion, we show that all variables, including the interferometer variables, X(t), Y(t) and Z(t), which survive the rotation-induced loss of direction symmetry, will not completely cancel laser phase noise when the armlengths are changing with time. This unavoidable problem will place a stringent requirement on laser stability of ∼5 Hz Hz -1/2

  18. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  19. Stark broadening of Ca IV spectral lines of astrophysical interest

    Science.gov (United States)

    Alonso-Medina, A.; Colón, C.

    2014-12-01

    Ca IV emission lines are under the preview of Solar Ultraviolet Measurements of Emitted Radiation device aboard the Solar and Heliospheric Observatory. Also, lines of the Ca IV in planetary nebulae NGC 7027 were detected with the Short Wavelength Spectrometer on board the Infrared Space Observatory. These facts justify an attempt to provide new spectroscopic parameters of Ca IV. There are no theoretical or experimental Stark broadening data for Ca IV. Using the Griem semi-empirical approach and the COWAN code, we report in this paper calculated values of the Stark broadening parameters for 467 lines of Ca IV. They were calculated using a set of wavefunctions obtained by using Hartree-Fock relativistic calculations. These lines arising from 3s23p4ns (n = 4, 5), 3s23p44p, 3s23p4nd (n = 3, 4) configurations. Stark widths and shifts are presented for an electron density of 1017 cm-3 and temperatures T = 10 000, 20 000 and 50 200 K. As these data cannot be compared to others in the literature, we present an analysis of the different regularities of the values presented in this work.

  20. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    Science.gov (United States)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  1. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  2. Stark broadening parameter regularities and interpolation and critical evaluation of data for CP star atmospheres research: Stark line shifts

    Science.gov (United States)

    Dimitrijevic, M. S.; Tankosic, D.

    1998-04-01

    In order to find out if regularities and systematic trends found to be apparent among experimental Stark line shifts allow the accurate interpolation of new data and critical evaluation of experimental results, the exceptions to the established regularities are analysed on the basis of critical reviews of experimental data, and reasons for such exceptions are discussed. We found that such exceptions are mostly due to the situations when: (i) the energy gap between atomic energy levels within a supermultiplet is equal or comparable to the energy gap to the nearest perturbing levels; (ii) the most important perturbing level is embedded between the energy levels of the supermultiplet; (iii) the forbidden transitions have influence on Stark line shifts.

  3. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  4. Exceptions to the Stark law: practical considerations for surgeons.

    Science.gov (United States)

    Satiani, Bhagwan

    2006-03-01

    The purpose of this study was to provide an understanding of the applicable legislative exceptions to prohibitions under the Stark law, which governs common legitimate business relationships in surgical practice. Stark I and II prohibits all referrals (and claims) for the provision of designated health services for federal reimbursement if a physician or immediate family member has any financial relationship with the entity. Regardless of intent (unlike the antikickback statute), any financial relationship is illegal unless specifically excepted by statute. These exceptions are relevant to ownership, compensation arrangements, or both. The most important ones relevant to surgeons are as follows: physician service exception (services rendered in an intragroup referral); in-office ancillary services exception (office-based vascular laboratory); the whole hospital exception (ownership interest in a hospital or department); lease exception (conditions that must be met for a lease not to be considered illegal); bona fide employment exception (important to academic medical centers); personal services arrangement exception (vascular laboratory medical directorship); physician incentive plans exception (if volume or value of referrals are an issue); hospital-affiliated group practice exception (physician services billed by a hospital); recruitment arrangement exception (inducements by hospitals to relocate); items/services exception (transcription services purchased from a hospital); fair market value exception (covers services provided to health care entities); indirect compensation arrangements (dealings between a hospital and entity owned by physicians); and academic medical centers exception (new phase II rules broaden the definition of academic medical centers and ease the requirement that practice plans be tax-exempt organizations, among other changes. Although expert legal advice is required for navigation through the maze of Stark laws, it is incumbent on surgeons

  5. Effects of general relativity in the motion of minor planets and comets

    International Nuclear Information System (INIS)

    Sitarski, G.

    1983-01-01

    Basing on the solution of one-body Schwarzschild problem, the relativistic terms were included to the equations of motion of a minor planet or comet. It appeared that the using of Painleve's coordinates allowed to write the equations of motion in a very simple form. Equations of motion as well as the commonly used equations based on the Schwarzschild isotropic and nonisotropic line elements were numerically integrated by the recurrent power series method. The results of integration of the motion of Mercury and of the minor planet Icarus show strictly the perihelion motion predicted by the general relativity theory. The relativistic effects in the motion of some minor planets and comets were examined too. (author)

  6. The application of biofluid mechanics boundary effects on phoretic motions of colloidal spheres

    CERN Document Server

    Chen, Po-Yuan

    2014-01-01

    "The Application of Biofluid Mechanics: Boundary Effects on Phoretic Motions of Colloidal Spheres" focuses on the phoretic motion behavior of various micron- to nanometer-size particles. The content of this book is divided into two parts: one on the concentration gradient-driven diffusiophoresis and osmophoresis, and one on thermocapillary motion and thermophoretic motion driven by temperature gradient. Diffusiophoresis and osmophoresis are mainly used in biomedical engineering applications, such as drug delivery, purification, and the description of the behavior of the immune system; thermocapillary motion and thermophoretic motion are applied in the field of semiconductors, as well as in suspended impurities removal. The book also provides a variety of computer programming source codes compiled using Fortran for researchers' future applications. This book is intended for chemical engineers, biomedical engineers and scientists, biophysicists, and fundamental chemotaxis researchers. Dr. Po-Yuan Chen is an Ass...

  7. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  8. Autorotation motions of a turbine coursed by the Magnus effect

    Science.gov (United States)

    Ishkhanyan, M. V.; Klimina, L. A.; Privalova, O. G.

    2018-05-01

    The motion of the turbine in the flow is studied. Each blade of the main turbine is represented by a Savonius rotor. Self-induced rotation of Savonius rotors produces the Magnus force that courses the rotation of the main turbine. Existence and stability of the self-induced rotation are discussed. Parametrical analysis is carried out.

  9. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  10. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  11. Disappearance of the inversion effect during memory-guided tracking of scrambled biological motion.

    Science.gov (United States)

    Jiang, Changhao; Yue, Guang H; Chen, Tingting; Ding, Jinhong

    2016-08-01

    The human visual system is highly sensitive to biological motion. Even when a point-light walker is temporarily occluded from view by other objects, our eyes are still able to maintain tracking continuity. To investigate how the visual system establishes a correspondence between the biological-motion stimuli visible before and after the disruption, we used the occlusion paradigm with biological-motion stimuli that were intact or scrambled. The results showed that during visually guided tracking, both the observers' predicted times and predictive smooth pursuit were more accurate for upright biological motion (intact and scrambled) than for inverted biological motion. During memory-guided tracking, however, the processing advantage for upright as compared with inverted biological motion was not found in the scrambled condition, but in the intact condition only. This suggests that spatial location information alone is not sufficient to build and maintain the representational continuity of the biological motion across the occlusion, and that the object identity may act as an important information source in visual tracking. The inversion effect disappeared when the scrambled biological motion was occluded, which indicates that when biological motion is temporarily occluded and there is a complete absence of visual feedback signals, an oculomotor prediction is executed to maintain the tracking continuity, which is established not only by updating the target's spatial location, but also by the retrieval of identity information stored in long-term memory.

  12. Stark broadening of several Bi IV spectral lines of astrophysical interest

    Science.gov (United States)

    Colón, C.; Moreno-Díaz, C.; de Andrés-García, I.; Alonso-Medina, A.

    2017-09-01

    The presence of spectral lines of bismuth in stellar atmospheres has been reported in different stars. The anomalous values of the spectral intensities of Bi II and Bi III, compared to the theoretical Local Termodinamic Equilibrium (LTE) standards of Bi I/Bi II/Bi III, have been reported in the spectra obtained with the High Resolution Spectrograph of the Hubble/Goddard Space Telescope in the chemically peculiar stars HgMn stars χ Lupi and HR 7775. Spectral lines of 1436.8, 1902.3, 2630.9 and 2936.7 Å of Bi II and 1423.4 Å of Bi III were reported and their relative intensities were measured in these studies Litzén & Wahlgren 2002. These lines are overlapped with spectral lines of 1437.65, 2630.1 and 2937.1 Å of Bi IV. A study of the Stark broadening parameters of Bi IV spectral lines can help to study these overlaps. In this paper, using the Griem semi-empirical approach, we report calculated values of the Stark parameters for 64 spectral lines of Bi IV. The matrix elements used in these calculations have been determined from 17 configurations of Bi IV. They were calculated using the cowan code including core polarization effects. Data are displayed for an electron density of 1017 cm-3 and temperatures T = 10 000-160 000 K. Also calculated radiative lifetimes for 12 levels with experimental lifetime are presented, in order to test the goodness of our calculations. Theoretical trends of the Stark width and shift parameters versus the temperature for spectral lines of astrophysical interest are displayed.

  13. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  14. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Chad R. R. N.; Kemp, Robert A. de, E-mail: RAdeKemp@ottawaheart.ca [Physics Department, Room 3302 Herzberg Laboratories, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada and Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada); Klein, Ran [Department of Nuclear Medicine, Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario K1Y 4E9 (Canada); Beanlands, Rob S. [Cardiac Imaging, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7 (Canada)

    2016-04-15

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  15. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging

    International Nuclear Information System (INIS)

    Hunter, Chad R. R. N.; Kemp, Robert A. de; Klein, Ran; Beanlands, Rob S.

    2016-01-01

    Purpose: Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET–CT misalignment. Methods: A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. Results: In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations

  16. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging.

    Science.gov (United States)

    Hunter, Chad R R N; Klein, Ran; Beanlands, Rob S; deKemp, Robert A

    2016-04-01

    Patient motion is a common problem during dynamic positron emission tomography (PET) scans for quantification of myocardial blood flow (MBF). The purpose of this study was to quantify the prevalence of body motion in a clinical setting and evaluate with realistic phantoms the effects of motion on blood flow quantification, including CT attenuation correction (CTAC) artifacts that result from PET-CT misalignment. A cohort of 236 sequential patients was analyzed for patient motion under resting and peak stress conditions by two independent observers. The presence of motion, affected time-frames, and direction of motion was recorded; discrepancy between observers was resolved by consensus review. Based on these results, patient body motion effects on MBF quantification were characterized using the digital NURBS-based cardiac-torso phantom, with characteristic time activity curves (TACs) assigned to the heart wall (myocardium) and blood regions. Simulated projection data were corrected for attenuation and reconstructed using filtered back-projection. All simulations were performed without noise added, and a single CT image was used for attenuation correction and aligned to the early- or late-frame PET images. In the patient cohort, mild motion of 0.5 ± 0.1 cm occurred in 24% and moderate motion of 1.0 ± 0.3 cm occurred in 38% of patients. Motion in the superior/inferior direction accounted for 45% of all detected motion, with 30% in the superior direction. Anterior/posterior motion was predominant (29%) in the posterior direction. Left/right motion occurred in 24% of cases, with similar proportions in the left and right directions. Computer simulation studies indicated that errors in MBF can approach 500% for scans with severe patient motion (up to 2 cm). The largest errors occurred when the heart wall was shifted left toward the adjacent lung region, resulting in a severe undercorrection for attenuation of the heart wall. Simulations also indicated that the

  17. On the role of memory effects for dissipation and diffusion in slow collective nuclear motion

    International Nuclear Information System (INIS)

    Cassing, W.; Noerenberg, W.

    1983-01-01

    The energy dissipation in slow collective nuclear motion is viewed as a combined effect of a diabatic production of particle-hole excitations, leading to a conservative storage of collective energy, and a subsequent equilibration due to residual two-body collisions. The effective equation of motion for the collective degree of freedom turns out to be nonlocal in time due to the large mean free path of the nucleons and allows for a simultaneous description of two different attitudes of nuclear matter. The elastic response of heavy nuclei for ''fast'' collective motion switches over to pure friction for very slow collective motion. The time development of the fluctuations in the velocities may show oscillations for times comparable to the local equilibration time and hence, is qualitatively different from the classical limit. A first application of the diabatic dynamical approach is made for the quadrupole motion within a diabatic deformed harmonic oscillator basis. (orig.)

  18. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Jokivarsi, Kimmo; Goitein, Michael; Kung, Jong; Jiang, Steve B.

    2002-01-01

    There has been some concern that organ motion, especially intra-fraction organ motion due to breathing, can negate the potential merit of intensity-modulated radiotherapy (IMRT). We wanted to find out whether this concern is justified. Specifically, we wanted to investigate whether IMRT delivery techniques with moving parts, e.g., with a multileaf collimator (MLC), are particularly sensitive to organ motion due to the interplay between organ motion and leaf motion. We also wanted to know if, and by how much, fractionation of the treatment can reduce the effects. We performed a statistical analysis and calculated the expected dose values and dose variances for volume elements of organs that move during the delivery of the IMRT. We looked at the overall influence of organ motion during the course of a fractionated treatment. A linear-quadratic model was used to consider fractionation effects. Furthermore, we developed software to simulate motion effects for IMRT delivery with an MLC, with compensators, and with a scanning beam. For the simulation we assumed a sinusoidal motion in an isocentric plane. We found that the expected dose value is independent of the treatment technique. It is just a weighted average over the path of motion of the dose distribution without motion. If the treatment is delivered in several fractions, the distribution of the dose around the expected value is close to a Gaussian. For a typical treatment with 30 fractions, the standard deviation is generally within 1% of the expected value for MLC delivery if one assumes a typical motion amplitude of 5 mm (1 cm peak to peak). The standard deviation is generally even smaller for the compensator but bigger for scanning beam delivery. For the latter it can be reduced through multiple deliveries ('paintings') of the same field. In conclusion, the main effect of organ motion in IMRT is an averaging of the dose distribution without motion over the path of the motion. This is the same as for treatments

  19. The effect of high-frequency ground motion on the MAPLE-X10 reactor

    International Nuclear Information System (INIS)

    Bhan, S.; Dunbar, S.

    1989-06-01

    The effect of high-frequency ground motion on structures and equipment in nuclear reactors is examined by subjecting simple linear models to selected recorded ground motions which exhibit low and high frequencies. Computed damage measures indicate that high-frequency short-duration ground motion, such as that observed in eastern North America, have a minimal effect on structures with low natural frequencies. Response spectra of high-frequency ground motion indicate that higher forces are induced in structures with high natural frequencies as compared to those induced by low-frequency ground motion. However, reported observations of earthquake damage in eastern North America suggest that high-frequency ground motion causes little of no damage to structures. This may be due to the energy absorption capability of structures. It is concluded that the response spectrum representative of ground motion observed in eastern North America may give an over-conservative measure of the response of structures with high natural frequencies, since it does not account for the typically observed short duration of high-frequency ground motion and for the energy absorption capability of structures. Detailed nonlinear analysis of specific structures with high natural frequencies should be performed to better predict the actual response. Recommendations for a nonlinear analysis of typical structures with high natural frequencies are made

  20. Effects of spatial attention on motion discrimination are greater in the left than right visual field.

    Science.gov (United States)

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the dorsal and ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the dorsal stream. Published by Elsevier Ltd.

  1. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  2. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  3. Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states

    Energy Technology Data Exchange (ETDEWEB)

    Sazonov, S. V., E-mail: sazonov.sergei@gmail.com [National Research Centre Kurchatov Institute (Russian Federation); Ustinov, N. V., E-mail: n_ustinov@mail.ru [Moscow State Railway University, Kaliningrad Branch (Russian Federation)

    2012-11-15

    The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.

  4. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    properties. In this model, immediate postoperative passive motion was found to be detrimental to passive shoulder mechanics. We speculate that passive motion results in increased scar formation in the subacromial space, thereby resulting in decreased range of motion and increased joint stiffness. Passive motion had no effect on collagen organization or tendon mechanical properties measured six weeks after surgery.

  5. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium

  6. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    Science.gov (United States)

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  7. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    Science.gov (United States)

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  8. Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion

    Science.gov (United States)

    Indriani, A.; Dimas, S.; Hendra

    2018-02-01

    The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25

  9. Focal spot motion of linear accelerators and its effect on portal image analysis

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Brand, Bob; Herk, Marcel van

    2003-01-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned ∼0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motion was estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spot motion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate

  10. Stark shift and photoionization cross section of on-center and off-center donor impurity in a core/shell ellipsoidal quantum dot

    Science.gov (United States)

    Shi, L.; Yan, Z. W.

    2018-04-01

    Within the framework of the effective-mass approximation and by using a variational method, the Stark shift of on-center and off-center donor impurity binding energies and photoionization cross section under a z-direction electric field in a prolate (oblate) core/shell ellipsoidal quantum dot has been studied. We have calculated the Stark shift as a function of the core and shell sizes and shapes, electric field, and impurity position. We also discuss the photoionization cross section as a function of photon energy with different core and shell sizes and shapes, electric field strengths, and impurity positions. The results show that the Stark shift depends strongly on the impurity position, it could be positive or negative. The core and shell sizes and shapes also have a pronounce influence on the Stark shift, and the Stark shift changes with them is non-monotonic, especially when the impurity is located at the -z-axis, the situation will become complicated. In addition, the core and shell sizes and shapes, impurity position, and electric field also have an important influence on the photoionization cross section. In particular, the photoionization cross section will vanish when the impurity is located at center of spherical core with spherical or prolate shell case at zero field.

  11. Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    International Nuclear Information System (INIS)

    Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der

    2012-01-01

    In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density

  12. Effects of moment of inertia on restricted motion swing speed.

    Science.gov (United States)

    Schorah, David; Choppin, Simon; James, David

    2015-06-01

    In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.

  13. Stark mapping of H2 Rydberg states in the strong-field regime with dynamical resolution

    International Nuclear Information System (INIS)

    Glab, W.L.; Qin, K.

    1993-01-01

    We have acquired spectra of high Rydberg states of molecular hydrogen in a static external field, in the energy region from below the energy at which field ionization becomes classically possible (E c ) to well above this energy. Simultaneous spectra of ionization and dissociation were acquired, thereby allowing direct information on the excited-state decay dynamics to be obtained. We have found that states with energies below E c undergo field-induced predissociation, while states with energies well above E c decay predominantly by field ionization. Field ionization and dissociation compete effectively as decay channels for states with energies in a restricted region just above E c . Comparison of our ionization spectra to the results of a single-channel quantum-defect theory Stark calculation shows quantitative agreement except near curve crossings, indicating that inclusion of different core rotational state channels will be required to properly account for coupling between the Stark states. Several states in the spectra undergo pronounced changes in their dynamical properties over a narrow range of field values, which we interpret as being due to interference cancellation of the ionization rates for these states

  14. Shape representation modulating the effect of motion on visual search performance.

    Science.gov (United States)

    Yang, Lindong; Yu, Ruifeng; Lin, Xuelian; Liu, Na

    2017-11-02

    The effect of motion on visual search has been extensively investigated, but that of uniform linear motion of display on search performance for tasks with different target-distractor shape representations has been rarely explored. The present study conducted three visual search experiments. In Experiments 1 and 2, participants finished two search tasks that differed in target-distractor shape representations under static and dynamic conditions. Two tasks with clear and blurred stimuli were performed in Experiment 3. The experiments revealed that target-distractor shape representation modulated the effect of motion on visual search performance. For tasks with low target-distractor shape similarity, motion negatively affected search performance, which was consistent with previous studies. However, for tasks with high target-distractor shape similarity, if the target differed from distractors in that a gap with a linear contour was added to the target, and the corresponding part of distractors had a curved contour, motion positively influenced search performance. Motion blur contributed to the performance enhancement under dynamic conditions. The findings are useful for understanding the influence of target-distractor shape representation on dynamic visual search performance when display had uniform linear motion.

  15. Stark Broadening of Carbon and Oxygen Lines in Hot DQ White Dwarf Stars: Recent Results and Applications

    Directory of Open Access Journals (Sweden)

    Dufour P.

    2011-12-01

    Full Text Available White dwarf stars are traditionally found to have surface compositions made primarily of hydrogen or helium. However, a new family has recently been uncovered, the so-called hot DQ white dwarfs, which have surface compositions dominated by carbon and oxygen with little or no trace of hydrogen and helium (Dufour et al. 2007, 2008, 2010. Deriving precise atmospheric parameters for these objects (such as the effective temperature and the surface gravity requires detailed modeling of spectral line profiles. Stark broadening parameters are of crucial importance in that context. We present preliminary results from our new generation of model atmospheres including the latest Stark broadening calculations for C II lines and discuss the implications as well as future work that remains to be done.

  16. The generalized effective potential and its equations of motion

    International Nuclear Information System (INIS)

    Ananikyan, N.S.; Savvidy, G.K.

    1980-01-01

    By means ot the Legendre transformations a functional GITA(PHI, G, S) is constructed which depends on PHI -a possible expectation value of the quantum field, G -a possible expectation value of the 2-point connected Green function and S= - a possible expectation value of the classical action. The motion equations for the functional GITA are derived on the example of the gPHI 3 theory and an iteration technique is suggested to solve them. A basic equation for GITA which is solved by means of iteration techniques is an ordinary and not a variation one, as it is the case at usual Legendre transformations. The developed formalism can be easily generalized as to other theories

  17. Coil motion effects in watt balances: a theoretical check

    Science.gov (United States)

    Li, Shisong; Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Pratt, Jon R.

    2016-04-01

    A watt balance is a precision apparatus for the measurement of the Planck constant that has been proposed as a primary method for realizing the unit of mass in a revised International System of Units. In contrast to an ampere balance, which was historically used to realize the unit of current in terms of the kilogram, the watt balance relates electrical and mechanical units through a virtual power measurement and has far greater precision. However, because the virtual power measurement requires the execution of a prescribed motion of a coil in a fixed magnetic field, systematic errors introduced by horizontal and rotational deviations of the coil from its prescribed path will compromise the accuracy. We model these potential errors using an analysis that accounts for the fringing field in the magnet, creating a framework for assessing the impact of this class of errors on the uncertainty of watt balance results.

  18. Rashba spin–orbit coupling effects on a current-induced domain wall motion

    International Nuclear Information System (INIS)

    Ryu, Jisu; Seo, Soo-Man; Lee, Kyung-Jin; Lee, Hyun-Woo

    2012-01-01

    A current-induced domain wall motion in magnetic nanowires with a strong structural inversion asymmetry [I.M. Miron, T. Moore, H. Szambolics, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J. Vogel, M. Bonfim, A. Schuhl, G. Gaudin, Nat. Mat. 10 (2011) 419] seems to have novel features such as the domain wall motion along the current direction or the delay of the onset of the Walker breakdown. In such a highly asymmetric system, the Rashba spin–orbit coupling (RSOC) may affect a domain wall motion. We studied theoretically the RSOC effects on a domain wall motion and found that the RSOC, indeed, can induce the domain wall motion along the current direction in certain situations. It also delays the Walker breakdown and for a strong RSOC, the Walker breakdown does not occur at all. The RSOC effects are sensitive to the magnetic anisotropy of nanowires and also to the ratio between the Gilbert damping parameter α and the non-adiabaticity parameter β. - Highlights: ► Effects of Rashba spin–orbit coupling on a domain wall motion is calculated. ► The effects depend highly on the anisotropy of a magnetic system. ► It modifies the wall velocity for the system with a perpendicular magnetic anisotropy. ► The modified velocity can be along the current direction in certain situations. ► Rashba spin–orbit coupling also hinders the onset of the Walker breakdown.

  19. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  20. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    International Nuclear Information System (INIS)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-01-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number

  1. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    DEFF Research Database (Denmark)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  2. EFFECTS OF SMALL THRUST ON THE MOTION OF AN ARTIFICIAL EARTH SATELLITE

    OpenAIRE

    TAKEUCHI, Sumio; 武内, 澄夫

    1982-01-01

    Perturbative effects of small thrust on the motion of an artificial earth satellite are investigated. The Lagrange planetary equations in Gaussian form are applied to determine the variations of the orbital elements. Also, equations of motion expressed in terms of different components of the thrust acceleration are used. It is assumed that the small thrust acceleration is a function of time and expressible as a linear combination of a polynomial and a composite set of all sines and cosines. B...

  3. Facilitating Effects of Emotion on the Perception of Biological Motion: Evidence for a Happiness Superiority Effect.

    Science.gov (United States)

    Lee, Hannah; Kim, Jejoong

    2017-06-01

    It has been reported that visual perception can be influenced not only by the physical features of a stimulus but also by the emotional valence of the stimulus, even without explicit emotion recognition. Some previous studies reported an anger superiority effect while others found a happiness superiority effect during visual perception. It thus remains unclear as to which emotion is more influential. In the present study, we conducted two experiments using biological motion (BM) stimuli to examine whether emotional valence of the stimuli would affect BM perception; and if so, whether a specific type of emotion is associated with a superiority effect. Point-light walkers with three emotion types (anger, happiness, and neutral) were used, and the threshold to detect BM within noise was measured in Experiment 1. Participants showed higher performance in detecting happy walkers compared with the angry and neutral walkers. Follow-up motion velocity analysis revealed that physical difference among the stimuli was not the main factor causing the effect. The results of the emotion recognition task in Experiment 2 also showed a happiness superiority effect, as in Experiment 1. These results show that emotional valence (happiness) of the stimuli can facilitate the processing of BM.

  4. Stark parameters of some asymmetrical Si II lines

    International Nuclear Information System (INIS)

    Ferhat, B; Azzouz, Y; Redon, R; Ripert, M; Lesage, A

    2012-01-01

    Six lines of SiII are experimentally studied in pulsed plasma generated by Nd :Yag laser breakdown on pure solid silicon target. A set of experimental Stark parameters of asymmetrical lines are measured in temperature range from 14 000 K to 18 000 K (using Boltzmann plot). Calculated values of the electron density (using Griem's formula) vary from 1.7 to 6.1 × 10 23 m −3 . Processed spectral lines are 333.982 nm (3s 2 4p -3s 2 6s) and 397.746 nm, 399.177 nm, 399.801 nm, 401.622 nm (3d' 2 F 0 -4f' 4 G) and (3d' 2 F 0 - 4f' 2 G) of astrophysical interest. Asymmetrical line shapes are synthesized by a sum of two semi-Lorentzian distributions. The obtained fit is in good agreement with the measured spectra.

  5. Raman-laser spectroscopy of Wannier-Stark states

    International Nuclear Information System (INIS)

    Tackmann, G.; Pelle, B.; Hilico, A.; Beaufils, Q.; Pereira dos Santos, F.

    2011-01-01

    Raman lasers are used as a spectroscopic probe of the state of atoms confined in a shallow one-dimensional (1D) vertical lattice. For sufficiently long laser pulses, resolved transitions in the bottom band of the lattice between Wannier Stark states corresponding to neighboring wells are observed. Couplings between such states are measured as a function of the lattice laser intensity and compared to theoretical predictions, from which the lattice depth can be extracted. Limits to the linewidth of these transitions are investigated. Transitions to higher bands can also be induced, as well as between transverse states for tilted Raman beams. All these features allow for a precise characterization of the trapping potential and for an efficient control of the atomic external degrees of freedom.

  6. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  7. Effect of stopover on motion of two competing elevators in peak traffic

    Science.gov (United States)

    Nagatani, Takashi

    2016-02-01

    We study the dynamic motion of two competing elevators when elevators stop over at some floors. We present the dynamic model of elevators to take into account the stopover effect. The dynamics of the elevator traffic system is described by a pair of deterministic nonlinear maps. The motion of two elevators is determined by the five parameters: the numbers of stopovers at two elevators, the fraction of passengers choosing the first elevator, the fraction of passengers choosing the second elevator, and the inflow rate. The dynamics of two elevators depends highly on these parameters. The motion of two elevators displays a complex behavior by a neck-and-neck race between two elevators. We explore the dependence of elevator motion on the fractions of two kinds of passengers, the numbers of stopover floors, and the inflow rate.

  8. Effects of the Earth’ s triaxiality on the polar motion excitations

    Directory of Open Access Journals (Sweden)

    Chen Wei

    2012-05-01

    Full Text Available his study aims to evaluate the significance of the Earth’s triaxiality to the polar motion theory. First of all, we compare the polar motion theories for both the triaxial and rotationally-symmetric Earth models, which is established on the basis of the EGM2008 global gravity model and the MHB2000 Earth model. Then, we use the atmospheric and oceanic data (the NCEP/NCAR reanalyses and the ECCO assimulation products to quantify the triaxiality effect on polar motion excitations. Numerical results imply that triaxiality only cause a small correction (about 0. 1–0.2 mas to the geophysical excitations for the rotationally-symmetric case. The triaxiality correction is much smaller than the errors in the atmospheric and oceanic data, and thus can be neglected for recent studies on polar motion excitations.

  9. Scaling laws in high-energy inverse compton scattering. II. Effect of bulk motions

    International Nuclear Information System (INIS)

    Nozawa, Satoshi; Kohyama, Yasuharu; Itoh, Naoki

    2010-01-01

    We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have nonzero bulk motions with respect to the CMB frame. Assuming the power-law electron distribution, we find the same scaling law for the probability distribution function P 1,K (s) as P 1 (s) which corresponds to the zero bulk motions, where the peak height and peak position depend only on the power-index parameter. We solved the rate equation analytically. It is found that the spectral intensity function also has the same scaling law. The effect of the bulk motions to the spectral intensity function is found to be small. The present study will be applicable to the analysis of the x-ray and gamma-ray emission models from various astrophysical objects with nonzero bulk motions such as radio galaxies and astrophysical jets.

  10. Effective basis for modelling outlines of envelopes generated by motion of surfaces of revolution

    International Nuclear Information System (INIS)

    Turlapov, V.E.; Yakunin, V.I.

    1994-01-01

    This paper considers effective solutions of problems on parallel processing of envelopes generated by three-dimensional movement of surfaces of revolution. In general, determining the points outlining the envelope corresponding to concrete values for motion parameters reduces to numerical solution of nonlinear equations in generatrix parameters. For surfaces of revolution whose generatrix is a circular arc, this problem reduces to solution of a fourth-degree algebraic equation. It is shown that an envelope outline can be specified in the form of an explicit function of the motion parameters for any motion if the generatrix of the surface of revolution is a strait line, and, for motion with a fixed point or a fixed axis for the surface of revolution, if the generatrix is a conic section, spline, or a number of other curves

  11. Effectiveness of external respiratory surrogates for in vivo liver motion estimation

    International Nuclear Information System (INIS)

    Chang, Kai-Hsiang; Ho, Ming-Chih; Yeh, Chi-Chuan; Chen, Yu-Chien; Lian, Feng-Li; Lin, Win-Li; Yen, Jia-Yush; Chen, Yung-Yaw

    2012-01-01

    Purpose: Due to low frame rate of MRI and high radiation damage from fluoroscopy and CT, liver motion estimation using external respiratory surrogate signals seems to be a better approach to track liver motion in real-time for liver tumor treatments in radiotherapy and thermotherapy. This work proposes a liver motion estimation method based on external respiratory surrogate signals. Animal experiments are also conducted to investigate related issues, such as the sensor arrangement, multisensor fusion, and the effective time period. Methods: Liver motion and abdominal motion are both induced by respiration and are proved to be highly correlated. Contrary to the difficult direct measurement of the liver motion, the abdominal motion can be easily accessed. Based on this idea, our study is split into the model-fitting stage and the motion estimation stage. In the first stage, the correlation between the surrogates and the liver motion is studied and established via linear regression method. In the second stage, the liver motion is estimated by the surrogate signals with the correlation model. Animal experiments on cases of single surrogate signal, multisurrogate signals, and long-term surrogate signals are conducted and discussed to verify the practical use of this approach. Results: The results show that the best single sensor location is at the middle of the upper abdomen, while multisurrogate models are generally better than the single ones. The estimation error is reduced from 0.6 mm for the single surrogate models to 0.4 mm for the multisurrogate models. The long-term validity of the estimation models is quite satisfactory within the period of 10 min with the estimation error less than 1.4 mm. Conclusions: External respiratory surrogate signals from the abdomen motion produces good performance for liver motion estimation in real-time. Multisurrogate signals enhance estimation accuracy, and the estimation model can maintain its accuracy for at least 10 min. This

  12. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  13. Implementation of quantum logic gates via Stark-tuned Förster resonance in Rydberg atoms

    Science.gov (United States)

    Huang, Xi-Rong; Hu, Chang-Sheng; Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi

    2018-02-01

    We present a scheme for implementation of controlled-Z and controlled-NOT gates via rapid adiabatic passage and Stark-tuned Förster resonance. By sweeping the Förster resonance once without passing through it and adiabatically tuning the angle-dependent Rydberg-Rydberg interaction of the dipolar nature, the system can be effectively described by a two-level system with the adiabatic theorem. The single adiabatic passage leads to a gate fidelity as high as 0.999 and a greatly reduced gate operation time. We investigate the scheme by considering an actual atomic level configuration with rubidium atoms, where the fidelity of the controlled-Z gate is still higher than 0.99 under the influence of the Zeeman effect.

  14. Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters.

    Science.gov (United States)

    Nie, Wenjie; Chen, Aixi; Lan, Yueheng

    2015-11-30

    We design a hybrid optomechanical setup, in which an ensemble of quantum emitters is coupled with a movable mirror through vacuum interaction. The optical cavity is driven along with the quantum emitters and therefore the coupling between the cavity field and the ensemble determines the dynamics of the coupled system. In particular, we investigated the influence of the vacuum coupling strength on the effective frequency and the effective damping rate of the movable mirror, which shows that the vacuum interaction enhances greatly the effective damping rate. Further, the cooling characteristics of the mechanical resonator is analyzed in detail by counting the effective phonon number in the mirror's motion. It is found that the ground-state cooling of the mechanical motion can be approached in the bad cavity limit when the vacuum coupling is included. The dependence of the cooling of the mechanical motion on the parameters of the cavity and the quantum emitter is investigated in detail numerically.

  15. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  16. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  17. Astrometric detectability of systems with unseen companions: effects of the Earth orbital motion

    Science.gov (United States)

    Butkevich, Alexey G.

    2018-06-01

    The astrometric detection of an unseen companion is based on an analysis of the apparent motion of its host star around the system's barycentre. Systems with an orbital period close to 1 yr may escape detection if the orbital motion of their host stars is observationally indistinguishable from the effects of parallax. Additionally, an astrometric solution may produce a biased parallax estimation for such systems. We examine the effects of the orbital motion of the Earth on astrometric detectability in terms of a correlation between the Earth's orbital position and the position of the star relative to its system barycentre. The χ2 statistic for parallax estimation is calculated analytically, leading to expressions that relate the decrease in detectability and accompanying parallax bias to the position correlation function. The impact of the Earth's motion critically depends on the exoplanet's orbital period, diminishing rapidly as the period deviates from 1 yr. Selection effects against 1-yr-period systems is, therefore, expected. Statistical estimation shows that the corresponding loss of sensitivity results in a typical 10 per cent increase in the detection threshold. Consideration of eccentric orbits shows that the Earth's motion has no effect on detectability for e≳ 0.5. The dependence of the detectability on other parameters, such as orbital phases and inclination of the orbital plane to the ecliptic, are smooth and monotonic because they are described by simple trigonometric functions.

  18. A 4D dose computation method to investigate motion interplay effects in scanned ion beam prostate therapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U

    2014-01-01

    In particle therapy, the interplay between beam scanning and target motion during treatment delivery may result in dose deterioration. Interplay effects have been studied for targets exhibiting periodic respiratory motion, however, they are not well understood for irregular motion patterns, such as those exhibited by the prostate. In this note, we propose and validate a 4D dose computation method, which enables estimation of effective dose delivered to the prostate by scanning ion beams in presence of intrafraction motion, as well as facilitates investigation of various motion interplay countermeasures. (note)

  19. Source, propagation and site effects: impact on mapping strong ground motion in Bucharest area

    International Nuclear Information System (INIS)

    Radulian, R.; Kuznetsov, I.; Panza, G.F.

    2004-01-01

    Achievements in the framework of the NATO SfP project 972266 focused on the impact of Vrancea earthquakes on the security of Bucharest urban area are presented. The problem of Bucharest city security to Vrancea earthquakes is discussed in terms of numerical modelling of seismic motion and intermediate term earthquake prediction. A hybrid numerical scheme developed by Faeh et al. (1990; 1993) for frequencies up to 1 Hz is applied for the realistic modelling of the seismic ground motion in Bucharest. The method combines the modal summation for the 1D bedrock model and the finite differences for the 2D local structure model. All the factors controlling the ground motion at the site are considered: source, propagation and site effects, respectively. The input data includes the recent records provided by the digital accelerometer network developed within the Romanian-German CRC461 cooperation programme and CALIXTO'99, VRANCEA'99, VRANCEA2001 experiments. The numerical simulation proves to be a powerful tool in mapping the strong ground motion for realistic structures, reproducing acceptably from engineering point of view the observations. A new model of the Vrancea earthquake scaling is obtained and implications for the determination of the seismic motion parameters are analyzed. The role of the focal mechanism and attenuation properties upon the amplitude and spectral content of the ground motion are outlined. CN algorithm is applied for predicting Vrancea earthquakes. Finally, implications for the disaster management strategy are discussed. (authors)

  20. Sequential Ground Motion Effects on the Behavior of a Base-Isolated RCC Building

    Directory of Open Access Journals (Sweden)

    Zhi Zheng

    2017-01-01

    Full Text Available The sequential ground motion effects on the dynamic responses of reinforced concrete containment (RCC buildings with typical isolators are studied in this paper. Although the base isolation technique is developed to guarantee the security and integrity of RCC buildings under single earthquakes, seismic behavior of base-isolated RCC buildings under sequential ground motions is deficient. Hence, an ensemble of as-recorded sequential ground motions is employed to study the effect of including aftershocks on the seismic evaluation of base-isolated RCC buildings. The results indicate that base isolation can significantly attenuate the earthquake shaking of the RCC building under not only single earthquakes but also seismic sequences. It is also found that the adverse aftershock effect on the RCC can be reduced due to the base isolation applied to the RCC. More importantly, the study indicates that disregarding aftershocks can induce significant underestimation of the isolator displacement for base-isolated RCC buildings.

  1. Evaluation of tumor motion effect in canine model for diagnostic and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sangkeun; Nam, Taewon; Kim, Kyeongmin [Molecular Imaging Research Center, Seoul (Korea, Republic of); Park, Seungwoo; Han, Suchul; Ji, Younghoon [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Park, Nohwon; Eom, Kidong [Konkuk Univ., Seoul (Korea, Republic of)

    2013-05-15

    The internal organs move up to 35mm maximum and it provides information and uncertainty that has been distorted in the diagnosis and treatment. Previous most studies for the effect of respiration have been performed with external monitoring systems but it cannot represent internal organ motion such as liver, pancreas, and lung. Positron emission tomography (PET) is more influenced by motion than computed tomography (CT) and magnetic resonance imaging (MRI) since measurement time for image acquisition is longer than CT and MRI. Thus, count of tumor is to be underestimated and region of tumor is to be overestimated. The first aim of this study was developing the artificial pulmonary nodule which can be performed non-invasive transplant into thorax of dogs and second is to assess the effect of respiratory motion on PET image with evaluating the applicability of the artificial model using dogs for diagnosis and treatment. The developed artificial pulmonary nodule showed reproducibility and motion effect as respiratory cycle and it was verified in PET images. Radiation dose estimated was not changed and was reduced slightly of 10 rpm and 15 rpm, respectively, in both of glass dosimeter and ion chamber. The developed artificial pulmonary nodule will be useful tool for evaluating respiratory motion and better research performance for diagnosis and treatment will be expected with performing simulated experiment using the nodule conducted in this study.

  2. Indirect wrist MR arthrography: the effects of passive motion versus active exercise

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, M.E.; Natale, P.; Winalski, C.S.; Culp, R. [Thomas Jefferson University Hospital, Department of Radiology, Philadelphia, PA (United States)

    2000-01-01

    Purpose. In the wrist, to determine whether passive motion or active exercise yields a better indirect MR arthrographic effect following intravenous gadolinium administration.Design and patients. Twenty-six consecutive patients were studied by indirect wrist MR arthrography. In half active exercise and in half passive motion was performed. Four regions of interest were studied including the distal radioulnar joint, the radiocarpal joint, the midcarpal joint, and the triangular fibrocartilage. Ranges and means of signal intensity were calculated. Surgical follow-up was performed in 22 patients.Results. The joint fluid intensity was greatest in the distal radioulnar joint. Fluid signal intensity was greater and more consistent in the passive motion group although the results did not achieve statistical significance. Imaging accuracy appeared similar in the two groups and was excellent for the triangular fibrocartilage (100%) and scapholunate ligaments (96%).Conclusion. Active exercise and passive motion yield similar degrees of wrist arthrographic effect, but the effect of passive motion is somewhat more consistent. Preliminary data show good accuracy for internal derangements. (orig.)

  3. Stark broadening of the 1640- and 4686-A lines of ionized helium

    International Nuclear Information System (INIS)

    Greene, R.L.

    1976-01-01

    The Stark-broadened profiles of the 1640- and 4686-A lines of ionized helium have been calculated using an approximation to the electron broadening operator in the unified classical-path theory of Smith, Vidal, and Cooper. The approximation is such that the results reproduce the time-ordered impact-theory results in the line center, and the ionized-radiator quasistatic results in the far wings. Sample calculations at n/sub e/ = 10/sup 17/ cm/sup -3/ and T = 40 000 degreeK are found to give significantly more narrow profiles than the corresponding modified-impact-theory results because of a different treatment of the lower-state interaction. Indirect comparison with experiment indicates that the calculated lines are too narrow, but it is expected that the inclusion of neglected effects of ion dynamics and inelastic collisions would improve agreement

  4. Quality Of Starking Apples After Exposure To Gamma Radiation As A Quarantine Treatment

    International Nuclear Information System (INIS)

    Mansour, M.; Mohamad, F.; Al-Bachir, M.

    2004-01-01

    Starking apples approaching physiological maturity were exposed, immediately after harvest, to gamma radiation doses ranging from 100 to 400 Gy. The irradiated fruit were stored for six months in a cold storage facility at 1±1 deg. C and 90±5 % RH. Effects of gamma radiation on weight loss, fruit firmness, pH of fruit juice, fruit taste, color and visible injuries were evaluated. The results showed that gamma irradiation increased weight loss, particularly in the first 45 days of storage. Doses higher than 200 Gy, on the other hand, reduced apple firmness after 45 days of storage while a 400 Gy dose decreased fruit pH immediately after irradiation. (Authors)

  5. Stark tuning and electrical charge state control of single divacancies in silicon carbide

    Science.gov (United States)

    de las Casas, Charles F.; Christle, David J.; Ul Hassan, Jawad; Ohshima, Takeshi; Son, Nguyen T.; Awschalom, David D.

    2017-12-01

    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects and hinders their coupling to optical cavities. Here, we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show that both 975 nm and 1130 nm excitation can prepare their neutral charge state with near unity efficiency.

  6. Motional dispersions and ratchet effect in inertial systems

    Indian Academy of Sciences (India)

    without the application of any time-averaged external field is termed as ratchet effect [1]. This is necessarily a ... The effect can also be obtained if the system is driven periodically but time asymmetrically in such a way that the ..... Govt. of India for financial assistance (SR/FTP/PS-33/2004). References. [1] P Reimann, Phys.

  7. Unified theory of dislocation motion including thermal activation and inertial effects

    International Nuclear Information System (INIS)

    Isaac, R.D.; Granato, A.V.

    1979-01-01

    Transition-state rate theory has generally been used to explain the temperature dependence of the flow stress of a crystal. However, the existence of a change in the flow stress during the superconducting transition indicates the presence of inertial effects in which dislocations overcome obstacles mechanically rather than thermally. It is shown here that the thermally activated and the inertial overcoming of obstacles are not unrelated but can both be derived from principles of stochastic motion. This leads to a theory of dislocation motion that includes both thermal activation and inertial effects. It is also shown that a distribution of activation energies must be considered to account for the experimental data

  8. The Effect of Ion Motion on Laser-Driven Plasma Wake in Capillary

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Yanfang; Chen Hui

    2016-01-01

    The effect of ion motion in capillary-guided laser-driven plasma wake is investigated through rebuilding a two-dimensional analytical model. It is shown that laser pulse with the same power can excite more intense wakefield in the capillary of a smaller radius. When laser intensity exceeds a critical value, the effect of ion motion reducing the wakefield rises, which becomes significant with a decrease of capillary radius. This phenomenon can be attributed to plasma ions in smaller capillary obtaining more energy from the plasma wake. The dependence of the difference value between maximal scalar potential of wake for two cases of ion rest and ion motion on the radius of the capillary is discussed. (paper)

  9. Quantum dissipative effects in moving imperfect mirrors: Sidewise and normal motions

    International Nuclear Information System (INIS)

    Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.

    2011-01-01

    We extend our previous work on the functional approach to the dynamical Casimir effect, to compute dissipative effects due to the relative motion of two flat, parallel, imperfect mirrors in vacuum. The interaction between the internal degrees of freedom of the mirrors and the vacuum field is modeled with a nonlocal term in the vacuum field action. We consider two different situations: either the motion is 'normal', i.e., the mirrors advance or recede changing the distance a(t) between them; or it is 'parallel', namely, a remains constant, but there is a relative sliding motion of the mirrors' planes. For the latter, we show explicitly that there is a nonvanishing frictional force, even for a constant shifting speed.

  10. Tongue motion variability with changes of upper airway stimulation electrode configuration and effects on treatment outcomes.

    Science.gov (United States)

    Steffen, Armin; Kilic, Ayse; König, Inke R; Suurna, Maria V; Hofauer, Benedikt; Heiser, Clemens

    2017-12-27

    Upper airway stimulation (UAS) is an effective treatment for obstructive sleep apnea (OSA). Previous data have demonstrated a correlation between the phenotype of tongue motion and therapy response. Closed loop hypoglossal nerve stimulation implant offers five different electrode configuration settings which may result in different tongue motion. Two-center, prospective consecutive trial in a university hospital setting. Clinical outcomes of 35 patients were analyzed after at least 12 months of device use. Tongue motion was assessed at various electrode configuration settings. Correlation between the tongue motion and treatment response was evaluated. OSA severity was significantly reduced with the use of UAS therapy (P < .001). Changes in tongue motion patterns were frequently observed (58.8%) with different electrode configuration settings. Most of the patients alternated between right and bilateral protrusion (73.5%), which are considered to be the optimal phenotypes for selective UAS responses. Different voltage settings were required to achieve functional stimulation levels when changing between the electrode settings. UAS is highly effective for OSA treatment in selected patients with an apnea-hypopnea index between 15 and 65 events per hour and higher body mass index. Attention should be given to patients with shifting tongue movement in response to change of electrode configuration. The intraoperative cuff placement should be reassessed when tongue movement shifting is observed. 4 Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  11. The effects of platform motion and target orientation on the performance of trackball manipulation.

    Science.gov (United States)

    Yau, Yi-Jan; Chao, Chin-Jung; Feng, Wen-Yang; Hwang, Sheue-Ling

    2011-08-01

    The trackball has been widely employed as a control/command input device on moving vehicles, but few studies have explored the effects of platform motion on its manipulation. Fewer still have considered this issue in designing the user interface and the arrangement of console location and orientation simultaneously. This work describes an experiment carried out to investigate the performance of trackball users on a simple point-and-click task in a motion simulator. By varying the orientation of onscreen targets, the effect of cursor movement direction on performance is investigated. The results indicate that the platform motion and target orientation both significantly affect the time required to point and click, but not the accuracy of target selection. The movement times were considerably longer under rolling and pitching motions and for targets located along the diagonal axes of the interface. Subjective evaluations carried out by the participants agree with these objective results. These findings could be used to optimise console and graphical menu design for use on maritime vessels. STATEMENT OF RELEVANCE: In military situations, matters of life or death may be decided in milliseconds. Any delay or error in classification and identification will thus affect the safety of the ship and its crew. This study demonstrates that performance of manipulating a trackball is affected by the platform motion and target orientation. The results of the present study can guide the arrangement of consoles and the design of trackball-based graphical user interfaces on maritime vessels.

  12. Evaluation of high frequency ground motion effects on the seismic capacity of NPP equipments

    International Nuclear Information System (INIS)

    Choi, In Kil; Seo, Jeong Moon; Choun, Young Sun

    2003-04-01

    In this study, the uniform hazard spectrum for the example Korean nuclear power plants sites were developed and compared with various response spectra used in past seismic PRA and SMA. It shows that the high frequency ground motion effects should be considered in seismic safety evaluations. The floor response spectra were developed using the direct generation method that can develop the floor response spectra from the input response spectrum directly with only the dynamic properties of structures obtained from the design calculation. Most attachment of the equipments to the structure has a minimum distortion capacity. This makes it possible to drop the effective frequency of equipment to low frequency before it is severely damaged. The results of this study show that the high frequency ground motion effects on the floor response spectra were significant, and the effects should be considered in the SPRA and SMA for the equipments installed in a building. The high frequency ground motion effects are more important for the seismic capacity evaluation of functional failure modes. The high frequency ground motion effects on the structural failure of equipments that attached to the floor by welding can be reduced by the distortion capacity of welded anchorage

  13. Yarkovsky-Schach effect on space debris motion

    Science.gov (United States)

    Murawiecka, M.; Lemaitre, A.

    2018-02-01

    The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i ≈ 20-30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200 y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.

  14. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  15. The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study.

    Science.gov (United States)

    Birmingham, Patrick M; Kelly, Bryan T; Jacobs, Robert; McGrady, Linda; Wang, Mei

    2012-05-01

    A link between femoroacetabular impingement and athletic pubalgia has been reported clinically. One proposed origin of athletic pubalgia is secondary to repetitive loading of the pubic symphysis, leading to instability and parasymphyseal tendon and ligament injury. Hypothesis/ The purpose of this study was to investigate the effect of simulated femoral-based femoroacetabular impingement on rotational motion at the pubic symphysis. The authors hypothesize that the presence of a cam lesion leads to increased relative symphyseal motion. Controlled laboratory study. Twelve hips from 6 fresh-frozen human cadaveric pelvises were used to simulate cam-type femoroacetabular impingement. The hips were held in a custom jig and maximally internally rotated at 90° of flexion and neutral adduction. Three-dimensional motion of the pubic symphysis was measured by a motion-tracking system for 2 states: native and simulated cam. Load-displacement plots were generated between the internal rotational torque applied to the hip and the responding motion in 3 anatomic planes of the pubic symphysis. As the hip was internally rotated, the motion at the pubic symphysis increased proportionally with the degrees of the rotation as well as the applied torque measured at the distal femur for both states. The primary rotation of the symphysis was in the transverse plane and on average accounted for more than 60% of the total rotation. This primary motion caused the anterior aspect of the symphyseal joint to open or widen, whereas the posterior aspect narrowed. At the torque level of 18.0 N·m, the mean transverse rotation in degrees was 0.89° ± 0.35° for the native state and 1.20° ± 0.41° for cam state. The difference between cam and the native groups was statistically significant (P pubalgia.

  16. A Study to Quantify the Effectiveness of Daily Endorectal Balloon for Prostate Intrafraction Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ken Kang-Hsin, E-mail: wangken@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Deville, Curtiland; Plastaras, John P.; Scheuermann, Ryan; Lin Haibo; Bar Ad, Voika; Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2012-07-01

    Purpose: To quantify intrafraction prostate motion between patient groups treated with and without daily endorectal balloon (ERB) employed during prostate radiotherapy and establish the effectiveness of the ERB. Methods: Real-time intrafraction prostate motion from 29 non-ERB (1,061 sessions) and 30 ERB (1,008 sessions) patients was evaluated based on three-dimensional (3D), left, right, cranial, caudal, anterior, and posterior displacements. The average percentage of time with 3D and unidirectional prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1-min intervals was calculated for up to 6 min of treatment time. The Kolmogorov-Smirnov method was used to evaluate the intrafraction prostate motion pattern between both groups. Results: Large 3D motion (up to 1 cm or more) was only observed in the non-ERB group. The motion increased as a function of elapsed time for displacements >2-8 mm for the non-ERB group and >2-4 mm for the ERB group (p < 0.05). The percentage time distributions between the two groups were significantly different for motion >5 mm (p < 0.05). The 3D symmetrical internal margin (IM) can be reduced from 5 to 3 mm (40% reduction), whereas the asymmetrical IM can be reduced from 3 to 2 mm (33% reduction) in cranial, caudal, anterior, and posterior for 6 min of treatment, when ERB is used. Beyond 6 min, the symmetrical 3D and asymmetrical cranial, caudal, anterior, and posterior IMs can be reduced from 9, 4, 7, 7, and 8 to 5, 2, 5, 3, and 4 mm, respectively (up to 57% reduction). Conclusion: The percentage of time that the prostate was displaced in any direction was less in the ERB group for almost all magnitudes of motion considered. The directional analysis shows that the ERB reduced IMs in almost all directions, especially the anterior-posterior direction.

  17. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  18. Effects of lens motion and uneven magnification on image spectra

    Science.gov (United States)

    Banik, Indranil; Zhao, Hongsheng

    2015-07-01

    Counter to intuition, the images of an extended galaxy lensed by a moving galaxy cluster should have slightly different spectra in any metric gravity theory. This is mainly for two reasons. One relies on the gravitational potential of a moving lens being time dependent (the moving cluster effect, MCE). The other is due to uneven magnification across the extended, rotating source (the differential magnification effect, DME). The time delay between the images can also cause their redshifts to differ because of cosmological expansion. This differential expansion effect is likely to be small. Using a simple model, we derive these effects from first principles. One application would be to the Bullet Cluster, whose large tangential velocity may be inconsistent with the Λ cold dark matter paradigm. This velocity can be estimated with complicated hydrodynamic models. Uncertainties with such models can be avoided using the MCE. We argue that the MCE should be observable with Atacama Large Millimetre Array. However, such measurements can be corrupted by the DME if typical spiral galaxies are used as sources. Fortunately, we find that if detailed spectral line profiles were available, then the DME and MCE could be distinguished. It might also be feasible to calculate how much the DME should affect the mean redshift of each image. Resolved observations of the source would be required to do this accurately. The DME is of order the source angular size divided by the Einstein radius times the redshift variation across the source. Thus, it mostly affects nearly edge-on spiral galaxies in certain orientations. This suggests that observers should reduce the DME by careful choice of target, a possibility we discuss in some detail.

  19. Effects of Accretionary Prisms on 3-D Long-Period Ground Motion Simulations

    Science.gov (United States)

    Guo, Y.; Koketsu, K.; Miyake, H.

    2014-12-01

    The accretionary prism along the subduction zones such as the Middle America trench or the Nankai trough is considered as an important factor affecting the generation and propagation of long-period ground motions. In Japan, the great earthquake along the Nankai subduction zone which is expected to occur in the near future can generate large long-period ground motions in the metropolitan areas such as Osaka, Nagoya and Tokyo. To investigate the effect of accretionary prism on long-period ground motions, we performed simulations of long-period ground motions for the event (Mw 7.1) that occurred off the Kii peninsula, Japan, at 10:07 on 5 September 2004 (UTC). Our simulation model ranged from the Kinki region to the Kanto region, and included the Osaka, Nobi and Kanto basin. We calculated long-period ground motions for four types of 3-D velocity structure models: (a) model with the accretionary prism (reference model), (b) model where accretionary prism has different 3-D geometry from the reference model, (c) model with the accretionary prism whose velocity, density and Q-value are shifted, (d) model without the accretionary prism. We compared the waveforms calculated for these models and concluded that the accretionary prism along the Nankai subduction zone plays roles in reducing the amplitude of direct waves and extending the duration of coda waves. This is attributed to the trap effect of accretionary prism. Our simulation also suggested that, the edge geometry along the landward side of accretionary prism has major effects on the processes of generation and propagation of long-period ground motions.

  20. Flow effects due to valve and piston motion in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2015-01-01

    Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent

  1. Effects of earthquake rupture shallowness and local soil conditions on simulated ground motions

    International Nuclear Information System (INIS)

    Apsel, Randy J.; Hadley, David M.; Hart, Robert S.

    1983-03-01

    The paucity of strong ground motion data in the Eastern U.S. (EUS), combined with well recognized differences in earthquake source depths and wave propagation characteristics between Eastern and Western U.S. (WUS) suggests that simulation studies will play a key role in assessing earthquake hazard in the East. This report summarizes an extensive simulation study of 5460 components of ground motion representing a model parameter study for magnitude, distance, source orientation, source depth and near-surface site conditions for a generic EUS crustal model. The simulation methodology represents a hybrid approach to modeling strong ground motion. Wave propagation is modeled with an efficient frequency-wavenumber integration algorithm. The source time function used for each grid element of a modeled fault is empirical, scaled from near-field accelerograms. This study finds that each model parameter has a significant influence on both the shape and amplitude of the simulated response spectra. The combined effect of all parameters predicts a dispersion of response spectral values that is consistent with strong ground motion observations. This study provides guidelines for scaling WUS data from shallow earthquakes to the source depth conditions more typical in the EUS. The modeled site conditions range from very soft soil to hard rock. To the extent that these general site conditions model a specific site, the simulated response spectral information can be used to either correct spectra to a site-specific environment or used to compare expected ground motions at different sites. (author)

  2. Moessbauer polarimetry using fluosilicates. Double motion drive and effective thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Henry, M; Varret, F [Centre Universitaire du Mans, 72 (France)

    1977-12-16

    Calculations are made and spectra are obtained on linear experiments using single crystals. The energy coincidence between the source and the polarizer is achieved by using a double motion drive which moves the source at a constant velocity. Such an experiment provides an accurate determination of both the polarizer and the analyzer effective thicknesses.

  3. Introducing the Notion of Bare and Effective Mass via Newton's Second Law of Motion

    Science.gov (United States)

    Pinto, Marcus Benghi

    2007-01-01

    The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The…

  4. The effect of motion on presence during virtual sailing for advanced training

    NARCIS (Netherlands)

    Mulder, F.A.; Verlinden, J.C.; Dukalski, R.R.

    2012-01-01

    This paper explores the amount of motion simulation required to influence presence and immersion on a dinghy sailing simulator. We specifically focused on the effects of roll, pitch and heave, when sailing an course with up-, side-and down-wind sections in a virtual environment. A real dingy was

  5. The Effect of Cooperative Learning on Grade 12 Learners' Performance in Projectile Motions, South Africa

    Science.gov (United States)

    Kibirige, Israel; Lehong, Moyahabo Jeridah

    2016-01-01

    The study explored the effect of cooperative learning on Grade 12 learners' performance in projectile motions. A quasi-experimental research design with non-equivalent control group was used. Two schools were purposively selected from Maleboho Central circuit in South Africa based on their performance in Physical Sciences Grade 12 results of 2011.…

  6. 2.5D Simulation of basin-edge effects on the ground motion ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The effects of basin-edge and soil velocity on the ground motion characteristics have been simulated ... Figure 1. 3-D and 2.5-D radial, transverse and vertical components of the radiation for .... sedimentary basin deserve a particular attention.

  7. 20 CFR 802.206 - Effect of motion for reconsideration on time for appeal.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Effect of motion for reconsideration on time for appeal. 802.206 Section 802.206 Employees' Benefits BENEFITS REVIEW BOARD, DEPARTMENT OF LABOR... administrative law judge or deputy commissioner shall suspend the running of the time for filing a notice of...

  8. Effective potential for equatorial motion in the Tomimatsu-Sato space-times

    Energy Technology Data Exchange (ETDEWEB)

    Calvani, M [Padua Univ. (Italy). Ist. di Astronomia

    1978-01-28

    We give general rules to draw the effective potential curves for equatorial motion in the T-S space-times either with am. Some general properties of the potentials are pointed out and few examples shown.

  9. Understanding motion of twin boundary - a key to magnetic shape memory effect

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2505807 ISSN 0018-9464 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic field-induced strain * magnetic field-induced twin boundary motion * magnetoelasticity * magnetomechanical effects * martensitic transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  10. Effect of finger motion on transverse median nerve movement in the carpal tunnel.

    Science.gov (United States)

    Kang, Hyo Jung; Yoon, Joon Shik

    2016-10-01

    We used ultrasonography (US) to investigate the effects of finger motion on movement of the median nerve in patients with carpal tunnel syndrome (CTS) and the correlation between these US parameters and CTS severity. Ultrasonographic measures were performed in 23 control wrists and 22 CTS wrists in women. During first through third finger flexion and grip motion, median nerve movements were obtained using US and a tracing program. Nerve movements during third finger flexion in the dorsopalmar axis and grip motion in both axes, and during second finger flexion in the radioulnar axis, differed significantly between the control and CTS groups. US parameters correlated negatively with cross-sectional area. This study shows that transverse median nerve movements decreased during grip using US and correlated negatively with CTS severity. Muscle Nerve, 2016 Muscle Nerve 54: -, 2016 Muscle Nerve 54: 738-742, 2016. © 2016 Wiley Periodicals, Inc.

  11. Investigation of the effects of platform motion on the aerodynamics of a floating offshore wind turbine

    Institute of Scientific and Technical Information of China (English)

    万德成

    2016-01-01

    Along with the flourishing of the wind energy industry, floating offshore wind turbines have aroused much interest among the academia as well as enterprises. In this paper, the effects of the supporting platform motion on the aerodynamics of a floating wind turbine are studied using the open source CFD framework OpenFOAM. The platform motion responses, including surge, heave and pitch, are superimposed onto the rotation of the wind turbine. Thrust and torque on the wind turbine are compared and analysed for the cases of different platform motion patterns together with the flow field. It is shown that the movement of the supporting platform can have large influences on a floating offshore wind turbine and thus needs to be considered carefully during the design process.

  12. The acoustic Doppler effect applied to the study of linear motions

    International Nuclear Information System (INIS)

    Gómez-Tejedor, José A; Castro-Palacio, Juan C; Monsoriu, Juan A

    2014-01-01

    In this work, the change of frequency of a sound wave due to the Doppler effect has been measured using a smartphone. For this purpose, a speaker at rest and a smartphone placed on a cart on an air track were used. The change in frequency was measured by using an application for Android™, ‘Frequency Analyzer’, which was developed by us specifically for this work. This made it possible to analyze four types of mechanical motions: uniform linear motion, uniform accelerated linear motion, harmonic oscillations and damped harmonic oscillations. These experiments are suitable for undergraduate students. The main novelty of this work was the possibility of measuring the instantaneous frequency as a function of time with high precision. The results were compared with alternative measurements yielding good agreement. (paper)

  13. Orbital motions as gradiometers for post-Newtonian tidal effects

    Directory of Open Access Journals (Sweden)

    Lorenzo eIorio

    2014-08-01

    Full Text Available The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency nb an astronomical body of mass M which, in turn, slowly revolves around a distantobject of mass M with orbital frequency nb'<< □ nb is considered. The characteristic frequenciesof the non-Keplerian orbital variations of m and of M itself are assumed to be negligible withrespect to both nb and nb'. General expressions for the resulting Newtonian and post-Newtoniantidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercuryand Ganymede, respectively, are considered in view of a possible detection. The largest effects,of the order of □ 0:1 □□ 0:5 milliarcseconds per year (mas yr□□1, occur for the Ganymede orbiterof the JUICE mission. Although future improvements in spacecraft tracking and orbit determina14tion might, perhaps, reach the required sensitivity, the systematic bias represented by the otherknown orbital perturbations of both Newtonian and post-Newtonian origin would be overwhel16ming. The realization of a dedicated artificial mini-planetary system to be carried onboard andEarth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as1 □□ 102 mas yr□□1 could be obtained, but the quite larger Newtonian tidal effects would be amajor source of systematic bias because of the present-day percent uncertainty in the product of the Earth’s mass times the Newtonian gravitational parameter.

  14. Orbital motions as gradiometers for post-Newtonian tidal effects

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it [Ministero dell' Istruzione, dell' Università e della Ricerca, Istruzione, Bari (Italy)

    2014-08-14

    The direct long-term changes occurring in the orbital dynamics of a local gravitationally bound binary system S due to the post-Newtonian tidal acceleration caused by an external massive source are investigated. A class of systems made of a test particle m rapidly orbiting with orbital frequency n{sub b} an astronomical body of mass M which, in turn, slowly revolves around a distant object of mass M′ with orbital frequency n{sub b}′ « n{sub b} is considered. The characteristic frequencies of the non-Keplerian orbital variations of m and of M itself are assumed to be negligible with respect to both n{sub b} and n{sub b}′. General expressions for the resulting Newtonian and post-Newtonian tidal orbital shifts of m are obtained. The future missions BepiColombo and JUICE to Mercury and Ganymede, respectively, are considered in view of a possible detection. The largest effects, of the order of ≈ 0.1-0.5 milliarcseconds per year (mas yr{sup −1}), occur for the Ganymede orbiter of the JUICE mission. Although future improvements in spacecraft tracking and orbit determination might, perhaps, reach the required sensitivity, the systematic bias represented by the other known orbital perturbations of both Newtonian and post-Newtonian origin would be overwhelming. The realization of a dedicated artificial mini-planetary system to be carried onboard and Earth-orbiting spacecraft is considered as well. Post-Newtonian tidal precessions as large as ≈ 1−10{sup 2} mas yr{sup −1} could be obtained, but the quite larger Newtonian tidal effects would be a major source of systematic bias because of the present-day percent uncertainty in the product of the Earth's mass times the Newtonian gravitational parameter.

  15. Effects of temperature gradient induced nanoparticle motion on conduction and convection of fluid

    International Nuclear Information System (INIS)

    Zhou Leping; Peterson, George P.; Yoda, Minani; Wang Buxuan

    2012-01-01

    The role of temperature gradient induced nanoparticle motion on conduction and convection was investigated. Possible mechanisms for variations resulting from variations in the thermophysical properties are theoretically and experimentally discussed. The effect of the nanoparticle motion on conduction is demonstrated through thermal conductivity measurement of deionized water with suspended CuO nanoparticles (50 nm in diameter) and correlated with the contributions of Brownian diffusion, thermophoresis, etc. The tendencies observed is that the magnitude of and the variation in the thermal conductivity increases with increasing volume fraction for a given temperature, which is due primarily to the Brownian diffusion of the nanoparticles. Using dimensional analysis, the thermal conductivity is correlated and both the interfacial thermal resistance and near-field radiation are found to be essentially negligible. A modification term that incorporates the contributions of Brownian motion and thermophoresis is proposed. The effect of nanoscale convection is illustrated through an experimental investigation that utilized fluorescent polystyrene nanoparticle tracers (200 nm in diameter) and multilayer nanoparticle image velocimetry. The results indicate that both the magnitude and the deviation of the fluid motion increased with increasing heat flux in the near-wall region. Meanwhile, the fluid motion tended to decrease with the off-wall distance for a given heating power. A corresponding numerical study of convection of pure deionized water shows that the velocity along the off-wall direction is several orders of magnitude lower than that of deionized water, which indicates that Brownian motion in the near-wall region is crucial for fluid with suspended nanoparticles in convection.

  16. Dosimetric effect of intrafraction tumor motion in phase gated lung stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E.; Huq, M. Saiful

    2012-01-01

    Purpose: A major concern for lung intensity modulated radiation therapy delivery is the deviation of actually delivered dose distribution from the planned one due to simultaneous movements of multileaf collimator (MLC) leaves and tumor. For gated lung stereotactic body radiotherapy treatment (SBRT), the situation becomes even more complicated because of SBRT's characteristics such as fewer fractions, smaller target volume, higher dose rate, and extended fractional treatment time. The purpose of this work is to investigate the dosimetric effect of intrafraction tumor motion during gated lung SBRT delivery by reconstructing the delivered dose distribution with real-time tumor motion considered. Methods: The tumor motion data were retrieved from six lung patients. Each of them received three fractions of stereotactic radiotherapy treatments with Cyberknife Synchrony (Accuray, Sunnyvale, CA). Phase gating through an external surrogate was simulated with a gating window of 5 mm. The resulting residual tumor motion curves during gating (beam-on) were retrieved. Planning target volume (PTV) was defined as physician-contoured clinical target volume (CTV) surrounded by an isotropic 5 mm margin. Each patient was prescribed with 60 Gy/3 fractions. The authors developed an algorithm to reconstruct the delivered dose with tumor motion. The DMLC segments, mainly leaf position and segment weighting factor, were recalculated according to the probability density function of tumor motion curve. The new DMLC sequence file was imported back to treatment planning system to reconstruct the dose distribution. Results: Half of the patients in the study group experienced PTV D95% deviation up to 26% for fractional dose and 14% for total dose. CTV mean dose dropped by 1% with tumor motion. Although CTV is almost covered by prescribed dose with 5 mm margin, qualitative comparison on the dose distributions reveals that CTV is on the verge of underdose. The discrepancy happens due to tumor

  17. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  18. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  19. Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials

    International Nuclear Information System (INIS)

    Aramfard, Mohammad; Deng, Chuang

    2014-01-01

    Stress-assisted grain boundary motion is among the most studied modes of microstructural evolution in crystalline materials. In this study, molecular dynamics simulations were used to systematically investigate the influences of triple junctions on the stress-assisted motion of symmetric tilt grain boundaries in Cu by considering a honeycomb nanocrystalline model. It was found that the grain boundary motion in nanocrystalline models was highly sensitive to the loading mode, and a strong coupling effect which was prevalent in bicrystal models was only observed when simple shear was applied. In addition, the coupling factor extracted from the honeycomb model was found to be larger and more sensitive to temperature change than that from bicrystal models for the same type of grain boundary under the same loading conditions. Furthermore, the triple junctions seemed to exhibit unusual asymmetric pinning effects to the migrating grain boundary and the constraints by the triple junctions and neighboring grains led to remarkable non-linear grain boundary motion in directions both parallel and normal to the applied shear, which was in stark contrast to that observed in bicrystal models. In addition, dislocation nucleation and propagation, which were absent in the bicrystal model, were found to play an important role on shear-induced grain boundary motion when triple junctions were present. In the end, a generalized model for shear-assisted grain boundary motion was proposed based on the findings from this research. (paper)

  20. The Flash-Lag Effect as a Motion-Based Predictive Shift.

    Directory of Open Access Journals (Sweden)

    Mina A Khoei

    2017-01-01

    Full Text Available Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects' position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural

  1. Modified dynamic Stark shift and depopulation rate of an atom inside a Kerr nonlinear blackbody

    International Nuclear Information System (INIS)

    Yin Miao; Cheng Ze

    2009-01-01

    We investigate the dynamic Stark shift and atomic depopulation rate induced by real photons in a Kerr nonlinear blackbody. We found that the dynamic Stark shift and atomic depopulation rate are equally modified by a nonlinear contribution factor and a linear contribution factor under a transition temperature T c . The nonlinear contribution factor depends on the Kerr nonlinear coefficient as well as the absolute temperature. Below T c , the absolute values of the dynamic Stark shift and depopulation rate of a single atomic state (not the ground state) are correspondingly larger than those in a normal blackbody whose interior is filled with a nonabsorbing linear medium. Above T c , the dynamic Stark shift and atomic depopulation rate are correspondingly equal to those in a normal blackbody with a nonabsorbing linear medium in its interior.

  2. Stark width regularities within spectral series of the lithium isoelectronic sequence

    Science.gov (United States)

    Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš

    2018-03-01

    Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.

  3. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  4. Effect of Audio Coaching on Correlation of Abdominal Displacement With Lung Tumor Motion

    International Nuclear Information System (INIS)

    Nakamura, Mitsuhiro; Narita, Yuichiro; Matsuo, Yukinori; Narabayashi, Masaru; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2009-01-01

    Purpose: To assess the effect of audio coaching on the time-dependent behavior of the correlation between abdominal motion and lung tumor motion and the corresponding lung tumor position mismatches. Methods and Materials: Six patients who had a lung tumor with a motion range >8 mm were enrolled in the present study. Breathing-synchronized fluoroscopy was performed initially without audio coaching, followed by fluoroscopy with recorded audio coaching for multiple days. Two different measurements, anteroposterior abdominal displacement using the real-time positioning management system and superoinferior (SI) lung tumor motion by X-ray fluoroscopy, were performed simultaneously. Their sequential images were recorded using one display system. The lung tumor position was automatically detected with a template matching technique. The relationship between the abdominal and lung tumor motion was analyzed with and without audio coaching. Results: The mean SI tumor displacement was 10.4 mm without audio coaching and increased to 23.0 mm with audio coaching (p < .01). The correlation coefficients ranged from 0.89 to 0.97 with free breathing. Applying audio coaching, the correlation coefficients improved significantly (range, 0.93-0.99; p < .01), and the SI lung tumor position mismatches became larger in 75% of all sessions. Conclusion: Audio coaching served to increase the degree of correlation and make it more reproducible. In addition, the phase shifts between tumor motion and abdominal displacement were improved; however, all patients breathed more deeply, and the SI lung tumor position mismatches became slightly larger with audio coaching than without audio coaching.

  5. Effect of Intrafraction Prostate Motion on Proton Pencil Beam Scanning Delivery: A Quantitative Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Shikui, E-mail: TangS@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Deville, Curtiland; McDonough, James; Tochner, Zelig [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Wang, Ken Kang-Hsin [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, Baltimore, Maryland (United States); Vapiwala, Neha; Both, Stefan [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-10-01

    Purpose: To assess the dosimetric impact caused by the interplay between intrafraction prostate motion and the intermittent delivery of proton pencil beam scanning (PBS). Methods and Materials: A cohort of 10 prostate patients was treated with PBS using a bilateral single-field uniform dose (SFUD) modality. Bilateral intensity-modulated proton therapy (IMPT) plans were generated for comparison. Because beam-on time in PBS was intermittent, the actual beam-on time was determined from treatment logs. Prostate motion was generalized according to real-time Calypso tracking data from our previously reported prospective photon trial. We investigated potential dose deviations by considering the interplay effect resulting from the worst-case scenario motion and the PBS delivery sequence. Results: For both bilateral-field SFUD and IMPT plans, clinical target volume (CTV) D{sub 99}% coverage was degraded <2% owing to prostate intrafraction motion when averaged over the course of treatment, but was >10% for the worst fraction. The standard deviation of CTV D{sub 99}% distribution was approximately 1.2%. The CTV coverage of individual fields in SFUD plans degraded as time elapsed after the initial alignment, owing to prostate drift. Intensity-modulated proton therapy and SFUD demonstrated comparable results when bilateral opposed fields were used. Single-field SFUD plans that were repainted twice, which could reduce half of the treatment time, resulted in similar CTV coverage as bilateral-field plans. Conclusions: Intrafraction prostate motion affects the actual delivered dose to CTV; however, when averaged over the course of treatment, CTV D{sub 99}% coverage degraded only approximately 2% even for the worst-case scenario. The IMPT plan results are comparable to those of the SFUD plan, and similar coverage can be achieved if treated by SFUD 1 lateral field per day when rescanning the field twice to shorten the treatment time and mitigate intrafraction motion.

  6. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  7. Unusual motions due to nonlinear effects in a driven vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2005-09-01

    Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.

  8. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    International Nuclear Information System (INIS)

    Sun, Sheng; Yin, Guangyao; Lee, Yi-Kuen; Wong, Joseph T.Y.; Zhang, Tong-Yi

    2011-01-01

    Research highlights: → MD simulations show that deformability and thermal motion of membrane affect electroporation. → Stiffer membrane inhibits electroporation and makes water penetrate from both sides. → Higher temperature accelerates electroporation. -- Abstract: Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol A 2 ) in the external electric field of 1.4 kcal/(mol A e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol A 2 ) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol A e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease.

  9. Effects of energetic coherent motions on the power and wake of an axial-flow turbine

    Science.gov (United States)

    Chamorro, L. P.; Hill, C.; Neary, V. S.; Gunawan, B.; Arndt, R. E. A.; Sotiropoulos, F.

    2015-05-01

    A laboratory experiment examined the effects of energetic coherent motions on the structure of the wake and power fluctuations generated by a model axial-flow hydrokinetic turbine. The model turbine was placed in an open-channel flow and operated under subcritical conditions. The incoming flow was locally perturbed with vertically oriented cylinders of various diameters. An array of three acoustic Doppler velocimeters aligned in the cross-stream direction and a torque transducer were used to collect high-resolution and synchronous measurements of the three-velocity components of the incoming and wake flow as well as the turbine power. A strong scale-to-scale interaction between the large-scale and broadband turbulence shed by the cylinders and the turbine power revealed how the turbulence structure modulates the turbine behavior. In particular, the response of the turbine to the distinctive von Kármán-type vortices shed from the cylinders highlighted this phenomenon. The mean and fluctuating characteristics of the turbine wake are shown to be very sensitive to the energetic motions present in the flow. Tip vortices were substantially dampened and the near-field mean wake recovery accelerated in the presence of energetic motions in the flow. Strong coherent motions are shown to be more effective than turbulence levels for triggering the break-up of the spiral structure of the tip-vortices.

  10. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    International Nuclear Information System (INIS)

    Matney, Jason; Park, Peter C.; Bluett, Jaques; Chen, Yi Pei; Liu, Wei; Court, Laurence E.; Liao, Zhongxing; Li, Heng; Mohan, Radhe

    2013-01-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  11. Effects of Respiratory Motion on Passively Scattered Proton Therapy Versus Intensity Modulated Photon Therapy for Stage III Lung Cancer: Are Proton Plans More Sensitive to Breathing Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Matney, Jason; Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Bluett, Jaques [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Chen, Yi Pei [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, Texas (United States); Liu, Wei; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao, Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, Heng [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe, E-mail: rmohan@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-11-01

    Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential

  12. Drift of the center of motion for a charged particle due to radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Ares De Parga, G.; Mares, R. [Instituto Politecnico Nacional, Zacatenco (Mexico). Dept. de Fisica, Escuela de Fisica y Matematica

    1999-10-01

    Through parametrization of the relativistic Larmor formula, one can find the trajectory of a charged particle in a uniform magnetic field. Simultaneously, there exists a drift of the center of curvature for the same. This effect is quantitatively compared with the predictions by other equations of motion, such as Dirac, Mo-Papas, Herrera, Bonnor and Cardirola and the one recently obtained by Hartemann and others. The paper proposes an experiment to verify the predicted effect, both qualitative and quantitative.

  13. Drift of the center of motion for a charged particle due to radiation effects

    International Nuclear Information System (INIS)

    Ares De Parga, G.; Mares, R.

    1999-01-01

    Through parametrization of the relativistic Larmor formula, one can find the trajectory of a charged particle in a uniform magnetic field. Simultaneously, there exists a drift of the center of curvature for the same. This effect is quantitatively compared with the predictions by other equations of motion, such as Dirac, Mo-Papas, Herrera, Bonnor and Cardirola and the one recently obtained by Hartemann and others. The paper proposes an experiment to verify the predicted effect, both qualitative and quantitative

  14. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  15. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  16. Regularities And Irregularities Of The Stark Parameters For Single Ionized Noble Gases

    Science.gov (United States)

    Peláez, R. J.; Djurovic, S.; Cirišan, M.; Aparicio, J. A.; Mar S.

    2010-07-01

    Spectroscopy of ionized noble gases has a great importance for the laboratory and astrophysical plasmas. Generally, spectra of inert gases are important for many physics areas, for example laser physics, fusion diagnostics, photoelectron spectroscopy, collision physics, astrophysics etc. Stark halfwidths as well as shifts of spectral lines are usually employed for plasma diagnostic purposes. For example atomic data of argon krypton and xenon will be useful for the spectral diagnostic of ITER. In addition, the software used for stellar atmosphere simulation like TMAP, and SMART require a large amount of atomic and spectroscopic data. Availability of these parameters will be useful for a further development of stellar atmosphere and evolution models. Stark parameters data of spectral lines can also be useful for verification of theoretical calculations and investigation of regularities and systematic trends of these parameters within a multiplet, supermultiplet or transition array. In the last years, different trends and regularities of Stark parameters (halwidths and shifts of spectral lines) have been analyzed. The conditions related with atomic structure of the element as well as plasma conditions are responsible for regular or irregular behaviors of the Stark parameters. The absence of very close perturbing levels makes Ne II as a good candidate for analysis of the regularities. Other two considered elements Kr II and Xe II with complex spectra present strong perturbations and in some cases an irregularities in Stark parameters appear. In this work we analyze the influence of the perturbations to Stark parameters within the multiplets.

  17. Illusory bending of a rigidly moving line segment: effects of image motion and smooth pursuit eye movements.

    Science.gov (United States)

    Thaler, Lore; Todd, James T; Spering, Miriam; Gegenfurtner, Karl R

    2007-04-20

    Four experiments in which observers judged the apparent "rubberiness" of a line segment undergoing different types of rigid motion are reported. The results reveal that observers perceive illusory bending when the motion involves certain combinations of translational and rotational components and that the illusion is maximized when these components are presented at a frequency of approximately 3 Hz with a relative phase angle of approximately 120 degrees . Smooth pursuit eye movements can amplify or attenuate the illusion, which is consistent with other results reported in the literature that show effects of eye movements on perceived image motion. The illusion is unaffected by background motion that is in counterphase with the motion of the line segment but is significantly attenuated by background motion that is in-phase. This is consistent with the idea that human observers integrate motion signals within a local frame of reference, and it provides strong evidence that visual persistency cannot be the sole cause of the illusion as was suggested by J. R. Pomerantz (1983). An analysis of the motion patterns suggests that the illusory bending motion may be due to an inability of observers to accurately track the motions of features whose image displacements undergo rapid simultaneous changes in both space and time. A measure of these changes is presented, which is highly correlated with observers' numerical ratings of rubberiness.

  18. Effects of organ motion on IMRT treatments with segments of few monitor units

    International Nuclear Information System (INIS)

    Seco, J.; Sharp, G. C.; Turcotte, J.; Gierga, D.; Bortfeld, T.; Paganetti, H.

    2007-01-01

    Interplay between organ (breathing) motion and leaf motion has been shown in the literature to have a small dosimetric impact for clinical conditions (over a 30 fraction treatment). However, previous studies did not consider the case of treatment beams made up of many few-monitor-unit (MU) segments, where the segment delivery time (1-2 s) is of the order of the breathing period (3-5 s). In this study we assess if breathing compromises the radiotherapy treatment with IMRT segments of low number of MUs. We assess (i) how delivered dose varies, from patient to patient, with the number of MU per segment, (ii) if this delivered dose is identical to the average dose calculated without motion over the path of the motion, and (iii) the impact of the daily variation of the delivered dose as a function of MU per segment. The organ motion was studied along two orthogonal directions, representing the left-right and cranial-caudal directions of organ movement for a patient setup in the supine position. Breathing motion was modeled as sin(x), sin 4 (x), and sin 6 (x), based on functions used in the literature to represent organ motion. Measurements were performed with an ionization chamber and films. For a systematic study of motion effects, a MATLAB simulation was written to model organ movement and dose delivery. In the case of a single beam made up of one single segment, the dose delivered to point in a moving target over 30 fractions can vary up to 20% and 10% for segments of 10 MU and 20 MU, respectively. This dose error occurs because the tumor spends most of the time near the edges of the radiation beam. In the case of a single beam made of multiple segments with low MU, we observed 2.4%, 3.3%, and 4.3% differences, respectively, for sin(x), sin 4 (x), and sin 6 (x) motion, between delivered dose and motion-averaged dose for points in the penumbra region of the beam and over 30 fractions. In approximately 5-10% of the cases, differences between the motion-averaged dose

  19. Effects of five hindfoot arthrodeses on foot and ankle motion: Measurements in cadaver specimens

    Science.gov (United States)

    Zhang, Kun; Chen, Yanxi; Qiang, Minfei; Hao, Yini

    2016-01-01

    Single, double, and triple hindfoot arthrodeses are used to correct hindfoot deformities and relieve chronic pain. However, joint fusion may lead to dysfunction in adjacent articular surfaces. We compared range of motion in adjacent joints before and after arthrodesis to determine the effects of each procedure on joint motion. The theory of moment of couple, bending moment and balanced loading was applied to each of 16 fresh cadaver feet to induce dorsiflexion, plantarflexion, internal rotation, external rotation, inversion, and eversion. Range of motion was measured with a 3-axis coordinate measuring machine in a control foot and in feet after subtalar, talonavicular, calcaneocuboid, double, or triple arthrodesis. All arthrodeses restricted mainly internal-external rotation and inversion-eversion. The restriction in a double arthrodesis was more than that in a single arthrodesis, but that in a calcaneocuboid arthrodesis was relatively low. After triple arthrodeses, the restriction on dorsiflexion and plantarflexion movements was substantial, and internal-external rotation and inversion-eversion were almost lost. Considering that different arthrodesis procedures cause complex, three-dimensional hindfoot motion reductions, we recommend talonavicular or calcaneocuboid arthrodesis for patients with well-preserved functions of plantarflexion/dorsiflexion before operation, subtalar or calcaneocuboid arthrodesis for patients with well-preserved abduction/adduction, and talonavicular arthrodesis for patients with well-preserved eversion/inversion. PMID:27752084

  20. The effect of occlusion therapy on motion perception deficits in amblyopia.

    Science.gov (United States)

    Giaschi, Deborah; Chapman, Christine; Meier, Kimberly; Narasimhan, Sathyasri; Regan, David

    2015-09-01

    There is growing evidence for deficits in motion perception in amblyopia, but these are rarely assessed clinically. In this prospective study we examined the effect of occlusion therapy on motion-defined form perception and multiple-object tracking. Participants included children (3-10years old) with unilateral anisometropic and/or strabismic amblyopia who were currently undergoing occlusion therapy and age-matched control children with normal vision. At the start of the study, deficits in motion-defined form perception were present in at least one eye in 69% of the children with amblyopia. These deficits were still present at the end of the study in 55% of the amblyopia group. For multiple-object tracking, deficits were present initially in 64% and finally in 55% of the children with amblyopia, even after completion of occlusion therapy. Many of these deficits persisted in spite of an improvement in amblyopic eye visual acuity in response to occlusion therapy. The prevalence of motion perception deficits in amblyopia as well as their resistance to occlusion therapy, support the need for new approaches to amblyopia treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-01-01

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  2. The influence of finite Larmor radius effects on the radial interchange motions of plasma filaments

    DEFF Research Database (Denmark)

    Madsen, Jens; Garcia, Odd E.; Larsen, Jeppe Stærk

    2011-01-01

    The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi-periodic do......The influence of finite Larmor radius (FLR) effects on the perpendicular convection of isolated particle density filaments driven by interchange motions in magnetized plasmas is investigated using a two-moment gyrofluid model. By means of numerical simulations on a two-dimensional, bi......-periodic domain perpendicular to the magnetic field, it is demonstrated that the radial velocities of the blob-like filaments are roughly described by the inertial scaling, which prescribes a velocity proportional to the square root of the summed electron and ion pressures times the square root of the blob width...

  3. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun

    2004-01-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [ 11 C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2→3.9%, CA: 57.4→14.1%, ST: 17.7→0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction

  4. Effects of head motion correction on the evaluation of endogenous dopamine release in striatum

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Cho, Sang Soo; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Kim, Sang Eun [College of Medicine, Seoul National University, Seoul (Korea, Republic of)

    2004-07-01

    Neuroreceptor PET studies require 60-90 minutes to complete. Head motion of the subject increases the uncertainty in measured activity. In this study, the effects of the data-driven head motion correction on the evaluation of endogenous dopamine (DA) release in the striatum were investigated. [{sup 11}C]raclopride PET scans on 4 normal volunteers acquired with bolus plus constant infusion protocol were retrospectively analyzed. Following the 50 min resting period, the participants played a video game with a monetary reward for 40 min. Dynamic frames acquired during the equilibrium condition (rest: 30-50 min, game: 70-90 min) were realigned to the first frame at resting condition. Intra-condition registration between the frames during both the rest and game condition were performed, and average image for each condition was created and registered with each other again (inter-condition registration). Resting PET image was then co-registered to own MRI of each participant and transformation parameters were reapplied to the other one. Volumes of interest (VOl) for dorsal putamen (PU) and caudate (CA), ventral striatum (VS), and cerebellum were defined on the MRI. Binding potential (BP) was measured and DA release was calculated as the percent change of BP after the video game. Changes in position and orientation of the striatum during the PET scan were observed before the head motion correction. BP values at resting condition were not changed significantly after the intra-condition registration. However, the BP values during the video game and DA release (PU: 29.2{yields}3.9%, CA: 57.4{yields}14.1%, ST: 17.7{yields}0.6%) were significantly changed after the correction. The results suggest that overestimation of the DA release caused by the head motion during PET scan and misalignment of MRI-based VOl and the striatum in PET image was remedied by the data-driven head motion correction.

  5. Effectiveness of Manual Therapy and Stretching for Baseball Players With Shoulder Range of Motion Deficits.

    Science.gov (United States)

    Bailey, Lane B; Thigpen, Charles A; Hawkins, Richard J; Beattie, Paul F; Shanley, Ellen

    Baseball players displaying deficits in shoulder range of motion (ROM) are at increased risk of arm injury. Currently, there is a lack of consensus regarding the best available treatment options to restore shoulder ROM. Instrumented manual therapy with self-stretching will result in clinically significant deficit reductions when compared with self-stretching alone. Controlled laboratory study. Shoulder ROM and humeral torsion were assessed in 60 active baseball players (mean age, 19 ± 2 years) with ROM deficits (nondominant - dominant, ≥15°). Athletes were randomly assigned to receive a single treatment of instrumented manual therapy plus self-stretching (n = 30) or self-stretching only (n = 30). Deficits in internal rotation, horizontal adduction, and total arc of motion were compared between groups immediately before and after a single treatment session. Treatment effectiveness was determined by mean comparison data, and a number-needed-to-treat (NNT) analysis was used for assessing the presence of ROM risk factors. Prior to intervention, players displayed significant ( P < 0.001) dominant-sided deficits in internal rotation (-26°), total arc of motion (-18°), and horizontal adduction (-17°). After the intervention, both groups displayed significant improvements in ROM, with the instrumented manual therapy plus self-stretching group displaying greater increases in internal rotation (+5°, P = 0.010), total arc of motion (+6°, P = 0.010), and horizontal adduction (+7°, P = 0.004) compared with self-stretching alone. For horizontal adduction deficits, the added use of instrumented manual therapy with self-stretching decreased the NNT to 2.2 (95% CI, 2.1-2.4; P = 0.010). Instrumented manual therapy with self-stretching significantly reduces ROM risk factors in baseball players with motion deficits when compared with stretching alone. The added benefits of manual therapy may help to reduce ROM deficits in clinical scenarios where stretching alone is

  6. Atmospheric Drag Effects on the Motion of an Artificial Earth Satellite

    OpenAIRE

    TAKEUCHI, Sumio; 武内, 澄夫

    1982-01-01

    Perturbative effects of atmospheric drag on the motion of an artificial earth satellite are investigated in this paper. The atmosphere is considered to rotate with the same angular velocity as the earth. The altitudes of the satellite are given with reference to the standard earth-ellipsoid. The Lagrange planetary equations in Gaussian form are applied to determine the variations of the orbital elements. The atmospheric density at the satellite is regarded as a function of time. The density f...

  7. The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance

    Science.gov (United States)

    2013-03-01

    useful as a predictor of performance in occupations such as pilot , where demands on multitasking are presumably high.” 33 It is interesting to assess...Council Committee on Selection and Training of Aircraft Pilots , Executive Subcommittee. Washington, D.C. Wendt, G. R. (1951). Vestibular functions. In S...public release; distribution is unlimited THE EFFECT OF MILD MOTION SICKNESS AND SOPITE SYNDROME ON MULTITASKING COGNITIVE PERFORMANCE by

  8. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....

  9. The Effects of Applying Game-Based Learning to Webcam Motion Sensor Games for Autistic Students' Sensory Integration Training

    Science.gov (United States)

    Li, Kun-Hsien; Lou, Shi-Jer; Tsai, Huei-Yin; Shih, Ru-Chu

    2012-01-01

    This study aims to explore the effects of applying game-based learning to webcam motion sensor games for autistic students' sensory integration training for autistic students. The research participants were three autistic students aged from six to ten. Webcam camera as the research tool wad connected internet games to engage in motion sensor…

  10. Effects of Implied Motion and Facing Direction on Positional Preferences in Single-Object Pictures.

    Science.gov (United States)

    Palmer, Stephen E; Langlois, Thomas A

    2017-07-01

    Palmer, Gardner, and Wickens studied aesthetic preferences for pictures of single objects and found a strong inward bias: Right-facing objects were preferred left-of-center and left-facing objects right-of-center. They found no effect of object motion (people and cars showed the same inward bias as chairs and teapots), but the objects were not depicted as moving. Here we measured analogous inward biases with objects depicted as moving with an implied direction and speed by having participants drag-and-drop target objects into the most aesthetically pleasing position. In Experiment 1, human figures were shown diving or falling while moving forward or backward. Aesthetic biases were evident for both inward-facing and inward-moving figures, but the motion-based bias dominated so strongly that backward divers or fallers were preferred moving inward but facing outward. Experiment 2 investigated implied speed effects using images of humans, horses, and cars moving at different speeds (e.g., standing, walking, trotting, and galloping horses). Inward motion or facing biases were again present, and differences in their magnitude due to speed were evident. Unexpectedly, faster moving objects were generally preferred closer to frame center than slower moving objects. These results are discussed in terms of the combined effects of prospective, future-oriented biases, and retrospective, past-oriented biases.

  11. Stark interaction of identical particles with the vacuum electromagnetic field as quantum Poisson process suppressing collective spontaneous emission

    International Nuclear Information System (INIS)

    Basharov, A. M.

    2011-01-01

    The effective Hamiltonian describing resonant interaction of an ensemble of identical quantum particles with a photon-free vacuum electromagnetic field has been obtained with allowance for terms of second order in the coupling constant (the Stark interaction) by means of the perturbation theory on the basis of the unitary transformation of the system quantum state. It has been shown that in the Markov approximation the effective Hamiltonian terms of first order in the coupling constant are represented by the quantum Wiener process, whereas terms of second order are expressed by the quantum Poisson process. During the course of the investigation, it was established that the Stark interaction played a significant role in the ensemble dynamics, thus influencing the collective spontaneous decay of the ensemble of an appreciably high number of identical particles. Fundamental effects have been discovered, i.e., the excitation conservation in a sufficiently dense ensemble of identical particles and superradiance suppression in the collective decaying process of an excited ensemble with a determined number of particles.

  12. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    Science.gov (United States)

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  13. Assessing the effects of subject motion on T2 relaxation under spin tagging (TRUST) cerebral oxygenation measurements using volume navigators.

    Science.gov (United States)

    Stout, Jeffrey N; Tisdall, M Dylan; McDaniel, Patrick; Gagoski, Borjan; Bolar, Divya S; Grant, Patricia Ellen; Adalsteinsson, Elfar

    2017-12-01

    Subject motion may cause errors in estimates of blood T 2 when using the T 2 -relaxation under spin tagging (TRUST) technique on noncompliant subjects like neonates. By incorporating 3D volume navigators (vNavs) into the TRUST pulse sequence, independent measurements of motion during scanning permit evaluation of these errors. The effects of integrated vNavs on TRUST-based T 2 estimates were evaluated using simulations and in vivo subject data. Two subjects were scanned with the TRUST+vNav sequence during prescribed movements. Mean motion scores were derived from vNavs and TRUST images, along with a metric of exponential fit quality. Regression analysis was performed between T 2 estimates and mean motion scores. Also, motion scores were determined from independent neonatal scans. vNavs negligibly affected venous blood T 2 estimates and better detected subject motion than fit quality metrics. Regression analysis showed that T 2 is biased upward by 4.1 ms per 1 mm of mean motion score. During neonatal scans, mean motion scores of 0.6 to 2.0 mm were detected. Motion during TRUST causes an overestimate of T 2 , which suggests a cautious approach when comparing TRUST-based cerebral oxygenation measurements of noncompliant subjects. Magn Reson Med 78:2283-2289, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Effect of Collaborative Learning in Interactive Lecture Demonstrations (ILD on Student Conceptual Understanding of Motion Graphs

    Directory of Open Access Journals (Sweden)

    Erees Queen B. Macabebe

    2017-04-01

    Full Text Available To assess effectively the influence of peer discussion in understandingconcepts, and to evaluate if the conceptual understanding through Interactive Lecture Demonstrations (ILD and collaborative learning can be translated to actual situations, ten (10 questions on human and carts in motion were presented to 151 university students comprising mostly of science majors but of different year levels. Individual and group predictions were conducted to assess the students’ pre-conceptual understanding of motion graphs. During the ILD, real-time motion graphs were obtained and analysed after each demonstration and an assessment that integrates the ten situations into two scenarios was given to evaluate the conceptual understanding of the students. Collaborative learning produced a positive effect on the prediction scores of the students and the ILD with real-time measurement allowed the students to validate their prediction. However, when the given situations were incorporated to create a scenario, it posted a challenge to the students. The results of this activity identified the area where additional instruction and emphasis is necessary.

  15. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  16. Effects of Maternal Valium Administration on Fetal MRI Motion Artifact: A Comparison Study at High Altitude.

    Science.gov (United States)

    Meyers, Mariana L; Mirsky, David M; Dannull, Kimberly A; Tong, Suhong; Crombleholme, Timothy M

    2017-01-01

    Fetal MRI is performed without sedation. In cases of maternal claustrophobia or when reduction of fetal motion is critical, benzodiazepines may help. The purpose of this study was to evaluate the effects of low-dose benzodiazepine on fetal motion MRI and its effect on maternal oxygen levels at higher elevation. A total of 131 fetal MRI scans performed from March 2012 through December 2013 were studied. Nineteen of the cases were performed following Valium administration. Images were graded with a 5-point Likert scale. Using pulse oximetry, maternal oxygen levels were recorded. Results were analyzed for each category combining 3 readers' interpretations. Using a 2-sample t test model, the average imaging scores were better for the control than the Valium group (p = 0.0139). Maternal oxygen levels at different times and positions were compared using independent 2-sample t test between the Valium and control groups showing no change in O2 saturation, except when controlling for altitude and gestational age (p = 0.0326). Administration of low-dose Valium did not decrease fetal motion on MRI. Valium did not pose any risk of maternal hypoxemia, except when controlling for altitude and gestational age on supine position. Thus, caution should be exercised to prevent the risk of fetal hypoxemia. © 2016 S. Karger AG, Basel.

  17. Construction of exact constants of motion and effective models for many-body localized systems

    Science.gov (United States)

    Goihl, M.; Gluza, M.; Krumnow, C.; Eisert, J.

    2018-04-01

    One of the defining features of many-body localization is the presence of many quasilocal conserved quantities. These constants of motion constitute a cornerstone to an intuitive understanding of much of the phenomenology of many-body localized systems arising from effective Hamiltonians. They may be seen as local magnetization operators smeared out by a quasilocal unitary. However, accurately identifying such constants of motion remains a challenging problem. Current numerical constructions often capture the conserved operators only approximately, thus restricting a conclusive understanding of many-body localization. In this work, we use methods from the theory of quantum many-body systems out of equilibrium to establish an alternative approach for finding a complete set of exact constants of motion which are in addition guaranteed to represent Pauli-z operators. By this we are able to construct and investigate the proposed effective Hamiltonian using exact diagonalization. Hence, our work provides an important tool expected to further boost inquiries into the breakdown of transport due to quenched disorder.

  18. Effects of deformability and thermal motion of lipid membrane on electroporation: By molecular dynamics simulations

    KAUST Repository

    Sun, Sheng

    2011-01-01

    Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0kcal/(molÅ2) in the external electric field of 1.4kcal/(molÅe), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2kcal/(molÅ2) in the position constraints on lipid tails in the external electric field of 2.0kcal/(molÅe), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. © 2010 Elsevier Inc.

  19. Effects of gravitational lensing and companion motion on the binary pulsar timing

    International Nuclear Information System (INIS)

    Rafikov, Roman R.; Lai Dong

    2006-01-01

    The measurement of the Shapiro time delay in binary pulsar systems with highly-inclined orbit can be affected both by the motion of the pulsar's companion because of the finite time it takes a photon to cross the binary, and by the gravitational light bending if the orbit is sufficiently edge-on relative to the line of sight. Here we calculate the effect of retardation due to the companion's motion on various time delays in pulsar binaries, including the Shaipro delay, the geometric lensing delay, and the lens-induced delays associated with the pulsar rotation. Our results can be applied to systems so highly inclined that near conjunction gravitational lensing of the pulsar radiation by the companion becomes important (the recently discovered double pulsar system J0737-3039 may exemplify such a system). To the leading order, the effect of retardation is to shift all the delay curves backward in time around the orbit conjunction, without affecting the shape and amplitude of the curves. The time shift is of order the photon orbit crossing time, and ranges from a second to a few minutes for the observed binary pulsar systems. In the double pulsar system J0737-3039, the motion of the companion may also affect the interpretation of the recent correlated interstellar scintillation measurements. Finally, we show that lensing sets an upper limit on the magnitude of the frame-dragging time delay caused by the companion's spin, and makes this delay unobservable in stellar-mass binary pulsar systems

  20. Surface viscosity effects on the motion of self-propelling boat in a channel

    Science.gov (United States)

    Aliperio, M. G.; Nolan Confesor, Mark

    2015-06-01

    Self-propelled droplets have been conceived as simple chemical toy models to mimic motile biological samples such as bacteria. The motion of these droplets is believe to be due to the surface tension gradient in the boundary of the droplet. We performed experiments to look at the effect of varying the medium viscosity to the speed of a circular boat that was soaked in Pentanol. We found that the boats undergo oscillatory type of motion inside a channel. Moreover we found the maximum speed of the boat is independent on the viscosity of the medium. On the other a time scale describing the width of the velocity profile of the boat was found to increase with increasing viscosity.

  1. The effect of internal and external fields of view on visually induced motion sickness.

    Science.gov (United States)

    Bos, Jelte E; de Vries, Sjoerd C; van Emmerik, Martijn L; Groen, Eric L

    2010-07-01

    Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between iFOV and eFOV would lead to sickness. To that end we used a computer game environment with different iFOV and eFOV settings, and found the opposite effect. We speculate that the relative large differences between iFOV and eFOV used in this experiment caused the discrepancy, as may be explained by assuming an observer model controlling body motion. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  3. The effects of dorso-lumbar motion restriction on the ground reaction force components during running.

    Science.gov (United States)

    Morley, Joseph J; Traum, Edward

    2016-04-01

    The effects of restricting dorso-lumbar spine mobility on ground reaction forces in runners was measured and assessed. A semi-rigid cast was used to restrict spinal motion during running. Subjects ran across a force platform at 3.6 m/s, planting the right foot on the platform. Data was collected from ten running trials with the cast and ten without the cast and analysed. Casted running showed that the initial vertical heel strike maximum was increased (p running (p running results in measurable and repeatable alterations in ground reaction force components. Alterations in load transfer due to decreased spinal motion may be a factor contributing to selected injuries in runners. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of Pilates Exercise on Range of Motion and Edema of Upper Limb in Mastectomy Side

    Directory of Open Access Journals (Sweden)

    Maryam Ghorbani

    2013-09-01

    Full Text Available Background & objectives : The surgery of breast cancer like any other surgeries may bring about some problems and complications, which the knowledge of these problems may be an effective way for prevention or dealing with the complications. The motor and sensory impairments in the upper limb of the surgery side necessitate the utilization of the rehabilitation methods. The main purpose of this research was to show the effect of Pilates exercise on range of motion and edema of upper limb in females suffering from breast cancer after going through surgery.   Methods: This quasi- experimental study was conducted on 25 patients randomly chosen among the patients referring to Cancer Institute. The designed exercise included five "Mat Pilates" moves which were done for 15 sessions until the patient reached fatigue borderlines. Meantime, the control group was doing routine active exercises in physiotherapy center. The range of motion and edema of upper limb was measured before and after applying the designed exercise. For describing the data, the mean and standard deviation, and for inferential analysis, the correlated T-tests and one way analysis of variance were used in level of significance of 5%, to compare the variants before and after applying the designed exercise.   Results: The results showed a significant difference between the flexion, extension, and internal, external rotation of shoulder, flexion and extension of elbow, flexion, extension, supination deviation and pronation deviation of the wrist and forearm before and after experiment in Pilates group. While in the control group, flexion, extension, internal and external rotation of shoulder, flexion and extension of elbow, and flexion of wrist showed a significant difference before and after the experiment.   Conclusion: The use of Pilates exercise after mastectomy surgery can increase the range of motion of the upper limb in the involved side of the patients, and decrease the edema

  5. Effect of high-pitch dual-source CT to compensate motion artifacts: a phantom study.

    Science.gov (United States)

    Farshad-Amacker, Nadja A; Alkadhi, Hatem; Leschka, Sebastian; Frauenfelder, Thomas

    2013-10-01

    To evaluate the potential of high-pitch, dual-source computed tomography (DSCT) for compensation of motion artifacts. Motion artifacts were created using a moving chest/cardiac phantom with integrated stents at different velocities (from 0 to 4-6 cm/s) parallel (z direction), transverse (x direction), and diagonal (x and z direction combined) to the scanning direction using standard-pitch (SP) (pitch = 1) and high-pitch (HP) (pitch = 3.2) 128-detector DSCT (Siemens, Healthcare, Forchheim, Germany). The scanning parameters were (SP/HP): tube voltage, 120 kV/120 kV; effective tube current time product, 300 mAs/500 mAs; and a pitch of 1/3.2. Motion artifacts were analyzed in terms of subjective image quality and object distortion. Image quality was rated by two blinded, independent observers using a 4-point scoring system (1, excellent; 2, good with minor object distortion or blurring; 3, diagnostically partially not acceptable; and 4, diagnostically not acceptable image quality). Object distortion was assessed by the measured changes of the object's outer diameter (x) and length (z) and a corresponding calculated distortion vector (d) (d = √(x(2) + z(2))). The interobserver agreement was excellent (k = 0.91). Image quality using SP was diagnostically not acceptable with any motion in x direction (scores 3 and 4), in contrast to HP DSCT where it remained diagnostic up to 2 cm/s (scores 1 and 2). For motion in the z direction only, image quality remained diagnostic for SP and HP DSCT (scores 1 and 2). Changes of the object's diameter (x), length (z), and distortion vectors (d) were significantly greater with SP (overall: x = 1.9 cm ± 1.7 cm, z = 0.6 cm ± 0.8 cm, and d = 1.4 cm ± 1.5 cm) compared to HP DSCT (overall: x = 0.1 cm ± 0.1 cm, z = 0.0 cm ± 0.1 cm, and d = 0.1 cm ± 0.1 cm; each P pitch DSCT significantly decreases motion artifacts in various directions and improves image quality. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  6. Introducing the notion of bare and effective mass via Newton's second law of motion

    International Nuclear Information System (INIS)

    Pinto, Marcus Benghi

    2007-01-01

    The concepts of bare and effective mass are widely used within modern physics. Their meaning is discussed in advanced undergraduate and graduate courses such as solid state physics, nuclear physics and quantum field theory. Here I discuss how these concepts may be introduced together with the discussion of Newton's second law of motion. The setting up of simple equations for the effective mass will allow instructors to discuss how external parameters, such as the temperature, influence this quantity. By expressing this type of equation as a power series one may also discuss perturbation theory and introduce Feynman diagrams

  7. Interaction and collective effects in classical-equations-of-motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1981-01-01

    We discuss results obtained with the classical-equations-of-motion (CEOM) approach, with particular reference to interaction (potential energy) and collective effects in central collisions of equal mass nuclei. The essence of the CEOM approach is the classical calculation of all A = A/sub P/ + A/sub T/ trajectories using a 2-body potential V between all pairs of nucleons; V = V/sub short/ + V/sub long/ has a short range repulsion and a longer range attractive tail. In contrast to hydrodynamics, the CEOM approach is microscopic and includes transparency and nonequilibrium effects

  8. The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study.

    Science.gov (United States)

    Shakir, Afaaf; Chattopadhyay, Arhana; Paek, Laurence S; McGoldrick, Rory B; Chetta, Matthew D; Hui, Kenneth; Lee, Gordon K

    2017-05-01

    Music is commonly played in operating rooms (ORs) throughout the country. If a preferred genre of music is played, surgeons have been shown to perform surgical tasks quicker and with greater accuracy. However, there are currently no studies investigating the effects of music on microsurgical technique. Motion analysis technology has recently been validated in the objective assessment of plastic surgery trainees' performance of microanastomoses. Here, we aimed to examine the effects of music on microsurgical skills using motion analysis technology as a primary objective assessment tool. Residents and fellows in the Plastic and Reconstructive Surgery program were recruited to complete a demographic survey and participate in microsurgical tasks. Each participant completed 2 arterial microanastomoses on a chicken foot model, one with music playing, and the other without music playing. Participants were blinded to the study objectives and encouraged to perform their best. The order of music and no music was randomized. Microanastomoses were video recorded using a digitalized S-video system and deidentified. Video segments were analyzed using ProAnalyst motion analysis software for automatic noncontact markerless video tracking of the needle driver tip. Nine residents and 3 plastic surgery fellows were tested. Reported microsurgical experience ranged from 1 to 10 arterial anastomoses performed (n = 2), 11 to 100 anastomoses (n = 9), and 101 to 500 anastomoses (n = 1). Mean age was 33 years (range, 29-36 years), with 11 participants right-handed and 1 ambidextrous. Of the 12 subjects tested, 11 (92%) preferred music in the OR. Composite instrument motion analysis scores significantly improved with playing preferred music during testing versus no music (paired t test, P music was significant even after stratifying scores by order in which variables were tested (music first vs no music first), postgraduate year, and number of anastomoses (analysis of variance, P music in

  9. Predicting the effects of organ motion on the dose delivered by dynamic intensity modulation

    International Nuclear Information System (INIS)

    Yu, C.X.; Jaffray, David; Martinez, A.A.; Wong, J.W.

    1997-01-01

    Purpose: Computer-optimized treatment plans, aimed to enhance tumor control and reduce normal tissue complication, generally require non-uniform beam intensities. One of the techniques for delivering intensity-modulated beams is the use of dynamic multileaf collimation, where the beam aperture and field shape change during irradiation. When intensity-modulated beams are delivered with dynamic collimation, intra-treatment organ motion may not only cause geometric misses at the field boundaries but also create hot and cold spots in the target. The mechanism for producing such effects has not been well understood. This study analyzes the dosimetric effects of intra-treatment organ motion on dynamic intensity modulation. A numerical method is developed for predicting the intensity distributions in a moving target before dose is delivered with dynamic intensity modulation. Material and Methods: In the numerical algorithm, the change in position and shape of the beam aperture with time were modeled as a three-dimensional 'tunnel', with the shape of the field aperture described in the x-y plane and its temporal position shown in the z-dimension. A point in the target had to be in the tunnel in order to receive irradiation and the dose to the point was proportional to the amount of time that this point stayed in the tunnel. Since each point in the target were analyzed separately, non-rigid body variations could easily be handled. The dependency of the dose variations on all parameters involved, including the speed of collimator motion, the frequency and amplitude of the target motion, and the size of the field segments, was analyzed. The algorithm was verified by irradiating moving phantoms with beams of dynamically modulated intensities. Predictions were also made for a treatment of a thoracic tumor using a dynamic wedge. The changes of target position with time were based on the MRI images of the chest region acquired using fast MRI scans in a cine fashion for a duration

  10. On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data

    Science.gov (United States)

    Skarlatoudis, A.; Margaris, B.

    2005-12-01

    Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.

  11. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    Energy Technology Data Exchange (ETDEWEB)

    List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Olsen, Jógvan Magnus Haugaard [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, Odense DK-5230 Denmark (Denmark); Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland)

    2015-01-21

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters.

  12. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    International Nuclear Information System (INIS)

    List, Nanna Holmgaard; Jensen, Hans Jørgen Aagaard; Kongsted, Jacob; Beerepoot, Maarten T. P.; Gao, Bin; Ruud, Kenneth; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark tuning rate using harmonic frequencies calculated from analytical gradients and computed local electric fields. Comparisons to PE calculations employing an enlarged quantum region as well as to a non-polarizable embedding scheme show that the inclusion of mutual polarization between acetophenone and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger extent on the quality of the Lennard-Jones parameters

  13. Multiple Temperature-Sensing Behavior of Green and Red Upconversion Emissions from Stark Sublevels of Er3+

    Directory of Open Access Journals (Sweden)

    Baosheng Cao

    2015-12-01

    Full Text Available Upconversion luminescence properties from the emissions of Stark sublevels of Er3+ were investigated in Er3+-Yb3+-Mo6+-codoped TiO2 phosphors in this study. According to the energy levels split from Er3+, green and red emissions from the transitions of four coupled energy levels, 2H11/2(I/2H11/2(II, 4S3/2(I/4S3/2(II, 4F9/2(I/4F9/2(II, and 2H11/2(I + 2H11/2(II/4S3/2(I + 4S3/2(II, were observed under 976 nm laser diode excitation. By utilizing the fluorescence intensity ratio (FIR technique, temperature-dependent upconversion emissions from these four coupled energy levels were analyzed at length. The optical temperature-sensing behaviors of sensing sensitivity, measurement error, and operating temperature for the four coupled energy levels are discussed, all of which are closely related to the energy gap of the coupled energy levels, FIR value, and luminescence intensity. Experimental results suggest that Er3+-Yb3+-Mo6+-codoped TiO2 phosphor with four pairs of energy levels coupled by Stark sublevels provides a new and effective route to realize multiple optical temperature-sensing through a wide range of temperatures in an independent system.

  14. The effects of motion and g-seat cues on pilot simulator performance of three piloting tasks

    Science.gov (United States)

    Showalter, T. W.; Parris, B. L.

    1980-01-01

    Data are presented that show the effects of motion system cues, g-seat cues, and pilot experience on pilot performance during takeoffs with engine failures, during in-flight precision turns, and during landings with wind shear. Eight groups of USAF pilots flew a simulated KC-135 using four different cueing systems. The basic cueing system was a fixed-base type (no-motion cueing) with visual cueing. The other three systems were produced by the presence of either a motion system or a g-seat, or both. Extensive statistical analysis of the data was performed and representative performance means were examined. These data show that the addition of motion system cueing results in significant improvement in pilot performance for all three tasks; however, the use of g-seat cueing, either alone or in conjunction with the motion system, provides little if any performance improvement for these tasks and for this aircraft type.

  15. Stark shifts and widths of a hydrogen atom in Debye plasmas

    International Nuclear Information System (INIS)

    Yu, A.C.H.; Ho, Y.K.

    2005-01-01

    A computational scheme has been developed and used to investigate the influence of the plasma environments on modified atomic autoionization for isolated atoms/ions by using the complex coordinate rotation method which is proved to be a very simple and powerful tool to analyze the position and the width of a resonance. The Debye screening potential is employed to describe the effects of the plasma environments. Stark shifts and widths on the ground state of hydrogen are reported for field strength up to F=0.12 a.u. Slater-type basis wave functions are used to describe the system and angular-momentum states up to L=11 are included when the external electric field is turned on. Converged results are obtained by using different maximum angular-momentum states. The modified autoionization for various Debye lengths ranging from infinite to a small value of 0.86 are reported. It has been observed that for a given temperature and under the influence of a given external electric field, the resonance energy and the autoionization width increase for increasing electron density in the plasma. A discussion on the physical implication of our results is made

  16. Theory of coherent Stark nonlinear spectroscopy in a three-level system

    International Nuclear Information System (INIS)

    Loiko, Yurii; Serrat, Carles

    2007-01-01

    Coherent Stark nonlinear spectroscopy (CSNS) is a spectroscopic tool based on the cancellation of the phase sensitivity at frequency 5ω in the ultrafast four-wave mixing (FWM) of two-color pulses with frequencies ω and 3ω. We develop a theory for CSNS in three-level V-type systems, and reveal that the mechanism for the phase sensitivity at 5ω is the quantum interference between the two primary paths in the FWM of the ω and 3ω fields. We find that the cancellation phenomenon occurs when the probability amplitude of one of these two primary pathways becomes equal to zero due to the competition effect between the two allowed transitions in the V-type system. The analytical expressions that describe the phase-sensitivity phenomenon and the conditions for its cancellation have been derived on the basis of perturbation theory, and are confirmed by numerical integration of the density matrix and Maxwell equations. We argue that CSNS can be utilized, in particular, for the investigation of optically dense media

  17. Fractional Stark state selective electric field ionization of very high-n Rydberg states of molecules

    International Nuclear Information System (INIS)

    Dietrich, H.; Mueller-Dethlefs, K.; Baranov, L.Y.

    1996-01-01

    For the first time fractional Stark state selective electric field ionization of very high-n (n approx-gt 250) molecular Rydberg states is observed. An open-quote open-quote offset close-quote close-quote electric pulse selectively ionizes the more fragile open-quote open-quote red close-quote close-quote (down shifted in energy) Stark states. The more resilient open-quote open-quote bluer close-quote close-quote, or up-shifted, ones survive and are shifted down in energy upon application of a second (open-quote open-quote probe close-quote close-quote) pulse of opposite direction (diabatic Stark states close-quote inversion). Hence, even for smaller probe than offset fields ionization is observed. The offset/probe ratio allows one to control spectral peak shapes in zero-kinetic-energy photoelectron spectroscopy. copyright 1995 The American Physical Society

  18. A new questionnaire for measuring quality of life - the Stark QoL.

    Science.gov (United States)

    Hardt, Jochen

    2015-10-26

    The Stark questionnaire measures health-related quality of life (QoL) using pictures almost exclusively. It is supplemented by a minimum of words. It comprises a mental and a physical health component. A German sample of n = 500 subjects, age and gender stratified, filled out the Stark Qol questionnaire along with various other questionnaires via internet. The physical component shows good reliability (Cronbach's alpha = McDonalds Omega = greatest lower bound = .93), the mental component can be improved (Cronbach's alpha = .63, McDonalds Omega = .72, greatest lower bound = .77). Confirmatory factor analysis shows a good fit (Bentlers CFI = .97). Construct validity was proven. The Stark QoL is a promising new development in measuring QoL, it is a short and easy to apply questionnaire. Additionally, it is particularly promising for international research.

  19. Seismic ground motion characteristics in the Bucharest area: source and site effects contribution

    International Nuclear Information System (INIS)

    Grecu, B.; Popa, M.; Radulian, M.

    2003-01-01

    The contribution of source vs. site effects on the seismic ground motion in Bucharest is controversial as the previous studies showed. The fundamental period of resonance for the sedimentary cover is emphasized by ambient noise and earthquake measurements, if the spectral ratio method (Nakamura, 1989) is applied (Bonjer et al., 1989). On the other hand, the numerical simulations (Moldoveanu et al., 2000.) and acceleration spectra analysis (Sandi et al., 2001) brought into the light the determinant role of the source effects. We considered all the available instrumental data related to Vrancea earthquakes recorded in Bucharest area to find how the source and site properties control the peak ground motion peculiarities. Our main results are summarized as follows: 1. The resonant period of oscillation, related to the shallow sediment layer, is practically present in all the H/V spectral ratios, no matter we consider ambient noise or earthquakes of any size. This argues in favor of the crucial role played by the sedimentary cover and proves that the ratio method is reasonably removing the source effects. However, the absolute spectra are completely different for earthquakes below and above magnitude 7, namely amplitudes in the range of 1-2 s periods are negligible in the first case, and predominant in the second one. It looks like the resonant amplification by the sedimentary cover becomes effective only for the largest earthquakes (M > 7), when the source radiation coincides with the fundamental resonance range. We conclude that the damage in Bucharest is dramatically amplified when the earthquake size is above a critical value (M ≅ 7); 2. Our analysis shows a rather weak variability of the peak motion values and spectral amplitudes over the study area, in agreement with the relatively small variability of the shallow structure topography. (authors)

  20. Evaluating Effectiveness of Modeling Motion System Feedback in the Enhanced Hess Structural Model of the Human Operator

    Science.gov (United States)

    Zaychik, Kirill; Cardullo, Frank; George, Gary; Kelly, Lon C.

    2009-01-01

    In order to use the Hess Structural Model to predict the need for certain cueing systems, George and Cardullo significantly expanded it by adding motion feedback to the model and incorporating models of the motion system dynamics, motion cueing algorithm and a vestibular system. This paper proposes a methodology to evaluate effectiveness of these innovations by performing a comparison analysis of the model performance with and without the expanded motion feedback. The proposed methodology is composed of two stages. The first stage involves fine-tuning parameters of the original Hess structural model in order to match the actual control behavior recorded during the experiments at NASA Visual Motion Simulator (VMS) facility. The parameter tuning procedure utilizes a new automated parameter identification technique, which was developed at the Man-Machine Systems Lab at SUNY Binghamton. In the second stage of the proposed methodology, an expanded motion feedback is added to the structural model. The resulting performance of the model is then compared to that of the original one. As proposed by Hess, metrics to evaluate the performance of the models include comparison against the crossover models standards imposed on the crossover frequency and phase margin of the overall man-machine system. Preliminary results indicate the advantage of having the model of the motion system and motion cueing incorporated into the model of the human operator. It is also demonstrated that the crossover frequency and the phase margin of the expanded model are well within the limits imposed by the crossover model.

  1. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Directory of Open Access Journals (Sweden)

    Marko Wilke

    Full Text Available Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964 as well as functional MRI (n = 200 data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing". Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  2. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Science.gov (United States)

    Wilke, Marko

    2014-01-01

    Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations) being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964) as well as functional MRI (n = 200) data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly) versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing"). Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  3. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions - Effect of Velocity

    Science.gov (United States)

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2013-01-01

    Background Inertial measurement of motion with Attitude and Heading Reference Systems (AHRS) is emerging as an alternative to 3D motion capture systems in biomechanics. The objectives of this study are: 1) to describe the absolute and relative accuracy of multiple units of commercially available AHRS under various types of motion; and 2) to evaluate the effect of motion velocity on the accuracy of these measurements. Methods The criterion validity of accuracy was established under controlled conditions using an instrumented Gimbal table. AHRS modules were carefully attached to the center plate of the Gimbal table and put through experimental static and dynamic conditions. Static and absolute accuracy was assessed by comparing the AHRS orientation measurement to those obtained using an optical gold standard. Relative accuracy was assessed by measuring the variation in relative orientation between modules during trials. Findings Evaluated AHRS systems demonstrated good absolute static accuracy (mean error < 0.5o) and clinically acceptable absolute accuracy under condition of slow motions (mean error between 0.5o and 3.1o). In slow motions, relative accuracy varied from 2o to 7o depending on the type of AHRS and the type of rotation. Absolute and relative accuracy were significantly affected (p<0.05) by velocity during sustained motions. The extent of that effect varied across AHRS. Interpretation Absolute and relative accuracy of AHRS are affected by environmental magnetic perturbations and conditions of motions. Relative accuracy of AHRS is mostly affected by the ability of all modules to locate the same global reference coordinate system at all time. Conclusions Existing AHRS systems can be considered for use in clinical biomechanics under constrained conditions of use. While their individual capacity to track absolute motion is relatively consistent, the use of multiple AHRS modules to compute relative motion between rigid bodies needs to be optimized according to

  4. Wave-function analysis of dynamic cancellation of ac Stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically-induced-transparency techniques

    International Nuclear Information System (INIS)

    Yoon, Tai Hyun

    2007-01-01

    We study analytically the dynamic cancellation of ac Stark shift in the recently proposed pulsed electromagnetically-induced-transparency (EIT-)Raman optical lattice clock based on the wave-function formalism. An explicit expression for the time evolution operator corresponding to the effective two-level interaction Hamiltonian has been obtained in order to explain the atomic phase shift cancellation due to the ac Stark shift induced by the time-separated laser pulses. We present how to determine an optimum value of the common detuning of the driving fields at which the atomic phase shift cancels completely with the parameters for the practical realization of the EIT-Raman optical lattice clock with alkaline-earth-metal atoms

  5. Experimental evidence in favour of the Stark mixing of atomic L-subshell states in the boron impact of Au and Bi

    International Nuclear Information System (INIS)

    Padhi, H.C.; Dhal, B.B.; Nandi, T.; Trautmann, D.

    1995-01-01

    L-subshell ionization of Au and Bi induced by boron impact has been investigated for impact energies ranging from 0.48 to 0.88 MeV/μ. The energy dependence of the measured ionization cross section shows, for the first time, a plateau structure for all three subshells. The plateau structure revealed by previous data for proton and helium impact was for the L 1 subshell only and this had been attributed to the bimodal nature of the 2s electron density. The observed plateau structure for all the three subshells and its occurrence at a somewhat lower energy signifies a considerable amount of Stark mixing of target 2s and 2p atomic wavefunctions. Fresh calculations incorporating the Stark mixing effect in target atomic wavefunctions are necessary to improve agreement with the present data. The existing theories, however, are found to be inadequate. (author)

  6. The effect of seismic motion characteristics on the inelastic response reduction of cylindrical shell structures

    International Nuclear Information System (INIS)

    Hagiwara, Y.; Yamamoto, K.; Akiyama, H.

    1993-01-01

    Reactor vessels of FBR are cylindrical shell structures, whose critical failure mode during earthquakes is plastic buckling in shear or bending mode. In buckling prevention of the vessels, it is of primary importance to realistically evaluate the plastic response reduction effect in the pre-buckling stage. Though the authors have already proposed a empirical formula to estimate the response reduction effect, the formula depends only on the pre-buckling ductility factor in the evaluation for the purpose of easy design practice. In this study, the effect of seismic motion characteristics on the response reduction effect was investigated both experimentally and numerically, and a improved version of the empirical expression of the reduction factor was proposed. In this new method, the response reduction effect is evaluated by an initial acceleration amplification factor in addition to the ductility of structures. (author)

  7. Inertia effects on the rigid displacement approximation of tokamak plasma vertical motion

    International Nuclear Information System (INIS)

    Carrera, R.; Khayrutdinov, R.R.; Azizov, E.A.; Montalvo, E.; Dong, J.Q.

    1991-01-01

    Elongated plasmas in tokamaks are unstable to axisymmetric vertical displacements. The vacuum vessel and passive conductors can stabilize the plasma motion in the short time scale. For stabilization of the plasma movement in the long time scale an active feedback control system is required. A widely used method of plasma stability analysis uses the Rigid Displacement Model (RDM) of plasma behavior. In the RDM it is assumed that the plasma displacement is small and usually plasma inertia effects are neglected. In addition, it is considered that no changes in plasma shape, plasma current, and plasma current profile take place throughout the plasma motion. It has been demonstrated that the massless-filament approximation (instantaneous force-balance) accurately reproduces the unstable root of the passive stabilization problem. Then, on the basis that the instantaneous force-balance approximation is correct in the passive stabilization analysis, the massless approximation is utilized also in the study of the plasma vertical stabilization by active feedback. The authors show here that the RDM (without mass effects included) does not provide correct stability results for a tokamak configuration (plasma column, passive conductors, and feedback control coils). Therefore, it is concluded that inertia effects have to be retained in the RDM system of equations. It is shown analytically and numerically that stability diagrams with and without plasma-mass corrections differ significantly. When inertia effects are included, the stability region is more restricted than obtained in the massless approximation

  8. Effect of strong-focusing field distortions on particle motion in a linear accelerator

    International Nuclear Information System (INIS)

    Bondarev, B.I.; Durkin, A.P.; Solov'ev, L.Yu.

    1979-01-01

    The increased sensitivity of quadrupole focusing channel used in the highenergetic part of the linear accelerator makes it necessary to pay serious attention to the effect of various distortions of focusing fields on the transverse motion of the beam. The distortions may cause the inadmissible losses of particles in the accelerator. To achieve this aim the main equation of disturbed motion of particles in the linear accelerator, obtained by analogy with the cyclic accelerator theory is presented. The investigation of the solutions of this equation has permitted to obtain the analytical formulas for the estimation of the beam size increase under the effect of focusing field distortions of various types, such as structural non-linearity, gradient errors, random non-linearity, channel axis deformation. While studying the effect of structural non-linearity considered are the resonance effects and obtained are the relations describing the maximum beam size increase in the channel of the linear accelerator in the presence and in the absence of the resonance

  9. Site Effect Assessment of Earthquake Ground Motion Based on Advanced Data Processing of Microtremor Array Measurements

    Science.gov (United States)

    Liu, L.; He, K.; Mehl, R.; Wang, W.; Chen, Q.

    2008-12-01

    High-resolution near-surface geologic information is essential for earthquake ground motion prediction. The near-surface geology forms the critical constituent to influence seismic wave propagation, which is known as the local site effects. We have collected microtremor data over 1000 sites in Beijing area for extracting the much needed earthquake engineering parameters (primarily sediment thickness, with the shear wave velocity profiling at a few important control points) in this heavily populated urban area. Advanced data processing algorithms are employed in various stages in assessing the local site effect on earthquake ground motion. First, we used the empirical mode decomposition (EMD), also known as the Hilbert-Huang transform (HHT), to enhance the microtremor data analysis by excluding the local transients and continuous monochromic industrial noises. With this enhancement we have significantly increased the number of data points to be useful in delineating sediment thickness in this area. Second, we have used the cross-correlation of microtremor data acquired for the pairs of two adjacent sites to generate a 'pseudo-reflection' record, which can be treated as the Green function of the 1D layered earth model at the site. The sediment thickness information obtained this way is also consistent with the results obtained by the horizontal to vertical spectral ratio method (HVSR). For most sites in this area, we can achieve 'self consistent' results among different processing skechems regarding to the sediment thickness - the fundamental information to be used in assessing the local site effect. Finally, the pseudo-spectral time domain method was used to simulate the seismic wave propagation caused by a scenario earthquake in this area - the 1679 M8 Sanhe-pinggu earthquake. The characteristics of the simulated earthquake ground motion have found a general correlation with the thickness of the sediments in this area. And more importantly, it is also in agreement

  10. 3D geospatial visualizations: Animation and motion effects on spatial objects

    Science.gov (United States)

    Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos

    2018-02-01

    Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.

  11. Effects of target plasma electron-electron collisions on correlated motion of fragmented H2+ protons

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.

    2006-01-01

    The objective of the present work is to examined the effects of plasma target electron-electron collisions on H 2 + protons traversing it. Specifically, the target is deuterium in a plasma state with temperature T e =10 eV and density n=10 23 cm -3 , and proton velocities are v p =v th , v p =2v th , and v p =3v th , where v th is the electron thermal velocity of the target plasma. Proton interactions with plasma electrons are treated by means of the dielectric formalism. The interactions among close protons through plasma electronic medium are called vicinage forces. It is checked that these forces always screen the Coulomb explosions of the two fragmented protons from the same H 2 + ion decreasing their relative distance. They also align the interproton vector along the motion direction, and increase the energy loss of the two protons at early dwell times while for longer times the energy loss tends to the value of two isolated protons. Nevertheless, vicinage forces and effects are modified by the target electron collisions. These collisions enhance the calculated self-stopping and vicinage forces over the collisionless results. Regarding proton correlated motion, when these collisions are included, the interproton vector along the motion direction overaligns at slower proton velocities (v p =v th ) and misaligns for faster ones (v p =2v th , v p =3v th ). They also contribute to a great extend to increase the energy loss of the fragmented H 2 + ion. This later effect is more significant in reducing projectile velocity

  12. Stark shift measurements of Xe II and Xe III spectral lines

    International Nuclear Information System (INIS)

    Cirisan, M; Pelaez, R J; Djurovic, S; Aparicio, J A; Mar, S

    2007-01-01

    Stark shift measurements of singly and doubly ionized Xe spectral lines are presented in this paper. Shifts of 110 Xe II lines and 42 Xe III lines are reported, including a significant number of new results. A low-pressure-pulsed arc with 95% of He and 5% of Xe was used as a plasma source. All measurements were performed under the following plasma conditions: electron density (0.2-1.4) x 10 23 m -3 and electron temperature 18 000-23 000 K. The measured Stark shifts are compared with other experimental and theoretical data

  13. A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line

    Science.gov (United States)

    Its, A.; Sukhanov, V.

    2016-05-01

    The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.

  14. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  15. Multi-Head Very High Power Strobe System For Motion Picture Special Effects

    Science.gov (United States)

    Lovoi, P. A.; Fink, Michael L.

    1983-10-01

    A very large camera synchronizable strobe system has been developed for motion picture special effects. This system, the largest ever built, was delivered to MGM/UA to be used in the movie "War Games". The system consists of 12 individual strobe heads and a power supply distribution system. Each strobe head operates independently and may be flashed up to 24 times per second under computer control. An energy of 480 Joules per flash is used in six strobe heads and 240 Joules per flash in the remaining six strobe heads. The beam pattern is rectangular with a FWHM of 60° x 48°.

  16. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  17. Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal

    Science.gov (United States)

    Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan

    2017-11-01

    With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.

  18. Verification of target motion effects on SAR imagery using the Gotcha GMTI challenge dataset

    Science.gov (United States)

    Hack, Dan E.; Saville, Michael A.

    2010-04-01

    This paper investigates the relationship between a ground moving target's kinematic state and its SAR image. While effects such as cross-range offset, defocus, and smearing appear well understood, their derivations in the literature typically employ simplifications of the radar/target geometry and assume point scattering targets. This study adopts a geometrical model for understanding target motion effects in SAR imagery, termed the target migration path, and focuses on experimental verification of predicted motion effects using both simulated and empirical datasets based on the Gotcha GMTI challenge dataset. Specifically, moving target imagery is generated from three data sources: first, simulated phase history for a moving point target; second, simulated phase history for a moving vehicle derived from a simulated Mazda MPV X-band signature; and third, empirical phase history from the Gotcha GMTI challenge dataset. Both simulated target trajectories match the truth GPS target position history from the Gotcha GMTI challenge dataset, allowing direct comparison between all three imagery sets and the predicted target migration path. This paper concludes with a discussion of the parallels between the target migration path and the measurement model within a Kalman filtering framework, followed by conclusions.

  19. Modeling the transient aerodynamic effects during the motion of a flexible trailing edge

    International Nuclear Information System (INIS)

    Wolff, T; Seume, J R

    2016-01-01

    Wind turbine blades have been becoming longer and more slender during the last few decades. The longer lever arm results in higher stresses at the blade root. Hence, the unsteady loads induced by turbulence, gust, or wind shear increase. One promising way to control these loads is to use flexible trailing edges near the blade tip. The unsteady effects which appear during the motion of a flexible trailing edge must be considered for the load calculation during the design process because of their high influence on aeroelastic effects and hence on the fatigue loads. This is not yet possible in most of the wind turbine simulation environments. Consequently, an empirical model is developed in the present study which accounts for unsteady effects during the motion of the trailing edge. The model is based on Fourier analyses of results generated with Reynolds-Averaged Navier-Stokes (RANS) simulations of a typical thin airfoil with a deformable trailing edge. The validation showed that the model fits Computational Fluid Dynamics (CFD) results simulated with a random time series of the deflection angle. (paper)

  20. The effect of oxytocin on biological motion perception in dogs (Canis familiaris).

    Science.gov (United States)

    Kovács, Krisztina; Kis, Anna; Kanizsár, Orsolya; Hernádi, Anna; Gácsi, Márta; Topál, József

    2016-05-01

    Recent studies have shown that the neuropeptide oxytocin is involved in the regulation of several complex human social behaviours. There is, however, little research on the effect of oxytocin on basic mechanisms underlying human sociality, such as the perception of biological motion. In the present study, we investigated the effect of oxytocin on biological motion perception in dogs (Canis familiaris), a species adapted to the human social environment and thus widely used to model many aspects of human social behaviour. In a within-subjects design, dogs (N = 39), after having received either oxytocin or placebo treatment, were presented with 2D projection of a moving point-light human figure and the inverted and scrambled version of the same movie. Heart rate (HR) and heart rate variability (HRV) were measured as physiological responses, and behavioural response was evaluated by observing dogs' looking time. Subjects were also rated on the personality traits of Neuroticism and Agreeableness by their owners. As expected, placebo-pretreated (control) dogs showed a spontaneous preference for the biological motion pattern; however, there was no such preference after oxytocin pretreatment. Furthermore, following the oxytocin pretreatment female subjects looked more at the moving point-light figure than males. The individual variations along the dimensions of Agreeableness and Neuroticism also modulated dogs' behaviour. Furthermore, HR and HRV measures were affected by oxytocin treatment and in turn played a role in subjects' looking behaviour. We discuss how these findings contribute to our understanding of the neurohormonal regulatory mechanisms of human (and non-human) social skills.

  1. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  2. Effectiveness of adaptive silverware on range of motion of the hand

    Directory of Open Access Journals (Sweden)

    Susan S. McDonald

    2016-02-01

    Full Text Available Background. Hand function is essential to a person’s self-efficacy and greatly affects quality of life. Adapted utensils with handles of increased diameters have historically been used to assist individuals with arthritis or other hand disabilities for feeding, and other related activities of daily living. To date, minimal research has examined the biomechanical effects of modified handles, or quantified the differences in ranges of motion (ROM when using a standard versus a modified handle. The aim of this study was to quantify the ranges of motion (ROM required for a healthy hand to use different adaptive spoons with electrogoniometry for the purpose of understanding the physiologic advantages that adapted spoons may provide patients with limited ROM. Methods. Hand measurements included the distal interphalangeal joint (DIP, proximal interphalangeal joint (PIP, and metacarpophalangeal joint (MCP for each finger and the interphalangeal (IP and MCP joint for the thumb. Participants were 34 females age 18–30 (mean age 20.38 ± 1.67 with no previous hand injuries or abnormalities. Participants grasped spoons with standard handles, and spoons with handle diameters of 3.18 cm (1.25 inch, and 4.45 cm (1.75 inch. ROM measurements were obtained with an electrogoniometer to record the angle at each joint for each of the spoon handle sizes. Results. A 3 × 3 × 4 repeated measures ANOVA (Spoon handle size by Joint by Finger found main effects on ROM of Joint (F(2, 33 = 318.68, Partial η2 = .95, p < .001, Spoon handle size (F(2, 33 = 598.73, Partial η2 = .97, p < .001, and Finger (F(3, 32 = 163.83, Partial η2 = .94, p < .001. As the spoon handle diameter size increased, the range of motion utilized to grasp the spoon handle decreased in all joints and all fingers (p < 0.01. Discussion. This study confirms the hypothesis that less range of motion is required to grip utensils with larger diameter handles, which in turn may reduce challenges for

  3. Stark broadening of resonant Cr II 3d5-3d44p spectral lines in hot stellar atmospheres

    Science.gov (United States)

    Simić, Z.; Dimitrijević, M. S.; Sahal-Bréchot, S.

    2013-07-01

    New Stark broadening parameters of interest for the astrophysical, laboratory and technological plasma modelling, investigations and analysis for nine resonant Cr II multiplets have been determined within the semiclassical perturbation approach. In order to demonstrate one possibility for their usage in astrophysical plasma research, obtained results have been applied to the analysis of the Stark broadening influence on stellar spectral line shapes.

  4. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes.

    Science.gov (United States)

    Delavari, Armin; Baltus, Ruth

    2017-08-10

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle-membrane interactions at the pore mouth result in particle "funneling" in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined.

  5. Effects of Fatigue on Frontal Plane Knee Motion, Muscle Activity, and Ground Reaction Forces In Men and Women During Landing

    OpenAIRE

    Smith, Michael P.; Sizer, Phillip S.; James, C. Roger

    2009-01-01

    Women tear their Anterior Cruciate Ligament (ACL) 2-8 times more frequently than men. Frontal plane knee motion can produce a pathological load in the ACL. During a state of fatigue the muscles surrounding the knee joint may lose the ability to protect the joint during sudden deceleration while landing. The purpose of this study was to investigate the effects of fatigue and gender on frontal plane knee motion, EMG amplitudes, and GRF magnitudes during drop- jump landing. Pretest-posttest comp...

  6. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    International Nuclear Information System (INIS)

    Goethe, Martin; Rubi, J. Miguel; Fita, Ignacio

    2016-01-01

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  7. Thermal motion in proteins: Large effects on the time-averaged interaction energies

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel [Departament de Física Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Fita, Ignacio [Institut de Biologia Molecular de Barcelona, Baldiri Reixac 10, 08028 Barcelona (Spain)

    2016-03-15

    As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.

  8. FOCUSED FEASIBILITY STUDY OF PHYTOREMEDIATION ALTERNATIVE FOR THE INDUSTRIAL EXCESS LANDFILL SITE IN STARK COUNTY, OHIO.

    Science.gov (United States)

    Focused feasibility study of phytoremediation alternative for the Industrial Excess Landfill site in Stark County, Ohio. More information can be found on the NPL Fact Sheet for this site at www.epa.gov/region5/superfund/npl/ohio/OHD000377971.htm

  9. The influence of static fields on the dynamic Stark spectra of hydrogen Balmer lines

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.; Jayakumar, R.; Granneman, E.H.A.

    1981-01-01

    In plasmas atomic-line radiation is influenced by static and high frequency fields. A simple method of calculating the Stark profiles of the Balmer α and β lines for the case of one-dimensional fields is discussed. Using a Holtsmark field for the static component, the resulting profile of Balmer α shows a splitting of the satellites. (author)

  10. Developmental characters of Pseitina iijimae (Jordan and Starks), bothid flat fishes- pisces

    Digital Repository Service at National Institute of Oceanography (India)

    Devi, C.B.L.

    Post larval stages of Psettina iQimae (Jordan and Starks) ranging from 1.8 mm NL to 44.6 mm SL collected during Naga Expedition and International Indian Ocean Expedition (JIOE) are described The characteristics which help to identify larval stages...

  11. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  12. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    KAUST Repository

    Bang, Do

    2016-05-23

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  13. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  14. Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments.

    Science.gov (United States)

    Encheff, Jenna L; Armstrong, Charles; Masterson, Michelle; Fox, Christine; Gribble, Phillip

    2012-01-01

    This study investigated the effects of a 10-week hippotherapy program on trunk, pelvis, and hip joint positioning during the stance phase of gait. Eleven children (6 boys and 5 girls; 7.9 ± 2.7 years) with neurological disorders and impaired ambulation participated. Joint range of motion data were collected via 3-dimensional computerized gait analysis before and after the program. Paired t tests were performed on kinematic data for each joint. Significant improvements (P ≤ .008) and large effect sizes (ESs) for sagittal plane hip positions at initial contact and toe-off were found. No differences in pelvic or trunk positioning were determined, although sagittal plane pelvic positioning displayed a trend toward improvement with large ESs. Several trunk variables displayed moderate ESs with a trend toward more upright positioning. Improvements in pelvic and hip joint positioning and more normalized vertical trunk position may indicate increased postural control during gait after 10 sessions of hippotherapy.

  15. BENDING THE DOMING EFFECT IN STRUCTURE FROM MOTION RECONSTRUCTIONS THROUGH BUNDLE ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    L. Magri

    2017-08-01

    Full Text Available Structure from Motion techniques provides low-cost and flexible methods that can be adopted in arial surveying to collect topographic data with accurate results. Nevertheless, the so-called “doming effect”, due to unfortunate acquisition conditions or unreliable modeling of radial distortion, has been recognized as a critical issue that disrupts the quality of the attained 3D reconstruction. In this paper we propose a novel method, that works effectively in the presence of a nearly flat soil, to tackle a posteriori the doming effect: an automatic ground detection method is used to capture the doming deformation flawing the reconstruction, which in turn is wrapped to the correct geometry by iteratively enforcing a planarity constraint through a Bundle Adjustment framework. Experiments on real word datasets demonstrate promising results.

  16. The effects of betatron motion on the preservation of FEL microbunching

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-05-15

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  17. The effects of betatron motion on the preservation of FEL microbunching

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2011-05-01

    In some options for circular polarization control at X-ray FELs, a helical radiator is placed a few ten meters distance behind the baseline undulator. If the microbunch structure induced in the baseline (planar) undulator can be preserved, intense coherent radiation is emitted in the helical radiator. The effects of betatron motion on the preservation of micro bunching in such in-line schemes should be accounting for. In this paper we present a comprehensive study of these effects. It is shown that one can work out an analytical expression for the debunching of an electron beam moving in a FODO lattice, strictly valid in the asymptote for a FODO cell much shorter than the betatron function. Further on, numerical studies can be used to demonstrate that the validity of such analytical expression goes beyond the abovementioned asymptote, and can be used in much more a general context. Finally, a comparison with Genesis simulations is given. (orig.)

  18. Crossover from Super- to Subdiffusive Motion and Memory Effects in Crystalline Organic Semiconductors

    Science.gov (United States)

    De Filippis, G.; Cataudella, V.; Mishchenko, A. S.; Nagaosa, N.; Fierro, A.; de Candia, A.

    2015-02-01

    The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150 ≤T ≤200 K , where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

  19. Seeing the World Topsy-Turvy: The Primary Role of Kinematics in Biological Motion Inversion Effects

    Directory of Open Access Journals (Sweden)

    Sue-Anne Fitzgerald

    2014-04-01

    Full Text Available Physical inversion of whole or partial human body representations typically has catastrophic consequences on the observer's ability to perform visual processing tasks. Explanations usually focus on the effects of inversion on the visual system's ability to exploit configural or structural relationships, but more recently have also implicated motion or kinematic cue processing. Here, we systematically tested the role of both on perceptions of sex from upright and inverted point-light walkers. Our data suggest that inversion results in systematic degradations of the processing of kinematic cues. Specifically and intriguingly, they reveal sex-based kinematic differences: Kinematics characteristic of females generally are resistant to inversion effects, while those of males drive systematic sex misperceptions. Implications of the findings are discussed.

  20. On the coupling of cyclotron motion to ion internal degrees of freedom

    International Nuclear Information System (INIS)

    Dunbar, R.C.

    1979-01-01

    A possibility of significant coupling between gas-phase ion cyclotron motion and two internal angular momentum terms is explored. The first case, coupling with ion spin, is treated via the relativistic Hamiltonian, and found to produce only relativistic perturbations which are entirely negligible. The second case, coupling with ion rotation, is developed via its equivalence to a Stark effect. Small shifts in the cyclotron resonances frequency , ωsub(c) and the appearance of a weak cyclotron resonance at 2ωsub(c) are predicted, but these effects are negligible in general. If the cyclotron frequency is near an ion rotational transition, however, a shift of 10 -5 in cyclotron frequency may be observed, and could provide a means of investigating low-frequency rotational transitions of ions. (Auth.)

  1. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  2. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  3. Effect of cathode and anode plasma motion on current characteristics of pinch diode

    International Nuclear Information System (INIS)

    Yang Hailiang; Qiu Aici; Sun Jianfeng; Li Jingya; He Xiaoping; Tang Junping; Li Hongyu; Wang Haiyang; Huang Jianjun; Ren Shuqing; Yang Li; Zou Lili

    2005-01-01

    The preliminary research results for the effect of cathode and anode plasma motion on current characteristics of the pinch ion diode on FLASH II accelerator are reported. The structure and principle of pinch reflex ion beam diode are introduced. The time dependent evolution of electron and ion flow in large aspect-ratio relativistic diodes is studied by analytic models. The equation of Child-langmuir, weak focused-flow, strong focused-flow and parapotential flow are corrected to reduce the diode A-C gap caused by the motion of cathode and anode plasma. The diode current and ion current are calculated with these corrected equations, and the results are consistent with the experimental data. The methods of increasing ion current and efficiency are also presented. The high power ion beam peak current about 160 kA with a peak energy about 500 keV was produced using water-dielectric transmission-line generators with super-pinch reflex ion diodes on FLASH II accelerator at Northwest Institute of Nuclear Technology (NINT). (authors)

  4. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    Science.gov (United States)

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  5. Effect of PVRC damping with independent support motion response spectrum analysis of piping systems

    International Nuclear Information System (INIS)

    Wang, Y.K.; Bezler, P.; Shteyngart, S.

    1986-01-01

    The Technical Committee for Piping Systems of the Pressure Vessel Research Committee (PVRC) has recommended new damping values to be used in the seismic analyses of piping systems in nuclear power plants. To evaluate the effects of coupling these recommendations with the use of independent support motion analyses methods, two sets of seismic analyses have been carried out for several piping systems. One set based on the use of uniform damping as specified in Regulatory Guide 1.61, the other based on the PVRC recommendations. In each set the analyses were performed using independent support motion time history and response spectrum methods as well as the envelope spectrum method. In the independent response spectrum analyses, 14 response estimates were in fact obtained by considering different combination procedures between the support group contributions and all sequences of combinations between support groups, modes and directions. For each analysis set, the response spectrum results were compared with time history estimates of those results. Comparison tables were then prepared depicting the percentage by which the response spectrum estimates exceeded the time history estimates. By comparing the result tables between both analysis sets, the impact of PVRC damping can be observed. Preliminary results show that the degree of exceedance of the response spectrum estimates based on PVRC damping is less than that based on uniform damping for the same piping problem. Expressed differently the results obtained if ISM methods are coupled with PVRC damping are not as conservative as those obtained using uniform damping

  6. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy.

    Science.gov (United States)

    Völler, Jan-Stefan; Biava, Hernan; Hildebrandt, Peter; Budisa, Nediljko

    2017-11-01

    To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Effect of Time and Fusion Length on Motion of the Unfused Lumbar Segments in Adolescent Idiopathic Scoliosis.

    Science.gov (United States)

    Marks, Michelle C; Bastrom, Tracey P; Petcharaporn, Maty; Shah, Suken A; Betz, Randal R; Samdani, Amer; Lonner, Baron; Miyanji, Firoz; Newton, Peter O

    2015-11-01

    The purpose of this study was to assess L4-S1 inter-vertebral coronal motion of the unfused distal segments of the spine in patients with adolescent idiopathic scoliosis (AIS) after instrumented fusion with regards to postoperative time and fusion length, independently. Coronal motion was assessed by standardized radiographs acquired in maximum right and left bending positions. The intervertebral angles were measured via digital radiographic measuring software and the motion from the levels of L4-S1 was summed. The entire cohort was included to evaluate the effect of follow-up time on residual motion. Patients were grouped into early (10 years) follow-up groups. A subset of patients (n = 35) with a primary thoracic curve and a nonstructural modifier type "C" lumbar curve were grouped as either selective fusion (lowest instrumented vertebra [LIV] of L1 and above) or longer fusion (LIV of L2 and below) and effect on motion was evaluated. The data for 259 patients are included. The distal residual unfused motion (from L4 to S1) remained unchanged across early, midterm, to long-term follow-up. In the selective fusion subset of patients, a significant increase in motion from L4 to S1 was seen in the patients who were fused long versus the selectively fused patients, irrespective of length of follow-up time. Motion in the unfused distal lumbar segments did not vary within the >10-year follow-up period. However, in patients with a primary thoracic curve and a nonstructural lumbar curve, the choice to fuse longer versus shorter may have significant consequences. The summed motion from L4 to S1 is 50% greater in patients fused longer compared with those patients with a selective fusion, in which postoperative motion is shared by more unfused segments. The implications of this focal increased motion are unknown, and further research is warranted but can be surmised. Copyright © 2015 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.

  8. Case studies on recent Stark broadening calculations and STARK-B database development in the framework of the European project VAMDC (Virtual Atomic and Molecular Data Center)

    International Nuclear Information System (INIS)

    Sahal-Brechot, S

    2010-01-01

    Stark broadening theories and calculations have been extensively developed for about 50 years. The theory can now be considered as mature for many applications, especially for accurate spectroscopic diagnostics and modelling. In astrophysics, with the increasing sensitivity of observations and spectral resolution, in all domains of wavelengths from far UV to infrared, it has become possible to develop realistic models of interiors and atmospheres of stars and interpret their evolution and the creation of elements through nuclear reactions. For hot stars, especially white dwarfs, Stark broadening is the dominant collisional line broadening process. This requires the knowledge of numerous profiles, especially for trace elements, which are used as useful probes for modern spectroscopic diagnostics. Hence, calculations based on a simple but enough accurate and fast method, are necessary for obtaining numerous results. Ab initio calculations are a growing domain of development. Nowadays, the access to such data via an on line database becomes crucial. This is the object of STARK-B, which is a collaborative project between the Paris Observatory and the Astronomical Observatory of Belgrade. It is a database of calculated widths and shifts of isolated lines of atoms and ions due to electron and ion collisions. It is devoted to modelling and spectroscopic diagnostics of stellar atmospheres and envelopes. In addition, it is relevant to laboratory plasmas, laser equipments and technological plasmas. It is a part of VAMDC (Virtual Atomic and Molecular Data Centre), which is an European Union funded collaboration between groups involved in the generation and use of atomic and molecular data.

  9. Effect of task-related continuous auditory feedback during learning of tracking motion exercises

    Directory of Open Access Journals (Sweden)

    Rosati Giulio

    2012-10-01

    visuomotor perturbation, whereas controller-task-related sound feedback did not. This result was particularly interesting, as the subjects relied more on auditory augmentation of the visualized target motion (which was altered with respect to arm motion by the visuomotor perturbation, rather than on sound feedback provided in the controller space, i.e., information directly related to the effective target motion of their arm. Conclusions Our results indicate that auditory augmentation of visual feedback can be beneficial during the execution of upper limb movement exercises. In particular, we found that continuous task-related information provided through sound, in addition to visual feedback can improve not only performance but also the learning of a novel visuomotor perturbation. However, error-related information provided through sound did not improve performance and negatively affected learning in the presence of the visuomotor perturbation.

  10. Exercise induced effects on muscle function and range of motion in patients with hip osteoarthritis

    DEFF Research Database (Denmark)

    Bieler, Theresa; Siersma, Volkert; Magnusson, S Peter

    2018-01-01

    BACKGROUND AND PURPOSE: Patients with hip osteoarthritis have impairments in muscle function (muscle strength and power) and hip range of motion (ROM), and it is commonly believed that effective clinical management of osteoarthritis should address these impairments to reduce pain and disability......-two patients were randomized to either 4 months of physiotherapist-supervised, moderate, progressive, strength training (n = 50), physiotherapist-supervised NW (n = 50), or unsupervised HBE (n = 52). Maximal isometric hip and thigh muscle strength and leg extensor power and active hip ROM were assessed...... at baseline 2, 4, and 12 months. RESULTS: Intention-to-treat-analyses did not show any significant between-group differences for improvements in muscle strength and power or ROM at any time points. Short-term significant (p

  11. High Fidelity Modeling of SRP and Its Effect on the Relative Motion of Starshade and WFIRST

    Science.gov (United States)

    Farres, Ariadna; Webster, Cassandra; Folta, Dave

    2018-01-01

    In this paper we perform a detailed analysis of how Solar Radiation Pressure (SRP) affects the relative motion of two spacecrafts, the Wide-Field Infrared Survey Telescope (WFIRST) and Starshade, orbiting in the vicinity of the Sun-Earth L2. While WFIRST orbits about its own Libration Point Orbit (LPO), Starshade will fly a specific trajectory to align with WFIRST and observe a Design Reference Mission of pre-determined target stars. In this analysis, we focus on the transfer orbit for Starshade from one observation to the other. We will describe how SRP affects the dynamics of the Starshade relative to WFIRSTand how relevant this effect is in order to get an accurate estimate of the total difference in velocity (delta v).

  12. Effect of ship motions and flow stability in a small marine reactor driven by natural circulation

    International Nuclear Information System (INIS)

    Yoritsune, Tsutomu; Ishida, Toshihisa

    2001-12-01

    By using a small reactor as a power source for investigations and developments under sea, widely expanded activity is expectable. In this case, as for a nuclear reactor, small-size and lightweightness, and simplification of a system are needed with the safety. In JAERI, very small reactors for submersible research vessel (Deep-sea Reactor DRX and submersible Compact Reactor SCR) have been designed on the basis of needs investigation of sea research. Although the reactor is a PWR type, self-pressurization and natural circulation system are adopted in a primary system for small size and lightweightness. The fluid flow condition of the reactor core outlet is designed to be the two-phase with a low quality. Although the flow of a primary system is the two-phase flow with a low quality, the density wave oscillation may occur according to operating conditions. Moreover, since there are ship motions of heaving (the vertical direction acceleration) etc., when a submersible research vessel navigates on the sea surface, the circulation flow of the primary system is directly influenced by this external force. In order to maintain stable operations of the reactor, it is necessary to clarify effects of the flow stability characteristic of the primary coolant system and the external force. Until now, as for the flow stability of a nuclear reactor itself, many research reports have been published including the nuclear-coupled thermal oscillation of BWRs such as LaSalle-2, WNP-2 etc. As for the effect of external force, it is reported that the acceleration change based on a seismic wave affects the reactor core flow and the reactor power in a BWR. On the other hand, also in a PWR, since adoption of natural circulation cooling is considered for a generation 4 reactor, it is thought that the margin of the reactor core flow stability becomes an important parameter in the design. The reactor coolant flow mentioned in this report is the two-phase natural circulation flow coupled with

  13. Individual particle motion and the effect of scattering in an axially symmetric magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Garren, A; Riddell, R J; Smith, L; Henrich, L R [Radiation Laboratory, University of California, Berkeley, CA (United States); Bing, G; Northrop, T G; Roberts, J E [Radiation Laboratory, University of California, Livermore, CA (United States)

    1958-07-01

    The possibility of confining charged particles with magnetic mirrors has long been recognized. A mirror field has axial symmetry and a magnitude that increases along the axis away from a central region in which the particles are to be contained. Heretofore, the likelihood of confinement has been based on the approximate invariance of the magnetic moment as described by Alfven. If the magnetic moment of a particle with given energy is too small the particle escapes axially through the mirror. The moment can become small because it is not a rigorous constant of the motion or because of Coulomb scattering of the particle. Both these effects have been studied; the first by analytic and numerical methods and the second by numerical solution of the Fokker- Planck equation.

  14. Observation of terrestrial orbital motion using the cosmic-ray Compton-Getting effect

    International Nuclear Information System (INIS)

    Cutler, D.J.; Groom, D.E.

    1986-01-01

    Using underground observations, the authors have found a small diurnal amplitude modulation of the cosmic-ray muon intensity which agrees in amplitude and phase with a first-order relativistic effect due to the Earth's motion, as discussed by Compton and Getting :1935, Phys. Rev., 47, 817:. Analysis of the arrival times of 5x10 8 muons during a period of 5.4 yr yields a fractional amplitude variation of 2.5sub(-0.6) sup(+0.7) x 10 -4 , with a maximum near dawn, at 08:18+-1.0 h local mean solar time (LT). The expected amplitude is 3.40 x 10 -4 , with the maximum at 06:00LT. (author)

  15. The effect of autogenic training and biofeedback on motion sickness tolerance.

    Science.gov (United States)

    Jozsvai, E E; Pigeau, R A

    1996-10-01

    Motion sickness is characterized by symptoms of vomiting, drowsiness, fatigue and idiosyncratic changes in autonomic nervous system (ANS) responses such as heart rate (HR) and skin temperature (ST). Previous studies found that symptoms of motion sickness are controllable through self-regulation of ANS responses and the best method to teach such control is autogenic-feedback (biofeedback) training. Recent experiments indicated that biofeedback training is ineffective in reducing symptoms of motion sickness or in increasing tolerance to motion. If biofeedback facilitates learning of ANS self-regulation then autogenic training with true feedback (TFB) should lead to better control over ANS responses and better motion tolerance than autogenic training with false feedback (FFB). If there is a relationship between ANS self-regulation and coping with motion stress, a significant correlation should be found between amounts of control over ANS responses and measures of motion tolerance and/or symptoms of motion sickness. There were 3 groups of 6 subjects exposed for 6 weeks to weekly sessions of Coriolis stimulation to induce motion sickness. Between the first and second Coriolis sessions, subjects in the experimental groups received five episodes of autogenic training with either true (group TFB) or false (group FFB) feedback on their HR and ST. The control group (CTL) received no treatment. Subjects learned to control their HR and ST independent of whether they received true or false feedback. Learned control of ST and HR was not related to severity of motion sickness or subject's ability to withstand Coriolis stimulation following treatment. A lack of significant correlation between these variables suggested that subjects were not able to apply their skills of ANS self-regulation in the motion environment, and/ or such skills had little value in reducing symptoms of motion sickness or enhancing their ability to withstand rotations.

  16. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses.

    Science.gov (United States)

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-04-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.

  17. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    Science.gov (United States)

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (pknee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  18. Experimental determination of the Stark broadening of Cu I spectral lines in a plasma of a capillary discharge

    International Nuclear Information System (INIS)

    Sandolache, G.; Zoita, V.; Bauchire, M.; Le Menn, E.; Gentils, F.; Fleurier, C.

    2001-01-01

    Copper lines are frequently observed in various types of plasma device and industrial plasmas and then it is desirable to develop methods of plasma diagnostics using the emission spectrum of copper lines. The aim of this work is to create a database for the neutral copper spectral lines directly usable for the diagnostic of plasmas with metal vapors. An experimental device has been developed to create a metal plasma having the required metrological properties to facilitate the spectroscopic measurements. A capillary discharge technique has been used to create a plasma jet representing a radially symmetric light source. The copper-hydrogen plasma jet was produced by the ablation of the capillary wall consisting of a copper-embedded elastomer. The plasma jet was observed side-on using the high-resolution spectrometers equipped with ICCD detectors. The 2D square matrix ICCD detectors have permitted the observation of cross sections of the plasma jet. The high-speed time resolved camera equipped with interference filters has been used to check the cylindrical shape and the homogeneity of the plasma jet. The electron density of the plasma jet was obtained by using the H α spectral line of the hydrogen component plasma. The temperature was determined by applying the relative intensity method to the measured intensities of the neutral copper spectral lines emitted by the plasma jet. The hydrogen and copper lines were broadened principally by the Stark effect. The measured temperatures were about 15,000 K and the electron density of about 2x10 17 cm -3 . The results of the Stark broadening of the neutral cooper concerned particularly the lines 453.9 nm, 465.1 nm, 515.3 nm and 529.2 nm. (authors)

  19. Trends with coverage and pH in Stark tuning rates for CO on Pt(1 1 1) electrodes

    International Nuclear Information System (INIS)

    Uddin, Jamal; Anderson, Alfred B.

    2013-01-01

    The general understanding of so-called electrochemical Stark tuning rates, that is, the potential dependence of vibrational frequency of CO adsorbed on Pt(1 1 1), has developed over the past thirty years in terms of two semiempirical models. The first is the Fermi level shift model used in non-self-consistent-field one-electron molecular orbital theory. This approach has provided qualitative understanding in terms of Fermi level-dependent variations in σ and π orbital bonding between CO and the electrode surface atoms. The second is the use of self-consistent-field theory with surface charging to create adjustable electric fields. Adsorbed CO then reacts to the field in a classical Stark effect with some small uncharacterized Fermi level shift superimposed. It is now possible, using two-dimensional density functional theory, including electrolyte polarization from surface charging, and the dielectric continuum to approximate solvation energy, to calculate the tuning rate in response to shifts in the Fermi level and electrode potential caused by changing the surface charge density. Here we apply this first principles method to calculate trends in the tuning rate for CO adsorbed on 1-fold Pt(1 1 1) sites with changes in CO(ads) coverage and with changes in electrolyte pH. The tuning rate is calculated to decrease as the coverage is increased and, for high coverage, to increase as the pH is increased. These trends are shown to be in qualitative agreement with the very little existing experimental data for these trends

  20. The effect of patient anxiety and depression on motion during myocardial perfusion SPECT imaging

    International Nuclear Information System (INIS)

    Lyra, Vassiliki; Kallergi, Maria; Rizos, Emmanouil; Lamprakopoulos, Georgios; Chatziioannou, Sofia N.

    2016-01-01

    Patient motion during myocardial perfusion SPECT imaging (MPI) may be triggered by a patient’s physical and/or psychological discomfort. The aim of this study was to investigate the impact of state anxiety (patient’s reaction to exam-related stress), trait anxiety (patient’s personality characteristic) and depression on patient motion during MPI. All patients that underwent MPI in our department in a six-month period were prospectively enrolled. One hundred eighty-three patients (45 females; 138 males) filled in the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory (BDI), along with a short questionnaire regarding their age, height and weight, level of education in years, occupation, and marital status. Cardiovascular and other co-morbidity factors were also evaluated. Through inspection of raw data on cinematic display, the presence or absence of patient motion was registered and classified into mild, moderate and severe, for both phases involved in image acquisition. The correlation of patient motion in the stress and delay phases of MPI and each of the other variables was investigated and the corresponding Pearson’s coefficients of association were calculated. The anxiety-motion (r = 0.43, P < 0.0001) and depression-motion (r = 0.32, P < 0.0001) correlation results were moderately strong and statistically significant for the female but not the male patients. All the other variables did not demonstrate any association with motion in MPI, except a weak correlation between age and motion in females (r = 0.23, P < 0.001). The relationship between anxiety-motion and depression-motion identified in female patients represents the first supporting evidence of psychological discomfort as predisposing factor for patient motion during MPI

  1. The effect of patient anxiety and depression on motion during myocardial perfusion SPECT imaging.

    Science.gov (United States)

    Lyra, Vassiliki; Kallergi, Maria; Rizos, Emmanouil; Lamprakopoulos, Georgios; Chatziioannou, Sofia N

    2016-08-22

    Patient motion during myocardial perfusion SPECT imaging (MPI) may be triggered by a patient's physical and/or psychological discomfort. The aim of this study was to investigate the impact of state anxiety (patient's reaction to exam-related stress), trait anxiety (patient's personality characteristic) and depression on patient motion during MPI. All patients that underwent MPI in our department in a six-month period were prospectively enrolled. One hundred eighty-three patients (45 females; 138 males) filled in the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory (BDI), along with a short questionnaire regarding their age, height and weight, level of education in years, occupation, and marital status. Cardiovascular and other co-morbidity factors were also evaluated. Through inspection of raw data on cinematic display, the presence or absence of patient motion was registered and classified into mild, moderate and severe, for both phases involved in image acquisition. The correlation of patient motion in the stress and delay phases of MPI and each of the other variables was investigated and the corresponding Pearson's coefficients of association were calculated. The anxiety-motion (r = 0.43, P depression-motion (r = 0.32, P patients. All the other variables did not demonstrate any association with motion in MPI, except a weak correlation between age and motion in females (r = 0.23, P anxiety-motion and depression-motion identified in female patients represents the first supporting evidence of psychological discomfort as predisposing factor for patient motion during MPI.

  2. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  3. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  4. Vortex dynamics in nonrelativistic version of Abelian Higgs model: Effects of the medium on the vortex motion

    Directory of Open Access Journals (Sweden)

    Kozhevnikov Arkadii

    2016-01-01

    Full Text Available The closed vortex dynamics is considered in the nonrelativistic version of the Abelian Higgs Model. The effect of the exchange of excitations propagating in the medium on the vortex string motion is taken into account. The obtained are the effective action and the equation of motion both including the exchange of the propagating excitations between the distant segments of the vortex and the possibility of its interaction with the static fermion asymmetric background. They are applied to the derivation of the time dependence of the basic geometrical contour characteristics.

  5. Effect of soil conditions on predicted ground motion: Case study from Western Anatolia, Turkey

    Science.gov (United States)

    Gok, Elcin; Chávez-García, Francisco J.; Polat, Orhan

    2014-04-01

    We present a site effect study for the city of Izmir, Western Anatolia, Turkey. Local amplification was evaluated using state-of-practice tools. Ten earthquakes recorded at 16 sites were analysed using spectral ratios relative to a reference site, horizontal-to-vertical spectral ratios, and an inversion scheme of the Fourier amplitude spectra of the recorded S-waves. Seismic noise records were also used to estimate site effects. The different estimates are in good agreement among them, although a basic uncertainty of a factor of 2 seems difficult to decrease. We used our site effect estimates to predict ground motion in Izmir for a possible M6.5 earthquake close to the city using stochastic modelling. Site effects have a large impact on PSV (pseudospectral velocity), where local amplification increases amplitudes by almost a factor of 9 at 1 Hz relative to the firm ground condition. Our results allow identifying the neighbourhoods of Izmir where hazard mitigation measurements are a priority task and will also be useful for planning urban development.

  6. Effects of asymptomatic rotator cuff pathology on in vivo shoulder motion and clinical outcomes.

    Science.gov (United States)

    Baumer, Timothy G; Dischler, Jack; Mende, Veronica; Zauel, Roger; van Holsbeeck, Marnix; Siegal, Daniel S; Divine, George; Moutzouros, Vasilios; Bey, Michael J

    2017-06-01

    The incidence of asymptomatic rotator cuff tears has been reported to range from 15% to 39%, but the influence of asymptomatic rotator cuff pathology on shoulder function is not well understood. This study assessed the effects of asymptomatic rotator cuff pathology on shoulder kinematics, strength, and patient-reported outcomes. A clinical ultrasound examination was performed in 46 asymptomatic volunteers (age: 60.3 ± 7.5 years) with normal shoulder function to document the condition of their rotator cuff. The ultrasound imaging identified the participants as healthy (n = 14) or pathologic (n = 32). Shoulder motion was measured with a biplane x-ray imaging system, strength was assessed with a Biodex (Biodex Medical Systems, Inc., Shirley, NY, USA), and patient-reported outcomes were assessed using the Western Ontario Rotator Cuff Index and visual analog scale pain scores. Compared with healthy volunteers, those with rotator cuff pathology had significantly less abduction (P = .050) and elevation (P = .041) strength, their humerus was positioned more inferiorly on the glenoid (P = .018), and the glenohumeral contact path length was longer (P = .007). No significant differences were detected in the Western Ontario Rotator Cuff Index, visual analog scale, range of motion, or acromiohumeral distance. The differences observed between the healthy volunteers and those with asymptomatic rotator cuff pathology lend insight into the changes in joint mechanics, shoulder strength, and conventional clinical outcomes associated with the early stages of rotator cuff pathology. Furthermore, these findings suggest a plausible mechanical progression of kinematic and strength changes associated with the development of rotator cuff pathology. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics.

    Science.gov (United States)

    Flynn, Kevin J; Skibinski, David O F; Lindemann, Christian

    2018-04-01

    Nutrient acquisition is a critical determinant for the competitive advantage for auto- and osmohetero- trophs alike. Nutrient limited growth is commonly described on a whole cell basis through reference to a maximum growth rate (Gmax) and a half-saturation constant (KG). This empirical application of a Michaelis-Menten like description ignores the multiple underlying feedbacks between physiology contributing to growth, cell size, elemental stoichiometry and cell motion. Here we explore these relationships with reference to the kinetics of the nutrient transporter protein, the transporter rate density at the cell surface (TRD; potential transport rate per unit plasma-membrane area), and diffusion gradients. While the half saturation value for the limiting nutrient increases rapidly with cell size, significant mitigation is afforded by cell motion (swimming or sedimentation), and by decreasing the cellular carbon density. There is thus potential for high vacuolation and high sedimentation rates in diatoms to significantly decrease KG and increase species competitive advantage. Our results also suggest that Gmax for larger non-diatom protists may be constrained by rates of nutrient transport. For a given carbon density, cell size and TRD, the value of Gmax/KG remains constant. This implies that species or strains with a lower Gmax might coincidentally have a competitive advantage under nutrient limited conditions as they also express lower values of KG. The ability of cells to modulate the TRD according to their nutritional status, and hence change the instantaneous maximum transport rate, has a very marked effect upon transport and growth kinetics. Analyses and dynamic models that do not consider such modulation will inevitably fail to properly reflect competitive advantage in nutrient acquisition. This has important implications for the accurate representation and predictive capabilities of model applications, in particular in a changing environment.

  8. The effectiveness of moving masses in reducing the roll motion of floating vessels

    DEFF Research Database (Denmark)

    Montazeri, N.; Mousavizadegan, S.H.; Bakhtiarinejad, F.

    2010-01-01

    Dynamic motions of Ships in severe conditions of sea maybe undesired and should be controlled by some devices. The rollmotion is much more significant than the other oscillations which can affect comfort, safety and efficiency of navigation at sea. This motion is controlled by some common stabili...

  9. The effect of motion on dynamic nuclear polarization: A new theoretical development

    International Nuclear Information System (INIS)

    Coffino, A.R.

    1989-01-01

    Dynamic Nuclear Polarization (DNP) is a magnetic resonance technique which uses two different radiation sources: a radiofrequency field and microwave field to radiate nuclei and electrons, respectively. The DNP experiment probes the nature of the interaction between nuclei and electrons. The maximum of the resonance signal from the nucleus is plotted as a function of microwave frequency for the case of the microwaves on and off. The DNP signal is the ratio of these two signals and is termed the enhancement of the nuclear signal. This thesis considers the theory of the DNP signal based on the density matrix formulation of the Stochastic Liouville Equation, which incorporates the spin-spin interactions, spin-field interactions and a stochastic dynamics process which modulates these interactions. The case of one electron coupled to one spin one-half nucleus is considered. Such a formulation has never been developed. The thesis demonstrates that previous partial theories have attempted to incorporate dynamics have been incorrect. This theoretical development demonstrates, for the first time, how dynamics affects the DNP lineshapes. This theory predicts that DNP spectra change smoothly from the no motion to the fast motion region, and reproduces the known analytic answers in both the no-motion and the fast-motion limit. The most important observation of the results is that a DNP signal for a motional rate in the intermediate motional region looks like a superposition of a no-motion and fast-motion signal

  10. Deconvolution effect of near-fault earthquake ground motions on stochastic dynamic response of tunnel-soil deposit interaction systems

    Directory of Open Access Journals (Sweden)

    K. Hacıefendioğlu

    2012-04-01

    Full Text Available The deconvolution effect of the near-fault earthquake ground motions on the stochastic dynamic response of tunnel-soil deposit interaction systems are investigated by using the finite element method. Two different earthquake input mechanisms are used to consider the deconvolution effects in the analyses: the standard rigid-base input and the deconvolved-base-rock input model. The Bolu tunnel in Turkey is chosen as a numerical example. As near-fault ground motions, 1999 Kocaeli earthquake ground motion is selected. The interface finite elements are used between tunnel and soil deposit. The mean of maximum values of quasi-static, dynamic and total responses obtained from the two input models are compared with each other.

  11. The effects of area postrema lesions and selective vagotomy on motion-induced conditioned taste aversion

    Science.gov (United States)

    Fox, Robert A.; Sutton, R. L.; Mckenna, Susan

    1991-01-01

    Conditioned taste aversion (CTA) is one of several behaviors which was suggested as a putative measure of motion sickness in rats. A review is made of studies which used surgical disruption of area postrema or the vagus nerve to investigate whether CTA and vomiting induced by motion may depend on common neural pathways or structures. When the chemoreceptive function of the area postrema (AP) is destroyed by complete ablation, rats develop CTA and cats and monkeys develop CTA and vomit. Thus the AP is not crucially involved in either CTA or vomiting induced by motion. However, after complete denervation of the stomach or after labyrinthectomy rats do not develop CTA when motion is used as the unconditioned stimulus. Studies of brainstem projections of the vagus nerve, the area postrema, the periaqueductal grey, and the vestibular system are used as the basis for speculation about regions which could mediate both motion-induced vomiting and behavioral food aversion.

  12. Effect of the Target Motion Sampling temperature treatment method on the statistics and performance

    International Nuclear Information System (INIS)

    Viitanen, Tuomas; Leppänen, Jaakko

    2015-01-01

    Highlights: • Use of the Target Motion Sampling (TMS) method with collision estimators is studied. • The expected values of the estimators agree with NJOY-based reference. • In most practical cases also the variances of the estimators are unaffected by TMS. • Transport calculation slow-down due to TMS dominates the impact on figures-of-merit. - Abstract: Target Motion Sampling (TMS) is a stochastic on-the-fly temperature treatment technique that is being developed as a part of the Monte Carlo reactor physics code Serpent. The method provides for modeling of arbitrary temperatures in continuous-energy Monte Carlo tracking routines with only one set of cross sections stored in the computer memory. Previously, only the performance of the TMS method in terms of CPU time per transported neutron has been discussed. Since the effective cross sections are not calculated at any point of a transport simulation with TMS, reaction rate estimators must be scored using sampled cross sections, which is expected to increase the variances and, consequently, to decrease the figures-of-merit. This paper examines the effects of the TMS on the statistics and performance in practical calculations involving reaction rate estimation with collision estimators. Against all expectations it turned out that the usage of sampled response values has no practical effect on the performance of reaction rate estimators when using TMS with elevated basis cross section temperatures (EBT), i.e. the usual way. With 0 Kelvin cross sections a significant increase in the variances of capture rate estimators was observed right below the energy region of unresolved resonances, but at these energies the figures-of-merit could be increased using a simple resampling technique to decrease the variances of the responses. It was, however, noticed that the usage of the TMS method increases the statistical deviances of all estimators, including the flux estimator, by tens of percents in the vicinity of very

  13. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    Science.gov (United States)

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Probabilistic seismic hazard assessment for the effect of vertical ground motions on seismic response of highway bridges

    Science.gov (United States)

    Yilmaz, Zeynep

    Typically, the vertical component of the ground motion is not considered explicitly in seismic design of bridges, but in some cases the vertical component can have a significant effect on the structural response. The key question of when the vertical component should be incorporated in design is answered by the probabilistic seismic hazard assessment study incorporating the probabilistic seismic demand models and ground motion models. Nonlinear simulation models with varying configurations of an existing bridge in California were considered in the analytical study. The simulation models were subjected to the set of selected ground motions in two stages: at first, only horizontal components of the motion were applied; while in the second stage the structures were subjected to both horizontal and vertical components applied simultaneously and the ground motions that produced the largest adverse effects on the bridge system were identified. Moment demand in the mid-span and at the support of the longitudinal girder and the axial force demand in the column are found to be significantly affected by the vertical excitations. These response parameters can be modeled using simple ground motion parameters such as horizontal spectral acceleration and vertical spectral acceleration within 5% to 30% error margin depending on the type of the parameter and the period of the structure. For a complete hazard assessment, both of these ground motion parameters explaining the structural behavior should also be modeled. For the horizontal spectral acceleration, Abrahamson and Silva (2008) model was used within many available standard model. A new NGA vertical ground motion model consistent with the horizontal model was constructed. These models are combined in a vector probabilistic seismic hazard analyses. Series of hazard curves developed and presented for different locations in Bay Area for soil site conditions to provide a roadmap for the prediction of these features for future

  15. Fluids in micropores. V. Effects of thermal motion in the walls of a slit-micropore

    International Nuclear Information System (INIS)

    Diestler, D.J.; Schoen, M.

    1996-01-01

    Previous articles in this series have concerned the prototypal slit-pore with rigid walls, in which a Lennard-Jones (12,6) monatomic film is constrained between two plane-parallel walls comprising like atoms fixed in the face-centered-cubic (fcc) (100) configuration. The behavior of molecularly thin films in the rigid-wall prototype is governed by the template effect, whereby solid films can form epitaxially when the walls are properly aligned in the lateral directions. In this article the influence of thermal motion of the wall atoms on the template effect is investigated. The walls are treated as Einstein solids, the atoms moving independently in harmonic potentials centered on rigidly fixed equilibrium positions in the fcc (100) configuration. The force constant f c is a measure of the stiffness of the walls, the rigid-wall limit being f c =∞. Formal thermodynamic and statistical mechanical analyses of the system are carried out. The results of grand canonical ensemble Monte Carlo simulations indicate that for values of f c characteristic of a soft (e.g., noble-gas) crystal dynamic coupling between wall and film has a substantial influence on such equilibrium properties as normal stress (load) and interfacial tensions. In general, the softer the walls (i.e., the smaller the value of f c ), the weaker the template effect and hence the softer and more disordered the confined film. copyright 1996 American Institute of Physics

  16. Stark broadening in hot, dense laser-produced plasmas

    International Nuclear Information System (INIS)

    Tighe, R.J.; Hooper, C.F. Jr.

    1976-01-01

    Broadened Lyman-α x-ray lines from neon X and argon XVIII radiators, which are immersed in a hot, dense deuterium or deuterium-tritium plasma, are discussed. In particular, these lines are analyzed for several temperature-density cases, characteristic of laser-produced plasmas; special attention paid to the relative importance of ion, electron, and Doppler effects. Static ion microfield distribution functions are tabulated

  17. Observation of asymmetric Stark profiles from plasmas created by a picosecond KrF laser

    International Nuclear Information System (INIS)

    Nam, C.H.; Tighe, W.; Suckewer, S.; Seely, J.F.; Feldman, U.; Woltz, L.A.

    1987-10-01

    High-resolution extreme ultraviolet (XUV) spectra from solid targets irradiated by a picosecond KrF* laser focused to 10 16 W/cm 2 have been recorded. The line profiles of transitions in Li-like fluorine and oxygen are asymmetric and up to 2 A in width. Calculations indicate the presence of transitions of the type 2p-3p and other forbidden Stark components. 11 refs., 6 figs

  18. Observation of interference between stark and electric quadrupole transitions in LIF from He atoms in plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Namba, S.; Furukawa, S.; Oda, T.; James, B.W.; Andruczyk, D.

    2004-01-01

    Interference between Stark-induced dipole and electric quadrupole amplitudes was observed in a He hollow cathode plasma with axial magnetic field perpendicular to the sheath electric field E by laser-induced fluorescence (LIF) method. Circularly polarized LIF signals were observed in the sheath region. Spatial profile of the degree of polarization P c showed characteristic features of the interference. Using theoretically calculated P c -E relationship, E-profile was successfully obtained form the measure P c . (author)

  19. Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human–Robot Collaboration

    Science.gov (United States)

    Shah, Julie A.

    2015-01-01

    Objective: The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. Background: The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human–robot interaction. Method: We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. Results: When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. Conclusion: People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human–robot team fluency and human worker satisfaction. Application: Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human–robot collaboration. PMID:25790568

  20. Prehospital Spinal Immobilization: Effect of Effort on Kinematics of Voluntary Head-neck Motion Assessed using Accelerometry.

    Science.gov (United States)

    Pryce, Rob; McDonald, Neil

    2016-02-01

    Standards for immobilizing potentially spine-injured patients in the prehospital environment are evolving. Current guidelines call for more research into treatment practices. Available research into spinal immobilization (SI) reveals a number of limitations. There are currently few techniques for measuring head and neck motion that address identified limitations and can be adapted to clinically relevant scenarios. This study investigates one possible method. Study participants were fitted with miniaturized accelerometers to record head motion. Participants were exposed to three levels of restraint: none, cervical-collar only, and full immobilization. In each condition, participants were instructed to move in single planes, with multiple iterations at each of four levels of effort. Participants were also instructed to move continuously in multiple planes, with iterations at each of three levels of simulated patient movement. Peak and average displacement and acceleration were calculated for each immobilization condition and level of effort. Comparisons were made with video-based measurement. Participant characteristics also were tracked. Acceleration and displacement of the head increased with effort and decreased with more restraint. In some conditions, participants generated measurable acceleration with minimal displacement. Continuous, multi-dimensional motions produced greater displacement and acceleration than single-plane motions under similar conditions. Study results suggest a number of findings: acceleration complements displacement as a measure of motion in potentially spine-injured patients; participant effort has an effect on outcome measures; and continuous, multi-dimensional motion can produce results that differ from single-plane motions. Miniaturized accelerometers are a promising technology for future research to investigate these findings in realistic, clinically relevant scenarios.

  1. Analyzing the effects of human-aware motion planning on close-proximity human-robot collaboration.

    Science.gov (United States)

    Lasota, Przemyslaw A; Shah, Julie A

    2015-02-01

    The objective of this work was to examine human response to motion-level robot adaptation to determine its effect on team fluency, human satisfaction, and perceived safety and comfort. The evaluation of human response to adaptive robotic assistants has been limited, particularly in the realm of motion-level adaptation. The lack of true human-in-the-loop evaluation has made it impossible to determine whether such adaptation would lead to efficient and satisfying human-robot interaction. We conducted an experiment in which participants worked with a robot to perform a collaborative task. Participants worked with an adaptive robot incorporating human-aware motion planning and with a baseline robot using shortest-path motions. Team fluency was evaluated through a set of quantitative metrics, and human satisfaction and perceived safety and comfort were evaluated through questionnaires. When working with the adaptive robot, participants completed the task 5.57% faster, with 19.9% more concurrent motion, 2.96% less human idle time, 17.3% less robot idle time, and a 15.1% greater separation distance. Questionnaire responses indicated that participants felt safer and more comfortable when working with an adaptive robot and were more satisfied with it as a teammate than with the standard robot. People respond well to motion-level robot adaptation, and significant benefits can be achieved from its use in terms of both human-robot team fluency and human worker satisfaction. Our conclusion supports the development of technologies that could be used to implement human-aware motion planning in collaborative robots and the use of this technique for close-proximity human-robot collaboration.

  2. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  3. Ion motion in the current sheet with sheared magnetic field – Part 2: Non-adiabatic effects

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-10-01

    Full Text Available We investigate dynamics of charged particles in current sheets with the sheared magnetic field. In our previouspaper (Artemyev et al., 2013 we studied the particle motion in such magnetic field configurations on the basis of the quasi-adiabatic theory and conservation of the quasi-adiabatic invariant. In this paper we concentrate on violation of the adiabaticity due to jumps of this invariant and the corresponding effects of stochastization of a particle motion. We compare effects of geometrical and dynamical jumps, which occur due to the presence of the separatrix in the phase plane of charged particle motion. We show that due to the presence of the magnetic field shear, the average value of dynamical jumps is not equal to zero. This effect results in the decrease of the time interval necessary for stochastization of trapped particle motion. We investigate also the effect of the magnetic field shear on transient trajectories, which cross the current sheet boundaries. Presence of the magnetic field shear leads to the asymmetry of reflection and transition of particles in the current sheet. We discuss the possible influence of single-particle effects revealed in this paper on the current sheet structure and dynamics.

  4. Assessment of motion effects on the FPSO (Floating, Production, Storage and Offloading) vessel Terra Nova

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, B.; Hofer, K. [Defence Research and Development Canada, Toronto, ON (Canada); Brooks, C.J. [Survival Systems Group Ltd., Dartmouth, NS (Canada)

    2002-10-01

    A study was conducted to define the incidence and severity of seasickness, motion-induced fatigue and task performance problems encountered on the Floating, Production, Storage, Offshore (FPSO) vessel which Petro-Canada operates in the Grands Banks of Newfoundland at the Terra Nova Field. The FPSO vessel is tethered to the oil well head by flexible couplings and is subjected to severe wave motion at sea. Crew members living and working aboard the FPSO vessel are exposed to more severe weather motion compared to those on fixed installation platforms, particularly during the winter months. The study involved a questionnaire to determine if seasickness is a problem and whether specific ship motions affect sleep, mental and physical performance on the vessel. Ship motion data was obtained through sensors mounted on the bow of the vessel. Respondents revealed that the incidence and severity of motion sickness and sleep disturbance ranged from slight to moderate. The correlation between sleep disturbance and ship motion was high. Problems in task performance ranged from loss of concentration, decision making and memory disorders and task completion problems. The number of safety, health and performance issues increased with bad weather conditions. One of the objectives of this study is to develop recommendations to provide operations guidance to improve comfort and performance on FPSO vessels. 13 tabs., 7 figs.

  5. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy

    Science.gov (United States)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.

    2013-12-01

    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  6. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    Science.gov (United States)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  7. A response analysis with effective stress model by using vertical input motions

    International Nuclear Information System (INIS)

    Yamanouchi, H.; Ohkawa, I.; Chiba, O.; Tohdo, M.; Kaneko, O.

    1987-01-01

    The nuclear power plant reactor buildings are to be directly supported on a hard soil as a rule in Japan. In case of determining the input motions in order to design those buildings, the amplifications of the hard soil deposits are examined by the total stress analysis in general. However, when the supporting hard soil is replaced with the slightly softer medium such as sandy or gravelly soil, the existence of pore water, in other words, the contribution of the pore water pressure to the total stress cannot be ignored even in a practical sense. In this paper the authors defined an analytical model considering the effective stress-strain relation. In the analyses, the response in the vertical direction is used to evaluate the confining pressure, at first. In the next step, the process of the generation and dissipation of the pore water pressure, is taken into account, together with the effect of the confining pressure. They applied these procedures for the response computations of the horizontally layered soil deposits

  8. Two Simon tasks with different sources of conflict: an ERP study of motion- and location-based compatibility effects.

    Science.gov (United States)

    Galashan, Daniela; Wittfoth, Matthias; Fehr, Thorsten; Herrmann, Manfred

    2008-07-01

    Behavioral and electrophysiological correlates of two Simon tasks were examined using comparable stimuli but different task-irrelevant and conflict-inducing stimulus features. Whereas target shape was always the task-relevant stimulus attribute, either target location (location-based task) or motion direction within the target stimuli (motion-based task) was used as a source of conflict. Data from ten healthy participants who performed both tasks are presented. In the motion-based task the incompatible condition showed smaller P300 amplitudes at Pz than the compatible condition and the location-based task yielded a trend towards a reduced P300 amplitude in the incompatible condition. For both tasks, no P300 latency differences between the conditions were found at Pz. The results suggest that the motion-based task elicits behavioral and electrophysiological effects comparable with regular Simon tasks. As all stimuli in the motion-based Simon task were presented centrally the present data strongly argue against the attention-shifting account as an explanatory approach.

  9. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    Energy Technology Data Exchange (ETDEWEB)

    Nasseri, S. Ali, E-mail: ali.nasseri@isi.it [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Politecnico di Torino - Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Moretti, Simone; Martinez, Eduardo [University of Salamanca - Cardenal Plá y Deniel, 22, 37008 Salamanca (Spain); Serpico, Claudio [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); University of Naples Federico II - Via Claudio 21, 80125 Napoli (Italy); Durin, Gianfranco [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRIM) - Strada delle Cacce 91, 10135 Torino (Italy)

    2017-03-15

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work. - Highlights: • Moving DWs in PMA material maintain their structure under longitudinal in-plane fields. • As a result of longitudinal fields, magnetization in the domains becomes canted. • A critical longitudinal field was identified and correlated with the DMI strength. • A canted collective coordinate model was developed for DW motion under in-plane fields.

  10. On the effect of cross sectional shape on incipient motion and deposition of sediments in fixed bed channels

    Directory of Open Access Journals (Sweden)

    Safari Mir-Jafar-Sadegh

    2014-03-01

    Full Text Available The condition of incipient motion and deposition are of the essential issues for the study of sediment transport. This phenomenon is of great importance to hydraulic engineers for designing sewers, drainage, as well as other rigid boundary channels. This is a study carried out with the objectives of describing the effect of cross-sectional shape on incipient motion and deposition of particles in rigid boundary channels. In this research work, the experimental data given by Loveless (1992 and Mohammadi (2005 are used. On the basis of the critical velocity approach, a new incipient motion equation for a V-shaped bottom channel and incipient deposition of sediment particles equations for rigid boundary channels having circular, rectangular, and U-shaped cross sections are obtained. New equations were compared to the other incipient motion equations. The result shows that the cross-sectional shape is an important factor for defining the minimum velocity for no-deposit particles. This study also distinguishes incipient motion of particles from incipient deposition for particles. The results may be useful for designing fixed bed channels with a limited deposition condition.

  11. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  12. Stark broadening of potassium ns-4p and nd-4p lines in a wall-stabilized arc

    International Nuclear Information System (INIS)

    Hohimer, J.P.

    1984-01-01

    Stark-width measurements are reported for lines in the ns-4p (n = 7--10) and nd-4p (n = 5--8) series in neutral potassium (K I). These measurements were made by observing the end-on emission from a low pressure (20 Torr) potassium-argon wall-stabilized arc source. The on-axis electron density and temperature in the 20-A arc were (2.0 +- 0.2) x 10 15 cm -3 and 2955 +- 100 K, respectively. The experimentally determined Stark widths were compared with the theoretical values calculated by Griem. The measured Stark widths agreed with theory to within 30% for lines in the ns-4p series; while the measured Stark widths of the nd-4p series lines were only one-third of the theoretical values

  13. SPECIFIC AND CROSS-OVER EFFECTS OF FOAM ROLLING ON ANKLE DORSIFLEXION RANGE OF MOTION

    Science.gov (United States)

    Beardsley, Chris

    2016-01-01

    ABSTRACT Background Flexibility is an important physical quality. Self-myofascial release (SMFR) methods such as foam rolling (FR) increase flexibility acutely but how long such increases in range of motion (ROM) last is unclear. Static stretching (SS) also increases flexibility acutely and produces a cross-over effect to contralateral limbs. FR may also produce a cross-over effect to contralateral limbs but this has not yet been identified. Purpose To explore the potential cross-over effect of SMFR by investigating the effects of a FR treatment on the ipsilateral limb of 3 bouts of 30 seconds on changes in ipsilateral and contralateral ankle DF ROM and to assess the time-course of those effects up to 20 minutes post-treatment. Methods A within- and between-subject design was carried out in a convenience sample of 26 subjects, allocated into FR (n=13) and control (CON, n=13) groups. Ankle DF ROM was recorded at baseline with the in-line weight-bearing lunge test for both ipsilateral and contralateral legs and at 0, 5, 10, 15, 20 minutes following either a two-minute seated rest (CON) or 3 3 30 seconds of FR of the plantar flexors of the dominant leg (FR). Repeated measures ANOVA was used to examine differences in ankle DF ROM. Results No significant between-group effect was seen following the intervention. However, a significant within-group effect (pin the FR group was seen between baseline and all post-treatment time-points (0, 5, 10, 15 and 20 minutes). Significant within-group effects (pin the ipsilateral leg between baseline and at all post-treatment time-points, and in the contralateral leg up to 10 minutes post-treatment, indicating the presence of a cross-over effect. Conclusions FR improves ankle DF ROM for at least 20 minutes in the ipsilateral limb and up to 10 minutes in the contralateral limb, indicating that FR produces a cross-over effect into the contralateral limb. The mechanism producing these cross-over effects is unclear but may involve

  14. The Effects of Using the Kinect Motion-Sensing Interactive System to Enhance English Learning for Elementary Students

    Science.gov (United States)

    Pan, Wen Fu

    2017-01-01

    The objective of this study was to test whether the Kinect motion-sensing interactive system (KMIS) enhanced students' English vocabulary learning, while also comparing the system's effectiveness against a traditional computer-mouse interface. Both interfaces utilized an interactive game with a questioning strategy. One-hundred and twenty…

  15. Simulator study of the effect of visual-motion time delays on pilot tracking performance with an audio side task

    Science.gov (United States)

    Riley, D. R.; Miller, G. K., Jr.

    1978-01-01

    The effect of time delay was determined in the visual and motion cues in a flight simulator on pilot performance in tracking a target aircraft that was oscillating sinusoidally in altitude only. An audio side task was used to assure the subject was fully occupied at all times. The results indicate that, within the test grid employed, about the same acceptable time delay (250 msec) was obtained for a single aircraft (fighter type) by each of two subjects for both fixed-base and motion-base conditions. Acceptable time delay is defined as the largest amount of delay that can be inserted simultaneously into the visual and motion cues before performance degradation occurs. A statistical analysis of the data was made to establish this value of time delay. Audio side task provided quantitative data that documented the subject's work level.

  16. Effects of a home-exercise therapy programme on cervical and lumbar range of motion among nurses with neck and lower back pain: a quasi-experimental study

    OpenAIRE

    Freimann, Tiina; Merisalu, Eda; P??suke, Mati

    2015-01-01

    Background Cervical and lumbar range of motion limitations are usually associated with musculoskeletal pain in the neck and lower back, and are a major health problem among nurses. Physical exercise has been evaluated as an effective intervention method for improving cervical and lumbar range of motion, and for preventing and reducing musculoskeletal pain. The purpose of this study was to investigate the effects of a home-exercise therapy programme on cervical and lumbar range of motion among...

  17. Effect of the Target Motion Sampling Temperature Treatment Method on the Statistics and Performance

    Science.gov (United States)

    Viitanen, Tuomas; Leppänen, Jaakko

    2014-06-01

    Target Motion Sampling (TMS) is a stochastic on-the-fly temperature treatment technique that is being developed as a part of the Monte Carlo reactor physics code Serpent. The method provides for modeling of arbitrary temperatures in continuous-energy Monte Carlo tracking routines with only one set of cross sections stored in the computer memory. Previously, only the performance of the TMS method in terms of CPU time per transported neutron has been discussed. Since the effective cross sections are not calculated at any point of a transport simulation with TMS, reaction rate estimators must be scored using sampled cross sections, which is expected to increase the variances and, consequently, to decrease the figures-of-merit. This paper examines the effects of the TMS on the statistics and performance in practical calculations involving reaction rate estimation with collision estimators. Against all expectations it turned out that the usage of sampled response values has no practical effect on the performance of reaction rate estimators when using TMS with elevated basis cross section temperatures (EBT), i.e. the usual way. With 0 Kelvin cross sections a significant increase in the variances of capture rate estimators was observed right below the energy region of unresolved resonances, but at these energies the figures-of-merit could be increased using a simple resampling technique to decrease the variances of the responses. It was, however, noticed that the usage of the TMS method increases the statistical deviances of all estimators, including the flux estimator, by tens of percents in the vicinity of very strong resonances. This effect is actually not related to the usage of sampled responses, but is instead an inherent property of the TMS tracking method and concerns both EBT and 0 K calculations.

  18. The effect of different unstable footwear constructions on centre of pressure motion during standing.

    Science.gov (United States)

    Plom, W; Strike, S C; Taylor, M J D

    2014-06-01

    The aim of this study was to test the effect different unstable footwear constructions have on centre of pressure motion when standing. Sixteen young female volunteers were tested in five conditions, three unstable footwear (Reebok Easy-Tone, FitFlop and Skechers Shape-Ups), a standard shoe and barefoot in a randomised order. Double and single leg balance on a force plate was assessed via centre of pressure excursions and displacements in each condition. For double leg and single leg standing centre of pressure excursions in the anterior-posterior direction were significantly increased wearing Skechers Shape-Ups compared to barefoot and the standard shoe. For the Reebok Easy Tone during single leg standing excursions in the anterior-posterior direction were significantly greater compared to the barefoot condition. Cumulative displacement of the centre of pressure in medial-lateral direction increased significantly during single leg standing when wearing Skechers Shape-Ups compared to barefoot and standard shoe as well as for Reebok Easy Tone vs. barefoot. It would appear from these quiet standing results that the manner of the construction of instability shoes effects the CoP movement which is associated with induced instability. Greater CoP excursion occurred in the A-P direction while the cumulative displacements were greater in the M-L direction for those shoes with the rounded sole and soft foam and those with airpods. The shoe construction with altered density foam did not induce any change in the CoP movement, during quite standing, which tends to suggest that it is not effective at inducing balance. Not all instability shoes are effective in altering the overall instability of the wearer. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    Science.gov (United States)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  20. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K [Tohoku University School of Medicine, Sendai, Miyagi (Japan); Kida, S [Tohoku University Hospital, Sendai City, Miyagi (Japan); Kishi, K; Sato, K [Tohoku University Hospital, Sendai, Miyagi (Japan); Dobashi, S; Takeda, K [Tohoku University, Sendai, Miyagi (Japan)

    2015-06-15

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  1. SU-E-J-192: Comparative Effect of Different Respiratory Motion Management Systems

    International Nuclear Information System (INIS)

    Nakajima, Y; Kadoya, N; Ito, K; Kanai, T; Jingu, K; Kida, S; Kishi, K; Sato, K; Dobashi, S; Takeda, K

    2015-01-01

    Purpose: Irregular breathing can influence the outcome of four-dimensional computed tomography imaging for causing artifacts. Audio-visual biofeedback systems associated with patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches), representing simpler visual coaching techniques without guiding waveform are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching to reduce respiratory irregularities by comparing two respiratory management systems. Methods: We collected data from eleven healthy volunteers. Bar and wave models were used as audio-visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. Results: All coaching techniques improved respiratory variation, compared to free breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86, and 0.98 ± 0.47 mm for free breathing, Abches, bar model, and wave model, respectively. Free breathing and wave model differed significantly (p < 0.05). Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18, and 0.17 ± 0.05 s for free breathing, Abches, bar model, and wave model, respectively. Free breathing and all coaching techniques differed significantly (p < 0.05). For variation in both displacement and period, wave model was superior to free breathing, bar model, and Abches. The average reduction in displacement and period RMSE compared with wave model were 27% and 47%, respectively. Conclusion: The efficacy of audio-visual biofeedback to reduce respiratory irregularity compared with Abches. Our results showed that audio-visual biofeedback combined with a wave model can potentially provide clinical benefits in respiratory management

  2. Ground Motions Simulations and Site Effects in the Quito Basin (Ecuador)

    Science.gov (United States)

    Courboulex, F.; Castro-Cruz, D.; Laurendeau, A.; Bonilla, L. F.; Bertrand, E.; Mercerat, D.; Alvarado, A. P.

    2017-12-01

    The city of Quito (3M inhabitants), capital of Ecuador has been damaged several times in the past by large earthquakes. It is built on the hanging-wall of an active reverse fault, constituting a piggy-back basin. The deep structure of this basin and its seismic response remains badly known. We first use the recordings of 170 events on 18 accelerometers from the Quito permanent network and perform spectral ratio analysis. We find that the southern part of Quito shows strong site amplification at low frequency ( 0.35 Hz). Yet, high frequency ( 5 Hz) amplifications also exist, but exhibit a complex spatial variability. We then propose a new calibrated method based on empirical Green's functions (EGF) to simulate the ground motions due to a future earthquake in Quito. The idea is to use the results of a global database of source time functions (i.e., the SCARDEC database, Vallée and Douet, 2016; Courboulex et al., 2016) to define the average values and the variability of the stress-drop ratio parameter, which strongly affects the resulting simulations. We test the method on a Mw 7.8 event, similar in location and focal mechanism to the Pedernales earthquake that occurred on April 16th 2016 on the subduction zone. For this aim, we use the recordings of 6 aftershocks of magnitude 5.6 to 6.2 as EGF's. The predicted Fourier spectra, peak values and response spectra we obtain are in good agreement with real data from the 2016 event recorded on the Quito network. With the constraints we impose on stress-drop ratios, we expect that the simulated ground motions be representative of the variability of other Pedernales-type events that could occur in the future. Our results also well reproduce the low frequency site effects amplification in the south of the basin. This amplification could be particularly dangerous in the case of a mega subduction earthquake, like the one that struck Ecuador in 1906.

  3. Effects of decades of physical driving on body movement and motion sickness during virtual driving.

    Directory of Open Access Journals (Sweden)

    Thomas A Stoffregen

    Full Text Available We investigated relations between experience driving physical automobiles and motion sickness during the driving of virtual automobiles. Middle-aged individuals drove a virtual automobile in a driving video game. Drivers were individuals who had possessed a driver's license for approximately 30 years, and who drove regularly, while non-drivers were individuals who had never held a driver's license, or who had not driven for more than 15 years. During virtual driving, we monitored movement of the head and torso. During virtual driving, drivers became motion sick more rapidly than non-drivers, but the incidence and severity of motion sickness did not differ as a function of driving experience. Patterns of movement during virtual driving differed as a function of driving experience. Separately, movement differed between participants who later became motion sick and those who did not. Most importantly, physical driving experience influenced patterns of postural activity that preceded motion sickness during virtual driving. The results are consistent with the postural instability theory of motion sickness, and help to illuminate relations between the control of physical and virtual vehicles.

  4. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    Science.gov (United States)

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  5. Secondary resonances and the boundary of effective stability of Trojan motions

    Science.gov (United States)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2018-02-01

    One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' H_b for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by H_b, provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.

  6. The effect of a rotator cuff tear and its size on three-dimensional shoulder motion.

    Science.gov (United States)

    Kolk, Arjen; Henseler, Jan Ferdinand; de Witte, Pieter Bas; van Zwet, Erik W; van der Zwaal, Peer; Visser, Cornelis P J; Nagels, Jochem; Nelissen, Rob G H H; de Groot, Jurriaan H

    2017-06-01

    Rotator cuff-disease is associated with changes in kinematics, but the effect of a rotator cuff-tear and its size on shoulder kinematics is still unknown in-vivo. In this cross-sectional study, glenohumeral and scapulothoracic kinematics of the affected shoulder were evaluated using electromagnetic motion analysis in 109 patients with 1) subacromial pain syndrome (n=34), 2) an isolated supraspinatus tear (n=21), and 3) a massive rotator cuff tear involving the supraspinatus and infraspinatus (n=54). Mixed models were applied for the comparisons of shoulder kinematics between the three groups during abduction and forward flexion. In the massive rotator cuff-tear group, we found reduced glenohumeral elevation compared to the subacromial pain syndrome (16°, 95% CI [10.5, 21.2], protator cuff tears coincides with an increase in scapulothoracic lateral rotation compared to subacromial pain syndrome (11°, 95% CI [6.5, 15.2], protator cuff-tear group had substantially less glenohumeral elevation and more scapulothoracic lateral rotation compared to the other groups. These observations suggest that the infraspinatus is essential to preserve glenohumeral elevation in the presence of a supraspinatus tear. Shoulder kinematics are associated with rotator cuff-tear size and may have diagnostic potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exploring the effects of gravity on tongue motion using ultrasound image sequences

    Science.gov (United States)

    Stone, Maureen; Crouse, Ulla; Sutton, Marty

    2002-05-01

    Our goal in the research was to explore the effect that gravity had on the vocal-tract system by using ultrasound data collected in the upright and supine positions. All potential subjects were given an ultrasound pretest to determine whether they could repeat a series of 3-4 words precise enough to allow an accurate series of images to be collected. Out of these potential subjects, approximately 5-7 subjects were eventually used in the research. The method of collecting ultrasound data required the immobilization of the patient by restraining their neck in a custom fitted neck restraint. The neck restraint held an ultrasound transducer positioned at a critical angle underneath the patients' lower jawbone, which served to reduce errors and increase image resolution. To accurately analyze the series of images collected from ultrasound imaging, the surfaces of the tongue were digitized and tongue motion was time-aligned across the upright and supine sequences. Comparisons between the upright and supine data were then made by using L2 norms to determine averages and differences regarding the behavior between the two positions. Curves and locations of the maximum and minimum differences will be discussed.

  8. The Relation Between Stretching Typology and Stretching Duration: The Effects on Range of Motion.

    Science.gov (United States)

    Thomas, Ewan; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2018-04-01

    Different stretching strategies and protocols are widely used to improve flexibility or maintain health, acting on the muscle tendon-unit, in order to improve the range of motion (ROM) of the joints. This review aims to evaluate the current body of literature in order to understand the relation between stretching typology and ROM, and secondly to evaluate if a relation exists between stretching volume (either as a single training session, weekly training and weekly frequency) and ROM, after long-term stretching. Twenty-three articles were considered eligible and included in the quantitative synthesis. All stretching typologies showed ROM improvements over a long-term period, however the static protocols showed significant gains (p<0.05) when compared to the ballistic or PNF protocols. Time spent stretching per week seems fundamental to elicit range of movement improvements when stretches are applied for at least or more than 5 min, whereas the time spent stretching within a single session does not seem to have significant effects for ROM gains. Weekly frequency is positively associated to ROM. Evaluated data indicates that performing stretching at least 5 days a week for at least 5 min per week using static stretching may be beneficial to promote ROM improvements. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Nutrition of the anterior cruciate ligament. Effects of continuous passive motion

    International Nuclear Information System (INIS)

    Skyhar, M.J.; Danzig, L.A.; Hargens, A.R.; Akeson, W.H.

    1985-01-01

    Twelve freshly killed mature male rabbits were used to study the effects of continuous passive motion (CPM) on regional and overall nonvascular nutritional pathways of the anterior cruciate ligament (ACL). One hundred fifty microcuries of 35 S-sulfate was injected intraarticularly into each knee joint. The right knee underwent CPM for 1 hour, while the left knee remained immobilized. Both knee joints were then isolated and immediately frozen. The ACLs were removed while still mostly frozen, and sectioned into anterior, middle, and posterior thirds for the six rabbits in Group 1, and proximal, middle, and distal thirds for the six rabbits in Group 2. In addition, quadriceps tendon samples were harvested from each limb of three rabbits. After appropriate processing, all samples were counted in a scintillation counter, and counts per minute per milligram of tissue were calculated. There was significantly higher uptake in rest extremity ACLs compared to CPM extremity ACLs (P = 0.0001). No significant difference was demonstrated in regional uptake comparing respective thirds of the ACL in either Group 1 or Group 2. Quadriceps tendon uptake trended higher in the limbs exposed to CPM compared to those maintained at rest (P = 0.14). The ACL uses diffusion as a primary nutrient pathway. CPM does not increase nutrient uptake by the ACL in this avascular model, but CPM may facilitate transport of metabolites out of the joint. No regional differences in uptake within the ACL occurred in either group

  10. Effectiveness of massage therapy on the range of motion of the shoulder: a systematic review and meta-analysis.

    Science.gov (United States)

    Yeun, Young-Ran

    2017-02-01

    [Purpose] This study was conducted to identify and analyze the degree of effect of massage therapy on the range of motion of the shoulder. [Subjects and Methods] The database search was conducted using PubMed, CINAHL, Embase, PsycINFO, RISS, NDSL, NANET, DBpia, and KoreaMed. The meta-analysis was based on 7 studies, covered a total of 237 participants, and used a random-effects model. [Results] The effect size estimate showed that massage therapy significantly improved the shoulder range of motion, especially the flexion (SMD: 18.21, 95% CI 1.57-34.85) and abduction (SMD: 22.07, 95% CI 5.84-38.30). [Conclusion] The review findings suggest that massage therapy is effective in improving the shoulder flexion and abduction.

  11. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Sandip, E-mail: sandip.d.kulkarni@gmail.com [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Nacev, Alek [Weinberg Medical Physics, LLC (United States); Depireux, Didier [The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shimoji, Mika [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States); Shapiro, Benjamin [Fischell Department of Bioengineering, University of Maryland at College Park, MD 20742 (United States); The Institute for Systems Research, University of Maryland at College Park, MD 20742 (United States); Otomagnetics, LLC (United States)

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  12. Effects of premedication with oral hydroxyzine on patient motion during inhalation of 32% xenon for regional cerebral blood flow mapping

    International Nuclear Information System (INIS)

    Sesay, M.; Dousset, V.; Caille, J.M.; Maurette, P.; Tanaka, Akira

    2000-01-01

    Because of its anesthetic properties, inhalation of 30-35% Xenon is associated with uncontrolled patient motion in 3-15% of the cases. This constitutes a major setback to regional cerebral blood flow studies with Xenon-enhanced computed tomography (Xe-CT CBF). The present study attempted to determine the effects of oral premedication with hydroxyzine (H) in the control of motion. Patients scheduled for Xe-CT CBF, aged 20-55 years, were randomly allocated to 3 groups: H 50 mg (n=41), H 100 mg (n=36) or Placebo (n=43). The drugs were administered orally 90 minutes before Xenon inhalation. This consisted a gas mixture of 32% Xe and 25% oxygen. Motion was classified as controlled or uncontrolled depending on whether CBF data acquisition was possible or not. Anxiolysis and sedation were evaluated by a visual analogue scale. Motion was significantly reduced in the H 50 mg (0.8% vs 2.5% in the H 100 mg and 6.7% in the Placebo group). An anxiolytic effect of hydroxyzine was suggested. (author)

  13. Impaired working memory for visual motion direction in schizophrenia: Absence of recency effects and association with psychopathology.

    Science.gov (United States)

    Stäblein, Michael; Sieprath, Lore; Knöchel, Christian; Landertinger, Axel; Schmied, Claudia; Ghinea, Denisa; Mayer, Jutta S; Bittner, Robert A; Reif, Andreas; Oertel-Knöchel, Viola

    2016-09-01

    Working memory (WM) impairments are a prominent neurocognitive symptom in schizophrenia (SZ) and include deficits in memory for serial order and abnormalities in serial position effects (i.e., primacy and recency effects). Former studies predominantly focused on investigating these deficits applying verbal or static visual stimuli, but little is known about WM processes that involve dynamic visual movements. We examined WM for visual motion directions, its susceptibility to distraction and the effect of serial positioning. Twenty-three patients with paranoid SZ and 23 healthy control subjects (HC) took part in the study. We conducted an adapted Sternberg-type recognition paradigm: three random dot kinematograms (RDKs) that depicted coherent visual motion were used as stimuli and a distractor stimulus was incorporated into the task. SZ patients performed significantly worse in the WM visual motion task, when a distractor stimulus was presented. While HC showed a recency effect for later RDKs, the effect was absent in SZ patients. WM deficits were associated with more severe psychopathological symptoms, poor visual and verbal learning, and a longer duration of illness. Furthermore, SZ patients showed impairments in several other neurocognitive domains. Findings suggest that early WM processing of visual motion is susceptible to interruption and that WM impairments are associated with clinical symptoms in SZ. The absence of a recency effect is discussed in respect of 3 theoretical approaches-impaired WM for serial order information, abnormalities in early visual representations (i.e., masking effects), and deficits in later visual processing (i.e., attentional blink effect). (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. The effect of regional variation of seismic wave attenuation on the strong ground motion from earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, D H; Bernreuter, D L

    1981-10-01

    Attenuation is caused by geometric spreading and absorption. Geometric spreading is almost independent of crustal geology and physiographic region, but absorption depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high frequency waves, absorption does not affect ground motion at distances less than about 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States is similar to that in the western United States. Beyond the near field, differences in ground motion can best be accounted for by differences in attenuation caused by differences in absorption. The stress drop of eastern earthquakes may be higher than for western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. But we believe this factor is of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. The characteristics of strong ground motion in the conterminous United States are discussed in light of these considerations, and estimates are made of the epicentral ground motions in the central and eastern United States. (author)

  15. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers

    International Nuclear Information System (INIS)

    Peng, Z.Y.; Simplaceanu, V.; Dowd, S.R.; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19 F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer orientation, the locking field, and the temperature. These studies show that cholesterol or gramicidin can specifically enhance the relaxation due to slow motions in phospholipid bilayers with correlation times τ s longer than 10 -8 sec. The perturbations of the geometry of the slow motions induced by cholesterol are qualitatively different from those induced by gramicidin. In contrast, the presence of cholesterol or gramicidin slightly suppresses the fast motions with correlation times τ f = 10 -9 to 10 -10 sec without significantly affecting their geometry. Weak locking-field and temperature dependences are observed for both pure lipid bilayers and bilayers containing either cholesterol or gramicidin, suggesting that the motions of phospholipid acyl chains may have dispersed correlation times

  16. Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function

    Science.gov (United States)

    Hindle, Kayla B.; Whitcomb, Tyler J.; Briggs, Wyatt O.; Hong, Junggi

    2012-01-01

    Proprioceptive neuromuscular facilitation (PNF) is common practice for increasing range of motion, though little research has been done to evaluate theories behind it. The purpose of this study was to review possible mechanisms, proposed theories, and physiological changes that occur due to proprioceptive neuromuscular facilitation techniques. Four theoretical mechanisms were identified: autogenic inhibition, reciprocal inhibition, stress relaxation, and the gate control theory. The studies suggest that a combination of these four mechanisms enhance range of motion. When completed prior to exercise, proprioceptive neuromuscular facilitation decreases performance in maximal effort exercises. When this stretching technique is performed consistently and post exercise, it increases athletic performance, along with range of motion. Little investigation has been done regarding the theoretical mechanisms of proprioceptive neuromuscular facilitation, though four mechanisms were identified from the literature. As stated, the main goal of proprioceptive neuromuscular facilitation is to increase range of motion and performance. Studies found both of these to be true when completed under the correct conditions. These mechanisms were found to be plausible; however, further investigation needs to be conducted. All four mechanisms behind the stretching technique explain the reasoning behind the increase in range of motion, as well as in strength and athletic performance. Proprioceptive neuromuscular facilitation shows potential benefits if performed correctly and consistently. PMID:23487249

  17. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients.

    Science.gov (United States)

    Huang, Xianwei; Naghdy, Fazel; Naghdy, Golshah; Du, Haiping

    2017-07-01

    Robot-assisted therapy is regarded as an effective and reliable method for the delivery of highly repetitive rehabilitation training in restoring motor skills after a stroke. This study focuses on the rehabilitation of fine hand motion skills due to their vital role in performing delicate activities of daily living (ADL) tasks. The proposed rehabilitation system combines an adaptive assist-as-needed (AAN) control algorithm and a Virtual Reality (VR) based rehabilitation gaming system (RGS). The developed system is described and its effectiveness is validated through clinical trials on a group of eight subacute stroke patients for a period of six weeks. The impact of the training is verified through standard clinical evaluation methods and measuring key kinematic parameters. A comparison of the pre- and post-training results indicates that the method proposed in this study can improve fine hand motion rehabilitation training effectiveness.

  18. The effect of glenosphere diameter in reverse shoulder arthroplasty on muscle force, joint load, and range of motion.

    Science.gov (United States)

    Langohr, G Daniel G; Giles, Joshua W; Athwal, George S; Johnson, James A

    2015-06-01

    Little is known about the effects of glenosphere diameter on shoulder joint loads. The purpose of this biomechanical study was to investigate the effects of glenosphere diameter on joint load, load angle, and total deltoid force required for active abduction and range of motion in internal/external rotation and abduction. A custom, instrumented reverse shoulder arthroplasty implant system capable of measuring joint load and varying glenosphere diameter (38 and 42 mm) and glenoid offset (neutral and lateral) was implanted in 6 cadaveric shoulders to provide at least 80% power for all variables. A shoulder motion simulator was used to produce active glenohumeral and scapulothoracic motion. All implant configurations were tested with active and passive motion with joint kinematics, loads, and moments recorded. At neutral and lateralized glenosphere positions, increasing diameter significantly increased joint load (+12 ± 21 N and +6 ± 9 N; P  .8). Passive internal rotation was reduced with increased diameter at both neutral and lateralized glenosphere positions (-6° ± 6° and -12° ± 6°; P  .05). At neutral glenosphere position, increasing diameter increased the maximum angles of both adduction (+1° ± 1°; P = .03) and abduction (+8° ± 9°; P < .05). Lateralization also increased abduction range of motion compared with neutral (P < .01). Although increasing glenosphere diameter significantly increased joint load and deltoid force, the clinical impact of these changes is presently unclear. Internal rotation, however, was reduced, which contradicts previous bone modeling studies, which we postulate is due to increased posterior capsular tension as it is forced to wrap around a larger 42 mm implant assembly. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Effect of pressure on the fast motions in ordered phase phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H

    2005-07-01

    Application of hydrostatic pressure to phospholipid bilayers increases acyl chain order and raises the main transition temperature. {sup 2}H NMR spectra and quadrupole echo decay times were obtained at ambient pressure and pressures of 85 MPa and 196.1 MPa for ordered phase bilayers of a zwitterionic phospholipid : 16:0-16:0 PC-d{sub 62} (DPPC-d{sub 62}) and an anionic phospholipid : 16:0-16:0 PG-d{sub 62} (DPPG-d{sub 62}). The extent to which deuterium magnetization following an RF pulse is refocused in the echo after a second pulse is limited by the motions that modulate the orientation-dependent quadrupole interaction. The q-CPMG pulse sequence is used to separate the contribution of slow and fast motions to the echo decay rate. This work provides insight into how chain packing affects local motion.

  20. The effects of autogenic-feedback training on motion sickness severity and heart rate variability in astronauts

    Science.gov (United States)

    Toscano, William B.; Cowings, Patricia S.

    1994-01-01

    Space motion sickness (SMS) affects 50 percent of all people during early days of spaceflight. This study describes the results of two Shuttle flight experiments in which autogenic-feedback training (AFT), a physiological conditioning method, was tested as a treatment for this disorder. Of the six who were designated as flight subjects (two women and four men), three were given treatment and three served as controls (i.e., no AFT). Treatment subjects were given 6 hours of preflight AFT. Preflight results showed that AFT produced a significant increase in tolerance to rotating chair motion sickness tests. Further, this increased tolerance was associated with changes in specific physiological responses and reports of reduced malaise. Flight results showed that two of the three control subjects experienced repeated vomiting on the first mission day, while one subject experienced only moderate malaise. Of the three treatment subjects, one experienced mild discomfort, one moderate discomfort, and one severe motion sickness. Only the three control subjects took medication for symptom suppression. Measures of cardiac function reflective of vagal control were shown to be affected especially strongly on the first day of space flight. AFT given for control of heart rate, respiration, and other autonomic activity influenced both the vagal control measures and SMS. These data suggest that AFT may be an effective treatment for space motion sickness; however, this cannot be demonstrated conclusively with the small number of subjects described.

  1. Effective Multi-Model Motion Tracking Under Multiple Team Member Actuators

    OpenAIRE

    Gu, Yang; Veloso, Manuela

    2009-01-01

    Motivated by the interactions between a team and the tracked target, we contribute a method to achieve efficient tracking through using a play-based motion model and combined vision and infrared sensory information. This method gives the robot a more exact task-specific motion model when executing different tactics over the tracked target (e.g. the ball) or collaborating with the tracked target (e.g. the team member). Then we represent the system in a compact dynamic Bayesian network and use ...

  2. Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La2CuO4

    DEFF Research Database (Denmark)

    Haefliger, P. S.; Gerber, S.; Pramod, R.

    2014-01-01

    We study the zero-point and thermal ionic motion in La2CuO4 by means of high-resolution neutron-diffraction experiments. Our results demonstrate anisotropic motion of O and, to a lesser extent, Cu ions, both consistent with the structure of coupled CuO6 octahedra, and quantify the relative effect...... in J values that are subject to significant (8-12%) isotope effects. We demonstrate that this motional broadening of J can have substantial effects on certain electronic and magnetic properties in cuprates.......We study the zero-point and thermal ionic motion in La2CuO4 by means of high-resolution neutron-diffraction experiments. Our results demonstrate anisotropic motion of O and, to a lesser extent, Cu ions, both consistent with the structure of coupled CuO6 octahedra, and quantify the relative effects...

  3. Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening

    International Nuclear Information System (INIS)

    Dong Lifang; Ran Junxia; Mao Zhiguo

    2005-01-01

    We present a method and results for measurement of electron density in atmospheric-pressure dielectric barrier discharge. The electron density of microdischarge in atmospheric pressure argon is measured by using the spectral line profile method. The asymmetrical deconvolution is used to obtain Stark broadening. The results show that the electron density in single filamentary microdischarge at atmospheric pressure argon is 3.05x10 15 cm -3 if the electron temperature is 10,000 K. The result is in good agreement with the simulation. The electron density in dielectric barrier discharge increases with the increase of applied voltage

  4. Extremely short pulses via stark modulation of the atomic transition frequencies.

    Science.gov (United States)

    Radeonychev, Y V; Polovinkin, V A; Kocharovskaya, Olga

    2010-10-29

    We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.

  5. Application of Stark Tuned Laser for Interferometry and Polarimetry in Plasmas

    International Nuclear Information System (INIS)

    H.K. Park; K.C. Lee; B. Deng; C.W. Domier; M. Johnson; B. Nathan; N.C. Luhmann, Jr.

    2001-01-01

    A Stark-tuned optically pumped far-infrared CH(subscript ''3'')OH laser at 119 mm has been successfully applied in the Far Infrared Tangential Interferometer/Polarimeter (FIReTIP) system for the National Spherical Torus Experiment (NSTX). The system will provide temporally and radially resolved 2-D electron density profile [n(subscript ''e'')(r,t)] and toroidal field profile [B(subscript ''T'')(r,t)] data. In the 2001 campaign, a single channel interferometer system has been operated and tested for the Faraday rotation measurement. A plan for improvement and upgrading of the FIReTIP is discussed

  6. Quantum logic gates using Stark-shifted Raman transitions in a cavity

    International Nuclear Information System (INIS)

    Biswas, Asoka; Agarwal, G.S.

    2004-01-01

    We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and the controlled-NOT gate using a detuned optical cavity interacting with a three-level Raman system. We discuss the role of Stark shifts, which are as important as the terms leading to the two-photon transition. The operation of the proposed logic gates involves metastable states of the atom and hence is not affected by spontaneous emission. These ideas can be extended to produce multiparticle entanglement

  7. Computer animation in teaching science: Effectiveness in teaching retrograde motion to 9th graders

    Science.gov (United States)

    Klenk, Kristin Elmstrom

    The purpose of this study is to determine whether an instructional approach which includes computer animations is more effective than a traditional textbook-only approach in helping ninth grade students learn an abstract concept, in this case planetary retrograde motion. This investigation uses a quasi-experimental design with convenient sampling. The independent variable is the type of instruction provided to students; traditional text-based instruction (control group) compared to traditional instruction which also includes the viewing of 4 computer animations (treatment). Two conditions of the treatment examine the relative advantage of the order of the presentation of the animations and text-based instruction, as well as the quality of understanding and the retention of the learning over time. The dependent variable is student achievement which is measured using an instrument designed specifically for this study. Comparison of the independent variable to the dependent variable based upon the results from a Repeated Measure Factorial Design in ANOVA indicates that the treatment is an effective instructional technique. The posttest1 mean score of the treatment groups was significantly greater than the posttest1 mean score of the control group. Further posthoc tests indicate that there was no significant difference between the two treatments (1 and 2); read/animation versus animation/read. However, there was a significant difference in the mean score depending on the pathway, students enrolled in the A pathway achieved a significantly higher mean score after the treatment than students in the B pathway. The A pathway (n = 185) represent the larger heterogeneous population of students as compared to the B pathway (n=16) which includes students with lower cognitive abilities and special needs. When all of the students are included in the analysis the results indicate that students do not retain their understanding of the concept. However, when the students in the B

  8. Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice.

    Science.gov (United States)

    Kennedy, R S; Hettinger, L J; Harm, D L; Ordy, J M; Dunlap, W P

    1996-01-01

    Vection (V) refers to the compelling visual illusion of self-motion experienced by stationary individuals when viewing moving visual surrounds. The phenomenon is of theoretical interest because of its relevance for understanding the neural basis of ordinary self-motion perception, and of practical importance because it is the experience that makes simulation, virtual reality displays, and entertainment devices more vicarious. This experiment was performed to address whether an optokinetically induced vection illusion exhibits monotonic and stable psychometric properties and whether individuals differ reliably in these (V) perceptions. Subjects were exposed to varying velocities of the circular vection (CV) display in an optokinetic (OKN) drum 2 meters in diameter in 5 one-hour daily sessions extending over a 1 week period. For grouped data, psychophysical scalings of velocity estimates showed that exponents in a Stevens' type power function were essentially linear (slope = 0.95) and largely stable over sessions. Latencies were slightly longer for the slowest and fastest induction stimuli, and the trend over sessions for average latency was longer as a function of practice implying time course adaptation effects. Test-retest reliabilities for individual slope and intercept measures were moderately strong (r = 0.45) and showed no evidence of superdiagonal form. This implies stability of the individual circularvection (CV) sensitivities. Because the individual CV scores were stable, reliabilities were improved by averaging 4 sessions in order to provide a stronger retest reliability (r = 0.80). Individual latency responses were highly reliable (r = 0.80). Mean CV latency and motion sickness symptoms were greater in males than in females. These individual differences in CV could be predictive of other outcomes, such as susceptibility to disorientation or motion sickness, and for CNS localization of visual-vestibular interactions in the experience of self-motion.

  9. Effect of Continuous Motion Parameter Feedback on Laparoscopic Simulation Training: A Prospective Randomized Controlled Trial on Skill Acquisition and Retention.

    Science.gov (United States)

    Buescher, Julian Frederik; Mehdorn, Anne-Sophie; Neumann, Philipp-Alexander; Becker, Felix; Eichelmann, Ann-Kathrin; Pankratius, Ulrich; Bahde, Ralf; Foell, Daniel; Senninger, Norbert; Rijcken, Emile

    To investigate the effect of motion parameter feedback on laparoscopic basic skill acquisition and retention during a standardized box training curriculum. A Lap-X Hybrid laparoscopic simulator was designed to provide individual and continuous motion parameter feedback in a dry box trainer setting. In a prospective controlled trial, surgical novices were randomized into 2 groups (regular box group, n = 18, and Hybrid group, n = 18) to undergo an identical 5-day training program. In each group, 7 standardized tasks on laparoscopic basic skills were completed twice a day on 4 consecutive days in fixed pairs. Additionally, each participant performed a simulated standard laparoscopic cholecystectomy before (day 1) and after training (day 5) on a LAP Mentor II virtual reality (VR) trainer, allowing an independent control of skill progress in both groups. A follow-up assessment of skill retention was performed after 6 weeks with repetition of both the box tasks and VR cholecystectomy. Muenster University Hospital Training Center, Muenster, Germany. Medical students without previous surgical experience. Laparoscopic skills in both groups improved significantly during the training period, measured by the overall task performance time. The 6 week follow-up showed comparable skill retention in both groups. Evaluation of the VR cholecystectomies demonstrated significant decrease of operation time (p Simulation training on both trainers enables reliable acquisition of laparoscopic basic skills. Furthermore, individual and continuous motion feedback improves laparoscopic skill enhancement significantly in several aspects. Thus, training systems with feedback of motion parameters should be considered to achieve long-term improvement of motion economy among surgical trainees. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  10. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    Science.gov (United States)

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  11. Focal spot motion of linear accelerators and its effect on portal image analysis

    NARCIS (Netherlands)

    Sonke, Jan-Jakob; Brand, Bob; van Herk, Marcel

    2003-01-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of

  12. Modality-dependent effect of motion information in sensory-motor synchronised tapping.

    Science.gov (United States)

    Ono, Kentaro

    2018-05-14

    Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The effect of internal and external fields of view on visually induced motion sickness

    NARCIS (Netherlands)

    Bos, J.E.; Vries, S.C. de; Emmerik, M.L. van; Groen, E.L.

    2010-01-01

    Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between

  14. The Effect of Perceptual Load on Attention-Induced Motion Blindness: The Efficiency of Selective Inhibition

    Science.gov (United States)

    Hay, Julia L.; Milders, Maarten M.; Sahraie, Arash; Niedeggen, Michael

    2006-01-01

    Recent visual marking studies have shown that the carry-over of distractor inhibition can impair the ability of singletons to capture attention if the singleton and distractors share features. The current study extends this finding to first-order motion targets and distractors, clearly separated in time by a visual cue (the letter X). Target…

  15. Effect of body orientation on proprioception during active and passive motions

    NARCIS (Netherlands)

    Niessen, M.H.M.; Veeger, H.E.J.; Janssen, T.W.J.

    2009-01-01

    Objective: To investigate whether passive and active reproduction of joint position, as well as detection of passive motion (as measures of a subject's proprioception) of the shoulder differ while sitting compared with lying supine. Design: Shoulder proprioception of 28 healthy subjects (age, 22.2 ±

  16. Effects of physical exercise on articular range of motion of the lower limb in the Parkinson's disease individuals

    OpenAIRE

    Barbieri, Fabio Augusto; Batistela, Rosangela Alice; Rinaldi, Natália Madalena; Teixeira-Arroyo, Claudia; Stella, Florindo; Gobbi, Lilian Teresa Bucken

    2014-01-01

    The aim of this study was to investigate the effect of eight months of a multimodal program of physical exercise on articular range of motion of the lower limb of patients with Parkinson disease (PD), considering gender and disease stage. Seventeen individuals with PD participated in this study. Participants were assessed before of multimodal program of the physical exercise and after four and eight months of physical exercise. In these periods were evaluated the clinical aspects and articula...

  17. Effect of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1

    Science.gov (United States)

    Scherneck, Hans-Georg; Haas, Rüdiger

    We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.

  18. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness

    OpenAIRE

    Spering, Miriam; Carrasco, Marisa

    2012-01-01

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in ...

  19. The effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer

    Directory of Open Access Journals (Sweden)

    H. R. Ehteram

    2016-01-01

    Full Text Available In this paper the effect of using various models for conductivity and viscosity considering Brownian motion of nanoparticles is investigated. This study is numerically conducted inside a cavity full of Water-Al2O3 nanofluid at the case of mixed convection heat transfer. The effect of some parameters such as the nanoparticle volume fraction, Rayleigh, Richardson and Reynolds numbers has been examined. The governing equations with specified boundary conditions has been solved using finite volume method. A computer code has been prepared for this purpose. The results are presented in form of stream functions, isotherms, Nusselt number and the flow power with and without the Brownian motion taken into consideration. The results show that for all the applied models the stream functions and isotherm have approximately same patterns and no considerable difference has been observed. In all the studied models when considering the Brownian motion, the average Nusselt number is higher than not taking this effect into account. The models of Koo-Kleinstreuer and Li-Kleinstreuer give almost same values for the maximum stream function and average Nusselt number. It is also true about the models of Vajjha-Das and Xiao et al.

  20. Stark broadening in the laser-induced Cu I and Cu II spectra

    International Nuclear Information System (INIS)

    Skočić, M; Burger, M; Nikolić, Z; Bukvić, S; Djeniže, S

    2013-01-01

    In this work we present the Stark widths (W) of 22 neutral (Cu I) and 100 singly ionized (Cu II) copper spectral lines that have been measured at 18 400 K and 19 300 K electron temperatures and 6.3 × 10  22 m −3 and 2.1 × 10  23 m −3 electron densities, respectively. The experiment is conducted in the laser-induced plasma—the Nd:YAG laser, operating at 532 nm, was used to produce plasma from the copper sample in the residual air atmosphere at a pressure of 8 Pa. The electron temperature and density were estimated by the Boltzmann-plot method and from the Saha equation. The investigated Cu I lines belong to the 4s–4p′, 4s  2 –4p″ and 4p′–4d′ transitions while Cu II spectral lines belong to the 4s–4p, 4p–5s, 4p–4d, 4p–4s  2 , 4d–4f and 4d–v transitions. Comparison with existing experimental data was possible only in the case of 17 Cu II lines due to a lack of experimental and theoretical values. The rest of the data, Stark widths of 22 Cu I and 83 Cu II lines are published for the first time. (paper)