WorldWideScience

Sample records for motion analysis study

  1. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  2. Computer-aided target tracking in motion analysis studies

    Science.gov (United States)

    Burdick, Dominic C.; Marcuse, M. L.; Mislan, J. D.

    1990-08-01

    Motion analysis studies require the precise tracking of reference objects in sequential scenes. In a typical situation, events of interest are captured at high frame rates using special cameras, and selected objects or targets are tracked on a frame by frame basis to provide necessary data for motion reconstruction. Tracking is usually done using manual methods which are slow and prone to error. A computer based image analysis system has been developed that performs tracking automatically. The objective of this work was to eliminate the bottleneck due to manual methods in high volume tracking applications such as the analysis of crash test films for the automotive industry. The system has proven to be successful in tracking standard fiducial targets and other objects in crash test scenes. Over 95 percent of target positions which could be located using manual methods can be tracked by the system, with a significant improvement in throughput over manual methods. Future work will focus on the tracking of clusters of targets and on tracking deformable objects such as airbags.

  3. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  4. The eigenmode analysis of human motion

    International Nuclear Information System (INIS)

    Park, Juyong; Lee, Deok-Sun; González, Marta C

    2010-01-01

    Rapid advances in modern communication technology are enabling the accumulation of large-scale, high-resolution observational data of the spatiotemporal movements of humans. Classification and prediction of human mobility based on the analysis of such data has great potential in applications such as urban planning in addition to being a subject of theoretical interest. A robust theoretical framework is therefore required to study and properly understand human motion. Here we perform the eigenmode analysis of human motion data gathered from mobile communication records, which allows us to explore the scaling properties and characteristics of human motion

  5. CRDM motion analysis using machine learning technique

    International Nuclear Information System (INIS)

    Nishimura, Takuya; Nakayama, Hiroyuki; Saitoh, Mayumi; Yaguchi, Seiji

    2017-01-01

    Magnetic jack type Control Rod Drive Mechanism (CRDM) for pressurized water reactor (PWR) plant operates control rods in response to electrical signals from a reactor control system. CRDM operability is evaluated by quantifying armature's response of closed/opened time which means interval time between coil energizing/de-energizing points and armature closed/opened points. MHI has already developed an automatic CRDM motion analysis and applied it to actual plants so far. However, CRDM operational data has wide variation depending on their characteristics such as plant condition, plant, etc. In the existing motion analysis, there is an issue of analysis accuracy for applying a single analysis technique to all plant conditions, plants, etc. In this study, MHI investigated motion analysis using machine learning (Random Forests) which is flexibly accommodated to CRDM operational data with wide variation, and is improved analysis accuracy. (author)

  6. The Effects of Music on Microsurgical Technique and Performance: A Motion Analysis Study.

    Science.gov (United States)

    Shakir, Afaaf; Chattopadhyay, Arhana; Paek, Laurence S; McGoldrick, Rory B; Chetta, Matthew D; Hui, Kenneth; Lee, Gordon K

    2017-05-01

    Music is commonly played in operating rooms (ORs) throughout the country. If a preferred genre of music is played, surgeons have been shown to perform surgical tasks quicker and with greater accuracy. However, there are currently no studies investigating the effects of music on microsurgical technique. Motion analysis technology has recently been validated in the objective assessment of plastic surgery trainees' performance of microanastomoses. Here, we aimed to examine the effects of music on microsurgical skills using motion analysis technology as a primary objective assessment tool. Residents and fellows in the Plastic and Reconstructive Surgery program were recruited to complete a demographic survey and participate in microsurgical tasks. Each participant completed 2 arterial microanastomoses on a chicken foot model, one with music playing, and the other without music playing. Participants were blinded to the study objectives and encouraged to perform their best. The order of music and no music was randomized. Microanastomoses were video recorded using a digitalized S-video system and deidentified. Video segments were analyzed using ProAnalyst motion analysis software for automatic noncontact markerless video tracking of the needle driver tip. Nine residents and 3 plastic surgery fellows were tested. Reported microsurgical experience ranged from 1 to 10 arterial anastomoses performed (n = 2), 11 to 100 anastomoses (n = 9), and 101 to 500 anastomoses (n = 1). Mean age was 33 years (range, 29-36 years), with 11 participants right-handed and 1 ambidextrous. Of the 12 subjects tested, 11 (92%) preferred music in the OR. Composite instrument motion analysis scores significantly improved with playing preferred music during testing versus no music (paired t test, P music was significant even after stratifying scores by order in which variables were tested (music first vs no music first), postgraduate year, and number of anastomoses (analysis of variance, P music in

  7. Automatic Video-based Analysis of Human Motion

    DEFF Research Database (Denmark)

    Fihl, Preben

    The human motion contains valuable information in many situations and people frequently perform an unconscious analysis of the motion of other people to understand their actions, intentions, and state of mind. An automatic analysis of human motion will facilitate many applications and thus has...... received great interest from both industry and research communities. The focus of this thesis is on video-based analysis of human motion and the thesis presents work within three overall topics, namely foreground segmentation, action recognition, and human pose estimation. Foreground segmentation is often...... the first important step in the analysis of human motion. By separating foreground from background the subsequent analysis can be focused and efficient. This thesis presents a robust background subtraction method that can be initialized with foreground objects in the scene and is capable of handling...

  8. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  9. INS integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  10. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  11. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    Science.gov (United States)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  12. Multi-level human motion analysis for surveillance applications

    NARCIS (Netherlands)

    Lao, W.; Han, Jungong; With, de P.H.N.; Rabbani, M.; Stevenson, R.L.

    2009-01-01

    In this paper, we study a flexible framework for semantic analysis of human motion from a monocular surveillance video. Successful trajectory estimation and human-body modeling facilitate the semantic analysis of human activities in video sequences. As a first contribution, we propose a flexible

  13. Data analysis for seismic motion characteristics

    International Nuclear Information System (INIS)

    Ishimaru, Tsuneari; Kohriya, Yorihide

    2002-10-01

    This data analysis is aimed at studying the characteristics of amplification of acceleration amplitude from deep underground to the surface, and is one of several continuous studies on the effects of earthquake motion. Seismic wave records were observed via a center array located in Shibata-cho, Miyagi Prefecture, which is part of the Kumagai-Gumi Array System for Strong Earthquake Motion (KASSEM) located on the Pacific coast in Miyagi and Fukushima Prefectures. Using acceleration waves obtained from earthquake observations, the amplification ratios of maximum acceleration amplitude and of root mean square acceleration amplitude which were based on the deepest observation point were estimated. Comparison between the seismic motion amplification characteristics of this study were made with the analyzed data at the Kamaishi-Mine (Kamaishi Miyagi Prefecture). The obtained results are as follows. The amplification ratios estimated from maximum acceleration amplitude and root mean square acceleration amplitude are almost constant in soft rock formations. However, amplification ratios at the surface in diluvium and alluvium are about three to four times larger than the ratios in soft rock formations. The amplification ratios estimated from root mean square acceleration amplitude are less dispersed than the ratios estimated from maximum acceleration amplitude. Comparing the results of this analysis with the results obtained at the Kamaishi-Mine, despite the difference in the rock types and the geologic formations at the observation points, there is a tendency for the amplification ratios at both points to be relatively small in the rock foundation and gradually increase toward the ground surface. (author)

  14. Motion and time study analysis of wooden locally manufactured ...

    African Journals Online (AJOL)

    Studies were carried out on time-and-motion-economy of wooden locally manufactured duplicating machines. Two versions of the machine were used for the study, viz: standard version and semi-mechanized version. Working with both auxiliary and routine operations, the standard duplicator produced printed paper at an ...

  15. Application of inertial sensors for motion analysis

    Directory of Open Access Journals (Sweden)

    Ferenc Soha

    2012-06-01

    Full Text Available This paper presents our results on the application of various inertial sensors for motion analysis. After the introduction of different sensor types (accelerometer, gyroscope, magnetic field sensor, we discuss the possible data collection and transfer techniques using embedded signal processing and wireless data communication methods [1,2]. Special consideration is given to the interpretation of accelerometer readings, which contains both the static and dynamic components, and is affected by the orientation and rotation of the sensor. We will demonstrate the possibility to decompose these components for quasiperiodic motions. Finally we will demonstrate the application of commercially available devices (Wii sensor, Kinect sensor, mobile phone for motion analysis applications.

  16. Detection of cardiac wall motion defects with combined amplitude/phase analysis

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Bonow, R.O.; Pace, L.; Brunetti, A.; Larson, S.M.

    1985-01-01

    Fourier phase images have been used with some success to detect and quantify left ventricular (LV) wall motion defects. In abnormal regions of the LV, wall motion asynchronies often cause the time activity curve (TAC) to be shifted in phase. Such regional shifts are detected by analysis of the distribution function of phase values over the LV. However, not all wall motion defects result in detectable regional phase abnormalities. Such abnormalities may cause a reduction in the magnitude of contraction (and hence TAC amplitude) without any appreciable change in TAC shape(and hence phase). In an attempt to improve the sensitivity of the Fourier phase method for the detection of wall motion defects the authors analyzed the distribution function of Fourier amplitude as well as phase. 26 individuals with normal cardiac function and no history of cardiac disease served as controls. The goal was to detect and quantify wall motion as compared to the consensus of 3 independent observers viewing the scintigraphic cines. 26 subjects with coronary artery disease and mild wall motion defects (22 with normal EF) were studied ate rest. They found that analysis of the skew of thew amplitude distribution function improved the sensitivity for the detection of wall motion abnormalities at rest in the group from 65% to 85% (17/26 detected by phase alone, 22/26 by combined phase and amplitude analysis) while retaining a 0 false positive rate in the normal group. The authors conclude that analysis of Fourier amplitude distribution functions can significantly increase the sensitivity of phase imaging for detection of wall motion abnormalities

  17. Full-motion video analysis for improved gender classification

    Science.gov (United States)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  18. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  19. Inertial navigation sensor integrated motion analysis for autonomous vehicle navigation

    Science.gov (United States)

    Roberts, Barry; Bhanu, Bir

    1992-01-01

    Recent work on INS integrated motion analysis is described. Results were obtained with a maximally passive system of obstacle detection (OD) for ground-based vehicles and rotorcraft. The OD approach involves motion analysis of imagery acquired by a passive sensor in the course of vehicle travel to generate range measurements to world points within the sensor FOV. INS data and scene analysis results are used to enhance interest point selection, the matching of the interest points, and the subsequent motion-based computations, tracking, and OD. The most important lesson learned from the research described here is that the incorporation of inertial data into the motion analysis program greatly improves the analysis and makes the process more robust.

  20. A method of meta-mechanism combination and replacement based on motion study

    Directory of Open Access Journals (Sweden)

    Yadong Fang

    2015-01-01

    Full Text Available Lacking the effective methods to reduce labor and cost, many small- and medium-sized assembly companies are facing with the problem of high cost for a long time. In order to reduce costs of manual operations, the method of meta-mechanism combination and replacement is studied. In this paper, we mainly discuss assembling motion analysis, workpieces position information acquisition, motion library construction, assembling motion analysis by Maynard’s operation sequence technique, meta-mechanism database establishment, and match of motion and mechanism. At the same time, the principle, process, and system realization framework of mechanism replacement are introduced. Lastly, problems for low-cost automation of the production line are basically resolved by operator motion analysis and meta-mechanism combination and match.

  1. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  2. Analysis of motion in speed skating

    Science.gov (United States)

    Koga, Yuzo; Nishimura, Tetsu; Watanabe, Naoki; Okamoto, Kousuke; Wada, Yuhei

    1997-03-01

    A motion on sports has been studied by many researchers from the view of the medical, psychological and mechanical fields. Here, we try to analyze a speed skating motion dynamically for an aim of performing the best record. As an official competition of speed skating is performed on the round rink, the skating motion must be studied on the three phases, that is, starting phase, straight and curved course skating phase. It is indispensable to have a visual data of a skating motion in order to analyze kinematically. So we took a several subject's skating motion by 8 mm video cameras in order to obtain three dimensional data. As the first step, the movement of the center of gravity of skater (abbreviate to C. G.) is discussed in this paper, because a skating motion is very complicated. The movement of C. G. will give an information of the reaction force to a skate blade from the surface of ice. We discuss the discrepancy of several skating motion by studied subjects. Our final goal is to suggest the best skating form for getting the finest record.

  3. Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments

    Directory of Open Access Journals (Sweden)

    Tongyang Sun

    2017-01-01

    Full Text Available The hemiplegic rehabilitation state diagnosing performed by therapists can be biased due to their subjective experience, which may deteriorate the rehabilitation effect. In order to improve this situation, a quantitative evaluation is proposed. Though many motion analysis systems are available, they are too complicated for practical application by therapists. In this paper, a method for detecting the motion of human lower limbs including all degrees of freedom (DOFs via the inertial sensors is proposed, which permits analyzing the patient’s motion ability. This method is applicable to arbitrary walking directions and tracks of persons under study, and its results are unbiased, as compared to therapist qualitative estimations. Using the simplified mathematical model of a human body, the rotation angles for each lower limb joint are calculated from the input signals acquired by the inertial sensors. Finally, the rotation angle versus joint displacement curves are constructed, and the estimated values of joint motion angle and motion ability are obtained. The experimental verification of the proposed motion detection and analysis method was performed, which proved that it can efficiently detect the differences between motion behaviors of disabled and healthy persons and provide a reliable quantitative evaluation of the rehabilitation state.

  4. Analytical Analysis of Motion Separability

    Directory of Open Access Journals (Sweden)

    Marjan Hadian Jazi

    2013-01-01

    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  5. 3D+T motion analysis with nanosensors

    Science.gov (United States)

    Leduc, Jean-Pierre

    2017-09-01

    This paper addresses the problem of motion analysis performed in a signal sampled on an irregular grid spread in 3-dimensional space and time (3D+T). Nanosensors can be randomly scattered in the field to form a "sensor network". Once released, each nanosensor transmits at its own fixed pace information which corresponds to some physical variable measured in the field. Each nanosensor is supposed to have a limited lifetime given by a Poisson-exponential distribution after release. The motion analysis is supported by a model based on a Lie group called the Galilei group that refers to the actual mechanics that takes place on some given geometry. The Galilei group has representations in the Hilbert space of the captured signals. Those representations have the properties to be unitary, irreducible and square-integrable and to enable the existence of admissible continuous wavelets fit for motion analysis. The motion analysis can be considered as a so-called "inverse problem" where the physical model is inferred to estimate the kinematical parameters of interest. The estimation of the kinematical parameters is performed by a gradient algorithm. The gradient algorithm extends in the trajectory determination. Trajectory computation is related to a Lagrangian-Hamiltonian formulation and fits into a neuro-dynamic programming approach that can be implemented in the form of a Q-learning algorithm. Applications relevant for this problem can be found in medical imaging, Earth science, military, and neurophysiology.

  6. Analysis of motion of the three wheeled mobile platform

    Directory of Open Access Journals (Sweden)

    Jaskot Anna

    2018-01-01

    Full Text Available The work is dedicated to the designing motion of the three wheeled mobile platform under the unsteady conditions. In this paper the results of the analysis based on the dynamics model of the three wheeled mobile robot, with two rear wheels and one front wheel has been included The prototype has been developed by the author's construction assumptions that is useful to realize the motion of the platform in a various configurations of wheel drives, including control of the active forces and the direction of their settings while driving. Friction forces, in longitudinal and in the transverse directions, are considered in the proposed model. Relation between friction and active forces are also included. The motion parameters of the mobile platform has been determined by adopting classical approach of mechanics. The formulated initial problem of platform motion has been solved numerically using the Runge-Kutta method of the fourth order. Results of motion analysis with motion parameters values are determined and sample results are presented.

  7. Left ventricular wall motion abnormalities evaluated by factor analysis as compared with Fourier analysis

    International Nuclear Information System (INIS)

    Hirota, Kazuyoshi; Ikuno, Yoshiyasu; Nishikimi, Toshio

    1986-01-01

    Factor analysis was applied to multigated cardiac pool scintigraphy to evaluate its ability to detect left ventricular wall motion abnormalities in 35 patients with old myocardial infarction (MI), and in 12 control cases with normal left ventriculography. All cases were also evaluated by conventional Fourier analysis. In most cases with normal left ventriculography, the ventricular and atrial factors were extracted by factor analysis. In cases with MI, the third factor was obtained in the left ventricle corresponding to wall motion abnormality. Each case was scored according to the coincidence of findings of ventriculography and those of factor analysis or Fourier analysis. Scores were recorded for three items; the existence, location, and degree of asynergy. In cases of MI, the detection rate of asynergy was 94 % by factor analysis, 83 % by Fourier analysis, and the agreement in respect to location was 71 % and 66 %, respectively. Factor analysis had higher scores than Fourier analysis, but this was not significant. The interobserver error of factor analysis was less than that of Fourier analysis. Factor analysis can display locations and dynamic motion curves of asynergy, and it is regarded as a useful method for detecting and evaluating left ventricular wall motion abnormalities. (author)

  8. MOTION STUDY OF A WHEELCHAIR PROTOTYPE FOR DISABLED PEOPLE

    Directory of Open Access Journals (Sweden)

    Ionut GEONEA

    2015-05-01

    Full Text Available In this paper is presented the design and experimental prototype of a wheelchair for disabled people. Design solution proposed to be implemented uses two reduction gears motors and a mechanical transmission with chains. The motion controller developed uses PWM technology (pulse wave modulation. The wheelchair has the ability of forward – backward motion and steering. The design solution is developed in Solid Works, and it’s implemented to a wheelchair prototype model. Wheelchair design and motion makes him suitable especially for indoor use. It is made a study of the wheelchair kinematics, first using a kinematic simulation in Adams. Are presented the wheelchair motion trajectory and kinematics parameters. The experimental prototype is tested with a motion analysis system based on ultra high speed video recording. The obtained results from simulation and experimentally tests, demonstrate the efficiency of wheelchair proposed solution.

  9. Separating complex compound patient motion tracking data using independent component analysis

    Science.gov (United States)

    Lindsay, C.; Johnson, K.; King, M. A.

    2014-03-01

    In SPECT imaging, motion from respiration and body motion can reduce image quality by introducing motion-related artifacts. A minimally-invasive way to track patient motion is to attach external markers to the patient's body and record their location throughout the imaging study. If a patient exhibits multiple movements simultaneously, such as respiration and body-movement, each marker location data will contain a mixture of these motions. Decomposing this complex compound motion into separate simplified motions can have the benefit of applying a more robust motion correction to the specific type of motion. Most motion tracking and correction techniques target a single type of motion and either ignore compound motion or treat it as noise. Few methods account for compound motion exist, but they fail to disambiguate super-position in the compound motion (i.e. inspiration in addition to body movement in the positive anterior/posterior direction). We propose a new method for decomposing the complex compound patient motion using an unsupervised learning technique called Independent Component Analysis (ICA). Our method can automatically detect and separate different motions while preserving nuanced features of the motion without the drawbacks of previous methods. Our main contributions are the development of a method for addressing multiple compound motions, the novel use of ICA in detecting and separating mixed independent motions, and generating motion transform with 12 DOFs to account for twisting and shearing. We show that our method works with clinical datasets and can be employed to improve motion correction in single photon emission computed tomography (SPECT) images.

  10. Study on characteristics of vertical strong motions

    International Nuclear Information System (INIS)

    Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.

    1993-01-01

    Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)

  11. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  12. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  13. Ranking of several ground-motion models for seismic hazard analysis in Iran

    International Nuclear Information System (INIS)

    Ghasemi, H; Zare, M; Fukushima, Y

    2008-01-01

    In this study, six attenuation relationships are classified with respect to the ranking scheme proposed by Scherbaum et al (2004 Bull. Seismol. Soc. Am. 94 1–22). First, the strong motions recorded during the 2002 Avaj, 2003 Bam, 2004 Kojour and 2006 Silakhor earthquakes are consistently processed. Then the normalized residual sets are determined for each selected ground-motion model, considering the strong-motion records chosen. The main advantage of these records is that corresponding information about the causative fault plane has been well studied for the selected events. Such information is used to estimate several control parameters which are essential inputs for attenuation relations. The selected relations (Zare et al (1999 Soil Dyn. Earthq. Eng. 18 101–23); Fukushima et al (2003 J. Earthq. Eng. 7 573–98); Sinaeian (2006 PhD Thesis International Institute of Earthquake Engineering and Seismology, Tehran, Iran); Boore and Atkinson (2007 PEER, Report 2007/01); Campbell and Bozorgnia (2007 PEER, Report 2007/02); and Chiou and Youngs (2006 PEER Interim Report for USGS Review)) have been deemed suitable for predicting peak ground-motion amplitudes in the Iranian plateau. Several graphical techniques and goodness-of-fit measures are also applied for statistical distribution analysis of the normalized residual sets. Such analysis reveals ground-motion models, developed using Iranian strong-motion records as the most appropriate ones in the Iranian context. The results of the present study are applicable in seismic hazard assessment projects in Iran

  14. 3D Guided Wave Motion Analysis on Laminated Composites

    Science.gov (United States)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  15. MOJECT: MOTION ANALYSIS TO SUPPORT ASSESSMENT OF SURGICAL SKILLS

    NARCIS (Netherlands)

    Uineken, Ruben; Groot Jebbink, Erik; Halfwerk, F.R.; Bulten, Anne; Knoben, Peter; Roux, Moritz; Wicik, Ola; Groenier, Marleen

    2018-01-01

    Assessment of surgical skills is usually performed through direct observation by experts. This is subjective, expensive and requires assessor training. Motion analysis can support objective and cost-effective assessment. The aim of the current study is to design a low-cost, unobtrusive system for

  16. Two-dimensional analysis of motion artifacts, including flow effects

    International Nuclear Information System (INIS)

    Litt, A.M.; Brody, A.S.; Spangler, R.A.; Scott, P.D.

    1990-01-01

    The effects of motion on magnetic resonance images have been theoretically analyzed for the case of a point-like object in simple harmonic motion and for other one-dimensional trajectories. The authors of this paper extend this analysis to a generalized two-dimensional magnetization with an arbitrary motion trajectory. The authors provide specific solutions for the clinically relevant cases of the cross-sections of cylindrical objects in the body, such as the aorta, which has a roughly one-dimensional, simple harmonic motion during respiration. By extending the solution to include inhomogeneous magnetizations, the authors present a model which allows the effects of motion artifacts and flow artifacts to be analyzed simultaneously

  17. Technical note: validation of a motion analysis system for measuring the relative motion of the intermediate component of a tripolar total hip arthroplasty prosthesis.

    Science.gov (United States)

    Chen, Qingshan; Lazennec, Jean Yves; Guyen, Olivier; Kinbrum, Amy; Berry, Daniel J; An, Kai-Nan

    2005-07-01

    Tripolar total hip arthroplasty (THA) prosthesis had been suggested as a method to reduce the occurrence of hip dislocation and microseparation. Precisely measuring the motion of the intermediate component in vitro would provide fundamental knowledge for understanding its mechanism. The present study validates the accuracy and repeatability of a three-dimensional motion analysis system to quantitatively measure the relative motion of the intermediate component of tripolar total hip arthroplasty prostheses. Static and dynamic validations of the system were made by comparing the measurement to that of a potentiometer. Differences between the mean system-calculated angle and the angle measured by the potentiometer were within +/-1 degrees . The mean within-trial variability was less than 1 degrees . The mean slope was 0.9-1.02 for different angular velocities. The dynamic noise was within 1 degrees . The system was then applied to measure the relative motion of an eccentric THA prosthesis. The study shows that this motion analysis system provides an accurate and practical method for measuring the relative motion of the tripolar THA prosthesis in vitro, a necessary first step towards the understanding of its in vivo kinematics.

  18. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  19. Motion analysis systems as optimization training tools in combat sports and martial arts

    Directory of Open Access Journals (Sweden)

    Ewa Polak

    2016-01-01

    Full Text Available Introduction: Over the past years, a few review papers about possibilities of using motion analysis systems in sport were published, but there are no articles that discuss this problem in the field of combat sports and martial arts. Aim: This study presents the diversity of contemporary motion analysis systems both, those that are used in scientific research, as well as those that can be applied in daily work of coaches and athletes in combat sports and martial arts. An additional aim is the indication of example applications in scientific research and range of applications in optimizing the training process. It presents a brief description of each type of systems that are currently used in sport, specific examples of systems and the main advantages and disadvantages of using them. The presentation and discussion takes place in the following sections: motion analysis utility for combat sports and martial arts, systems using digital video and systems using markers, sensors or transmitters. Conclusions: Not all types of motion analysis systems used in sport are suitable for combat sports and martial arts. Scientific studies conducted so far showed the usefulness of video-based, optical and electromechanical systems. The use of research results made with complex motion analysis systems, or made with simple systems, local application and immediate visualization is important for the preparation of training and its optimization. It may lead to technical and tactical improvement in athletes as well as the prevention of injuries in combat sports and martial arts.

  20. Stereo Scene Flow for 3D Motion Analysis

    CERN Document Server

    Wedel, Andreas

    2011-01-01

    This book presents methods for estimating optical flow and scene flow motion with high accuracy, focusing on the practical application of these methods in camera-based driver assistance systems. Clearly and logically structured, the book builds from basic themes to more advanced concepts, culminating in the development of a novel, accurate and robust optic flow method. Features: reviews the major advances in motion estimation and motion analysis, and the latest progress of dense optical flow algorithms; investigates the use of residual images for optical flow; examines methods for deriving mot

  1. Frequency domain performance analysis of nonlinearly controlled motion systems

    NARCIS (Netherlands)

    Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.

    2007-01-01

    At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity

  2. Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies

    International Nuclear Information System (INIS)

    Naum, Alexandru; Laaksonen, Marko S.; Oikonen, Vesa; Teraes, Mika; Jaervisalo, Mikko J.; Knuuti, Juhani; Tuunanen, Helena; Nuutila, Pirjo; Kemppainen, Jukka

    2005-01-01

    Patient motion during dynamic PET studies is a well-documented source of errors. The purpose of this study was to investigate the incidence of frame-to-frame motion in dynamic 15 O-water myocardial perfusion PET studies, to test the efficacy of motion correction methods and to study whether implementation of motion correction would have an impact on the perfusion results. We developed a motion detection procedure using external radioactive skin markers and frame-to-frame alignment. To evaluate motion, marker coordinates inside the field of view were determined in each frame for each study. The highest number of frames with identical spatial coordinates during the study were defined as ''non-moved''. Movement was considered present if even one marker changed position, by one pixel/frame compared with reference, in one axis, and such frames were defined as ''moved''. We tested manual, in-house-developed motion correction software and an automatic motion correction using a rigid body point model implemented in MIPAV (Medical Image Processing, Analysis and Visualisation) software. After motion correction, remaining motion was re-analysed. Myocardial blood flow (MBF) values were calculated for both non-corrected and motion-corrected datasets. At rest, patient motion was found in 18% of the frames, but during pharmacological stress the fraction increased to 45% and during physical exercise it rose to 80%. Both motion correction algorithms significantly decreased (p<0.006) the number of moved frames and the amplitude of motion (p<0.04). Motion correction significantly increased MBF results during bicycle exercise (p<0.02). At rest or during adenosine infusion, the motion correction had no significant effects on MBF values. Significant motion is a common phenomenon in dynamic cardiac studies during adenosine infusion but especially during exercise. Applying motion correction for the data acquired during exercise clearly changed the MBF results, indicating that motion

  3. Reliability and concurrent validity of a Smartphone, bubble inclinometer and motion analysis system for measurement of hip joint range of motion.

    Science.gov (United States)

    Charlton, Paula C; Mentiplay, Benjamin F; Pua, Yong-Hao; Clark, Ross A

    2015-05-01

    Traditional methods of assessing joint range of motion (ROM) involve specialized tools that may not be widely available to clinicians. This study assesses the reliability and validity of a custom Smartphone application for assessing hip joint range of motion. Intra-tester reliability with concurrent validity. Passive hip joint range of motion was recorded for seven different movements in 20 males on two separate occasions. Data from a Smartphone, bubble inclinometer and a three dimensional motion analysis (3DMA) system were collected simultaneously. Intraclass correlation coefficients (ICCs), coefficients of variation (CV) and standard error of measurement (SEM) were used to assess reliability. To assess validity of the Smartphone application and the bubble inclinometer against the three dimensional motion analysis system, intraclass correlation coefficients and fixed and proportional biases were used. The Smartphone demonstrated good to excellent reliability (ICCs>0.75) for four out of the seven movements, and moderate to good reliability for the remaining three movements (ICC=0.63-0.68). Additionally, the Smartphone application displayed comparable reliability to the bubble inclinometer. The Smartphone application displayed excellent validity when compared to the three dimensional motion analysis system for all movements (ICCs>0.88) except one, which displayed moderate to good validity (ICC=0.71). Smartphones are portable and widely available tools that are mostly reliable and valid for assessing passive hip range of motion, with potential for large-scale use when a bubble inclinometer is not available. However, caution must be taken in its implementation as some movement axes demonstrated only moderate reliability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Opp, Daniel; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir, E-mail: vladimir.feygelman@moffitt.org [Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2014-06-15

    Purpose: In this work, the feasibility of implementing a motion-perturbation approach to accurately estimate volumetric dose in the presence of organ motion—previously demonstrated for VMAT-–is studied for static gantry IMRT. The method's accuracy is improved for the voxels that have very low planned dose but acquire appreciable dose due to motion. The study describes the modified algorithm and its experimental validation and provides an example of a clinical application. Methods: A contoured region-of-interest is propagated according to the predefined motion kernel throughout time-resolved 4D phantom dose grids. This timed series of 3D dose grids is produced by the measurement-guided dose reconstruction algorithm, based on an irradiation of a staticARCCHECK (AC) helical dosimeter array (Sun Nuclear Corp., Melbourne, FL). Each moving voxel collects dose over the dynamic simulation. The difference in dose-to-moving voxel vs dose-to-static voxel in-phantom forms the basis of a motion perturbation correction that is applied to the corresponding voxel in the patient dataset. A new method to synchronize the accelerator and dosimeter clocks, applicable to fixed-gantry IMRT, was developed. Refinements to the algorithm account for the excursion of low dose voxels into high dose regions, causing appreciable dose increase due to motion (LDVE correction). For experimental validation, four plans using TG-119 structure sets and objectives were produced using segmented IMRT direct machine parameters optimization in Pinnacle treatment planning system (v. 9.6, Philips Radiation Oncology Systems, Fitchburg, WI). All beams were delivered with the gantry angle of 0°. Each beam was delivered three times: (1) to the static AC centered on the room lasers; (2) to a static phantom containing a MAPCHECK2 (MC2) planar diode array dosimeter (Sun Nuclear); and (3) to the moving MC2 phantom. The motion trajectory was an ellipse in the IEC XY plane, with 3 and 1.5 cm axes. The period

  5. Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis

    Science.gov (United States)

    Arendra, A.; Akhmad, S.

    2018-01-01

    This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly

  6. Video stereolization: combining motion analysis with user interaction.

    Science.gov (United States)

    Liao, Miao; Gao, Jizhou; Yang, Ruigang; Gong, Minglun

    2012-07-01

    We present a semiautomatic system that converts conventional videos into stereoscopic videos by combining motion analysis with user interaction, aiming to transfer as much as possible labeling work from the user to the computer. In addition to the widely used structure from motion (SFM) techniques, we develop two new methods that analyze the optical flow to provide additional qualitative depth constraints. They remove the camera movement restriction imposed by SFM so that general motions can be used in scene depth estimation-the central problem in mono-to-stereo conversion. With these algorithms, the user's labeling task is significantly simplified. We further developed a quadratic programming approach to incorporate both quantitative depth and qualitative depth (such as these from user scribbling) to recover dense depth maps for all frames, from which stereoscopic view can be synthesized. In addition to visual results, we present user study results showing that our approach is more intuitive and less labor intensive, while producing 3D effect comparable to that from current state-of-the-art interactive algorithms.

  7. Sybar, a human motion analysis system for rehabilition medicine

    NARCIS (Netherlands)

    Hautus, E.H.

    1997-01-01

    The Sybar project is a designer's Ph.D project that deals with the development of a motion-analysis system for rehabilitation medicine, at the VU Hospital in Amsterdam. Human motion can be analyzed by biomechanical measurement systems. There are a number of different methods to generate several

  8. Geomagnetic field models for satellite angular motion studies

    Science.gov (United States)

    Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.

    2018-03-01

    Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.

  9. Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.

    Science.gov (United States)

    Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan

    2018-03-01

    Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  11. Time-frequency analysis of human motion during rhythmic exercises.

    Science.gov (United States)

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  12. Gating treatment delivery QA based on a surrogate motion analysis

    International Nuclear Information System (INIS)

    Chojnowski, J.; Simpson, E.

    2011-01-01

    Full text: To develop a methodology to estimate intrafractional target position error during a phase-based gated treatment. Westmead Cancer Care Centre is using respiratory correlated phase-based gated beam delivery in the treatment of lung cancer. The gating technique is managed by the Varian Real-time Position Management (RPM) system, version 1.7.5. A 6-dot block is placed on the abdomen of the patient and acts as a surrogate for the target motion. During a treatment session, the motion of the surrogate can be recorded by RPM application. Analysis of the surrogate motion file by in-house developed software allows the intrafractional error of the treatment session to be computed. To validate the computed error, a simple test that involves the introduction of deliberate errors is performed. Errors of up to 1.1 cm are introduced to a metal marker placed on a surrogate using the Varian Breathing Phantom. The moving marker was scanned in prospective mode using a GE Lightspeed 16 CT scanner. Using the CT images, a difference of the marker position with and without introduced errors is compared to the calculated errors based on the surrogate motion. The average and standard deviation of a difference between calculated target position errors and measured introduced artificial errors of the marker position is 0.02 cm and 0.07 cm respectively. Conclusion The calculated target positional error based on surrogate motion analysis provides a quantitative measure of intrafractional target positional errors during treatment. Routine QA for gated treatment using surrogate motion analysis is relatively quick and simple.

  13. Non-linear time series analysis on flow instability of natural circulation under rolling motion condition

    International Nuclear Information System (INIS)

    Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong

    2014-01-01

    Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes

  14. A short study to assess the potential of independent component analysis for motion artifact separation in wearable pulse oximeter signals.

    Science.gov (United States)

    Yao, Jianchu; Warren, Steve

    2005-01-01

    Motion artifact reduction and separation become critical when medical sensors are used in wearable monitoring scenarios. Previous research has demonstrated that independent component analysis (ICA) can be applied to pulse oximeter signals to separate photoplethysmographic (PPG) data from motion artifacts, ambient light, and other interference in low-motion environments. However, ICA assumes that all source signal component pairs are mutually independent. It is important to assess the statistical independence of the source components in PPG data, especially if ICA is to be applied in ambulatory monitoring environments, where motion artifacts can have a substantial effect on the quality of data received from light-based sensors. This paper addresses the statistical relationship between motion artifacts and PPG data by calculating the correlation coefficients between arterial volume variations and motion over a range of stationary to high-motion conditions. Analyses indicate that motion significantly affects arterial flow, so care must be taken when applying ICA to light-based sensor data acquired from wearable platforms.

  15. Vision-based human motion analysis: An overview

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2007-01-01

    Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including surveillance, Human-Computer

  16. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  17. Generation of Earthquake Ground Motion Considering Local Site Effects and Soil-Structure Interaction Analysis of Ancient Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Kwan; Lee, J. S.; Yang, T. S.; Cho, J. R.; R, H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    In order to establish a correct correlation between them, mechanical characteristics of the ancient structures need to be investigated. Since sedimentary basins are preferred dwelling sites in ancient times, it is necessary to perform SSI analysis to derive correct correlation between the damage and ground motion intensity. Contents of Project are as follows: (1) Generation of stochastic earthquake ground motion considering source mechanism and site effects. (2) Analysis of seismic response of sedimentary basin. (3) Soil-structure interaction analysis of ancient structures (4) Investigation of dynamic response characteristics of ancient structure considering soil-structure interaction effects. A procedure is presented for generation of stochastic earthquake ground motion considering source mechanism and site effects. The simulation method proposed by Boore is used to generate the outcropping rock motion. The free field motion at the soil site is obtained by a convolution analysis. And for the study of wood structures, a nonlinear SDOF model is developed. The effects of soil-structure interaction on the behavior of the wood structures are found to be very minor. But the response can be significantly affected due to the intensity and frequency contents of the input motion. 13 refs., 6 tabs., 31 figs. (author)

  18. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  19. Laban movement analysis to classify emotions from motion

    Science.gov (United States)

    Dewan, Swati; Agarwal, Shubham; Singh, Navjyoti

    2018-04-01

    In this paper, we present the study of Laban Movement Analysis (LMA) to understand basic human emotions from nonverbal human behaviors. While there are a lot of studies on understanding behavioral patterns based on natural language processing and speech processing applications, understanding emotions or behavior from non-verbal human motion is still a very challenging and unexplored field. LMA provides a rich overview of the scope of movement possibilities. These basic elements can be used for generating movement or for describing movement. They provide an inroad to understanding movement and for developing movement efficiency and expressiveness. Each human being combines these movement factors in his/her own unique way and organizes them to create phrases and relationships which reveal personal, artistic, or cultural style. In this work, we build a motion descriptor based on a deep understanding of Laban theory. The proposed descriptor builds up on previous works and encodes experiential features by using temporal windows. We present a more conceptually elaborate formulation of Laban theory and test it in a relatively new domain of behavioral research with applications in human-machine interaction. The recognition of affective human communication may be used to provide developers with a rich source of information for creating systems that are capable of interacting well with humans. We test our algorithm on UCLIC dataset which consists of body motions of 13 non-professional actors portraying angry, fear, happy and sad emotions. We achieve an accuracy of 87.30% on this dataset.

  20. Focal spot motion of linear accelerators and its effect on portal image analysis

    International Nuclear Information System (INIS)

    Sonke, Jan-Jakob; Brand, Bob; Herk, Marcel van

    2003-01-01

    The focal spot of a linear accelerator is often considered to have a fully stable position. In practice, however, the beam control loop of a linear accelerator needs to stabilize after the beam is turned on. As a result, some motion of the focal spot might occur during the start-up phase of irradiation. When acquiring portal images, this motion will affect the projected position of anatomy and field edges, especially when low exposures are used. In this paper, the motion of the focal spot and the effect of this motion on portal image analysis are quantified. A slightly tilted narrow slit phantom was placed at the isocenter of several linear accelerators and images were acquired (3.5 frames per second) by means of an amorphous silicon flat panel imager positioned ∼0.7 m below the isocenter. The motion of the focal spot was determined by converting the tilted slit images to subpixel accurate line spread functions. The error in portal image analysis due to focal spot motion was estimated by a subtraction of the relative displacement of the projected slit from the relative displacement of the field edges. It was found that the motion of the focal spot depends on the control system and design of the accelerator. The shift of the focal spot at the start of irradiation ranges between 0.05-0.7 mm in the gun-target (GT) direction. In the left-right (AB) direction the shift is generally smaller. The resulting error in portal image analysis due to focal spot motion ranges between 0.05-1.1 mm for a dose corresponding to two monitor units (MUs). For 20 MUs, the effect of the focal spot motion reduces to 0.01-0.3 mm. The error in portal image analysis due to focal spot motion can be reduced by reducing the applied dose rate

  1. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  2. Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.

    Science.gov (United States)

    Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian

    2007-06-01

    Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.

  3. Analysis of the accuracy and robustness of the leap motion controller.

    Science.gov (United States)

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-05-14

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  4. How to: Using Mode Analysis to Quantify, Analyze, and Interpret the Mechanisms of High-Density Collective Motion

    Directory of Open Access Journals (Sweden)

    Arianna Bottinelli

    2017-12-01

    Full Text Available While methods from statistical mechanics were some of the earliest analytical tools used to understand collective motion, the field has substantially expanded in scope beyond phase transitions and fluctuating order parameters. In part, this expansion is driven by the increasing variety of systems being studied, which in turn, has increased the need for innovative approaches to quantify, analyze, and interpret a growing zoology of collective behaviors. For example, concepts from material science become particularly relevant when considering the collective motion that emerges at high densities. Here, we describe methods originally developed to study inert jammed granular materials that have been borrowed and adapted to study dense aggregates of active particles. This analysis is particularly useful because it projects difficult-to-analyze patterns of collective motion onto an easier-to-interpret set of eigenmodes. Carefully viewed in the context of non-equilibrium systems, mode analysis identifies hidden long-range motions and localized particle rearrangements based solely on the knowledge of particle trajectories. In this work, we take a “how to” approach and outline essential steps, diagnostics, and know-how used to apply this analysis to study densely-packed active systems.

  5. Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion.

    Science.gov (United States)

    Zhou, Feng; De la Torre, Fernando; Hodgins, Jessica K

    2013-03-01

    Temporal segmentation of human motion into plausible motion primitives is central to understanding and building computational models of human motion. Several issues contribute to the challenge of discovering motion primitives: the exponential nature of all possible movement combinations, the variability in the temporal scale of human actions, and the complexity of representing articulated motion. We pose the problem of learning motion primitives as one of temporal clustering, and derive an unsupervised hierarchical bottom-up framework called hierarchical aligned cluster analysis (HACA). HACA finds a partition of a given multidimensional time series into m disjoint segments such that each segment belongs to one of k clusters. HACA combines kernel k-means with the generalized dynamic time alignment kernel to cluster time series data. Moreover, it provides a natural framework to find a low-dimensional embedding for time series. HACA is efficiently optimized with a coordinate descent strategy and dynamic programming. Experimental results on motion capture and video data demonstrate the effectiveness of HACA for segmenting complex motions and as a visualization tool. We also compare the performance of HACA to state-of-the-art algorithms for temporal clustering on data of a honey bee dance. The HACA code is available online.

  6. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  7. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    Science.gov (United States)

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  8. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  9. Energy efficient piston configuration for effective air motion – A CFD study

    International Nuclear Information System (INIS)

    Gnana Sagaya Raj, Antony Raj; Mallikarjuna, Jawali Maharudrappa; Ganesan, Venkitachalam

    2013-01-01

    Highlights: ► All piston crown show similar flow pattern for experimental and simulated studies. ► Piston position plays a predominant role in the air pattern inside the cylinder. ► The flat bowl piston shows higher TKE compared to all other piston crown shape. ► The turbulence intensity and length scale are higher for flat bowl piston. ► The quantitative error between the CFD and PIV analysis is about 5%. -- Abstract: Air motion inside the cylinder is very important from the point of view of energy efficiency. In this direction, piston configuration plays a very crucial role. This study is concerned with the CFD analysis of in-cylinder air motion coupled with the comparison of predicted results with the experimental results available in the literature. Four configurations viz., flat, inclined, centre bowl and inclined offset bowl pistons have been studied. For numerical analysis STAR-CD CFD software has been used. Experimental results available in the literature for comparison are obtained by PIV measurements. From this study, it is concluded that a centre bowl on flat piston is found to be the best from the point of view of tumble ratio, turbulent kinetic energy, turbulent intensity and turbulent length scale which play very important role in imparting proper air motion, there by increasing the energy efficiency of the engine.

  10. Apollo 15 time and motion study

    Science.gov (United States)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Barnes, J. E.

    1972-01-01

    A time and motion study of Apollo 15 lunar surface activity led to examination of four distinct areas of crewmen activity. These areas are: an analysis of lunar mobility, a comparative analysis of tasks performed in 1-g training and lunar EVA, an analysis of the metabolic cost of two activities that are performed in several EVAs, and a fall/near-fall analysis. An analysis of mobility showed that the crewmen used three basic mobility patterns (modified walk, hop, side step) while on the lunar surface. These mobility patterns were utilized as adaptive modes to compensate for the uneven terrain and varied soil conditions that the crewmen encountered. A comparison of the time required to perform tasks at the final 1-g lunar EVA training sessions and the time required to perform the same task on the lunar surface indicates that, in almost all cases, it took significantly more time (on the order of 40%) to perform tasks on the moon. This increased time was observed even after extraneous factors (e.g., hardware difficulties) were factored out.

  11. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    Directory of Open Access Journals (Sweden)

    Denis Fisseler

    2013-05-01

    Full Text Available The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2mmhas been obtained for static setups and of 1.2mmfor dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.

  12. Error analysis of motion correction method for laser scanning of moving objects

    Science.gov (United States)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  13. Simulation-Based Analysis of Ship Motions in Short-Crested Irregular Seas

    Directory of Open Access Journals (Sweden)

    Kıvanç Ali ANIL

    2017-03-01

    Full Text Available Demonstration of the seakeeping calculation results other than polar diagrams and Cartesian plots is important during the initial and detail design stages of naval platforms due to the necessity of numerical simulations (time series data for the design and validation of the systems on board. These time series simulations are called as “real time computer experiments”. Similar simulation algorithms for ship motions and wave elevation are also used by ship-handling simulators for realistic visualization. The goal of this paper is to create a basis for the simulation-based analysis of ship motions and wave elevation for future design and validation studies for both the naval platform itself and the systems on board. The focus of this paper is the clarification of the theoretical background of this process, i.e. all formulations required to create and validate a ship motion and wave surface simulation are given in detail. The results of this study may also be used in ship-handling simulators or helicopter landing on ship simulations.

  14. Analysis of secondary motions in square duct flow

    Science.gov (United States)

    Modesti, Davide; Pirozzoli, Sergio; Orlandi, Paolo; Grasso, Francesco

    2018-04-01

    We carry out direct numerical simulations (DNS) of square duct flow spanning the friction Reynolds number range {Re}τ * =150-1055, to study the nature and the role of secondary motions. We preliminarily find that secondary motions are not the mere result of the time averaging procedure, but rather they are present in the instantaneous flow realizations, corresponding to large eddies persistent in both space and time. Numerical experiments have also been carried out whereby the secondary motions are suppressed, hence allowing to quantifying their effect on the mean flow field. At sufficiently high Reynolds number, secondary motions are found to increase the friction coefficient by about 3%, hence proportionally to their relative strength with respect to the bulk flow. Simulations without secondary motions are found to yield larger deviations on the mean velocity profiles from the standard law-of-the-wall, revealing that secondary motions act as a self-regulating mechanism of turbulence whereby the effect of the corners is mitigated.

  15. Augmented reality environment for temporomandibular joint motion analysis.

    Science.gov (United States)

    Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R

    1996-01-01

    The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.

  16. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    Science.gov (United States)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  17. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhkio

    1985-03-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images.

  18. Quantification of wall motion and phase of contraction in tomographic gated blood pool studies using length-based Fourier analysis

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Bunko, Hisashi; Taki, Junichi; Nambu, Ichiro; Shiire, Yasushi; Tonami, Norihisa; Hisada, Kinichi; Tada, Akira; Kojima, Kazuhiko.

    1985-01-01

    Length-based Fourier analysis, a new method for quantification of wall motion and timing of contraction, was applied to tomographic gated blood pool study. Two parameters, percent-length shortening (%LS) and length-based phase were calculated based on the time-length curves from a center to ventricular edges, and compared with the count-based method. In mathematical models for tomographic gated blood pool images, the severity of asynergy was easily determined by length-based method, and the accuracy of the parameters was good. As to the setting of the center, fixed center provided more reliable parameters than the method using movable center, i.e., when a center of gravity was determined in each frame. By length-based Fourier analysis, quantification of wall motion was easily performed, and the initial inward movement caused by the accessory conduction pathway was assessed in patients with Wolff-Parkinson-White syndrome. Length-based approach was considered to be reasonable and effective because the movements of the ventricular edges are essential in tomographic gated blood pool images. (author)

  19. A computer-based biomechanical analysis of the three-dimensional motion of cementless hip prostheses.

    Science.gov (United States)

    Gilbert, J L; Bloomfeld, R S; Lautenschlager, E P; Wixson, R L

    1992-04-01

    A computer-based mathematical technique was developed to measure and completely describe the migration and micromotion of a femoral hip prosthesis relative to the femur. This technique utilized the mechanics of rigid-body motion analysis and apparatus of seven linear displacement transducers to measure and describe the complete three-dimensional motion of the prosthesis during cyclic loading. Computer acquisition of the data and custom analysis software allowed one to calculate the magnitude and direction of the motion of any point of interest on the prostheses from information about the motion of two points on the device. The data were also used to replay the tests using a computer animation technique, which allowed a magnified view of the three-dimensional motion of the prosthesis. This paper describes the mathematical development of the rigid-body motion analysis, the experimental method and apparatus for data collection, the technique used to animate the motion, the sources of error and the effect of the assumptions (rigid bodies) on the results. Selected results of individual test runs of uncemented and cemented prostheses are presented to demonstrate the efficacy of the method. The combined effect of the vibration and electrical noise resulted in a resolution of the system of about 3-5 microns motion for each transducer. Deformation effects appear to contribute about 3-15 microns to the measurement error. This measurement and analysis technique is a very sensitive and powerful means of assessing the effects of different design parameters on the migration and micromotion of total joint prostheses and can be applied to any other case (knee, dental implant) where three-dimensional relative motion between two bodies is important.

  20. Evaluation of ground motion scaling methods for analysis of structural systems

    Science.gov (United States)

    O'Donnell, A. P.; Beltsar, O.A.; Kurama, Y.C.; Kalkan, E.; Taflanidis, A.A.

    2011-01-01

    Ground motion selection and scaling comprises undoubtedly the most important component of any seismic risk assessment study that involves time-history analysis. Ironically, this is also the single parameter with the least guidance provided in current building codes, resulting in the use of mostly subjective choices in design. The relevant research to date has been primarily on single-degree-of-freedom systems, with only a few studies using multi-degree-of-freedom systems. Furthermore, the previous research is based solely on numerical simulations with no experimental data available for the validation of the results. By contrast, the research effort described in this paper focuses on an experimental evaluation of selected ground motion scaling methods based on small-scale shake-table experiments of re-configurable linearelastic and nonlinear multi-story building frame structure models. Ultimately, the experimental results will lead to the development of guidelines and procedures to achieve reliable demand estimates from nonlinear response history analysis in seismic design. In this paper, an overview of this research effort is discussed and preliminary results based on linear-elastic dynamic response are presented. ?? ASCE 2011.

  1. A Survey of Advances in Vision-Based Human Motion Capture and Analysis

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Hilton, Adrian; Krüger, Volker

    2006-01-01

    This survey reviews advances in human motion capture and analysis from 2000 to 2006, following a previous survey of papers up to 2000 Human motion capture continues to be an increasingly active research area in computer vision with over 350 publications over this period. A number of significant...... actions and behavior. This survey reviews recent trends in video based human capture and analysis, as well as discussing open problems for future research to achieve automatic visual analysis of human movement....

  2. The spectral analysis of motion: An "open field" activity test example

    Directory of Open Access Journals (Sweden)

    Obradović Z.

    2013-01-01

    Full Text Available In this work we have described the new mathematical approach, with spectral analysis of the data to evaluate position and motion in the „„open field““ experiments. The aim of this work is to introduce several new parameters mathematically derived from experimental data by means of spectral analysis, and to quantitatively estimate the quality of the motion. Two original software packages (TRACKER and POSTPROC were used for transforming a video data to a log file, suitable for further computational analysis, and to perform analysis from the log file. As an example, results obtained from the experiments with Wistar rats in the „open field“ test are included. The test group of animals was treated with diazepam. Our results demonstrate that all the calculated parameters, such as movement variability, acceleration and deceleration, were significantly lower in the test group compared to the control group. We believe that the application of parameters obtained by spectral analysis could be of great significance in assessing the locomotion impairment in any kind of motion. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. ON174028

  3. Earthquake strong ground motion studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wong, Ivan; Silva, W.; Darragh, R.; Stark, C.; Wright, D.; Jackson, S.; Carpenter, G.; Smith, R.; Anderson, D.; Gilbert, H.; Scott, D.

    1989-01-01

    Site-specific strong earthquake ground motions have been estimated for the Idaho National Engineering Laboratory assuming that an event similar to the 1983 M s 7.3 Borah Peak earthquake occurs at epicentral distances of 10 to 28 km. The strong ground motion parameters have been estimated based on a methodology incorporating the Band-Limited-White-Noise ground motion model coupled with Random Vibration Theory. A 16-station seismic attenuation and site response survey utilizing three-component portable digital seismographs was also performed for a five-month period in 1989. Based on the recordings of regional earthquakes, the effects of seismic attenuation in the shallow crust and along the propagation path and local site response were evaluated. This data combined with a detailed geologic profile developed for each site based principally on borehole data, was used in the estimation of the strong ground motion parameters. The preliminary peak horizontal ground accelerations for individual sites range from approximately 0.15 to 0.35 g. Based on the authors analysis, the thick sedimentary interbeds (greater than 20 m) in the basalt section attenuate ground motions as speculated upon in a number of previous studies

  4. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack

    Directory of Open Access Journals (Sweden)

    Xin Qi

    2015-02-01

    Full Text Available Bifurcation analysis and stability design for aircraft longitudinal motion are investigated when the nonlinearity in flight dynamics takes place severely at high angle of attack regime. To predict the special nonlinear flight phenomena, bifurcation theory and continuation method are employed to systematically analyze the nonlinear motions. With the refinement of the flight dynamics for F-8 Crusader longitudinal motion, a framework is derived to identify the stationary bifurcation and dynamic bifurcation for high-dimensional system. Case study shows that the F-8 longitudinal motion undergoes saddle node bifurcation, Hopf bifurcation, Zero-Hopf bifurcation and branch point bifurcation under certain conditions. Moreover, the Hopf bifurcation renders series of multiple frequency pitch oscillation phenomena, which deteriorate the flight control stability severely. To relieve the adverse effects of these phenomena, a stabilization control based on gain scheduling and polynomial fitting for F-8 longitudinal motion is presented to enlarge the flight envelope. Simulation results validate the effectiveness of the proposed scheme.

  5. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    Science.gov (United States)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  6. Modelling large motion events in fMRI studies of patients with epilepsy

    DEFF Research Database (Denmark)

    Lemieux, Louis; Salek-Haddadi, Afraim; Lund, Torben E

    2007-01-01

    -positive activation. Head motion can lead to severe image degradation and result in false-positive activation and is usually worse in patients than in healthy subjects. We performed general linear model fMRI data analysis on simultaneous EEG-fMRI data acquired in 34 cases with focal epilepsy. Signal changes...... associated with large inter-scan motion events (head jerks) were modelled using modified design matrices that include 'scan nulling' regressors. We evaluated the efficacy of this approach by mapping the proportion of the brain for which F-tests across the additional regressors were significant. In 95......% of cases, there was a significant effect of motion in 50% of the brain or greater; for the scan nulling effect, the proportion was 36%; this effect was predominantly in the neocortex. We conclude that careful consideration of the motion-related effects in fMRI studies of patients with epilepsy is essential...

  7. Assessment of competence in simulated flexible bronchoscopy using motion analysis

    DEFF Research Database (Denmark)

    Collela, Sara; Svendsen, Morten Bo Søndergaard; Konge, Lars

    2015-01-01

    Background: Flexible bronchoscopy should be performed with a correct posture and a straight scope to optimize bronchoscopy performance and at the same time minimize the risk of work-related injuries and endoscope damage. Objectives: We aimed to test whether an automatic motion analysis system could...... intermediates and 9 experienced bronchoscopy operators performed 3 procedures each on a bronchoscopy simulator. The Microsoft Kinect system was used to automatically measure the total deviation of the scope from a perfectly straight, vertical line. Results: The low-cost motion analysis system could measure...... with the performance on the simulator (virtual-reality simulator score; p analysis system could discriminate between different levels of experience. Automatic feedback on correct movements during self-directed training on simulators might help new bronchoscopists learn how to handle...

  8. A Mobile Motion Analysis System Using Intertial Sensors for Analysis of Lower Limb Prosthetics

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, John Kyle P [ORNL; Ericson, Milton Nance [ORNL; Farquhar, Ethan [ORNL; Lind, Randall F [ORNL; Evans III, Boyd Mccutchen [ORNL

    2011-01-01

    Soldiers returning from the global war on terror requiring lower leg prosthetics generally have different concerns and requirements than the typical lower leg amputee. These subjects are usually young, wish to remain active and often desire to return to active military duty. As such, they demand higher performance from their prosthetics, but are at risk for chronic injury and joint conditions in their unaffected limb. Motion analysis is a valuable tool in assessing the performance of new and existing prosthetic technologies as well as the methods in fitting these devices to both maximize performance and minimize risk of injury for the individual soldier. We are developing a mobile, low-cost motion analysis system using inertial measurement units (IMUs) and two custom force sensors that detect ground reaction forces and moments on both the unaffected limb and prosthesis. IMUs were tested on a robot programmed to simulate human gait motion. An algorithm which uses a kinematic model of the robot and an extended Kalman filter (EKF) was used to convert the rates and accelerations from the gyro and accelerometer into joint angles. Compared to encoder data from the robot, which was considered the ground truth in this experiment, the inertial measurement system had a RMSE of <1.0 degree. Collecting kinematic and kinetic data without the restrictions and expense of a motion analysis lab could help researchers, designers and prosthetists advance prosthesis technology and customize devices for individuals. Ultimately, these improvements will result in better prosthetic performance for the military population.

  9. Analysis of means of improving the uncontrolled lateral motions of personal airplanes

    Science.gov (United States)

    Mckinney, Marion O , Jr

    1951-01-01

    A theoretical analysis has been made of means of improving the uncontrolled motions of personal airplanes. The purpose of this investigation was to determine whether such airplanes could be made to fly uncontrolled for an indefinite period of time without getting into dangerous attitudes and for a reasonable period of time (1 to 3 min) without deviating excessively from their original course. The results of this analysis indicated that the uncontrolled motions of a personal airplane could be made safe as regards spiral tendencies and could be greatly improved as regards maintenance of course without resort to an autopilot. The only way to make the uncontrolled motions completely satisfactory as regards continuous maintenance of course, however, is to use a conventional type of autopilot.

  10. A comparative analysis of modal motions for the gyroscopic and non-gyroscopic two degree-of-freedom conservative systems

    Science.gov (United States)

    Yang, Xiao-Dong; An, Hua-Zhen; Qian, Ying-Jing; Zhang, Wei; Melnik, Roderick V. N.

    2016-12-01

    The synchronous in-unison motions in vibrational mechanics and the non-synchronous out-of-unison motions are the most frequently found periodic motions in every fields of science and everywhere in the universe. In contrast to the in-unison normal modes, the out-of-unison complex modes feature a π/2 phase difference. By the complex mode analysis we classify the out-of-unison planar motion into two types, gyroscopic motions and elliptic motions. It is found that the gyroscopic and elliptic motions have different characteristics for a two degree-of-freedom (2DOF) system. The gyroscopic motion involves two distinct frequencies with, respectively, two corresponding complex modes. However, the elliptic motion the nonlinear non-gyroscopic 2DOF system with repeated frequencies involves only single frequency with corresponding two complex modes. The study of the differences and similarities of the gyroscopic and elliptic modes sheds new light on the in-depth mechanism of the planar motions in the universe and the man-made engineering systems.

  11. MR image analysis: Longitudinal cardiac motion influences left ventricular measurements

    International Nuclear Information System (INIS)

    Berkovic, Patrick; Hemmink, Maarten; Parizel, Paul M.; Vrints, Christiaan J.; Paelinck, Bernard P.

    2010-01-01

    Background: Software for the analysis of left ventricular (LV) volumes and mass using border detection in short-axis images only, is hampered by through-plane cardiac motion. Therefore we aimed to evaluate software that involves longitudinal cardiac motion. Methods: Twenty-three consecutive patients underwent 1.5-Tesla cine magnetic resonance (MR) imaging of the entire heart in the long-axis and short-axis orientation with breath-hold steady-state free precession imaging. Offline analysis was performed using software that uses short-axis images (Medis MASS) and software that includes two-chamber and four-chamber images to involve longitudinal LV expansion and shortening (CAAS-MRV). Intraobserver and interobserver reproducibility was assessed by using Bland-Altman analysis. Results: Compared with MASS software, CAAS-MRV resulted in significantly smaller end-diastolic (156 ± 48 ml versus 167 ± 52 ml, p = 0.001) and end-systolic LV volumes (79 ± 48 ml versus 94 ± 52 ml, p < 0.001). In addition, CAAS-MRV resulted in higher LV ejection fraction (52 ± 14% versus 46 ± 13%, p < 0.001) and calculated LV mass (154 ± 52 g versus 142 ± 52 g, p = 0.004). Intraobserver and interobserver limits of agreement were similar for both methods. Conclusion: MR analysis of LV volumes and mass involving long-axis LV motion is a highly reproducible method, resulting in smaller LV volumes, higher ejection fraction and calculated LV mass.

  12. Correlation between hip function and knee kinematics evaluated by three-dimensional motion analysis during lateral and medial side-hopping.

    Science.gov (United States)

    Itoh, Hiromitsu; Takiguchi, Kohei; Shibata, Yohei; Okubo, Satoshi; Yoshiya, Shinichi; Kuroda, Ryosuke

    2016-09-01

    [Purpose] Kinematic and kinetic characteristics of the limb during side-hopping and hip/knee interaction during this motion have not been clarified. The purposes of this study were to examine the biomechanical parameters of the knee during side hop and analyze its relationship with clinical measurements of hip function. [Subjects and Methods] Eleven male college rugby players were included. A three-dimensional motion analysis system was used to assess motion characteristics of the knee during side hop. In addition, hip range of motion and muscle strength were evaluated. Subsequently, the relationship between knee motion and the clinical parameters of the hip was analyzed. [Results] In the lateral touchdown phase, the knee was positioned in an abducted and externally rotated position, and increasing abduction moment was applied to the knee. An analysis of the interaction between knee motion and hip function showed that range of motion for hip internal rotation was significantly correlated with external rotation angle and external rotation/abduction moments of the knee during the lateral touchdown phase. [Conclusion] Range of motion for hip internal rotation should be taken into consideration for identifying the biomechanical characteristics in the side hop test results.

  13. Uncertainty Prediction in Passive Target Motion Analysis

    Science.gov (United States)

    2016-05-12

    Number 15/152,696 Filing Date 12 May 2016 Inventor John G. Baylog et al Address any questions concerning this matter to the Office of...300118 1 of 25 UNCERTAINTY PREDICTION IN PASSIVE TARGET MOTION ANALYSIS STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein...at an unknown location and following an unknown course relative to an observer 12. Observer 12 has a sensor array such as a passive sonar or radar

  14. Seismic fragility analysis of a CANDU containment structure for near-fault ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Choun, Young Sun; Seo, Jeong Moon; Ahn, Seong Moon

    2005-01-01

    The R. G. 1.60 spectrum used for the seismic design of Korean nuclear power plants provides a generally conservative design basis due to its broadband nature. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near these faults. The probability based scenario earthquakes were identified as near-field earthquakes. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. It is necessary to estimate the near-fault ground motion effects on the nuclear power plant structures and components located near the faults. In this study, the seismic fragility analysis of a CANDU containment structure was performed based on the results of nonlinear dynamic time-history analyses

  15. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  16. Analysis of Indoor Rowing Motion using Wearable Inertial Sensors

    NARCIS (Netherlands)

    Bosch, S.; Shoaib, M.; Geerlings, Stephen; Buit, Lennart; Meratnia, Nirvana; Havinga, Paul J.M.

    2015-01-01

    In this exploratory work the motion of rowers is analyzed while rowing on a rowing machine. This is performed using inertial sensors that measure the orientation at several positions on the body. Using these measurements, this work provides a preliminary analysis of the differences between

  17. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    International Nuclear Information System (INIS)

    Elkhoraibi, T.; Hashemi, A.; Ostadan, F.

    2014-01-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  18. Probabilistic and deterministic soil structure interaction analysis including ground motion incoherency effects

    Energy Technology Data Exchange (ETDEWEB)

    Elkhoraibi, T., E-mail: telkhora@bechtel.com; Hashemi, A.; Ostadan, F.

    2014-04-01

    Soil-structure interaction (SSI) is a major step for seismic design of massive and stiff structures typical of the nuclear facilities and civil infrastructures such as tunnels, underground stations, dams and lock head structures. Currently most SSI analyses are performed deterministically, incorporating limited range of variation in soil and structural properties and without consideration of the ground motion incoherency effects. This often leads to overestimation of the seismic response particularly the In-Structure-Response Spectra (ISRS) with significant impositions of design and equipment qualification costs, especially in the case of high-frequency sensitive equipment at stiff soil or rock sites. The reluctance to incorporate a more comprehensive probabilistic approach is mainly due to the fact that the computational cost of performing probabilistic SSI analysis even without incoherency function considerations has been prohibitive. As such, bounding deterministic approaches have been preferred by the industry and accepted by the regulatory agencies. However, given the recently available and growing computing capabilities, the need for a probabilistic-based approach to the SSI analysis is becoming clear with the advances in performance-based engineering and the utilization of fragility analysis in the decision making process whether by the owners or the regulatory agencies. This paper demonstrates the use of both probabilistic and deterministic SSI analysis techniques to identify important engineering demand parameters in the structure. A typical nuclear industry structure is used as an example for this study. The system is analyzed for two different site conditions: rock and deep soil. Both deterministic and probabilistic SSI analysis approaches are performed, using the program SASSI, with and without ground motion incoherency considerations. In both approaches, the analysis begins at the hard rock level using the low frequency and high frequency hard rock

  19. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  20. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Directory of Open Access Journals (Sweden)

    Valeriya Gritsenko

    Full Text Available To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery.Descriptive study of motion measured via 2 methods.Academic cancer center oncology clinic.20 women (mean age = 60 yrs were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery following mastectomy (n = 4 or lumpectomy (n = 16 for breast cancer.Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle.Correlation of motion capture with goniometry and detection of motion limitation.Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80, while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more.Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  1. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    Science.gov (United States)

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  2. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    Science.gov (United States)

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  3. Comparison Virtual Landing Gear Drop Test for Commuter Aircraft Utilize MSC ADAMS And Solidworks Motion Analysis

    Science.gov (United States)

    Hidayat, Dony; Istiyanto, Jos; Agus Sumarsono, Danardono

    2018-04-01

    Loads at main landing gear while touchdown impact is function of aircraft weight and ground reaction load factor. In regulation states ground reaction load factor at Vsink = 3.05 m/s is below 3. Contact/impact force from simulation using MSC ADAMS is 94680 N, while using Solidworks Motion Analysis is 97691 N. The difference between MSC ADAMS and Solidworks Motion Analysis is 3.08%. The ground reaction load factor in MSC ADAMS is 2.78 while in Solidworks Motion Analysis is 2.87.

  4. Psychomotor skills assessment by motion analysis in minimally invasive surgery on an animal organ.

    Science.gov (United States)

    Hofstad, Erlend Fagertun; Våpenstad, Cecilie; Bø, Lars Eirik; Langø, Thomas; Kuhry, Esther; Mårvik, Ronald

    2017-08-01

    A high level of psychomotor skills is required to perform minimally invasive surgery (MIS) safely. To be able to measure these skills is important in the assessment of surgeons, as it enables constructive feedback during training. The aim of this study was to test the validity of an objective and automatic assessment method using motion analysis during a laparoscopic procedure on an animal organ. Experienced surgeons in laparoscopy (experts) and medical students (novices) performed a cholecystectomy on a porcine liver box model. The motions of the surgical tools were acquired and analyzed by 11 different motion-related metrics, i.e., a total of 19 metrics as eight of them were measured separately for each hand. We identified for which of the metrics the experts outperformed the novices. In total, two experts and 28 novices were included. The experts achieved significantly better results for 13 of the 19 instrument motion metrics. Expert performance is characterized by a low time to complete the cholecystectomy, high bimanual dexterity (instrument coordination), a limited amount of movement and low measurement of motion smoothness of the dissection instrument, and relatively high usage of the grasper to optimize tissue positioning for dissection.

  5. Multi-scale AM-FM motion analysis of ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Murray, Victor; Loizou, C. P.; Pattichis, C. S.; Pattichis, Marios; Barriga, E. Simon

    2012-03-01

    An estimated 82 million American adults have one or more type of cardiovascular diseases (CVD). CVD is the leading cause of death (1 of every 3 deaths) in the United States. When considered separately from other CVDs, stroke ranks third among all causes of death behind diseases of the heart and cancer. Stroke accounts for 1 out of every 18 deaths and is the leading cause of serious long-term disability in the United States. Motion estimation of ultrasound videos (US) of carotid artery (CA) plaques provides important information regarding plaque deformation that should be considered for distinguishing between symptomatic and asymptomatic plaques. In this paper, we present the development of verifiable methods for the estimation of plaque motion. Our methodology is tested on a set of 34 (5 symptomatic and 29 asymptomatic) ultrasound videos of carotid artery plaques. Plaque and wall motion analysis provides information about plaque instability and is used in an attempt to differentiate between symptomatic and asymptomatic cases. The final goal for motion estimation and analysis is to identify pathological conditions that can be detected from motion changes due to changes in tissue stiffness.

  6. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  7. Reliability and validity of CODA motion analysis system for measuring cervical range of motion in patients with cervical spondylosis and anterior cervical fusion.

    Science.gov (United States)

    Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing

    2017-12-01

    The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.

  8. Comparison of longitudinal excursion of a nerve-phantom model using quantitative ultrasound imaging and motion analysis system methods: A convergent validity study.

    Science.gov (United States)

    Paquette, Philippe; El Khamlichi, Youssef; Lamontagne, Martin; Higgins, Johanne; Gagnon, Dany H

    2017-08-01

    Quantitative ultrasound imaging is gaining popularity in research and clinical settings to measure the neuromechanical properties of the peripheral nerves such as their capability to glide in response to body segment movement. Increasing evidence suggests that impaired median nerve longitudinal excursion is associated with carpal tunnel syndrome. To date, psychometric properties of longitudinal nerve excursion measurements using quantitative ultrasound imaging have not been extensively investigated. This study investigates the convergent validity of the longitudinal nerve excursion by comparing measures obtained using quantitative ultrasound imaging with those determined with a motion analysis system. A 38-cm long rigid nerve-phantom model was used to assess the longitudinal excursion in a laboratory environment. The nerve-phantom model, immersed in a 20-cm deep container filled with a gelatin-based solution, was moved 20 times using a linear forward and backward motion. Three light-emitting diodes were used to record nerve-phantom excursion with a motion analysis system, while a 5-cm linear transducer allowed simultaneous recording via ultrasound imaging. Both measurement techniques yielded excellent association ( r  = 0.99) and agreement (mean absolute difference between methods = 0.85 mm; mean relative difference between methods = 7.48 %). Small discrepancies were largely found when larger excursions (i.e. > 10 mm) were performed, revealing slight underestimation of the excursion by the ultrasound imaging analysis software. Quantitative ultrasound imaging is an accurate method to assess the longitudinal excursion of an in vitro nerve-phantom model and appears relevant for future research protocols investigating the neuromechanical properties of the peripheral nerves.

  9. Semi-analytical study of the rotational motion stability of artificial satellites using quaternions

    International Nuclear Information System (INIS)

    Dos Santos, Josué C; Zanardi, Maria Cecília; Matos, Nicholas

    2013-01-01

    This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion

  10. Physically based probabilistic seismic hazard analysis using broadband ground motion simulation: a case study for the Prince Islands Fault, Marmara Sea

    Science.gov (United States)

    Mert, Aydin; Fahjan, Yasin M.; Hutchings, Lawrence J.; Pınar, Ali

    2016-08-01

    The main motivation for this study was the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in the Marmara Sea and the disaster risk around the Marmara region, especially in Istanbul. This study provides the results of a physically based probabilistic seismic hazard analysis (PSHA) methodology, using broadband strong ground motion simulations, for sites within the Marmara region, Turkey, that may be vulnerable to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We included the effects of all considerable-magnitude earthquakes. To generate the high-frequency (0.5-20 Hz) part of the broadband earthquake simulation, real, small-magnitude earthquakes recorded by a local seismic array were used as empirical Green's functions. For the frequencies below 0.5 Hz, the simulations were obtained by using synthetic Green's functions, which are synthetic seismograms calculated by an explicit 2D /3D elastic finite difference wave propagation routine. By using a range of rupture scenarios for all considerable-magnitude earthquakes throughout the PIF segments, we produced a hazard calculation for frequencies of 0.1-20 Hz. The physically based PSHA used here followed the same procedure as conventional PSHA, except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes, and this approach utilizes the full rupture of earthquakes along faults. Furthermore, conventional PSHA predicts ground motion parameters by using empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitudes of earthquakes to obtain ground motion parameters. PSHA results were produced for 2, 10, and 50 % hazards for all sites studied in the Marmara region.

  11. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    Science.gov (United States)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  12. Numerical analysis of viscous effect on ship rolling motions based on CFD

    Directory of Open Access Journals (Sweden)

    LUO Tian

    2017-03-01

    Full Text Available During the ship design procedure, the analysis of ship rolling motions is of great significance because the rolling motions have extraordinary effects on the sea-keeping, maneuverability and stability of a ship. It is difficult to simulate rolling motions due to the effect of viscosity, which causes many nonlinear components in computation. As such, the potential theory used for other ship motions cannot be used for rolling motions. This paper simulates the rolling motions of the DTMB 5512 ship model and the ship transverse section of the S60 ship model with a naoe-FOAM-SJTU solver using the Reynolds Averaged Navier Stokes(RANSmethod based on the OpenFOAM. The results of rolling motions are compared with the experimental data, which confirms the reliability of the meshes and results. For the ship transverse section of the S60 ship model, the damping coefficient is divided into three parts with the Euler and RANS methods:friction, vorticity and wave parts. For the DTMB 5512 ship model, the damping coefficient is also respectively analyzed, including the friction, vorticity, wave and bilge keel parts. The results in this paper show that the vorticity part accounts for the greatest proportion, while the friction part accounts for the least, and the bilge keels reduces the damping moment to a certain extent which shows the effect of rolling parameters on rolling motions and moments.

  13. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    Science.gov (United States)

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  14. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    Directory of Open Access Journals (Sweden)

    Gustavo R D Bernardina

    Full Text Available Action sport cameras (ASC are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720 and 1.5mm (1920×1080. The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  15. Evaluating the Reproducibility of Motion Analysis Scanning of the Spine during Walking

    Directory of Open Access Journals (Sweden)

    Aaron Gipsman

    2014-01-01

    Full Text Available The Formetric 4D dynamic system (Diers International GmbH, Schlangenbad, Germany is a rasterstereography based imaging system designed to evaluate spinal deformity, providing radiation-free imaging of the position, rotation, and shape of the spine during the gait cycle. Purpose. This study was designed to evaluate whether repeated measurements with the Formetric 4D dynamic system would be reproducible with a standard deviation of less than +/− 3 degrees. This study looked at real-time segmental motion, measuring kyphosis, lordosis, trunk length, pelvic, and T4 and L1 vertebral body rotation. Methods. Twenty healthy volunteers each underwent 3 consecutive scans. Measurements for kyphosis, lordosis, trunk length, and rotations of T4, L1, and the pelvis were recorded for each trial. Results. The average standard deviations of same-day repeat measurements were within +/− 3 degrees with a range of 0.51 degrees to 2.3 degrees. Conclusions. The surface topography system calculated reproducible measurements with error ranges comparable to the current gold standard in dynamic spinal motion analysis. Therefore, this technique should be considered of high clinical value for reliably evaluating segmental motion and spinal curvatures and should further be evaluated in the setting of adolescent idiopathic scoliosis.

  16. Motion state analysis of space target based on optical cross section

    Science.gov (United States)

    Tian, Qichen; Li, Zhi; Xu, Can; Liu, Chenghao

    2017-10-01

    In order to solve the problem that the movement state analysis method of the space target based on OCS is not related to the real motion state. This paper proposes a method based on OCS for analyzing the state of space target motion. This paper first establish a three-dimensional model of real STSS satellite, then change the satellite's surface into element, and assign material to each panel according to the actual conditions of the satellite. This paper set up a motion scene according to the orbit parameters of STSS satellite in STK, and the motion states are set to three axis steady state and slowly rotating unstable state respectively. In these two states, the occlusion condition of the surface element is firstly determined, and the effective face element is selected. Then, the coordinates of the observation station and the solar coordinates in the satellite body coordinate system are input into the OCS calculation program, and the OCS variation curves of the three axis steady state and the slow rotating unstable state STSS satellite are obtained. Combining the satellite surface structure and the load situation, the OCS change curve of the three axis stabilized satellite is analyzed, and the conclude that the OCS curve fluctuates up and down when the sunlight is irradiated to the load area; By using Spectral analysis method, autocorrelation analysis and the cross residual method, the rotation speed of OCS satellite in slow rotating unstable state is analyzed, and the rotation speed of satellite is successfully reversed. By comparing the three methods, it is found that the cross residual method is more accurate.

  17. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  18. Fusion of optical flow based motion pattern analysis and silhouette classification for person tracking and detection

    NARCIS (Netherlands)

    Tangelder, J.W.H.; Lebert, E.; Burghouts, G.J.; Zon, K. van; Den Uyl, M.J.

    2014-01-01

    This paper presents a novel approach to detect persons in video by combining optical flow based motion analysis and silhouette based recognition. A new fast optical flow computation method is described, and its application in a motion based analysis framework unifying human tracking and detection is

  19. Subterranean ground motion studies for the Einstein Telescope

    International Nuclear Information System (INIS)

    Beker, M G; Brand, J F J van den; Rabeling, D S

    2015-01-01

    Seismic motion limits the low-frequency sensitivity of ground-based gravitational wave detectors. A conceptual design study into the feasibility of a future-generation gravitational wave observatory, coined the Einstein Telescope, has been completed. As part of this design phase, we performed a ground motion study to determine the seismic noise characteristics at various sites across the globe. This investigation focused on underground sites and encompassed a variety of geologies, including clay, salt, and hard rock, at 15 locations in nine European countries, the USA, and Japan. In addition, we analyzed data from the Virtual European Broadband Seismograph Network to characterize European seismic motion. We show that, in the region of interest for future-generation gravitational wave detectors (1–10 Hz), seismic motion is dominated by activity from anthropogenic sources. A number of sites were found that exhibited a reduction in seismic power of several orders of magnitude with respect to current detector sites, thus making it possible to set requirements for the Einstein Telescope seismic noise environment. (paper)

  20. Motion and Stress Analysis of Cam System for Marine Diesel Engine 93 KW

    Directory of Open Access Journals (Sweden)

    Christian Dhani Setiawan

    2017-01-01

    Full Text Available The developments of maritime sector in Indonesia shows increasing demand for ships. Especially ships with size of 30 GT has problem with low availability of the ship engine, which most of the ships still use non marine diesel engine as its main propulsion. The problem gives interest to make a step to improve by design marine diesel engine using reverse engineering method. Cam system of marine diesel engine design was needed to be calculate to select the material and the motion. The design of cam system needs study about the stress analysis in cam system to make sure the distribution of force and moment. The result of stress analysis was used to select material of components in cam system. The motion analysis result was used to be input data of stress analysis. The condition to obtain the stress of components was on maximum condition, its contain pressure, torque, rotation, and force. All component that calculated are camshaft, lifter (flat-tappet, push rod, rocker arm, spring, and valve. Each component was given two different materials and material selection was based on safety factor of each component. Material for camshaft and lifter were malleable cast iron, for push rod and rocker arm were mild steel, for spring was ASTM A231, for intake valve was steel JIS SUH3, and for exhaust valve was steel JIS SUH35. The result of motion analysis were angular velocity of camshaft with value was 2400 deg/sec, friction force between camshaft and lifter with maximum value was 125.393 N, and contact force between camshaft and lifter with maximum value was 845.307 N, and linear velocity of intake valve with maximum value was 696.573 mm/s, and linear velocity of exhaust valve was 463.734 mm/s.

  1. A finite state model for respiratory motion analysis in image guided radiation therapy

    International Nuclear Information System (INIS)

    Wu Huanmei; Sharp, Gregory C; Salzberg, Betty; Kaeli, David; Shirato, Hiroki; Jiang, Steve B

    2004-01-01

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates

  2. A finite state model for respiratory motion analysis in image guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huanmei [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Sharp, Gregory C [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States); Salzberg, Betty [College of Computer and Information Science, Northeastern University, Boston, MA 02115 (United States); Kaeli, David [Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States); Shirato, Hiroki [Department of Radiation Medicine, Hokkaido University School of Medicine, Sapporo (Japan); Jiang, Steve B [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (United States)

    2004-12-07

    Effective image guided radiation treatment of a moving tumour requires adequate information on respiratory motion characteristics. For margin expansion, beam tracking and respiratory gating, the tumour motion must be quantified for pretreatment planning and monitored on-line. We propose a finite state model for respiratory motion analysis that captures our natural understanding of breathing stages. In this model, a regular breathing cycle is represented by three line segments, exhale, end-of-exhale and inhale, while abnormal breathing is represented by an irregular breathing state. In addition, we describe an on-line implementation of this model in one dimension. We found this model can accurately characterize a wide variety of patient breathing patterns. This model was used to describe the respiratory motion for 23 patients with peak-to-peak motion greater than 7 mm. The average root mean square error over all patients was less than 1 mm and no patient has an error worse than 1.5 mm. Our model provides a convenient tool to quantify respiratory motion characteristics, such as patterns of frequency changes and amplitude changes, and can be applied to internal or external motion, including internal tumour position, abdominal surface, diaphragm, spirometry and other surrogates.

  3. Limited diagnostic accuracy of gated myocardial perfusion SPECT for wall motion analysis in patients with asymmetric septal hypertrophy

    International Nuclear Information System (INIS)

    Seo, J.H.; Ahn, B.C.; Bae, J.H.; Jeong, S.Y.; Lee, J.; Lee, K.B.

    2004-01-01

    Objective: Although gated SPECT(G-SPECT) using Tc-99m MIBI is well-known diagnostic modality in the evaluation of myocardial perfusion and wall motion analysis, there were limited reports for subjects with asymmetric septal hypertrophy (ASH). This study was performed to evaluate the clinical usefulness of G-SPECT for assessments of myocardial perfusion and wall motion analysis in patients with ASH on 2D-echocardiography(Echo). Methods: Thirty patients (male 18, 59 12 years) with ASH on Echo (septal wall thickness 13 mm and 1.3 times as thick as that of posterior wall) underwent Tc-99m MIBI G-SPECT. Two studies were performed within one month. No patient had experienced any significant cardiac event, nor had changed medical and surgical therapy during the studies. Functional parameters of the left ventricle were acquired with QGS software(AutoQUANTTM). Three experts performed visual interpretation for the presence of septal thickening and perfusion abnormalities on G-SPECT and two experienced cardiologists measured dimension, thickness and wall motion of the left ventricle on Echo. Results: Mean septum thickness measured by Echo was 1.90 0.50 cm, and the septum/posterior wall thickness ratio was 1.85 0.51. On visual SPECT analysis, 14 patients (46.7%) were interpreted as with thickened septum and 17 patients (57%) as with abnormal perfusion. All 3 patients who underwent coronary angiography showed significant luminal stenosis and also had perfusion abnormalities on SPECT. On Echo, only one patient showed septal hypokinesia, who showed anteroseptal infarction on SPECT, and the others showed normal septal wall motion. But 13 patients (54%) among 24 patients showed septal hypokinesia on G-SPECT. Patients with thickened septum on SPECT had thicker septum (2.3 vs 1.6 cm) and higher septum/posterior wall thickness ratio (2.2 vs 1.6) on Echo, compared with patients without septal thickening on SPECT. Conclusions: Although G-SPECT could proffer diagnostic accuracy for

  4. Analysis of head motion prior to and during proton beam therapy

    International Nuclear Information System (INIS)

    Schulte, Reinhard W.; Fargo, Ramiz A.; Meinass, Helmut J.; Slater, Jerry D.; Slater, James M.

    2000-01-01

    Purpose: We report on the use of a noninvasive patient motion monitoring system to evaluate the amount of head motion prior to and during proton radiation therapy sessions. Methods and Materials: Two optical displacement sensors, placed close to the patient's head, were used for online monitoring of the head position, with submillimeter accuracy. Motion data, including the difference between start and end position (Dx) and the maximum displacement during the recorded session (Dx-max), were acquired for pretreatment sessions to analyze alignment radiographs, and for treatment sessions. We have recorded 102 pretreatment and 99 treatment sessions in 16 patients immobilized with a thermoplastic mask, and 44 pretreatment and 56 treatment sessions in 13 patients immobilized with vacuum-assisted dental fixation. To avoid incorrect data analysis due to replicate observations, only 1 pretreatment and 1 treatment session per patient were selected at random for statistical comparison of mean or median motion parameters in different subgroups. Results: Both techniques showed similar immobilization efficiencies. The median Dx and Dx-max values were 0.18 mm and 0.46 mm, respectively, for 16 treatment sessions with mask immobilization, and 0.22 mm and 0.50 mm, respectively, for 13 treatment sessions with dental immobilization. Motion parameters for pretreatment and treatment sessions were not statistically different. Conclusion: Online verification of patient's head motion is feasible and provides valuable data for confirmation of proper treatment delivery in individual patients, as well as for the evaluation of different immobilization methods

  5. Human detection and motion analysis at security points

    Science.gov (United States)

    Ozer, I. Burak; Lv, Tiehan; Wolf, Wayne H.

    2003-08-01

    This paper presents a real-time video surveillance system for the recognition of specific human activities. Specifically, the proposed automatic motion analysis is used as an on-line alarm system to detect abnormal situations in a campus environment. A smart multi-camera system developed at Princeton University is extended for use in smart environments in which the camera detects the presence of multiple persons as well as their gestures and their interaction in real-time.

  6. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  7. A Study of the correlation of the components of instructure motions during earthquakes

    International Nuclear Information System (INIS)

    Hudjian, A.H.

    1984-01-01

    The San Fernando earthquake of February 9, 1971 generated a large number of records in buildings throughout the Los Angeles basin. The correlation of the components of these instructure motions is studied with the expectation that an understanding of these in-situ motions could be helpful in the seismic analysis of equipment located in structures. Thirty-two buildings are selected that have all three components of motion recorded in the basement, midheight and top of the structure. The correlation coefficients of these motions, as a function of the orientation of recorder, is generated and evaluated. The effects of the structural characteristics on these motions are studied by comparing the top and midheight correlation functions with those of the basement records. Additionally, nine structures, whose design details are available in the technical literature, are selected for more detailed studies. Considering the fact that as-built structures tend to have a multitude of details that lead to non-symmetry, most of the structures studied tended towards increased correlation at the roof level. In a few cases the torsional response was accentuated due to a softening in one principal axis more than in the other as a direct result of structural damage. At midheight the correlation was reduced due to the fact that for highrise buildings the second and higher modes are significant contributors to the total structural response and tend to have a node at about this level for either of the principal axes. This midheight anomaly should not exist for the more rigid structures of nuclear power plant structures since these structures are dominated by the fundamental mode response

  8. Robust object tracking techniques for vision-based 3D motion analysis applications

    Science.gov (United States)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  9. Correlation of horizontal and vertical components of strong ground motion for response-history analysis of safety-related nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin-Nan, E-mail: ynhuang@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Yen, Wen-Yi, E-mail: b01501059@ntu.edu.tw [Dept. of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Whittaker, Andrew S., E-mail: awhittak@buffalo.edu [Dept. of Civil, Structural and Environmental Engineering, MCEER, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2016-12-15

    Highlights: • The correlation of components of ground motion is studied using 1689 sets of records. • The data support an upper bound of 0.3 on the correlation coefficient. • The data support the related requirement in the upcoming edition of ASCE Standard 4. - Abstract: Design standards for safety-related nuclear facilities such as ASCE Standard 4-98 and ASCE Standard 43-05 require the correlation coefficient for two orthogonal components of ground motions for response-history analysis to be less than 0.3. The technical basis of this requirement was developed by Hadjian three decades ago using 50 pairs of recorded ground motions that were available at that time. In this study, correlation coefficients for (1) two horizontal components, and (2) the vertical component and one horizontal component, of a set of ground motions are computed using records from a ground-motion database compiled recently for large-magnitude shallow crustal earthquakes. The impact of the orientation of the orthogonal horizontal components on the correlation coefficient of ground motions is discussed. The rules in the forthcoming edition of ASCE Standard 4 for the correlation of components in a set of ground motions are shown to be reasonable.

  10. Turbulence characterization by studying laser beam wandering in a differential tracking motion setup

    Science.gov (United States)

    Pérez, Darío G.; Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Garavaglia, Mario

    2009-09-01

    The Differential Image Motion Monitor (DIMM) is a standard and widely used instrument for astronomical seeing measurements. The seeing values are estimated from the variance of the differential image motion over two equal small pupils some distance apart. The twin pupils are usually cut in a mask on the entrance pupil of the telescope. As a differential method, it has the advantage of being immune to tracking errors, eliminating erratic motion of the telescope. The Differential Laser Tracking Motion (DLTM) is introduced here inspired by the same idea. Two identical laser beams are propagated through a path of air in turbulent motion, at the end of it their wander is registered by two position sensitive detectors-at a count of 800 samples per second. Time series generated from the difference of the pair of centroid laser beam coordinates is then analyzed using the multifractal detrended fluctuation analysis. Measurements were performed at the laboratory with synthetic turbulence: changing the relative separation of the beams for different turbulent regimes. The dependence, with respect to these parameters, and the robustness of our estimators is compared with the non-differential method. This method is an improvement with respect to previous approaches that study the beam wandering.

  11. An Extreme-Value Analysis of the LIL for Brownian Motion

    OpenAIRE

    Khoshnevisan, Davar; Levin, David; Shi, Zhan

    2005-01-01

    We use excursion theory and the ergodic theorem to present an extreme-value analysis of the classical law of the iterated logarithm (LIL) for Brownian motion. A simplified version of our method also proves, in a paragraph, the classical theorem of Darling and Erdős (1956).

  12. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    Science.gov (United States)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  13. The Use of Wearable Inertial Motion Sensors in Human Lower Limb Biomechanics Studies: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Yue-Yan Chan

    2010-12-01

    Full Text Available Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.

  14. The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review.

    Science.gov (United States)

    Fong, Daniel Tik-Pui; Chan, Yue-Yan

    2010-01-01

    Wearable motion sensors consisting of accelerometers, gyroscopes and magnetic sensors are readily available nowadays. The small size and low production costs of motion sensors make them a very good tool for human motions analysis. However, data processing and accuracy of the collected data are important issues for research purposes. In this paper, we aim to review the literature related to usage of inertial sensors in human lower limb biomechanics studies. A systematic search was done in the following search engines: ISI Web of Knowledge, Medline, SportDiscus and IEEE Xplore. Thirty nine full papers and conference abstracts with related topics were included in this review. The type of sensor involved, data collection methods, study design, validation methods and its applications were reviewed.

  15. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome

    OpenAIRE

    Go, T

    2009-01-01

    Tohshin Go1, Asako Mitani21Center for Baby Science, Doshisha University, Kizugawa, Kyoto, Japan; 2Independent Music Therapist (Poco A Poco Music Room), Tokyo, JapanAbstract: Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. W...

  16. Motion estimation for cardiac functional analysis using two x-ray computed tomography scans.

    Science.gov (United States)

    Fung, George S K; Ciuffo, Luisa; Ashikaga, Hiroshi; Taguchi, Katsuyuki

    2017-09-01

    This work concerns computed tomography (CT)-based cardiac functional analysis (CFA) with a reduced radiation dose. As CT-CFA requires images over the entire heartbeat, the scans are often performed at 10-20% of the tube current settings that are typically used for coronary CT angiography. A large image noise then degrades the accuracy of motion estimation. Moreover, even if the scan was performed during the sinus rhythm, the cardiac motion observed in CT images may not be cyclic with patients with atrial fibrillation. In this study, we propose to use two CT scan data, one for CT angiography at a quiescent phase at a standard dose and the other for CFA over the entire heart beat at a lower dose. We have made the following four modifications to an image-based cardiac motion estimation method we have previously developed for a full-dose retrospectively gated coronary CT angiography: (a) a full-dose prospectively gated coronary CT angiography image acquired at the least motion phase was used as the reference image; (b) a three-dimensional median filter was applied to lower-dose retrospectively gated cardiac images acquired at 20 phases over one heartbeat in order to reduce image noise; (c) the strength of the temporal regularization term was made adaptive; and (d) a one-dimensional temporal filter was applied to the estimated motion vector field in order to decrease jaggy motion patterns. We describe the conventional method iME1 and the proposed method iME2 in this article. Five observers assessed the accuracy of the estimated motion vector field of iME2 and iME1 using a 4-point scale. The observers repeated the assessment with data presented in a new random order 1 week after the first assessment session. The study confirmed that the proposed iME2 was robust against the mismatch of noise levels, contrast enhancement levels, and shapes of the chambers. There was a statistically significant difference between iME2 and iME1 (accuracy score, 2.08 ± 0.81 versus 2.77

  17. A first analysis of the mean motion of CHAMP

    Directory of Open Access Journals (Sweden)

    F. Deleflie

    2003-01-01

    Full Text Available The present study consists in studying the mean orbital motion of the CHAMP satellite, through a single long arc on a period of time of 200 days in 2001. We actually investigate the sensibility of its mean motion to its accelerometric data, as measures of the surface forces, over that period. In order to accurately determine the mean motion of CHAMP, we use “observed" mean orbital elements computed, by filtering, from 1-day GPS orbits. On the other hand, we use a semi-analytical model to compute the arc. It consists in numerically integrating the effects of the mean potentials (due to the Earth and the Moon and Sun, and the effects of mean surfaces forces acting on the satellite. These later are, in case of CHAMP, provided by an averaging of the Gauss system of equations. Results of the fit of the long arc give a relative sensibility of about 10-3, although our gravitational mean model is not well suited to describe very low altitude orbits. This technique, which is purely dynamical, enables us to control the decreasing of the trajectory altitude, as a possibility to validate accelerometric data on a long term basis.Key words. Mean orbital motion, accelerometric data

  18. Animation and radiobiological analysis of 3D motion in conformal radiotherapy.

    Science.gov (United States)

    MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J

    1999-07-01

    To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to

  19. Risk assessment of the onset of Osgood-Schlatter disease using kinetic analysis of various motions in sports.

    Science.gov (United States)

    Itoh, Gento; Ishii, Hideyuki; Kato, Haruyasu; Nagano, Yasuharu; Hayashi, Hiroteru; Funasaki, Hiroki

    2018-01-01

    Some studies have listed motions that may cause Osgood-Schlatter disease, but none have quantitatively assessed the load on the tibial tubercle by such motions. To quantitatively identify the load on the tibial tubercle through a biomechanical approach using various motions that may cause Osgood-Schlatter disease, and to compare the load between different motions. Eight healthy male subjects were included. They conducted 4 types of kicks with a soccer ball, 2 types of runs, 2 types of squats, 2 types of jump landings, 2 types of stops, 1 type of turn, and 1 type of cutting motion. The angular impulse was calculated for knee extension moments ≥1.0 Nm/kg, ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg. After analysis of variance, the post-hoc test was used to perform pairwise comparisons between all groups. The motion with the highest mean angular impulse of knee extension moment ≥1.0 Nm/kg was the single-leg landing after a jump, and that with the second highest mean was the cutting motion. At ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg, the cutting motion was the highest, followed by the jump with a single-leg landing. They have a large load, and are associated with a higher risk of developing Osgood-Schlatter disease. The mean angular impulse of the 2 types of runs was small at all the indicators. Motions with a high risk of developing Osgood-Schlatter disease and low-risk motions can be assessed in further detail if future studies can quantify the load and number of repetitions that may cause Osgood-Schlatter disease while considering age and the development stage. Scheduled training regimens that balance load on the tibial tubercle with low-load motions after a training day of many load-intensive motions may prevent athletes from developing Osgood-Schlatter disease and increase their participation in sports.

  20. Risk assessment of the onset of Osgood–Schlatter disease using kinetic analysis of various motions in sports

    Science.gov (United States)

    Ishii, Hideyuki; Kato, Haruyasu; Nagano, Yasuharu; Hayashi, Hiroteru; Funasaki, Hiroki

    2018-01-01

    Background Some studies have listed motions that may cause Osgood-Schlatter disease, but none have quantitatively assessed the load on the tibial tubercle by such motions. Purposes To quantitatively identify the load on the tibial tubercle through a biomechanical approach using various motions that may cause Osgood-Schlatter disease, and to compare the load between different motions. Methods Eight healthy male subjects were included. They conducted 4 types of kicks with a soccer ball, 2 types of runs, 2 types of squats, 2 types of jump landings, 2 types of stops, 1 type of turn, and 1 type of cutting motion. The angular impulse was calculated for knee extension moments ≥1.0 Nm/kg, ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg. After analysis of variance, the post-hoc test was used to perform pairwise comparisons between all groups. Results/Conclusions The motion with the highest mean angular impulse of knee extension moment ≥1.0 Nm/kg was the single-leg landing after a jump, and that with the second highest mean was the cutting motion. At ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg, the cutting motion was the highest, followed by the jump with a single-leg landing. They have a large load, and are associated with a higher risk of developing Osgood-Schlatter disease. The mean angular impulse of the 2 types of runs was small at all the indicators. Clinical relevance Motions with a high risk of developing Osgood-Schlatter disease and low-risk motions can be assessed in further detail if future studies can quantify the load and number of repetitions that may cause Osgood-Schlatter disease while considering age and the development stage. Scheduled training regimens that balance load on the tibial tubercle with low-load motions after a training day of many load-intensive motions may prevent athletes from developing Osgood-Schlatter disease and increase their participation in sports. PMID:29309422

  1. Risk assessment of the onset of Osgood-Schlatter disease using kinetic analysis of various motions in sports.

    Directory of Open Access Journals (Sweden)

    Gento Itoh

    Full Text Available Some studies have listed motions that may cause Osgood-Schlatter disease, but none have quantitatively assessed the load on the tibial tubercle by such motions.To quantitatively identify the load on the tibial tubercle through a biomechanical approach using various motions that may cause Osgood-Schlatter disease, and to compare the load between different motions.Eight healthy male subjects were included. They conducted 4 types of kicks with a soccer ball, 2 types of runs, 2 types of squats, 2 types of jump landings, 2 types of stops, 1 type of turn, and 1 type of cutting motion. The angular impulse was calculated for knee extension moments ≥1.0 Nm/kg, ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg. After analysis of variance, the post-hoc test was used to perform pairwise comparisons between all groups.The motion with the highest mean angular impulse of knee extension moment ≥1.0 Nm/kg was the single-leg landing after a jump, and that with the second highest mean was the cutting motion. At ≥1.5 Nm/kg, ≥2.0 Nm/kg, and ≥2.5 Nm/kg, the cutting motion was the highest, followed by the jump with a single-leg landing. They have a large load, and are associated with a higher risk of developing Osgood-Schlatter disease. The mean angular impulse of the 2 types of runs was small at all the indicators.Motions with a high risk of developing Osgood-Schlatter disease and low-risk motions can be assessed in further detail if future studies can quantify the load and number of repetitions that may cause Osgood-Schlatter disease while considering age and the development stage. Scheduled training regimens that balance load on the tibial tubercle with low-load motions after a training day of many load-intensive motions may prevent athletes from developing Osgood-Schlatter disease and increase their participation in sports.

  2. Joint Motion Quality in Chondromalacia Progression Assessed by Vibroacoustic Signal Analysis.

    Science.gov (United States)

    Bączkowicz, Dawid; Majorczyk, Edyta

    2016-11-01

    Because of the specific biomechanical environment of the patellofemoral joint, chondral disorders, including chondromalacia, often are observed in this articulation. Chondromalacia via pathologic changes in cartilage may lead to qualitative impairment of knee joint motion. To determine the patellofemoral joint motion quality in particular chondromalacia stages and to compare with controls. Retrospective, comparative study. Voivodship hospitals, university biomechanical laboratory. A total of 89 knees with chondromalacia (25 with stage I; 30 with stage II and 34 with stage III) from 50 patients and 64 control healthy knees (from 32 individuals). Vibroacoustic signal pattern analysis of joint motion quality. For all knees vibroacoustic signals were recorded. Each obtained signal was described by variation of mean square, mean range (R4), and power spectral density for frequency of 50-250 Hz (P1) and 250-450 Hz (P2) parameters. Differences between healthy controls and all chondromalacic knees as well as chondromalacia patellae groups were observed as an increase of analyzed parameters (P chondromalacia patellae was found. All chondromalacia groups were differentiated by the use of all analyzed parameters (P chondromalacia. Chondromalacia generates abnormal vibroacoustic signals, and there seems to be a relationship between the level of signal amplitude as well as frequency and cartilage destruction from the superficial layer to the subchondral bone. IV. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  4. Statistical analysis of target motion in gated lung stereotactic body radiation therapy

    International Nuclear Information System (INIS)

    Zhao Bo; Yang Yong; Li Tianfang; Li Xiang; Heron, Dwight E; Huq, M Saiful

    2011-01-01

    An external surrogate-based respiratory gating technique is a useful method to reduce target margins for the treatment of a moving lung tumor. The success of this technique relies on a good correlation between the motion of the external markers and the internal tumor as well as the repeatability of the respiratory motion. In gated lung stereotactic body radiation therapy (SBRT), the treatment time for each fraction could exceed 30 min due to large fractional dose. Tumor motion may experience pattern changes such as baseline shift during such extended treatment time. The purpose of this study is to analyze tumor motion traces in actual treatment situations and to evaluate the effect of the target baseline shift in gated lung SBRT treatment. Real-time motion data for both the external markers and tumors from 51 lung SBRT treatments with Cyberknife Synchrony technology were analyzed in this study. The treatment time is typically greater than 30 min. The baseline shift was calculated with a rolling average window equivalent to ∼20 s and subtracted from that at the beginning. The magnitude of the baseline shift and its relationship with treatment time were investigated. Phase gating simulation was retrospectively performed on 12 carefully selected treatments with respiratory amplitude larger than 5 mm and regular phases. A customized gating window was defined for each individual treatment. It was found that the baseline shifts are specific to each patient and each fraction. Statistical analysis revealed that more than 69% treatments exhibited increased baseline shifts with the lapse of treatment time. The magnitude of the baseline shift could reach 5.3 mm during a 30 min treatment. Gating simulation showed that tumor excursion was caused mainly by the uncertainties in phase gating simulation and baseline shift, the latter being the primary factor. With a 5 mm gating window, 2 out of 12 treatments in the study group showed significant tumor excursion. Baseline shifts

  5. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  6. Motion Intention Analysis-Based Coordinated Control for Amputee-Prosthesis Interaction

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2010-01-01

    Full Text Available To study amputee-prosthesis (AP interaction, a novel reconfigurable biped robot was designed and fabricated. In homogeneous configuration, two identical artificial legs (ALs were used to simulate the symmetrical lower limbs of a healthy person. Linear inverted pendulum model combining with ZMP stability criterion was used to generate the gait trajectories of ALs. To acquire interjoint coordination for healthy gait, rate gyroscopes were mounted on CoGs of thigh and shank of both legs. By employing principal component analysis, the measured angular velocities were processed and the motion synergy was obtained in the final. Then, one of two ALs was replaced by a bionic leg (BL, and the biped robot was changed into heterogeneous configuration to simulate the AP coupling system. To realize symmetrical stable walking, master/slave coordinated control strategy is proposed. According to information acquired by gyroscopes, BL recognized the motion intention of AL and reconstructed its kinematic variables based on interjoint coordination. By employing iterative learning control, gait tracking of BL to AL was archived. Real environment robot walking experiments validated the correctness and effectiveness of the proposed scheme.

  7. Effects of Second-Order Sum- and Difference-Frequency Wave Forces on the Motion Response of a Tension-Leg Platform Considering the Set-down Motion

    Science.gov (United States)

    Wang, Bin; Tang, Yougang; Li, Yan; Cai, Runbo

    2018-04-01

    This paper presents a study on the motion response of a tension-leg platform (TLP) under first- and second-order wave forces, including the mean-drift force, difference and sum-frequency forces. The second-order wave force is calculated using the full-field quadratic transfer function (QTF). The coupled effect of the horizontal motions, such as surge, sway and yaw motions, and the set-down motion are taken into consideration by the nonlinear restoring matrix. The time-domain analysis with 50-yr random sea state is performed. A comparison of the results of different case studies is made to assess the influence of second-order wave force on the motions of the platform. The analysis shows that the second-order wave force has a major impact on motions of the TLP. The second-order difference-frequency wave force has an obvious influence on the low-frequency motions of surge and sway, and also will induce a large set-down motion which is an important part of heave motion. Besides, the second-order sum-frequency force will induce a set of high-frequency motions of roll and pitch. However, little influence of second-order wave force is found on the yaw motion.

  8. DEFINITION AND ANALYSIS OF MOTION ACTIVITY AFTER-STROKE PATIENT FROM THE VIDEO STREAM

    Directory of Open Access Journals (Sweden)

    M. Yu. Katayev

    2014-01-01

    Full Text Available This article describes an approach to the assessment of motion activity of man in after-stroke period, allowing the doctor to get new information to give a more informed recommendations on rehabilitation treatment than in traditional approaches. Consider description of the hardware-software complex for determination and analysis of motion activity after-stroke patient for the video stream. The article provides a description of the complex, its algorithmic filling and the results of the work on the example of processing of the actual data. The algorithms and technology to significantly accelerate the gait analysis and improve the quality of diagnostics post-stroke patients.

  9. Design and analysis of a rotary motion controller

    Directory of Open Access Journals (Sweden)

    Julio Cesar Caye

    2015-12-01

    Full Text Available This paper presents the design of a rotary motion controller based on the peritrochoid geometry of the rotary (Wankle engine. It uses an orifice limited flow of incompressible fluid between the chambers of the Wankle-type geometry to control the rotation of the rotor. The paper develops the theory of operation and then implements the design as a Matlab model to simulate the motion control under various conditions. It is found that the time to reach stabilised motion is determined by the orifice size and fluid density. When stabilised motion is achieved, the motion dependence on material and geometry factors is determined by the orifice flow equation. The angular velocity is also found to have a square root dependence on the applied torque when in the stabilised regime.

  10. Effects of intra-fraction motion on IMRT dose delivery: statistical analysis and simulation

    International Nuclear Information System (INIS)

    Bortfeld, Thomas; Jokivarsi, Kimmo; Goitein, Michael; Kung, Jong; Jiang, Steve B.

    2002-01-01

    There has been some concern that organ motion, especially intra-fraction organ motion due to breathing, can negate the potential merit of intensity-modulated radiotherapy (IMRT). We wanted to find out whether this concern is justified. Specifically, we wanted to investigate whether IMRT delivery techniques with moving parts, e.g., with a multileaf collimator (MLC), are particularly sensitive to organ motion due to the interplay between organ motion and leaf motion. We also wanted to know if, and by how much, fractionation of the treatment can reduce the effects. We performed a statistical analysis and calculated the expected dose values and dose variances for volume elements of organs that move during the delivery of the IMRT. We looked at the overall influence of organ motion during the course of a fractionated treatment. A linear-quadratic model was used to consider fractionation effects. Furthermore, we developed software to simulate motion effects for IMRT delivery with an MLC, with compensators, and with a scanning beam. For the simulation we assumed a sinusoidal motion in an isocentric plane. We found that the expected dose value is independent of the treatment technique. It is just a weighted average over the path of motion of the dose distribution without motion. If the treatment is delivered in several fractions, the distribution of the dose around the expected value is close to a Gaussian. For a typical treatment with 30 fractions, the standard deviation is generally within 1% of the expected value for MLC delivery if one assumes a typical motion amplitude of 5 mm (1 cm peak to peak). The standard deviation is generally even smaller for the compensator but bigger for scanning beam delivery. For the latter it can be reduced through multiple deliveries ('paintings') of the same field. In conclusion, the main effect of organ motion in IMRT is an averaging of the dose distribution without motion over the path of the motion. This is the same as for treatments

  11. Depth information in natural environments derived from optic flow by insect motion detection system: A model analysis

    Directory of Open Access Journals (Sweden)

    Alexander eSchwegmann

    2014-08-01

    Full Text Available Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs. It is the key result of our analysis that the absolute EMD responses, i.e. the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way.

  12. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  13. The analysis of overloaded trucks in indonesia based on weigh in motion data (east of sumatera national road case study

    Directory of Open Access Journals (Sweden)

    Jihanny Jongga

    2018-01-01

    Full Text Available Overloaded trucks phenomena generally common in developing countries where the traffic control is poor. In Indonesia, the percentage of overloaded trucks can reach more than 60% in the total number of trucks and may be one of the substantial factors that reduce the service life of the road pavements. This paper presents the analysis results of the weigh in motion survey data at East of Sumatera National Road (Jalintim in Indonesia and the impact of overloaded trucks on the pavement. For the analysis the simplified approach was used, the axle loads were converted into representative single-axle loads based on 4th power formula by AASHTO 1993 equation. The vehicle damage factor of vehicles is presented and will be compared with the Highways National Standard to estimate the remaining service life of pavement and IRI value prediction. The analysis showed that the vehicle damage factor that determined from weigh in motion data is extremely greater than vehicle damage factor of the national standard in Indonesia which may lead to accelerated deterioration, reducing the service life of the pavement structures and significantly influence the IRI value.

  14. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  15. SU-F-J-119: Pilot Study On the Location-Based Lung Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, TK [Procure Proton Therapy Center, Oklahoma City, OK (United States); Ewald, A [McLaren Cancer Institute, Flint, MI (United States)

    2016-06-15

    Purpose: In most of lung treatment cases with various radiotherapy beam modalities, 4DCT images are obtained in order to define ITV. ITV is defined with the signal from motion monitoring system, e.g. RPM. However, the signal is not consistent with tumor motion because it varies with location, its size, age, gender, etc. In the present study, the location-based motion assessment is presented. Methods: 4DCT images of 70 patients were reviewed: 28-left-lung and 42-right-lung patients; 36-female and 34-male patients; the age range of 51.2–89.9; tumor-size range of 0.75–9.50cm with 25% of these adherent to bony-anatomy. Philips Big-Bore Simulation CT and RPM systems were used. The study was performed as follows. First, RPM signal and tumor motion in superior-inferior direction was compared. Second, the tumor size and its motion amplitude in all directions were measured at multiple locations. Third, the average tumor motion was calculated to assess general motion amplitudes at various locations. Results: RPM amplitude is not consistent with lung tumor motion amplitude. The tumors of similar sizes at similar location present various motion amplitude up to 1.1cm difference, but in average, the standard deviation was <0.5cm. Almost regardless of tumor sizes, the tumor motion was greatest at lower lobe location (>=1.0cm), and the smallest at upper lobe location and when adherent to bony-anatomy (<=0.5cm). Conclusion: The tumor size affects the motion amplitude less than does the tumor location. However, as the study results indicate that tumor motion has noticeable variation and so further study with more patient cases is needed. Also, for the same patient, the RPM signal presents instability of breathing, and clinically the patient with the instability of RPM breathing of <=10% is selected for respiratory-gated radiotherapy and ∼25% of patients under current study was treated. Patient-specific motion-uncertainty margins are considered to be added following further

  16. Biomechanics Analysis of Combat Sport (Silat) By Using Motion Capture System

    Science.gov (United States)

    Zulhilmi Kaharuddin, Muhammad; Badriah Khairu Razak, Siti; Ikram Kushairi, Muhammad; Syawal Abd. Rahman, Mohamed; An, Wee Chang; Ngali, Z.; Siswanto, W. A.; Salleh, S. M.; Yusup, E. M.

    2017-01-01

    ‘Silat’ is a Malay traditional martial art that is practiced in both amateur and in professional levels. The intensity of the motion spurs the scientific research in biomechanics. The main purpose of this abstract is to present the biomechanics method used in the study of ‘silat’. By using the 3D Depth Camera motion capture system, two subjects are to perform ‘Jurus Satu’ in three repetitions each. One subject is set as the benchmark for the research. The videos are captured and its data is processed using the 3D Depth Camera server system in the form of 16 3D body joint coordinates which then will be transformed into displacement, velocity and acceleration components by using Microsoft excel for data calculation and Matlab software for simulation of the body. The translated data obtained serves as an input to differentiate both subjects’ execution of the ‘Jurus Satu’. Nine primary movements with the addition of five secondary movements are observed visually frame by frame from the simulation obtained to get the exact frame that the movement takes place. Further analysis involves the differentiation of both subjects’ execution by referring to the average mean and standard deviation of joints for each parameter stated. The findings provide useful data for joints kinematic parameters as well as to improve the execution of ‘Jurus Satu’ and to exhibit the process of learning a movement that is relatively unknown by the use of a motion capture system.

  17. Analysis of Time-Motion and Heart Rate in Elite Male and Female Beach Handball.

    Science.gov (United States)

    Pueo, Basilio; Jimenez-Olmedo, Jose M; Penichet-Tomas, Alfonso; Ortega Becerra, Manuel; Espina Agullo, Jose J

    2017-12-01

    Beach handball is a spectacular new team sport; however, scientific knowledge about the demands in beach handball is very low. Consequently, the aim of this study was to analyze the physical demands of elite beach handball players by means of time-motion analysis with GPS technology and physiological response with Heart Rate (HR). Both male (n = 12) and female (n = 12) players from the Spanish Beach Handball National Team were recruited for this study. The sample consisted in four matches of two 10-min periods each. Time-motion analysis was performed through GPS devices (SPI Pro X, 15 Hz, GPSports) with synchronized HR monitoring (Polar Electro, Finland). All parameters were recorded for matches and halves to express overall and time-dependent physical and physiological responses. Total match distance covered by male and female players were 1234.7 ± 192 m and 1118.2 ± 221.8 m, respectively. Female players covered more total distance (p = 0.049, ES = 0.79) and distance walking (p handball is a demanding sport, with numerous moderate-to-high intensity displacements, distributed intermittently throughout the game: long periods of low intensity activity interspersed by short bursts of high intensity.

  18. Statistical motion vector analysis for object tracking in compressed video streams

    Science.gov (United States)

    Leny, Marc; Prêteux, Françoise; Nicholson, Didier

    2008-02-01

    Compressed video is the digital raw material provided by video-surveillance systems and used for archiving and indexing purposes. Multimedia standards have therefore a direct impact on such systems. If MPEG-2 used to be the coding standard, MPEG-4 (part 2) has now replaced it in most installations, and MPEG-4 AVC/H.264 solutions are now being released. Finely analysing the complex and rich MPEG-4 streams is a challenging issue addressed in that paper. The system we designed is based on five modules: low-resolution decoder, motion estimation generator, object motion filtering, low-resolution object segmentation, and cooperative decision. Our contributions refer to as the statistical analysis of the spatial distribution of the motion vectors, the computation of DCT-based confidence maps, the automatic motion activity detection in the compressed file and a rough indexation by dedicated descriptors. The robustness and accuracy of the system are evaluated on a large corpus (hundreds of hours of in-and outdoor videos with pedestrians and vehicles). The objective benchmarking of the performances is achieved with respect to five metrics allowing to estimate the error part due to each module and for different implementations. This evaluation establishes that our system analyses up to 200 frames (720x288) per second (2.66 GHz CPU).

  19. Cell_motility: a cross-platform, open source application for the study of cell motion paths

    Directory of Open Access Journals (Sweden)

    Gevaert Kris

    2006-06-01

    Full Text Available Abstract Background Migration is an important aspect of cellular behaviour and is therefore widely studied in cell biology. Numerous components are known to participate in this process in a highly dynamic manner. In order to obtain a better insight in cell migration, mutants or drugs are used and their motive phenotype is then linked with the disturbing factors. One of the typical approaches to study motion paths of individual cells relies on fitting mean square displacements to a persistent random walk function. Since the numerous calculations involved often rely on diverse commercial software packages, the analysis can be expensive, labour-intensive and error-prone work. Additionally, due to the nature of algorithms employed the calculations involved are not readily reproducible without access to the exact software package(s used. Results We here present the cell_motility software, an open source Java application under the GNU-GPL license that provides a clear and concise analysis workbench for large amounts of cell motion data. Apart from performing the necessary calculations, the software also visualizes the original motion paths as well as the results of the calculations to help the user interpret the data. The application features an intuitive graphical user interface as well as full user and developer documentation and both source and binary files can be freely downloaded from the project website at http://genesis.UGent.be/cell_motility . Conclusion In providing a free, open source software solution for the automated processing of cell motion data, we aim to achieve two important goals: labs can greatly simplify their data analysis pipeline as switching between different computational software packages becomes obsolete (thus reducing the chances for human error during data manipulation and transfer and secondly, to provide scientists in the field with a freely available common platform to perform their analyses, enabling more efficient

  20. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Stemkens, Bjorn, E-mail: b.stemkens@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Tijssen, Rob H.N. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Senneville, Baudouin D. de [Imaging Division, University Medical Center Utrecht, Utrecht (Netherlands); L' Institut de Mathématiques de Bordeaux, Unité Mixte de Recherche 5251, Centre National de la Recherche Scientifique/University of Bordeaux, Bordeaux (France); Heerkens, Hanne D.; Vulpen, Marco van; Lagendijk, Jan J.W.; Berg, Cornelis A.T. van den [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  1. Motion/imagery secure cloud enterprise architecture analysis

    Science.gov (United States)

    DeLay, John L.

    2012-06-01

    Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.

  2. Semi-automatic motion compensation of contrast-enhanced ultrasound images from abdominal organs for perfusion analysis

    Czech Academy of Sciences Publication Activity Database

    Schafer, S.; Nylund, K.; Saevik, F.; Engjom, T.; Mézl, M.; Jiřík, Radovan; Dimcevski, G.; Gilja, O.H.; Tönnies, K.

    2015-01-01

    Roč. 63, AUG 1 (2015), s. 229-237 ISSN 0010-4825 R&D Projects: GA ČR GAP102/12/2380 Institutional support: RVO:68081731 Keywords : ultrasonography * motion analysis * motion compensation * registration * CEUS * contrast-enhanced ultrasound * perfusion * perfusion modeling Subject RIV: FS - Medical Facilities ; Equipment Impact factor: 1.521, year: 2015

  3. Using Tracker to understand ‘toss up’ and free fall motion: a case study

    Science.gov (United States)

    Wee, Loo Kang; Kia Tan, Kim; Leong, Tze Kwang; Tan, Ching

    2015-07-01

    This paper reports the use of Tracker as a computer-based learning tool to support effective learning and teaching of ‘toss up’ and free fall motion for beginning secondary three (15 year-old) students. The case study involved (N = 123) students from express pure physics classes at a mainstream school in Singapore. We used eight multiple-choice questions pre- and post-test to gauge the impact on learning. The experimental group showed learning gains of d = 0.79  ±  0.23 (large effect) for Cohen’s d effect size analysis, and gains with a gradient of  total = 0.42  ±  0.08 (medium gain) above the traditional baseline value of  non interactive = 0.23 for Hake’s normalized gain regression analysis. This applied to all of the teachers and students who participated in this study. Our initial research findings suggest that allowing learners to relate abstract physics concepts to real life through coupling traditional video analysis with video modelling might be an innovative and effective method for teaching and learning about free fall motion.

  4. Random walk analysis of grain motion during superplastic deformation of TZP

    International Nuclear Information System (INIS)

    Okamoto, T; Yasuda, K; Shiota, T

    2009-01-01

    This study focuses on grain motion in TZP (Tetragonal Zirconia Polycrystal) ceramics during superplastic deformation. The specimen was 16 times elongated repeatedly at 1400 0 C in air. The increment of true plastic strain was set to be 2%, and the specimen was deformed up to 30.3% true plastic strain finally. After each deformation, displacement vectors of specified 748 grains were measured from their position vectors determined by FE-SEM micrographs. As a result, the grains move to the tensile loading direction in zigzag way. And also, the zigzag motion changes with plastic strain: The grains move randomly (random walk motion) by the first 15% true plastic strain, and then grain motion becomes spatially uniform gradually. It is related to changes of constraint of surrounding matrix.

  5. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  6. Relationship of Imaging Frequency and Planning Margin to Account for Intrafraction Prostate Motion: Analysis Based on Real-Time Monitoring Data

    International Nuclear Information System (INIS)

    Curtis, William; Khan, Mohammad; Magnelli, Anthony; Stephans, Kevin; Tendulkar, Rahul; Xia, Ping

    2013-01-01

    Purpose: Correction for intrafraction prostate motion becomes important for hypofraction treatment of prostate cancer. The purpose of this study was to estimate an ideal planning margin to account for intrafraction prostate motion as a function of imaging and repositioning frequency in the absence of continuous prostate motion monitoring. Methods and Materials: For 31 patients receiving intensity modulated radiation therapy treatment, prostate positions sampled at 10 Hz during treatment using the Calypso system were analyzed. Using these data, we simulated multiple, less frequent imaging protocols, including intervals of every 10, 15, 20, 30, 45, 60, 90, 120, 180, and 240 seconds. For each imaging protocol, the prostate displacement at the imaging time was corrected by subtracting prostate shifts from the subsequent displacements in that fraction. Furthermore, we conducted a principal component analysis to quantify the direction of prostate motion. Results: Averaging histograms of every 240 and 60 seconds for all patients, vector displacements of the prostate were, respectively, within 3 and 2 mm for 95% of the treatment time. A vector margin of 1 mm achieved 91.2% coverage of the prostate with 30 second imaging. The principal component analysis for all fractions showed the largest variance in prostate position in the midsagittal plane at 54° from the anterior direction, indicating that anterosuperior to inferoposterior is the direction of greatest motion. The smallest prostate motion is in the left-right direction. Conclusions: The magnitudes of intrafraction prostate motion along the superior-inferior and anterior-posterior directions are comparable, and the smallest motion is in the left-right direction. In the absence of continuous prostate motion monitoring, and under ideal circumstances, 1-, 2-, and 3-mm vector planning margins require a respective imaging frequency of every 15, 60, and 240 to account for intrafraction prostate motion while achieving

  7. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  8. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  9. On a PCA-based lung motion model

    Energy Technology Data Exchange (ETDEWEB)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B [Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, University of California San Diego, 3855 Health Sciences Dr, La Jolla, CA 92037-0843 (United States); Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A [Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Pl, St. Louis, MO 63110-1093 (United States); Liu Weifeng, E-mail: sbjiang@ucsd.edu [Amazon.com Inc., 701 5th Ave. Seattle, WA 98104 (United States)

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  10. On a PCA-based lung motion model.

    Science.gov (United States)

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2011-09-21

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  11. On a PCA-based lung motion model

    International Nuclear Information System (INIS)

    Li Ruijiang; Lewis, John H; Jia Xun; Jiang, Steve B; Zhao Tianyu; Wuenschel, Sara; Lamb, James; Yang Deshan; Low, Daniel A; Liu Weifeng

    2011-01-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1

  12. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    Energy Technology Data Exchange (ETDEWEB)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Seregni, Matteo; Fattori, Giovanni [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Summers, Paul [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Bellomi, Massimo [Division of Radiology, Istituto Europeo di Oncologia, Milano (Italy); Department of Health Sciences, Università degli Studi di Milano, Milano (Italy); Baroni, Guido; Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2015-03-15

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each feature was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI

  13. Analysis of seismic waves and strong ground motion

    International Nuclear Information System (INIS)

    Simpson, I.C.; Sutton, R.

    1976-10-01

    A number of Western USA earthquake acceleration-time histories concerning events of magnitude less than 6 are considered and their Fourier spectra calculated. An analysis of some of the simpler types of seismic wave is given in order to consider the generation of a spatially dependent acceleration-time history suitable for input into a soil-structure program of analysis. Such an acceleration-time history is required by a comprehensive analysis of soil-structure interaction since the conventionally assumed model of vertically propagating seismic waves, which give rise to three spatially independent ground motions, can lead to over-conservative estimates of the building response in the high frequency range. The possible application is discussed of a given component of a recorded acceleration-time history to the base of structure under the assumption of surface Rayleigh waves or obliquely incident P and SV bulk waves. (author)

  14. Image sequence analysis workstation for multipoint motion analysis

    Science.gov (United States)

    Mostafavi, Hassan

    1990-08-01

    This paper describes an application-specific engineering workstation designed and developed to analyze motion of objects from video sequences. The system combines the software and hardware environment of a modem graphic-oriented workstation with the digital image acquisition, processing and display techniques. In addition to automation and Increase In throughput of data reduction tasks, the objective of the system Is to provide less invasive methods of measurement by offering the ability to track objects that are more complex than reflective markers. Grey level Image processing and spatial/temporal adaptation of the processing parameters is used for location and tracking of more complex features of objects under uncontrolled lighting and background conditions. The applications of such an automated and noninvasive measurement tool include analysis of the trajectory and attitude of rigid bodies such as human limbs, robots, aircraft in flight, etc. The system's key features are: 1) Acquisition and storage of Image sequences by digitizing and storing real-time video; 2) computer-controlled movie loop playback, freeze frame display, and digital Image enhancement; 3) multiple leading edge tracking in addition to object centroids at up to 60 fields per second from both live input video or a stored Image sequence; 4) model-based estimation and tracking of the six degrees of freedom of a rigid body: 5) field-of-view and spatial calibration: 6) Image sequence and measurement data base management; and 7) offline analysis software for trajectory plotting and statistical analysis.

  15. Procedure to describe clavicular motion.

    Science.gov (United States)

    Gutierrez Delgado, Guivey; De Beule, Matthieu; Ortega Cardentey, Dolgis R; Segers, Patrick; Iznaga Benítez, Arsenio M; Rodríguez Moliner, Tania; Verhegghe, Benedict; Palmans, Tanneke; Van Hoof, Tom; Van Tongel, Alexander

    2017-03-01

    For many years, researchers have attempted to describe shoulder motions by using different mathematical methods. The aim of this study was to describe a procedure to quantify clavicular motion. The procedure proposed for the kinematic analysis consists of 4 main processes: 3 transcortical pins in the clavicle, motion capture, obtaining 3-dimensional bone models, and data processing. Clavicular motion by abduction (30° to 150°) and flexion (55° to 165°) were characterized by an increment of retraction of 27° to 33°, elevation of 25° to 28°, and posterior rotation of 14° to 15°, respectively. In circumduction, clavicular movement described an ellipse, which was reflected by retraction and elevation. Kinematic analysis shows that the articular surfaces move by simultaneously rolling and sliding on the convex surface of the sternum for the 3 movements of abduction, flexion, and circumduction. The use of 3 body landmarks in the clavicle and the direct measurement of bone allowed description of the osteokinematic and arthrokinematic movement of the clavicle. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Segmental wall-motion analysis in the right anterior oblique projection: comparison of exercise equilibrium radionuclide ventriculography and exercise contrast ventriculography

    International Nuclear Information System (INIS)

    Brady, T.J.; Thrall, J.H.; Keyes, J.W. Jr.; Brymer, J.F.; Walton, J.A.; Pitt, B.

    1980-01-01

    Thirty-nine patients with known or suspected coronary artery disease were studied at rest and during supine bicycle exercise with radionuclide and contrast left ventriculography. Analysis of regional wall motion was made by visual evaluation of the five standard 30 0 right anterior oblique (RAO) wall segments in the contrast images and the corresponding 10 0 RAO radionuclide segments. The radionuclide studies were evaluated independently by three observers using a five-point grading system. The interobserver wall-motion grading agreed completely in more than 80% of segments at rest and exercise, and agreed within one wall-motion grade in more than 95% of segments. The comparison of wall-motion grades between radionuclide and contrast ventriculograms showed complete agreement in 86% of segments at rest and in 78% during exercise, and agreement within one wall-motion grade in 97% of rest and 96% of exercise segments. Visual evaluation of 10 0 RAO rest and exercise radionuclide ventriculograms compares favorably with rest and exercise 30 0 RAO contrast ventriculograms and demonstrates satisfactory interobserver agreement

  17. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Inertial Motion Capture Costume Design Study

    Directory of Open Access Journals (Sweden)

    Agnieszka Szczęsna

    2017-03-01

    Full Text Available The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs. Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results.

  19. Ultrasonic motion analysis system - measurement of temporal and spatial gait parameters

    NARCIS (Netherlands)

    Huitema, RB; Hof, AL; Postema, K

    The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the

  20. Seismic soil-structure interaction with consideration of spatial incoherence of seismic ground motions: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Wen S., E-mail: wen.tseng@rizzoassoc.com [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Lilhanand, Kiat; Hamasaki, Don; Garcia, Julio A. [Paul C. Rizzo Associates, Inc., Western Region, 2201 Broadway, Suite 400, Oakland, CA 94612 (United States); Srinivasan, Ram [AREVA, NP, Inc., 6399 San Ignacio Avenue, San Jose, CA 95119 (United States)

    2014-04-01

    This paper presents a case study of seismic soil-structure interaction (SSI) analysis with consideration of spatial incoherence of seismic input ground motions. The SSI analyses were performed using the SASSI computer program for the Auxiliary Control Building (ACB) structure of an existing nuclear power plant on a hard rock site located in the Center and Eastern United States (CEUS) region. The incoherent seismic input motions for the hard rock site used for the analyses were generated using the computer program INCOH that works together with SASSI. The objective of the analyses was to generate maximum seismic response parameters for assessment of potential impact of newly developed site-specific (ground motion) response spectra (SSRS) on the seismic design of the ACB and potential benefits that could be gained by considering spatial incoherence of seismic input motions. Maximum seismic response values for selected response parameters of interest were generated with both SSRS-compatible coherent and incoherent seismic input motions. Comparisons were made of the corresponding maximum response parameter values and in-structure (acceleration) response spectra (ISRS) generated for both the coherent and incoherent motion inputs. These comparisons indicate that, by incorporating incoherence of ground motions in the seismic input, the maximum response values reduces and the ISRS peak amplitudes in the high frequency range (>10 Hz) also reduce from the corresponding response values resulting from the coherent motion input. The amount of ISRS-amplitude reduction increases as the spectral frequency increases, as expected. Such reductions can be as much as 20–50%. This case study demonstrates that, for a CEUS hard rock site where relatively high high-frequency in the seismic input response spectra exist, consideration of spatial incoherence of input motions would result in substantial benefits in reducing the high-frequency seismic responses. Such benefits are especially

  1. [Temporal Analysis of Body Sway during Reciprocator Motion Movie Viewing].

    Science.gov (United States)

    Sugiura, Akihiro; Tanaka, Kunihiko; Wakatabe, Shun; Matsumoto, Chika; Miyao, Masaru

    2016-01-01

    We aimed to investigate the effect of stereoscopic viewing and the degree of awareness of motion sickness on posture by measuring body sway during motion movie viewing. Nineteen students (12 men and 7 women; age range, 21-24 years) participated in this study. The movie, which showed several balls randomly positioned, was projected on a white wall 2 m in front of the subjects through a two-dimensional (2-D)/three-dimensional (3-D) convertible projector. To measure body sway during movie viewing, the subjects stood statically erect on a Wii balance board, with the toe opening at 18 degrees. The study protocol was as follows: The subjects watched (1) a nonmoving movie for 1 minute as the pretest and then (2) a round-trip sinusoidally moving-in-depth-direction movie for 3 minutes. (3) The initial static movie was shown again for 1 minute. Steps (2) and (3) were treated as one trial, after which two trials (2-D and 3-D movies) were performed in a random sequence. In this study, we found that posture changed according to the motion in the movie and that the longer the viewing time, the higher the synchronization accuracy. These tendencies depended on the level of awareness of motion sickness or the 3-D movie viewed. The mechanism of postural change in movie viewing was not vection but self-defense to resolve sensory conflict between visual information (spatial swing) and equilibrium sense (motionlessness).

  2. Co-occurrence of outlet impingement syndrome of the shoulder and restricted range of motion in the thoracic spine - a prospective study with ultrasound-based motion analysis

    Directory of Open Access Journals (Sweden)

    Fuchs-Winkelmann Susanne

    2010-06-01

    Full Text Available Abstract Background Shoulder complaints, and especially the outlet-impingement syndrome, are a common condition. Among other things, poor posture has been discussed as a cause. A correlation between impingement syndrome and restricted mobility of the thoracic spine (T has been described earlier, but there has been no motion analysis of the thoracic spine to show these correlations. In the present prospective study, we intended to find out whether there is a significant difference in the thoracic sagittal range of motion (ROM between patients with a shoulder outlet impingement syndrome and a group of patients who had no shoulder pathology. Secondly, we wanted to clarify whether Ott's sign correlates with ultrasound topometric measurements. Methods Two sex- and age-matched groups (2 × n = 39 underwent a clinical and an ultrasound topometric examination. The postures examined were sitting up straight, sitting in maximal flexion and sitting in maximal extension. The disabilities of the arm, shoulder and hand (DASH score (obtained by means of a self-assessment questionnaire and the Constant score were calculated. Lengthening and shortening of the dorsal projections of the spine in functional positions was measured by tape with Ott's sign. Results On examination of the thoracic kyphosis in the erect seated posture there were no significant differences between the two groups (p = 0.66. With ultrasound topometric measurement it was possible to show a significantly restricted segmental mobility of the thoracic spine in the study group compared with the control group (p = 0.01. An in-depth look at the mobility of the subsegments T1-4, T5-8 and T9-12 revealed that differences between the groups in the mobility in the lower two sections of the thoracic spine were significant (T5-8: p = 0.03; T9-12: p = 0.02. The study group had an average Constant score of 35.1 points and the control group, 85.5 (p Conclusion The mobility of the thoracic spine should

  3. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    International Nuclear Information System (INIS)

    Knybel, Lukas; Cvek, Jakub; Molenda, Lukas; Stieberova, Natalie; Feltl, David

    2016-01-01

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P 15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P 3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe tumors; higher interfraction amplitude variability indicated tumors in contact

  4. Semi-automated vectorial analysis of anorectal motion by magnetic resonance defecography in healthy subjects and fecal incontinence.

    Science.gov (United States)

    Noelting, J; Bharucha, A E; Lake, D S; Manduca, A; Fletcher, J G; Riederer, S J; Joseph Melton, L; Zinsmeister, A R

    2012-10-01

    Inter-observer variability limits the reproducibility of pelvic floor motion measured by magnetic resonance imaging (MRI). Our aim was to develop a semi-automated program measuring pelvic floor motion in a reproducible and refined manner. Pelvic floor anatomy and motion during voluntary contraction (squeeze) and rectal evacuation were assessed by MRI in 64 women with fecal incontinence (FI) and 64 age-matched controls. A radiologist measured anorectal angles and anorectal junction motion. A semi-automated program did the same and also dissected anorectal motion into perpendicular vectors representing the puborectalis and other pelvic floor muscles, assessed the pubococcygeal angle, and evaluated pelvic rotation. Manual and semi-automated measurements of anorectal junction motion (r = 0.70; P controls. This semi-automated program provides a reproducible, efficient, and refined analysis of pelvic floor motion by MRI. Puborectalis injury is independently associated with impaired motion of puborectalis, not other pelvic floor muscles in controls and women with FI. © 2012 Blackwell Publishing Ltd.

  5. Implementation of a Smart Phone for Motion Analysis.

    Science.gov (United States)

    Yodpijit, Nantakrit; Songwongamarit, Chalida; Tavichaiyuth, Nicha

    2015-01-01

    In today’s information-rich environment, one of the most popular devices is a smartphone. Research has shown significant growth in the use of smartphones and apps all over the world. Accelerometer within smartphone is a motion sensor that can be used to detect human movements. Compared to other major vital signs, gait characteristics represent general health status, and can be determined using smartphones. The objective of the current study is to design and develop the alternative technology that can potentially predict health status and reduce healthcare cost. This study uses a smartphone as a wireless accelerometer for quantifying human motion characteristics from four steps of the system design and development (data acquisition operation, feature extraction algorithm, classifier design, and decision making strategy). Findings indicate that it is possible to extract features from a smartphone’s accelerometer using a peak detection algorithm. Gait characteristics obtain from the peak detection algorithm include stride time, stance time, swing time and cadence. Applications and limitations of this study are also discussed.

  6. SMART USE OF COMPUTER-AIDED SPERM ANALYSIS (CASA) TO CHARACTERIZE SPERM MOTION

    Science.gov (United States)

    Computer-aided sperm analysis (CASA) has evolved over the past fifteen years to provide an objective, practical means of measuring and characterizing the velocity and parttern of sperm motion. CASA instruments use video frame-grabber boards to capture multiple images of spermato...

  7. Finger-tapping motion analysis in cervical myelopathy by magnetic-sensor tapping device.

    Science.gov (United States)

    Miwa, Toshitada; Hosono, Noboru; Mukai, Yoshihiro; Makino, Takahiro; Kandori, Akihiko; Fuji, Takeshi

    2013-08-01

    Case-control study. The purpose of this study is to determine finger motion of patients with cervical myelopathy during finger-tapping cycles. A major symptom of patients with compressive cervical myelopathy is finger clumsiness. Therefore, understanding finger motion is prerequisite in assessing the severity of myelopathy. The popular grip-and-release test evaluates only the number of motion cycles, which is insufficient to fully describe complex finger motion. Forty-three patients with cervical myelopathy and 41 healthy controls tapped their index fingers against their thumbs as rapidly as possible for 30 seconds and the motion was recorded by a magnetic-sensor coil attached to the nail surface. Output signals were stored in a computer, which automatically calculated tapping frequency, distance moved, ratio of opening/closing velocity and the SD of the tapping interval. The SD of the tapping interval was significantly greater and all other measures were significantly smaller in patients with cervical myelopathy, than in healthy controls. All indices significantly improved after surgical decompression of the cervical spine. Distance moved (Pearson correlation coefficient: r=0.590, Ptapping interval (r=-0.451; P=0.002) were significantly correlated with the Japanese Orthopedic Association score (neurological scale). The quantitative evaluation of finger paralysis was performed by this tapping device. Speed and regularity in repetitive motion of fingers were correlated with the severity of cervical myelopathy.

  8. Effectiveness of an Automatic Tracking Software in Underwater Motion Analysis

    Directory of Open Access Journals (Sweden)

    Fabrício A. Magalhaes

    2013-12-01

    Full Text Available Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP, based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers’ positions were manually tracked to determine the markers’ center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM. Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker’s coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4% than for COM (17.8%. Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis.

  9. Analysis of Lung Tumor Motion in a Large Sample: Patterns and Factors Influencing Precise Delineation of Internal Target Volume

    Energy Technology Data Exchange (ETDEWEB)

    Knybel, Lukas [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); VŠB-Technical University of Ostrava, Ostrava (Czech Republic); Cvek, Jakub, E-mail: Jakub.cvek@fno.cz [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic); Molenda, Lukas; Stieberova, Natalie; Feltl, David [Department of Oncology, University Hospital Ostrava, Ostrava (Czech Republic)

    2016-11-15

    Purpose/Objective: To evaluate lung tumor motion during respiration and to describe factors affecting the range and variability of motion in patients treated with stereotactic ablative radiation therapy. Methods and Materials: Log file analysis from online respiratory tumor tracking was performed in 145 patients. Geometric tumor location in the lungs, tumor volume and origin (primary or metastatic), sex, and tumor motion amplitudes in the superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were recorded. Tumor motion variability during treatment was described using intrafraction/interfraction amplitude variability and tumor motion baseline changes. Tumor movement dependent on the tumor volume, position and origin, and sex were evaluated using statistical regression and correlation analysis. Results: After analysis of >500 hours of data, the highest rates of motion amplitudes, intrafraction/interfraction variation, and tumor baseline changes were in the SI direction (6.0 ± 2.2 mm, 2.2 ± 1.8 mm, 1.1 ± 0.9 mm, and −0.1 ± 2.6 mm). The mean motion amplitudes in the lower/upper geometric halves of the lungs were significantly different (P<.001). Motion amplitudes >15 mm were observed only in the lower geometric quarter of the lungs. Higher tumor motion amplitudes generated higher intrafraction variations (R=.86, P<.001). Interfraction variations and baseline changes >3 mm indicated tumors contacting mediastinal structures or parietal pleura. On univariate analysis, neither sex nor tumor origin (primary vs metastatic) was an independent predictive factor of different movement patterns. Metastatic lesions in women, but not men, showed significantly higher mean amplitudes (P=.03) and variability (primary, 2.7 mm; metastatic, 4.9 mm; P=.002) than primary tumors. Conclusion: Online tracking showed significant irregularities in lung tumor movement during respiration. Motion amplitude was significantly lower in upper lobe

  10. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain.

    Science.gov (United States)

    Esola, M A; McClure, P W; Fitzgerald, G K; Siegler, S

    1996-01-01

    This study analyzed two groups of subjects during forward bending. Group 1 (n = 20) contained subjects with a history of low back pain and Group 2 (n = 21) included subjects without a history of low back pain. The purposes of this study were to establish the amount and pattern of lumbar spine and hip motion during forward bending, and determine differences in motion in subjects with and without a history of low back pain. Reported values for lumbar spine motion during forward bending vary from 23.9 degrees to 60 degrees and hip motion during forward bending ranges from 26 degrees to 66 degrees. There has been no direct study of both lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain to establish differences in total amounts or pattern of lumbar spine and hip motion during forward bending. A three-dimensional optoelectric motion analysis system was used to measure the amount and velocity of lumbar spine and hip motion during forward bending. Each subject performed three trials of forward bending that were averaged and used for statistical analysis. Hamstring flexibility was also assessed by two clinical tests, the passive straight leg raising and active knee extension tests. Mean total forward bending for all subjects was 111 degrees: 41.6 degrees from the lumbar spine and 69.4 degrees from the hips. There were no group differences for total amounts of lumbar spine and hip motion or velocity during forward bending. The pattern of motion was described by calculating lumbar-to-hip flexion ratios for early (0-30 degrees), middle (30-60 degrees), and late (60-90 degrees) forward bending. For all subjects, mean lumbar-to-hip ratios for early, middle, and late forward bending were 1.9, 0.9, and 0.4, respectively. Therefore, the lumbar spine had a greater contribution to early forward bending, the lumbar spine and hips contributed almost equally to middle forward bending, and the hips had a greater contribution to

  11. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  12. Neck motion, motor control, pain and disability: A longitudinal study of associations in neck pain patients in physiotherapy treatment.

    Science.gov (United States)

    Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar

    2016-04-01

    Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  14. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  15. Apsidal Motion Study of Close Binary System CW Cephei

    Directory of Open Access Journals (Sweden)

    Wonyong Han

    2015-12-01

    Full Text Available New observations for the times of minimum lights of a well-known apsidal motion star CW Cephei were made using a 0.6 m wide field telescope at Jincheon station of Chungbuk National University Observatory, Korea during the 2015 observational season. We determined new times of minimum lights from these observations and analyzed O-C diagrams together with collected times of minima to study both the apsidal motion and the Light Time Effect (LTE suggested in the system. The new periods of the apsidal motion and the LTE were calculated as 46.6 and 39.3 years, respectively, which were similar but improved accuracy than earlier ones investigated by Han et al. (2002, Erdem et al. (2004 and Wolf et al. (2006.

  16. MuSeSe - A multisensor armchair for unobtrusive vital sign estimation and motion artifact analysis.

    Science.gov (United States)

    Antink, Christoph Hoog; Leonhardt, Steffen; Schulz, Florian; Walter, Marian

    2017-07-01

    Unobtrusive vital sign estimation with sensors integrated into objects of everyday living can substantially advance the field of remote monitoring. At the same time, motion artifacts cause severe problems and have to be dealt with. Here, the fusion of multimodal sensor data is a promising approach. In this paper, we present an armchair equipped with capacitively coupled electrocardiogram, two types of ballistocardiographic sensors, photoplethysmographic and two high-frequency impedance sensors. In addition, a video-based sensor for motion analysis is integrated. Using a defined motion protocol, the feasibility of the system is demonstrated in a self-experimentation. Moreover, the influence of different movements on different modalities is analyzed. Finally, robust beat-to-beat interval estimation demonstrates the benefits of multimodal sensor fusion for vital sign estimation in the presence of motion artifacts.

  17. Classifying multiple types of hand motions using electrocorticography during intraoperative awake craniotomy and seizure monitoring processes—case studies

    Science.gov (United States)

    Xie, Tao; Zhang, Dingguo; Wu, Zehan; Chen, Liang; Zhu, Xiangyang

    2015-01-01

    In this work, some case studies were conducted to classify several kinds of hand motions from electrocorticography (ECoG) signals during intraoperative awake craniotomy & extraoperative seizure monitoring processes. Four subjects (P1, P2 with intractable epilepsy during seizure monitoring and P3, P4 with brain tumor during awake craniotomy) participated in the experiments. Subjects performed three types of hand motions (Grasp, Thumb-finger motion and Index-finger motion) contralateral to the motor cortex covered with ECoG electrodes. Two methods were used for signal processing. Method I: autoregressive (AR) model with burg method was applied to extract features, and additional waveform length (WL) feature has been considered, finally the linear discriminative analysis (LDA) was used as the classifier. Method II: stationary subspace analysis (SSA) was applied for data preprocessing, and the common spatial pattern (CSP) was used for feature extraction before LDA decoding process. Applying method I, the three-class accuracy of P1~P4 were 90.17, 96.00, 91.77, and 92.95% respectively. For method II, the three-class accuracy of P1~P4 were 72.00, 93.17, 95.22, and 90.36% respectively. This study verified the possibility of decoding multiple hand motion types during an awake craniotomy, which is the first step toward dexterous neuroprosthetic control during surgical implantation, in order to verify the optimal placement of electrodes. The accuracy during awake craniotomy was comparable to results during seizure monitoring. This study also indicated that ECoG was a promising approach for precise identification of eloquent cortex during awake craniotomy, and might form a promising BCI system that could benefit both patients and neurosurgeons. PMID:26483627

  18. Experimental and theoretical study on natural circulation capacity under rolling motion condition

    International Nuclear Information System (INIS)

    Tan Sichao; Gao Puzhen

    2007-01-01

    Effect of rolling motion on natural circulation capacity was studied experimentally and theoretically. Experiments were conducted under the conditions of rolling and unrolling motions. The experimental results show that natural circulation capacity decreases under rolling motion condition. A mathematic model was developed to calculate the natural circulation capacity under rolling motion condition, considering the characteristics of natural circulation, the model was modified. The calculated results agree with experimental data well. Effect of rolling motion on natural circulation was analyzed through calculation and the following conclusions were obtained: (1) The increase of flow resistance coefficient is the main reason that the natural circulation capacity decreases under rolling motion condition; (2) Non-uniform distribution of fluid mass in the pipe has also influence on natural circulation capacity. (author)

  19. Markerless motion capture systems for tracking of persons in forensic biomechanics

    DEFF Research Database (Denmark)

    Yang, Sylvia; Christiansen, Martin S.; Larsen, Peter Kastmand

    2014-01-01

    the postures from a sagittal viewpoint. Although integrating all three dimensions (3D) might improve the results considerably. The purpose of this paper is to give an overview of the 3D multi-view markerless motion capture systems which could be applicable for 3D gait analysis. This paper contains presentation......Markerless motion capture is a pronounced topic in computer vision. In forensic science, markerless motion capture can be an important tool for identification through gait analysis. Recent studies of gait analysis in forensic science have shown that individuals can be identified when analysing...

  20. Uncertainties in Earthquake Loss Analysis: A Case Study From Southern California

    Science.gov (United States)

    Mahdyiar, M.; Guin, J.

    2005-12-01

    Probabilistic earthquake hazard and loss analyses play important roles in many areas of risk management, including earthquake related public policy and insurance ratemaking. Rigorous loss estimation for portfolios of properties is difficult since there are various types of uncertainties in all aspects of modeling and analysis. It is the objective of this study to investigate the sensitivity of earthquake loss estimation to uncertainties in regional seismicity, earthquake source parameters, ground motions, and sites' spatial correlation on typical property portfolios in Southern California. Southern California is an attractive region for such a study because it has a large population concentration exposed to significant levels of seismic hazard. During the last decade, there have been several comprehensive studies of most regional faults and seismogenic sources. There have also been detailed studies on regional ground motion attenuations and regional and local site responses to ground motions. This information has been used by engineering seismologists to conduct regional seismic hazard and risk analysis on a routine basis. However, one of the more difficult tasks in such studies is the proper incorporation of uncertainties in the analysis. From the hazard side, there are uncertainties in the magnitudes, rates and mechanisms of the seismic sources and local site conditions and ground motion site amplifications. From the vulnerability side, there are considerable uncertainties in estimating the state of damage of buildings under different earthquake ground motions. From an analytical side, there are challenges in capturing the spatial correlation of ground motions and building damage, and integrating thousands of loss distribution curves with different degrees of correlation. In this paper we propose to address some of these issues by conducting loss analyses of a typical small portfolio in southern California, taking into consideration various source and ground

  1. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion

    Directory of Open Access Journals (Sweden)

    Apoorva Gaidhani

    2017-12-01

    Full Text Available Respiratory activity is an essential vital sign of life that can indicate changes in typical breathing patterns and irregular body functions such as asthma and panic attacks. Many times, there is a need to monitor breathing activity while performing day-to-day functions such as standing, bending, trunk stretching or during yoga exercises. A single IMU (inertial measurement unit can be used in measuring respiratory motion; however, breathing motion data may be influenced by a body trunk movement that occurs while recording respiratory activity. This research employs a pair of wireless, wearable IMU sensors custom-made by the Department of Electrical Engineering at San Diego State University. After appropriate sensor placement for data collection, this research applies principles of robotics, using the Denavit-Hartenberg convention, to extract relative angular motion between the two sensors. One of the obtained relative joint angles in the “Sagittal” plane predominantly yields respiratory activity. An improvised version of the proposed method and wearable, wireless sensors can be suitable to extract respiratory information while performing sports or exercises, as they do not restrict body motion or the choice of location to gather data.

  2. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  3. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  4. Motion Analysis of Thumb in Cellular Phone Use

    Directory of Open Access Journals (Sweden)

    Naotaka Sakai

    2010-01-01

    Full Text Available The thumb motion of 10 normal subjects during cellular phone use was measured using a reflective marker detection system to compare the maximum, minimum and range of flexion angles of the interphalangeal (IP, metacarpophalangeal (MP and carpometacarpal (CM joints. Two micro-reflective markers 3 mm in diameter were each placed on the dorsal surface of the distal phalanx, basal phalanx and metacarpal bone of the thumb. Three markers were placed on the dorsal hand in order to define the dorsal hand plane. Each subject pushed the 12 keys of a folding cellular phone with an 85-mm-long and 40-mm-wide keypad, sequentially from ‘1’ to ‘#’, and the pushing motion was recorded by six infrared video cameras for 12 seconds, using the VICON 612 system. The mean maximum flexion angle of the MP joint was significantly (p < .05 larger than the CM joint, and the mean minimum flexion angle of the CM joint was significantly (p < .01 smaller than the IP and MP joints. The mean range of motion of the IP joint was significantly (p < .05 larger than the MP and the CM joints. In a comparison of different key-pushing motions, only the CM joint was significantly (p < .05 larger in its range of motion. In conclusion, thumb motion on pushing the keys of the cellular phone was produced mainly by the MP and the CM joints. In addition, the ability to reach keys in different areas of the cellular phone keypad is regulated by changing the flexion angle of the CM joint.

  5. OBSERVER RATING VERSUS THREE-DIMENSIONAL MOTION ANALYSIS OF LOWER EXTREMITY KINEMATICS DURING FUNCTIONAL SCREENING TESTS: A SYSTEMATIC REVIEW.

    Science.gov (United States)

    Maclachlan, Liam; White, Steven G; Reid, Duncan

    2015-08-01

    Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor ( 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee flexion) were found in

  6. Strain-encoded cardiac MRI as an adjunct for dobutamine stress testing: incremental value to conventional wall motion analysis.

    Science.gov (United States)

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A; Osman, Nael F

    2009-03-01

    High-dose dobutamine stress MRI is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, strain-encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC with that provided by conventional wall motion analysis for the detection of inducible ischemia during dobutamine stress MRI. Stress-induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent dobutamine stress MRI in a clinical 1.5-T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (> or =50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86 of 101 versus 71 of 101 diseased coronary vessels (P or =50% stenosis (area under the curve, 0.96; SE, 0.01; 95% CI, 0.94 to 0.98; P<0.001). The direct color-coded visualization of strain on MR images is a useful adjunct for dobutamine stress MRI, which provides incremental value for the detection of CAD compared with conventional wall motion readings on cine images.

  7. Analysis of clad motion during a loss of flow (LOF) accident in a fast sodium cooled reactor

    International Nuclear Information System (INIS)

    Henkel, P.

    1985-10-01

    A new model describing clad motion during a Loss of Flow (LOF) accident in a Liquid Metal Cooled Fast (Breeder) Reactor (LMFBR) is presented. Its special features are Clad motion is treated within a fuel pin bundle. The bundle geometry is represented by an equivalent annular geometry which serves as the descriptional basis for the clad motion analysis; Several flow regimes are considered. These include a wave or film flow along the fuel pin surfaces as well as a drop flow within the coolant channels. A new entrainment criterion is successfully applied to describe the entrainment of molten cladding and the coolant flow is modelled as a two-dimensional, monstationary flow. Therefore, radial cross flows in a pin bundle can be calculated. Especially, thermal incoherency effects can be treated consistently. The analysis of clad motion in the two experiments STAR1 and STAR2 using the subsequently presented SANDCMOT model gives good agreement with the experimental data. (orig.) [de

  8. A study on generation of simulated earthquake ground motion for seismic design of nuclear power plant

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Matsumoto, Takuji; Kitada, Yoshio; Osaki, Yorihiko; Kanda, Jun; Masao, Toru.

    1985-01-01

    The aseismatic design of nuclear power generation facilities carried out in Japan at present must conform to the ''Guideline for aseismatic design examination regarding power reactor facilities'' decided by the Atomic Energy Commission in 1978. In this guideline, the earthquake motion used for the analysis of dynamic earthquake response is to be given in the form of the magnitude determined on the basis of the investigation of historical earthquakes and active faults around construction sites and the response spectra corresponding to the distance from epicenters. Accordingly when the analysis of dynamic earthquake response is actually carried out, the simulated earthquake motion made in conformity with these set up response spectra is used as the input earthquake motion for the design. For the purpose of establishing the techniques making simulated earthquake motion which is more appropriate and rational from engineering viewpoint, the research was carried out, and the results are summarized in this paper. The techniques for making simulated earthquake motion, the response of buildings and the response spectra of floors are described. (Kako, I.)

  9. Relation of external surface to internal tumor motion studied with cine CT

    International Nuclear Information System (INIS)

    Chi, P.-C.M.; Balter, Peter; Luo Dershan; Mohan, Radhe; Pan Tinsu

    2006-01-01

    The accuracy of delivering gated-radiation therapy to lung tumors using an external respiratory surrogate relies on not only interfractional and intrafractional reproducibility, but also a strong correlation between external motion and internal tumor motion. The purpose of this work was to use the cine images acquired by four-dimensional computed tomography acquisition protocol to study the relation between external surface motion and internal tumor motion. The respiratory phase information of tumor motion and chest wall motion was measured on the cine images using a proposed region-of-interest (ROI) method and compared to measurement of an external respiratory monitoring device. On eight lung patient data sets, the phase shifts were measured between (1) the signal of a real-time positioning-management (RPM) respiratory monitoring device placed in the abdominal region and four surface locations on the chest wall (2) the RPM signal in the abdominal region and tumor motions, and (3) chest wall surface motions and tumor motions. Respiratory waveforms measured at different surface locations during the same respiratory cycle often varied and had significant phase shifts. Seven of the 8 patients showed the abdominal motion leading chest wall motion. The best correlation (smallest phase shift) was found between the abdominal motion and the superior-inferior (S-I) tumor motion. A wide range of phase shifts was observed between external surface motion and tumor anterior-posterior (A-P)/lateral motion. The result supported the placement of the RPM block in the abdominal region and suggested that during a gated therapy utilizing the RPM system, it is necessary to place the RPM block at the same location as it is during treatment simulation in order to reduce potential errors introduced by the position of the RPM block. Correlations between external motions and lateral/A-P tumor motions were inconclusive due to a combination of patient selection and the limitation of the ROI

  10. Realization of a Desktop Flight Simulation System for Motion-Cueing Studies

    Directory of Open Access Journals (Sweden)

    Berkay Volkaner

    2016-05-01

    Full Text Available Parallel robotic mechanisms are generally used in flight simulators with a motion-cueing algorithm to create an unlimited motion feeling of a simulated medium in a bounded workspace of the simulator. A major problem in flight simulators is that the simulation has an unbounded space and the manipulator has a limited one. Using a washout filter in the motion-cueing algorithm overcomes this. In this study, a low-cost six degrees of freedom (DoF desktop parallel manipulator is used to test a classical motion-cueing algorithm; the algorithm's functionality is confirmed with a Simulink real-time environment. Translational accelerations and angular velocities of the simulated medium obtained from FlightGear flight simulation software are processed through a generated washout filter algorithm and the simulated medium's motion information is transmitted to the desktop parallel robotic mechanism as a set point for each leg. The major issues of this paper are designing a desktop simulation system, controlling the parallel manipulator, communicating between the flight simulation and the platform, designing a motion-cueing algorithm and determining the parameters of the washout filters.

  11. Paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT study

    International Nuclear Information System (INIS)

    Ergun, E.L.; Erbas, B.; Beylergil, V.; Demirturk, O.S.; Pasaoglu, I.

    2004-01-01

    After uncomplicated cardiac surgery, abnormal motion of the interventricular septum is frequently observed. The interventricular septum has often been found to display dyskinetic, or paradoxical motion by echocardiographic studies. This study was undertaken to describe instances of paradoxical motion of interventricular septum on Tc-99m MIBI gated SPECT studies in patients after coronary artery by pass graft surgery. Tc-99m MIBI gated SPECT in conjunction with stress myocardial perfusion SPECT was performed in 18 patients who had history of cardiac bypass graft surgery. Paradoxical motion of the interventricular septum was defined visually from Tc-99m MIBI gated SPECT. Perfusion of the interventricular septum was examined from myocardial perfusion images in the same study. Paradoxical motion of the interventricular septum was observed in 4 patients (22%). The interventricular septum was normally perfused in all patients. It was concluded that paradoxical motion of the interventricular septum in patients who had a history of cardiac by-pass graft surgery is not an uncommon finding and it can be observed with gated SPECT. The exact mechanism of this phenomenon is not well-known. A normal perfusion in interventricular wall helps to discriminate this situation from a real abnormality. (author)

  12. Analysis of Human's Motions Based on Local Mean Decomposition in Through-wall Radar Detection

    Science.gov (United States)

    Lu, Qi; Liu, Cai; Zeng, Zhaofa; Li, Jing; Zhang, Xuebing

    2016-04-01

    Observation of human motions through a wall is an important issue in security applications and search-and rescue. Radar has advantages in looking through walls where other sensors give low performance or cannot be used at all. Ultrawideband (UWB) radar has high spatial resolution as a result of employment of ultranarrow pulses. It has abilities to distinguish the closely positioned targets and provide time-lapse information of targets. Moreover, the UWB radar shows good performance in wall penetration when the inherently short pulses spread their energy over a broad frequency range. Human's motions show periodic features including respiration, swing arms and legs, fluctuations of the torso. Detection of human targets is based on the fact that there is always periodic motion due to breathing or other body movements like walking. The radar can gain the reflections from each human body parts and add the reflections at each time sample. The periodic movements will cause micro-Doppler modulation in the reflected radar signals. Time-frequency analysis methods are consider as the effective tools to analysis and extract micro-Doppler effects caused by the periodic movements in the reflected radar signal, such as short-time Fourier transform (STFT), wavelet transform (WT), and Hilbert-Huang transform (HHT).The local mean decomposition (LMD), initially developed by Smith (2005), is to decomposed amplitude and frequency modulated signals into a small set of product functions (PFs), each of which is the product of an envelope signal and a frequency modulated signal from which a time-vary instantaneous phase and instantaneous frequency can be derived. As bypassing the Hilbert transform, the LMD has no demodulation error coming from window effect and involves no negative frequency without physical sense. Also, the instantaneous attributes obtained by LMD are more stable and precise than those obtained by the empirical mode decomposition (EMD) because LMD uses smoothed local

  13. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome.

    Science.gov (United States)

    Go, Tohshin; Mitani, Asako

    2009-01-01

    Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation.

  14. Broad-Band Analysis of Polar Motion Excitations

    Science.gov (United States)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  15. Adaptive Human aware Navigation based on Motion Pattern Analysis

    DEFF Research Database (Denmark)

    Tranberg, Søren; Svenstrup, Mikael; Andersen, Hans Jørgen

    2009-01-01

    Respecting people’s social spaces is an important prerequisite for acceptable and natural robot navigation in human environments. In this paper, we describe an adaptive system for mobile robot navigation based on estimates of whether a person seeks to interact with the robot or not. The estimates...... are based on run-time motion pattern analysis compared to stored experience in a database. Using a potential field centered around the person, the robot positions itself at the most appropriate place relative to the person and the interaction status. The system is validated through qualitative tests...

  16. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  17. Live Speech Driven Head-and-Eye Motion Generators.

    Science.gov (United States)

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  18. Study on fundamental mechanism of nuclear advanced robot. An analysis of fundamental motion with pliability for end-effector of advanced robot

    International Nuclear Information System (INIS)

    Ohki, Arahiko; Hirano, Sigeo; Yoshida, Tomoya.

    1997-01-01

    Most of present robots only perform works simulating human action, but hereafter, it is required to do advanced works smoothly with robots in place of men. Among the mechanisms of high performance robots, as one of the important components that do advanced action and adapt to diversified purposes, there is manipulator. The manipulator comprises arm and end effector. In the process of heightening robot performance hereafter, the reproduction of detailed action is the indispensable subject of research. The object of carrying out this research is to elucidate the possibility of giving the functions close to those of delicate human hands to end effector. First, the joints of human hands were measured, and based on these data, the equation for determining the change of angle in relation to the time of motion of respective joints was established. Further, the simulation of simple actions was carried out, and the concept of the mechanism model was built by analyzing the motion similar to human body. The structural difference in the joints of human and manipulator, the measurement of hands and the analysis of the motion of hand joints are reported. (K.I.)

  19. Improved signal analysis for motional Stark effect data

    International Nuclear Information System (INIS)

    Makowski, M.A.; Allen, S.L.; Ellis, R.; Geer, R.; Jayakumar, R.J.; Moller, J.M.; Rice, B.W.

    2005-01-01

    Nonideal effects in the optical train of the motional Stark effect diagnostic have been modeled using the Mueller matrix formalism. The effects examined are birefringence in the vacuum windows, an imperfect reflective mirror, and signal pollution due to the presence of a circularly polarized light component. Relations for the measured intensity ratio are developed for each case. These relations suggest fitting functions to more accurately model the calibration data. One particular function, termed the tangent offset model, is found to fit the data for all channels better than the currently used tangent slope function. Careful analysis of the calibration data with the fitting functions reveals that a nonideal effect is present in the edge array and is attributed to nonideal performance of a mirror in that system. The result of applying the fitting function to the analysis of our data has been to improve the equilibrium reconstruction

  20. Analysis of the Source and Ground Motions from the 2017 M8.2 Tehuantepec and M7.1 Puebla Earthquakes

    Science.gov (United States)

    Melgar, D.; Sahakian, V. J.; Perez-Campos, X.; Quintanar, L.; Ramirez-Guzman, L.; Spica, Z.; Espindola, V. H.; Ruiz-Angulo, A.; Cabral-Cano, E.; Baltay, A.; Geng, J.

    2017-12-01

    The September 2017 Tehuantepec and Puebla earthquakes were intra-slab earthquakes that together caused significant damage in broad regions of Mexico, including the states of Oaxaca, Chiapas, Morelos, Puebla, Mexico, and Mexico City. Ground motions in Mexico City have approximately the same angle of incidence from both earthquakes and potentially sample similar paths close to the city. We examine site effects and source terms by analysis of residuals between Ground-Motion Prediction Equations (GMPEs) and observed ground motions for both of these events at stations from the Servicio Sismólogico Nacional, Instituto de Ingeniería, and the Instituto de Geofísica Red del Valle de Mexico networks. GMPEs are a basis for seismic design, but also provide median ground motion values to act as a basis for comparison of individual earthquakes and site responses. First, we invert for finite-fault slip inversions for Tehuantepec with high-rate GPS, static GPS, tide gauge and DART buoy data, and for Puebla with high-rate GPS and strong motion data. Using the distance from the stations with ground motion observations to the derived slip models, we use the GMPEs of Garcia et al. (2005), Zhao et al. (2006), and Abrahamson, Silva and Kamai (2014), to compute predicted values of peak ground acceleration and velocity (PGA and PGV) and response spectral accelerations (SA). Residuals between observed and predicted ground motion parameters are then computed for each recording, and are decomposed into event and site components using a mixed effects regression. We analyze these residuals as an adjustment away from median ground motions in the region to glean information about the earthquake source properties, as well as local site response in and outside of the Mexico City basin. The event and site terms are then compared with available values of stress drop for the two earthquakes, and Vs30 values for the sites, respectively. This analysis is useful in determining which GMPE is most

  1. Single-unit studies of visual motion processing in cat extrastriate areas

    NARCIS (Netherlands)

    Vajda, Ildiko

    2003-01-01

    Motion vision has high survival value and is a fundamental property of all visual systems. The old Greeks already studied motion vision, but the physiological basis of it first came under scrutiny in the late nineteenth century. Later, with the introduction of single-cell (single-unit)

  2. Comparisons: Technical-Tactical and Time-Motion Analysis of Mixed Martial Arts by Outcomes.

    Science.gov (United States)

    Miarka, Bianca; Vecchio, Fabrício B D; Camey, Suzi; Amtmann, John A

    2016-07-01

    Miarka, B, Vecchio, FBD, Camey, S, and Amtmann, JA. Comparisons: technical-tactical and time-motion analysis of mixed martial arts by outcomes. J Strength Cond Res 30(7): 1975-1984, 2016-The aim of this study was to compare time-motion and technical-tactical analysis between paired outcomes and rounds of mixed martial arts (MMA) matches. The sample consisted of 645 rounds of MMA competition paired by outcomes (first round, winners n = 215 and losers n = 215; second round, winners n = 215 and losers n = 215; third round, winners n = 215 and losers n = 215). The time-motion variables were categorized into low-intensity or high-intensity, stand-up or groundwork situations. Stand-up techniques were analyzed by observing total strikes to the head and body, and takedowns. The actions on the ground were analyzed by observing submission activity, including successful choking and joint locking actions, and also positional improvements, including advances to the mount, half guard, and side and back positions. Chi-squared and Wilcoxon tests were conducted with a significance level of p ≤ 0.05. Results showed that winners had higher values for total strikes and submissions in all rounds, and also positional improvements, over losers. The standing combat with low-intensity comparisons presented differences between the rounds first, with a median of 2:33.5 (P25-P75%: 1:20-3:56) minute, second, with 2:37 (1:24-3:59) minute, and third, with 2:07 (1:06-3:39.2) minute. These data suggest a focus on the intermittent demand presented in combat phases with a special attention to the strike and ground technical-tactical skills; strength and conditioning coaches could emphasize the effort pause ratios for both standing and ground combat that mimic the requirements of MMA, especially during the third round.

  3. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    Science.gov (United States)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  4. Forecasting pulsatory motion for non-invasive cardiac radiosurgery: an analysis of algorithms from respiratory motion prediction.

    Science.gov (United States)

    Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim

    2011-01-01

    Recently, radiosurgical treatment of cardiac arrhythmia, especially atrial fibrillation, has been proposed. Using the CyberKnife, focussed radiation will be used to create ablation lines on the beating heart to block unwanted electrical activity. Since this procedure requires high accuracy, the inevitable latency of the system (i.e., the robotic manipulator following the motion of the heart) has to be compensated for. We examine the applicability of prediction algorithms developed for respiratory motion prediction to the prediction of pulsatory motion. We evaluated the MULIN, nLMS, wLMS, SVRpred and EKF algorithms. The test data used has been recorded using external infrared position sensors, 3D ultrasound and the NavX catheter systems. With this data, we have shown that the error from latency can be reduced by at least 10 and as much as 75% (44% average), depending on the type of signal. It has also been shown that, although the SVRpred algorithm was successful in most cases, it was outperformed by the simple nLMS algorithm, the EKF or the wLMS algorithm in a number of cases. We have shown that prediction of cardiac motion is possible and that the algorithms known from respiratory motion prediction are applicable. Since pulsation is more regular than respiration, more research will have to be done to improve frequency-tracking algorithms, like the EKF method, which performed better than expected from their behaviour on respiratory motion traces.

  5. Using a Computer Microphone Port to Study Circular Motion: Proposal of a Secondary School Experiment

    Science.gov (United States)

    Soares, A. A.; Borcsik, F. S.

    2016-01-01

    In this work we present an inexpensive experiment proposal to study the kinematics of uniform circular motion in a secondary school. We used a PC sound card to connect a homemade simple sensor to a computer and used the free sound analysis software "Audacity" to record experimental data. We obtained quite good results even in comparison…

  6. Study on dynamic behavior analysis of towed line array sensor

    Directory of Open Access Journals (Sweden)

    Hyun Kyoung Shin

    2012-03-01

    Full Text Available A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

  7. COMPUTER SIMULATION IN MECHANICS TEACHING AND LEARNING: A CASE STUDY ON STUDENTS’ UNDERSTANDING OF FORCE AND MOTION

    Directory of Open Access Journals (Sweden)

    Dyah Permata Sari

    2015-12-01

    Full Text Available The objective of this research was to develop a force and motion simulation based on the open-source Easy Java Simulation. The process of computer simulation development was done following the ADDIE model. Based on the Analysis and Design phases, the Development phase used the open-source Easy Java Simulation (EJS to develop a computer simulation with physics content that was relevant to the subtopic. Computing and communication technology continue to make an increasing impact on all aspects of education. EJS is a powerful didactic resource that gives us the ability to focus our students’ attention on the principles of physics. Using EJS, a computer simulation was created through which the motion of a particle under the action of a specific force can be studied. The implementation phase is implemented the computer simulation in the teaching and learning process. To describe the improvements in the students’ understanding of the force and motion concepts, we used a t-test to evaluate each of the four phases. These results indicated that the use of the computer simulation could improve students’ force and motion conceptual competence regarding Newton's second law of motion.

  8. Semantic Mapping and Motion Planning with Turtlebot Roomba

    International Nuclear Information System (INIS)

    Butt, Rizwan Aslam; Ali, Syed M Usman

    2013-01-01

    In this paper, we have successfully demonstrated the semantic mapping and motion planning experiments on Turtlebot Robot using Microsoft Kinect in ROS environment. Moreover, we have also performed the comparative studies on various sampling based motion planning algorithms with Turtlebot in Open Motion Planning Library. Our comparative analysis revealed that Expansive Space Trees (EST) surmounted all other approaches with respect to memory occupation and processing time. We have also tried to summarize the related concepts of autonomous robotics which we hope would be helpful for beginners

  9. Subtle Motion Analysis and Spotting using the Riesz Pyramid

    OpenAIRE

    Arango , Carlos ,; Alata , Olivier; Emonet , Rémi; Legrand , Anne-Claire; Konik , Hubert

    2018-01-01

    International audience; Analyzing and temporally spotting motions which are almost invisible to the human eye might reveal interesting information about the world. However, detecting these events is difficult due to their short duration and low intensities. Taking inspiration from video magnification techniques, we design a workflow for analyzing and temporally spotting subtle motions based on the Riesz pyramid. In addition, we propose a filtering and masking scheme that segments motions of i...

  10. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

  11. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    study show that illusory motion does not.

  12. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Directory of Open Access Journals (Sweden)

    Briassouli Alexia

    2008-01-01

    Full Text Available Abstract The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts "regions of activity" by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  13. Combination of Accumulated Motion and Color Segmentation for Human Activity Analysis

    Directory of Open Access Journals (Sweden)

    Ioannis Kompatsiaris

    2008-03-01

    Full Text Available The automated analysis of activity in digital multimedia, and especially video, is gaining more and more importance due to the evolution of higher-level video processing systems and the development of relevant applications such as surveillance and sports. This paper presents a novel algorithm for the recognition and classification of human activities, which employs motion and color characteristics in a complementary manner, so as to extract the most information from both sources, and overcome their individual limitations. The proposed method accumulates the flow estimates in a video, and extracts “regions of activity” by processing their higher-order statistics. The shape of these activity areas can be used for the classification of the human activities and events taking place in a video and the subsequent extraction of higher-level semantics. Color segmentation of the active and static areas of each video frame is performed to complement this information. The color layers in the activity and background areas are compared using the earth mover's distance, in order to achieve accurate object segmentation. Thus, unlike much existing work on human activity analysis, the proposed approach is based on general color and motion processing methods, and not on specific models of the human body and its kinematics. The combined use of color and motion information increases the method robustness to illumination variations and measurement noise. Consequently, the proposed approach can lead to higher-level information about human activities, but its applicability is not limited to specific human actions. We present experiments with various real video sequences, from sports and surveillance domains, to demonstrate the effectiveness of our approach.

  14. Investigating student understanding of simple harmonic motion

    Science.gov (United States)

    Somroob, S.; Wattanakasiwich, P.

    2017-09-01

    This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.

  15. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    DEFF Research Database (Denmark)

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring

    2012-01-01

    Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end-and side-view imaging, the stiffness...... of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...

  16. Analysis of sediment particle velocity in wave motion based on wave flume experiments

    Science.gov (United States)

    Krupiński, Adam

    2012-10-01

    The experiment described was one of the elements of research into sediment transport conducted by the Division of Geotechnics of West-Pomeranian University of Technology. The experimental analyses were performed within the framework of the project "Building a knowledge transfer network on the directions and perspectives of developing wave laboratory and in situ research using innovative research equipment" launched by the Institute of Hydroengineering of the Polish Academy of Sciences in Gdańsk. The objective of the experiment was to determine relations between sediment transport and wave motion parameters and then use the obtained results to modify formulas defining sediment transport in rivers, like Ackers-White formula, by introducing basic parameters of wave motion as the force generating bed material transport. The article presents selected results of the experiment concerning sediment velocity field analysis conducted for different parameters of wave motion. The velocity vectors of particles suspended in water were measured with a Particle Image Velocimetry (PIV) apparatus registering suspended particles in a measurement flume by producing a series of laser pulses and analysing their displacement with a high-sensitivity camera connected to a computer. The article presents velocity fields of suspended bed material particles measured in the longitudinal section of the wave flume and their comparison with water velocity profiles calculated for the definite wave parameters. The results presented will be used in further research for relating parameters essential for the description of monochromatic wave motion to basic sediment transport parameters and "transforming" mean velocity and dynamic velocity in steady motion to mean wave front velocity and dynamic velocity in wave motion for a single wave.

  17. Auditory motion-specific mechanisms in the primate brain.

    Directory of Open Access Journals (Sweden)

    Colline Poirier

    2017-05-01

    Full Text Available This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI. We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.

  18. Novel Thermal Analysis Model of the Foot-Shoe Sole Interface during Gait Motion

    Directory of Open Access Journals (Sweden)

    Yasuhiro Shimazaki

    2018-02-01

    Full Text Available Excessive heat at the foot-shoe sole interface negatively affects a human’s thermal comfort. An understanding of the thermal behavior at this interface is important for alleviating this discomfort. During gait motion, a human’s body weight cyclically compresses a shoe sole (commonly constructed of viscoelastic materials, generating heat during loading. To evaluate the thermal effects of this internal heat generation on foot comfort, we developed and empirically validated a thermal analysis model during gait motion. A simple, one-dimensional prediction model for heat conduction with heat generation during compressive loading was used. Heat generation was estimated as a function of the shoe sole’s material properties (e.g., elastic modulus and various gait parameters. When compared with experimental results, the proposed model proved effective in predicting thermal behavior at the foot-shoe sole interface under various conditions and shows potential for improving a human’s thermal comfort during gait motion through informed footwear design.

  19. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II

    Science.gov (United States)

    Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin

    2017-03-01

    A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.

  20. Analysis of the Accuracy and Robustness of the Leap Motion Controller

    OpenAIRE

    Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis

    2013-01-01

    The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pe...

  1. Effectiveness of massage therapy on the range of motion of the shoulder: a systematic review and meta-analysis.

    Science.gov (United States)

    Yeun, Young-Ran

    2017-02-01

    [Purpose] This study was conducted to identify and analyze the degree of effect of massage therapy on the range of motion of the shoulder. [Subjects and Methods] The database search was conducted using PubMed, CINAHL, Embase, PsycINFO, RISS, NDSL, NANET, DBpia, and KoreaMed. The meta-analysis was based on 7 studies, covered a total of 237 participants, and used a random-effects model. [Results] The effect size estimate showed that massage therapy significantly improved the shoulder range of motion, especially the flexion (SMD: 18.21, 95% CI 1.57-34.85) and abduction (SMD: 22.07, 95% CI 5.84-38.30). [Conclusion] The review findings suggest that massage therapy is effective in improving the shoulder flexion and abduction.

  2. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  3. Motion based parsing for video from observational psychology

    Science.gov (United States)

    Kokaram, Anil; Doyle, Erika; Lennon, Daire; Joyeux, Laurent; Fuller, Ray

    2006-01-01

    In Psychology it is common to conduct studies involving the observation of humans undertaking some task. The sessions are typically recorded on video and used for subjective visual analysis. The subjective analysis is tedious and time consuming, not only because much useless video material is recorded but also because subjective measures of human behaviour are not necessarily repeatable. This paper presents tools using content based video analysis that allow automated parsing of video from one such study involving Dyslexia. The tools rely on implicit measures of human motion that can be generalised to other applications in the domain of human observation. Results comparing quantitative assessment of human motion with subjective assessment are also presented, illustrating that the system is a useful scientific tool.

  4. 3D pose estimation and motion analysis of the articulated human hand-forearm limb in an industrial production environment

    Science.gov (United States)

    Hahn, Markus; Barrois, Björn; Krüger, Lars; Wöhler, Christian; Sagerer, Gerhard; Kummert, Franz

    2010-09-01

    This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. [Figure not available: see fulltext.

  5. Quantitative Motion Analysis of Tai Chi Chuan: The Upper Extremity Movement

    Directory of Open Access Journals (Sweden)

    Tsung-Jung Ho

    2018-01-01

    Full Text Available The quantitative and reproducible analysis of the standard body movement in Tai Chi Chuan (TCC was performed in this study. We aimed to provide a reference of the upper extremities for standardizing TCC practice. Microsoft Kinect was used to record the motion during the practice of TCC. The preparation form and eight essential forms of TCC performed by an instructor and 101 practitioners were analyzed in this study. The instructor completed an entire TCC practice cycle and performed the cycle 12 times. An entire cycle of TCC was performed by practitioners and images were recorded for statistics analysis. The performance of the instructor showed high similarity (Pearson correlation coefficient (r=0.71~0.84 to the first practice cycle. Among the 9 forms, lay form had the highest similarity (rmean=0.90 and push form had the lowest similarity (rmean=0.52. For the practitioners, ward off form (rmean=0.51 and roll back form (rmean=0.45 had the highest similarity with moderate correlation. We used Microsoft Kinect to record the spatial coordinates of the upper extremity joints during the practice of TCC and the data to perform quantitative and qualitative analysis of the joint positions and elbow joint angle.

  6. Trend-Centric Motion Visualization: Designing and Applying a New Strategy for Analyzing Scientific Motion Collections.

    Science.gov (United States)

    Schroeder, David; Korsakov, Fedor; Knipe, Carissa Mai-Ping; Thorson, Lauren; Ellingson, Arin M; Nuckley, David; Carlis, John; Keefe, Daniel F

    2014-12-01

    In biomechanics studies, researchers collect, via experiments or simulations, datasets with hundreds or thousands of trials, each describing the same type of motion (e.g., a neck flexion-extension exercise) but under different conditions (e.g., different patients, different disease states, pre- and post-treatment). Analyzing similarities and differences across all of the trials in these collections is a major challenge. Visualizing a single trial at a time does not work, and the typical alternative of juxtaposing multiple trials in a single visual display leads to complex, difficult-to-interpret visualizations. We address this problem via a new strategy that organizes the analysis around motion trends rather than trials. This new strategy matches the cognitive approach that scientists would like to take when analyzing motion collections. We introduce several technical innovations making trend-centric motion visualization possible. First, an algorithm detects a motion collection's trends via time-dependent clustering. Second, a 2D graphical technique visualizes how trials leave and join trends. Third, a 3D graphical technique, using a median 3D motion plus a visual variance indicator, visualizes the biomechanics of the set of trials within each trend. These innovations are combined to create an interactive exploratory visualization tool, which we designed through an iterative process in collaboration with both domain scientists and a traditionally-trained graphic designer. We report on insights generated during this design process and demonstrate the tool's effectiveness via a validation study with synthetic data and feedback from expert musculoskeletal biomechanics researchers who used the tool to analyze the effects of disc degeneration on human spinal kinematics.

  7. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  8. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    Science.gov (United States)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  9. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    International Nuclear Information System (INIS)

    Klein, P; Gröber, S; Kuhn, J; Fleischhauer, A; Müller, A

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue. (paper)

  10. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    Science.gov (United States)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  11. A margin-based analysis of the dosimetric impact of motion on step-and-shoot IMRT lung plans

    International Nuclear Information System (INIS)

    Waghorn, Benjamin J; Shah, Amish P; Rineer, Justin M; Langen, Katja M; Meeks, Sanford L

    2014-01-01

    Intrafraction motion during step-and-shoot (SNS) IMRT is known to affect the target dosimetry by a combination of dose blurring and interplay effects. These effects are typically managed by adding a margin around the target. A quantitative analysis was performed, assessing the relationship between target motion, margin size, and target dosimetry with the goal of introducing new margin recipes. A computational algorithm was used to calculate 1,174 motion-encoded dose distributions and DVHs within the patient’s CT dataset. Sinusoidal motion tracks were used simulating intrafraction motion for nine lung tumor patients, each with multiple margin sizes. D 95% decreased by less than 3% when the maximum target displacement beyond the margin experienced motion less than 5 mm in the superior-inferior direction and 15 mm in the anterior-posterior direction. For target displacements greater than this, D 95% decreased rapidly. Targets moving in excess of 5 mm outside the margin can cause significant changes to the target. D 95% decreased by up to 20% with target motion 10 mm outside the margin, with underdosing primarily limited to the target periphery. Multi-fractionated treatments were found to exacerbate target under-coverage. Margins several millimeters smaller than the maximum target displacement provided acceptable motion protection, while also allowing for reduced normal tissue morbidity

  12. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2002-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  13. Structural Analysis Approach to Fault Diagnosis with Application to Fixed-wing Aircraft Motion

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    2001-01-01

    The paper presents a structural analysis based method for fault diagnosis purposes. The method uses the structural model of the system and utilizes the matching idea to extract system's inherent redundant information. The structural model is represented by a bipartite directed graph. FDI...... Possibilities are examined by further analysis of the obtained information. The method is illustrated by applying on the LTI model of motion of a fixed-wing aircraft....

  14. Study on scaling law of PWR natural circulation with motion condition

    International Nuclear Information System (INIS)

    Lu Donghua; Xiao Zejun; Chen Bingde

    2009-01-01

    For some nuclear reactors installed on automobiles, boats or deep sea vehicles, it is an important way to investigate their system safety by performing natural circulation experiments under motion condition. This paper studied the natural circulation on moving plants based on work of static natural circulation scaling method. With rigid motion theory, acceleration at each point was obtained on primary system and introduced to momentum equation. Thus a set of motion similar criteria were obtained. Furthermore, equal and unequal height simulation were analyzed. As to the unequal one, non isochronous simulation was needed for displacement and angular acceleration. (authors)

  15. Using Phun to Study "Perpetual Motion" Machines

    Science.gov (United States)

    Kores, Jaroslav

    2012-01-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th-century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over…

  16. Direct excitation of resonant torsional Alfven waves by footpoint motions

    NARCIS (Netherlands)

    Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.

    1997-01-01

    The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only

  17. Primary variables influencing generation of earthquake motions by a deconvolution process

    International Nuclear Information System (INIS)

    Idriss, I.M.; Akky, M.R.

    1979-01-01

    In many engineering problems, the analysis of potential earthquake response of a soil deposit, a soil structure or a soil-foundation-structure system requires the knowledge of earthquake ground motions at some depth below the level at which the motions are recorded, specified, or estimated. A process by which such motions are commonly calculated is termed a deconvolution process. This paper presents the results of a parametric study which was conducted to examine the accuracy, convergence, and stability of a frequency used deconvolution process and the significant parameters that may influence the output of this process. Parameters studied in included included: soil profile characteristics, input motion characteristics, level of input motion, and frequency cut-off. (orig.)

  18. A Method for Mechanism Analysis of Frog Swimming Based on Motion Observation Experiments

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-05-01

    Full Text Available For understanding the mechanism of frog swimming under water and designing a frog-inspired swimming robot, kinematics of the frog body and trajectories of joints should be obtained. In this paper, an aquatic frog, Xenopus laevis, was chosen for analysis of swimming motions which were recorded by a high speed camera, and kinematic data were processed in a swimming data extraction platform. According to the shape features of the frog, we propose a method that the frog eyes are set as the natural data extraction markers for body motion, and kinematic data of joint trajectories are calculated by the contour points on the limbs. For the data processing, a pinhole camera model was built to transform the pixel coordinate system to world coordinate system, and the errors caused by the water refraction were analyzed and corrected. Finally, from the developed data extraction platform, the kinematic data for the analysis of swimming mechanism and design of frog-inspired robot were obtained.

  19. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    International Nuclear Information System (INIS)

    Huang, Chuan; Petibon, Yoann; Ouyang, Jinsong; El Fakhri, Georges; Reese, Timothy G.; Ahlman, Mark A.; Bluemke, David A.

    2015-01-01

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  20. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794 (United States); Petibon, Yoann [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Ouyang, Jinsong; El Fakhri, Georges [Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging, Department of Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114 and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 (United States); Reese, Timothy G. [Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115 and Martinos Center for Biomedical Imaging, Charlestown, Massachusetts 02129 (United States); Ahlman, Mark A.; Bluemke, David A. [Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland 20892 (United States)

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PET using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide

  1. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  2. Electron spin echo studies of the internal motion of radicals in crystals: Phase memory vs correlation time

    International Nuclear Information System (INIS)

    Kispert, L.D.; Bowman, M.K.; Norris, J.R.; Brown, M.S.

    1982-01-01

    An electron spin echo (ESE) study of the internal motion of the CH 2 protons in irradiated zinc acetate dihydrate crystals shows that quantitative measurements of the motional correlation time can be obtained quite directly from pulsed measurements. In the slow motional limit, the motional correlation time is equal to the phase memory time determined by ESE. In the fast motional limit, the motional correlation time is proportional to the no motion spectral second moment divided by the ESE phase memory time. ESE offers a convenient method of studying motion, electron transfer, conductivity, etc. in a variety of systems too complicated for study by ordinary EPR. New systems for study by ESE include biological samples, organic polymers, liquid solutions of radicals with unresolved hyperfine, etc. When motion modulates large anisotropic hyperfine couplings, ESE measurements of the phase memory time are sensitive to modulation of pseudosecular hyperfine interactions

  3. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    Science.gov (United States)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid

  4. On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor

    Directory of Open Access Journals (Sweden)

    Woosuk Kim

    2018-03-01

    Full Text Available In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

  5. On-Line Detection and Segmentation of Sports Motions Using a Wearable Sensor.

    Science.gov (United States)

    Kim, Woosuk; Kim, Myunggyu

    2018-03-19

    In sports motion analysis, observation is a prerequisite for understanding the quality of motions. This paper introduces a novel approach to detect and segment sports motions using a wearable sensor for supporting systematic observation. The main goal is, for convenient analysis, to automatically provide motion data, which are temporally classified according to the phase definition. For explicit segmentation, a motion model is defined as a sequence of sub-motions with boundary states. A sequence classifier based on deep neural networks is designed to detect sports motions from continuous sensor inputs. The evaluation on two types of motions (soccer kicking and two-handed ball throwing) verifies that the proposed method is successful for the accurate detection and segmentation of sports motions. By developing a sports motion analysis system using the motion model and the sequence classifier, we show that the proposed method is useful for observation of sports motions by automatically providing relevant motion data for analysis.

  6. Motion estimation by data assimilation in reduced dynamic models

    International Nuclear Information System (INIS)

    Drifi, Karim

    2013-01-01

    Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr

  7. Confirmation, refinement, and extension of a study in intrafraction motion interplay with sliding jaw motion

    International Nuclear Information System (INIS)

    Kissick, Michael W.; Boswell, Sarah A.; Jeraj, Robert; Mackie, T. Rockwell

    2005-01-01

    The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish

  8. Untypical Undergraduate Research: Player Motion Analysis in Sports

    Science.gov (United States)

    Loerke, Dinah

    There is significant concern about the degree of attrition in STEM disciplines from the start of K-12 through to the end of higher education, and the analysis of the `leaky pipeline' from the various institutions has identified a critical decline - which may be as high as 60 percent - between the fraction of students who identify as having an interest in a science or engineering major at the start of college/university, and the fraction of students who ultimately graduate with a STEM degree. It has been shown that this decline is even more dramatic for women and underrepresented minorities (Blickenstaff 2005, Metcalf 2010). One intervention which has been proven to be effective for retention of potential STEM students is early research experience, particularly if it facilitates the students' integration into a STEM learning community (Graham et al. 2013, Toven-Lindsey et al. 2015). In other words, to retain students in STEM majors, we would like to encourage them to `think of themselves as scientists', and simultaneously promote supportive peer networks. The University of Denver (DU) already has a strong undergraduate research program. However, while the current program provides valuable training for many students, it likely comes too late to be effective for student retention in STEM, because it primarily serves older students who have already finished the basic coursework in their discipline; within physics, we know that the introductory physics courses already serve as gatekeeper courses that cause many gifted but `non-typical' students to lose interest in pursuing a STEM major (Tobias 1990). To address this issue, my lab is developing a small research spinoff program in which we apply spatiotemporal motion analysis to the motion trajectories of players in sports, using video recordings of DU Pioneer hockey games. This project aims to fulfill a dual purpose: The research is framed in a way that we think is attractive and accessible for beginning students who

  9. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  10. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  11. 4D-analysis of left ventricular heart cycle using procrustes motion analysis.

    Directory of Open Access Journals (Sweden)

    Paolo Piras

    Full Text Available The aim of this study is to investigate human left ventricular heart morphological changes in time among 17 healthy subjects. Preliminarily, 2 patients with volumetric overload due to aortic insufficiency were added to our analyses. We propose a special strategy to compare the shape, orientation and size of cardiac cycle's morphological trajectories in time. We used 3D data obtained by Speckle Tracking Echocardiography in order to detect semi-automated and homologous landmarks clouds as proxies of left ventricular heart morphology. An extended Geometric Morphometrics toolkit in order to distinguish between intra- and inter-individual shape variations was used. Shape of trajectories with inter-individual variation were compared under the assumption that trajectories attributes, estimated at electrophysiologically homologous times are expressions of left ventricular heart function. We found that shape analysis as commonly applied in Geometric Morphometrics studies fails in identifying a proper morpho-space to compare the shape of morphological trajectories in time. To overcome this problem, we performed a special type of Riemannian Parallel Transport, called "linear shift". Whereas the two patients with aortic insufficiency were not differentiated in the static shape analysis from the healthy subjects, they set apart significantly in the analyses of motion trajectory's shape and orientation. We found that in healthy subjects, the variations due to inter-individual morphological differences were not related to shape and orientation of morphological trajectories. Principal Component Analysis showed that volumetric contraction, torsion and twist are differently distributed on different axes. Moreover, global shape change appeared to be more correlated with endocardial shape change than with the epicardial one. Finally, the total shape variation occurring among different subjects was significantly larger than that observable across properly defined

  12. Establishing state of motion through two-dimensional foot and shoe print analysis: A pilot study.

    Science.gov (United States)

    Neves, Fernando Bueno; Arnold, Graham P; Nasir, Sadiq; Wang, Weijie; MacDonald, Calum; Christie, Ian; Abboud, Rami J

    2018-03-01

    According to the College of Podiatry, footprints rank among the most frequent forms of evidence found at crime scenes, and the recent ascension of forensic podiatry reflects the importance of footwear and barefoot traces in contemporary forensic practice. In this context, this pilot study focused on whether it is possible to distinguish between walking and running states using parameters derived from two-dimensional foot or shoe prints. Eleven subjects moved along four tracks (barefoot walking; barefoot running; footwear walking; footwear running) while having their bare feet or footwear stained with artificial blood and their footstep patterns recorded. Contact stains and associated bloodstain patterns were collected, and body movements were recorded through three-dimensional motion capture. Barefoot walking prints were found to be larger than barefoot static prints (1.789±0.481cm; pprints (0.635±0.405cm; p=0.006). No correlation was observed for footwear prints. Running trials were more associated with the presence of both passive and cast off stains than walking trials, and the quantity of additional associated stains surrounding individual foot and shoe prints was also higher in running states. Furthermore, a previously proposed equation predicted speed with a high degree of accuracy (within 6%) and may be used for clinical assessment of walking speed. Contact stains, associated bloodstain patterns and stride length measurements may serve to ascertain state of motion in real crime scene scenarios, and future studies may be capable of designing statistical frameworks which could be used in courts of law. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Motion-oriented 3D analysis of body measurements

    Science.gov (United States)

    Loercher, C.; Morlock, S.; Schenk, A.

    2017-10-01

    The aim of this project is to develop an ergonomically based and motion-oriented size system. New concepts are required in order to be able to deal competently with complex requirements of function-oriented workwear and personal protective equipment (PPE). Body dimensions change through movement, which are basis for motion optimized clothing development. This affects fit and ergonomic comfort. The situation has to be fundamentally researched in order to derive well-founded anthropometric body data, taking into account kinematic requirements of humans and to define functional dimensions for clothing industry. Research focus shall be on ergonomic design of workwear and PPE. There are huge differences in body forms, proportions and muscle manifestations between genders. An improved basic knowledge can be provided as a result, supporting development as well as sales of motion-oriented clothing with perfect fit for garment manufacturers.

  14. Bayesian approach to MSD-based analysis of particle motion in live cells.

    Science.gov (United States)

    Monnier, Nilah; Guo, Syuan-Ming; Mori, Masashi; He, Jun; Lénárt, Péter; Bathe, Mark

    2012-08-08

    Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological heterogeneity. Here, we present a systematic Bayesian approach to multiple-hypothesis testing of a general set of competing motion models based on particle mean-square displacements that automatically classifies particle motion, properly accounting for sampling limitations and correlated noise while appropriately penalizing model complexity according to Occam's Razor to avoid over-fitting. We test the procedure rigorously using simulated trajectories for which the underlying physical process is known, demonstrating that it chooses the simplest physical model that explains the observed data. Further, we show that computed model probabilities provide a reliability test for the downstream biological interpretation of associated parameter values. We subsequently illustrate the broad utility of the approach by applying it to disparate biological systems including experimental particle trajectories from chromosomes, kinetochores, and membrane receptors undergoing a variety of complex motions. This automated and objective Bayesian framework easily scales to large numbers of particle trajectories, making it ideal for classifying the complex motion of large numbers of single molecules and cells from high-throughput screens, as well as single-cell-, tissue-, and organism-level studies. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of cardiac motion and function by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Kondo, Takeshi; Kurokawa, Hiroshi; Anno, Hirofumi

    1992-01-01

    Cardiac cine magnetic resonance imaging (MRI) was studied to evaluate the cardiac motion and function, and a water-stream phantom study was performed to clarify whether it was possible to quantitatively assess the valvular regurgitation flow by the size of the flow void. In normal subjects, the left ventricular (LV) epicardial apex swung up to the base only a few millimeters, and the mitral annulus ring moved about 14 mm as mean value toward the apex during systole. Those motions of mitral annulus ring may contribute to the left atrial filling. The LV longitudinal shortening and torsions were shown by the tagging method. This tagging method was the best method for estimating cardiac motions. Cardiac cine MRI using software including a modified Simpson's method program and a wall motion analysis program was useful for routine LV volumetry and wall motion analysis because it was a simple and reliable method. Our water-stream phantom studies demonstrated that it might be difficult to perform quantitative evaluation of valvular regurgitation flow by using only the size of the flow void without acquiring information relating to the orifice area. (author)

  17. Organ motion study and dosimetric impact of respiratory gating radiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Lorchel, F.

    2007-04-01

    Chemoradiotherapy is now the standard treatment for locally advanced or inoperable esophageal carcinoma. In this indication, conformal radiotherapy is generally used. However, prognosis remains poor for these patients. Respiratory gating radiotherapy can decrease healthy tissues irradiation and allows escalation dose in lung, liver and breast cancer. In order to improve radiotherapy technique, we propose to study the feasibility of respiratory gating for esophageal cancer. We will study the respiratory motions of esophageal cancer to optimize target volume delineation, especially the internal margin (I.M.). We will test the correlation between tumour and chest wall displacements to prove that esophageal cancer motions are induced by respiration. This is essential before using free breathing respiratory gating systems. We will work out the dosimetric impact of respiratory gating using various dosimetric analysis parameters. We will compare dosimetric plans at end expiration, end inspiration and deep inspiration with dosimetric plan in free-breathing condition. This will allow us to establish the best respiratory phase to irradiate for each gating system. This dosimetric study will be completed with linear quadratic equivalent uniform dose (E.U.D.) calculation for each volume of interest. Previously, we will do a theoretical study of histogram dose volume gradation to point up its use. (author)

  18. Internal Motion Estimation by Internal-external Motion Modeling for Lung Cancer Radiotherapy.

    Science.gov (United States)

    Chen, Haibin; Zhong, Zichun; Yang, Yiwei; Chen, Jiawei; Zhou, Linghong; Zhen, Xin; Gu, Xuejun

    2018-02-27

    The aim of this study is to develop an internal-external correlation model for internal motion estimation for lung cancer radiotherapy. Deformation vector fields that characterize the internal-external motion are obtained by respectively registering the internal organ meshes and external surface meshes from the 4DCT images via a recently developed local topology preserved non-rigid point matching algorithm. A composite matrix is constructed by combing the estimated internal phasic DVFs with external phasic and directional DVFs. Principle component analysis is then applied to the composite matrix to extract principal motion characteristics, and generate model parameters to correlate the internal-external motion. The proposed model is evaluated on a 4D NURBS-based cardiac-torso (NCAT) synthetic phantom and 4DCT images from five lung cancer patients. For tumor tracking, the center of mass errors of the tracked tumor are 0.8(±0.5)mm/0.8(±0.4)mm for synthetic data, and 1.3(±1.0)mm/1.2(±1.2)mm for patient data in the intra-fraction/inter-fraction tracking, respectively. For lung tracking, the percent errors of the tracked contours are 0.06(±0.02)/0.07(±0.03) for synthetic data, and 0.06(±0.02)/0.06(±0.02) for patient data in the intra-fraction/inter-fraction tracking, respectively. The extensive validations have demonstrated the effectiveness and reliability of the proposed model in motion tracking for both the tumor and the lung in lung cancer radiotherapy.

  19. Interventional heart wall motion analysis with cardiac C-arm CT systems

    International Nuclear Information System (INIS)

    Müller, Kerstin; Maier, Andreas K; Schwemmer, Chris; Hornegger, Joachim; Zheng, Yefeng; Wang, Yang; Lauritsch, Günter; Rohkohl, Christopher; Fahrig, Rebecca

    2014-01-01

    Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕ i, max ) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice. (paper)

  20. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner.

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B; Michel, Christian J; El Fakhri, Georges; Schmand, Matthias; Sorensen, A Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MRI data can be used for motion tracking. In this work, a novel algorithm for data processing and rigid-body motion correction (MC) for the MRI-compatible BrainPET prototype scanner is described, and proof-of-principle phantom and human studies are presented. To account for motion, the PET prompt and random coincidences and sensitivity data for postnormalization were processed in the line-of-response (LOR) space according to the MRI-derived motion estimates. The processing time on the standard BrainPET workstation is approximately 16 s for each motion estimate. After rebinning in the sinogram space, the motion corrected data were summed, and the PET volume was reconstructed using the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed, and motion estimates were obtained using 2 high-temporal-resolution MRI-based motion-tracking techniques. After accounting for the misalignment between the 2 scanners, perfectly coregistered MRI and PET volumes were reproducibly obtained. The MRI output gates inserted into the PET list-mode allow the temporal correlation of the 2 datasets within 0.2 ms. The Hoffman phantom volume reconstructed by processing the PET data in the LOR space was similar to the one obtained by processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the procedure. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 s and 20 ms, respectively. Motion-deblurred PET images, with excellent delineation of specific brain structures, were obtained using these 2 MRI

  1. A review of vision-based motion analysis in sport.

    Science.gov (United States)

    Barris, Sian; Button, Chris

    2008-01-01

    Efforts at player motion tracking have traditionally involved a range of data collection techniques from live observation to post-event video analysis where player movement patterns are manually recorded and categorized to determine performance effectiveness. Due to the considerable time required to manually collect and analyse such data, research has tended to focus only on small numbers of players within predefined playing areas. Whilst notational analysis is a convenient, practical and typically inexpensive technique, the validity and reliability of the process can vary depending on a number of factors, including how many observers are used, their experience, and the quality of their viewing perspective. Undoubtedly the application of automated tracking technology to team sports has been hampered because of inadequate video and computational facilities available at sports venues. However, the complex nature of movement inherent to many physical activities also represents a significant hurdle to overcome. Athletes tend to exhibit quick and agile movements, with many unpredictable changes in direction and also frequent collisions with other players. Each of these characteristics of player behaviour violate the assumptions of smooth movement on which computer tracking algorithms are typically based. Systems such as TRAKUS, SoccerMan, TRAKPERFORMANCE, Pfinder and Prozone all provide extrinsic feedback information to coaches and athletes. However, commercial tracking systems still require a fair amount of operator intervention to process the data after capture and are often limited by the restricted capture environments that can be used and the necessity for individuals to wear tracking devices. Whilst some online tracking systems alleviate the requirements of manual tracking, to our knowledge a completely automated system suitable for sports performance is not yet commercially available. Automatic motion tracking has been used successfully in other domains outside

  2. A semi-automated motion-tracking analysis of locomotion speed in the C. elegans transgenics overexpressing beta-amyloid in neurons

    Directory of Open Access Journals (Sweden)

    Kevin eMachino

    2014-07-01

    Full Text Available Multi-Worm Tracker (MWT is a real-time computer vision system that can simultaneously quantify motional patterns of multiple worms. MWT provides several behavioral parameters, including analysis of accurate real-time locomotion speed in the nematode, Caenorhabditis elegans. Here, we determined locomotion speed of the Alzheimer’s disease (AD transgenic strain that over-expresses human beta-amyloid1-42 (Aβ in the neurons. The MWT analysis showed that the AD strain logged a slower average speed than the wild type worms. The results may be consistent with the observation that the AD patients with dementia tend to show deficits in physical activities, including frequent falls. The AD strain showed reduced ability of the eggs to hatch and slowed hatching of the eggs. Thus, over-expression of Aβ in neurons causes negative effects on locomotion and hatchability. This study sheds light on new examples of detrimental effects that Aβ deposits can exhibit using C. elegans as a model system. The information gathered from this study indicates that the motion tracking analysis is a cost-effective, efficient way to assess the deficits of Aβ over-expression in the C. elegans system.

  3. A qualitative motion analysis study of voluntary hand movement induced by music in patients with Rett syndrome

    Directory of Open Access Journals (Sweden)

    Tohshin Go

    2009-10-01

    Full Text Available Tohshin Go1, Asako Mitani21Center for Baby Science, Doshisha University, Kizugawa, Kyoto, Japan; 2Independent Music Therapist (Poco A Poco Music Room, Tokyo, JapanAbstract: Patients with Rett syndrome are known to respond well to music irrespective of their physical and verbal disabilities. Therefore, the relationship between auditory rhythm and their behavior was investigated employing a two-dimensional motion analysis system. Ten female patients aged from three to 17 years were included. When music with a simple regular rhythm started, body rocking appeared automatically in a back and forth direction in all four patients who showed the same rocking motion as their stereotyped movement. Through this body rocking, voluntary movement of the hand increased gradually, and finally became sufficient to beat a tambourine. However, the induction of body rocking by music was not observed in the other six patients who did not show stereotyped body rocking in a back and forth direction. When the music stopped suddenly, voluntary movement of the hand disappeared. When the music changed from a simple regular rhythm to a continuous tone without an auditory rhythm, the periodic movement of both the hand and body prolonged. Auditory rhythm shows a close relationship with body movement and facilitates synchronized body movement. This mechanism was demonstrated to be preserved in some patients with Rett syndrome, and stimulation with music could be utilized for their rehabilitation.Keywords: Rett syndrome, music, auditory rhythm, stereotyped movement, body rocking, voluntary movement

  4. WE-G-18C-06: Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, J; Zheng, C; Czito, B; Palta, M; Yin, F [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Wang, H [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Bashir, M [Department of Radiology, Duke University Medical Center, Durham, NC (United States)

    2014-06-15

    Purpose: To investigate whether diaphragm motion is a good surrogate for liver tumor motion by comparing their motion trajectories obtained from cine-MRI. Methods: Fourteen patients with hepatocellular carcinoma (10/14) or liver metastases (4/14) undergoing radiation therapy were included in this study. All patients underwent single-slice 2D cine-MRI simulations across the center of the tumor in three orthogonal planes. Tumor and diaphragm motion trajectories in the superior-inferior (SI), anteriorposterior (AP), and medial-lateral (ML) directions were obtained using the normalized cross-correlation based tracking technique. Agreement between tumor and diaphragm motions was assessed by calculating the phase difference percentage (PDP), intra-class correlation coefficient (ICC), Bland-Altman analysis (Diffs) and paired t-test. The distance (D) between tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between tumor and diaphragm motions. Results: Of all patients, the means (±standard deviations) of PDP were 7.1 (±1.1)%, 4.5 (±0.5)% and 17.5 (±4.5)% in the SI, AP and ML directions, respectively. The means of ICC were 0.98 (±0.02), 0.97 (±0.02), and 0.08 (±0.06) in the SI, AP and ML directions, respectively. The Diffs were 2.8 (±1.4) mm, 2.4 (±1.1) mm, and 2.2 (±0.5) mm in the SI, AP and ML directions, respectively. The p-values derived from the paired t-test were < 0.02 in SI and AP directions, whereas were > 0.58 in ML direction primarily due to the small motion in ML direction. Tumor and diaphragmatic motion had high concordance when the distance between the tumor and tracked diaphragm areas was small. Conclusion: Preliminary results showed that liver tumor motion had good correlations with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be a reliable surrogate for liver tumor motion. NIH (1R21CA165384-01A1), Golfers Against Cancer (GAC

  5. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  6. Visualization system of swirl motion

    International Nuclear Information System (INIS)

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.

    2004-01-01

    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  7. A New Motion Capture System For Automated Gait Analysis Based On Multi Video Sequence Analysis

    DEFF Research Database (Denmark)

    Jensen, Karsten; Juhl, Jens

    There is an increasing demand for assessing foot mal positions and an interest in monitoring the effect of treatment. In the last decades several different motion capture systems has been used. This abstract describes a new low cost motion capture system.......There is an increasing demand for assessing foot mal positions and an interest in monitoring the effect of treatment. In the last decades several different motion capture systems has been used. This abstract describes a new low cost motion capture system....

  8. HIERARCHICAL ADAPTIVE ROOD PATTERN SEARCH FOR MOTION ESTIMATION AT VIDEO SEQUENCE ANALYSIS

    Directory of Open Access Journals (Sweden)

    V. T. Nguyen

    2016-05-01

    Full Text Available Subject of Research.The paper deals with the motion estimation algorithms for the analysis of video sequences in compression standards MPEG-4 Visual and H.264. Anew algorithm has been offered based on the analysis of the advantages and disadvantages of existing algorithms. Method. Thealgorithm is called hierarchical adaptive rood pattern search (Hierarchical ARPS, HARPS. This new algorithm includes the classic adaptive rood pattern search ARPS and hierarchical search MP (Hierarchical search or Mean pyramid. All motion estimation algorithms have been implemented using MATLAB package and tested with several video sequences. Main Results. The criteria for evaluating the algorithms were: speed, peak signal to noise ratio, mean square error and mean absolute deviation. The proposed method showed a much better performance at a comparable error and deviation. The peak signal to noise ratio in different video sequences shows better and worse results than characteristics of known algorithms so it requires further investigation. Practical Relevance. Application of this algorithm in MPEG-4 and H.264 codecs instead of the standard can significantly reduce compression time. This feature enables to recommend it in telecommunication systems for multimedia data storing, transmission and processing.

  9. Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion

    Directory of Open Access Journals (Sweden)

    Thanhtoan Tran

    2014-08-01

    Full Text Available The objective of this study is to illustrate the unsteady aerodynamic effects of a floating offshore wind turbine experiencing the prescribed pitching motion of a supporting floating platform as a sine function. The three-dimensional, unsteady Reynolds Averaged Navier-Stokes equations with the shear-stress transport (SST k-ω turbulence model were applied. Moreover, an overset grid approach was used to model the rigid body motion of a wind turbine blade. The current simulation results are compared to various approaches from previous studies. The unsteady aerodynamic loads of the blade were demonstrated to change drastically with respect to the frequency and amplitude of platform motion.

  10. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  11. Self-motion perception: assessment by real-time computer-generated animations

    Science.gov (United States)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  12. ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Verbytskiyi

    2011-01-01

    Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.

  13. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  14. Evaluation of site effects on ground motions based on equivalent linear site response analysis and liquefaction potential in Chennai, south India

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Trupti, S.; Prabhakar Prasad, P.; Seshunarayana, T.

    2018-05-01

    We study local site effects with detailed geotechnical and geophysical site characterization to evaluate the site-specific seismic hazard for the seismic microzonation of the Chennai city in South India. A Maximum Credible Earthquake (MCE) of magnitude 6.0 is considered based on the available seismotectonic and geological information of the study area. We synthesized strong ground motion records for this target event using stochastic finite-fault technique, based on a dynamic corner frequency approach, at different sites in the city, with the model parameters for the source, site, and path (attenuation) most appropriately selected for this region. We tested the influence of several model parameters on the characteristics of ground motion through simulations and found that stress drop largely influences both the amplitude and frequency of ground motion. To minimize its influence, we estimated stress drop after finite bandwidth correction, as expected from an M6 earthquake in Indian peninsula shield for accurately predicting the level of ground motion. Estimates of shear wave velocity averaged over the top 30 m of soil (V S30) are obtained from multichannel analysis of surface wave (MASW) at 210 sites at depths of 30 to 60 m below the ground surface. Using these V S30 values, along with the available geotechnical information and synthetic ground motion database obtained, equivalent linear one-dimensional site response analysis that approximates the nonlinear soil behavior within the linear analysis framework was performed using the computer program SHAKE2000. Fundamental natural frequency, Peak Ground Acceleration (PGA) at surface and rock levels, response spectrum at surface level for different damping coefficients, and amplification factors are presented at different sites of the city. Liquefaction study was done based on the V S30 and PGA values obtained. The major findings suggest show that the northeast part of the city is characterized by (i) low V S30 values

  15. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  16. A Study on the Bio-mimetic Motion of Reptiles

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hochelo; Kim, Changhoi; Eom, Heungseop; Jeong, Kyungmin; Jung, Seungjo

    2013-10-15

    After investigating the locomotion based on the biological characteristics about the from a literature search about the reptile, the locomotion of lizards is captured with marker based motion capture system. Tested lizards are Cuban anole, bearded dragon, domestic lizards such as a white-striped grass lizard and a leopard lizard, After analyzing the motion of the lizards with the measured data, a 25 DOF kinematics model of a lizard was proposed. A periodic gait of the lizard was modeled by defining gait parameters. The body structure of the lizard was analyzed with a bone specimen for the kinematics modeling. Dynamics parameters such as a mass and a inertia of a link are obtained by measuring the weight and the volume of each link. The crawl and the trot gait were simulated with the dynamics model. To control the poly-morphic motion of snake robot, various locomotions of snakes and the motion algorithm of snake robots were investigated. A test model of snake robot and a control system were developed to analyzed the motion and energy efficiency according to the gaits and to realize the poly-morphic motion control.

  17. A Study on the Bio-mimetic Motion of Reptiles

    International Nuclear Information System (INIS)

    Shin, Hochelo; Kim, Changhoi; Eom, Heungseop; Jeong, Kyungmin; Jung, Seungjo

    2013-10-01

    After investigating the locomotion based on the biological characteristics about the from a literature search about the reptile, the locomotion of lizards is captured with marker based motion capture system. Tested lizards are Cuban anole, bearded dragon, domestic lizards such as a white-striped grass lizard and a leopard lizard, After analyzing the motion of the lizards with the measured data, a 25 DOF kinematics model of a lizard was proposed. A periodic gait of the lizard was modeled by defining gait parameters. The body structure of the lizard was analyzed with a bone specimen for the kinematics modeling. Dynamics parameters such as a mass and a inertia of a link are obtained by measuring the weight and the volume of each link. The crawl and the trot gait were simulated with the dynamics model. To control the poly-morphic motion of snake robot, various locomotions of snakes and the motion algorithm of snake robots were investigated. A test model of snake robot and a control system were developed to analyzed the motion and energy efficiency according to the gaits and to realize the poly-morphic motion control

  18. Kinematic analysis of mandibular motion before and after orthognathic surgery for skeletal Class III malocclusion: A pilot study.

    Science.gov (United States)

    Ugolini, Alessandro; Mapelli, Andrea; Segù, Marzia; Galante, Domenico; Sidequersky, Fernanda V; Sforza, Chiarella

    2017-03-01

    The aim of the study was to detect the changes in 3D mandibular motion after orthognathic surgery for skeletal Class III malocclusion. Using a 3D motion analyzer, free mandibular border movements were recorded in nine patients successfully treated for skeletal Class III malocclusion and in nine patients scheduled for orthognathic surgery. Data were compared using Mann-Whitney non-parametric U-test. The results showed no differences between the groups in the total amount of mouth opening, protrusion, and in lateral excursions, but the percentage of mandibular movement explained by condylar translation was significantly increased after surgery (20% vs. 23.6%). During opening, the post-surgery patients showed a more symmetrical mandibular interincisal point and condylar path than pre-surgery patients (p < 0.01). Patients treated with orthognathic surgery for skeletal Class III malocclusion recover a good and symmetric temporomandibular joint function.

  19. Development of a computerized intervertebral motion analysis of the cervical spine for clinical application.

    Science.gov (United States)

    Piché, Mathieu; Benoît, Pierre; Lambert, Julie; Barrette, Virginie; Grondin, Emmanuelle; Martel, Julie; Paré, Amélie; Cardin, André

    2007-01-01

    The objective of this study was to develop a measurement method that could be implemented in chiropractic for the evaluation of angular and translational intervertebral motion of the cervical spine. Flexion-extension radiographs were digitized with a scanner at a ratio of 1:1 and imported into a software, allowing segmental motion measurements. The measurements were obtained by selecting the most anteroinferior point and the most posteroinferior point of a vertebral body (anterior and posterior arch, respectively, for C1), with the origin of the reference frame set at the most posteroinferior point of the vertebral body below. The same procedure was performed for both the flexion and extension radiographs, and the coordinates of the 2 points were used to calculate the angular movement and the translation between the 2 vertebrae. This method provides a measure of intervertebral angular and translational movement. It uses a different reference frame for each joint instead of the same reference frame for all joints and thus provides a measure of motion in the plane of each articulation. The calculated values obtained are comparable to other studies on intervertebral motion and support further development to validate the method. The present study proposes a computerized procedure to evaluate intervertebral motion of the cervical spine. This procedure needs to be validated with a reliability study but could provide a valuable tool for doctors of chiropractic and further spinal research.

  20. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  1. Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions

    International Nuclear Information System (INIS)

    Spears, Robert E.; Wilkins, J. Kevin

    2011-01-01

    A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.

  2. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.

    2017-06-06

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  3. Conserved linear dynamics of single-molecule Brownian motion

    Science.gov (United States)

    Serag, Maged F.; Habuchi, Satoshi

    2017-06-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  4. Conserved linear dynamics of single-molecule Brownian motion

    KAUST Repository

    Serag, Maged F.; Habuchi, Satoshi

    2017-01-01

    Macromolecular diffusion in homogeneous fluid at length scales greater than the size of the molecule is regarded as a random process. The mean-squared displacement (MSD) of molecules in this regime increases linearly with time. Here we show that non-random motion of DNA molecules in this regime that is undetectable by the MSD analysis can be quantified by characterizing the molecular motion relative to a latticed frame of reference. Our lattice occupancy analysis reveals unexpected sub-modes of motion of DNA that deviate from expected random motion in the linear, diffusive regime. We demonstrate that a subtle interplay between these sub-modes causes the overall diffusive motion of DNA to appear to conform to the linear regime. Our results show that apparently random motion of macromolecules could be governed by non-random dynamics that are detectable only by their relative motion. Our analytical approach should advance broad understanding of diffusion processes of fundamental relevance.

  5. Dosimetric and motion analysis of margin-intensive therapy by stereotactic ablative radiotherapy for resectable pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Heinzerling John H

    2011-10-01

    Full Text Available Abstract Background The retroperitoneal margin is a common site of positive surgical margins in patients with resectable pancreatic cancer. Preoperative margin-intensive therapy (MIT involves delivery of a single high dose of ablative radiotherapy (30 Gy focused on this surgically inaccessible margin, utilizing stereotactic techniques in an effort to reduce local failure following surgery. In this study, we investigated the motion of regional organs at risk (OAR utilizing 4DCT, evaluated the dosimetric effects of abdominal compression (AC to reduce regional motion, and compared various planning techniques to optimize MIT. Methods 10 patients were evaluated with 4DCT scans. All 10 patients had scans using AC and seven of the 10 patients had scans both with and without AC. The peak respiratory abdominal organ and major vessel centroid excursion was measured. A "sub-GTV" region was defined by a radiation oncologist and surgical oncologist encompassing the retroperitoneal margin typically lateral and posterior to the superior mesenteric artery (SMA, and a 3-5 mm margin was added to constitute the PTV. Identical 3D non-coplanar SABR (3DSABR plans were designed for the average compression and non-compression scans. Compression scans were planned with 3DSABR, coplanar IMRT (IMRT, and Cyberknife (CK planning techniques. Dose volume analysis was undertaken for various endpoints, comparing OAR doses with and without AC and for different planning methods. Results The mean PTV size was 20.2 cm3. Regional vessel motion of the SMA, celiac trunk, and renal vessels was small ( 5 mm, so AC has been used in all patients enrolled thus far. AC did not significantly increase OAR dose including the stomach and traverse colon. There were several statistically significant differences in the doses to OARs as a function of the type of planning modality used. Conclusions AC does not significantly reduce the limited motion of structures in close proximity to the MIT target

  6. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kai, E-mail: kai-lin@northwestern.edu; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-10-15

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s{sup −1}) and SRc-sys (−0.64 ± 0.27s{sup −1}) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  7. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    International Nuclear Information System (INIS)

    Lin, Kai; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-01-01

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s −1 ) and SRc-sys (−0.64 ± 0.27s −1 ) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  8. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  9. Orbital motion in strongly perturbed environments applications to asteroid, comet and planetary satellite orbiters

    CERN Document Server

    Scheeres, Daniel J

    2012-01-01

    The proposed book will provide a detailed, technical introduction to the analysis of orbital motion in strongly perturbed environments, focusing on motion about small Solar System bodies, such as comets and asteroids. The author shows why such small bodies are of interest and why they can be used as a motivation for the general analysis of orbital mechanics. He shows how it is possible to model the small body environment, including specialised cases such as those of binary asteroids, comets and ‘rubble piles’, and how the fundamental equations of motion are derived. The properties of the various solutions to the equations of motion are described and the methods of analysis and their application are discussed. Both ballistic motion and powered motion on and about small bodies are considered and case studies for different small body missions are presented. The author concludes his comprehensive treatment with a discussion of the mechanics of multi-body small body systems and a review of advanced topics and ...

  10. Ground motion input in seismic evaluation studies: impacts on risk assessment of uniform hazard spectra

    International Nuclear Information System (INIS)

    Wu, S.C.; Sewell, R.T.

    1996-07-01

    Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion does not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses

  11. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  12. On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator

    International Nuclear Information System (INIS)

    Guo, Yu; Luo, Albert C.J.

    2015-01-01

    In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.

  13. ELIMINATING CONSERVATISM IN THE PIPING SYSTEM ANALYSIS PROCESS THROUGH APPLICATION OF A SUITE OF LOCALLY APPROPRIATE SEISMIC INPUT MOTIONS

    International Nuclear Information System (INIS)

    Crawford, Anthony L.; Spears, Robert E.; Russell, Mark J.

    2009-01-01

    Seismic analysis is of great importance in the evaluation of nuclear systems due to the heavy influence such loading has on their designs. Current Department of Energy seismic analysis techniques for a nuclear safety-related piping system typically involve application of a single conservative seismic input applied to the entire system (1). A significant portion of this conservatism comes from the need to address the overlapping uncertainties in the seismic input and in the building response that transmits that input motion to the piping system. The approach presented in this paper addresses these two sources of uncertainty through the application of a suite of 32 input motions whose collective performance addresses the total uncertainty while each individual motion represents a single variation of it. It represents an extension of the soil-structure interaction analysis methodology of SEI/ASCE 43-05 (2) from the structure to individual piping components. Because this approach is computationally intensive, automation and other measures have been developed to make such an analysis efficient. These measures are detailed in this paper

  14. State of the Art in Input Ground Motions for Seismic Fragility and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Han; Choi, In Kil; Kim, Min Kyu [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of a Seismic Probabilistic Safety Analysis (SPSA) is to determine the probability distribution of core damage due to the potential effects of earthquakes. The SPSA is performed based on four steps, a seismic hazard analysis, a component fragility evaluation, a plant system and accident sequence analysis, and a consequence analysis. There are very different spectrum shapes in every ground motions. The structural response and the seismic load applied to equipment are greatly influenced by a spectral shape of the input ground motion. Therefore the input ground motion need to be determined under the same assumption in risk calculation. Several technic for the determination of input ground motions has developed and reviewed in this study. In this research, the methodologies of the determination of input ground motion for the seismic risk assessment are reviewed and discussed. It has developed to reduce the uncertainty in fragility curves and to remove the conservatism in risk values.

  15. The analysis of influence of field of co-rotation on motion of submicronic particles in the Earth's plasmasphere

    Science.gov (United States)

    Yakovlev, A. B.

    2018-05-01

    The analysis of the motion of micro-particles with radii of several dozens of nanometers in the Earth's plasmasphere has confirmed that the earlier proved statement about conservation of the form for an orbit of a particle with constant electric charge which moves in superposition of the central gravitational field and the field of a magnetic dipole is true also for the case of a quasi-equilibrium electric charge. For a wide range of altitudes and the sizes of micro-particles other forces that act on the charged grain make considerably smaller impact on its motion. On the basis of numerical simulation it has been shown that for motion in an equatorial plane the field of co-rotation leads to very small monotonous growth of the semimajor axis and an orbit eccentricity, and for not-equatorial orbits there are fluctuations of the semimajor axis, an eccentricity and an inclination of an orbit with the period that considerably exceeds the period of orbital motion. In this paper, on the basis of the analysis of the canonical equations of the motion of a micro-particle in superposition of the central gravitational field and the field of co-rotation the explanation of the time dependences obtained numerically for the basic characteristics of an orbit of a micro-particle is proposed.

  16. Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

    Directory of Open Access Journals (Sweden)

    B.W. Nam

    2017-09-01

    Full Text Available The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

  17. Context analysis : sky, water and motion

    NARCIS (Netherlands)

    Javanbakhti, S.; Zinger, S.; With, de P.H.N.

    2011-01-01

    Interpreting the events present in the video is a complex task, and the same gesture or motion can be understood in several ways depending on the context of the event and/or the scene. Therefore the context of the scene can contribute to the semantic understanding of the video. In this paper, we

  18. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  19. Development of a mechanical model to analysis motion of standing up from the sitting position

    Directory of Open Access Journals (Sweden)

    Kasım Serbest

    2013-08-01

    Full Text Available In this study, a human body has been composed as a 6 rigid-open loop-body model which is consisted of a leg, a foot, a thigh, a trunk, an arm and a fore arm. To determine the anthropometric characteristics of the bodies has been benefited from anthropometric models and the computer software. The movements of the subject markers placed on body was viewed with a video camera in order to get location data of joints and the digitization process was made. It was computed the angular displacement, angular velocity and angular acceleration of the joints using by MATLAB (7.6.0. The obtained data was used to actuate inverse dynamics model which is created by SimMechanics (2.7.1.Motion of standing up from the sitting position was simulated by using SimMechanics software. It was compared ground reaction force calculated by SimMechanics with ground reaction force measured by force platform. This study was also shown that SimMechanics software which is developed to analyse mechanical systems in real dimensions dynamically can be used for human motion analysis. Furthermore, the simulating process has been useful to explain kinetic behaviour of the human movement.

  20. A SOFTWARE TOOL FOR EXPERIMENTAL STUDY LEAP MOTION

    OpenAIRE

    Georgi Krastev; Magdalena Andreeva

    2015-01-01

    The paper aims to present computer application that illustrates Leap Motion controller’s abilities. It is a peripheral and software for PC, which enables control by natural user interface based on gestures. The publication also describes how the controller works and its main advantages/disadvantages. Some apps using leap motion controller are discussed.

  1. Motion contrast using optical coherence tomography

    Science.gov (United States)

    Fingler, Jeffrey Paul

    Diagnosis of ophthalmic diseases like age-related macular degeneration is very important for treatment of the disease as well as the development of future treatments. Optical coherence tomography (OCT) is an optical interference technique which can measure the three-dimensional structural information of the reflecting layers within a sample. In retinal imaging, OCT is used as the primary diagnostic tool for structural abnormalities such as retinal holes and detachments. The contrast within the images of this technique is based upon reflectivity changes from different regions of the retina. This thesis demonstrates the developments of methods used to produce additional contrast to the structural OCT images based on the tiny fluctuations of motion experienced by the mobile scatterers within a sample. Motion contrast was observed for motions smaller than 50 nm in images of a variety of samples. Initial contrast method demonstrations used Brownian motion differences to separate regions of a mobile Intralipid solution from a static agarose gel, chosen in concentration to minimize reflectivity contrast. Zebrafish embryos in the range of 3-4 days post fertilization were imaged using several motion contrast methods to determine the capabilities of identifying regions of vascular flow. Vasculature identification was demonstrated in zebrafish for blood vessels of all orientations as small as 10 microns in diameter. Mouse retinal imaging utilized the same motion contrast methods to determine the contrast capabilities for motions associated with vasculature within the retina. Improved contrast imaging techniques demonstrated comparable images to fluorescein angiography, the gold standard of retinal vascular imaging. Future studies can improve the demonstrated contrast analysis techniques and apply them towards human retinal motion contrast imaging for ophthalmic diagnostic purposes.

  2. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Jiaying Du

    2018-04-01

    Full Text Available Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  3. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    Science.gov (United States)

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  4. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  5. In vivo intraoperative hypoglossal nerve stimulation for quantitative tongue motion analysis

    NARCIS (Netherlands)

    van Alphen, M.J.A.; Eskes, M.; Smeele, L.E.; Balm, A.J.M.; Balm, Alfonsus Jacobus Maria; van der Heijden, Ferdinand

    2017-01-01

    This is the first study quantitatively measuring tongue motion in 3D after in vivo intraoperative neurostimulation of the hypoglossal nerve and its branches during a neck dissection procedure. Firstly, this study is performed to show whether this set-up is suitable for innervating different muscles

  6. Evaluation of POE and instructor-led problem-solving approaches integrated into force and motion lecture classes using a model analysis technique

    International Nuclear Information System (INIS)

    Rakkapao, S; Pengpan, T; Srikeaw, S; Prasitpong, S

    2014-01-01

    This study aims to investigate the use of the predict–observe–explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials. (paper)

  7. Time-motion analysis as a novel approach for evaluating the impact of environmental heat exposure on labor loss in agriculture workers

    DEFF Research Database (Denmark)

    Ioannou, Leonidas G; Tsoutsoubi, Lydia; Samoutis, George

    2017-01-01

    .6% of the variance in WTL (p manager's WTL estimate was too optimistic (p Time-motion analysis accurately assesses WTL, evaluating every second spent by each worker during every work shift......Introduction: In this study we (i) introduced time-motion analysis for assessing the impact of workplace heat on the work shift time spent doing labor (WTL) of grape-picking workers, (ii) examined whether seasonal environmental differences can influence their WTL, and (iii) investigated whether...... their WTL can be assessed by monitoring productivity or the vineyard manager's estimate of WTL. Methods: Seven grape-picking workers were assessed during the summer and/or autumn via video throughout four work shifts. Results: Air temperature (26.8 ± 4.8°C), wet bulb globe temperature (WBGT; 25.2 ± 4.1°C...

  8. Necessary conditions for tumbling in the rotational motion

    Science.gov (United States)

    Carrera, Danny H. Z.; Weber, Hans I.

    2012-11-01

    The goal of this work is the investigation of the necessary conditions for the possible existence of tumbling in rotational motion of rigid bodies. In a stable spinning satellite, tumbling may occur by sufficient strong action of external impulses, when the conical movement characteristic of the stable attitude is de-characterized. For this purpose a methodology is chosen to simplify the study of rotational motions with great amplitude, for example free bodies in space, allowing an extension of the analysis to non-conservative systems. In the case of a satellite in space, the projection of the angular velocity along the principal axes of inertia must be known, defining completely the initial conditions of motion for stability investigations. In this paper, the coordinate systems are established according to the initial condition in order to allow a simple analytical work on the equations of motion. Also it will be proposed the definition of a parameter, calling it tumbling coefficient, to measure the intensity of the tumbling and the amplitude of the motion when crossing limits of stability in the concept of Lyapunov. Tumbling in the motion of bodies in space is not possible when this coefficient is positive. Magnus Triangle representation will be used to represent the geometry of the body, establishing regions of stability/instability for possible initial conditions of motion. In the study of nonconservative systems for an oblate body, one sufficient condition will be enough to assure damped motion, and this condition is checked for a motion damped by viscous torques. This paper seeks to highlight the physical understanding of the phenomena and the influence of various parameters that are important in the process.

  9. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  10. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  11. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  12. Analysis of the cardiac motion in myocardial infarction by the ECG-synchronized CT

    International Nuclear Information System (INIS)

    Watanabe, Shigeru; Shimizu, Masahiko; Yoshida, Hideo; Morooka, Nobuhiro; Shukuya, Masaki

    1981-01-01

    The cardiac motion in patients with myocardial infarction was analyzed by the ECG-synchronized computed tomography (CT). For ECG synchronization, the ECG gating method and the data sorting method were used. By the ECG gating method, the gated cardiac images during 0.1 msec intervals at end-diastolic and the end-systolic phases were obtained. By the data sorting method, phasic CT images were reconstructed retrospectively by selecting appropriate data from a series of consecutive scans taken with simultaneous continuous ECG recordings. Six normal subjects and eight patients with myocardial infarction were studied by the ECG gating method, and 14 normal subjects and 25 patients with myocardial infarction were studied by the data sorting method. The end-diastolic and the end-systolic pictures at mid left ventricular level were superimposed and the cardiac borders were traced for the analysis (Fig. 4). Then the cardiac cross-sectional areas at each cardiac phase (40 msec) were calculated, and a cardiac area curve was obtained by plotting them consecutively. The cross-sectional images were divided into right anterior, right posterior, left anterior and left posterior segments. Cardiac area curves of the each segment were also obtained for further analysis. From these curves, the changing ratio of cardiac areas (maximum area - minimum area/maximum area) and the maximum area velocity in systole and diastole were calculated. On the images and the cardiac area curves in myocardial infarction patients, abnormal myocardial movements such as partial akinesis, hypokinesis or paradoxical movement were apparent asd the area of abnormal motions corresponded well with the location of infarction determined by ECG, RI scanning and angiography. A decrease of the changing ratio and the velocity in the infarction area were shown (Fig. 6, 7) and the functional disturbances were suggested during not only systole but diastole also. (author)

  13. Principal component analysis-based imaging angle determination for 3D motion monitoring using single-slice on-board imaging.

    Science.gov (United States)

    Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning

    2018-04-10

    Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using

  14. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Directory of Open Access Journals (Sweden)

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  15. MR-assisted PET Motion Correction for eurological Studies in an Integrated MR-PET Scanner

    Science.gov (United States)

    Catana, Ciprian; Benner, Thomas; van der Kouwe, Andre; Byars, Larry; Hamm, Michael; Chonde, Daniel B.; Michel, Christian J.; El Fakhri, Georges; Schmand, Matthias; Sorensen, A. Gregory

    2011-01-01

    Head motion is difficult to avoid in long PET studies, degrading the image quality and offsetting the benefit of using a high-resolution scanner. As a potential solution in an integrated MR-PET scanner, the simultaneously acquired MR data can be used for motion tracking. In this work, a novel data processing and rigid-body motion correction (MC) algorithm for the MR-compatible BrainPET prototype scanner is described and proof-of-principle phantom and human studies are presented. Methods To account for motion, the PET prompts and randoms coincidences as well as the sensitivity data are processed in the line or response (LOR) space according to the MR-derived motion estimates. After sinogram space rebinning, the corrected data are summed and the motion corrected PET volume is reconstructed from these sinograms and the attenuation and scatter sinograms in the reference position. The accuracy of the MC algorithm was first tested using a Hoffman phantom. Next, human volunteer studies were performed and motion estimates were obtained using two high temporal resolution MR-based motion tracking techniques. Results After accounting for the physical mismatch between the two scanners, perfectly co-registered MR and PET volumes are reproducibly obtained. The MR output gates inserted in to the PET list-mode allow the temporal correlation of the two data sets within 0.2 s. The Hoffman phantom volume reconstructed processing the PET data in the LOR space was similar to the one obtained processing the data using the standard methods and applying the MC in the image space, demonstrating the quantitative accuracy of the novel MC algorithm. In human volunteer studies, motion estimates were obtained from echo planar imaging and cloverleaf navigator sequences every 3 seconds and 20 ms, respectively. Substantially improved PET images with excellent delineation of specific brain structures were obtained after applying the MC using these MR-based estimates. Conclusion A novel MR-based MC

  16. Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2016-05-01

    Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.

  17. Teasing Apart Complex Motions using VideoPoint

    Science.gov (United States)

    Fischer, Mark

    2002-10-01

    Using video analysis software such as VideoPoint, it is possible to explore the physics of any phenomenon that can be captured on videotape. The good news is that complex motions can be filmed and analyzed. The bad news is that the motions can become very complex very quickly. An example of such a complicated motion, the 2-dimensional motion of an object as filmed by a camera that is moving and rotating in the same plane will be discussed. Methods for extracting the desired object motion will be given as well as suggestions for shooting more easily analyzable video clips.

  18. A Common Framework for the Analysis of Complex Motion? Standstill and Capture Illusions

    Directory of Open Access Journals (Sweden)

    Max Reinhard Dürsteler

    2014-12-01

    Full Text Available A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e. modulation of luminance, color, depth, etc.. When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures and motion transparency (the ability to perceive motion of both surfaces simultaneously. Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth, transitions between their colors. This suggests that in respect to color motion perception the complex motions’ pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual

  19. State of the art in the calculation of a reference motion for design purposes. Modification of bedrock motion by superficial, young deposit

    International Nuclear Information System (INIS)

    Mohammadioun, B.

    1986-10-01

    Engineering sismology is aimed, among others, at predicting a strong reference motion for the site of a given critical structure to be used in the design of said installation. A common practice, when modal analysis is performed in view of the anti-seismic design of structures, is to use, as the input motion, a set of spectra with progressive values of damping. Such a practice is discussed. Parallel to those empirical predictions, attention has been drawn on strong motion studies. Progress has been made in the theoretical simulation of seismic sources and wave propagation. Reliability of inverse problems relating to type of rocks is discussed. Attempts of solutions are recalled

  20. Analysis of nematode motion using an improved light-scatter based system.

    Directory of Open Access Journals (Sweden)

    Chuck S Nutting

    2015-02-01

    Full Text Available The detailed assessment of nematode activity and viability still remains a relatively undeveloped area of biological and medical research. Computer-based approaches to assessing the motility of larger nematode stages have been developed, yet these lack the capability to detect and analyze the more subtle and important characteristics of the motion of nematodes. There is currently a need to improved methods of assessing the viability and health of parasitic worms.We describe here a system that converts the motion of nematodes through a light-scattering system into an electrical waveform, and allows for reproducible, and wholly non-subjective, assessment of alterations in motion, as well as estimation of the number of nematode worms of different forms and sizes. Here we have used Brugia sp. microfilariae (L1, infective larvae (L3 and adults, together with the free-living nematode Caenorhabditis elegans.The motion of worms in a small (200 ul volume can be detected, with the presence of immotile worms not interfering with the readings at practical levels (up to at least 500 L1 /200 ul. Alterations in the frequency of parasite movement following the application of the anti-parasitic drugs, (chloroquine and imatinib; the anti-filarial effect of the latter agent is the first demonstrated here for the first time. This system can also be used to estimate the number of parasites, and shortens the time required to estimate parasites numbers, and eliminates the need for microscopes and trained technicians to provide an estimate of microfilarial sample sizes up to 1000 parasites/ml. Alterations in the form of motion of the worms can also be depicted.This new instrument, named a "WiggleTron", offers exciting opportunities to further study nematode biology and to aid drug discovery, as well as contributing to a rapid estimate of parasite numbers in various biological samples.

  1. Scaling earthquake ground motions for performance-based assessment of buildings

    Science.gov (United States)

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.; Hamburger, R.O.

    2011-01-01

    The impact of alternate ground-motion scaling procedures on the distribution of displacement responses in simplified structural systems is investigated. Recommendations are provided for selecting and scaling ground motions for performance-based assessment of buildings. Four scaling methods are studied, namely, (1)geometric-mean scaling of pairs of ground motions, (2)spectrum matching of ground motions, (3)first-mode-period scaling to a target spectral acceleration, and (4)scaling of ground motions per the distribution of spectral demands. Data were developed by nonlinear response-history analysis of a large family of nonlinear single degree-of-freedom (SDOF) oscillators that could represent fixed-base and base-isolated structures. The advantages and disadvantages of each scaling method are discussed. The relationship between spectral shape and a ground-motion randomness parameter, is presented. A scaling procedure that explicitly considers spectral shape is proposed. ?? 2011 American Society of Civil Engineers.

  2. Ground Motion Prediction Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  3. Do lower vertebrates suffer from motion sickness?

    Science.gov (United States)

    Lychakov, Dmitri

    The poster presents literature data and results of the author’s studies with the goal to find out whether the lower animals are susceptible to motion sickness (Lychakov, 2012). In our studies, fish and amphibians were tested for 2 h and more by using a rotating device (f = 0.24 Hz, a _{centrifugal} = 0.144 g) and a parallel swing (f = 0.2 Hz, a _{horizontal} = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any characteristic reactions of the motion sickness (sopite syndrome, prodromal preparatory behavior, vomiting). At the same time, in toads there appeared characteristic stress reactions (escape response, an increase of the number of urinations, inhibition of appetite), as well as some other reactions not associated with motion sickness (regular head movements, eye retractions). In trout fry the used stimulation promoted division of the individuals into the groups differing by locomotor reaction to stress, as well as the individuals with the well-expressed compensatory reaction that we called the otolithotropic reaction. Analysis of results obtained by other authors confirms our conclusions. Thus, the lower vertebrates, unlike mammals, are immune to motion sickness either under the land conditions or under conditions of weightlessness. On the basis of available experimental data and theoretical concepts of mechanisms of development the motion sickness, formulated in several hypotheses (mismatch hypothesis, Traisman‘ s hypothesis, resonance hypothesis), there presented the synthetic hypothesis of motion sickness that has the conceptual significance. According to the hypothesis, the unusual stimulation producing sensor-motor or sensor-sensor conflict or an action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by CNS as poisoning and causes the corresponding reactions. The motion sickness actually is a byproduct of technical evolution. It is suggested that in the lower vertebrates, unlike mammals

  4. Preliminary Studies for a CBCT Imaging Protocol for Offline Organ Motion Analysis: Registration Software Validation and CTDI Measurements

    International Nuclear Information System (INIS)

    Falco, Maria Daniela; Fontanarosa, Davide; Miceli, Roberto; Carosi, Alessandra; Santoni, Riccardo; D'Andrea, Marco

    2011-01-01

    Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index has been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4 o . For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22 o ). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be

  5. Numerical analysis of the motion of a suspended charged particle in multi-phase flow. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-khalek, M M [Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The motion of a suspended charged particle in a two component viscous fluid through two infinite parallel plates was studied. The motion takes place under constant magnetic field normal to the plane of the motion. The effect of some parameters as particle volume, fluid density, viscosity of the fluid, and the magnetic force used on the motion were investigated. The particle is assumed moving initially from the midpoint of the channel with a velocity equal to the velocity of the fluid. The trajectory of solid spherical suspended charged particle is calculated by integrating the equations of motion of a single particle. The present simulation requires some empirical parameters concerning the collision of the particles with the wall. The differential equations of motion were numerically solved by Runge-Kutta method. Some conclusions about the path lines were deduced. 5 figs.

  6. Inter-observer reliability assessments in time motion studies: the foundation for meaningful clinical workflow analysis.

    Science.gov (United States)

    Lopetegui, Marcelo A; Bai, Shasha; Yen, Po-Yin; Lai, Albert; Embi, Peter; Payne, Philip R O

    2013-01-01

    Understanding clinical workflow is critical for researchers and healthcare decision makers. Current workflow studies tend to oversimplify and underrepresent the complexity of clinical workflow. Continuous observation time motion studies (TMS) could enhance clinical workflow studies by providing rich quantitative data required for in-depth workflow analyses. However, methodological inconsistencies have been reported in continuous observation TMS, potentially reducing the validity of TMS' data and limiting their contribution to the general state of knowledge. We believe that a cornerstone in standardizing TMS is to ensure the reliability of the human observers. In this manuscript we review the approaches for inter-observer reliability assessment (IORA) in a representative sample of TMS focusing on clinical workflow. We found that IORA is an uncommon practice, inconsistently reported, and often uses methods that provide partial and overestimated measures of agreement. Since a comprehensive approach to IORA is yet to be proposed and validated, we provide initial recommendations for IORA reporting in continuous observation TMS.

  7. Relationships between clubshaft motions and clubface orientation during the golf swing.

    Science.gov (United States)

    Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi

    2017-09-01

    Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.

  8. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    Science.gov (United States)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  9. Position-Dependent Cardiovascular Response and Time-Motion Analysis During Training Drills and Friendly Matches in Elite Male Basketball Players.

    Science.gov (United States)

    Torres-Ronda, Lorena; Ric, Angel; Llabres-Torres, Ivan; de Las Heras, Bernat; Schelling I Del Alcazar, Xavi

    2016-01-01

    The purpose of this study was to measure differences in the cardiovascular workload (heart rate [HR]) and time-motion demands between positional groups, during numerous basketball training drills, and compare the results with in-game competition demands. A convenience sample of 14 top-level professional basketball players from the same club (Spanish First Division, ACB) participated in the study. A total of 146 basketball exercises per player (performed over an 8-week period in 32 team training sessions throughout the competitive season) and 7 friendly matches (FM) played during the preparatory phase were analyzed. The results reveal that HRavg and HRpeak were the highest in FM (158 ± 10; 198 ± 9 b · min(-1), respectively). Time-motion analysis showed 1v1 to be the most demanding drill (53 ± 8 and 46 ± 12 movements per minute for full and half court, respectively). During FM, players performed 33 ± 7 movements per minute. Positional differences exist for both HR and time-motion demands, ranging from moderate to very large for all basketball drills compared with FM. Constraints such as number of players, court size, work-to-rest ratios, and coach intervention are key factors influencing cardiovascular responses and time-motion demands during basketball training sessions. These results demonstrate that systematic monitoring of the physical demands and physiological responses during training and competition can inform and potentially improve coaching strategy, basketball-specific training drills, and ultimately, match performance.

  10. Teaching motor skills by means of biomechanical analysis of the motion: the physiological basis and applied information technologies

    Directory of Open Access Journals (Sweden)

    Razuvanova A.V.

    2016-01-01

    Full Text Available The article proves the possibility of training athletes using motor skills on the basis of biomechanical analysis of movements with application of information technologies. Motion Tracking – digital single frame shooting photography – is proposed as a method for biomechanical analysis. The relevance of this method is conditioned by the results of the study of a repulsion phase in the performing of the standing jump by athletes of different qualifications. The conclusion about the importance of an optimal model of a jump based on biomechanical analysis is given, and the formation of athletes’ skills, using information technologies and the principle of urgent information, is discussed.

  11. Pilot study on real-time motion detection in UAS video data by human observer and image exploitation algorithm

    Science.gov (United States)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Voit, Michael; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2017-05-01

    Real-time motion video analysis is a challenging and exhausting task for the human observer, particularly in safety and security critical domains. Hence, customized video analysis systems providing functions for the analysis of subtasks like motion detection or target tracking are welcome. While such automated algorithms relieve the human operators from performing basic subtasks, they impose additional interaction duties on them. Prior work shows that, e.g., for interaction with target tracking algorithms, a gaze-enhanced user interface is beneficial. In this contribution, we present an investigation on interaction with an independent motion detection (IDM) algorithm. Besides identifying an appropriate interaction technique for the user interface - again, we compare gaze-based and traditional mouse-based interaction - we focus on the benefit an IDM algorithm might provide for an UAS video analyst. In a pilot study, we exposed ten subjects to the task of moving target detection in UAS video data twice, once performing with automatic support, once performing without it. We compare the two conditions considering performance in terms of effectiveness (correct target selections). Additionally, we report perceived workload (measured using the NASA-TLX questionnaire) and user satisfaction (measured using the ISO 9241-411 questionnaire). The results show that a combination of gaze input and automated IDM algorithm provides valuable support for the human observer, increasing the number of correct target selections up to 62% and reducing workload at the same time.

  12. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    Science.gov (United States)

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  13. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  14. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  15. Cost minimization analysis of different growth hormone pen devices based on time-and-motion simulations

    Directory of Open Access Journals (Sweden)

    Kim Jaewhan

    2010-04-01

    Full Text Available Abstract Background Numerous pen devices are available to administer recombinant Human Growth Hormone (rhGH, and both patients and health plans have varying issues to consider when selecting a particular product and device for daily use. Therefore, the present study utilized multi-dimensional product analysis to assess potential time involvement, required weekly administration steps, and utilization costs relative to daily rhGH administration. Methods Study objectives were to conduct 1 Time-and-Motion (TM simulations in a randomized block design that allowed time and steps comparisons related to rhGH preparation, administration and storage, and 2 a Cost Minimization Analysis (CMA relative to opportunity and supply costs. Nurses naïve to rhGH administration and devices were recruited to evaluate four rhGH pen devices (2 in liquid form, 2 requiring reconstitution via TM simulations. Five videotaped and timed trials for each product were evaluated based on: 1 Learning (initial use instructions, 2 Preparation (arrange device for use, 3 Administration (actual simulation manikin injection, and 4 Storage (maintain product viability between doses, in addition to assessment of steps required for weekly use. The CMA applied micro-costing techniques related to opportunity costs for caregivers (categorized as wages, non-drug medical supplies, and drug product costs. Results Norditropin® NordiFlex and Norditropin® NordiPen (NNF and NNP, Novo Nordisk, Inc., Bagsværd, Denmark took less weekly Total Time (p ® Pen (GTP, Pfizer, Inc, New York, New York or HumatroPen® (HTP, Eli Lilly and Company, Indianapolis, Indiana. Time savings were directly related to differences in new package Preparation times (NNF (1.35 minutes, NNP (2.48 minutes GTP (4.11 minutes, HTP (8.64 minutes, p Conclusions Time-and-motion simulation data used to support a micro-cost analysis demonstrated that the pen device with the greater time demand has highest net costs.

  16. Method through motion:structuring theory and practice for motion graphics in spatial contexts

    OpenAIRE

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design...

  17. MR-assisted PET motion correction in simultaneous PET/MRI studies of dementia subjects.

    Science.gov (United States)

    Chen, Kevin T; Salcedo, Stephanie; Chonde, Daniel B; Izquierdo-Garcia, David; Levine, Michael A; Price, Julie C; Dickerson, Bradford C; Catana, Ciprian

    2018-03-08

    Subject motion in positron emission tomography (PET) studies leads to image blurring and artifacts; simultaneously acquired magnetic resonance imaging (MRI) data provides a means for motion correction (MC) in integrated PET/MRI scanners. To assess the effect of realistic head motion and MR-based MC on static [ 18 F]-fluorodeoxyglucose (FDG) PET images in dementia patients. Observational study. Thirty dementia subjects were recruited. 3T hybrid PET/MR scanner where EPI-based and T 1 -weighted sequences were acquired simultaneously with the PET data. Head motion parameters estimated from high temporal resolution MR volumes were used for PET MC. The MR-based MC method was compared to PET frame-based MC methods in which motion parameters were estimated by coregistering 5-minute frames before and after accounting for the attenuation-emission mismatch. The relative changes in standardized uptake value ratios (SUVRs) between the PET volumes processed with the various MC methods, without MC, and the PET volumes with simulated motion were compared in relevant brain regions. The absolute value of the regional SUVR relative change was assessed with pairwise paired t-tests testing at the P = 0.05 level, comparing the values obtained through different MR-based MC processing methods as well as across different motion groups. The intraregion voxelwise variability of regional SUVRs obtained through different MR-based MC processing methods was also assessed with pairwise paired t-tests testing at the P = 0.05 level. MC had a greater impact on PET data quantification in subjects with larger amplitude motion (higher than 18% in the medial orbitofrontal cortex) and greater changes were generally observed for the MR-based MC method compared to the frame-based methods. Furthermore, a mean relative change of ∼4% was observed after MC even at the group level, suggesting the importance of routinely applying this correction. The intraregion voxelwise variability of regional SUVRs

  18. Reliable 5-min real-time MR technique for left-ventricular-wall motion analysis

    International Nuclear Information System (INIS)

    Katoh, Marcus; Spuentrup, Elmar; Guenther, Rolf W.; Buecker, Arno; Kuehl, Harald P.; Lipke, Claudia S.A.

    2007-01-01

    The aim of this study was to investigate the value of a real-time magnetic resonance imaging (MRI) approach for the assessment of left-ventricular-wall motion in patients with insufficient transthoracic echocardiography in terms of accuracy and temporal expenditure. Twenty-five consecutive patients were examined on a 1.5-Tesla whole-body MR system (ACS-NT, Philips Medical Systems, Best, NL) using a real-time and ECG-gated (the current gold standard) steady-state free-precession (SSFP) sequence. Wall motion was analyzed by three observers by consensus interpretation. In addition, the preparation, scanning, and overall examination times were measured. The assessment of the wall motion demonstrated a close agreement between the two modalities resulting in a mean κ coefficient of 0.8. At the same time, each stage of the examination was significantly shortened using the real-time MR approach. Real-time imaging allows for accurate assessment of left-ventricular-wall motion with the added benefit of decreased examination time. Therefore, it may serve as a cost-efficient alternative in patients with insufficient echocardiography. (orig.)

  19. Hybrid Broadband Ground-Motion Simulation Using Scenario Earthquakes for the Istanbul Area

    KAUST Repository

    Reshi, Owais A.

    2016-04-13

    Seismic design, analysis and retrofitting of structures demand an intensive assessment of potential ground motions in seismically active regions. Peak ground motions and frequency content of seismic excitations effectively influence the behavior of structures. In regions of sparse ground motion records, ground-motion simulations provide the synthetic seismic records, which not only provide insight into the mechanisms of earthquakes but also help in improving some aspects of earthquake engineering. Broadband ground-motion simulation methods typically utilize physics-based modeling of source and path effects at low frequencies coupled with high frequency semi-stochastic methods. I apply the hybrid simulation method by Mai et al. (2010) to model several scenario earthquakes in the Marmara Sea, an area of high seismic hazard. Simulated ground motions were generated at 75 stations using systematically calibrated model parameters. The region-specific source, path and site model parameters were calibrated by simulating a w4.1 Marmara Sea earthquake that occurred on November 16, 2015 on the fault segment in the vicinity of Istanbul. The calibrated parameters were then used to simulate the scenario earthquakes with magnitudes w6.0, w6.25, w6.5 and w6.75 over the Marmara Sea fault. Effects of fault geometry, hypocenter location, slip distribution and rupture propagation were thoroughly studied to understand variability in ground motions. A rigorous analysis of waveforms reveal that these parameters are critical for determining the behavior of ground motions especially in the near-field. Comparison of simulated ground motion intensities with ground-motion prediction quations indicates the need of development of the region-specific ground-motion prediction equation for Istanbul area. Peak ground motion maps are presented to illustrate the shaking in the Istanbul area due to the scenario earthquakes. The southern part of Istanbul including Princes Islands show high amplitudes

  20. Large-scale motions in the universe: a review

    International Nuclear Information System (INIS)

    Burstein, D.

    1990-01-01

    The expansion of the universe can be retarded in localised regions within the universe both by the presence of gravity and by non-gravitational motions generated in the post-recombination universe. The motions of galaxies thus generated are called 'peculiar motions', and the amplitudes, size scales and coherence of these peculiar motions are among the most direct records of the structure of the universe. As such, measurements of these properties of the present-day universe provide some of the severest tests of cosmological theories. This is a review of the current evidence for large-scale motions of galaxies out to a distance of ∼5000 km s -1 (in an expanding universe, distance is proportional to radial velocity). 'Large-scale' in this context refers to motions that are correlated over size scales larger than the typical sizes of groups of galaxies, up to and including the size of the volume surveyed. To orient the reader into this relatively new field of study, a short modern history is given together with an explanation of the terminology. Careful consideration is given to the data used to measure the distances, and hence the peculiar motions, of galaxies. The evidence for large-scale motions is presented in a graphical fashion, using only the most reliable data for galaxies spanning a wide range in optical properties and over the complete range of galactic environments. The kinds of systematic errors that can affect this analysis are discussed, and the reliability of these motions is assessed. The predictions of two models of large-scale motion are compared to the observations, and special emphasis is placed on those motions in which our own Galaxy directly partakes. (author)

  1. The effect of dynamic femoroacetabular impingement on pubic symphysis motion: a cadaveric study.

    Science.gov (United States)

    Birmingham, Patrick M; Kelly, Bryan T; Jacobs, Robert; McGrady, Linda; Wang, Mei

    2012-05-01

    A link between femoroacetabular impingement and athletic pubalgia has been reported clinically. One proposed origin of athletic pubalgia is secondary to repetitive loading of the pubic symphysis, leading to instability and parasymphyseal tendon and ligament injury. Hypothesis/ The purpose of this study was to investigate the effect of simulated femoral-based femoroacetabular impingement on rotational motion at the pubic symphysis. The authors hypothesize that the presence of a cam lesion leads to increased relative symphyseal motion. Controlled laboratory study. Twelve hips from 6 fresh-frozen human cadaveric pelvises were used to simulate cam-type femoroacetabular impingement. The hips were held in a custom jig and maximally internally rotated at 90° of flexion and neutral adduction. Three-dimensional motion of the pubic symphysis was measured by a motion-tracking system for 2 states: native and simulated cam. Load-displacement plots were generated between the internal rotational torque applied to the hip and the responding motion in 3 anatomic planes of the pubic symphysis. As the hip was internally rotated, the motion at the pubic symphysis increased proportionally with the degrees of the rotation as well as the applied torque measured at the distal femur for both states. The primary rotation of the symphysis was in the transverse plane and on average accounted for more than 60% of the total rotation. This primary motion caused the anterior aspect of the symphyseal joint to open or widen, whereas the posterior aspect narrowed. At the torque level of 18.0 N·m, the mean transverse rotation in degrees was 0.89° ± 0.35° for the native state and 1.20° ± 0.41° for cam state. The difference between cam and the native groups was statistically significant (P pubalgia.

  2. Three dimensional monocular human motion analysis in end-effector space

    DEFF Research Database (Denmark)

    Hauberg, Søren; Lapuyade, Jerome; Engell-Nørregård, Morten Pol

    2009-01-01

    In this paper, we present a novel approach to three dimensional human motion estimation from monocular video data. We employ a particle filter to perform the motion estimation. The novelty of the method lies in the choice of state space for the particle filter. Using a non-linear inverse kinemati...

  3. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    Science.gov (United States)

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  4. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  5. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  6. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  7. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  8. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  9. Inertial motion capture system for biomechanical analysis in pressure suits

    Science.gov (United States)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced

  10. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    Science.gov (United States)

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  11. Broad line and pulsed NMR study of molecular motion in furfuryl alcohol resins

    International Nuclear Information System (INIS)

    Glowinkowski, S.; Pajak, Z.

    1978-01-01

    Broad line and pulsed nuclear magnetic resonance studies are carried out on a number of furfuryl alcohol resins differentiated by viscosity. Proton NMR spectra and relaxation times T 1 and Tsub(1rho) are measured over a wide temperature range and the results are interpreted in terms of molecular motion. The marked decrease in second moment and existence of high temperature spin-lattice relaxation times minima are presumed to result from rotational motion of polymer chains. The relaxation processes at low temperature are believed to be due to rotational motion of methyl endgroup and paramagnetic centres. (author)

  12. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  13. AQUA-motion domain and metaphorization patterns in European Portuguese: AQUA-motion metaphor in AERO-motion and abstract domains

    Directory of Open Access Journals (Sweden)

    Hanna Jakubowicz Batoréo

    2016-03-01

    Full Text Available The AQUA-motion verbs – as studied by Majsak & Rahilina 2003 and 2007, Lander, Majsak & Rahilina [2005] 2008, 2012 and 2013, and Divjak & Lemmens 2007, and in European Portuguese (EP by Batoréo, 2007, 2008, 2009; Batoréo et al., 2007; Casadinho, 2007 – allow typically metaphorical uses, which we postulate can be organized in patterns. Our study shows that in European Portuguese there are two metaphorization patterns to be observed: (i AQUA-motion metaphor in AERO-motion domain and (ii AQUA-motion metaphor in abstract domain (e.g. abundance, arts, politics, etc.. In the first case, where the target domain of the metaphorization is the air, in EP we navigate through a crowd or we float in a waltz, whereas in the second, where it is abstract, we swim in money or in blood, and politicians navigate at sea or face floating currency in finances. In the present paper we survey the EP verbs of AQUA-motion metaphors in non-elicited data from electronically available language corpora (cf. Linguateca. In some cases comparisons are made with typologically diferent languages (as, e.g. Polish, cf. Prokofjeva’s 2007, Batoréo 2009.

  14. Analysis of the variability in ground-motion synthesis and inversion

    Science.gov (United States)

    Spudich, Paul A.; Cirella, Antonella; Scognamiglio, Laura; Tinti, Elisa

    2017-12-07

    has turned to the inclusion of theory errors in the inversion process. Yagi and Fukahata (2011) made an important contribution by presenting a method to estimate the uncertainties in predicted large-earthquake ground motions due to uncertainties in the Green’s functions. Here we derive their result and compare it with the results of other recent studies that look at theory errors in a Bayesian inversion context particularly those by Bodin and others (2012), Duputel and others (2012), Dettmer and others (2014), and Minson and others (2014).Notably, in all these studies, the estimates of theory error were obtained from theoretical considerations alone; none of the investigators actually measured Green’s function errors. Large earthquakes typically have aftershocks, which, if their rupture surfaces are physically small enough, can be considered point evaluations of the real Green’s functions of the Earth. Here we simulate smallaftershock ground motions with (erroneous) theoretical Green’s functions. Taking differences between aftershock ground motions and simulated motions to be the “theory error,” we derive a statistical model of the sources of discrepancies between the theoretical and real Green’s functions. We use this model with an extended frequency-domain version of the time-domain theory of Yagi and Fukahata (2011) to determine the expected variance 2 τ caused by Green’s function error in ground motions from a larger (nonpoint) earthquake that we seek to model.We also differ from the above-mentioned Bayesian inversions in our handling of the nonuniqueness problem of seismic inversion. We follow the philosophy of Segall and Du (1993), who, instead of looking for a best-fitting model, looked for slip models that answered specific questions about the earthquakes they studied. In their Bayesian inversions, they inductively derived a posterior probability-density function (PDF) for every model parameter. We instead seek to find two extremal rupture

  15. Analysis of intra-fraction prostate motion and derivation of duration-dependent margins for radiotherapy using real-time 4D ultrasound

    Directory of Open Access Journals (Sweden)

    Eric Pei Ping Pang

    2018-01-01

    Full Text Available Background and purpose: During radiotherapy, prostate motion changes over time. Quantifying and accounting for this motion is essential. This study aimed to assess intra-fraction prostate motion and derive duration-dependent planning margins for two treatment techniques. Material and methods: A four-dimension (4D transperineal ultrasound Clarity® system was used to track prostate motion. We analysed 1913 fractions from 60 patients undergoing volumetric-modulated arc therapy (VMAT to the prostate. The mean VMAT treatment duration was 3.4 min. Extended monitoring was conducted weekly to simulate motion during intensity-modulated radiation therapy (IMRT treatment (an additional seven minutes. A motion-time trend analysis was conducted and the mean intra-fraction motion between VMAT and IMRT treatments compared. Duration-dependent margins were calculated and anisotropic margins for VMAT and IMRT treatments were derived. Results: There were statistically significant differences in the mean intra-fraction motion between VMAT and the simulated IMRT duration in the inferior (0.1 mm versus 0.3 mm and posterior (−0.2 versus −0.4 mm directions respectively (p ≪ 0.01. An intra-fraction motion trend inferiorly and posteriorly was observed. The recommended minimum anisotropic margins are 1.7 mm/2.7 mm (superior/inferior; 0.8 mm (left/right, 1.7 mm/2.9 mm (anterior/posterior for VMAT treatments and 2.9 mm/4.3 mm (superior/inferior, 1.5 mm (left/right, 2.8 mm/4.8 mm (anterior/posterior for IMRT treatments. Smaller anisotropic margins were required for VMAT compared to IMRT (differences ranging from 1.2 to 1.6 mm superiorly/inferiorly, 0.7 mm laterally and 1.1–1.9 mm anteriorly/posteriorly. Conclusions: VMAT treatment is preferred over IMRT as prostate motion increases with time. Larger margins should be employed in the inferior and posterior directions for both treatment durations. Duration-dependent margins should

  16. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    images obtained during simulation by reducing the motion artifacts typically seen during CT imaging. An analysis of several patient breathing patterns with (audio instructions and visual feedback) and without training, indicated that breathing training improved the reproducibility of amplitude and/or frequency of patient breathing cycles. A phantom based study by superposition of sinusoidal motion of a 'simulated' tumor onto the initial beam aperture as formed by the multileaf collimator revealed that target dose measurements obtained with such a motion synchronized setup were equivalent to those delivered to a static target by a static beam. An attempt to acquire respiration synchronized (4D) CT images of a motion phantom and a patient also yielded a 4D CT data set with reduced motion artifacts. Respiratory gated and respiration synchronized radiotherapy are both viable approaches to account for respiratory motion during radiotherapy. While respiratory gated radiotherapy has been successfully implemented in some centers, several technical advances are required for clinical implementation of respiration synchronized radiotherapy. Future applicability of either of the above approaches as routine treatment procedures will be determined by their potential clinical gains over currently available methods

  17. Incremental value of regional wall motion analysis immediately after exercise for the detection of single-vessel coronary artery disease. Study by separate acquisition, dual-isotope ECG-gated single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Yoda, Shunichi; Sato, Yuichi; Matsumoto, Naoya; Tani, Shigemasa; Takayama, Tadateru; Uchiyama, Takahisa; Saito, Satoshi

    2005-01-01

    Although the detection of wall motion abnormalities gives incremental value to myocardial perfusion single-photon emission computed tomography (SPECT) in the diagnosis of extensive coronary artery disease (CAD) and high-grade single-vessel CAD, whether or not it is useful in the diagnosis of mild, single-vessel CAD has not been studied previously. Separate acquisition, dual isotope electrocardiogram (ECG)-gated SPECT was performed in 97 patients with a low likelihood of CAD (Group 1) and 46 patients with single-vessel CAD (Group 2). Mild CAD was defined by stenosis of 50-75% (Group 2a, n=22) and moderate to severe CAD was defined by stenosis ≥76% (Group 2b, n=24). Myocardial perfusion and wall motion were graded by a 5 point-scale, 20-segment model. The sensitivity of myocardial perfusion alone was 50% for Group 2a, 83% for Group 2b and 67% for Group 2 as a whole. The overall specificity was 90%. When the wall motion analysis was combined, the sensitivity was increased to 82% in Group 2a and 92% in Group 2b. The ability to detect a wall motion abnormality immediately after exercise gives incremental diagnostic value to myocardial perfusion SPECT in the identification of mild, single-vessel CAD. (author)

  18. Quantitative analysis by MRI on condylar motion of the temporomandibular joint in patients applied with occlusal splints

    International Nuclear Information System (INIS)

    Saito, Hiroki

    1999-01-01

    The purpose of this study was to assess the feasibility of a newly developed quantitative motion analysis method for the mandibular condyle before and after application of occlusal splints. The subjects were 50 consecutive patients with internal derangement. Stabilization type splints were applied in 23 cases (46%), anterior repositioning type in 18 cases (36%) and pivot type in 9 cases (18%). All patients underwent MR imaging with a 1.5-T MR unit with a 3-inch dual surface coil. Pseudodynamic MR study of the opening cycle was obtained using multiplanar GRASS sequence (MPGR). Incremental and decremental sagittal MR images before and after splint application were transferred to the workstation. Software originally developed by Nakasato and Katsuragawa was used to analyze the condylar motion and path. After splint application, normalized position of displaced discs was seen in 11 cases (22%), and occurred most frequently with anterior repositioning type splints. In patients with anterior repositioning type splints, improvement in the condylar motion was most significant, In patients with normalized disc position after application of occlusal splints, abnormal figure-eight-shaped'' condylar paths were corrected in 9 of 10 cases. In the case with normalized disc position after application of anterior repositioning splint, the maximum rotational angle before application of the splint is larger than that of the case without normalized disc position. Rotational function of the condyle in the inferior joint space may be associated with disc recapturing. (K.H.)

  19. Guide to Three Dimensional Structure and Motion Factorization

    CERN Document Server

    Wang, Guanghui

    2011-01-01

    The problem of structure and motion recovery from image sequences is an important theme in computer vision. Considerable progress has been made in this field during the past two decades, resulting in successful applications in robot navigation, augmented reality, industrial inspection, medical image analysis, and digital entertainment, among other areas. However, many of these methods work only for rigid objects and static scenes. The study of non-rigid structure from motion is not only of academic significance, but also has important practical applications in real-world, nonrigid or dynamic s

  20. Discriminative Vision-Based Recovery and Recognition of Human Motion

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2009-01-01

    The automatic analysis of human motion from images opens up the way for applications in the domains of security and surveillance, human-computer interaction, animation, retrieval and sports motion analysis. In this dissertation, the focus is on robust and fast human pose recovery and action

  1. Improving pulse oximetry accuracy by removing motion artifacts from photoplethysmograms using relative sensor motion: a preliminary study

    NARCIS (Netherlands)

    Wijshoff, R.W.C.G.R.; Mischi, M.; Woerlee, P.H.; Aarts, R.M.; Van Huffel, S.; Naelaers, G.; Caicedo, A.; Bruley, D.F.; Harrison, D.K.

    2013-01-01

    To expand applicability of pulse oximetry in low-acuity ambulatory settings, the impact of motion on extracted parameters as saturation (SpO2) and pulse rate (PR) needs to be reduced. We hypothesized that sensor motion relative to the skin can be used as an artifact reference in a correlation

  2. Methods of determination of periods in the motion of asteroids

    Science.gov (United States)

    Bien, R.; Schubart, J.

    Numerical techniques for the analysis of fundamental periods in asteroidal motion are evaluated. The specific techniques evaluated were: the periodogram analysis procedure of Wundt (1980); Stumpff's (1937) system of algebraic transformations; and Labrouste's procedure. It is shown that the Labrouste procedure permitted sufficient isolation of single oscillations from the quasi-periodic process of asteroidal motion. The procedure was applied to the analysis of resonance in the motion of Trojan-type and Hilda-type asteroids, and some preliminary results are discussed.

  3. A hybrid press system: Motion design and inverse kinematics issues

    Directory of Open Access Journals (Sweden)

    M. Erkan Kütük

    2016-06-01

    Full Text Available A hybrid machine (HM is a system integrating two types of motor; servo and constant velocity with a mechanism. The purpose is to make use of the energy in the system efficiently with a flexible system having more than one degree of freedom (DOF. A review is included on hybrid press systems. This study is included as a part of an industrial project used for metal forming. The system given here includes a 7 link mechanism, one of link is driven by a constant velocity motor (CV and the other is driven by a servo motor (SM. Kinematics analysis of the hybrid driven mechanism is presented here as inverse kinematics analysis. Motion design is very crucial step when using a hybrid machine. So motion design procedure is given with motion curve examples needed. Curve Fitting Toolbox (CFT in Matlab® is offered as an auxiliary method which can be successfully applied. Motion characteristics are chosen by looking at requirements taken from metal forming industry. Results are then presented herein.

  4. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Early Versus Delayed Motion After Rotator Cuff Repair: A Systematic Review of Overlapping Meta-analyses.

    Science.gov (United States)

    Houck, Darby A; Kraeutler, Matthew J; Schuette, Hayden B; McCarty, Eric C; Bravman, Jonathan T

    2017-10-01

    Previous meta-analyses have been conducted to compare outcomes of early versus delayed motion after rotator cuff repair. To conduct a systematic review of overlapping meta-analyses comparing early versus delayed motion rehabilitation protocols after rotator cuff repair to determine which meta-analyses provide the best available evidence. Systematic review. A systematic review was performed by searching PubMed and Cochrane Library databases. Search terms included "rotator cuff repair," "early passive motion," "immobilization," "rehabilitation protocol," and "meta-analysis." Results were reviewed to determine study eligibility. Patient outcomes and structural healing were extracted from these meta-analyses. Meta-analysis quality was assessed using the Oxman-Guyatt and Quality of Reporting of Meta-analyses (QUOROM) systems. The Jadad decision algorithm was then used to determine which meta-analyses provided the best level of evidence. Seven meta-analyses containing a total of 5896 patients met the eligibility criteria (1 Level I evidence, 4 Level II evidence, 2 Level III evidence). None of these meta-analyses found immobilization to be superior to early motion; however, most studies suggested that early motion would increase range of motion (ROM), thereby reducing time of recovery. Three of these studies suggested that tear size contributed to the choice of rehabilitation to ensure proper healing of the shoulder. A study by Chan et al in 2014 received the highest QUOROM and Oxman-Guyatt scores, and therefore this meta-analysis appeared to have the highest level of evidence. Additionally, a study by Riboh and Garrigues in 2014 was selected as the highest quality study in this systematic review according to the Jadad decision algorithm. The current, best available evidence suggests that early motion improves ROM after rotator cuff repair but increases the risk of rotator cuff retear. Lower quality meta-analyses indicate that tear size may provide a better strategy in

  6. Multisegmental Foot and Ankle Motion Analysis After Hallux Valgus Surgery

    Science.gov (United States)

    Canseco, Karl; Long, Jason; Smedberg, Thomas; Tarima, Sergey; Marks, Richard M.; Harris, Gerald F.

    2015-01-01

    Background Gait changes in patients with hallux valgus, including altered kinematic and temporal-spatial parameters, have been documented in the literature. Although operative treatment can yield favorable clinical and radiographic results, restoration of normal gait in this population remains unclear. Segmental kinematic changes within the foot and ankle during ambulation after operative correction of hallux valgus have not been reported. The aim of this study was to analyze changes in multisegmental foot and ankle kinematics in patients who underwent operative correction of hallux valgus. Methods A 15-camera Vicon Motion Analysis System was used to evaluate 24 feet in 19 patients with hallux valgus preoperatively and postoperatively. The Milwaukee Foot Model was used to characterize segmental kinematics and temporal-spatial parameters (TSPs). Preoperative and postoperative kinematics and TSPs were compared using paired nonparametric methods; comparisons with normative data were performed using unpaired nonparametric methods. Outcomes were evaluated using the SF-36 assessment tool. Results Preoperatively, patients with hallux valgus showed significantly altered temporal-spatial and kinematic parameters. Postoperatively, kinematic analysis demonstrated restoration of hallux position to normal. Hallux valgus angles and intermetatarsal angles were significantly improved, and outcomes showed a significant increase in performance of physical activities. Temporal-spatial parameters and kinematics in the more proximal segments were not significantly changed postoperatively. Conclusion Postoperative results demonstrated significant improvement in foot geometry and hallux kinematics in the coronal and transverse planes. However, the analysis did not identify restoration of proximal kinematics. Clinical Relevance Further investigation is necessary to explore possible causes/clinical relevance and appropriate treatment interventions for the persistently altered kinematics

  7. Human Hand Motion Analysis and Synthesis of Optimal Power Grasps for a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Francesca Cordella

    2014-03-01

    Full Text Available Biologically inspired robotic systems can find important applications in biomedical robotics, since studying and replicating human behaviour can provide new insights into motor recovery, functional substitution and human-robot interaction. The analysis of human hand motion is essential for collecting information about human hand movements useful for generalizing reaching and grasping actions on a robotic system. This paper focuses on the definition and extraction of quantitative indicators for describing optimal hand grasping postures and replicating them on an anthropomorphic robotic hand. A motion analysis has been carried out on six healthy human subjects performing a transverse volar grasp. The extracted indicators point to invariant grasping behaviours between the involved subjects, thus providing some constraints for identifying the optimal grasping configuration. Hence, an optimization algorithm based on the Nelder-Mead simplex method has been developed for determining the optimal grasp configuration of a robotic hand, grounded on the aforementioned constraints. It is characterized by a reduced computational cost. The grasp stability has been tested by introducing a quality index that satisfies the form-closure property. The grasping strategy has been validated by means of simulation tests and experimental trials on an arm-hand robotic system. The obtained results have shown the effectiveness of the extracted indicators to reduce the non-linear optimization problem complexity and lead to the synthesis of a grasping posture able to replicate the human behaviour while ensuring grasp stability. The experimental results have also highlighted the limitations of the adopted robotic platform (mainly due to the mechanical structure to achieve the optimal grasp configuration.

  8. Gait Recognition Using Wearable Motion Recording Sensors

    Directory of Open Access Journals (Sweden)

    Davrondzhon Gafurov

    2009-01-01

    Full Text Available This paper presents an alternative approach, where gait is collected by the sensors attached to the person's body. Such wearable sensors record motion (e.g. acceleration of the body parts during walking. The recorded motion signals are then investigated for person recognition purposes. We analyzed acceleration signals from the foot, hip, pocket and arm. Applying various methods, the best EER obtained for foot-, pocket-, arm- and hip- based user authentication were 5%, 7%, 10% and 13%, respectively. Furthermore, we present the results of our analysis on security assessment of gait. Studying gait-based user authentication (in case of hip motion under three attack scenarios, we revealed that a minimal effort mimicking does not help to improve the acceptance chances of impostors. However, impostors who know their closest person in the database or the genders of the users can be a threat to gait-based authentication. We also provide some new insights toward the uniqueness of gait in case of foot motion. In particular, we revealed the following: a sideway motion of the foot provides the most discrimination, compared to an up-down or forward-backward directions; and different segments of the gait cycle provide different level of discrimination.

  9. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    International Nuclear Information System (INIS)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q

    2017-01-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces. (paper)

  10. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    Science.gov (United States)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q.

    2017-10-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.

  11. Study of the ventilatory lung motion imaging in primary lung cancer

    International Nuclear Information System (INIS)

    Fujii, Tadashige; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie.

    1996-01-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  12. Study of the ventilatory lung motion imaging in primary lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Tadashige [Shinshu Univ., Matsumoto, Nagano (Japan). Shool of Allied Medical Sciences; Tanaka, Masao; Yazaki, Yosikazu; Kitabayashi, Hiroshi; Sekiguchi, Morie

    1996-12-01

    Using perfusion lung scintigrams with Tc-99m macroaggregated alubumin at maximal inspiration (I) and expiration (E), images of the ventilatory lung motion, which was calculated and delineated by an expression as (E-I)/I, were obtained in 84 cases with primary lung cancer, and its clinical significance in the diagnosis of primary lung cancer was studied. The image of (E-I)/I consisted of positive and negative components. The former visualized the motion of the regional intrapulmonary areas and the latter showed the motion of the lung border. The sum of positive (E-I)/I in the lung with the primary lesion which was lower than that in the contralateral lung, was significantly low in cases with hilar mass, pleural effusion and TNM classification of T3+T4. The sum of positive (E-I)/I in both lungs and vital capacity was relatively low in cases with hilar mass, pleural effusion, TNM classification of T3+T4 and M1. The distribution pattern of pulmonary perfusion and positive (E-I)/I was fairly matched in 48 cases, but mismatch was observed in 36 cases. In the image of negative (E-I)/I, decreased motion of the lung border including the diaphragm was shown in cases with pleural adhesion and thickening, pleural effusion, phrenic nerve palsy and other conditions with hypoventilation. This technique seems to be useful for the estimation of regional pulmonary function of pulmonary perfusion and lung motion, the extent and pathophysiology of primary lung cancer. (author)

  13. Experimental Study of Fuel Element Motion in HTR-PM Conveying Pipelines

    International Nuclear Information System (INIS)

    Wang Xin; Zhang Haiquan; Nie Junfeng; Li Hongke; Liu Jiguo; He Ayada

    2014-01-01

    The motion action of sphere fuel element (FE) inside fuel pipelines in HTR-PM is indeterminate. Fuel motion is closely connected with the interaction of FE and inner surface of fuel conveying pipe. In this paper, motion method of fuel elements in its conveying pipe is Experimental studied. Combined with the measurement of the fuel passing speed in stainless steel pipe and the track left by sphere ball for experiment, interaction modes of fuel and inner-surface of pipe, which is sliding friction, rolling friction and Collision, has been found. The modes of interaction can affect the speed of fuel conveying, amount of sphere waste and operation stability of fuel handling of high temperature reactor-pebble bed modules (HTR-PM). Furthermore, the motion process of fuel passing a big-elbow which is lying on the top of fuel pneumatic hoisting pipe were experimented. The result shows that the speed before and the speed after the elbow is positive correlation. But with the increase of speed before the elbow, the speed after the elbow increase less. Meanwhile the fuel conveying mode changes from friction to collision. And the conveying process is still steady. The effect can be used to controlling the speed of fuel conveying in fuel handling process of HTR-PM. (author)

  14. Discrimination of animate and inanimate motion in 9-month-old infants: an ERP study.

    Science.gov (United States)

    Kaduk, Katharina; Elsner, Birgit; Reid, Vincent M

    2013-10-01

    Simple geometric shapes moving in a self-propelled manner, and violating Newtonian laws of motion by acting against gravitational forces tend to induce a judgement that an object is animate. Objects that change their motion only due to external causes are more likely judged as inanimate. How the developing brain is employed in the perception of animacy in early ontogeny is currently unknown. The aim of this study was to use ERP techniques to determine if the negative central component (Nc), a waveform related to attention allocation, was differentially affected when an infant observed animate or inanimate motion. Short animated movies comprising a marble moving along a marble run either in an animate or an inanimate manner were presented to 15 infants who were 9 months of age. The ERPs were time-locked to a still frame representing animate or inanimate motion that was displayed following each movie. We found that 9-month-olds are able to discriminate between animate and inanimate motion based on motion cues alone and most likely allocate more attentional resources to the inanimate motion. The present data contribute to our understanding of the animate-inanimate distinction and the Nc as a correlate of infant cognitive processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy.

    Science.gov (United States)

    Ostyn, Mark; Kim, Siyong; Yeo, Woon-Hong

    2016-04-13

    One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF) localization system designed to track intrafraction motion (target motion during the radiation treatment). This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range) for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers) in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  17. A Simulation Study of a Radiofrequency Localization System for Tracking Patient Motion in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Mark Ostyn

    2016-04-01

    Full Text Available One of the most widely used tools in cancer treatment is external beam radiotherapy. However, the major risk involved in radiotherapy is excess radiation dose to healthy tissue, exacerbated by patient motion. Here, we present a simulation study of a potential radiofrequency (RF localization system designed to track intrafraction motion (target motion during the radiation treatment. This system includes skin-wearable RF beacons and an external tracking system. We develop an analytical model for direction of arrival measurement with radio frequencies (GHz range for use in a localization estimate. We use a Monte Carlo simulation to investigate the relationship between a localization estimate and angular resolution of sensors (signal receivers in a simulated room. The results indicate that the external sensor needs an angular resolution of about 0.03 degrees to achieve millimeter-level localization accuracy in a treatment room. This fundamental study of a novel RF localization system offers the groundwork to design a radiotherapy-compatible patient positioning system for active motion compensation.

  18. Rapid estimation of left ventricular ejection fraction in acute myocardial infarction by echocardiographic wall motion analysis

    DEFF Research Database (Denmark)

    Berning, J; Rokkedal Nielsen, J; Launbjerg, J

    1992-01-01

    Echocardiographic estimates of left ventricular ejection fraction (ECHO-LVEF) in acute myocardial infarction (AMI) were obtained by a new approach, using visual analysis of left ventricular wall motion in a nine-segment model. The method was validated in 41 patients using radionuclide...

  19. Simulation of bubble motion under gravity by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  20. What motion is: William Neile and the laws of motion.

    Science.gov (United States)

    Kemeny, Max

    2017-07-01

    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  1. Real-Time Study of Prostate Intrafraction Motion During External Beam Radiotherapy With Daily Endorectal Balloon

    Energy Technology Data Exchange (ETDEWEB)

    Both, Stefan, E-mail: Stefan.Both@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Wang, Ken Kang-Hsin; Plastaras, John P.; Deville, Curtiland; Bar Ad, Voika; Tochner, Zelig; Vapiwala, Neha [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2011-12-01

    Purpose: To prospectively investigate intrafraction prostate motion during radiofrequency-guided prostate radiotherapy with implanted electromagnetic transponders when daily endorectal balloon (ERB) is used. Methods and Materials: Intrafraction prostate motion from 24 patients in 787 treatment sessions was evaluated based on three-dimensional (3D), lateral, cranial-caudal (CC), and anterior-posterior (AP) displacements. The mean percentage of time with 3D, lateral, CC, and AP prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1 minute intervals was calculated for up to 6 minutes of treatment time. Correlation between the mean percentage time with 3D prostate displacement >3 mm vs. treatment week was investigated. Results: The percentage of time with 3D prostate movement >2, 3, and 4 mm increased with elapsed treatment time (p < 0.05). Prostate movement >5 mm was independent of elapsed treatment time (p = 0.11). The overall mean time with prostate excursions >3 mm was 5%. Directional analysis showed negligible lateral prostate motion; AP and CC motion were comparable. The fraction of time with 3D prostate movement >3 mm did not depend on treatment week of (p > 0.05) over a 4-minute mean treatment time. Conclusions: Daily endorectal balloon consistently stabilizes the prostate, preventing clinically significant displacement (>5 mm). A 3-mm internal margin may sufficiently account for 95% of intrafraction prostate movement for up to 6 minutes of treatment time. Directional analysis suggests that the lateral internal margin could be further reduced to 2 mm.

  2. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han

    2010-06-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  3. Markov dynamic models for long-timescale protein motion.

    KAUST Repository

    Chiang, Tsung-Han; Hsu, David; Latombe, Jean-Claude

    2010-01-01

    Molecular dynamics (MD) simulation is a well-established method for studying protein motion at the atomic scale. However, it is computationally intensive and generates massive amounts of data. One way of addressing the dual challenges of computation efficiency and data analysis is to construct simplified models of long-timescale protein motion from MD simulation data. In this direction, we propose to use Markov models with hidden states, in which the Markovian states represent potentially overlapping probabilistic distributions over protein conformations. We also propose a principled criterion for evaluating the quality of a model by its ability to predict long-timescale protein motions. Our method was tested on 2D synthetic energy landscapes and two extensively studied peptides, alanine dipeptide and the villin headpiece subdomain (HP-35 NleNle). One interesting finding is that although a widely accepted model of alanine dipeptide contains six states, a simpler model with only three states is equally good for predicting long-timescale motions. We also used the constructed Markov models to estimate important kinetic and dynamic quantities for protein folding, in particular, mean first-passage time. The results are consistent with available experimental measurements.

  4. Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application

    International Nuclear Information System (INIS)

    Gastounioti, A; Stoitsis, J S; Nikita, K S; Golemati, S

    2013-01-01

    Valid risk stratification for carotid atherosclerotic plaques represents a crucial public health issue toward preventing fatal cerebrovascular events. Although motion analysis (MA) provides useful information about arterial wall dynamics, the identification of motion-based risk markers remains a significant challenge. Considering that the ability of a motion estimator (ME) to handle changes in the appearance of motion targets has a major effect on accuracy in MA, we investigated the potential of adaptive block matching (ABM) MEs, which consider changes in image intensities over time. To assure the validity in MA, we optimized and evaluated the ABM MEs in the context of a specially designed in silico framework. ABM FIRF2 , which takes advantage of the periodicity characterizing the arterial wall motion, was the most effective ABM algorithm, yielding a 47% accuracy increase with respect to the conventional block matching. The in vivo application of ABM FIRF2 revealed five potential risk markers: low movement amplitude of the normal part of the wall adjacent to the plaques in the radial (RMA PWL ) and longitudinal (LMA PWL ) directions, high radial motion amplitude of the plaque top surface (RMA PTS ), and high relative movement, expressed in terms of radial strain (RSI PL ) and longitudinal shear strain (LSSI PL ), between plaque top and bottom surfaces. The in vivo results were reproduced by OF LK(WLS) and ABM KF-K2 , MEs previously proposed by the authors and with remarkable in silico performances, thereby reinforcing the clinical values of the markers and the potential of those MEs. Future in vivo studies will elucidate with confidence the full potential of the markers. (paper)

  5. Global Rating Scales and Motion Analysis Are Valid Proficiency Metrics in Virtual and Benchtop Knee Arthroscopy Simulators.

    Science.gov (United States)

    Chang, Justues; Banaszek, Daniel C; Gambrel, Jason; Bardana, Davide

    2016-04-01

    Work-hour restrictions and fatigue management strategies in surgical training programs continue to evolve in an effort to improve the learning environment and promote safer patient care. In response, training programs must reevaluate how various teaching modalities such as simulation can augment the development of surgical competence in trainees. For surgical simulators to be most useful, it is important to determine whether surgical proficiency can be reliably differentiated using them. To our knowledge, performance on both virtual and benchtop arthroscopy simulators has not been concurrently assessed in the same subjects. (1) Do global rating scales and procedure time differentiate arthroscopic expertise in virtual and benchtop knee models? (2) Can commercially available built-in motion analysis metrics differentiate arthroscopic expertise? (3) How well are performance measures on virtual and benchtop simulators correlated? (4) Are these metrics sensitive enough to differentiate by year of training? A cross-sectional study of 19 subjects (four medical students, 12 residents, and three staff) were recruited and divided into 11 novice arthroscopists (student to Postgraduate Year [PGY] 3) and eight proficient arthroscopists (PGY 4 to staff) who completed a diagnostic arthroscopy and loose-body retrieval in both virtual and benchtop knee models. Global rating scales (GRS), procedure times, and motion analysis metrics were used to evaluate performance. The proficient group scored higher on virtual (14 ± 6 [95% confidence interval {CI}, 10-18] versus 36 ± 5 [95% CI, 32-40], p virtual scope (579 ±169 [95% CI, 466-692] versus 358 ± 178 [95% CI, 210-507] seconds, p = 0.02) and benchtop knee scope + probe (480 ± 160 [95% CI, 373-588] versus 277 ± 64 [95% CI, 224-330] seconds, p = 0.002). The built-in motion analysis metrics also distinguished novices from proficient arthroscopists using the self-generated virtual loose body retrieval task scores (4 ± 1 [95% CI, 3

  6. Dynamic Time Warping Distance Method for Similarity Test of Multipoint Ground Motion Field

    Directory of Open Access Journals (Sweden)

    Yingmin Li

    2010-01-01

    Full Text Available The reasonability of artificial multi-point ground motions and the identification of abnormal records in seismic array observations, are two important issues in application and analysis of multi-point ground motion fields. Based on the dynamic time warping (DTW distance method, this paper discusses the application of similarity measurement in the similarity analysis of simulated multi-point ground motions and the actual seismic array records. Analysis results show that the DTW distance method not only can quantitatively reflect the similarity of simulated ground motion field, but also offers advantages in clustering analysis and singularity recognition of actual multi-point ground motion field.

  7. The Application of KINECT Motion Sensing Technology in Game-Oriented Study

    Directory of Open Access Journals (Sweden)

    Hui Yu Yang

    2014-03-01

    Full Text Available The learning environment based on the KINECT Motion Sensing technology is able to fully mobilize the learners' multi-sensory organs, closely combine study with sports and enhance human-computer interactions, which can be conducive to the learners' health, greatly increase the relishes of learning and promote effective learning in the game, and finally compensate for the shortage of human-computer interactions in the traditional mouse and keyboard mode. The article elaborates on the KINECT Motion Sensing Technology and its educational applications status by analyzing its effective supports for game-oriented studying environment, based on which the article establishes a game-oriented learning environment. Eventually the article reveals an applicable case of game-oriented teaching and learning as a reference for related researches.

  8. Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis

    International Nuclear Information System (INIS)

    Couceiro, R; Carvalho, P; Paiva, R P; Henriques, J; Muehlsteff, J

    2014-01-01

    The presence of motion artifacts in photoplethysmographic (PPG) signals is one of the major obstacles in the extraction of reliable cardiovascular parameters in continuous monitoring applications. In the current paper we present an algorithm for motion artifact detection based on the analysis of the variations in the time and the period domain characteristics of the PPG signal. The extracted features are ranked using a normalized mutual information feature selection algorithm and the best features are used in a support vector machine classification model to distinguish between clean and corrupted sections of the PPG signal. The proposed method has been tested in healthy and cardiovascular diseased volunteers, considering 11 different motion artifact sources. The results achieved by the current algorithm (sensitivity—SE: 84.3%, specificity—SP: 91.5% and accuracy—ACC: 88.5%) show that the current methodology is able to identify both corrupted and clean PPG sections with high accuracy in both healthy (ACC: 87.5%) and cardiovascular diseases (ACC: 89.5%) context. (paper)

  9. Feasibility study of patient motion monitoring using tactile array sensor

    International Nuclear Information System (INIS)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk; Kim, Si Yong

    2014-01-01

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method

  10. Feasibility study of patient motion monitoring using tactile array sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Kang, Seong Hee; Kim, Dong Su; Cho, Min Seok; Kim, Kyeong Hyeon; Suh, Tae Suk [Dept. of Biomedical Engineering, Research Institute of Biomedical Engineering, the Catholic University of Korea, Seoul (Korea, Republic of); Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2014-11-15

    The aim of this study is to evaluate patient pretreatment set-up error and intra-fraction motion using the tactile array sensors (Pressure Profile Systems Inc, Los Angeles, CA) which could measure distributed pressure profiles along the contacting surface and to check a feasibility of the sensor (tactile array sensor) in the patient motion monitoring. Laser alignment and optical camera based monitoring system are very useful for reduce patient set-up error but these systems could not monitor the blind area like patient's back position. Actually after patient alignment using laser or optical monitoring system, it was assumed that there is no error in the patient's back position (pressure profile distribution). But if an error occurs in the patient's back position, it will affect the radiation therapy accuracy. In spite of optical motion monitoring or using the immobilization tool, distributed pressure profiles of patient's back position was changed during inter and intra-fraction. For more accurate patient set-up, blind area (patient's back) monitoring was necessary. We expect that the proposed method will be very useful for make up for the weakness of optical monitoring method.

  11. Inter-fraction variations in respiratory motion models

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J R; Modat, M; Ourselin, S; Hawkes, D J [Centre for Medical Image Computing, University College London (United Kingdom); Hughes, S; Qureshi, A; Ahmad, S; Landau, D B, E-mail: j.mcclelland@cs.ucl.ac.uk [Department of Oncology, Guy' s and St Thomas' s Hospitals NHS Trust, London (United Kingdom)

    2011-01-07

    Respiratory motion can vary dramatically between the planning stage and the different fractions of radiotherapy treatment. Motion predictions used when constructing the radiotherapy plan may be unsuitable for later fractions of treatment. This paper presents a methodology for constructing patient-specific respiratory motion models and uses these models to evaluate and analyse the inter-fraction variations in the respiratory motion. The internal respiratory motion is determined from the deformable registration of Cine CT data and related to a respiratory surrogate signal derived from 3D skin surface data. Three different models for relating the internal motion to the surrogate signal have been investigated in this work. Data were acquired from six lung cancer patients. Two full datasets were acquired for each patient, one before the course of radiotherapy treatment and one at the end (approximately 6 weeks later). Separate models were built for each dataset. All models could accurately predict the respiratory motion in the same dataset, but had large errors when predicting the motion in the other dataset. Analysis of the inter-fraction variations revealed that most variations were spatially varying base-line shifts, but changes to the anatomy and the motion trajectories were also observed.

  12. Vertical illusory self-motion through haptic stimulation of the feet

    DEFF Research Database (Denmark)

    Nordahl, Rolf; Nilsson, Niels Christian; Turchet, Luca

    2012-01-01

    Circular and linear self-motion illusions induced through visual and auditory stimuli have been studied rather extensively. While the ability of haptic stimuli to augment such illusions has been investigated, the self-motion illusions which primarily are induced by stimulation of the haptic...... to generate the haptic feedback while the final condition included no haptic feedback. Analysis of self-reports were used to assess the participants' experience of illusory self-motion. The results indicate that such illusions are indeed possible. Significant differences were found between the condition...... modality remain relatively unexplored. In this paper, we present an experiment performed with the intention of investigating whether it is possible to use haptic stimulation of the main supporting areas of the feet to induce vertical illusory self-motion on behalf of unrestrained participants during...

  13. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  14. Is Nubia plate rigid? A geodetic study of the relative motion of different cratonic areas within Africa.

    Science.gov (United States)

    Njoroge, M. W.; Malservisi, R.; Hugentobler, U.; Mokhtari, M.; Voytenko, D.

    2014-12-01

    Plate rigidity is one of the main paradigms of plate tectonics and a fundamental assumption in the definition of a global reference frame as ITRF. Although still far for optimal, the increased GPS instrumentation of the African region can allow us to understand how rigid one of the major plate can be. The presence of diffused band of seismicity, the Cameroon volcanic line, Pan African Kalahari orogenic belt and East Africa Rift suggest the possibility of relative motion among the different regions within the Nubia. The study focuses on the rigidity of Nubia plate. We divide the plate into three regions: Western (West Africa craton plus Nigeria), Central (approximately the region of the Congo craton) and Southern (Kalahari craton plus South Africa) and we utilize Euler Vector formulation to study internal rigidity and eventual relative motion. Developing five different reference frames with different combinations of the 3 regions, we try to understand the presence of the relative motion between the 3 cratons thus the stability of the Nubia plate as a whole. All available GPS stations from the regions are used separately or combined in creation of the reference frames. We utilize continuous stations with at least 2.5 years of data between 1994 and 2014. Given the small relative velocity, it is important to eliminate eventual biases in the analysis and to have a good estimation in the uncertainties of the observed velocities. For this reason we perform our analysis using both Bernese and Gipsy-oasis codes to generate time series for each station. Velocities and relative uncertainties are analyzed using the Allan variance of rate technique, taking in account for colored noise. An analysis of the color of the noise as function of latitude and climatic region is also performed to each time series. Preliminary results indicate a slight counter clockwise motion of West Africa craton with respect to South Africa Kalahari, and South Africa Kalahari-Congo Cratons. In addition

  15. Motion Capture Technique Applied Research in Sports Technique Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhiwu LIU

    2014-09-01

    Full Text Available The motion capture technology system definition is described in the paper, and its components are researched, the key parameters are obtained from motion technique, the quantitative analysis are made on technical movements, the method of motion capture technology is proposed in sport technical diagnosis. That motion capture step includes calibration system, to attached landmarks to the tester; to capture trajectory, and to analyze the collected data.

  16. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit.

    Science.gov (United States)

    Ramkumar, Prem N; Haeberle, Heather S; Navarro, Sergio M; Sultan, Assem A; Mont, Michael A; Ricchetti, Eric T; Schickendantz, Mark S; Iannotti, Joseph P

    2018-03-07

    Mobile technology offers the prospect of delivering high-value care with increased patient access and reduced costs. Advances in mobile health (mHealth) and telemedicine have been inhibited by the lack of interconnectivity between devices and software and inability to process consumer sensor data. The objective of this study was to preliminarily validate a motion-based machine learning software development kit (SDK) for the shoulder compared with a goniometer for 4 arcs of motion: (1) abduction, (2) forward flexion, (3) internal rotation, and (4) external rotation. A mobile application for the SDK was developed and "taught" 4 arcs of shoulder motion. Ten subjects without shoulder pain or prior shoulder surgery performed the arcs of motion for 5 repetitions. Each motion was measured by the SDK and compared with a physician-measured manual goniometer measurement. Angular differences between SDK and goniometer measurements were compared with univariate and power analyses. The comparison between the SDK and goniometer measurement detected a mean difference of less than 5° for all arcs of motion (P > .05), with a 94% chance of detecting a large effect size from a priori power analysis. Mean differences for the arcs of motion were: abduction, -3.7° ± 3.2°; forward flexion, -4.9° ± 2.5°; internal rotation, -2.4° ± 3.7°; and external rotation -2.6° ± 3.4°. The SDK has the potential to remotely substitute for a shoulder range of motion examination within 5° of goniometer measurements. An open-source motion-based SDK that can learn complex movements, including clinical shoulder range of motion, from consumer sensors offers promise for the future of mHealth, particularly in telemonitoring before and after orthopedic surgery. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: Prospective study in lung

    Energy Technology Data Exchange (ETDEWEB)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S., E-mail: magerasg@mskcc.org [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States); Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065 (United States)

    2014-10-15

    Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image

  18. Using Edge Voxel Information to Improve Motion Regression for rs-fMRI Connectivity Studies.

    Science.gov (United States)

    Patriat, Rémi; Molloy, Erin K; Birn, Rasmus M

    2015-11-01

    Recent fMRI studies have outlined the critical impact of in-scanner head motion, particularly on estimates of functional connectivity. Common strategies to reduce the influence of motion include realignment as well as the inclusion of nuisance regressors, such as the 6 realignment parameters, their first derivatives, time-shifted versions of the realignment parameters, and the squared parameters. However, these regressors have limited success at noise reduction. We hypothesized that using nuisance regressors consisting of the principal components (PCs) of edge voxel time series would be better able to capture slice-specific and nonlinear signal changes, thus explaining more variance, improving data quality (i.e., lower DVARS and temporal SNR), and reducing the effect of motion on default-mode network connectivity. Functional MRI data from 22 healthy adult subjects were preprocessed using typical motion regression approaches as well as nuisance regression derived from edge voxel time courses. Results were evaluated in the presence and absence of both global signal regression and motion censoring. Nuisance regressors derived from signal intensity time courses at the edge of the brain significantly improved motion correction compared to using only the realignment parameters and their derivatives. Of the models tested, only the edge voxel regression models were able to eliminate significant differences in default-mode network connectivity between high- and low-motion subjects regardless of the use of global signal regression or censoring.

  19. Experiences of intervertebral motion palpation in osteopathic practice - A qualitative interview study among Swedish osteopaths.

    Science.gov (United States)

    Sposato, Niklas S; Bjerså, Kristofer

    2017-01-01

    Assessment in manual therapy includes quantitative and qualitative procedures, and intervertebral motion palpation (IMP) is one of the core assessment methods in osteopathic practice. The aim of this study was to explore osteopathic practitioners' experiences of clinical decision-making and IMP as a diagnostic tool for planning and evaluation of osteopathic interventions. The study was conducted with semi-structured interviews that included eight informants. Content analysis was used as the analytical procedure. In total, three categories emerged from the analysis: strategic decision-making, diagnostic usability of IMP, and treatment applicability of IMP. The study indicated that IMP was considered relevant and was given particular importance in cases where IMP findings confirmed clinical information attained from other stages in the diagnostic process as a whole. However, IMP findings were experienced as less important if they were not correlated to other findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Evaluation of tumor localization in respiration motion-corrected cone-beam CT: prospective study in lung.

    Science.gov (United States)

    Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S

    2014-10-01

    Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was

  1. In vivo analysis of trapeziometacarpal joint arthrokinematics during multi-directional thumb motions.

    Science.gov (United States)

    Su, Fong-Chin; Lin, Chien-Ju; Wang, Chien-Kuo; Chen, Guan-Po; Sun, Yung-Nien; Chuang, Alan K; Kuo, Li-Chieh

    2014-11-01

    The investigation of the joint arthrokinematics of the trapeziometacarpal joint is critical to comprehend the causative mechanism underlying this common form of osteoarthritis. Therefore, the purpose of this study is to evaluate the arthrokinematics of the trapeziometacarpal joint during thumb postures in vivo. Fifteen healthy participants were enrolled in this study. Static computed tomography images of the 1st metacarpal bone and trapezium were taken at specific thumb postures during thumb flexion-extension, abduction-adduction, and circumduction motions. Images were analyzed to examine the joint gliding, expressed as displacement of the centroid of the articular surface of the 1st metacarpal bone, relative to the trapezium. The gliding ratio, defined as joint gliding in each direction normalized to the dimension of the trapezium joint surface in the given direction, was computed and compared between different thumb motions. The results indicate that thumb motions influenced joint gliding. The centroids of the articular surface of the 1st metacarpal bone were primarily located at the central and dorsal-radial regions while executing these motions. The maximum joint gliding of the 1st metacarpal bone occurred in the radial-ulnar direction when performing abduction-adduction, and in the dorsal-volar direction while performing flexion-extension and circumduction, with the gliding ratio values of 42.35%, 51.65%, and 51.85%, respectively. Activities that involved abduction-adduction in the trapeziometacarpal joint caused greater joint gliding in the ulnar-radial direction, while flexion-extension resulted in greater joint gliding in the dorsal-volar and distal-proximal directions. Understanding normal joint kinematics in vivo may provide insights into the possible mechanism leading to osteoarthritis of the trapeziometacarpal joint, and help to improve the design of implants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Strain-Encoded Cardiac Magnetic Resonance Imaging as an Adjunct for Dobutamine Stress Testing. Incremental Value to Conventional Wall Motion Analysis

    Science.gov (United States)

    Korosoglou, Grigorios; Lossnitzer, Dirk; Schellberg, Dieter; Lewien, Antje; Wochele, Angela; Schaeufele, Tim; Neizel, Mirja; Steen, Henning; Giannitsis, Evangelos; Katus, Hugo A.; Osman, Nael F.

    2009-01-01

    Background High-dose dobutamine stress magnetic resonance imaging (DS-MRI) is safe and feasible for the diagnosis of coronary artery disease (CAD) in humans. However, the assessment of cine scans relies on the visual interpretation of regional wall motion, which is subjective. Recently, Strain-Encoded MRI (SENC) has been proposed for the direct color-coded visualization of myocardial strain. The purpose of our study was to compare the diagnostic value of SENC to that provided by conventional wall motion analysis for the detection of inducible ischemia during DS-MRI. Methods and Results Stress induced ischemia was assessed by wall motion analysis and by SENC in 101 patients with suspected or known CAD and in 17 healthy volunteers who underwent DS-MRI in a clinical 1.5T scanner. Quantitative coronary angiography deemed as the standard reference for the presence or absence of significant CAD (≥50% diameter stenosis). On a coronary vessel level, SENC detected inducible ischemia in 86/101 versus 71/101 diseased coronary vessels (p<0.01 versus cine), and showed normal strain response in 189/202 versus 194/202 vessels with <50% stenosis (p=NS versus cine). On a patient level, SENC detected inducible ischemia in 63/64 versus 55/64 patients with CAD (p<0.05 versus cine), and showed normal strain response in 32/37 versus 34/37 patients without CAD (p=NS versus cine).Quantification analysis demonstrated a significant correlation between strain rate reserve (SRreserve) and coronary artery stenosis severity (r²=0.56, p<0.001), and a cut-off value of SRreserve=1.64 deemed as a highly accurate marker for the detection of stenosis≥50% (AUC=0.96, SE=0.01, 95% CI = 0.94–0.98, p<0.001). Conclusions The direct color-coded visualization of strain on MR-images is a useful adjunct for DS-MRI, which provides incremental value for the detection of CAD compared to conventional wall motion readings on cine images. PMID:19808579

  3. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  4. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    Science.gov (United States)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  5. Multi-scaled normal mode analysis method for dynamics simulation of protein-membrane complexes: A case study of potassium channel gating motion correlations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaokun; Han, Min; Ming, Dengming, E-mail: dming@fudan.edu.cn [Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai (China)

    2015-10-07

    Membrane proteins play critically important roles in many cellular activities such as ions and small molecule transportation, signal recognition, and transduction. In order to fulfill their functions, these proteins must be placed in different membrane environments and a variety of protein-lipid interactions may affect the behavior of these proteins. One of the key effects of protein-lipid interactions is their ability to change the dynamics status of membrane proteins, thus adjusting their functions. Here, we present a multi-scaled normal mode analysis (mNMA) method to study the dynamics perturbation to the membrane proteins imposed by lipid bi-layer membrane fluctuations. In mNMA, channel proteins are simulated at all-atom level while the membrane is described with a coarse-grained model. mNMA calculations clearly show that channel gating motion can tightly couple with a variety of membrane deformations, including bending and twisting. We then examined bi-channel systems where two channels were separated with different distances. From mNMA calculations, we observed both positive and negative gating correlations between two neighboring channels, and the correlation has a maximum as the channel center-to-center distance is close to 2.5 times of their diameter. This distance is larger than recently found maximum attraction distance between two proteins embedded in membrane which is 1.5 times of the protein size, indicating that membrane fluctuation might impose collective motions among proteins within a larger area. The hybrid resolution feature in mNMA provides atomic dynamics information for key components in the system without costing much computer resource. We expect it to be a conventional simulation tool for ordinary laboratories to study the dynamics of very complicated biological assemblies. The source code is available upon request to the authors.

  6. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  7. Improved ankle push-off power following cheilectomy for hallux rigidus: a prospective gait analysis study.

    Science.gov (United States)

    Smith, Sheryl M; Coleman, Scott C; Bacon, Stacy A; Polo, Fabian E; Brodsky, James W

    2012-06-01

    There is limited objective scientific information on the functional effects of cheilectomy. The purpose of this study was to test the hypothesis that cheilectomy for hallux rigidus improves gait by increasing ankle push-off power. Seventeen patients with symptomatic Stage 1 or Stage 2 hallux rigidus were studied. Pre- and postoperative first metatarsophalangeal (MTP) range of motion and AOFAS hallux scores were recorded. A gait analysis was performed within 4 weeks prior to surgery and repeated at a minimum of 1 year after surgery. Gait analysis was done using a three-dimensional motion capture system and a force platform embedded in a 10-m walkway. Gait velocity sagittal plane ankle range of motion and peak sagittal plane ankle push-off power were analyzed. Following cheilectomy, significant increases were noted for first MTP range of motion and AOFAS hallux score. First MTP motion improved an average of 16.7 degrees, from means of 33.9 degrees preoperatively to 50.6 degrees postoperatively (ppush-off power from 1.71±0.92 W/kg to 2.05±0.75 W/kg (ppush-off power.

  8. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  9. Human error identification for laparoscopic surgery: Development of a motion economy perspective.

    Science.gov (United States)

    Al-Hakim, Latif; Sevdalis, Nick; Maiping, Tanaphon; Watanachote, Damrongpan; Sengupta, Shomik; Dissaranan, Charuspong

    2015-09-01

    This study postulates that traditional human error identification techniques fail to consider motion economy principles and, accordingly, their applicability in operating theatres may be limited. This study addresses this gap in the literature with a dual aim. First, it identifies the principles of motion economy that suit the operative environment and second, it develops a new error mode taxonomy for human error identification techniques which recognises motion economy deficiencies affecting the performance of surgeons and predisposing them to errors. A total of 30 principles of motion economy were developed and categorised into five areas. A hierarchical task analysis was used to break down main tasks of a urological laparoscopic surgery (hand-assisted laparoscopic nephrectomy) to their elements and the new taxonomy was used to identify errors and their root causes resulting from violation of motion economy principles. The approach was prospectively tested in 12 observed laparoscopic surgeries performed by 5 experienced surgeons. A total of 86 errors were identified and linked to the motion economy deficiencies. Results indicate the developed methodology is promising. Our methodology allows error prevention in surgery and the developed set of motion economy principles could be useful for training surgeons on motion economy principles. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    Science.gov (United States)

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  11. Slideline verification for multilayer pressure vessel and piping analysis including tangential motion

    International Nuclear Information System (INIS)

    Van Gulick, L.A.

    1984-01-01

    Nonlinear finite element method (FEM) computer codes with slideline algorithm implementations should be useful for the analysis of prestressed multilayer pressure vessels and piping. This paper presents closed form solutions including the effects of tangential motion useful for verifying slideline implementations for this purpose. The solutions describe stresses and displacements of a long internally pressurized elastic-plastic cylinder initially separated from an elastic outer cylinder by a uniform gap. Comparison of closed form and FEM results evaluates the usefulness of the closed form solution and the validity of the sideline implementation used

  12. Study of the atomic motion in methanol by slow neutron scattering

    International Nuclear Information System (INIS)

    Rodrigues, C.

    1979-01-01

    Cold neutron scattering data are reported for methyl alcohol in the liquid phase at room temperature. The quasielastic scattering was interpreted using the Larsson and Bergstedt model, that takes into account intramolecular motions and molecular diffusion. On the basis of this model, one finds for the relaxation time of the hindered rotation of the CH 3 group within the molecule a value 2,4 x 10 -12 sec. The analysis of the quasielastic scattering to the L-B model explain in a consistent way our experimental results in a range of momentum transfers of about 0.80 - 1.55A -1 . In the inelastic region some structure is observed at energy transfers of 22, 17 and 5 meV. The 17 meV energy transfer is associated with the 1→0 transition of the torsional oscillations of the methyl group. The activation energy for the above motion was calculated to be E=1.3 kcal/mol, in good agreement with the value of the barrier height for internal rotation of the CH 3 in methanol, obtained by microwave methods. (Author) [pt

  13. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun; Lee, Hyong Woo; Chung, Jin Hong

    1990-01-01

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  14. Identification and Assessment of Paradoxical Ventricular Wall Motion Using ECG Gated Blood Pool Scan - Comparison of cine Loop , Phase Analysis and Paradox Image -

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Tae; Kim, Gwang Weon; Lee, Kyu Bo; Chung, Byung Chun; Whang, Kee Suk; Chae, Sung Chul; Paek, Wee Hyun; Cheon, Jae Eun [Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, Hyong Woo; Chung, Jin Hong [Yeongnam National University College of Medicine, Daegu (Korea, Republic of)

    1990-07-15

    Sixty-four patients with paradoxical ventricular wall motion noticed both in angiocardiography or 2-dimensional echocardiography were assessed by ECG gated blood pool scan (GBPS). Endless cine loop image, phase and amplitude images and paradox image obtained by visual inspection of each cardiac beat or Fourier transformation of acquired raw data were investigated to determine the incremental value of GBPS with these processing methods for identification of paradoxical ventricular wall motion. The results were as follows:1) Paradoxical wall motions were observed on interventricular septum in 34 cases, left ventricular free wall in 26 and right ventricular wall in 24. Underlying heart diseases were is chemic (23 cases) valvular(9), congenital heart disease (12), cardiomyopathy (5), pericardial effusion(5), post cardiac surgery(3), corpulmonale (2), endocarditis (l) and right ventricular tumor(l). 2) Left ventricular ejection fractions of patients with paradoxical left ventricular wall motion were significantly lower than those with paradoxical septal motion (p <0.005). 3) The sensitivity of each processing methods for detecting paradoxical wall motion was 76.9% by phase analysis, 74.6% by endless cine loop mapping and 68.4% by paradox image manipulation respectively. Paradoxial motions visualized only in phase, paradox or both images were appeared as hypokinesia or akinesia in cine loop image. 4) All events could be identified by at least one of above three processing methods, however only 34 cases (48.4%) showed the paradoxical motions in all of the three images. By these findings, we concluded that simultaneous inspection of all above three processing methods-endless cine loop, phase analysis and paradox image is necessary for accurate identification and assessment of paradoxical ventricular wall motion when performing GBPS.

  15. Numerical study of fluid motion in bioreactor with two mixers

    Energy Technology Data Exchange (ETDEWEB)

    Zheleva, I., E-mail: izheleva@uni-ruse.bg [Department of Heat Technology, Hydraulics and Ecology, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria); Lecheva, A., E-mail: alecheva@uni-ruse.bg [Department of Mathematics, Angel Kanchev University of Rousse, 8 Studentska str., 7017 Rousse (Bulgaria)

    2015-10-28

    Numerical study of hydrodynamic laminar behavior of a viscous fluid in bioreactor with multiple mixers is provided in the present paper. The reactor is equipped with two disk impellers. The fluid motion is studied in stream function-vorticity formulation. The calculations are made by a computer program, written in MATLAB. The fluid structure is described and numerical results are graphically presented and commented.

  16. Seismic response analysis of reactor containment structures - axisymmetric model with modified ground motion

    International Nuclear Information System (INIS)

    Saha, S.; Dasgupta, A.; Basu, P.C.

    1993-01-01

    Seismic analysis of a Reactor Building is performed idealising the system as a beam model (BM) and also an Axi-symmetric model (ASM) and the results compared. In both the cases effect of Soil-Structure Interaction have been taken Into account. Since the lower boundary of the ASM was at a depth much lower than that of the BM, deconvolution of the specified Free-Field Motion (FFM) was necessary. The deconvolution has been performed using frequency domain approach. (author)

  17. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

    Science.gov (United States)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Ashina, Messoud; Boas, David A

    2012-01-01

    Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.

  18. Lateral motion and bending of microtubules studied with a new single-filament tracking routine in living cells.

    Science.gov (United States)

    Pallavicini, Carla; Levi, Valeria; Wetzler, Diana E; Angiolini, Juan F; Benseñor, Lorena; Despósito, Marcelo A; Bruno, Luciana

    2014-06-17

    The cytoskeleton is involved in numerous cellular processes such as migration, division, and contraction and provides the tracks for transport driven by molecular motors. Therefore, it is very important to quantify the mechanical behavior of the cytoskeletal filaments to get a better insight into cell mechanics and organization. It has been demonstrated that relevant mechanical properties of microtubules can be extracted from the analysis of their motion and shape fluctuations. However, tracking individual filaments in living cells is extremely complex due, for example, to the high and heterogeneous background. We introduce a believed new tracking algorithm that allows recovering the coordinates of fluorescent microtubules with ∼9 nm precision in in vitro conditions. To illustrate potential applications of this algorithm, we studied the curvature distributions of fluorescent microtubules in living cells. By performing a Fourier analysis of the microtubule shapes, we found that the curvatures followed a thermal-like distribution as previously reported with an effective persistence length of ∼20 μm, a value significantly smaller than that measured in vitro. We also verified that the microtubule-associated protein XTP or the depolymerization of the actin network do not affect this value; however, the disruption of intermediate filaments decreased the persistence length. Also, we recovered trajectories of microtubule segments in actin or intermediate filament-depleted cells, and observed a significant increase of their motion with respect to untreated cells showing that these filaments contribute to the overall organization of the microtubule network. Moreover, the analysis of trajectories of microtubule segments in untreated cells showed that these filaments presented a slower but more directional motion in the cortex with respect to the perinuclear region, and suggests that the tracking routine would allow mapping the microtubule dynamical organization in cells

  19. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis. European Cooperative Study Group

    NARCIS (Netherlands)

    Arnold, A. E.; Serruys, P. W.; Rutsch, W.; Simoons, M. L.; de Bono, D. P.; Tijssen, J. G.; Lubsen, J.; Verstraete, M.

    1991-01-01

    Regional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and without immediate

  20. List mode reconstructions for PET with motion compensation: A simulation study

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2002-01-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts

  1. Test suite for image-based motion estimation of the brain and tongue

    Science.gov (United States)

    Ramsey, Jordan; Prince, Jerry L.; Gomez, Arnold D.

    2017-03-01

    Noninvasive analysis of motion has important uses as qualitative markers for organ function and to validate biomechanical computer simulations relative to experimental observations. Tagged MRI is considered the gold standard for noninvasive tissue motion estimation in the heart, and this has inspired multiple studies focusing on other organs, including the brain under mild acceleration and the tongue during speech. As with other motion estimation approaches, using tagged MRI to measure 3D motion includes several preprocessing steps that affect the quality and accuracy of estimation. Benchmarks, or test suites, are datasets of known geometries and displacements that act as tools to tune tracking parameters or to compare different motion estimation approaches. Because motion estimation was originally developed to study the heart, existing test suites focus on cardiac motion. However, many fundamental differences exist between the heart and other organs, such that parameter tuning (or other optimization) with respect to a cardiac database may not be appropriate. Therefore, the objective of this research was to design and construct motion benchmarks by adopting an "image synthesis" test suite to study brain deformation due to mild rotational accelerations, and a benchmark to model motion of the tongue during speech. To obtain a realistic representation of mechanical behavior, kinematics were obtained from finite-element (FE) models. These results were combined with an approximation of the acquisition process of tagged MRI (including tag generation, slice thickness, and inconsistent motion repetition). To demonstrate an application of the presented methodology, the effect of motion inconsistency on synthetic measurements of head- brain rotation and deformation was evaluated. The results indicated that acquisition inconsistency is roughly proportional to head rotation estimation error. Furthermore, when evaluating non-rigid deformation, the results suggest that

  2. Analysis of Seed Sorting Process by Estimation of Seed Motion Trajectories

    DEFF Research Database (Denmark)

    Buus, Ole Thomsen; Jørgensen, Johannes Ravn; Carstensen, Jens Michael

    2011-01-01

    cylinder in action, sorting a batch of barley with both whole and broken kernels. The motion trajectories and angle of escape for each seed in each frame were estimated. Motion trajectories and frequency distributions for the angle of escape are shown for different velocities and pocket sizes. A possible...

  3. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    Science.gov (United States)

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our

  4. On the computations analyzing natural optic flow : Quantitative model analysis of the blowfly motion vision pathway

    NARCIS (Netherlands)

    Lindemann, J.P.; Kern, R.; Hateren, J.H. van; Ritter, H.; Egelhaaf, M.

    2005-01-01

    For many animals, including humans, the optic flow generated on the eyes during locomotion is an important source of information about self-motion and the structure of the environment. The blowfly has been used frequently as a model system for experimental analysis of optic flow processing at the

  5. Anatomic factors affecting the use of ultrasound to predict vocal fold motion: A pilot study.

    Science.gov (United States)

    Masood, Maheer M; Huang, Benjamin; Goins, Allie; Hackman, Trevor G

    2018-04-13

    Ultrasonography is a well-established modality for visualization of head and neck anatomy. Using ultrasound to detect vocal fold mobility has been described before, but no study has evaluated factors affecting the exam reliability. The aim of the study is to determine anatomic factors influencing the reliability of ultrasound to detect vocal fold motion. Methods and materials Patients underwent ultrasound evaluation and flexible laryngoscopy to assess vocal fold motion from August 2015 to March 2016. Length, accuracy, and clarity of ultrasound examination were assessed, compared to flexible laryngoscopy. For patients with prior neck CT scan imaging, laryngeal anatomy was independently assessed by a blinded neuroradiologist. A total of 23 patients, 21 with bilateral vocal fold motion and two with unilateral paralysis, were enrolled. Vocal folds were visible in 19 patients (82%). Eight patients (42%) had good/excellent view and 11 patients (58%) had fair/difficult view. The ultrasound correctly detected absent movement of the vocal fold in the two patients with unilateral paralysis. A total of 19 patients had CT scans, and a linear correlation (r 2  = 0.65) was noted between the anterior thyroid cartilage angle measured on CT and the grade of view on ultrasound. Ultrasound was able to detect vocal fold motion in 82% of randomly screened patients. Ease of detection of vocal fold motion correlated with the anterior thyroid angle. Further studies are warranted to investigate the reproducibility of our results and how this might impact use of ultrasound for detection of vocal fold motion in the operative setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Relevance of motion-related assessment metrics in laparoscopic surgery.

    Science.gov (United States)

    Oropesa, Ignacio; Chmarra, Magdalena K; Sánchez-González, Patricia; Lamata, Pablo; Rodrigues, Sharon P; Enciso, Silvia; Sánchez-Margallo, Francisco M; Jansen, Frank-Willem; Dankelman, Jenny; Gómez, Enrique J

    2013-06-01

    Motion metrics have become an important source of information when addressing the assessment of surgical expertise. However, their direct relationship with the different surgical skills has not been fully explored. The purpose of this study is to investigate the relevance of motion-related metrics in the evaluation processes of basic psychomotor laparoscopic skills and their correlation with the different abilities sought to measure. A framework for task definition and metric analysis is proposed. An explorative survey was first conducted with a board of experts to identify metrics to assess basic psychomotor skills. Based on the output of that survey, 3 novel tasks for surgical assessment were designed. Face and construct validation was performed, with focus on motion-related metrics. Tasks were performed by 42 participants (16 novices, 22 residents, and 4 experts). Movements of the laparoscopic instruments were registered with the TrEndo tracking system and analyzed. Time, path length, and depth showed construct validity for all 3 tasks. Motion smoothness and idle time also showed validity for tasks involving bimanual coordination and tasks requiring a more tactical approach, respectively. Additionally, motion smoothness and average speed showed a high internal consistency, proving them to be the most task-independent of all the metrics analyzed. Motion metrics are complementary and valid for assessing basic psychomotor skills, and their relevance depends on the skill being evaluated. A larger clinical implementation, combined with quality performance information, will give more insight on the relevance of the results shown in this study.

  7. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Belcher, AH; Liu, X; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics robotics stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning

  8. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    International Nuclear Information System (INIS)

    Belcher, AH; Liu, X; Wiersma, R

    2016-01-01

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics robotics stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning

  9. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  10. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    Science.gov (United States)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P.; Marsden, Paul K.

    2014-02-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  11. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data

    International Nuclear Information System (INIS)

    Polycarpou, Irene; Tsoumpas, Charalampos; King, Andrew P; Marsden, Paul K

    2014-01-01

    The aim of this study is to investigate the impact of respiratory motion correction and spatial resolution on lesion detectability in PET as a function of lesion size and tracer uptake. Real respiratory signals describing different breathing types are combined with a motion model formed from real dynamic MR data to simulate multiple dynamic PET datasets acquired from a continuously moving subject. Lung and liver lesions were simulated with diameters ranging from 6 to 12 mm and lesion to background ratio ranging from 3:1 to 6:1. Projection data for 6 and 3 mm PET scanner resolution were generated using analytic simulations and reconstructed without and with motion correction. Motion correction was achieved using motion compensated image reconstruction. The detectability performance was quantified by a receiver operating characteristic (ROC) analysis obtained using a channelized Hotelling observer and the area under the ROC curve (AUC) was calculated as the figure of merit. The results indicate that respiratory motion limits the detectability of lung and liver lesions, depending on the variation of the breathing cycle length and amplitude. Patients with large quiescent periods had a greater AUC than patients with regular breathing cycles and patients with long-term variability in respiratory cycle or higher motion amplitude. In addition, small (less than 10 mm diameter) or low contrast (3:1) lesions showed the greatest improvement in AUC as a result of applying motion correction. In particular, after applying motion correction the AUC is improved by up to 42% with current PET resolution (i.e. 6 mm) and up to 51% for higher PET resolution (i.e. 3 mm). Finally, the benefit of increasing the scanner resolution is small unless motion correction is applied. This investigation indicates high impact of respiratory motion correction on lesion detectability in PET and highlights the importance of motion correction in order to benefit from the increased resolution of future

  12. Cervical isometric strength and range of motion of elite rugby union players: a cohort study.

    Science.gov (United States)

    Hamilton, David F; Gatherer, Don

    2014-01-01

    Head and neck injury is relatively common in Rugby Union. Despite this, strength and range-of-motion characteristics of the cervical spine are poorly characterised. The aim of this study was to provide data on the strength and range-of-motion of the cervical spine of professional rugby players to guide clinical rehabilitation. A cohort study was performed evaluating 27 players from a single UK professional rugby club. Cervical isometric strength and range-of-motion were assessed in 3 planes of reference. Anthropometric data was collected and multivariate regression modelling performed with a view to predicting cervical isometric strength. Largest forces were generated in extension, with broadly equal isometric side flexion forces at around 90% of extension values. The forwards generated significantly more force than the backline in all parameters bar flexion. The forwards had substantially reduced cervical range-of-motion and larger body mass, with differences observed in height, weight, neck circumference and chest circumference (p isometric extension (adjusted R(2) = 30.34). Rehabilitative training programs aim to restore individuals to pre-injury status. This work provides reference ranges for the strength and range of motion of the cervical spine of current elite level rugby players.

  13. Model-free methods of analyzing domain motions in proteins from simulation : A comparison of normal mode analysis and molecular dynamics simulation of lysozyme

    NARCIS (Netherlands)

    Hayward, S.; Kitao, A.; Berendsen, H.J.C.

    Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations, For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by

  14. Radiotherapy of tumors under respiratory motion. Estimation of the motional velocity field and dose accumulation based on 4D image data

    International Nuclear Information System (INIS)

    Werner, Rene

    2013-01-01

    Respiratory motion represents a major challenge in radiation therapy in general, and especially for the therapy of lung tumors. In recent years and due to the introduction of modern techniques to 'acquire temporally resolved computed tomography images (4D CT images), different approaches have been developed to explicitly account for breathing motion during treatment. An integral component of such approaches is the concept of motion field estimation, which aims at a mathematical description and the computation of the motion sequences represented by the patient's images. As part of a 4D dose calculation/dose accumulation, the resulting vector fields are applied for assessing and accounting for breathing-induced effects on the dose distribution to be delivered. The reliability of related 4D treatment planning concepts is therefore directly tailored to the precision of the underlying motion field estimation process. Taking this into account, the thesis aims at developing optimized methods for the estimation of motion fields using 4D CT images and applying the resulting methods for the analysis of breathing induced dosimetric effects in radiation therapy. The thesis is subdivided into three parts that thematically build upon each other. The first part of the thesis is about the implementation, evaluation and optimization of methods for motion field estimation with the goal of precisely assessing respiratory motion of anatomical and pathological structures represented in a patient's 4D er image sequence; this step is the basis of subsequent developments and analysis parts. Especially non-linear registration techniques prove to be well suited to this purpose. After being optimized for the particular problem at hand, it is shown as part of an extensive multi-criteria evaluation study and additionally taking into account publicly accessible evaluation platforms that such methods allow estimating motion fields with subvoxel accuracy - which means that the developed methods

  15. Comparison of Quantitative Wall Motion Analysis and Strain For Detection Of Coronary Stenosis With Three-Dimensional Dobutamine Stress Echocardiography

    Science.gov (United States)

    Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.

    2015-01-01

    Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588

  16. A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring

    DEFF Research Database (Denmark)

    Worm, Esben S; Høyer, Morten; Hansen, Rune

    2018-01-01

    PURPOSE: Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal...... electromagnetic motion monitoring for gated liver SBRT. METHODS AND MATERIALS: Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3...

  17. Non-linear methods for the quantification of cyclic motion

    OpenAIRE

    Quintana Duque, Juan Carlos

    2016-01-01

    Traditional methods of human motion analysis assume that fluctuations in cycles (e.g. gait motion) and repetitions (e.g. tennis shots) arise solely from noise. However, the fluctuations may have enough information to describe the properties of motion. Recently, the fluctuations in motion have been analysed based on the concepts of variability and stability, but they are not used uniformly. On the one hand, these concepts are often mixed in the existing literature, while on the other hand, the...

  18. Video Analysis of Projectile Motion Using Tablet Computers as Experimental Tools

    Science.gov (United States)

    Klein, P.; Gröber, S.; Kuhn, J.; Müller, A.

    2014-01-01

    Tablet computers were used as experimental tools to record and analyse the motion of a ball thrown vertically from a moving skateboard. Special applications plotted the measurement data component by component, allowing a simple determination of initial conditions and "g" in order to explore the underlying laws of motion. This experiment…

  19. Diffusion-advection within dynamic biological gaps driven by structural motion

    Science.gov (United States)

    Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo

    2018-04-01

    To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.

  20. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method

    International Nuclear Information System (INIS)

    Yabushita, Kazuki; Yamashita, Mariko; Tsuboi, Kazuhiro

    2007-01-01

    We consider the problem of two-dimensional projectile motion in which the resistance acting on an object moving in air is proportional to the square of the velocity of the object (quadratic resistance law). It is well known that the quadratic resistance law is valid in the range of the Reynolds number: 1 x 10 3 ∼ 2 x 10 5 (for instance, a sphere) for practical situations, such as throwing a ball. It has been considered that the equations of motion of this case are unsolvable for a general projectile angle, although some solutions have been obtained for a small projectile angle using perturbation techniques. To obtain a general analytic solution, we apply Liao's homotopy analysis method to this problem. The homotopy analysis method, which is different from a perturbation technique, can be applied to a problem which does not include small parameters. We apply the homotopy analysis method for not only governing differential equations, but also an algebraic equation of a velocity vector to extend the radius of convergence. Ultimately, we obtain the analytic solution to this problem and investigate the validation of the solution

  1. Characterizing Detrended Fluctuation Analysis of multifractional Brownian motion

    Science.gov (United States)

    Setty, V. A.; Sharma, A. S.

    2015-02-01

    The Hurst exponent (H) is widely used to quantify long range dependence in time series data and is estimated using several well known techniques. Recognizing its ability to remove trends the Detrended Fluctuation Analysis (DFA) is used extensively to estimate a Hurst exponent in non-stationary data. Multifractional Brownian motion (mBm) broadly encompasses a set of models of non-stationary data exhibiting time varying Hurst exponents, H(t) as against a constant H. Recently, there has been a growing interest in time dependence of H(t) and sliding window techniques have been used to estimate a local time average of the exponent. This brought to fore the ability of DFA to estimate scaling exponents in systems with time varying H(t) , such as mBm. This paper characterizes the performance of DFA on mBm data with linearly varying H(t) and further test the robustness of estimated time average with respect to data and technique related parameters. Our results serve as a bench-mark for using DFA as a sliding window estimator to obtain H(t) from time series data.

  2. Attraction of posture and motion-trajectory elements of conspecific biological motion in medaka fish.

    Science.gov (United States)

    Shibai, Atsushi; Arimoto, Tsunehiro; Yoshinaga, Tsukasa; Tsuchizawa, Yuta; Khureltulga, Dashdavaa; Brown, Zuben P; Kakizuka, Taishi; Hosoda, Kazufumi

    2018-06-05

    Visual recognition of conspecifics is necessary for a wide range of social behaviours in many animals. Medaka (Japanese rice fish), a commonly used model organism, are known to be attracted by the biological motion of conspecifics. However, biological motion is a composite of both body-shape motion and entire-field motion trajectory (i.e., posture or motion-trajectory elements, respectively), and it has not been revealed which element mediates the attractiveness. Here, we show that either posture or motion-trajectory elements alone can attract medaka. We decomposed biological motion of the medaka into the two elements and synthesized visual stimuli that contain both, either, or none of the two elements. We found that medaka were attracted by visual stimuli that contain at least one of the two elements. In the context of other known static visual information regarding the medaka, the potential multiplicity of information regarding conspecific recognition has further accumulated. Our strategy of decomposing biological motion into these partial elements is applicable to other animals, and further studies using this technique will enhance the basic understanding of visual recognition of conspecifics.

  3. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  4. A study on the characteristics of strong ground motions in southern Korea

    International Nuclear Information System (INIS)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob

    2001-12-01

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets

  5. A study on the characteristics of strong ground motions in southern Korea

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Chang Eob; Lee, Kie Hwa; Kang, Tae Seob [Seoul National Univ., Seoul (Korea, Republic of)

    2001-12-15

    Ground motion characteristics in southern Korea are analyzed such as the variations of ground motion durations depending on the hypocentral distance, the earthquake magnitude and the frequency contents of the motion, and the predominant frequency of the maximum ground motion, the ratio of the horizontal to the vertical component amplitudes, the frequency dependence of the Coda Q values, the local distribution of Lg Q values using recorded data sets.

  6. Estimating Vertical Land Motion in the Chesapeake Bay

    Science.gov (United States)

    Houttuijn Bloemendaal, L.; Hensel, P.

    2017-12-01

    This study aimed to provide a modern measurement of subsidence in the Chesapeake Bay region and establish a methodology for measuring vertical land motion using static GPS, a cheaper alternative to InSAR or classical leveling. Vertical land motion in this area is of particular concern because tide gages are showing up to 5 mm/yr of local, relative sea level rise. While a component of this rate is the actual eustatic sea level rise itself, part of the trend may also be vertical land motion, in which subsidence exacerbates the effects of actual changes in sea level. Parts of this region are already experiencing an increase in the frequency and magnitude of near-shore coastal flooding, but the last comprehensive study of vertical land motion in this area was conducted by NOAA in 1974 (Holdahl & Morrison) using repeat leveled lines. More recent measures of vertical land motion can help inform efforts on resilience to sea level rise, such as in the Hampton Roads area. This study used measured GPS-derived vertical heights in conjunction with legacy GPS data to calculate rates of vertical motion at several points in time for a selection of benchmarks scattered throughout the region. Seventeen marks in the stable Piedmont area and in the areas suspected of subsidence in the Coastal Plain were selected for the analysis. Results indicate a significant difference between the rates of vertical motion in the Piedmont and Coastal Plain, with a mean rate of -4.10 mm/yr in the Coastal Plain and 0.15 mm/yr in the Piedmont. The rates indicate particularly severe subsidence at the southern Delmarva Peninsula coast and the Hampton-Roads area, with a mean rate of -6.57 mm/yr in that region. By knowing local rates of subsidence as opposed to sea level change itself, coastal managers may make better informed decisions regarding natural resource use, such as deciding whether or not to reduce subsurface fluid withdrawals or to consider injecting treated water back into the aquifer to slow

  7. Evaluation of image guided motion management methods in lung cancer radiotherapy

    International Nuclear Information System (INIS)

    Zhuang, Ling; Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun

    2014-01-01

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  8. Evaluation of image guided motion management methods in lung cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Ling [Department of Radiation Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, Michigan 48201 (United States); Yan, Di; Liang, Jian; Ionascu, Dan; Mangona, Victor; Yang, Kai; Zhou, Jun, E-mail: jun.zhou@beaumont.edu [Department of Radiation Oncology, William Beaumont Hospital, 3601 West Thirteen Mile Road, Royal Oak, Michigan 48073 (United States)

    2014-03-15

    Purpose: To evaluate the accuracy and reliability of three target localization methods for image guided motion management in lung cancer radiotherapy. Methods: Three online image localization methods, including (1) 2D method based on 2D cone beam (CB) projection images, (2) 3D method using 3D cone beam CT (CBCT) imaging, and (3) 4D method using 4D CBCT imaging, have been evaluated using a moving phantom controlled by (a) 1D theoretical breathing motion curves and (b) 3D target motion patterns obtained from daily treatment of 3 lung cancer patients. While all methods are able to provide target mean position (MP), the 2D and 4D methods can also provide target motion standard deviation (SD) and excursion (EX). For each method, the detected MP/SD/EX values are compared to the analytically calculated actual values to calculate the errors. The MP errors are compared among three methods and the SD/EX errors are compared between the 2D and 4D methods. In the theoretical motion study (a), the dependency of MP/SD/EX error on EX is investigated with EX varying from 2.0 cm to 3.0 cm with an increment step of 0.2 cm. In the patient motion study (b), the dependency of MP error on target sizes (2.0 cm and 3.0 cm), motion patterns (four motions per patient) and EX variations is investigated using multivariant linear regression analysis. Results: In the theoretical motion study (a), the MP detection errors are −0.2 ± 0.2, −1.5 ± 1.1, and −0.2 ± 0.2 mm for 2D, 3D, and 4D methods, respectively. Both the 2D and 4D methods could accurately detect motion pattern EX (error < 1.2 mm) and SD (error < 1.0 mm). In the patient motion study (b), MP detection error vector (mm) with the 2D method (0.7 ± 0.4) is found to be significantly less than with the 3D method (1.7 ± 0.8,p < 0.001) and the 4D method (1.4 ± 1.0, p < 0.001) using paired t-test. However, no significant difference is found between the 4D method and the 3D method. Based on multivariant linear regression analysis, the

  9. Engineering uses of physics-based ground motion simulations

    Science.gov (United States)

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  10. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    International Nuclear Information System (INIS)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J.

    2015-01-01

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc

  11. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    Energy Technology Data Exchange (ETDEWEB)

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Km 103 Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Beckman, J., E-mail: tere@astro.unam.mx, E-mail: leonel@astro.unam.mx, E-mail: wsteffen@astro.unam.mx, E-mail: jal@astro.unam.mx, E-mail: jeb@iac.es [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  12. Study of journal bearing dynamics using 3-dimensional motion picture graphics

    Science.gov (United States)

    Brewe, D. E.; Sosoka, D. J.

    1985-01-01

    Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.

  13. Sacroiliac Joint Fusion Minimally Affects Adjacent Lumbar Segment Motion: A Finite Element Study.

    Science.gov (United States)

    Lindsey, Derek P; Kiapour, Ali; Yerby, Scott A; Goel, Vijay K

    2015-01-01

    Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (sacroiliac joint fusion, the long-term clinical results remain to be investigated.

  14. Vision Servo Motion Control and Error Analysis of a Coplanar XXY Stage for Image Alignment Motion

    Directory of Open Access Journals (Sweden)

    Hau-Wei Lee

    2013-01-01

    Full Text Available In recent years, as there is demand for smart mobile phones with touch panels, the alignment/compensation system of alignment stage with vision servo control has also increased. Due to the fact that the traditional stacked-type XYθ stage has cumulative errors of assembly and it is heavy, it has been gradually replaced by the coplanar stage characterized by three actuators on the same plane with three degrees of freedom. The simplest image alignment mode uses two cameras as the equipments for feedback control, and the work piece is placed on the working stage. The work piece is usually engraved/marked. After the cameras capture images and when the position of the mark in the camera is obtained by image processing, the mark can be moved to the designated position in the camera by moving the stage and using alignment algorithm. This study used a coplanar XXY stage with 1 μm positioning resolution. Due to the fact that the resolution of the camera is about 3.75 μm per pixel, thus a subpixel technology is used, and the linear and angular alignment repeatability of the alignment system can achieve 1 μm and 5 arcsec, respectively. The visual servo motion control for alignment motion is completed within 1 second using the coplanar XXY stage.

  15. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  16. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  17. Reynolds number scaling of straining motions in turbulence

    Science.gov (United States)

    Elsinga, Gerrit; Ishihara, T.; Goudar, M. V.; da Silva, C. B.; Hunt, J. C. R.

    2017-11-01

    Strain is an important fluid motion in turbulence as it is associated with the kinetic energy dissipation rate, vorticity stretching, and the dispersion of passive scalars. The present study investigates the scaling of the turbulent straining motions by evaluating the flow in the eigenframe of the local strain-rate tensor. The analysis is based on DNS of homogeneous isotropic turbulence covering a Reynolds number range Reλ = 34.6 - 1131. The resulting flow pattern reveals a shear layer containing tube-like vortices and a dissipation sheet, which both scale on the Kolmogorov length scale, η. The vorticity stretching motions scale on the Taylor length scale, while the flow outside the shear layer scales on the integral length scale. These scaling results are consistent with those in wall-bounded flow, which suggests a quantitative universality between the different flows. The overall coherence length of the vorticity is 120 η in all directions, which is considerably larger than the typical size of individual vortices, and reflects the importance of spatial organization at the small scales. Transitions in flow structure are identified at Reλ 45 and 250. Below these respective Reynolds numbers, the small-scale motions and the vorticity stretching motions appear underdeveloped.

  18. Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios

    Science.gov (United States)

    Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed

    2017-09-01

    The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.

  19. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    Science.gov (United States)

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  20. Ground motion studies in a backfilled stope at West Driefontein

    CSIR Research Space (South Africa)

    Goldbach, OD

    1991-10-01

    Full Text Available This report looks at the ground motion from 24 small magnitude seismic events recorded at various points inside a backfilled stope. The in-stope ground motion is compared to that recorded at an off-reef site. The seismic events are analysed...

  1. Joint motion clusters in servomanipulator operation

    International Nuclear Information System (INIS)

    Draper, J.V.; Sundstrom, E.; Herndon, J.N.

    1986-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory is developing advanced teleoperator systems for maintenance of future nuclear fuel reprocessing facilities. Remote maintenance systems developed by the CFRP emphasize man-in-the-loop teleoperation. This paper reports the results of a recent experiment which investigated how users interact with a multi-degree-of-freedom servomanipulator. Principal components analysis performed on data collected during completion of typical remote maintenance tests indicates that joint motions may be summarized by two orthogonal clusters, one which represents fine-adjusting motions and one which represents slewing motions. Implications of these findings for servomanipulator design are discussed. 5 refs., 1 fig., 2 tabs

  2. Mobile Motion Capture--MiMiC.

    Science.gov (United States)

    Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S

    2013-01-01

    The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.

  3. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  4. Pharmacological and neurophysiological aspects of space/motion sickness

    Science.gov (United States)

    Lucot, James B.; Crampton, George H.

    1991-01-01

    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  5. A Study to Quantify the Effectiveness of Daily Endorectal Balloon for Prostate Intrafraction Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ken Kang-Hsin, E-mail: wangken@uphs.upenn.edu [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States); Vapiwala, Neha; Deville, Curtiland; Plastaras, John P.; Scheuermann, Ryan; Lin Haibo; Bar Ad, Voika; Tochner, Zelig; Both, Stefan [Department of Radiation Oncology, Hospital of University of Pennsylvania, Philadelphia, PA (United States)

    2012-07-01

    Purpose: To quantify intrafraction prostate motion between patient groups treated with and without daily endorectal balloon (ERB) employed during prostate radiotherapy and establish the effectiveness of the ERB. Methods: Real-time intrafraction prostate motion from 29 non-ERB (1,061 sessions) and 30 ERB (1,008 sessions) patients was evaluated based on three-dimensional (3D), left, right, cranial, caudal, anterior, and posterior displacements. The average percentage of time with 3D and unidirectional prostate displacements >2, 3, 4, 5, 6, 7, 8, 9, and 10 mm in 1-min intervals was calculated for up to 6 min of treatment time. The Kolmogorov-Smirnov method was used to evaluate the intrafraction prostate motion pattern between both groups. Results: Large 3D motion (up to 1 cm or more) was only observed in the non-ERB group. The motion increased as a function of elapsed time for displacements >2-8 mm for the non-ERB group and >2-4 mm for the ERB group (p < 0.05). The percentage time distributions between the two groups were significantly different for motion >5 mm (p < 0.05). The 3D symmetrical internal margin (IM) can be reduced from 5 to 3 mm (40% reduction), whereas the asymmetrical IM can be reduced from 3 to 2 mm (33% reduction) in cranial, caudal, anterior, and posterior for 6 min of treatment, when ERB is used. Beyond 6 min, the symmetrical 3D and asymmetrical cranial, caudal, anterior, and posterior IMs can be reduced from 9, 4, 7, 7, and 8 to 5, 2, 5, 3, and 4 mm, respectively (up to 57% reduction). Conclusion: The percentage of time that the prostate was displaced in any direction was less in the ERB group for almost all magnitudes of motion considered. The directional analysis shows that the ERB reduced IMs in almost all directions, especially the anterior-posterior direction.

  6. Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning

    Science.gov (United States)

    DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf

    2018-06-01

    We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.

  7. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  8. Seismic hazard analysis. Review panel, ground motion panel, and feedback results

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1981-10-01

    The Site Specific Spectra Project (SSSP) was a multi-year study funded by the U.S. Nuclear Regulatory Commission to provide estimates of the seismic hazards at a number of nuclear power plant sites in the Eastern U.S. A key element of our approach was the Peer Review Panel, which we formed in order to ensure that our use of expert opinion was reasonable. We discuss the Peer Review Panel results and provide the complete text of each member's report. In order to improve the ground motion model, an Eastern U.S. Ground Motion Model Panel was formed. In Section 4 we tabulate the responses from the panel members to our feedback questionnaire and discuss the implications of changes introduced by them. We conclude that the net difference in seismic hazard values from those presented in Volume 4 is small and does not warrant a reanalysis. (author)

  9. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.

    Science.gov (United States)

    Jeon, Jae-Hyung; Metzler, Ralf

    2010-02-01

    Motivated by subdiffusive motion of biomolecules observed in living cells, we study the stochastic properties of a non-Brownian particle whose motion is governed by either fractional Brownian motion or the fractional Langevin equation and restricted to a finite domain. We investigate by analytic calculations and simulations how time-averaged observables (e.g., the time-averaged mean-squared displacement and displacement correlation) are affected by spatial confinement and dimensionality. In particular, we study the degree of weak ergodicity breaking and scatter between different single trajectories for this confined motion in the subdiffusive domain. The general trend is that deviations from ergodicity are decreased with decreasing size of the movement volume and with increasing dimensionality. We define the displacement correlation function and find that this quantity shows distinct features for fractional Brownian motion, fractional Langevin equation, and continuous time subdiffusion, such that it appears an efficient measure to distinguish these different processes based on single-particle trajectory data.

  10. Fragility curves for bridges under differential support motions

    DEFF Research Database (Denmark)

    Konakli, Katerina

    2012-01-01

    This paper employs the notion of fragility to investigate the seismic vulnerability of bridges subjected to spatially varying support motions. Fragility curves are developed for four highway bridges in California with vastly different structural characteristics. The input in this analysis consists...... of simulated ground motion arrays with temporal and spectral nonstationarities, and consistent with prescribed spatial variation patterns. Structural damage is quantified through displacement ductility demands obtained from nonlinear time-history analysis. The potential use of the ‘equal displacement’ rule...... to approximately evaluate displacement demands from analysis of the equivalent linear systems is examined....

  11. Assessment of motion and kinematic characteristics of frozen-thawed Sirohi goat semen using computer-assisted semen analysis

    Directory of Open Access Journals (Sweden)

    Mukul Anand

    2016-02-01

    Full Text Available Aim: The aim was to determine the motion and kinematics characteristic of frozen-thawed spermatozoa in Sirohi goat using computer-assisted semen analysis. Materials and Methods: A study was carried out in Sirohi buck. Semen collection was made biweekly from each buck with the help of artificial vagina. A total of 12 ejaculates were collected from two bucks (six ejaculates from each buck. Freshly collected semen was pooled and later evaluated. The pooled semen sample was extended with standard glycerolated egg yolk tris extender and later subjected to a process of cryopreservation. The motion and kinematic characteristics of spermatozoa were studied during freez-thawing process. Results: Significantly (p<0.01 higher value of live percent, hypo-osmotic swelling test, and acrosomal integrity were recorded in neat semen followed by diluted and frozen thaw semen. The proportion of spermatozoa showing slow progression were the highest in the neat and diluted semen followed by rapid and non-progressively motile, while a reverse pattern was observed in the frozen thaw semen where the proportion of non-progressively motile spermatozoa were significantly (p<0.01 higher followed by slow and rapid progression. Conclusion: This study showed that the best results for motion, vitality, plasma membrane integrity, and acrosome status were obtained in the neat semen followed by diluted and frozen thaw semen. Further, the process of cryopreservation results in a shift of motility from slow to non-progressive in the post-thaw semen with a significant decrease in the path velocities when compared to neat and diluted semen. Hence, it can be concluded that freezing-thawing process reduces the motility and kinematic characters spermatozoa and may be an important factor affecting the fertilizing ability of spermatozoa resulting in poor conception rate after insemination in goats.

  12. Kinematic analysis of dynamic shoulder motion in patients with reverse total shoulder arthroplasty.

    Science.gov (United States)

    Kwon, Young W; Pinto, Vivek J; Yoon, Jangwhon; Frankle, Mark A; Dunning, Page E; Sheikhzadeh, Ali

    2012-09-01

    Reverse total shoulder arthroplasty (rTSA) has been used to treat patients with irreparable rotator cuff dysfunction. Despite the proven clinical efficacy, there is minimal information regarding the underlying changes to the shoulder kinematics associated with this construct. Therefore, we sought to examine the kinematics of dynamic shoulder motion in patients with well-functioning rTSA. We tested 12 healthy subjects and 17 patients with rTSA. All rTSA patients were able to elevate their arms to at least 90° and received the implant as the primary arthroplasty at least 6 months before testing. On average, the rTSA patients elevated their arms to 112° ± 12° (mean ± SD) and reported an American Shoulder and Elbow Surgeons outcome score of 90.6 ± 6.3. A 3-dimensional electromagnetic motion capture device was used to detect the dynamic motion of the trunk, scapula, and humerus during bilateral active shoulder elevation along the sagittal, scapular, and coronal planes. In both healthy and rTSA shoulders, the majority of the humeral-thoracic motion was provided by the glenohumeral motion. Therefore, the ratio of glenohumeral to scapulothoracic (ST) motion was always greater than 1.62 during elevation along the scapular plane. In comparison to healthy subjects, however, the contribution of ST motion to overall shoulder motion was significantly increased in the rTSA shoulders. This increased contribution was noted in all planes of shoulder elevation and was maintained when weights were attached to the arm. Kinematics of the rTSA shoulders are significantly altered, and more ST motion is used to achieve shoulder elevation. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  13. Optical surface scanning for respiratory motion monitoring in radiotherapy: a feasibility study

    DEFF Research Database (Denmark)

    Bekke, Susanne Lise; Mahmood, Faisal; Helt-Hansen, Jakob

    2014-01-01

    Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM, a compet......Purpose. We evaluated the feasibility of a surface scanning system (Catalyst) for respiratory motion monitoring of breast cancer patients treated with radiotherapy in deep inspiration breath-hold (DIBH). DIBH is used to reduce the radiation dose to the heart and lung. In contrast to RPM...... and 3: the Quasar phantom was used to study if the angle of the monitored surface affects the amplitude of the recorded signal. Results. Experiment 1: we observed comparable period estimates for both systems. The amplitudes were 8 ± 0.1 mm (Catalyst) and 4.9 ± 0.1 mm (RPM). Independent check with in...... 1. Experiment 3: an increased (fixed) surface angle during breathing motion resulted in an overestimated amplitude with RPM, while the amplitude estimated by Catalyst was unaffected. Conclusion. Our study showed that Catalyst can be used as a better alternative to the RPM. With Catalyst...

  14. Brownian motion of polyphosphate complexes in yeast vacuoles: characterization by fluorescence microscopy with image analysis.

    Science.gov (United States)

    Puchkov, Evgeny O

    2010-06-01

    In the vacuoles of Saccharomyces cerevisiae yeast cells, vividly moving insoluble polyphosphate complexes (IPCs) movement of the IPCs and to evaluate the viscosity in the vacuoles using the obtained data. Studies were conducted on S. cerevisiae cells stained by DAPI and fluorescein isothyocyanate-labelled latex microspheres, using fluorescence microscopy combined with computer image analysis (ImageJ software, NIH, USA). IPC movement was photorecorded and shown to be Brownian motion. On latex microspheres, a methodology was developed for measuring a fluorescing particle's two-dimensional (2D) displacements and its size. In four yeast cells, the 2D displacements and sizes of the IPCs were evaluated. Apparent viscosity values in the vacuoles of the cells, computed by the Einstein-Smoluchowski equation using the obtained data, were found to be 2.16 +/- 0.60, 2.52 +/- 0.63, 3.32 +/- 0.9 and 11.3 +/- 1.7 cP. The first three viscosity values correspond to 30-40% glycerol solutions. The viscosity value of 11.3 +/- 1.7 cP was supposed to be an overestimation, caused by the peculiarities of the vacuole structure and/or volume in this particular cell. This conclusion was supported by the particular quality of the Brownian motion trajectories set in this cell as compared to the other three cells.

  15. Automated Motion Estimation for 2D Cine DENSE MRI

    Science.gov (United States)

    Gilliam, Andrew D.; Epstein, Frederick H.

    2013-01-01

    Cine displacement encoding with stimulated echoes (DENSE) is a magnetic resonance (MR) method that directly encodes tissue displacement into MR phase images. This technique has successfully interrogated many forms of tissue motion, but is most commonly used to evaluate cardiac mechanics. Currently, motion analysis from cine DENSE images requires manually delineated anatomical structures. An automated analysis would improve measurement throughput, simplify data interpretation, and potentially access important physiological information during the MR exam. In this article, we present the first fully automated solution for the estimation of tissue motion and strain from 2D cine DENSE data. Results using both simulated and human cardiac cine DENSE data indicate good agreement between the automated algorithm and the standard semi-manual analysis method. PMID:22575669

  16. Earthquake Ground Motion Measures for Seismic Response Evaluation of Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In-Kil; Ahn, Seong-Moon; Choun, Young-Sun; Seo, Jeong-Moon

    2007-03-15

    This study used the assessment results of failure criteria - base shear, story drift, top acceleration and top displacement - for a PSC containment building subjected to 30 sets of near-fault ground motions to evaluate the earthquake ground motion intensity measures. Seven intensity measures, peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(Sa), velocity(Sv), spectrum intensity for acceleration(SIa), velocity(SIv) and displacement(SId), were used to represent alternative ground motion. The regression analyses of the failure criteria for a PSC containment building were carried out to evaluate a proper intensity measure by using two regression models and seven ground motion parameters. The regression analysis results demonstrate the correlation coefficients of the failure criteria in terms of the candidate IM. From the results, spectral acceleration(Sa) is estimated as the best parameter for a evaluation of the structural safety for a seismic PSA.

  17. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters.

    Science.gov (United States)

    Gaing, Byron; Sigmund, Eric E; Huang, William C; Babb, James S; Parikh, Nainesh S; Stoffel, David; Chandarana, Hersh

    2015-03-01

    The aim of this study was to determine if voxel-based histogram analysis of intravoxel incoherent motion imaging (IVIM) parameters can differentiate various subtypes of renal tumors, including benign and malignant lesions. A total of 44 patients with renal tumors who underwent surgery and had histopathology available were included in this Health Insurance Portability and Accountability Act-compliant, institutional review board-approved, single-institution prospective study. In addition to routine renal magnetic resonance imaging examination performed on a 1.5-T system, all patients were imaged with axial diffusion-weighted imaging using 8 b values (range, 0-800 s/mm). A biexponential model was fitted to the diffusion signal data using a segmented algorithm to extract the IVIM parameters perfusion fraction (fp), tissue diffusivity (Dt), and pseudodiffusivity (Dp) for each voxel. Mean and histogram measures of heterogeneity (standard deviation, skewness, and kurtosis) of IVIM parameters were correlated with pathology results of tumor subtype using unequal variance t tests to compare subtypes in terms of each measure. Correction for multiple comparisons was accomplished using the Tukey honestly significant difference procedure. A total of 44 renal tumors including 23 clear cell (ccRCC), 4 papillary (pRCC), 5 chromophobe, and 5 cystic renal cell carcinomas, as well as benign lesions, 4 oncocytomas (Onc) and 3 angiomyolipomas (AMLs), were included in our analysis. Mean IVIM parameters fp and Dt differentiated 8 of 15 pairs of renal tumors. Histogram analysis of IVIM parameters differentiated 9 of 15 subtype pairs. One subtype pair (ccRCC vs pRCC) was differentiated by mean analysis but not by histogram analysis. However, 2 other subtype pairs (AML vs Onc and ccRCC vs Onc) were differentiated by histogram distribution parameters exclusively. The standard deviation of Dt [σ(Dt)] differentiated ccRCC (0.362 ± 0.136 × 10 mm/s) from AML (0.199 ± 0.043 × 10 mm/s) (P = 0

  18. Using Kinesthetic Activities to Teach Ptolemaic and Copernican Retrograde Motion

    Science.gov (United States)

    Richards, Ted

    2012-01-01

    This paper describes a method for teaching planetary retrograde motion, and the Ptolemaic and Copernican accounts of retrograde motion, by means of a series kinesthetic learning activities (KLAs). In the KLAs described, the students literally walk through the motions of the planets in both systems. A retrospective statistical analysis shows that…

  19. Galileo and the equations of motion

    CERN Document Server

    Boccaletti, Dino

    2016-01-01

    This book is intended as a historical and critical study on the origin of the equations of motion as established in Newton's Principia. The central question that it aims to answer is whether it is indeed correct to ascribe to Galileo the inertia principle and the law of falling bodies. In order to accomplish this task, the study begins by considering theories on the motion of bodies from classical antiquity, and especially those of Aristotle. The theories developed during the Middle Ages and the Renaissance are then reviewed, with careful analysis of the contributions of, for example, the Merton and Parisian Schools and Galileo’s immediate predecessors, Tartaglia and Benedetti. Finally, Galileo’s work is examined in detail, starting from the early writings.  Excerpts from individual works are presented, to allow the texts to speak for themselves, and then commented upon. The book provides historical evidence both for Galileo's dependence on his forerunners and for the major breakthroughs that he achieved...

  20. Comparative study of joint range of motion in children between 7 and 12 years of age from different gender

    Directory of Open Access Journals (Sweden)

    S.I.L. Melo

    2011-01-01

    Full Text Available The aim of the study was to evaluate and compare active and passive joint range of motion in children in relation to gender and age. This study involved 103 children (43 boys and 60 girls categorized into two groups: G1 (7 to 9 years old and G2 (10 to 12 years old. The flexitest protocol, active and passive, and the SAPO® were used to evaluate joint range of motion. A paired t test was applied to compare active and passive joint range of motion and an independent t test (p < .05 was used to compare active and passive range of motion between gender and age. Results showed that the passive joint ranges of motion of the lower limbs are higher than active motion (p < .001. Girls presented greater passive ankle flexion than boys did (p = .002. Children between 7 and 12 years of age presented similar standards of joint range of motion of low limb. Significant differences were found between passive and active angular range of motion in the hip, knee and ankle. There were no differences between boys and girls in the joint range of motion as well as among age groups.